WorldWideScience

Sample records for inhibits tumor necrosis

  1. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    Science.gov (United States)

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  2. Inhibition of the release of soluble tumor necrosis factor receptors in experimental endotoxemia by an anti-tumor necrosis factor-alpha antibody

    NARCIS (Netherlands)

    Jansen, J.; van der Poll, T.; Levi, M. [=Marcel M.; ten Cate, H.; Gallati, H.; ten Cate, J. W.; van Deventer, S. J.

    1995-01-01

    The role of tumor necrosis factor-alpha in the shedding of soluble tumor necrosis factor receptors in endotoxemia was investigated. The appearance of the soluble tumor necrosis factor receptors was assessed in four healthy volunteers following an intravenous injection of tumor necrosis factor-alpha

  3. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    Energy Technology Data Exchange (ETDEWEB)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.; Weichselbaum, R.R. [Dana Farber Cancer Institute, Boston, MA (United States)

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2 inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.

  4. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders.

    Science.gov (United States)

    Bahia, Malkeet S; Silakari, Om

    2010-05-01

    Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.

  5. Recombinant tumor necrosis factor alpha inhibits growth of methylcholanthrene-induced sarcoma and enhances natural killer activity of tumor-infiltrating lymphocytes in aging rats

    International Nuclear Information System (INIS)

    Ziolkowska, Maria; Nowak Joanna, J.; Janiak, Marek; Ryzewska, Alicja

    1994-01-01

    The effect of recombinant human tumor necrosis factors alpha (rHuTNF-α) on the growth of immunogenic, methylcholanthrene-induced sarcoma (MC-Sa) and natural killer (NK) cell activity of tumor-infiltrating lymphocytes (TIL) in adult and aging rats was investigated. In both groups of animals the growth of transplantable MC-Sa was markedly and similarly inhibited by multiple intratumoral (i.t.) injections of rHuTF-α. This effect was accompanied by stimulation of NK activity of tumor-infiltrating lymphocytes in adult as well as in aging rats. Studies ''in vitro'' demonstrated additionally that rHuTNF-α was a potent stimulator of NK but not of ADCC (antibody-dependent cellular cytotoxicity) activity of spleen lymphocytes from healthy animals. Our results indicate that the antitumor effect of TNF-α is comparable in adult and in aging rats bearing immunogenic MC-Sa. The inhibition of MC-Sa growth may be attributed not only to the TNF-α-induced necrosis of the neoplastic tissue but also to the ''in vivo'' stimulatory effect of this cytokine upon the NK-type function of lymphocytes infiltrating the tumor mass. (author). 31 refs, 5 figs, 2 tabs

  6. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans

    DEFF Research Database (Denmark)

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj

    2003-01-01

    BACKGROUND: Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin....../or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow....... Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (Palpha...

  7. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  8. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhao, Xianda; Fan, Wei; Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-12-06

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.

  9. Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Madsen, Pernille M; Clausen, Bettina H; Degn, Matilda

    2016-01-01

    Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor...... reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1β, IL-6...... knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display...

  10. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    Science.gov (United States)

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  11. Predictive value of histologic tumor necrosis after radiation.

    Science.gov (United States)

    Chen, Y; Taghian, A G; Rosenberg, A E; O'Connell, J; Okunieff, P; Suit, H D

    2001-12-20

    Postsurgical evaluation of histologic changes of tumors after preoperative chemotherapy and/or radiotherapy has been a routine clinical practice of pathologists and oncologists. There appears to be secure evidence that the extent of tumor necrosis vs. viable tumor cells postchemotherapy is a clinically useful predictor of outcome. The significance of histologic tumor necrosis after radiotherapy, however, has not been clearly established and deserves further investigation. We investigated the correlation between histological extent of tumor necrosis, survival of tumor transplants, and radiation doses in an experimental model using three human tumor xenografts. Three human tumor cell lines were investigated: STS-26, SCC-21, and HGL-21. Tumors were grown subcutaneously in athymic nude mice and received external beam radiation of different doses. Tumors were excised 2 weeks postirradiation. One-half of the tumor was divided into 1-mm(3) fragments and transplanted to naive mice. The other half was examined for histologic tumor necrosis. Transplant survival was strongly correlated with radiation dose, TCD(p) (radiation dose that results in local tumor control in proportion, p, to irradiated tumors). In contrast, there was no clear association between transplant survival rate and the extent of tumor necrosis. The experimental model demonstrated a strong inverse correlation between radiation doses and tumor transplant survival. Histologic tumor necrosis did not correlate well with radiation doses or transplant survival rates. Despite common practices in histologic examination of tumors posttherapy, clinical interpretations and implications of histologic tumor necrosis after radiotherapy should be considered with caution. Copyright 2001 Wiley-Liss, Inc.

  12. Regulation of Tumor Progression by Programmed Necrosis

    Directory of Open Access Journals (Sweden)

    Su Yeon Lee

    2018-01-01

    Full Text Available Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1, which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.

  13. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  14. Hantaan Virus Nucleocapsid Protein Binds to Importin alpha Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B

    Science.gov (United States)

    2008-11-19

    Microbiology . All Rights Reserved. Hantaan Virus Nucleocapsid Protein Binds to Importin Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced...Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702,1 and Department of Microbiology , Mount Sinai...34–36. 32. Prescott , J., C. Ye, G. Sen, and B. Hjelle. 2005. Induction of innate immune response genes by Sin Nombre hantavirus does not require

  15. Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis.

    Science.gov (United States)

    Fredriksson, Lisa; Herpers, Bram; Benedetti, Giulia; Matadin, Quraisha; Puigvert, Jordi C; de Bont, Hans; Dragovic, Sanja; Vermeulen, Nico P E; Commandeur, Jan N M; Danen, Erik; de Graauw, Marjo; van de Water, Bob

    2011-06-01

    Drug-induced liver injury (DILI) is an important clinical problem. It involves crosstalk between drug toxicity and the immune system, but the exact mechanism at the cellular hepatocyte level is not well understood. Here we studied the mechanism of crosstalk in hepatocyte apoptosis caused by diclofenac and the proinflammatory cytokine tumor necrosis factor α (TNF-α). HepG2 cells were treated with diclofenac followed by TNF-α challenge and subsequent evaluation of necrosis and apoptosis. Diclofenac caused a mild apoptosis of HepG2 cells, which was strongly potentiated by TNF-α. A focused apoptosis machinery short interference RNA (siRNA) library screen identified that this TNF-α-mediated enhancement involved activation of caspase-3 through a caspase-8/Bid/APAF1 pathway. Diclofenac itself induced sustained activation of c-Jun N-terminal kinase (JNK) and inhibition of JNK decreased both diclofenac and diclofenac/TNF-α-induced apoptosis. Live cell imaging of GFPp65/RelA showed that diclofenac dampened the TNF-α-mediated nuclear factor kappaB (NF-κB) translocation oscillation in association with reduced NF-κB transcriptional activity. This was associated with inhibition by diclofenac of the TNF-α-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα). Finally, inhibition of IκB kinase β (IKKβ) with BMS-345541 as well as stable lentiviral short hairpin RNA (shRNA)-based knockdown of p65/RelA sensitized hepatocytes towards diclofenac/TNF-α-induced cytotoxicity. Together, our data suggest a model whereby diclofenac-mediated stress signaling suppresses TNF-α-induced survival signaling routes and sensitizes cells to apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  17. Tumor necrosis factor-α inhibits effects of aryl hydrocarbon receptor ligands on cell death in human lymphocytes.

    Science.gov (United States)

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat A Moayedi; Shirzad, Hedayatollah; Hakemi, Mazdak G; Mossahebimohammadi, Majid; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    Activation of aryl hydrocarbon receptor (AhR) leads to diverse outcome in various kinds of cells. AhR activation may induce apoptosis or prevent of apoptosis and cell death. Recent studies suggest that apoptosis effects of AhR can be modulated by inflammatory cytokine like tumor necrosis factor alpha (TNF-α). In this study, we try to investigate the possible interaction of TNF-α with the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR, on peripheral lymphocytes. Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by discontinuous density gradient centrifugation on ficoll. Isolated PBMCs were divided into four groups: Control group, TNF-α administered group, TCDD administered group, co-administered group with TCDD and TNF-α. Cells were maintained for a week in lymphocyte culture condition. Then, TNF-α was added to group 2 and 4. Finally, apoptosis and necrosis were analyzed in all samples using flowcytometry. In group 4, the mean percent of necrosis and apoptosis in TCDD treatment groups was significantly larger than other groups; (P 0.05). However, the mean percent of cell death in co-administered group with TCDD and TNF-α was significantly lower than other groups; (P < 0.05). TNF-α could significantly inhibit effects of TCDD on lymphocytes apoptosis. Combination effects of TNF-α and TCDD on lymphocyte increase cell survival.

  18. Study on radiation necrosis following intraoperative radiotherapy for brain tumors

    International Nuclear Information System (INIS)

    Tanaka, Yoshiaki; Takeshita, Nagayuki; Niwa, Kohkichi; Kamata, Noriko; Matsuda, Tadayoshi; Matsutani, Masao

    1989-01-01

    Ninety-five patients with primary or metastatic brain tumors were treated with the intraoperative radiotherapy (IORT). In seven cases, surgery was performed a second time because of suspected of tumor recurrence, later found to be a radiation necrosis. Tumorous lesions were irradiated by IORT in the range of 15 Gy to 20 Gy together with external radiotherapy in the 30 Gy to 72 Gy range. In follow-up postcontrast CT studies, irregularly-shaped lesions appeared at the IORT site and increased in size with the perifocal low density area on subsequent scans. The images resembled those seen in tumor recurrence. Histopathologic changes seen during the follow-up surgery were thought to be mainly the result of radiation necrosis, though viable tumor cells at the marginal tumor site were one possible etiology. A coagulation necrosis with a fibrin exudate was observed in the IORT portal area and the vascular walls exhibited marked degeneration which is symptomatic of delayed radiation necrosis. Thus, post-IORT radiation necrosis is thought to be a direct reaction to this technique, and the delayed absorption of necrotic tissue to be a direct reaction to this technique, and the delayed absorption of necrotic tissue clearly indicates the possibility of adverse effects in its use for treatment of brain tumors. (author)

  19. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  20. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    Science.gov (United States)

    Kim, Sung Phil; Kang, Mi Young; Nam, Seok Hyun; Friedman, Mendel

    2012-06-01

    We investigated the effects of rice bran and components on tumor growth in mice. Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors. Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correlation of MRI Biomarkers with Tumor Necrosis in Hras5 Tumor Xenograft in Athymic Rats

    Directory of Open Access Journals (Sweden)

    Daniel P. Bradley

    2007-05-01

    Full Text Available Magnetic resonance imaging (MRI can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24 bearing 1.94 ± 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000 before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0-10 mg/kg, i.v.. We measured effective transverse relaxation rate (R2*, initial area under the gadolinium concentration-time curve (IAUGC60/150, equivalent enhancing fractions (EHF60/150, time constant (Ktrans, proportion of hypoperfused voxels as estimated from fit failures in Ktrans analysis, and signal intensity (SI in T2-weighted MRI (T2W. ZD6126 treatment induced < 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of ≥ 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis.

  2. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models.

    Science.gov (United States)

    Shao, Haibo; Zhang, Jian; Sun, Ziping; Chen, Feng; Dai, Xu; Li, Yaming; Ni, Yicheng; Xu, Ke

    2015-06-10

    A viable rim of tumor cells surrounding central necrosis always exists and leads to tumor recurrence after vascular disrupting treatment (VDT). A novel necrosis targeted radiotherapy (NTRT) using iodine-131-labeled hypericin (131I-Hyp) was specifically designed to treat viable tumor rim and improve tumor control after VDT in rabbit models of multifocal VX2 tumors. NTRT was administered 24 hours after VDT. Tumor growth was significantly slowed down by NTRT with a smaller tumor volume and a prolonged tumor doubling time (14.4 vs. 5.7 days), as followed by in vivo magnetic resonance imaging over 12 days. The viable tumor rims were well inhibited in NTRT group compared with single VDT control group, as showed on tumor cross sections at day 12 (1 vs. 3.7 in area). High targetability of 131I-Hyp to tumor necrosis was demonstrated by in vivo SPECT as high uptake in tumor regions lasting over 9 days with 4.26 to 98 times higher radioactivity for necrosis versus the viable tumor and other organs by gamma counting, and with ratios of 7.7-11.7 and 10.5-13.7 for necrosis over peri-tumor tissue by autoradiography and fluorescence microscopy, respectively. In conclusion, NTRT improved the anticancer efficacy of VDT in rabbits with VX2 tumors.

  3. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients

    International Nuclear Information System (INIS)

    Gatanaga, Tetsuya; Whang, Chenduen; Cappuccini, F.; Lucci, J.A. III; Jeffes, E.W.B.; Kohr, W.; Lentz, R.; Tomich, J.; Yamamoto, R.S.; Granger, G.A.

    1990-01-01

    Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor α (TNF-α) in vitro. BF is a protein with a molecular mass of 28kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-α and recombinant human lymphotoxin activity of TNF-α and recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-α more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-α when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-α and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-α in clinical trials with human cancer patients

  4. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  5. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  6. Prognostic value of tumor necrosis at CT in diffuse large B-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Hugo J.A., E-mail: h.j.a.adams@gmail.com [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht (Netherlands); Klerk, John M.H. de [Department of Nuclear Medicine, Meander Medical Center, Amersfoort (Netherlands); Fijnheer, Rob [Department of Hematology, Meander Medical Center, Amersfoort (Netherlands); Dubois, Stefan V. [Department of Pathology, Meander Medical Center, Amersfoort (Netherlands); Nievelstein, Rutger A.J.; Kwee, Thomas C. [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht (Netherlands)

    2015-03-15

    Highlights: •CT is compulsory for staging newly diagnosed DLBCL. •Approximately 13.7% of DLBCL patients have tumor necrosis at CT. •Tumor necrosis status at CT is not associated with any NCCN-IPI factor. •Patients with tumor necrosis at CT have a significantly worse outcome. -- Abstract: Objective: To determine the prognostic value of tumor necrosis at computed tomography (CT) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Materials and methods: This retrospective study included 51 patients with newly diagnosed DLBCL who had undergone both unenhanced and intravenous contrast-enhanced CT before R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, oncovin and prednisolone) chemo-immunotherapy. Presence of tumor necrosis was visually and quantitatively assessed at CT. Associations between tumor necrosis status at CT and the National Comprehensive Cancer Network (NCCN) International Prognostic Index (IPI) factors were assessed. Cox regression analysis was used to determine the prognostic impact of NCCN-IPI scores and tumor necrosis status at CT. Results: There were no correlations between tumor necrosis status at CT and the NCCN-IPI factors categorized age (ρ = −0.042, P = 0.765), categorized lactate dehydrogenase (LDH) ratio (ρ = 0.201, P = 0.156), extranodal disease in major organs (φ = −0.245, P = 0.083), Ann Arbor stage III/IV disease (φ = −0.208, P = 0.141), and Eastern Cooperative Oncology Group (ECOG) performance status (φ = 0.015, P = 0.914). In the multivariate Cox proportional hazards model, only tumor necrosis status at CT was an independent predictive factor of progression-free survival (P = 0.003) and overall survival (P = 0.004). Conclusion: The findings of this study indicate the prognostic potential of tumor necrosis at CT in newly diagnosed DLBCL.

  7. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    International Nuclear Information System (INIS)

    Mutch, D.G.; Massad, L.S.; Kao, M.S.; Collins, J.L.

    1990-01-01

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed

  8. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis.

    Science.gov (United States)

    Tran, An Hue Vy; Han, Se Hee; Kim, Joon; Grasso, Francesca; Kim, In San; Han, Ye Sun

    2017-07-01

    Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Migration inhibition of immune mouse spleen cells by serum from x-irradiated tumor-bearing mice

    International Nuclear Information System (INIS)

    Moroson, H.

    1978-01-01

    Tumor-specific antigens of the chemically induced MC 429 mouse fibrosarcoma were detected in a 3 M KCl extract of tumor by the inhibition of migration of specifically immune spleen cells. Using this assay with serum from tumor-bearing mice no tumor antigen was detected in serum of mice bearing small tumors, unless the tumor was exposed to local x irradiation (3000 R) 1 day prior to collection of serum. It was concluded that local x irradiation of tumor caused increased concentration of tumor antigen in the serum. When the tumor was allowed to grow extremely large, with necrosis, then host serum did cause migration inhibition of both nonimmune and immune spleen cells. This migration-inhibition effect was not associated with tumor antigen, but with a nonspecific serum factor

  10. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Nonselective matrix metalloproteinase but not tumor necrosis factor-a inhibition effectively preserves the early critical colon anastomotic integrity

    DEFF Research Database (Denmark)

    Ågren, Magnus S.; Andersen, Thomas L.; Andersen, Line

    2011-01-01

    Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-a (TNF-a) induces MMPs and may influence anastomosis repair....

  12. Serum and Urinary Levels of Tumor Necrosis Factor-Alpha in Renal Transplant Patients.

    Science.gov (United States)

    Senturk Ciftci, Hayriye; Demir, Erol; Savran Karadeniz, Meltem; Tefik, Tzevat; Yazici, Halil; Nane, Ismet; Savran Oguz, Fatma; Aydin, Filiz; Turkmen, Aydin

    2017-12-18

    Allograft rejection is an important cause of early and long-term graft loss in kidney transplant recipients. Tumor necrosis factor-alpha promotes T-cell activation, the key reaction leading to allograft rejection. Here, we investigated whether serum and urinary tumor necrosis factor-alpha levels can predict allograft rejection. This study included 65 living related-donor renal transplant recipients with mean follow-up of 26 ± 9 months. Serum and urinary tumor necrosis factor-alpha levels were measured at pretransplant and at posttransplant time points (days 1 and 7 and months 3 and 6); serum creatinine levels were also monitored during posttransplant follow-up. Standard enzyme-linked immunoabsorbent assay was used to detect tumor necrosis factor-alpha levels. Clinical variables were monitored. Nine of 65 patients (13.8%) had biopsy-proven rejection during follow-up. Preoperative serum and urinary tumor necrosis factor-alpha levels were not significantly different when we compared patients with and without rejection. Serum tumor necrosis factor-alpha levels (in pg/mL) were significantly higher in the allograft rejection versus nonrejection group at day 7 (11.5 ± 4.7 vs 15.4 ± 5.8; P = .029) and month 1 (11.1 ± 4.8 vs 17.8 ± 10.9; P =.003). Urinary tumor necrosis factor-alpha levels (in pg/mL) were also elevated in the allograft rejection versus the nonrejection group at days 1 (10.2 ± 2.5 vs 14.1 ± 6.8; P = .002) and 7 (9.8 ± 2.2 vs 14.5 ± 2.7; P tumor necrosis factor-alpha has a role in diagnosing renal transplant rejection. Serum and urinary tumor necrosis factor-alpha levels may be a possible predictor for allograft rejection.

  13. Poly(ADP-ribose) polymerase inhibition reduces tumor necrosis factor-induced inflammatory response in rheumatoid synovial fibroblasts

    NARCIS (Netherlands)

    García, S.; Bodaño, A.; Pablos, J. L.; Gómez-Reino, J. J.; Conde, C.

    2008-01-01

    To investigate the effect of poly(ADP-ribose) polymerase (PARP) inhibition on the production of inflammatory mediators and proliferation in tumour necrosis factor (TNF)-stimulated fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Cultured FLS from patients with RA were

  14. Hepatocellular carcinoma: IVIM diffusion quantification for prediction of tumor necrosis compared to enhancement ratios

    International Nuclear Information System (INIS)

    Kakite, Suguru; Dyvorne, Hadrien A.; Lee, Karen M.; Jajamovich, Guido H.; Knight-Greenfield, Ashley; Taouli, Bachir

    2015-01-01

    To correlate intra voxel incoherent motion (IVIM) diffusion parameters of liver parenchyma and hepatocellular carcinoma (HCC) with degree of liver/tumor enhancement and necrosis; and to assess the diagnostic performance of diffusion parameters vs. enhancement ratios (ER) for prediction of complete tumor necrosis. In this IRB approved HIPAA compliant study, we included 46 patients with HCC who underwent IVIM diffusion-weighted (DW) MRI in addition to routine sequences at 3.0 T. True diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (PF) and apparent diffusion coefficient (ADC) were quantified in tumors and liver parenchyma. Tumor ER were calculated using contrast-enhanced imaging, and degree of tumor necrosis was assessed using post-contrast image subtraction. IVIM parameters and ER were compared between HCC and background liver and between necrotic and viable tumor components. ROC analysis for prediction of complete tumor necrosis was performed. 79 HCCs were assessed (mean size 2.5 cm). D, PF and ADC were significantly higher in HCC vs. liver (p < 0.0001). There were weak significant negative/positive correlations between D/PF and ER, and significant correlations between D/PF/ADC and tumor necrosis (for D, r 0.452, p < 0.001). Among diffusion parameters, D had the highest area under the curve (AUC 0.811) for predicting complete tumor necrosis. ER outperformed diffusion parameters for prediction of complete tumor necrosis (AUC > 0.95, p < 0.002). D has a reasonable diagnostic performance for predicting complete tumor necrosis, however lower than that of contrast-enhanced imaging

  15. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G

    2009-01-01

    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...

  16. In vitro inhibition of enterobacteria-reactive CD4+Tumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    DEFF Research Database (Denmark)

    Mangano, K.; Sardesai, N.; D'Alcamo, M.

    2008-01-01

    VGX-1027 is an isozaxoline compound that has recently been found to primarily target the function of murine macrophages but not of T cells, inhibiting secretion of tumor necrosis factor (TNF)-alpha in response to different Toll-like receptor agonists in vitro and in vivo. The well-defined role...

  17. El factor de necrosis de los tumores o caquectina

    Directory of Open Access Journals (Sweden)

    Jorge Eliécer Ossa Londoño

    1988-02-01

    Full Text Available

    Se presenta una revisión de la literatura sobre el Factor de Necrosis de los Tumores o Caquectina, con base en artículos publicados durante los anos 1986-1987, haciendo hincapié en las diferencias funcionales y moleculares entre el FNT Alfa, la Linfotoxina o FNT Beta y la Caquectina. Se enfatizan los mecanismos del shock, de la necrosis tumoral y de la caquexia; se Indican las propiedades antitumorales del FNT in vivo e in vitro y se esbozan esquemas terapéuticos experimentales que permiten colegir que el FNT tendrá un papel Importante en la Inmunoterapia del cáncer en el hombre.

    This is a review of the 1986-1987 Literature on the Tumor Necrosis Factor (TNF or Cachectin, emphasizing functional and molecular differences among TNF alpha, Iymphotoxin or TNF beta and Cachectin. Mechanisms of shock, tumor necrosis and cachexia are discussed. In vivo and ín vítro antitumoral properties of TNF are indicated, as well as some experimental therapeutic regimens. These facts allow the suggestion that TNF might become an Important aid for Immunotherapy of cancer In humans.

  18. Histopathological investigation of radiation necrosis. Coagulation necrosis in the irradiated and non-irradiated brain tumors and in the normal brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N [Niigata Univ. (Japan). Brain Research Inst.

    1977-01-01

    Eighty four irradiated tumors (including 59 gliomas) and the surrounding brain tissue were analyzed. In 'normal' brain tissue, typical coagulation necrosis attributable to irradiation was observed in the cerebral white matter, presenting a whitish-yellow color but no remarkable changes in volume. Histologically there was complete desintegration of myelin and axon. Vascular changes included hyalinous thickening, concentric cleavage, fibrinoid degeneration, adventitial fibrosis and edema of small arteries, fibrin thrombi or occlusion of arterioles and capillaries, and telangiectasia of small veins and venules. While other tumors showed hyalinous or fibrous scar tissue and decrease in volume, the gliomas maintained their original volume without residual tumor cells. Massive coagulation necrosis was occasionally found even in full volume, non-irradiated gliomas (controls), although the changes were fewer and not so varied as in typical radiation necrosis. With small dosages, it was difficult to judge whether the necrosis was caused by irradiation or occurred spontaneously. Coagulation necrosis in tumor tissue was found in 25 of 59 cases (42%) of irradiated gliomas, but in only 2 of 49 cases (4%) of the nonirradiated gliomas. In 49 cases no coagulation necrosis of the surrounding tissue was found. Although histopathological judgement is difficult, it is suggested that there is a significant correlation between coagulation necrosis and irradiation. Discussion of the relationship between coagulation necrosis and NSD (nominal standard dose) led to the conclusion that coagulation necrosis will not be caused by irradiation of less than 1400 rets in NSD.

  19. Percentage tumor necrosis following chemotherapy in neuroblastoma correlates with MYCN status but not survival.

    Science.gov (United States)

    Bomken, Simon; Davies, Beverley; Chong, Leeai; Cole, Michael; Wood, Katrina M; McDermott, Michael; Tweddle, Deborah A

    2011-03-01

    The percentage of chemotherapy-induced necrosis in primary tumors corresponds with outcome in several childhood malignancies, including high-risk metastatic diseases. In this retrospective pilot study, the authors assessed the importance of postchemotherapy necrosis in high-risk neuroblastoma with a histological and case notes review of surgically resected specimens. The authors reviewed all available histology of 31 high-risk neuroblastoma cases treated with COJEC (dose intensive etoposide and vincristine with either cyclophosphamide, cisplatin or carboplatin) or OPEC/OJEC (etoposide, vincristine and cyclophosphamide with alternating cisplatin [OPEC] or carboplatin [OJEC]) induction chemotherapy in 2 Children's Cancer & Leukaemia Group (CCLG) pediatric oncology centers. The percentage of postchemotherapy necrosis was assessed and compared with MYCN amplification status and overall survival. The median percentage of postchemotherapy tumor necrosis was 60%. MYCN status was available for 28 cases, of which 12 were amplified (43%). Survival in cases with ≥ 60% necrosis or ≥ 90% necrosis was not better than those with less necrosis, nor was percentage necrosis associated with survival using Cox regression. However, MYCN-amplified tumors showed a higher percentage of necrosis than non-MYCN-amplified tumors, 71.3% versus 37.2% (P = .006). This effect was not related to prechemotherapy necrosis and did not confer improved overall survival. Postchemotherapy tumor necrosis is higher in patients with MYCN amplification. In this study, postchemotherapy necrosis did not correlate with overall survival and should not lead to modification of postoperative treatment. However, these findings need to be confirmed in a larger prospective study of children with high-risk neuroblastoma.

  20. Lack of Evidence for a Direct Interaction of Progranulin and Tumor Necrosis Factor Receptor-1 and Tumor Necrosis Factor Receptor-2 From Cellular Binding Studies

    Directory of Open Access Journals (Sweden)

    Isabell Lang

    2018-04-01

    Full Text Available Progranulin (PGRN is a secreted anti-inflammatory protein which can be processed by neutrophil proteases to various granulins. It has been reported that at least a significant portion of the anti-inflammatory effects of PGRN is due to direct high affinity binding to tumor necrosis factor receptor-1 (TNFR1 and TNFR2 and inhibition of tumor necrosis factor (TNF-induced TNFR1/2 signaling. Two studies failed to reproduce the interaction of TNFR1 and TNFR2 with PGRN, but follow up reports speculated that this was due to varying experimental circumstances and/or the use of PGRN from different sources. However, even under consideration of these speculations, there is still a striking discrepancy in the literature between the concentrations of PGRN needed to inhibit TNF signaling and the concentrations required to block TNF binding to TNFR1 and TNFR2. While signaling events induced by 0.2–2 nM of TNF have been efficiently inhibited by low, near to equimolar concentrations (0.5–2.5 nM of PGRN in various studies, the reported inhibitory effects of PGRN on TNF-binding to TNFR1/2 required a huge excess of PGRN (100–1,000-fold. Therefore, we investigated the effect of PGRN on TNF binding to TNFR1 and TNFR2 in highly sensitive cellular binding studies. Unlabeled TNF inhibited >95% of the specific binding of a Gaussia princeps luciferase (GpL fusion protein of TNF to TNFR1 and TNFR2 and blocked binding of soluble GpL fusion proteins of TNFR1 and TNFR2 to membrane TNF expressing cells to >95%, too. Purified PGRN, however, showed in both assays no effect on TNF–TNFR1/2 interaction even when applied in huge excess. To rule out that tags and purification- or storage-related effects compromise the potential ability of PGRN to bind TNF receptors, we directly co-expressed PGRN, and as control TNF, in TNFR1- and TNFR2-expressing cells and looked for binding of GpL-TNF. While expression of TNF strongly inhibited binding of GpL-TNF to TNFR1/2, co

  1. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses.

    Science.gov (United States)

    Bredholt, Geir; Mannelqvist, Monica; Stefansson, Ingunn M; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B; Wik, Elisabeth; Akslen, Lars A

    2015-11-24

    Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis.

  2. Expression of tumor necrosis factor alpha after focal cerebral ischaemia in the rat

    NARCIS (Netherlands)

    Buttini, M; Appel, K; Sauter, A; GebickeHaerter, PJ; Boddeke, HWGM

    Induction of tumor necrosis factor alpha was studied in the brain of rats after focal cerebral ischaemia by occlusion of the left middle cerebral artery. Using a specific antisense riboprobe for in situ hybridization histochemistry, cells positive for tumor necrosis factor alpha messenger RNA were

  3. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  4. Interleukin-4 inhibits both paracrine and autocrine tumor necrosis factor-alpha-induced proliferation of B chronic lymphocytic leukemia cells

    NARCIS (Netherlands)

    van Kooten, C.; Rensink, I.; Aarden, L.; van Oers, R.

    1992-01-01

    The proliferative response of purified malignant B cells from 26 patients with chronic lymphocytic leukemia (CLL) was investigated in vitro. In the majority of these patients, a proliferative response could be induced by the combination of tumor necrosis factor (TNF)-alpha and PMA. The concentration

  5. Molecular imaging of tumor photoimmunotherapy: Evidence of photosensitized tumor necrosis and hemodynamic changes

    DEFF Research Database (Denmark)

    Kishimoto, Shun; Oshima, Nobu; Yamamoto, Kazutoshi

    2018-01-01

    Near-infrared photoimmunotherapy (NIR PIT) employs the photoabsorbing dye IR700 conjugated to antibodies specific for cell surface epidermal growth factor receptor (EGFR). NIR PIT has shown highly selective cytotoxicity in vitro and in vivo. Cell necrosis is thought to be the main mode of cytotox......Near-infrared photoimmunotherapy (NIR PIT) employs the photoabsorbing dye IR700 conjugated to antibodies specific for cell surface epidermal growth factor receptor (EGFR). NIR PIT has shown highly selective cytotoxicity in vitro and in vivo. Cell necrosis is thought to be the main mode...... of cytotoxicity based mainly on in vitro studies. To better understand the acute effects of NIR PIT, molecular imaging studies were performed to assess its cellular and vascular effects.In addition to in vitro studies for cytotoxicity of NIR PIT, the in vivo tumoricidal effects and hemodynamic changes induced....... Following NIR PIT, metabolic MRI using hyperpolarized fumarate showed the production of malate in EGFR-expressing A431 tumor xenografts, providing direct evidence for photosensitized tumor necrosis induced by NIR PIT. R2* mapping studies showed temporal changes in oxygenation, with an accompanying increase...

  6. A comparison of the intoxication pathways of tumor necrosis factor and diphtheria toxin

    International Nuclear Information System (INIS)

    Chang, M.P.

    1988-01-01

    The mechanism by which tumor necrosis factor-alpha (TNF) initiates tumor cell destruction is unknown. We have approached this problem by comparing the biological properties of TNF with diphtheria toxin (DTx), a well-characterized cytotoxin. Initial studies with human U937 cells revealed that a transient exposure to low pH enhances the cytotoxic activity of TNF. Detailed studies on the interaction of TNF with pure lipid vesicles revealed that the acid-enhanced cytolytic activity of this cytokine is correlated with the acquisition of membrane binding and insertion properties. Significantly, an increase in target membrane stabilization was observed in the presence of TNF; hence, TNF is not directly lytic for membranes. In susceptible target cells, DTx induces the release of 51 Cr- and 75 Se-labeled proteins within 7 h. Although DTx-triggered cell death has generally been accepted as a straightforward effect of translation inhibition, little or no cell lysis was observed over a 20-30 h period when target cells were exposed to cycloheximide, amino acid deficient medium or metabolic poisons even though protein synthesis was inhibited to levels observed with DTx. The protein synthesis inhibition and cytolytic activities of DTx showed similar dose-dependencies, target cell specificities, and sensitivities to NH 4 Cl inhibition. DTx-induced DNA fragmentation preceded cells lysis and did not occur in cells that were treated with the other protein synthesis inhibitors

  7. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    Science.gov (United States)

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2017-08-01

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  8. Mechanisms of tumor necrosis in photodynamic therapy with a chlorine photosensitizer: experimental studies

    Science.gov (United States)

    Privalov, Valeriy A.; Lappa, Alexander V.; Bigbov, Elmir N.

    2011-02-01

    A photodynamic therapy experiment on 118 inbred white mice with transplanted Ehrlich's tumor (mouse mammary gland adenocarcinoma) is performed to reveal mechanisms of necrosis formation. In 7-10 days the tumor of 1-1.5 cm diameter is formed under skin at the injection point, and PDT procedure is applied. There were used a chlorine type photosensitizer RadachlorineTM and 662 nm wavelength diode laser. The drug is injected by intravenously at the dose of 40 mg/kg; the irradiation is executed in 2-2.5 hours at the surface dose of about 200 J/cm2. Each of the mice had a photochemical reaction in form of destructive changes at the irradiation region with subsequent development of dry coagulation necrosis. After rejection of the necrosis there occurred epithelization of defect tissues in a tumor place. Histological investigations were conducted in different follow-up periods, in 5 and 30 min, 1, 3, 6, and 12 hours, 1, 3, 7 and 28 days after irradiation. They included optical microscopy, immune marker analysis, morphometry with measurements of volume density of epithelium, tumor stroma and necroses, vascular bed. The investigations showed that an important role in damaging mechanisms of photodynamic action belongs to hypoxic injuries of tumor mediated by micro vascular disorders and blood circulatory disturbances. The injuries are formed in a few stages: microcirculation angiospasm causing vessel paresis, irreversible stases in capillaries, diapedetic hemorrhages, thromboses, and thrombovasculitis. It is marked mucoid swelling and fibrinoid necrosis of vascular tissue. Progressive vasculitises result in total vessel obliteration and tumor necrosis.

  9. Systemic anti-tumor necrosis factor antibody treatment exacerbates endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1995-01-01

    Tumor necrosis factor is released in the circulation and aqueous humor during endotoxin-induced uveitis, and induces acute uveitis when injected intraocularly in rats. To elucidate the role of tumor necrosis factor in the development of endotoxin-induced uveitis we analysed the effect of

  10. Model-Based Radiation Dose Correction for Yttrium-90 Microsphere Treatment of Liver Tumors With Central Necrosis

    International Nuclear Information System (INIS)

    Liu, Ching-Sheng; Lin, Ko-Han; Lee, Rheun-Chuan; Tseng, Hsiou-Shan; Wang, Ling-Wei; Huang, Pin-I; Chao, Liung-Sheau; Chang, Cheng-Yen; Yen, Sang-Hue; Tung, Chuan-Jong; Wang, Syh-Jen; Oliver Wong, Ching-yee; Liu, Ren-Shyan

    2011-01-01

    Purpose: The objectives of this study were to model and calculate the absorbed fraction φ of energy emitted from yttrium-90 ( 90 Y) microsphere treatment of necrotic liver tumors. Methods and Materials: The tumor necrosis model was proposed for the calculation of φ over the spherical shell region. Two approaches, the semianalytic method and the probabilistic method, were adopted. In the former method, the range--energy relationship and the sampling of electron paths were applied to calculate the energy deposition within the target region, using the straight-ahead and continuous-slowing-down approximation (CSDA) method. In the latter method, the Monte Carlo PENELOPE code was used to verify results from the first method. Results: The fraction of energy, φ, absorbed from 90 Y by 1-cm thickness of tumor shell from microsphere distribution by CSDA with complete beta spectrum was 0.832 ± 0.001 and 0.833 ± 0.001 for smaller (r T = 5 cm) and larger (r T = 10 cm) tumors (where r is the radii of the tumor [T] and necrosis [N]). The fraction absorbed depended mainly on the thickness of the tumor necrosis configuration, rather than on tumor necrosis size. The maximal absorbed fraction φ that occurred in tumors without central necrosis for each size of tumor was different: 0.950 ± 0.000, and 0.975 ± 0.000 for smaller (r T = 5 cm) and larger (r T = 10 cm) tumors, respectively (p 90 Y microsphere treatment of hepatic tumors with central necrosis. With this model, important information is provided regarding the absorbed fraction applicable to clinical 90 Y microsphere treatment.

  11. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    International Nuclear Information System (INIS)

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M.

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro

  12. Magnetic resonance imaging for differentiating of torsion of the ovarian tumor with or without necrosis

    International Nuclear Information System (INIS)

    Kim, Jong Wook; Lee, Young Rae; Park, Hae Won

    2000-01-01

    The purpose of this study is to determine whether MRI is helpful for differentiating torsion of ovarian tumor, with or without necrosis. We retrospectively evaluated the MRI findings of nine patients with surgically confirmed torsion of the ovarian tumor, comparing them with the surgical and pathologic findings. The MRI findings were analyzed for contrast enhancement of twisted tumor, and the presence, signal intensity and contrast enhancement of twisted vascular pedicle. In all nine patients, MRI revealed a twisted vascular pedicle. Six patients with necrotic ovaries showed either no enhancement (n=3D4) or linear peripheral enhancement of twisted tumors (n=3D2), and lack of enhancement (n=3D5) or peripheral enhancement (n=3D1) of twisted vascular pedicles. In four of six patients with necrosis, T1-weighted MR images demonstrated a hyperintense pedicle; in three without necrosis, postcontrast T1-weighted MR images revealed well-enhanced twisted tumors (n=3D2) and twisted vascular pedicles (n=3D3). By depicting a lack of contrast enhancement and high signal intensity within a twisted vascular pedicle, MRI can help differentiate torsion of ovarian tumor with or without necrosis. (author)

  13. Imaging Tumor Necrosis with Ferumoxytol.

    Directory of Open Access Journals (Sweden)

    Maryam Aghighi

    high T1 signal in areas of tumor necrosis and low signal in areas of intracellularly compartmentalized iron.Differential T1- and T2-enhancement patterns of USPIO in tumors enable conclusions about their intracellular and extracellular location. This information can be used to characterize the composition of the tumor microenvironment.

  14. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    7. Original Research Article. Generation of truncated recombinant form of tumor necrosis factor ... as 6×His tagged using E.coli BL21 (DE3) expression system. The protein was ... proapoptotic signaling cascade through TNFR1. [5] which is ...

  15. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    Science.gov (United States)

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  16. The effect of anti-tumor necrosis factor alpha agents on postoperative anastomotic complications in Crohn's disease

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa Abdul-Hussein H; Krag, Aleksander; Olaison, Gunnar

    2013-01-01

    Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications.......Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications....

  17. Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity

    DEFF Research Database (Denmark)

    Engelmann, H; Holtmann, H; Brakebusch, C

    1990-01-01

    Immunological cross-reactivity between tumor necrosis factor (TNF) binding proteins which are present in human urine (designated TBPI and TBPII) and two molecular species of the cell surface receptors for TNF is demonstrated. The two TNF receptors are shown to be immunologically distinct, to differ....... These antibodies are cytotoxic to cells which are sensitive to TNF toxicity, induce resistance to TNF toxicity, enhance the incorporation of thymidine into normal fibroblasts, inhibit the growth of chlamydiae, and induce the synthesis of prostaglandin E2. Monovalent F(ab) fragments of the polyclonal antibodies...

  18. Fibrinolytic response to tumor necrosis factor in healthy subjects

    NARCIS (Netherlands)

    van der Poll, T.; Levi, M. [=Marcel M.; Büller, H. R.; van Deventer, S. J.; de Boer, J. P.; Hack, C. E.; ten Cate, J. W.

    1991-01-01

    Tumor necrosis factor (TNF) may be involved in the disturbance of the procoagulant-fibrinolytic balance in septicemia, leading to microvascular thrombosis. To assess the dynamics of the fibrinolytic response to TNF in humans, we performed a crossover saline-controlled study in six healthy men,

  19. Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.

    Science.gov (United States)

    Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias

    2003-10-20

    Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.

  20. Delayed radiation necrosis of the brain simulating a brain tumor

    International Nuclear Information System (INIS)

    Ikeda, Hiroya; Kanai, Nobuhiro; Kamikawa, Kiyoo

    1976-01-01

    Two cases of delayed radiation necrosis of the brain are reported. Case 1 was a 50-year-old man who had right hemiparesis and disorientation 26 months after Linac irradiation (5,000 rad), preceded by an operation for right maxillar carcinoma. A left carotid angiogram demonstrated a left temporal mass lesion, extending to the frontal lobe. Case 2 was a 41-year-old man who had previously had an operation for right intraorbital plasmocytoma, followed by two Co irradiations (6,400 rad, and 5,000 rad). He had the signs and symptoms of intracranial hypertension 36 months after his last irradiation. A left carotid angiogram demonstrated a left temporal mass lesion. Both cases were treated by administration of steroid hormone (which alleviated the signs and symptoms) and by temporal lobectomy. Microscopic examinations showed necrosis of the brain tissues associated with hyaline degeneration of blood vessel walls and perivascular cell infiltration. The signs and symptoms of intracranial hypertension subsided postoperatively. Thirteen other cases the same as ours were collected from literature. They showed the signs and symptoms simulating a brain tumor (like a metastatic brain tumor) after irradiation to extracranial malignant tumors. Diagnosis of radiation necrosis was made by operation or autopsy. A follow-up for a long time is necessary, because the pathological changes in the brain may be progressive and extending in some cases, although decompressive operations for mass lesions give excellent results. (auth.)

  1. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Chernov, M.F.; Hayashi, Motohiro; Izawa, Masahiro

    2006-01-01

    Multivoxel proton magnetic resonance spectroscopy (MRS) was used for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for intracranial metastases in 33 consecutive cases. All patients presented with enlargement of the treated lesion, increase of perilesional brain edema, and aggravation or appearance of neurological signs and symptoms on average 9.3±4.9 months after primary treatment. Metabolic imaging defined four types of lesions: pure tumor recurrence (11 cases), partial tumor recurrence (11 cases), radiation-induced tumor necrosis (10 cases), and radiation-induced necrosis of the peritumoral brain (1 case). In 1 patient, radiation-induced tumor necrosis was diagnosed 9 months after radiosurgery; however, partial tumor recurrence was identified 6 months later. With the exception of midline shift, which was found to be more typical for radiation-induced necrosis (P<0.01), no one clinical, radiologic, or radiosurgical parameter either at the time of primary treatment or at the time of deterioration showed a statistically significant association with the type of the lesion. Proton MRS-based diagnosis was confirmed histologically in all surgically treated patients (7 cases) and corresponded well to the clinical course in others. In conclusion, multivoxel proton MRS is an effective diagnostic modality for identification of radiation-induced necrosis and tumor recurrence that can be used for monitoring of metabolic changes in intracranial neoplasms after radiosurgical treatment. It can be also helpful for differentiation of radiation-induced necrosis of the tumor and that of the peritumoral brain, which may have important clinical and medicolegal implications. (author)

  2. Tumor Necrosis Factor Inhibitors for Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Ainsworth, Mark Andrew

    2013-01-01

    A 35-year-old man presents with an exacerbation of Crohn's ileocolitis. He received a diagnosis of Crohn's disease 8 years ago and has been treated on three previous occasions with prednisone. Because of a recurrent need for glucocorticoids, treatment with azathioprine (150 mg per day) was starte...... colonoscopy show acute and chronic granulomatous inflammation, and the gastroenterologist recommends treatment with a tumor necrosis factor (TNF) inhibitor....

  3. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  4. The relationship between the expression of TAM, survivin and the degree of necrosis of the tumor after cisplatin treatment in osteosarcoma.

    Science.gov (United States)

    Chen, G

    2017-02-01

    the time of drug treatment in the observation group. Cisplatin treatment can inhibit the expression of TAM and survivin in osteosarcoma tissue sand then, promote the necrosis of tumor tissue.

  5. Chlorpromazine inhibits tumour necrosis factor synthesis and cytotoxicity in vitro.

    Science.gov (United States)

    Zinetti, M; Galli, G; Demitri, M T; Fantuzzi, G; Minto, M; Ghezzi, P; Alzani, R; Cozzi, E; Fratelli, M

    1995-11-01

    Chlorpromazine (CPZ) has been previously shown to protect against endotoxin [lipopolysaccharide (LPS)] lethality and inhibit the release of tumour necrosis factor in vivo. We investigated at the cellular level whether this was due to direct inhibition of tumour necrosis factor-alpha (TNF-alpha) synthesis, using LPS-stimulated THP-1 human monocytic leukemia cells. We also studied the effect of CPZ on human TNF-alpha action by assessing TNF-alpha cytotoxicity on mouse fibrosarcoma L929 cells. CPZ (1-100 microM) inhibited TNF-alpha production in THP-1 cells in a dose dependent manner by a maximum of 80%. This effect was comparable to that of two well-known inhibitory drugs, dexamethasone and cyclicAMP. Inhibition was also evident at the mRNA level. On the other hand CPZ (10-25 microM) also inhibited TNF-alpha activity: in fact it reduced the cytotoxicity of TNF-alpha on L929 cells (EC50 was increased four times) and could provide protection even as a post-treatment. CPZ inhibited TNF-induced apoptosis in L929 cells, as detected by analysis of nuclear morphology. However, since we showed that apoptosis was very limited, and was not the main mode of cell death in our conditions, this could not explain the overall protection. Since CPZ did not interfere with either the oligomerization state of TNF-alpha or its receptor binding, our data suggest that it reduced cytotoxicity by inhibiting some steps in the TNF-alpha signalling pathways.

  6. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes

    2013-11-01

    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  7. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  8. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  9. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  10. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    Purpose: To produce truncated recombinant form of tumor necrosis factor receptor 1 (TNFR1), cysteine-rich domain 2 (CRD2) and CRD3 regions of the receptor were generated using pET28a and E. coli/BL21. Methods: DNA coding sequence of CRD2 and CRD3 was cloned into pET28a vector and the corresponding ...

  11. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Brock, C; Brock, B; Aziz, Q

    2017-01-01

    -VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which...

  12. Inhibition of 125I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    International Nuclear Information System (INIS)

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y.

    1990-01-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo [125I]iodotyrosines and [125I]iodothyronines, and secreted [125I]T4 and [125I]T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and [125I]iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism

  13. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2013-01-01

    The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective

  14. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Clausen, Bettina Hjelm; Babcock, Alicia

    2009-01-01

    Microglia and infiltrating leukocytes are considered major producers of tumor necrosis factor (TNF), which is a crucial player in cerebral ischemia and brain inflammation. We have identified a neuroprotective role for microglial-derived TNF in cerebral ischemia in mice. We show that cortical...

  15. Tumor necrosis factor alpha inhibits in vitro bovine embryo development through a prostaglandin mediated mechanism

    Directory of Open Access Journals (Sweden)

    Jackson Lauren R

    2012-03-01

    Full Text Available Abstract Mastitis or other infectious diseases have been related to reduced fertility in cattle. Inflammatory cytokines such as tumor necrosis factor α (TNFα are released in response to infection and may have negative effects on embryo development. In the current study the effect of exposure to TNFα on the development of in vitro fertilized bovine embryos was examined. Indomethacin, a prostaglandin synthesis inhibitor, was used to determine if blockade of prostaglandin synthesis would alter the effects of TNFα. Ovaries were obtained from a local abattoir and immature COC were isolated from 2-10 mm follicles, in vitro matured and fertilized. After fertilization, groups of presumptive zygotes were randomly placed into either control development medium, medium containing 25 ng/mL TNFα or medium containing 25 ng/mL TNFα plus 1 μg/mL indomethacin. The proportion of blastocysts formed was assessed at day 7 of culture. Fewer embryos exposed to TNFα alone reached the blastocyst stage (17.5 ± 2.4%, P

  16. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation.

    Science.gov (United States)

    Luan, Zhou; He, Ying; He, Fan; Chen, Zhishui

    2015-01-01

    The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.

  17. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  18. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Chen, Pei-Lin; Easton, Alexander S.

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10 -5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  19. Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis

    Science.gov (United States)

    Liu, Yannan; Tan, Tanya; Jia, Wenzhuo; Lugea, Aurelia; Mareninova, Olga; Waldron, Richard T.; Pandol, Stephen J.

    2014-01-01

    Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis. PMID:25035113

  20. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    Science.gov (United States)

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  1. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  2. Tumor necrosis factor alpha inhibitors in the treatment of toxic epidermal necrolysis.

    Science.gov (United States)

    Woolridge, Katelyn F; Boler, Patrick L; Lee, Brian D

    2018-01-01

    Toxic epidermal necrolysis (TEN) is a rare, life-threatening adverse drug reaction for which there is no standardized or consistently effective treatment. Due to a greater understanding of disease pathogenesis and the identification of tumor necrosis factor (TNF) α as a mediator of keratinocyte death, TNF-α antagonists have been used in the treatment of TEN. Specifically, infliximab and etanercept have been shown to be effective at halting disease progression. The objective of this study is to review published case reports and case series using anti-TNF-α medications in the treatment of TEN. Results of many of the articles reviewed support the use of TNF-α inhibitors in TEN in both adult and pediatric populations; however, the risks caused by these potent immunosuppressants must be weighed, and if administered, patients must be closely monitored for infections. Additional studies are needed to further characterize the role of TNF-α inhibition in the treatment of TEN.

  3. Plasma tumor necrosis factor-a (TNF-a) levels in Gaucher disease

    NARCIS (Netherlands)

    Michelakakis, H.; Spanou, C.; Kondyli, A.; Dimitriou, E.; van Weely, S.; Hollak, C. E.; van Oers, M. H.; Aerts, J. M.

    1996-01-01

    Tumor necrosis factor-a (TNF-a) levels were measured in the plasma of patients with different types of Gaucher disease (GD) and patients with other lysosomal storage diseases. The highest TNF-a levels were observed in the most severe neuronopathic type of GD, exceeding those found in healthy

  4. Inhibition of sup 125 I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y. (Institute of Clinical Endocrinology, Tokyo (Japan))

    1990-06-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo (125I)iodotyrosines and (125I)iodothyronines, and secreted (125I)T4 and (125I)T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and (125I)iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism.

  5. Anti-tumor necrosis factor-alpha therapies attenuate adaptive arteriogenesis in the rabbit

    NARCIS (Netherlands)

    Grundmann, Sebastian; Hoefer, Imo; Ulusans, Susann; van Royen, Niels; Schirmer, Stephan H.; Ozaki, C. Keith; Bode, Christoph; Piek, Jan J.; Buschmann, Ivo

    2005-01-01

    The specific antagonists of tumor necrosis factor-alpha (TNF-alpha), infliximab and etanercept, are established therapeutic agents for inflammatory diseases such as rheumatoid arthritis and Crohn's disease. Although the importance of TNF-alpha in chronic inflammatory diseases is well established,

  6. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2012-01-01

    in vivo. Calcium electroporation elicited dramatic antitumor responses in which 89% of treated tumors were eliminated. Histologic analyses indicated complete tumor necrosis. Mechanistically, calcium electroporation caused acute ATP depletion likely due to a combination of increased cellular use of ATP......, decreased production of ATP due to effects on the mitochondria, as well as loss of ATP through the permeabilized cell membrane. Taken together, our findings offer a preclinical proof of concept for the use of electroporation to load cancer cells with calcium as an efficient anticancer treatment...

  7. Infective endocarditis following tumor necrosis factor-α antagonist therapy for management of psoriatic erythroderma: a case report.

    Science.gov (United States)

    Mizuno, Takuro; Kiyosawa, Jun; Fukuda, Akihiro; Watanabe, Seiji; Kurose, Nozomu; Nojima, Takayuki; Kanda, Tsugiyasu

    2017-02-09

    The introduction of biological agents, such as infliximab, which act against tumor necrosis factor-α was a major advance for the treatment of an increasing number of chronic diseases. Tumor necrosis factor-α antagonists represent a major therapeutic advance for the management of chronic inflammatory diseases, such as psoriasis. Previous studies have reported that the use of tumor necrosis factor-α antagonists increased the risk of opportunistic infections and reactivation of latent bacterial infections. Cardiac involvement, such as infective endocarditis, is very rare in the literature. A 77-year-old Asian man with a 10-year history of psoriatic erythroderma was referred due to high fever and general malaise. He was treated with Predonine (prednisolone) and infliximab. After treatment, cardiac echography showed mitral valve vegetation and brain magnetic resonance imaging indicated multiple fresh infarctions. He died from large brain infarction in October 2013. An autopsy showed fresh thrombosis in his left middle cerebral artery, mitral valve vegetations, and septic micro-embolisms in multiple organs. Lethal bacterial endocarditis was revealed after administration of tumor necrosis factor-α inhibitor, infliximab, for the treatment of psoriatic erythroderma. An autopsy showed vegetation in his mitral valve and brain infarction with fresh purulent embolism in his left middle cerebral artery and septic micro-embolisms.

  8. Role of tumor necrosis factor in macrophage leishmanicidal activity in vitro and resistance to cutaneous leishmaniasis in vivo.

    Science.gov (United States)

    Theodos, C M; Povinelli, L; Molina, R; Sherry, B; Titus, R G

    1991-01-01

    Recombinant human tumor necrosis factor (TNF) and purified murine TNF were both able to activate macrophages to destroy intracellular Leishmania major in vitro. In addition, parasitizing macrophages with L. major markedly increased the ability of the cells to produce TNF. Finally, when mice were vaccinated with an avirulent form of L. major, the animals produced large amounts of TNF but no gamma interferon in response to infection with virulent L. major. Treating these mice with a neutralizing anti-TNF antibody led to partial but not complete inhibition of the resistant state, which suggests that factors other than TNF and gamma interferon contribute to resistance to L. major. PMID:1906844

  9. Tumor necrosis factor alpha production in irradiated cells in vitro

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bognar, G.; Kubasova, T.

    1994-01-01

    Normal and tumor cell lines were used to investigate tumor necrosis factor (TNFα) production and its radiation sensitivity. The cells were irradiated with gamma rays using different doses from 0.25 Gy up to 5 Gy. The number of plated cells, changes of proliferation and TNFα production were determined during the following four post-irradiation days. For TNFα quantity measurement immuno-radiometric assay (IRMA) and enzyme amplified sensitivity assay (EASIA) was used. The results suggest that though gamma irradiation decreased cell proliferation in a dose dependent manner, the quantity produced in the post-irradiation period increased considerably in each irradiated sample. (N.T.) 3 refs.; 2 figs.; 1 tab

  10. Tumor necrosis factor receptor-associated factor 6 (TRAF6) participates in anti-lipopolysaccharide factors (ALFs) gene expression in mud crab.

    Science.gov (United States)

    Sun, Wan-Wei; Zhang, Xin-Xu; Wan, Wei-Song; Wang, Shu-Qi; Wen, Xiao-Bo; Zheng, Huai-Ping; Zhang, Yue-Ling; Li, Sheng-Kang

    2017-02-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key cytoplasm signal adaptor that mediates signals activated by tumor necrosis factor receptor (TNFR) superfamily and the Interleukin-1 receptor/Toll-like receptor (IL-1/TLR) superfamily. The full-length 2492 bp TRAF6 (Sp-TRAF6) from Scylla paramamosain contains 1800 bp of open reading frame (ORF) encoding 598 amino acids, including an N-terminal RING-type zinc finger, two TRAF-type zinc fingers and a conserved C-terminal meprin and TRAF homology (MATH) domain. Multiple alignment analysis shows that the putative amino acid sequence of Sp-TRAf6 has highest identity of 88% with Pt-TRAF6 from Portunus trituberculatus, while the similarity of Sp-TRAF6 with other crustacean sequences was 54-55%. RT-PCR analysis indicated that Sp-TRAF6 transcripts were predominantly expressed in the hepatopancreas and stomach, whereas it was barely detected in the heart and hemocytes in our study. Moreover, Sp-TRAF6 transcripts were significantly up-regulated after Vibrio parahemolyticus and LPS challenges. RNA interference assay was carried out used by siRNA to investigate the genes expression patterns regulated by Sp-TRAF6. The qRT-PCR results showed that silencing Sp-TRAF6 gene could inhibit SpALF1, SpALF2, SpALF5 and SpALF6 expression in hemocytes, while inhibit SpALF1, SpALF3, SpALF4, SpALF5 and SpALF6 expression in hepatopancreas. Taken together, the acute-phase response to immune challenges and the inhibition of SpALFs gene expression indicate that Sp-TRAF6 plays an important role in host defense against pathogen invasions via regulation of ALF gene expression in S. paramamosain. Copyright © 2016. Published by Elsevier Ltd.

  11. Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Anti-Tumor Necrosis Factor Alpha Agents: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Yang, Chen; Huang, Junlin; Huang, Xiaowen; Huang, Shaozhuo; Cheng, Jiaxin; Liao, Weixin; Chen, Xuewen; Wang, Xueyi; Dai, Shixue

    2018-05-12

    The association between anti-tumor necrosis factor alpha agents and the risk of lymphoma in patients with inflammatory bowel disease has already been sufficiently reported. However, the results of these studies are inconsistent. Hence, this analysis was conducted to investigate whether anti-tumor necrosis factor alpha agents can increase the risk of lymphoma in inflammatory bowel disease patients. MEDLINE, EMBASE and the Cochrane Library were searched to identify relevant studies which evaluated the risk of lymphoma in inflammatory bowel disease patients treated with anti-tumor necrosis factor alpha agents. A random-effects meta-analysis was performed to calculate the pooled incidence rate ratios as well as risk ratios. Twelve studies comprising 285811 participants were included. The result showed that there was no significantly increased risk of lymphoma between anti-tumor necrosis factor alpha agents exposed and anti-tumor necrosis factor alpha agents unexposed groups (random effects: incidence rate ratio [IRR], 1.43 95%CI, 0.91-2.25, p= 0.116; random effects: risk ratio [RR], 0.83 95%CI, 0.47-1.48, p=0.534). However, monotherapy of anti-tumor necrosis factor alpha agents (random effects: IRR=1.65, 95%CI, 1.16-2.35; p=0.006; random effects: RR=1.00, 95%CI, 0.39-2.59; p=0.996) or combination therapy (random effects: IRR=3.36, 95%CI, 2.23-5.05; ptumor necrosis factor alpha agents in patients with inflammatory bowel disease is not associated with a higher risk of lymphoma. Combination therapy and anti-tumor necrosis factor alpha agents monotherapy can significantly increase the risk of lymphoma in patients with inflammatory bowel disease.

  12. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  13. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  14. Herpes Simplex Encephalitis during Treatment with Tumor Necrosis Factor-α Inhibitors

    OpenAIRE

    Bradford, Russell D.; Pettit, April C.; Wright, Patty W.; Mulligan, Mark J.; Moreland, Larry W.; McLain, David A.; Gnann, John W.; Bloch, Karen C.

    2009-01-01

    We report 3 cases of herpes simplex virus encephalitis in patients receiving tumor necrosis factor-alpha (TNF-α) inhibitors for rheumatologic disorders. Although TNF-α inhibitors have been reported to increase the risk of other infectious diseases, to our knowledge, an association between anti–TNF-α drugs and herpes simplex virus encephalitis has not been previously described.

  15. Tumor necrosis factor alpha gene polymorphism in multiple sclerosis and optic neuritis

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Sandberg-Wollheim, M

    1990-01-01

    The NcoI tumor necrosis factor (TNF alpha) polymorphism was studied in relapsing/remitting multiple sclerosis and monosymptomatic optic neuritis. The frequency of the NcoI marker phenotypes did not differ between healthy controls and the two disease groups. No extra or missing DNA fragments were...

  16. Apolipoprotein A-I Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis

    NARCIS (Netherlands)

    Bisoendial, Radjesh; Tabet, Fatiha; Tak, Paul P.; Petrides, Francine; Cuesta Torres, Luisa F.; Hou, Liming; Cook, Adam; Barter, Philip J.; Weninger, Wolfgang; Rye, Kerry-Anne

    2015-01-01

    Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo)

  17. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils

    NARCIS (Netherlands)

    van den Berg, J. M.; Weyer, S.; Weening, J. J.; Roos, D.; Kuijpers, T. W.

    2001-01-01

    Apoptosis of neutrophils is a key mechanism to control the intensity of the acute inflammatory response. Previously, the cytokine tumor necrosis factor alpha (TNF-alpha) was reported by some to have pro-apoptotic and by others to have antiapoptotic effects on neutrophils. The aim of this study was

  18. Systemic side effects of isolated limb perfusion with tumor necrosis factor alpha

    NARCIS (Netherlands)

    Zwaveling, Jan Harm

    1997-01-01

    The main function of tumor necrosis factor alpha (TNF-a), a small polypeptide shared by all mammals, is probably protection against invading bacteria, parasites and viruses; killing of these microorganisms is facilitated in the presence of TNF-a. However, as its name suggest, TNF-a is also capable

  19. Contrast-Enhanced Ultrasonography of Hepatocellular Carcinoma After Chemoembolisation Using Drug-Eluting Beads: A Pilot Study Focused on Sustained Tumor Necrosis

    International Nuclear Information System (INIS)

    Moschouris, Hippocrates; Malagari, Katerina; Papadaki, Marina Georgiou; Kornezos, Ioannis; Matsaidonis, Dimitrios

    2010-01-01

    The purpose of this study was to assess the use of contrast-enhanced ultrasonography (CEUS) and the sustained antitumor effect of drug-eluting beads used for transarterial chemoembolisation (TACE) of unresectable hepatocellular carcinoma (HCC). Ten patients with solitary, unresectable HCC underwent CEUS before, 2 days after, and 35 to 40 days after TACE using a standard dose (4 ml) of drug-eluting beads (DC Beads; Biocompatibles, Surrey, UK) preloaded with doxorubicin (25 mg doxorubicin/ml hydrated beads). For CEUS, a second-generation contrast agent (SonoVue, Bracco, Milan, Italy) and a low mechanical-index technique were used. A part of the tumor was characterized as necrotic if it showed complete lack of enhancement. The percentage of necrosis was calculated at the sonographic section that depicted the largest diameter of the tumor. Differences in the extent of early (2 days after TACE) and delayed (35 to 40 days after TACE) necrosis were quantitatively and subjectively assessed. Early post-TACE tumor necrosis ranged from 21% to 70% (mean 43.5% ± 19%). There was a statistically significant (p = 0.0012, paired Student t test) higher percentage of delayed tumor necrosis, which ranged from 24% to 88% (mean 52.3% ± 20.3%). Subjective evaluation showed a delayed obvious increase of the necrotic areas in 5 patients. In 2 patients, tumor vessels that initially remained patent disappeared on the delayed follow-up. A part of tumor necrosis after chemoembolisation of HCC with DEB seems to take place later than 2 days after TACE. CEUS may provide evidence for the sustained antitumor effect of DEB-TACE. Nevertheless, the ideal time for the imaging evaluation of tumor response remains to be defined.

  20. Combined cytotoxic effects of tumor necrosis factor-alpha with various cytotoxic agents in tumor cell lines that are drug resistant due to mutated p53

    NARCIS (Netherlands)

    Sleijfer, S; Le, T. K. P.; de Jong, S.; Timmer-Bosscha, H; Withoff, S; Mulder, NH

    Several studies suggest that tumor necrosis factor-alpha (TNF) is able to overcome drug resistance in tumors. Whether TNF is able to do so in tumor cell lines that are drug resistant due to a mutation in the tumor suppressor gene p53 is unclear. Therefore, we studied the in vitro cytotoxic effects

  1. Tumor necrosis factor (TNF) biology and cell death.

    Science.gov (United States)

    Bertazza, Loris; Mocellin, Simone

    2008-01-01

    Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.

  2. NecroQuant: quantitative assessment of radiological necrosis

    Science.gov (United States)

    Hwang, Darryl H.; Mohamed, Passant; Varghese, Bino A.; Cen, Steven Y.; Duddalwar, Vinay

    2017-11-01

    Clinicians can now objectively quantify tumor necrosis by Hounsfield units and enhancement characteristics from multiphase contrast enhanced CT imaging. NecroQuant has been designed to work as part of a radiomics pipelines. The software is a departure from the conventional qualitative assessment of tumor necrosis, as it provides the user (radiologists and researchers) a simple interface to precisely and interactively define and measure necrosis in contrast-enhanced CT images. Although, the software is tested here on renal masses, it can be re-configured to assess tumor necrosis across variety of tumors from different body sites, providing a generalized, open, portable, and extensible quantitative analysis platform that is widely applicable across cancer types to quantify tumor necrosis.

  3. Tumor necrosis factor-alpha increases myocardial microvascular transport in vivo

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høyer, S

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is a primary mediator in the pathogenesis of tissue injury, and high circulating levels of TNF-alpha are found in a variety of pathological conditions. In open-chest anesthetized dogs, the effects of intracoronary recombinant human TNF-alpha (rTNF-alpha; 100...... in cardiac output and was associated with the appearance of areas with myocardial necrosis in the regional left ventricular wall. The myocardial plasma flow rate and maximum plasma flow rate in response to a 30-s coronary occlusion were not influenced by rTNF-alpha, although a decrease in the myocardial...... ng/kg for 60 min) on myocardial microvascular transport of a small hydrophilic indicator was examined by the single-injection, residue-detection method. Intracoronary infusion of rTNF-alpha increased myocardial microvascular transport after 120 min. This increase was preceded by a sustained decline...

  4. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Ceran Ceyhan

    2012-10-01

    Full Text Available Abstract Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α. Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells

  5. Inhibition of Inflammation Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alzheimer Disease.

    Science.gov (United States)

    Shamim, Daniah; Laskowski, Michael

    2017-01-01

    Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.

  6. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Science.gov (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  7. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein

    International Nuclear Information System (INIS)

    Gray, P.W.; Barrett, K.; Chantry, D.; Turner, M.; Feldmann, M.

    1990-01-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extracellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10 -9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ)

  8. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    Science.gov (United States)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  9. The dual role of tumor necrosis factor (TNF) in cancer biology.

    Science.gov (United States)

    Bertazza, Loris; Mocellin, Simone

    2010-01-01

    Tumor necrosis factor (TNF) is a cytokine with well known anticancer properties and is being utilized as anticancer agent for the treatment of patients with locally advanced solid tumors. However, TNF role in cancer biology is debated. In fact, in spite of the wealth of evidence supporting its antitumor activity, the cascade of molecular events underlying TNF-mediated tumor regression observed in vivo is still incompletely elucidated. Furthermore, some preclinical findings suggest that TNF may even promote cancer development and progression. With this work we intend to summarize the molecular biology of TNF (with particular regard to its tumor-related activities) and review the experimental and clinical evidence currently available describing the complex and sometime apparently conflicting relationship between this cytokine, cancer biology and antitumor therapy. We also propose a model to explain the dual effect of TNF based on the exposure time and cytokine levels reached within the tumor microenvironment. Finally, we overview recent research findings that might lead to new ways for exploiting the anticancer potential of TNF in the clinical setting.

  10. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...

  11. Clinical response, drug survival, and predictors thereof among 548 patients with psoriatic arthritis who switched tumor necrosis factor α inhibitor therapy

    DEFF Research Database (Denmark)

    Glintborg, Bente; Ostergaard, Mikkel; Krogh, Niels Steen

    2013-01-01

    To describe the frequency of treatment switching and outcomes among patients with psoriatic arthritis (PsA) who switched tumor necrosis factor α inhibitor (TNFi) agents in routine care.......To describe the frequency of treatment switching and outcomes among patients with psoriatic arthritis (PsA) who switched tumor necrosis factor α inhibitor (TNFi) agents in routine care....

  12. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    Science.gov (United States)

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  14. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    Science.gov (United States)

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  15. Ciliary neurotrophic factor inhibits brain and peripheral tumor necrosis factor production and, when coadministered with its soluble receptor, protects mice from lipopolysaccharide toxicity.

    Science.gov (United States)

    Benigni, F; Villa, P; Demitri, M T; Sacco, S; Sipe, J D; Lagunowich, L; Panayotatos, N; Ghezzi, P

    1995-07-01

    The receptor of ciliary neurotrophic factor (CNTF) contains the signal transduction protein gp130, which is also a component of the receptors of cytokines such as interleukin (IL)-6, leukemia-inhibitory factor (LIF), IL-11, and oncostatin M. This suggests that these cytokines might share common signaling pathways. We previously reported that CNTF augments the levels of corticosterone (CS) and of IL-6 induced by IL-1 and induces the production of the acute-phase protein serum amyloid A (SAA). Since the elevation of serum CS is an important feedback mechanism to limit the synthesis of proinflammatory cytokines, particularly tumor necrosis factor (TNF), we have investigated the effect of CNTF on both TNF production and lipopolysaccharide (LPS) toxicity. To induce serum TNF levels, LPS was administered to mice at 30 mg/kg i.p. and CNTF was administered as a single dose of 10 micrograms/mouse i.v., either alone or in combination with its soluble receptor sCNTFR alpha at 20 micrograms/mouse. Serum TNF levels were the measured by cytotoxicity on L929 cells. In order to measure the effects of CNTF on LPS-induced TNF production in the brain, mice were injected intracerebroventricularly (i.c.v.) with 2.5 micrograms/kg LPS. Mouse spleen cells cultured for 4 hr with 1 microgram LPS/ml, with or without 10 micrograms CNTF/ml, were also analyzed for TNF production. CNTF, administered either alone or in combination with its soluble receptor, inhibited the induction of serum TNF levels by LPS. This inhibition was also observed in the brain when CNTF and LPS were administered centrally. In vitro, CNTF only marginally affected TNF production by LPS-stimulated mouse splenocytes, but it acted synergistically with dexamethasone (DEX) in inhibiting TNF production. Most importantly, CNTF administered together with sCNTFR alpha protected mice against LPS-induced mortality. These data suggest that CNTF might act as a protective cytokine against TNF-mediated pathologies both in the brain and

  16. Impact of Stopping Tumor Necrosis Factor inhibitors on Rheumatoid Arthritis Patients' Burden of Disease

    NARCIS (Netherlands)

    Ghiti Moghadam, Marjan; ten Klooster, Peter M.; Vonkeman, Harald Erwin; Kneepkens, Eva L.; Klaasen, Ruth; Stolk, Jan N.; Tchetverikov, Ilja; Vreugdenhil, Simone A.; van Woerkom, Jan M.; Goekoop-Ruiterman, Yvonne P.M.; Landewé, Robert B.M.; van Riel, Piet L.C.M.; van de Laar, Mart A F J; Jansen, Tim L.

    OBJECTIVE: To determine the impact of stopping tumor necrosis factor inhibitor (TNFi) treatment on patient-reported outcomes (PROs) of physical and mental health status, health utility, pain, disability and fatigue in patients with established rheumatoid arthritis (RA). METHODS: In the pragmatic

  17. Impact of Stopping Tumor Necrosis Factor-inhibitors on Rheumatoid Arthritis Patients' Burden of Disease

    NARCIS (Netherlands)

    Ghiti Moghadam, Marjan; ten Klooster, Peter M.; Vonkeman, Harald Erwin; Kneepkens, Eva L.; Klaasen, Ruth; Stolk, Jan N.; Tchetverikov, Ilja; Vreugdenhil, Simone A.; van Woerkom, Jan M.; Goekoop-Ruiterman, Yvonne P.M.; Landewé, Robert B.M.; van Riel, Piet L.C.M.; van de Laar, Mart A F J; Jansen, Tim L.

    2017-01-01

    OBJECTIVE: To determine the impact of stopping tumor necrosis factor inhibitor (TNFi) treatment on patient-reported outcomes (PROs) of physical and mental health status, health utility, pain, disability and fatigue in patients with established rheumatoid arthritis (RA). METHODS: In the pragmatic

  18. Impact of Stopping Tumor Necrosis Factor-inhibitors on Rheumatoid Arthritis Patients' Burden of Disease

    NARCIS (Netherlands)

    Ghiti Moghadam, Marjan; ten Klooster, Peter M.; Vonkeman, Harald E.; Kneepkens, Eva L.; Klaasen, Ruth; Stolk, Jan N.; Tchetverikov, Ilja; Vreugdenhil, Simone A.; van Woerkom, Jan M.; Goekoop-Ruiterman, Yvonne P. M.; Landewé, Robert B. M.; van Riel, Piet L. C. M.; van de Laar, Mart A. F. J.; Jansen, Tim L.

    2017-01-01

    To determine the impact of stopping tumor necrosis factor inhibitor (TNFi) treatment on patient-reported outcomes (PROs) of physical and mental health status, health utility, pain, disability and fatigue in patients with established rheumatoid arthritis (RA). In the pragmatic 12-month POET trial,

  19. Methanol Extract of Hydroclathrus clathratus Inhibits Production of ...

    African Journals Online (AJOL)

    Methanol Extract of Hydroclathrus clathratus Inhibits Production of Nitric Oxide, Prostaglandin E2 and Tumor Necrosis Factor-α in Lipopolysaccharidestimulated BV2 Microglial Cells via Inhibition of NF-κB Activity. RGPT Jayasooriya, D-O Moon, YH Chol, C-H Yoon, G-Y Kim ...

  20. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion

  1. N-end rule pathway inhibition assists colon tumor regression via necroptosis

    Directory of Open Access Journals (Sweden)

    Pritha Agarwalla

    2016-01-01

    Full Text Available Recent study has shown that N-end rule pathway, an ubiquitin dependent proteolytic system, counteracts cell death by degrading many antisurvival protein fragments like BCLxL, BRCA1, RIPK1, etc. Inhibition of the N-end rule pathway can lead to metabolic stabilization of proapoptotic protein fragments like RIPK1, thereby sensitizing cells to programmed cell death. Receptor interacting serine-threonine protein kinase-1 (RIPK1 is one of the upstream regulators of programmed necrosis known as necroptosis. Necroptosis is particularly gaining attention of cancer biologists as it provides an alternate therapeutic modality to kill cancer cells, which often evolve multiple strategies to circumvent growth inhibition by apoptosis. Utilizing the over expression of biotin receptor in cancer cells, herein, we report that coadministration of synthetic hetero-bivalent N-end rule inhibitor RFC11 and anticancer drug shikonin solubilized in a stable biotin receptor-targeted liposome exhibited significant synergistic antitumor effect in both subcutaneous and orthotopic mouse colon tumor model through induction of necroptosis with distinctive upregulation of RIPK1. Besides developing a newly targeted formulation for necroptosis induction, this report is the first in vivo evidence demonstrating that potent inhibition of N-end rule pathway can enhance therapeutic efficacy of conventional chemotherapeutics.

  2. Which factors influence radiographic progression during treatment with tumor necrosis factor inhibitors in clinical practice?

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Bøyesen, Pernille

    2014-01-01

    OBJECTIVE: To investigate baseline characteristics associated with radiographic progression and the effect of disease activity, drug, switching, and withdrawal on radiographic progression in tumor necrosis factor (TNF) inhibitor-naive patients with rheumatoid arthritis (RA) followed for about 2...

  3. Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn's ileocolitis

    NARCIS (Netherlands)

    Baert, F. J.; D'Haens, G. R.; Peeters, M.; Hiele, M. I.; Schaible, T. F.; Shealy, D.; Geboes, K.; Rutgeerts, P. J.

    1999-01-01

    Anti-tumor necrosis factor alpha monoclonal antibody treatment (infliximab) reduces clinical signs and symptoms in patients with Crohn's disease. The effects of infliximab on mucosal histopathologic abnormalities in Crohn's ileocolitis were studied. Thirteen patients with steroid-refractory Crohn's

  4. Soluble receptors for tumor necrosis factor as markers of disease activity in visceral leishmaniasis

    NARCIS (Netherlands)

    Zijlstra, E. E.; van der Poll, T.; Mevissen, M.

    1995-01-01

    Serum concentrations of soluble receptors for tumor necrosis factor (sTNFRs) were measured before and after antimony therapy in 25 Sudanese patients with active visceral leishmaniasis (VL). Both sTNFR types I and II were significantly elevated in patients with VL compared with healthy controls from

  5. Effect of tumor necrosis factor-alpha infusion on the incretin effect in healthy volunteers

    DEFF Research Database (Denmark)

    Nielsen, Signe Tellerup; Lehrskov-Schmidt, Louise; Krogh-Madsen, Rikke

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is associated with peripheral insulin resistance, impaired incretin effect, and increased plasma levels of tumor necrosis factor-alpha (TNF-α). Whereas TNF-α infusion at a dose that induces systemic inflammation in healthy volunteers has been demonstrated to induce...

  6. [Effect of vascular endothelial growth factor and tumor necrosis factor receptor for treatment of avascular necrosis of the femoral head in rabbits].

    Science.gov (United States)

    Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min

    2008-12-01

    To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.

  7. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  8. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    International Nuclear Information System (INIS)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma

  9. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  10. Tumor Necrosis Factor Antagonism Normalizes Rapid Eye Movement Sleep in Alcohol Dependence

    Science.gov (United States)

    Irwin, Michael R.; Olmstead, Richard; Valladares, Edwin M.; Breen, Elizabeth Crabb; Ehlers, Cindy L.

    2009-01-01

    Background In alcohol dependence, markers of inflammation are associated with increases in rapid eye movement (REM) sleep, which is thought to be a prognostic indicator of alcohol relapse. This study was undertaken to test whether blockade of biologically active tumor necrosis factor-α (TNF-α) normalizes REM sleep in alcohol-dependent adults. Methods In a randomized, placebo-controlled, double-blind, crossover trial, 18 abstinent alcohol-dependent male adults received a single dose of etanercept (25 mg) versus placebo in a counterbalanced order. Polysomnographic sleep was measured at baseline and for 3 nights after the acute dose of etanercept or placebo. Results Compared with placebo, administration of etanercept produced significant decreases in the amount and percentage of REM sleep. Decreases in REM sleep were robust and approached low levels typically found in age-comparable control subjects. Individual differences in biologically active drug as indexed by circulating levels of soluble tumor necrosis factor receptor II negatively correlated with the percentage of REM sleep. Conclusions Pharmacologic neutralization of TNF-α activity is associated with significant reductions in REM sleep in abstinent alcohol-dependent patients. These data suggest that circulating levels of TNF-α may have a physiologic role in the regulation of REM sleep in humans. PMID:19185287

  11. Arthritis is inhibited in Borrelia-primed and infected interleukin-17A-deficient mice after administration of anti-gamma-interferon, anti-tumor necrosis factor alpha and anti-interleukin-6 antibodies.

    Science.gov (United States)

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-08-31

    The role that cytokines play in the induction of Lyme arthritis is gradually being delineated. We showed previously that severe arthritis developed in a T-cell-driven murine model, even in mice lacking interleukin-17A (IL-17A) and administered anti-gamma-interferon (IFN-γ) antibody. Increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two pro-inflammatory cytokines, were detected in cultures of popliteal lymph node cells obtained from these mice. We hypothesized that concomitantly administered anti-IL-6, anti-TNF-α and anti-IFN-γ antibodies would inhibit the development of arthritis in IL-17A-deficient mice. Our results showed that swelling of the hind paws and histopathological changes consistent with arthritis were significantly reduced in IL-17A-deficient mice that administered the three anti-cytokine antibodies. These results suggest that treatment with multiple anti-cytokine antibodies can abrogate the induction of Lyme arthritis in mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice

    International Nuclear Information System (INIS)

    Deng, San-Ming; Yan, Xian-Chun; Liang, Liang; Wang, Li; Liu, Yuan; Duan, Juan-Li; Yang, Zi-Yan; Chang, Tian-Fang; Ruan, Bai; Zheng, Qi-Jun; Han, Hua

    2017-01-01

    Although it has been suggested that Dll3, one of the Notch ligands, promotes the proliferation and inhibits the apoptosis of cancer cells, the role of Dll3 in cancers remains unclear. In this study, we found that in the murine Lewis lung carcinoma (LLC) cells, the level of Dll3 mRNA changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with tumor necrosis factor (TNF)-α. Dll3 was also expressed at higher level in human lung carcinoma tissues than in the para-carcinoma tissues. Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro, and enhanced tumor growth when inoculated in vivo in mice. The Dll3-mediated proliferation could be due to increased Akt phosphorylation in LLC cells, because an Akt inhibitor counteracted Dll3-induced proliferation. Moreover, Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling. - Highlights: • The level of Dll3 in Lewis lung carcinoma changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with TNF-α. • The Dll3 was rarely detectable in the para-carcinoma tissues, but positive in 82.1% of NSCLC tissues from 84 patients. • Overexpression of Dll3 in LLC cells promoted tumor growth but did not remarkably alter TME after inoculated in mice. • Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro in an Akt-dependent way. • Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling.

  13. Endogenous endophthalmitis in a rheumatoid patient on tumor necrosis factor alpha blocker

    Directory of Open Access Journals (Sweden)

    Agarwal Pankaj

    2007-01-01

    Full Text Available The development of anti-tumor necrosis factor (TNF therapies is a milestone in the therapy of rheumatic diseases. It is of concern whether all potential undesired complications of therapy have been evaluated within clinical trials which have led to treatment approval. Specialists prescribing TNF blockers should be aware of the unusual and severe complications that can occur. We describe a case of endogenous endophthalmitis in a rheumatoid patient on TNF alpha blocker.

  14. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells

    NARCIS (Netherlands)

    Eigler, A; Sinha, B; Endres, S

    1993-01-01

    In septic shock tumor necrosis factor (TNF) leads to increased nitric oxide (NO) production by induction of NO synthase. An inverse regulatory effect, the influence of NO on cytokine synthesis, has rarely been investigated. The present study assessed the influence of NO-releasing agents on TNF

  15. Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense?

    NARCIS (Netherlands)

    van der Poll, T.; Lowry, S. F.

    1995-01-01

    Tumor necrosis factor-alpha (TNF) exerts numerous influences which, in association with severe infection, subserve both detrimental as well as beneficial host responses. The current review addresses recent insights into the structure and function of this pleiotropic cytokine, with a particular

  16. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans.

    Science.gov (United States)

    Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y

    1992-11-01

    Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented release of lactoferrin, an iron-binding protein which itself could inhibit the growth of C. albicans in vitro. Antibodies against lactoferrin effectively and specifically reduced the anti-C. albicans activity of both LPS-stimulated and unstimulated PMN. Northern (RNA blot) analysis showed enhanced production of mRNAs for interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and in neutrophils within 1 h of stimulation with LPS. The cytokines were also detected in the supernatant of the activated PMN, and their synthesis was prevented by pretreatment of LPS-stimulated PMN with protein synthesis inhibitors, such as emetine and cycloheximide. These inhibitors, however, did not block either lactoferrin release or the anti-Candida activity of LPS-stimulated PMN. These results demonstrate the ability of various bacterial LPSs to augment neutrophil function against C. albicans and suggest that the release of a candidastatic, iron-binding protein, lactoferrin, may contribute to the antifungal effect of PMN. Moreover, the ability to produce cytokines upon stimulation by ubiquitous microbial products such as the endotoxins points to an extraphagocytic, immunomodulatory role of PMN during infection.

  17. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages

    Science.gov (United States)

    Peterson, Teresa E.; Kirkpatrick, Nathaniel D.; Huang, Yuhui; Farrar, Christian T.; Marijt, Koen A.; Kloepper, Jonas; Datta, Meenal; Amoozgar, Zohreh; Seano, Giorgio; Jung, Keehoon; Kamoun, Walid S.; Vardam, Trupti; Snuderl, Matija; Goveia, Jermaine; Chatterjee, Sampurna; Batista, Ana; Muzikansky, Alona; Leow, Ching Ching; Xu, Lei; Batchelor, Tracy T.; Duda, Dan G.; Fukumura, Dai; Jain, Rakesh K.

    2016-01-01

    Glioblastomas (GBMs) rapidly become refractory to anti-VEGF therapies. We previously demonstrated that ectopic overexpression of angiopoietin-2 (Ang-2) compromises the benefits of anti-VEGF receptor (VEGFR) treatment in murine GBM models and that circulating Ang-2 levels in GBM patients rebound after an initial decrease following cediranib (a pan-VEGFR tyrosine kinase inhibitor) administration. Here we tested whether dual inhibition of VEGFR/Ang-2 could improve survival in two orthotopic models of GBM, Gl261 and U87. Dual therapy using cediranib and MEDI3617 (an anti–Ang-2–neutralizing antibody) improved survival over each therapy alone by delaying Gl261 growth and increasing U87 necrosis, effectively reducing viable tumor burden. Consistent with their vascular-modulating function, the dual therapies enhanced morphological normalization of vessels. Dual therapy also led to changes in tumor-associated macrophages (TAMs). Inhibition of TAM recruitment using an anti–colony-stimulating factor-1 antibody compromised the survival benefit of dual therapy. Thus, dual inhibition of VEGFR/Ang-2 prolongs survival in preclinical GBM models by reducing tumor burden, improving normalization, and altering TAMs. This approach may represent a potential therapeutic strategy to overcome the limitations of anti-VEGFR monotherapy in GBM patients by integrating the complementary effects of anti-Ang2 treatment on vessels and immune cells. PMID:27044097

  18. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models

    NARCIS (Netherlands)

    Xie, Bangwen; Stammes, Marieke A.; van Driel, Pieter B. A. A.; Cruz, Luis J.; Knol-Blankevoort, Vicky T.; Löwik, Martijn A. M.; Mezzanotte, Laura; Que, Ivo; Chan, Alan; van den Wijngaard, Jeroen P. H. M.; Siebes, Maria; Gottschalk, Sven; Razansky, Daniel; Ntziachristos, Vasilis; Keereweer, Stijn; Horobin, Richard W.; Hoehn, Mathias; Kaijzel, Eric L.; van Beek, Ermond R.; Snoeks, Thomas J. A.; Löwik, Clemens W. G. M.

    2015-01-01

    Quantification of tumor necrosis in cancer patients is of diagnostic value as the amount of necrosis is correlated with disease prognosis and it could also be used to predict early efficacy of anti-cancer treatments. In the present study, we identified two near infrared fluorescent (NIRF)

  19. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops.

    Science.gov (United States)

    Wang, T; Xu, X; Xu, Q; Ren, J; Shen, S; Fan, C; Hou, Y

    2017-06-08

    Chronic inflammation is believed to have a crucial role in colon cancer development. MicroRNA (miRNA) deregulation is common in human colorectal cancers, but little is known regarding whether miRNA drives tumor progression by regulating inflammation. Here, we showed that miR-19a can promote colitis and colitis-associated colon cancer (CAC) development using a CAC mouse model and an acute colitis mouse model. Tumor necrosis factor-α (TNF-α) stimulation can increase miR-19a expression, and upregulated miR-19a can in turn activate nuclear factor (NF)-κB signaling and TNF-α production by targeting TNF alpha-induced protein 3 (TNFAIP3). miR-19a inhibition can also alleviate CAC in vivo. Moreover, the regulatory effects of miR-19a on TNFAIP3 and NF-κB signaling were confirmed using tumor samples from patients with colon cancer. These new findings demonstrate that miR-19a has a direct role in upregulating NF-κB signaling and that miR-19a has roles in inflammation and CAC.

  20. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Alessandra Citro

    Full Text Available CD8+ T cells specific to caspase-cleaved antigens derived from apoptotic T cells (apoptotic epitopes represent a principal player in chronic immune activation, which is known to amplify immunopathology in various inflammatory diseases. The purpose of the present study was to investigate the relationship involving these autoreactive T cells, the rheumatoid arthritis immunopathology, and the response to tumor necrosis factor-α inhibitor therapy. The frequency of autoreactive CD8+ T cells specific to various apoptotic epitopes, as detected by both enzyme-linked immunospot assay and dextramers of major histocompatibility complex class I molecules complexed with relevant apoptotic epitopes, was longitudinally analyzed in the peripheral blood of rheumatoid arthritis patients who were submitted to etanercept treatment (or other tumor necrosis factor inhibitors as a control. The percentage of apoptotic epitope-specific CD8+ T cells was significantly higher in rheumatoid arthritis patients than in healthy donors, and correlated with the disease activity. More important, it was significantly more elevated in responders to tumor necrosis factor-α inhibitor therapy than in non-responders before the start of therapy; it significantly dropped only in the former following therapy. These data indicate that apoptotic epitope-specific CD8+ T cells may be involved in rheumatoid arthritis immunopathology through the production of inflammatory cytokines and that they may potentially represent a predictive biomarker of response to tumor necrosis factor-α inhibitor therapy to validate in a larger cohort of patients.

  1. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Olesen, Caroline Meyer; Coskun, Mehmet; Peyrin-Biroulet, Laurent

    2016-01-01

    Biological treatment with tumor necrosis factor (TNF) inhibitors is successful in the management of inflammatory bowel disease (IBD). All TNF inhibitors antagonize the pro-inflammatory cytokine TNF-α but with varying efficacies in IBD. The variations in efficacy probably are caused by structural ...... inhibitors in order to identify mechanisms of importance for their efficacy in IBD. Thus, a better understanding of the mechanistic basis for clinical efficacy can lead to a more rational use of TNF inhibitors in the management of IBD....

  2. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H; Cai, Zhao Y; Badar, Samina; Wangoo, Kiran; Poruchynsky, Marianne S; Morris, David L

    2010-01-01

    Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF). It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1α) is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ) could be mediated through inhibition of tumoral HIF-1α. In vitro, the effects of ABZ on HIF-1α levels in human ovarian cancer cells (OVCAR-3) were investigated using hypoxic chamber or desferrioxamine (DFO) induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose) on the tumor levels of HIF-1α and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. In vitro, ABZ inhibited cellular HIF-1α protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1α and VEGF. Whereas, tumoral HIF-1α and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1αmRNA) was also found to be highly suppressed by ABZ. These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1α and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1α surge, tumor invasiveness and metastasis

  3. The correlation analysis of tumor necrosis factor-alpha-308G/A polymorphism and venous thromboembolism risk: A meta-analysis.

    Science.gov (United States)

    Gao, Quangen; Zhang, Peijin; Wang, Wei; Ma, He; Tong, Yue; Zhang, Jing; Lu, Zhaojun

    2016-10-01

    Venous thromboembolism is a common complex disorder, being the resultant of gene-gene and gene-environment interactions. Tumor necrosis factor-alpha is a proinflammatory cytokine which has been implicated in venous thromboembolism risk. A promoter 308G/A polymorphism in the tumor necrosis factor-alpha gene has been suggested to modulate the risk for venous thromboembolism. However, the published findings remain inconsistent. In this study, we conducted a meta-analysis of all available data regarding this issue. Eligible studies were identified through search of Pubmed, EBSCO Medline, Web of Science, and China National Knowledge Infrastructure (CNKI, Chinese) databases up to June 2014. Pooled Odd ratios (ORs) with 95% confidence intervals were applied to estimating the strength of the genetic association in the random-effects model or fixed-effects model. A total of 10 studies involving 1999 venous thromboembolism cases and 2166 controls were included in this meta-analysis to evaluate the association between tumor necrosis factor-alpha-308G/A polymorphism and venous thromboembolism risk. Overall, no significantly increased risk venous thromboembolism was observed in all comparison models when all studies were pooled into the meta-analysis. However, in stratified analyses by ethnicity, there was a pronounced association with venous thromboembolism risk among West Asians in three genetic models (A vs. G: OR = 1.82, 95%CI = 1.13-2.94; GA vs. GG: OR = 1.82, 95%CI = 1.08-3.06; AA/GA vs. GG: OR = 1.88, 95%CI = 1.12-3.16). When stratifying by source of controls, no significant result was detected in all genetic models. This meta-analysis demonstrates that tumor necrosis factor-alpha 308G/A polymorphism may contribute to susceptibility to venous thromboembolism among West Asians. Studies are needed to ascertain these findings in larger samples and different racial groups. © The Author(s) 2015.

  4. Tumor necrosis factor: specific binding and internalization in sensitive and resistant cells

    International Nuclear Information System (INIS)

    Tsujimoto, M.; Yip, Y.K.; Vilcek, J.

    1985-01-01

    Highly purified, Escherichia coli-derived recombinant human tumor necrosis factor (TNF) was labeled with 125 I and employed to determine receptor binding, internalization, and intracellular degradation in murine L929 cells (highly sensitive to the cytotoxic action of TNF) and in diploid human FS-4 cells (resistant to TNF cytotoxicity). 125 I-labeled TNF bound specifically to high-affinity receptors on both L929 and FS-4 cells. Scatchard analysis of the binding data indicated the presence of 2200 binding sites per L929 cell and 7500 binding sites per FS-4 cell. The calculated dissociation constants are 6.1 x 10 -10 M and 3.2 x 10 -10 M for L929 and FS-4 cells, respectively. In both L929 and FS-4 cells, incubation at 37 0 C resulted in a rapid internalization of the bulk of the cell-bound TNF, followed by the appearance of trichloroacetic acid-soluble 125 I radioactivity in the tissue culture medium, due to degradation of TNF. Degradation but not cellular uptake of TNF was inhibited in the presence of chloroquine (an inhibitor of lysosomal proteases) in both L929 and FS-4 cells, suggesting that degradation occurs intracellularly, probably within lysosomes. These results show that resistance of FS-4 cells to TNF cytotoxicity is not due to a lack of receptors or their inability to internalize and degrade TNF

  5. Polymorphisms in tumor necrosis factor genes and susceptibility to visceral leishmaniasis in Moroccan children

    Directory of Open Access Journals (Sweden)

    Rajaa Ejghal

    2015-05-01

    Full Text Available Objective: To examine whether polymorphic alleles at these two loci are involved in the susceptibility to visceral leishmaniasis (VL in Moroccan children. Methods: We have genotyped polymorphisms by PCR-restricted fragment length polymorphisms in 102 patients with VL, 92 asymptomatic carriers [positive skin test delayedtype hypersensitivity (DTH+] and 40 healthy controls (negative skin test delayed-type hypersensitivity, with no history of Leishmania infection. Results: Regression analysis showed no significant association between polymorphisms of tumor necrosis factors-ααwhen comparing VL and DTH + group (P > 0.05. The associations were detected between VL and negative skin test delayed-type hypersensitivity for the heterozygote genotype (P = 0.021, the recessive model: 1/2 + 2/2 (P = 0.044 and the minor allele 2 (P = 0.019. The resistance to VL was found to be under the recessive model 1/2 + 2/2 of tumor necrosis factors-β, when comparing VL and DTH + group (odds ratios: 0.558, 95%; confidence interval: 0.316-0.987; P = 0.044. Conclusions: These results must be regarded to preliminary but suggestive that further study with larger populations is worthwhile.

  6. Studies on structural features of human tumor necrosis factor

    International Nuclear Information System (INIS)

    Yin Chuanyuan; Guo Donglin; Xi Tao; Xu Xianxiu; Gu Qingchao

    1997-01-01

    The microstructure of human tumor necrosis factor alpha (TNF-α) and its mutant (TNF-b) has been investigated by utilizing positron annihilation lifetime spectroscopy, radioiodination of human TNF and L929 cells assay. The experimental results show that the long lifetime (Τ 2 ) and corresponding intensity (I 2 ) of lower ortho-positronium annihilation in TNF-α are longer and less than those in the TNF-b, respectively. It suggests that the TNF-b is smaller in free volume and higher in density than the TNF-α. The TNF-b may maintain a more favorable conformation for binding to TNF receptors, thus increasing its biological activity. It is then concluded that the increases in the cytotoxicity and in the density for the TNF-b result from the decreases in the free volume in the TNF-b

  7. Tumor necrosis factor alpha polymorphism correlates with deleterious effects of ultraviolet B light on cutaneous immunity

    NARCIS (Netherlands)

    Vincek, V.; Kurimoto, I.; Medema, J. P.; Prieto, E.; Streilein, J. W.

    1993-01-01

    Intradermally injected tumor necrosis factor alpha (TNF-alpha) mimics the effects of UV B light (UVB) radiation and neutralizing anti-TNF-alpha antibodies abolish the deleterious effects of UVB on induction of contact hypersensitivity suggesting that TNF-alpha is the major mediator of UVB effects on

  8. Mechanism of inhibitory effect of atorvastatin on resistin expression induced by tumor necrosis factor-α in macrophages

    Directory of Open Access Journals (Sweden)

    Chua Su-Kiat

    2009-05-01

    Full Text Available Abstract Atorvastatin has been shown to reduce resistin expression in macrophages after pro-inflammatory stimulation. However, the mechanism of reducing resistin expression by atorvastatin is not known. Therefore, we sought to investigate the molecular mechanisms of atorvastatin for reducing resistin expression after proinflammatory cytokine, tumor necrosis factor-α (TNF-α stimulation in cultured macrophages. Cultured macrophages were obtained from human peripheral blood mononuclear cells. TNF-α stimulation increased resistin protein and mRNA expression and atorvastatin inhibited the induction of resistin by TNF-α. Addition of mevalonate induced resistin protein expression similar to TNF-α stimulation. However, atorvastatin did not have effect on resistin protein expression induced by mevalonate. SP600125 and JNK small interfering RNA (siRNA completely attenuated the resistin protein expression induced by TNF-α and mevalonate. TNF-α induced phosphorylation of Rac, while atorvastatin and Rac-1 inhibitor inhibited the phosphorylation of Rac induced by TNF-α. The gel shift and promoter activity assay showed that TNF-α increased AP-1-binding activity and resistin promoter activity, while SP600125 and atorvastatin inhibited the AP-1-binding activity and resistin promoter activity induced by TNF-α. Recombinant resistin and TNF-α significantly reduced glucose uptake in cultured macrophages, while atorvastatin reversed the reduced glucose uptake by TNF-α. In conclusion, JNK and Rac pathway mediates the inhibitory effect of atorvastatin on resistin expression induced by TNF-α.

  9. Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention.

    Directory of Open Access Journals (Sweden)

    Liying Gu

    Full Text Available The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14 in human malignant ovarian tumors, and test TWEAK's potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC, we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%. Similarly, 35 out of 41 (85.37% malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients' clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α, whereas either TWEAK or TNF-α alone didn't affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1 production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.

  10. Anti-Tumor Necrosis Factor With a Glyco-Engineered Fc-Region Has Increased Efficacy in Mice With Colitis

    NARCIS (Netherlands)

    Bloemendaal, Felicia M.; Levin, Alon D.; Wildenberg, Manon E.; Koelink, Pim J.; Mcrae, Bradford L.; Salfeld, Jochen; Lum, Jenifer; van der Neut Kolfschoten, Marijn; Claassens, Jill W.; Visser, Remco; Bentlage, Arthur; D'Haens, Geert R. A. M.; Verbeek, J. Sjef; Vidarsson, Gestur; van den Brink, Gijs R.

    2017-01-01

    Although tumor necrosis factor (TNF) antagonists reduce many clinical features of inflammatory bowel disease, complete mucosal healing occurs in fewer than 50% of patients. The Fc-region of monoclonal antibodies against TNF has immunosuppressive properties via effects on macrophage polarization. We

  11. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Clausen, Bettina Hjelm; Fenger, Claus

    2007-01-01

    The proinflammatory and potential neurotoxic cytokine tumor necrosis factor (TNF) is produced by activated CNS resident microglia and infiltrating blood-borne macrophages in infarct and peri-infarct areas following induction of focal cerebral ischemia. Here, we investigated the expression of the ...

  12. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  13. Specificity of tumor necrosis factor toxicity for human mammary carcinomas relative to normal mammary epithelium and correlation with response to doxorubicin

    International Nuclear Information System (INIS)

    Dollbaum, C.; Creasey, A.A.; Dairkee, S.H.; Hiller, A.J.; Rudolph, A.R.; Lin, L.; Vitt, C.; Smith, H.S.

    1988-01-01

    By using a unique short-term culture system capable of growing both normal and malignant breast epithelial tissue, human recombinant tumor necrosis factor (TNF) showed preferential cytotoxicity to malignant cells as compared to the corresponding nonmalignant cells. Most of the malignant specimens were sensitive to TNF with 13 of 18 specimens showing 90% inhibition of clonal growth (ID 90 ). In contrast, all 13 nonmalignant specimens tested clustered at the resistant end of the TNF response spectrum. This differential sensitivity to TNF was seen in three cases in which malignant and nonmalignant breast epithelial tissues from the same patient were studied. To investigate the mechanism of resistance to TNF by normal cells, the presence of receptors for TNF was determined. Five of six cultures showed specific binding of 125 I-labeled TNF and there was no relationship between the degree of resistance and the degree of specific binding. Simultaneous comparison of tumor responsiveness to doxorubicin and TNF revealed a positive correlation in ID 90 values; these results may have important implications for the clinical use of TNF in cancer patients heavily pretreated with doxorubicin

  14. Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Jacek Nikliński

    2010-05-01

    Full Text Available The aim of the present study was to characterize the expression pattern of tumor necrosis factor (TNF-alpha and its receptors (TNF-Rs in the epithelial ovarian cancer (EOC and compare these results with the outcome of 126 patients. Presence of TNF-alpha, TNFR-1 and TNFR-2 were studied by Western blotting and immunohistochemistry. The proportion of samples positive for TNF-alpha and TNF-R2 was higher in epithelial ovarian cancer patients than in benign ovarian diseases (p<0.001 and p=0.016, respectively. Immunostaining intensity of TNF-R2 were correlated with tumor stage (p<0.001 and with reduced mean survival time (MST (p=0.002. The results of the present study suggested that tissue expression of TNF-R2 in epithelial ovarian cancer was correlated with the highest risk of cancer progression. Thus, the clinical value of activated TNF system in epithelial ovarian cancer needs to be further investigated.

  15. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma

    NARCIS (Netherlands)

    Wenzel, Sally E.; Barnes, Peter J.; Bleecker, Eugene R.; Bousquet, Jean; Busse, William; Dahlén, Sven-Erik; Holgate, Stephen T.; Meyers, Deborah A.; Rabe, Klaus F.; Antczak, Adam; Baker, James; Horvath, Ildiko; Mark, Zsuzsanna; Bernstein, David; Kerwin, Edward; Schlenker-Herceg, Rozsa; Lo, Kim Hung; Watt, Rosemary; Barnathan, Elliot S.; Chanez, Pascal; Chanez, P.; Tunon-de-Lara, M.; Antczak, A.; Pierzchala, W.; Bukowczan, Z.; Trawinska, E.; Baker, J.; Wenzel, S. E.; Katial, R.; Bernstein, D.; Kerwin, E.; Bensch, G.; Castro, M.; Noonan, M.; Nayak, A.; Chupp, G.; Kline, J.; Busse, W.; Kavuru, M. S.; Lang, D.; Wolfe, R.; Baughman, R.; Korenblat, P.; Mansfield, L.; Bleecker, E.; Lisberg, E.; Liu, M.; Panettieri, R.; Spangenthal, S.; Bel, E. H.

    2009-01-01

    RATIONALE: The treatment effect of golimumab, a human monoclonal antibody against tumor necrosis factor (TNF)-alpha, in severe persistent asthma is unknown. OBJECTIVES: To assess the safety and efficacy of golimumab in a large population of patients with uncontrolled, severe persistent asthma.

  16. Low level tumor necrosis factor-alpha protects cardiomyocytes against high level tumor necrosis factor-alpha: brief insight into a beneficial paradox.

    Science.gov (United States)

    Cacciapaglia, Fabio; Salvatorelli, Emanuela; Minotti, Giorgio; Afeltra, Antonella; Menna, Pierantonio

    2014-12-01

    Whether tumor necrosis factor-alpha (TNFα) caused beneficial or detrimental cardiovascular effects remains poorly defined. Anti-TNFα agents improved cardiac end points in chronic rheumatic diseases characterized by progressive deterioration of cardiac function. In contrast, anti-TNFα agents did not always improve but actually worsened cardiac function in non-rheumatic patients with heart failure (HF), in spite of that HF usually accompanies with high circulating levels of TNFα. To shed light on these mixed findings, we characterized the effects of TNFα in H9c2 cardiomyocytes. Cells were incubated for 24 h with increasing concentrations of TNFα, hydrogen peroxide, aminotriazole, or etoposide. Posttreatment cell viability was assessed by antimycin A-inhibitable reduction of 3-(4,dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the IC50 value of each test compound was defined. H9c2 cells were also preconditioned with a low non-toxic concentration of TNFα and then re-challenged with increasing concentrations of TNFα and other stressor agents. In re-challenge experiments, all of the IC50 values increased significantly, with the IC50 value of TNFα increasing approximately 16-fold. TNFα preconditioning increased cardiomyocytes shedding of the external portion of transmembrane type 1 and type 2 TNFα receptors [(soluble TNFα receptors (sTNFR)]. Levels of survival-oriented soluble TNFR2 (sTNFR2) always exceeded those of death-oriented sTNFR1. When exposed to TNFα at its IC50 value, preconditioned cardiomyocytes showed an increased release of sTNFR2 but not sTNFR1. These results denoted that preconditioning by "low TNFα" helped cardiomyocyte to withstand toxicity from "high TNFα" or other agents. These results also suggested that beneficial or detrimental effects of anti-TNFα agents might well depend on whether these agents spared or intercepted discrete amounts of TNFα that preconditioned cardiomyocytes and made them more resistant to high

  17. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  18. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    International Nuclear Information System (INIS)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta; Turner, A. Robert; Mirza, Imran; Surmawala, Amir; Larratt, Loree M.; Janowska-Wieczorek, Anna

    2012-01-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML

  19. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Turner, A. Robert [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Mirza, Imran [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7 (Canada); Surmawala, Amir; Larratt, Loree M. [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Janowska-Wieczorek, Anna, E-mail: anna.janowska@blood.ca [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)

    2012-07-25

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  20. THE USE OF TUMOR NECROSIS FACTOR α INHIBITORS IN PATIENTS WITH WEBER-CHRISTIAN DISEASE

    Directory of Open Access Journals (Sweden)

    Olga Nikolayevna Egorova

    2013-01-01

    Full Text Available Weber-Christian disease (WCD, also known as idiopathic lobular panniculitis, is a rare disease belonging to the group of diffuse connective tissue diseases. No therapy for WCD has been developed; empirical treatment is typically used. The first description of the use of tumor necrosis factor α inhibitors in a female patient with infiltrative WCD is presented. The tactics of managing this patient category are analyzed.

  1. Characteristics of recovery from the euthyroid sick syndrome induced by tumor necrosis factor alpha in cancer patients

    NARCIS (Netherlands)

    Feelders, R. A.; Swaak, A. J.; Romijn, J. A.; Eggermont, A. M.; Tielens, E. T.; Vreugdenhil, G.; Endert, E.; van Eijk, H. G.; Berghout, A.

    1999-01-01

    Cytokines have been implicated in the pathogenesis of the euthyroid sick syndrome. Isolated limb perfusion (ILP) with recombinant human tumor necrosis factor alpha (rTNF) and melphalan in patients with melanoma or sarcoma is accompanied by high systemic TNF levels. We examined the prolonged effects

  2. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  4. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    Science.gov (United States)

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  5. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  6. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Eletxigerra, U. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Martinez-Perdiguero, J. [CIC microGUNE, Arrasate-Mondragón (Spain); Merino, S. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Villalonga, R.; Pingarrón, J.M. [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain); Campuzano, S., E-mail: susanacr@quim.ucm.es [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain)

    2014-08-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H{sub 2}O{sub 2} as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL{sup −1} (36 fM) and 5.8 pg mL{sup −1} (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.

  7. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    International Nuclear Information System (INIS)

    Eletxigerra, U.; Martinez-Perdiguero, J.; Merino, S.; Villalonga, R.; Pingarrón, J.M.; Campuzano, S.

    2014-01-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H 2 O 2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL −1 (36 fM) and 5.8 pg mL −1 (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application

  8. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    International Nuclear Information System (INIS)

    Huang, Peigen; Allam, Ayman; Perez, Luis A.; Taghian, Alphonse; Freeman, Jill; Suit, Herman D.

    1995-01-01

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-α) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-α with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm 3 , mice were randomly assigned to treatment: rHuTNF-α alone compared with normal saline control; or local radiation plus rHuTNF-α vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-α on this tumor. The TCD 50 (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-α with local radiation. Results: Tumor growth in mice treated with a dose of 150 μg/kg body weight rHuTNF-α, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-α also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-α starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD 50 from the control value of 60.9 Gy to 50.5 Gy (p 50 value in the treatment vs. the control groups

  9. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  10. Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor alpha therapy

    NARCIS (Netherlands)

    Cui, Jing; Saevarsdottir, Saedis; Thomson, Brian; Padyukov, Leonid; van der Helm-van Mil, Annette H. M.; Nititham, Joanne; Hughes, Laura B.; de Vries, Niek; Raychaudhuri, Soumya; Alfredsson, Lars; Askling, Johan; Wedrén, Sara; Ding, Bo; Guiducci, Candace; Wolbink, Gert Jan; Crusius, J. Bart A.; van der Horst-Bruinsma, Irene E.; Herenius, Marieke; Weinblatt, Michael E.; Shadick, Nancy A.; Worthington, Jane; Batliwalla, Franak; Kern, Marlena; Morgan, Ann W.; Wilson, Anthony G.; Isaacs, John D.; Hyrich, Kimme; Seldin, Michael F.; Moreland, Larry W.; Behrens, Timothy W.; Allaart, Cornelia F.; Criswell, Lindsey A.; Huizinga, Tom W. J.; Tak, Paul P.; Bridges, S. Louis; Toes, Rene E. M.; Barton, Anne; Klareskog, Lars; Gregersen, Peter K.; Karlson, Elizabeth W.; Plenge, Robert M.

    2010-01-01

    OBJECTIVE: Anti-tumor necrosis factor alpha (anti-TNF) therapy is a mainstay of treatment in rheumatoid arthritis (RA). The aim of the present study was to test established RA genetic risk factors to determine whether the same alleles also influence the response to anti-TNF therapy. METHODS: A total

  11. Investigation of relationship between tumor necrosis factor α in gingival and periodontitis

    International Nuclear Information System (INIS)

    Zhao Jingjie; Yang Xia; Hou Guihua; Wang Weiyue; Wang Haodan; Jia Hongying; Li Yantao

    1999-01-01

    42 periodontitis patients and 15 health controls are selected to determine the amount of tumor necrosis factor-α (TNF-α) in inflamed gingival and the normal gingival by RIA. The elations between TNF-α and clinical parameters are analysed. The results show that the level of TNF-α in inflamed gingival is higher than that in the controls (P<0.01). The relationship between TNF-α and clinical parameters indicate that the level of TNF-α positively correlate to the degree of periodontitis and group damage. It indicates TNF-α may be one of the mechanism in the pathogenesis of periodontitis disease

  12. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2016-10-01

    cancer-secreted chemokine to attract Cxcr2-expressing MDSCs and, correspondingly, pharmacological inhibition of Cxcr2 impeded tumor progression...impact of pharmacological inhibition of Cxcl5 and Cxcr2 on MDSCs using the transwell migration assay 26 . First, anti-Cxcl5 neutralizing antibody...and MRI . (B) Generation of the CPPSML chimera model. (C) Fluorescence microscopy and H&E image of snap frozen prostate tumor from chimera showing that

  13. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  14. Ex-vivo in-vitro inhibition of lipopolysaccharide stimulated tumor necrosis factor-alpha and interleukin-1 beta secretion in human whole blood by extractum urticae dioicae foliorum.

    Science.gov (United States)

    Obertreis, B; Ruttkowski, T; Teucher, T; Behnke, B; Schmitz, H

    1996-04-01

    An extract of Urtica dioica folium (IDS 23, Rheuma-Hek), monographed positively for adjuvant therapy of rheumatic diseases and with known effects in partial inhibition of prostaglandin and leukotriene synthesis in vitro, was investigated with respect to effects of the extract on the lipopolysaccharide (LPS) stimulated secretion of proinflammatory cytokines in human whole blood of healthy volunteers. In the assay system used, LPS stimulated human whole blood showed a straight increase of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) secretion reaching maximum concentrations within 24 h following a plateau and slight decrease up to 65 h, respectively. The concentrations of these cytokines was strongly positively correlated with the number of monocytes/macrophages of each volunteer. TNF-alpha and IL-1 beta concentration after LPS stimulation was significantly reduced by simultaneously given IDS 23 in a strictly dose dependent manner. At time 24 h these cytokine concentrations were reduced by 50.8% and 99.7%, respectively, using the highest test IDS 23 assay concentration of 5 mg/ml (p flavonoides such as caffeic malic acid, caffeic acid, chlorogenic acid, quercetin and rutin did not influence LPS stimulated TNF-alpha, IL-1 beta and IL-6 secretion in tested concentrations up to 5 x 10(-5) mol/l. These further findings on the pharmacological mechanism of action of Urticae dioica folia may explain the positive effects of this extract in the treatment of rheumatic diseases.

  15. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    Directory of Open Access Journals (Sweden)

    Wessen Maruwge

    2008-11-01

    Full Text Available Wessen Maruwge1, Pádraig D’Arcy1, Annika Folin1,2, Slavica Brnjic1, Johan Wejde1, Anthony Davis1, Fredrik Erlandsson3, Jonas Bergh1,2, Bertha Brodin11Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 2Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; 3Bayer Pharmaceutical Corporation, SwedenAbstract: The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 µM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma.Keywords: soft tissue sarcoma, kinase inhibitors, targeted therapy, vascularization

  16. Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-a-induced epithelial-mesenchymal transition of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    R. Dong

    2007-08-01

    Full Text Available The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a. To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB inhibitor aspirin while not affected by the reactive oxygen species (ROS scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

  17. Lowering Interleukin-12 Activity Improves Myocardial and Vascular Function Compared With Tumor Necrosis Factor-a Antagonism or Cyclosporine in Psoriasis.

    Science.gov (United States)

    Ikonomidis, Ignatios; Papadavid, Evangelia; Makavos, George; Andreadou, Ioanna; Varoudi, Maria; Gravanis, Kostas; Theodoropoulos, Kostas; Pavlidis, George; Triantafyllidi, Helen; Moutsatsou, Paraskevi; Panagiotou, Christina; Parissis, John; Iliodromitis, Efstathios; Lekakis, John; Rigopoulos, Dimitrios

    2017-09-01

    Interleukin (IL)-12 activity is involved in the pathogenesis of psoriasis and acute coronary syndromes. We investigated the effects of IL-12 inhibition on vascular and left ventricular (LV) function in psoriasis. One hundred fifty psoriasis patients were randomized to receive an anti-IL-12/23 (ustekinumab, n=50), anti-tumor necrosis factor-a (TNF-α; etanercept, n=50), or cyclosporine treatment (n=50). At baseline and 4 months post-treatment, we measured (1) LV global longitudinal strain, twisting, and percent difference between peak twisting and untwisting at mitral valve opening (%untwMVO) using speckle-tracking echocardiography, (2) coronary flow reserve, (3) pulse wave velocity and augmentation index, (4) circulating NT-proBNP (N-terminal pro-B-type natriuretic peptide), TNF-α, IL-6, IL-12, IL-17, malondialdehyde, and fetuin-a. Compared with baseline, all patients had improved global longitudinal strain (median values: -17.7% versus -19.5%), LV twisting (12.4° versus 14°), %untwMVO (27.8% versus 35%), and coronary flow reserve (2.8 versus 3.1) and reduced circulating NT-proBNP, IL-17, TNF-α, and IL-6 post-treatment ( P psoriasis, IL-12/23 inhibition results in a greater improvement of coronary, arterial, and myocardial function than TNF-α inhibition or cyclosporine treatment. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02144857. © 2017 American Heart Association, Inc.

  18. Tumor necrosis factor-alpha expression in peripheral blood mononuclear cells correlates with early childhood social interaction in autism spectrum disorder.

    Science.gov (United States)

    Makinodan, Manabu; Iwata, Keiko; Ikawa, Daisuke; Yamashita, Yasunori; Yamamuro, Kazuhiko; Toritsuka, Michihiro; Kimoto, Sohei; Okumura, Kazuki; Yamauchi, Takahira; Yoshino, Hiroki; Tsujii, Masatsugu; Sugiyama, Toshiro; Tsuchiya, Kenji; Mori, Norio; Matsuzaki, Hideo; Kishimoto, Toshifumi

    2017-03-01

    Autism spectrum disorder is a neurodevelopmental disorder characterized by impaired social interaction, poor communication skills, and repetitive/restrictive behaviors. Elevated blood levels of pro-inflammatory cytokines have been reported in subjects with autism spectrum disorder. On the other hand, early childhood adverse experience also increases blood levels of these cytokines. Since social experience of children with autism spectrum disorder is generally unlike to typically developing children, we hypothesized that social interaction during childhood contribute to pro-inflammatory cytokine expression in subjects with autism spectrum disorder. We compared revised Autism Diagnostic Interview scores and expression levels of pro-inflammatory cytokines in peripheral blood mononuclear cells of subjects with autism spectrum disorder (n = 30). The score of domain A on the revised Autism Diagnostic Interview, indicating social interaction impairment in early childhood, was negatively correlated with tumor necrosis factor-α mRNA expression level in peripheral blood mononuclear cells but not interleukin-1β or -6. Consistently, tumor necrosis factor-α mRNA expression was markedly low in subjects with autism spectrum disorder compared to typically developing children who presumably experienced the regular levels of social interaction. These findings suggest that the low blood levels of tumor necrosis factor-α mRNA in subjects with autism spectrum disorder might be due to impaired social interaction in early childhood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Systemic use of tumor necrosis factor alpha as an anticancer agent

    Science.gov (United States)

    Roberts, Nicholas J.; Zhou, Shibin; Diaz, Luis A.; Holdhoff, Matthias

    2011-01-01

    Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors. PMID:22036896

  20. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Erol-Demirbilek Melike

    2016-09-01

    Full Text Available Background: Thioredoxin reductase (TrxR, epidermal growth factor (EGF and tumor necrosis factor-α (TNF-α have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.

  1. Association of tumor necrosis factor alpha gene polymorphism G-308A with pseudoexfoliative glaucoma in the Pakistani population.

    NARCIS (Netherlands)

    Khan, M.I.; Micheal, S.; Rana, N.; Akhtar, F.; Hollander, A.I. den; Ahmed, A.; Qamar, R.

    2009-01-01

    PURPOSE: The purpose of the present study was to determine the role of the tumor necrosis factor alpha (TNF-alpha) gene polymorphism G-308A and total serum immunoglobulin E (TsIgE) levels in the onset of pseudoexfoliation glaucoma (PEXG) in Pakistani patients. METHODS: The TNF-alpha polymorphism

  2. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    Science.gov (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro . However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  3. Apolipoprotein A-I Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis.

    Science.gov (United States)

    Bisoendial, Radjesh; Tabet, Fatiha; Tak, Paul P; Petrides, Francine; Cuesta Torres, Luisa F; Hou, Liming; Cook, Adam; Barter, Philip J; Weninger, Wolfgang; Rye, Kerry-Anne

    2015-11-01

    Lymphatic endothelial dysfunction underlies the pathogenesis of many chronic inflammatory disorders. The proinflammatory cytokine tumor necrosis factor (TNF) is known for its role in disrupting the function of the lymphatic vasculature. This study investigates the ability of apolipoprotein (apo) A-I, the principal apolipoprotein of high-density lipoproteins, to preserve the normal function of lymphatic endothelial cells treated with TNF. TNF decreased the ability of lymphatic endothelial cells to form tube-like structures. Preincubation of lymphatic endothelial cells with apoA-I attenuated the TNF-mediated inhibition of tube formation in a concentration-dependent manner. In addition, apoA-I reversed the TNF-mediated suppression of lymphatic endothelial cell migration and lymphatic outgrowth in thoracic duct rings. ApoA-I also abrogated the negative effect of TNF on lymphatic neovascularization in an ATP-binding cassette transporter A1-dependent manner. At the molecular level, this involved downregulation of TNF receptor-1 and the conservation of prospero-related homeobox gene-1 expression, a master regulator of lymphangiogenesis. ApoA-I also re-established the normal phenotype of the lymphatic network in the diaphragms of human TNF transgenic mice. ApoA-I restores the neovascularization capacity of the lymphatic system during TNF-mediated inflammation. This study provides a proof-of-concept that high-density lipoprotein-based therapeutic strategies may attenuate chronic inflammation via its action on lymphatic vasculature. © 2015 American Heart Association, Inc.

  4. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Geborek, Pierre; Svenson, Morten

    2006-01-01

    Infliximab, an anti-tumor necrosis factor alpha (anti-TNFalpha) antibody, is effective in the treatment of several immunoinflammatory diseases. However, many patients experience primary or secondary response failure, suggesting that individualization of treatment regimens may be beneficial...

  5. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, J.; Spriggs, D.; Imamura, K.; Stone, R.; Luebbers, R.; Kufe, D.

    1989-01-01

    The treatment of human HL-60 promyelocytic leukemia cells with 12-0 tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcripts. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNS mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase, A/sub 2/ blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B/sub 4/. In contrast, the cyclooxygenase metabolite prostaglandin E/sub 2/ inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B/sub 4/ and prostaglandin E/sub 2/.

  6. Nuclear grade and necrosis predict prognosis in malignant epithelioid pleural mesothelioma: a multi-institutional study.

    Science.gov (United States)

    Rosen, Lauren E; Karrison, Theodore; Ananthanarayanan, Vijayalakshmi; Gallan, Alexander J; Adusumilli, Prasad S; Alchami, Fouad S; Attanoos, Richard; Brcic, Luka; Butnor, Kelly J; Galateau-Sallé, Françoise; Hiroshima, Kenzo; Kadota, Kyuichi; Klampatsa, Astero; Stang, Nolween Le; Lindenmann, Joerg; Litzky, Leslie A; Marchevsky, Alberto; Medeiros, Filomena; Montero, M Angeles; Moore, David A; Nabeshima, Kazuki; Pavlisko, Elizabeth N; Roggli, Victor L; Sauter, Jennifer L; Sharma, Anupama; Sheaff, Michael; Travis, William D; Vigneswaran, Wickii T; Vrugt, Bart; Walts, Ann E; Tjota, Melissa Y; Krausz, Thomas; Husain, Aliya N

    2018-04-01

    A recently described nuclear grading system predicted survival in patients with epithelioid malignant pleural mesothelioma. The current study was undertaken to validate the grading system and to identify additional prognostic factors. We analyzed cases of epithelioid malignant pleural mesothelioma from 17 institutions across the globe from 1998 to 2014. Nuclear grade was computed combining nuclear atypia and mitotic count into a grade of I-III using the published system. Nuclear grade was assessed by one pathologist for three institutions, the remaining were scored independently. The presence or absence of necrosis and predominant growth pattern were also evaluated. Two additional scoring systems were evaluated, one combining nuclear grade and necrosis and the other mitotic count and necrosis. Median overall survival was the primary endpoint. A total of 776 cases were identified including 301 (39%) nuclear grade I tumors, 354 (45%) grade II tumors and 121 (16%) grade III tumors. The overall survival was 16 months, and correlated independently with age (P=0.006), sex (0.015), necrosis (0.030), mitotic count (0.001), nuclear atypia (0.009), nuclear grade (<0.0001), and mitosis and necrosis score (<0.0001). The addition of necrosis to nuclear grade further stratified overall survival, allowing classification of epithelioid malignant pleural mesothelioma into four distinct prognostic groups: nuclear grade I tumors without necrosis (29 months), nuclear grade I tumors with necrosis and grade II tumors without necrosis (16 months), nuclear grade II tumors with necrosis (10 months) and nuclear grade III tumors (8 months). The mitosis-necrosis score stratified patients by survival, but not as well as the combination of necrosis and nuclear grade. This study confirms that nuclear grade predicts survival in epithelioid malignant pleural mesothelioma, identifies necrosis as factor that further stratifies overall survival, and validates the grading system across multiple

  7. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors*

    Science.gov (United States)

    Pontejo, Sergio M.; Alejo, Ali; Alcami, Antonio

    2015-01-01

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. PMID:25940088

  8. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  9. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  10. The proinflammatory cytokine tumor necrosis factor-α excites subfornical organ neurons.

    Science.gov (United States)

    Simpson, Nick J; Ferguson, Alastair V

    2017-09-01

    Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α -/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects. NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by

  11. Whole-liver MR perfusion imaging in rabbit liver VX2 tumors: early findings of coagulative necrosis after percutaneous ethanol injection therapy

    International Nuclear Information System (INIS)

    Zhang Wanshi; Wang Dong; Meng Limin; Shi Huiping; Song Yunlong; Wu Bing

    2007-01-01

    Objective: To investigate the value of whole-liver MR perfusion imaging (MRPI) for early detection of coagulative necrosis after percutaneous ethanol injection (PEI) in rabbit liver VX 2 tumors. Methods: VX 2 tumor cell suspension was inoculated into rabbit liver and liver VX 2 tumors [diameter of (2.6 ± 0.6) cm] were induced in 10 male rabbits. MR T 1 WI and T 2 WI were performed to monitor the development of the liver tumor on the 2 nd and 3 rd week after inoculation. Whole-liver MRPI was performed in the 10 rabbits with liver VX 2 tumors before and 6 days after PEI therapy (1.0 ml ethanol was injected into the most enhanced tumor region under CT guiding). Signal intensity (SI) values of untreated tumor parts and treated areas 6 days after PEI were recorded respectively. The steepest slope (SS) and bolus arrival time (T0) of SI-time curves were measured. The t-Student test was used in statistical analysis of the data. Results: There was significant difference in MRPI data between untreated tumor parts [T0: (16.0 ± 1.2) s and SS: 38.9 ± 2.2] and treated areas [T0: (50.8 ± 5.9) s and SS: 6.0 ± 1.2] 6 days after PEI(t was 15.8 and -39.6 respectively, P 1 WI and T 2 WI could not show any differences between untreated tumor parts and treated areas. Conclusion: Whole-liver MRPI could detect coagulative necrosis of rabbit liver VX 2 tumors after PEI early. Disappearance of early enhancement can be a potential marker for efficacy of PEI. (authors)

  12. Bivalent Llama Single-Domain Antibody Fragments against Tumor Necrosis Factor Have Picomolar Potencies due to Intramolecular Interactions

    Directory of Open Access Journals (Sweden)

    Els Beirnaert

    2017-07-01

    Full Text Available The activity of tumor necrosis factor (TNF, a cytokine involved in inflammatory pathologies, can be inhibited by antibodies or trap molecules. Herein, llama-derived variable heavy-chain domains of heavy-chain antibody (VHH, also called Nanobodies™ were generated for the engineering of bivalent constructs, which antagonize the binding of TNF to its receptors with picomolar potencies. Three monomeric VHHs (VHH#1, VHH#2, and VHH#3 were characterized in detail and found to bind TNF with sub-nanomolar affinities. The crystal structures of the TNF–VHH complexes demonstrate that VHH#1 and VHH#2 share the same epitope, at the center of the interaction area of TNF with its TNFRs, while VHH#3 binds to a different, but partially overlapping epitope. These structures rationalize our results obtained with bivalent constructs in which two VHHs were coupled via linkers of different lengths. Contrary to conventional antibodies, these bivalent Nanobody™ constructs can bind to a single trimeric TNF, thus binding with avidity and blocking two of the three receptor binding sites in the cytokine. The different mode of binding to antigen and the engineering into bivalent constructs supports the design of highly potent VHH-based therapeutic entities.

  13. Differential diagnosis of metastases in bone scans: chemotherapy induced bone necrosis

    International Nuclear Information System (INIS)

    Reuland, P.

    1999-01-01

    Aim: Influenced by the incorrect diagnosis of a bone metastasis caused by bone necrosis we evaluated reasons and frequency of bone necrosis in patients referred for bone scanning in follow-up of tumors. Methods: Bone scans performed within two years on patients with primary bone tumors or tumors metastatic to bone were reviewed in respect to the final diagnosis bone necrosis. Results: We found the cases of three young patients who presented the appearance of hot spots on bone scintigrams which were finally diagnosed as bone necrosis. In two cases the diagnosis was based on histological findings, in one case the diagnosis was made evident by follow-up. All the three patients had been treated by chemotherapy and presented no other reason for the development of bone necrosis. Enhanced tracer uptake in all sites decreased within eight weeks up to two years without therapy. Conclusion: Single and multiple hot spots after chemotherapy may be originated by bone necrosis but mimikry metastases. (orig.) [de

  14. Model for breast cancer survival: relative prognostic roles of axillary nodal status, TNM stage, estrogen receptor concentration, and tumor necrosis.

    Science.gov (United States)

    Shek, L L; Godolphin, W

    1988-10-01

    The independent prognostic effects of certain clinical and pathological variables measured at the time of primary diagnosis were assessed with Cox multivariate regression analysis. The 859 patients with primary breast cancer, on which the proportional hazards model was based, had a median follow-up of 60 months. Axillary nodal status (categorized as N0, N1-3 or N4+) was the most significant and independent factor in overall survival, but inclusion of TNM stage, estrogen receptor (ER) concentration and tumor necrosis significantly improved survival predictions. Predictions made with the model showed striking subset survival differences within stage: 5-year survival from 36% (N4+, loge[ER] = 0, marked necrosis) to 96% (N0, loge[ER] = 6, no necrosis) in TNM I, and from 0 to 70% for the same categories in TNM IV. Results of the model were used to classify patients into four distinct risk groups according to a derived hazard index. An 8-fold variation in survival was seen with the highest (greater than 3) to lowest index values (less than 1). Each hazard index level included patients with varied combinations of the above factors, but could be considered to denote the same degree of risk of breast cancer mortality. A model with ER concentration, nodal status, and tumor necrosis was found to best predict survival after disease recurrence in 369 patients, thus confirming the enduring biological significance of these factors.

  15. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  16. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats

    NARCIS (Netherlands)

    van Westerloo, D. J.; Giebelen, I. A. J.; Meijers, J. C. M.; Daalhuisen, J.; de Vos, A. F.; Levi, M. [=Marcel M.; van der Poll, T.

    2006-01-01

    BACKGROUND: Sepsis and endotoxemia are associated with concurrent activation of inflammation and the hemostatic mechanism, which both contribute to organ dysfunction and death. Electrical vagus nerve stimulation (VNS) has been found to inhibit tumor necrosis factor (TNF)-alpha release during

  17. PROGNOSTIC VALUE OF TUMOR NECROSIS FACTOR-ALPHA IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    E. N. Zotina

    2016-01-01

    Full Text Available The prognostic value of tumor necrosis factor-alfa (TNFα, a pro-inflammatory cytokine was studied in 140 patients with a newly diagnosed chronic lymphocytic leukemia (CLL. TNFα contents in blood serum was determined using ELISA method. A significant increase of serum TNFα was shown in patients with newly diagnosed CLL, as compared to healthy individuals. Dependence of the cytokine concentration on clnical stage and course of disease was revealed: the highest levels of serum TNFα were registered in patients with advanced disease and/or CLL progression. Distinct correlations were revealed between the studied cytokine amounts and clinical laboratory parameters reflecting the cell proliferative activity and tumor clone size. Immunochemotherapy was accompanied by a significant reduction of TNFα levels. According to the data from multivariate regression analysis. TNFα level of at the time of the diagnosis was an independent predictor of overall survival. Hence, TNFα plays an important role in CLL pathogenesis and may be used as an additional predictive factor for CLL outcomes.

  18. Rat Tumor Response to the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid as Measured by Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Plasma 5-Hydroxyindoleacetic Acid Levels, and Tumor Necrosis

    Directory of Open Access Journals (Sweden)

    Lesley D. McPhail

    2006-03-01

    Full Text Available The dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using Ktrans and the integrated area under the gadolinium time curve (IAUGC as response biomarkers. Highperformance liquid chromatography (HPLC was used to determine the plasma concentration of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA following treatment to provide an index of increased vessel permeability and vascular damage. Finally, tumor necrosis was assessed by grading hematoxylin and eosin-stained sections cut from the same tumors investigated by MRI. Both tumor Ktrans and IAUGC were significantly reduced 24 hours posttreatment with 350 mg/kg DMXAA only, with no evidence of dose response. HPLC demonstrated a significant increase in plasma 5-HIAA 24 hours posttreatment with 200 and 350 mg/kg DMXAA. Histologic analysis revealed some evidence of tumor necrosis following treatment with 100 or 200 mg/kg DMXAA, reaching significance with 350 mg/kg DMXAA. The absence of any reduction in Ktrans or IAUGC following treatment with 200 mg/kg, despite a significant increase in 5-HIAA, raises concerns about the utility of established DCE-MRI biomarkers to assess tumor response to DMXAA.

  19. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone.

    Science.gov (United States)

    Xu, Menglin; Wang, Xiangdong

    2017-08-01

    Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.

  20. Plasma endothelin-1 and tumor necrosis factor-alpha concentrations in pregnant and cyclic rats after low-dose endotoxin infusion

    NARCIS (Netherlands)

    Faas, MM; Bakker, WW; Valkhof, N; Baller, JFW; Schuiling, GA

    Plasma endothelin-1 and tumor necrosis factor-alpha were determined in pregnant and cyclic rats after infusion of either endotoxin (1.0 mu g/kg of body weight) or saline solution. After endotoxin, but not after saline solution, administration there was a transient endothelin-1 response in pregnant

  1. Medicinal flowers. XXVII. New flavanone and chalcone glycosides, arenariumosides I, II, III, and IV, and tumor necrosis factor-alpha inhibitors from everlasting, flowers of Helichrysum arenarium.

    Science.gov (United States)

    Morikawa, Toshio; Wang, Li-Bo; Nakamura, Seikou; Ninomiya, Kiyofumi; Yokoyama, Eri; Matsuda, Hisashi; Muraoka, Osamu; Wu, Li-Jun; Yoshikawa, Masayuki

    2009-04-01

    The methanolic extract from the flowers of Helichrysum arenarium L. MOENCH was found to show inhibitory effect on tumor necrosis factor-alpha (TNF-alpha, 1 ng/ml)-induced cytotoxicity in L929 cells. From the methanolic extract, 50 constituents including four new flavanone and chalcone glycosides named arenariumosides I (1), II (2), III (3), and IV (4) were isolated. The stereostructures of 1-4 were elucidated on the basis of chemical and physicochemical evidence. Among the constituents, naringenin 7-O-beta-D-glucopyranoside (7), apigenin 7-O-beta-D-glucopyranoside (14), apigenin 7-O-gentiobioside (16), and apigenin 7,4'-di-O-beta-D-glucopyranoside (17) significantly inhibited TNF-alpha-induced cytotoxicity in L929 cells at 30 microM.

  2. The effect of salvianolate on serum levels of tumor necrosis factor-alpha in ApoE-/- mice

    International Nuclear Information System (INIS)

    Gao Yuqi; Wu Zonggui; Liang Chun; Luo Nanping; Zhang Hongming; Xu Jun; Li Xiaoyan; Xu Lin

    2008-01-01

    Objective: To study the possible antiatherosclerotic mechanism of salvianolate, through examination of the effect of salvianolate on serum levels of tumor necrosis factor-alpha (TNF-α) in C57BL/6J ApoE -/- mice. Methods: Fifty C57BL/6J ApoE -/- mice of 8 week-old were fed high cholesterol diet for 12 weeks. After sacrificing 2 mice to examine formation of atheromatous plaques at root of aorta, the remaining 48 C57BL/6J ApoE -/- mice were divided randomly into 4 groups: (1) model group (without salvianolate treatment) (2) low dosage of salvianolate (60mg/kg) group (3) medium dosage of salvianolate (120mg/kg) group and (4) high dosage of salvianolate(240mg/kg) group. Ten C57BL/6 wild-type mice served as controls. At the end of 32nd week, serum levels of TNF-α were measured with specific radioimmunoassay. Results: The serum levels of TNF-α were decreased in ApoE -/- mice with the increase of salvianolate dosage (P 0.05). Conclusion: Salvianolate treatment can decrease the serum levels of TNF-α in C57BL/6 ApoE -/- mice and inhibit inflammation process. This may be one of the possible mechanism of antiatherosclerosis of salvianolate. (authors)

  3. Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts

    International Nuclear Information System (INIS)

    El-Zawahry, Ahmed; McKillop, John; Voelkel-Johnson, Christina

    2005-01-01

    Prostate cancer is a significant health problem among American men. Treatment strategies for androgen-independent cancer are currently not available. Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a death receptor ligand that can induce apoptosis in a variety of cancer cell lines, including androgen-independent PC3 prostate carcinoma cells. In vitro, TRAIL-mediated apoptosis of prostate cancer cell lines can be enhanced by doxorubicin and correlates with the downregulation of the anti-apoptotic protein c-FLIP. This study evaluated the effects of doxorubicin on c-FLIP expression and tumor growth in combination with Apo2L/TRAIL in a xenograft model. In vitro cytotoxic effects of TRAIL were measured using a MTS-based viability assay. For in vivo studies, PC3 prostate carcinoma cells were grown subcutaneously in athymic nude mice and tumor growth was measured following treatment with doxorubicin and/or Apo2L/TRAIL. c-FLIP expression was determined by western blot analysis. Apoptosis in xenografts was detected using TUNEL. Statistical analysis was performed using the student t-test. In vitro experiments show that PC3 cells are partially susceptible to Apo2L/TRAIL and that susceptibility is enhanced by doxorubicin. In mice, doxorubicin did not significantly affect the growth of PC3 xenografts but reduced c-FLIP expression in tumors. Expression of c-FLIP in mouse heart was decreased only at the high doxorubicin concentration (8 mg/kg). Combination of doxorubicin with Apo2L/TRAIL resulted in more apoptotic cell death and tumor growth inhibition than Apo2L/TRAIL alone. Combination of doxorubicin and Apo2L/TRAIL is more effective in growth inhibition of PC3 xenografts in vivo than either agent alone and could present a novel treatment strategy against hormone-refractory prostate cancer. The intracellular mechanism by which doxorubicin enhances the effect of Apo2L/TRAIL on PC3 xenografts may be by reducing expression of c-FLIP

  4. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    Science.gov (United States)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  5. Granulomatous salmonella osteomyelitis associated with anti-tumor necrosis factor therapy in a non-sickle cell patient: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Elaine S.; Gilet, Anthony G. [State University of New York at Stony Brook, Department of Radiology, Stony Brook, NY (United States); Vigorita, Vincent J. [SUNY Health Sciences Center Brooklyn, Department of Pathology and Orthopedics, Brooklyn, NY (United States)

    2010-08-15

    Salmonella osteomyelitis is seen most commonly in patients with sickle cell disease and in those with compromised immune systems. We report on the clinical, histological and imaging findings of salmonella osteomyelitis with intraosseous abscess formation occurring in a non-sickle cell patient receiving anti-tumor necrosis factor (TNF) alpha therapy. (orig.)

  6. Granulomatous salmonella osteomyelitis associated with anti-tumor necrosis factor therapy in a non-sickle cell patient: a case report

    International Nuclear Information System (INIS)

    Gould, Elaine S.; Gilet, Anthony G.; Vigorita, Vincent J.

    2010-01-01

    Salmonella osteomyelitis is seen most commonly in patients with sickle cell disease and in those with compromised immune systems. We report on the clinical, histological and imaging findings of salmonella osteomyelitis with intraosseous abscess formation occurring in a non-sickle cell patient receiving anti-tumor necrosis factor (TNF) alpha therapy. (orig.)

  7. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein.

    Science.gov (United States)

    Krut, Oleg; Wiegmann, Katja; Kashkar, Hamid; Yazdanpanah, Benjamin; Krönke, Martin

    2006-05-12

    Two genes encoding neutral sphingomyelinases-1 and -2 (sphingomyelin phosphodiesterases-2 and -3) have been recently identified that hydrolyze sphingomyelin to phosphorylcholine and ceramide. Data bank searches using a peptide sequence derived from a previously purified bovine neutral sphingomyelinase (nSMase) allowed us to identify a cDNA encoding a novel human sphingomyelinase, nSMase3, that shows only a little homology to nSMase1 and -2. nSMase3 was biochemically characterized by overexpression in a yeast strain, JK9-3ddeltaIsc1p, lacking endogenous SMase activity. Similar to nSMase2, nSMase3 is Mg2+-dependent and shows optimal activity at pH 7, which is enhanced in the presence of phosphatidylserine and inhibited by scyphostatin. nSMase3 is ubiquitously expressed as a 4.6-kb mRNA species. nSMase3 lacks an N-terminal signal peptide, yet contains a 23-amino-acid transmembrane domain close to the C terminus, which is indicative for the family of C-tail-anchored integral membrane proteins. Cellular localization studies with hemagglutinin-tagged nSMase3 demonstrated colocalization with markers of the endoplasmic reticulum as well as with Golgi markers. Tumor necrosis factor stimulates rapid activation of nSMase3 in MCF7 cells with peak activity at 1.5 min, which was impaired by expression of dominant negative FAN.

  8. Periostin Limits Tumor Response to VEGFA Inhibition

    Directory of Open Access Journals (Sweden)

    Ioanna Keklikoglou

    2018-03-01

    Full Text Available Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs under extended vascular-endothelial growth factor A (VEGFA blockade are dependent on periostin (POSTN, a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA+ stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2, an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs.

  9. The Role of Tumor Necrosis Factor- alpha and Resistin in Nonalcoholic Fatty Liver Disease

    International Nuclear Information System (INIS)

    Alkady, M.M.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) represents one of the most common liver diseases. It is strongly associated with obesity and insulin resistance and is thought to be a part of the metabolic syndrome. It can progress from simple fatty liver to steatohepatitis, cirrhosis and liver failure. Adipocytokines, synthesized in adipose tissue, are involved in the pathophysiology of many acute and chronic liver diseases. The aim of this study was to investigate the role of Tumor Necrosis Factor-alpha (TNF-alpha) and resistin in the pathogenesis of NAFLD and their correlation to the severity of the disease. Serum concentration of TNF-alpha and resistin were measured in 20 patients with NAFLD and 20 healthy controls with ELISA method. The results of this study revealed that serum levels of both adipokines were significantly elevated in NAFLD patients than controls (P<0.01). Moreover, they were significantly higher in patients with nonalcoholic steatohepatitis than in patients with simple fatty liver. There was a significant positive correlation between TNF-alpha, resistin and each of AST, ALT and HOMA. Similarly, the results showed a significant positive correlation between the two studied adipokines, TNF-alpha and resistin (P<0.001). We conclude that TNF-alpha and resistin have a role in the pathogenesis of NAFLD and they may be promising markers for the progressin to steatohepatitis and inhibition of their activities by drugs may be a new approach for the treatment of NAFLD

  10. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-α-induced vascular endothelial dysfunction

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.; Chen, J.-W.; Chiang, H.-C.

    2007-01-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-α)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-α induces various biological effects on vascular cells, TNF-α dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-α concentrations, we adopted the lower TNF-α (0.2 ng/ml) to rule out the possible involvement of other TNF-α-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-α-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-α-induced nuclear factor-kappaB (NF-κB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-α. Inhibition of ERK, JNK, or NF-κB attenuates TNF-α-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-α induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-κB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-α. Although AP-1 activation by the lower TNF-α was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-α-induced adhesion molecule expression

  11. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors.

    Science.gov (United States)

    Pontejo, Sergio M; Alejo, Ali; Alcami, Antonio

    2015-06-26

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Kooistra, T.; Berg, E.A. van den; Princen, H.M.G.; Fiers, W.; Emeis, J.J.

    1988-01-01

    The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from

  13. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  14. El factor de necrosis tumoral-α, la resistencia a la insulina, el metabolismo de lipoproteínas y la obesidad en humanos Tumor necrosis factor-α, insulin resistance, the lipoprotein metabolism and obesity in humans

    OpenAIRE

    M.ª M. Ramírez Alvarado; C. Sánchez Roitz

    2012-01-01

    En la obesidad el tejido adiposo produce moléculas proinflamatorias como el Factor de Necrosis tumoral-α, que tiene efectos locales en la fisiología del adipocito y efectos sistémicos en otros órganos. Muchos estudios relacionando TNF-α, obesidad, resistencia a la insulina y metabolismo lipídico se han realizado en ratas, conejos y perros, pero los resultados observados en varios de estos estudios han sido contradictorios y muchos de ellos no se han logrado reproducir en humanos, lo...

  15. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  16. ACE inhibition with perindopril and biomarkers of atherosclerosis and thrombosis : Results from the PERTINENT study

    NARCIS (Netherlands)

    Ceconi, C.; Fox, K.M.; Remme, W.J.; Simoons, M.L.; Deckers, J.W.; Bertrand, M.; Parrinello, G.; Kluft, C.; Blann, A.; Cokkinos, D.; Ferrari, R.

    2009-01-01

    The PERTINENT study measured biomarkers of atherosclerosis and thrombosis in a stable coronary artery disease population from EUROPA receiving ACE inhibition with perindopril 8 mg/day or placebo. Biomarkers of inflammation, C-reactive protein (CRP), fibrinogen, and tumor necrosis factor-alpha

  17. Paradoxical response with increased tumor necrosis factor-α levels to anti-tuberculosis treatment in a patient with disseminated tuberculosis

    Directory of Open Access Journals (Sweden)

    Sho Watanabe

    2017-01-01

    Full Text Available It has been reported that tuberculosis (TB worsens after cessation of tumor necrosis factor-α inhibitors and starting anti-TB treatment. Little is known about the immunological pathogenesis of this paradoxical response (PR. We report the first case of a TB patient in whom PR occurred concurrently with elevation of circulating tumor necrosis factor-α (TNFα levels. A 75-year-old woman, who had been treated with adalimumab for SAPHO syndrome, developed disseminated TB. Soon after administration of anti-TB treatment (isoniazid, rifampicin, pyrazinamide, and ethambutol, and after discontinuation of adalimumab, a PR occurred. Serial testing of serum cytokine levels revealed a marked increase in TNFα, and a decline in interferon-γ levels. Despite intensive treatment with antibiotics, prednisolone, noradrenaline, and mechanical ventilation, acute respiratory distress syndrome developed and she died. Thus, overproduction of TNFα after cessation of TNFα inhibitors may partially account for the pathogenesis of a PR. This supports preventative or therapeutic reinitiation of TNFα inhibitors when PR occurs. Serial monitoring of circulating inflammatory cytokine levels could lead to earlier identification of a PR.

  18. Bovine Lactoferrin and Lactoferricin, a Peptide Derived from Bovine Lactoferrin, Inhibit Tumor Metastasis in Mice

    Science.gov (United States)

    Watanabe, Shikiko; Watanabe, Ryosuke; Hata, Katsusuke; Shimazaki, Kei–ichi; Azuma, Ichiro

    1997-01-01

    We investigated the effect of a bovine milk protein, lactoferrin (LF–B), and a pepsin–generated peptide of LF–B, lactoferricin (Lfcin–B), on inhibition of tumor metastasis produced by highly metastatic murine tumor cells, B16–BL6 melanoma and L5178Y–ML25 lymphoma cells, using experimental and spontaneous metastasis models in syngeneic mice. The subcutaneous (s.c.) administration of bovine apo–lactoferrin (apo–LF–B, 1 mg/mouse) and Lfcin–B (0.5 mg/monse) 1 day after tumor inoculation significantly inhibited liver and lung metastasis of L5178Y–ML25 cells. However, human apo–lactoferrin (apo–LF–H) and bovine holo–lactoferrin (holo–LF–B) at the dose of 1 mg/mouse failed to inhibit tumor metastasis of L5178Y–ML25 cells. Similarly, the s.c. administration of apo–LF–B as well as Lfcin–B, but not apo–LF–H and holo–LF–B, 1 day after tumor inoculation resulted in significant inhibition of lung metastasis of B16–BL6 cells in an experimental metastasis model. Furthermore, in in vivo analysis for tumor–induced angiogenesis, both apo–LF–B and Lfcin–B inhibited the number of tumor–induced blood vessels and suppressed tumor growth on day 8 after tumor inoculation. However, in a long–term analysis of tumor growth for up to 21 days after tumor inoculation, single administration of apo–LF–B significantly suppressed the growth of B16–BL6 cells throughout the examination period, whereas Lfcin–B showed inhibitory activity only during the early period (8 days). In spontaneous metastasis of B16–BL6 melanoma cells, multiple administration of both apo–LF–B and Lfcin–B into tumor–bearing mice significantly inhibited lung metastasis produced by B16–BL6 cells, though only apo–LF–B exhibited an inhibitory effect on tumor growth at the time of primary tumor amputation (on day 21) after tumor inoculation. These results suggest that apo–LF–B and Lfcin–B inhibit tumor metastasis through different

  19. Synthesis of tumor necrosis factor α for use as a mirror-image phage display target.

    Science.gov (United States)

    Petersen, Mark E; Jacobsen, Michael T; Kay, Michael S

    2016-06-21

    Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies.

  20. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway.

    Science.gov (United States)

    Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhou, Siying; Chen, Xiu; Tang, Jinhai

    2017-08-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an endogenous adaptor of innate and adaptive immune responses, and serves a crucial role in tumor necrosis factor receptor and toll‑like/interleukin‑1 receptor signaling. Although studies have demonstrated that TRAF6 has oncogenic activity, its potential contributions to breast cancer in human remains largely uninvestigated. The present study examined the expression levels and function of TRAF6 in breast carcinoma (n=32) and adjacent healthy (n=25) tissue samples. Compared with adjacent healthy tissues, TRAF6 protein expression levels were significantly upregulated in breast cancer tissues. Reverse transcription‑quantitative polymerase chain reaction analysis revealed a significant upregulation of the cellular proliferative marker Ki‑67 and proliferation cell nuclear antigen expression levels in breast carcinoma specimens. Furthermore, protein expression levels of the accessory molecule, transforming growth factor β‑activated kinase 1 (TAK1), were significantly increased in breast cancer patients, as detected by western blot analysis. As determined by MTT assay, TRAF6 exerted profoundly proliferative effects in the MCF‑7 breast cancer cell line; however, these detrimental effects were ameliorated by TAK1 inhibition. Notably, protein kinase B (AKT)/glycogen synthase kinase (GSK)3β phosphorylation levels were markedly upregulated in breast cancer samples, compared with adjacent healthy tissues. In conclusion, an altered TRAF6‑TAK1 axis and its corresponding downstream AKT/GSK3β signaling molecules may contribute to breast cancer progression. Therefore, TRAF6 may represent a potential therapeutic target for the treatment of breast cancer.

  1. Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-01-01

    Full Text Available Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca2+/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.

  2. Isolated limb perfusion with tumor necrosis factor alpha and melphalan for locally advanced soft tissue sarcoma : The value of adjuvant radiotherapy

    NARCIS (Netherlands)

    Thijssens, KMJ; van Ginkel, RJ; Pras, E; Suurmeijer, AJH; Hoekstra, HJ

    Background: The aim was to investigate the value of adjuvant radiotherapy for locally advanced soft tissue sarcoma after hyperthermic isolated limb perfusion (ILP) with tumor necrosis factor alpha and melphalan followed by limb-saving surgery. Methods: From 1991 to 2003, 73 patients (median age, 54

  3. Levels of inhibitors of tumor necrosis factor alpha and interleukin 1beta in urine and sera of patients with urosepsis

    NARCIS (Netherlands)

    Olszyna, D. P.; Prins, J. M.; Buis, B.; van Deventer, S. J.; Speelman, P.; van der Poll, T.

    1998-01-01

    The antiinflammatory cytokine response during urosepsis was determined by measurement of concentrations of soluble tumor necrosis factor receptor (sTNFR) types I and II, interleukin 1 receptor antagonist (IL-1ra), soluble IL-1 receptor type II (sIL-1RII), and interleukin 10 in sera and urine of 30

  4. In vitro cytotoxicity of human recombinant tumor necrosis factor alpha in association with radiotherapy in a human ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    Manetta, A.; Lucci, J.; Soopikian, J.; Granger, G.; Berman, M.L.; DiSaia, P.J.

    1990-01-01

    It has been speculated that tumor necrosis factor alpha (TNF-alpha) may decrease the cytotoxicity of radiotherapy by increasing the scavenging of toxic superoxide radicals. Because of the possible clinical implications, the cytotoxicity of TNF-alpha in combination with radiotherapy (RT) was compared with that of RT alone in a human ovarian cancer cell line. NIH:OVCAR-3 cells were incubated with TNF-alpha at 10.0, 1.0, 0.1, and 0.01 microgram/ml. Plates were divided into two groups; one received 150 cGy of radiotherapy and the other received no further therapy. Seventy-two hours later, supernatants were aspirated and viable cells were stained with a 1% solution of crystal violet. Survival of cells treated with RT plus TNF-alpha was expressed as a percentage of surviving irradiated controls. Analysis of results revealed minimal additive cell killing effect between TNF-alpha and radiotherapy at all concentrations of tumor necrosis factor, with the greatest difference noted in the group treated with 10 micrograms/ml TNF-alpha. A continued radiotherapy dose-response study with TNF-alpha showed a similar additive, not radioprotective, effect. This may have implication as a potentiator of RT in some human tumors

  5. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    Science.gov (United States)

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  6. The effect of diet on tumor necrosis factor stimulation of hepatic lipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Feingold, K.R.; Soued, M.; Serio, M.K.; Adi, S.; Moser, A.H.; Grunfeld, C. (Univ. of California, San Francisco (USA))

    1990-06-01

    In this study, we determined the effects of tumor necrosis factor (TNF) on serum lipid levels and hepatic lipid synthesis in animals whose diets and feeding conditions were varied to induce changes in baseline serum lipid levels and/or rates of hepatic lipid synthesis. In animals studied at both the nadir and peak of the diurnal cycle of hepatic lipid synthesis, TNF acutely increases serum triglyceride levels, stimulates hepatic fatty acid synthesis, and increases the quantity of newly synthesized fatty acids found in the serum. Similarly, in animals ingesting either high-sucrose or cholesterol-enriched diets, TNF induces the characteristic rapid increase in serum triglyceride levels, hepatic fatty acid synthesis, and quantity of labeled fatty acids in the serum. In animals fed a diet high in triglycerides, using either corn oil or lard, TNF stimulates hepatic fatty acid synthesis and increases the quantity of newly synthesized fatty acids in the serum, but serum triglyceride levels do not change. However, TNF inhibits gastric emptying, which results in a marked decrease in fat absorption in TNF-treated animals. It is likely that a decrease in the dietary contribution to serum triglyceride levels during high-triglyceride feeding counterbalances the increased hepatic contribution induced by TNF treatment. In animals fasted before TNF administration there was no acute change in either serum lipid levels, hepatic fatty acid synthesis, or the quantity of labeled fatty acids in the serum. Thus, TNF stimulates hepatic fatty acid synthesis and increases serum triglyceride levels under many diverse dietary conditions, suggesting that there is a strong linkage between the immune system and lipid metabolism that is independent of most dietary manipulations and may be of fundamental importance in the body's response to infection.

  7. The effect of diet on tumor necrosis factor stimulation of hepatic lipogenesis

    International Nuclear Information System (INIS)

    Feingold, K.R.; Soued, M.; Serio, M.K.; Adi, S.; Moser, A.H.; Grunfeld, C.

    1990-01-01

    In this study, we determined the effects of tumor necrosis factor (TNF) on serum lipid levels and hepatic lipid synthesis in animals whose diets and feeding conditions were varied to induce changes in baseline serum lipid levels and/or rates of hepatic lipid synthesis. In animals studied at both the nadir and peak of the diurnal cycle of hepatic lipid synthesis, TNF acutely increases serum triglyceride levels, stimulates hepatic fatty acid synthesis, and increases the quantity of newly synthesized fatty acids found in the serum. Similarly, in animals ingesting either high-sucrose or cholesterol-enriched diets, TNF induces the characteristic rapid increase in serum triglyceride levels, hepatic fatty acid synthesis, and quantity of labeled fatty acids in the serum. In animals fed a diet high in triglycerides, using either corn oil or lard, TNF stimulates hepatic fatty acid synthesis and increases the quantity of newly synthesized fatty acids in the serum, but serum triglyceride levels do not change. However, TNF inhibits gastric emptying, which results in a marked decrease in fat absorption in TNF-treated animals. It is likely that a decrease in the dietary contribution to serum triglyceride levels during high-triglyceride feeding counterbalances the increased hepatic contribution induced by TNF treatment. In animals fasted before TNF administration there was no acute change in either serum lipid levels, hepatic fatty acid synthesis, or the quantity of labeled fatty acids in the serum. Thus, TNF stimulates hepatic fatty acid synthesis and increases serum triglyceride levels under many diverse dietary conditions, suggesting that there is a strong linkage between the immune system and lipid metabolism that is independent of most dietary manipulations and may be of fundamental importance in the body's response to infection

  8. Histopathological studies on the irradiated brain tumors

    International Nuclear Information System (INIS)

    Narita, Tadao

    1980-01-01

    Of 43 cases of irradiated brain tumor, histological findings showed extensive necrosis or disappearance of the neoplasm, considered to be attributable to radiation treatment, in 30 (70%). Extensive necrosis of the tumor in areas exposed to radiation was found in 16 treated cases (37.2%). The histopathology of massive necrosis was that of simple coagulative necrosis, sometimes with marked vascular alterations and extravasation of fibrinoid material into the necrotic tissue. Necrosis was almost always incomplete, and foci of residual tumors were found at the periphery of the tumors. The terminal picture in cases of massive necrosis was often that of widespread intra- and extracranial metastasis. Almost complete disappearance of the tumor was observed in some cases with subsequent diffuse degenerative changes in the brain parenchyma exposed to radiation. In 5 cases of irradiated tumors, autopsy findings suggested that the growth of the primary tumor might have been restricted. And in 5 cases tumor cytology revealed the marked presence of a large number of multinucleated, bizarre giant cells with evidence of degeneration in both the cytoplasm and the nucleus. Multifocal necrosis of the brain, with axonal swelling and sponginess of the tissue, was observed in two patients following combined radiation and antineoplastic chemotherapy. Diffuse loss and degeneration of nerve cells of the cerebral cortex in pseudo-laminar fashion was observed in 7 patients with or without bilateral necrosis of the globus pallidus. Histological findings revealed typical anoxic encephalopathy. (J.P.N.)

  9. Histopathological studies on the irradiated brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Narita, T [Gunma Univ., Maebashi (Japan).School of Medicine

    1980-01-01

    Of 43 cases of irradiated brain tumor, histological findings showed extensive necrosis or disappearance of the neoplasm, considered to be attributable to radiation treatment, in 30 (70%). Extensive necrosis of the tumor in areas exposed to radiation was found in 16 treated cases (37.2%). The histopathology of massive necrosis was that of simple coagulative necrosis, sometimes with marked vascular alterations and extravasation of fibrinoid material into the necrotic tissue. Necrosis was almost always incomplete, and foci of residual tumors were found at the periphery of the tumors. The terminal picture in cases of massive necrosis was often that of widespread intra- and extracranial metastasis. Almost complete disappearance of the tumor was observed in some cases with subsequent diffuse degenerative changes in the brain parenchyma exposed to radiation. In 5 cases of irradiated tumors, autopsy findings suggested that the growth of the primary tumor might have been restricted. And in 5 cases tumor cytology revealed the marked presence of a large number of multinucleated, bizarre giant cells with evidence of degeneration in both the cytoplasm and the nucleus. Multifocal necrosis of the brain, with axonal swelling and sponginess of the tissue, was observed in two patients following combined radiation and antineoplastic chemotherapy. Diffuse loss and degeneration of nerve cells of the cerebral cortex in pseudo-laminar fashion was observed in 7 patients with or without bilateral necrosis of the globus pallidus. Histological findings revealed typical anoxic encephalopathy.

  10. Synergistic actions of blocking angiopoietin-2 and tumor necrosis factor-α in suppressing remodeling of blood vessels and lymphatics in airway inflammation.

    Science.gov (United States)

    Le, Catherine T K; Laidlaw, Grace; Morehouse, Christopher A; Naiman, Brian; Brohawn, Philip; Mustelin, Tomas; Connor, Jane R; McDonald, Donald M

    2015-11-01

    Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Periostin Limits Tumor Response to VEGFA Inhibition.

    Science.gov (United States)

    Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele

    2018-03-06

    Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Targeting tumor multicellular aggregation through IGPR-1 inhibits colon cancer growth and improves chemotherapy.

    Science.gov (United States)

    Woolf, N; Pearson, B E; Bondzie, P A; Meyer, R D; Lavaei, M; Belkina, A C; Chitalia, V; Rahimi, N

    2017-09-18

    Adhesion to extracellular matrix (ECM) is crucially important for survival of normal epithelial cells as detachment from ECM triggers specific apoptosis known as anoikis. As tumor cells lose the requirement for anchorage to ECM, they rely on cell-cell adhesion 'multicellular aggregation' for survival. Multicellular aggregation of tumor cells also significantly determines the sensitivity of tumor cells to the cytotoxic effects of chemotherapeutics. In this report, we demonstrate that expression of immunoglobulin containing and proline-rich receptor-1 (IGPR-1) is upregulated in human primary colon cancer. Our study demonstrates that IGPR-1 promotes tumor multicellular aggregation, and interfering with its adhesive function inhibits multicellular aggregation and, increases cell death. IGPR-1 supports colon carcinoma tumor xenograft growth in mouse, and inhibiting its activity by shRNA or blocking antibody inhibits tumor growth. More importantly, IGPR-1 regulates sensitivity of tumor cells to the chemotherapeutic agent, doxorubicin/adriamycin by a mechanism that involves doxorubicin-induced AKT activation and phosphorylation of IGPR-1 at Ser220. Our findings offer novel insight into IGPR-1's role in colorectal tumor growth, tumor chemosensitivity, and as a possible novel anti-cancer target.

  13. Tumor necrosis factor and its receptors in the neuroretina and retinal vasculature after ischemia-reperfusion injury in the pig retina

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Håkansson, Gisela; Gustafsson, Lotta

    2010-01-01

    Numerous studies have been performed aimed at limiting the extent of retinal injury after ischemia, but there is still no effective pharmacological treatment available. The aim of the present study was to examine the role of tumor necrosis factor (TNF)α and its receptors (TNF-R1 and TNF-R2), espe...

  14. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  15. Scopadulciol, Isolated from Scoparia dulcis, Induces β-Catenin Degradation and Overcomes Tumor Necrosis Factor-Related Apoptosis Ligand Resistance in AGS Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Fuentes, Rolly G; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-04-24

    Scopadulciol (1), a scopadulan-type diterpenoid, was isolated from Scoparia dulcis along with three other compounds (2-4) by an activity-guided approach using the TCF reporter (TOP) luciferase-based assay system. A fluorometric microculture cytotoxicity assay (FMCA) revealed that compound 1 was cytotoxic to AGS human gastric adenocarcinoma cells. The treatment of AGS cells with 1 decreased β-catenin levels and also inhibited its nuclear localization. The pretreatment of AGS cells with a proteasome inhibitor, either MG132 or epoxomicin, protected against the degradation of β-catenin induced by 1. The 1-induced degradation of β-catenin was also abrogated in the presence of pifithrin-α, an inhibitor of p53 transcriptional activity. Compound 1 inhibited TOP activity in AGS cells and downregulated the protein levels of cyclin D1, c-myc, and survivin. Compound 1 also sensitized AGS cells to tumor necrosis factor-related apoptosis ligand (TRAIL)-induced apoptosis by increasing the levels of the death receptors, DR4 and DR5, and decreasing the level of the antiapoptotic protein Bcl-2. Collectively, our results demonstrated that 1 induced the p53- and proteasome-dependent degradation of β-catenin, which resulted in the inhibition of TCF/β-catenin transcription in AGS cells. Furthermore, 1 enhanced apoptosis in TRAIL-resistant AGS when combined with TRAIL.

  16. Tumor Necrosis Factors, Interferons and Matrix Metalloproteinase-9 in Sera of Non-Hodgkin's Lymphoma Patients

    International Nuclear Information System (INIS)

    Abdel Malak, C.A.; Karawya, E.M.; Hammouda, G.A.; Zakhary, N.I.

    2003-01-01

    In the present study, the serum levels of some cytokines and the matrix metalloproteinase-9 (MMP-9) were studied in an attempt to find suitable markers for early diagnosis of non- Hodgkin's lymphoma (NHL) and to assess their role in differentiating between disseminated and non disseminated cases. The present study was conducted on 60 patients with non disseminated NHL, 14 patients with disseminated NHL, in addition to 10 healthy controls. Their sera were used to determine tumor necrosis factor-α (TNF--α), tumor necrosis factor--β (TNF-β), interferon---α), (IFN--α), interferon-γ (IFN--γ) and Matrix Metalloproteinase-9 (MMP-9) using the ELISA technique. The results showed that the serum level of TNF---α), and IFN---α), can be used to differentiate between the control group and the group of NHL patients. However, they could not differentiate between non disseminated NHL (nd- NHL) and disseminated NHL (d- NHL). On the other hand, the serum level of TNF-β) can be used to differentiate between nd- NHL and d- NHL, but not between the control group and nd-NHL. Each of [FN--γ and MMP-9 were not useful in discrimination between the control group and the diseased ones. Our data revealed no correlation between serum level of the parameters investigated and the gender of the patients. The present results revealed that TNF-α) and INF-α), can be used as diagnostic tools for NHL. On the other hand, TNF-β) is useful in the differentiation between nd-NHL and d-NHL

  17. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun

    2012-05-01

    Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    International Nuclear Information System (INIS)

    Kwon, Ho-Keun; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog; Hwang, Ji-Sun; So, Jae-Seon; Lee, Choong-Gu; Sahoo, Anupama; Ryu, Jae-Ha; Jeon, Won Kyung; Ko, Byoung Seob; Im, Chang-Rok

    2010-01-01

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8 + T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  19. Interleukin-6 and tumor necrosis factor-alpha values in elk neonates

    Science.gov (United States)

    Barber-Meyer, S. M.; Johnson, C.R.; Murtaugh, M.P.; Mech, L.D.; White, P.J.

    2007-01-01

    Serological indicators of general condition would be helpful for monitoring or assessing ungulate wildlife. Toward that end, we report the 1st reference values for 2 cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-??), in neonatal elk (Cervus elaphus). We obtained blood samples from 140 calves ??? 6 days old in Yellowstone National Park during summer 2003-2005. TL-6 values ranged from 0 to 1.21 pg/ml with a median of 0.03 pg/ml. TNF-?? values ranged from 0 to 225.43 pg/ml with a median of 1.85 pg/ml. IL-6 and TNF-?? concentrations were not significant predictors of elk calf survival through 21 days. Development of ungulate-based IL-6 and TNF-?? assays that provide greater sensitivity than cross-reacting human-based assays could be helpful in monitoring ungulate condition and health status comparisons among herds. Such information could provide indirect assessments of range quality or environmental influences among herds. 

  20. Elevated levels of tumor necrosis factor alpha and mortality in centenarians

    DEFF Research Database (Denmark)

    Bruunsgaard, Helle; Andersen-Ranberg, Karen; Hjelmborg, Jacob v B

    2003-01-01

    BACKGROUND: Aging is accompanied by low-grade inflammation. Tumor necrosis factor (TNF) alpha initiates the cytokine cascade, and high levels are associated with dementia and atherosclerosis in persons aged 100 years. We hypothesized that TNF-alpha was also a prognostic marker for all......-cause mortality in these persons. METHODS: We enrolled 126 subjects at or around the time of their 100th birthday. Plasma levels of TNF-alpha, interleukin (IL)-6, IL-8, and C-reactive protein were measured at baseline, and we determined the associations between the markers of inflammation and mortality during...... the subsequent 5 years. RESULTS: Only 9 subjects were alive after 5 years. Elevated levels of TNF-alpha were associated with mortality in both men and women (hazard ratio = 1.34 per SD of 2.81 pg/mL; 95% confidence interval: 1.12 to 1.60, P = 0.001). Levels of IL-6 and IL-8 did not affect survival; levels of C...

  1. Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kaltschmidt Christian

    2006-09-01

    Full Text Available Abstract Background Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. Results Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs that results in increased proliferation. Moreover, we demonstrate IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-κB as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-κB super-repressor IκB-AA1. Pharmacological blockade of IκB ubiquitin ligase activity led to comparable decreases in NF-κB activity and proliferation. In addition, IKK-β gene product knock-down via siRNA led to diminished NF-κB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFβ-activated kinase 1 (TAK-1 is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial

  2. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: fyang@bcm.edu...W81XWH-13-1-0163 " Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer " Introduction AR signaling

  3. Nonanaplastic follicular cell-derived thyroid carcinoma: mitosis and necrosis in long-term follow-up.

    Science.gov (United States)

    Skansing, Daniel Bräuner; Londero, Stefano Christian; Asschenfeldt, Pia; Larsen, Stine Rosenkilde; Godballe, Christian

    2017-06-01

    Nonanaplastic follicular cell-derived thyroid carcinoma (NAFCTC) includes differentiated- (DTC) and poorly differentiated thyroid carcinoma (PDTC). DTC has an excellent prognosis, while PDTC is situated between DTC and anaplastic carcinomas. Short-term studies suggest that PDTC patients diagnosed only on tumor necrosis and/or mitosis have a prognosis similar to those diagnosed according to the TURIN proposal. The purpose of this study was to evaluate prognosis for NAFCTC based on long-term follow-up illuminating the significance of tumor necrosis and mitosis. A cohort of 225 patients with NAFCTC was followed more than 20 years. Age, sex, distant metastasis, histology, tumor size, extrathyroidal invasion, lymph node metastasis, tumor necrosis and mitosis were examined as possible prognostic factors. Median follow-up time for patients alive was 28 years (range 20-43 years). Age, distant metastasis, extrathyroidal invasion, tumor size, tumor necrosis and mitosis were independent prognostic factors in multivariate analysis for overall survival (OS). In disease specific survival (DSS) age was not significant. Using only necrosis and/or mitosis as criteria for PDTC the 5-, 10- and 20-year OS for DTC was 87, 79 and 69%, respectively. In DSS it was 95, 92 and 90%. For PDTC the 5-, 10- and 20-year OS was 57, 40 and 25%, respectively. In DSS it was 71, 55 and 48%. Tumor necrosis and mitosis are highly significant prognostic indicators in analysis of long time survival of nonanaplastic follicular cell-derived thyroid carcinoma indicating that a simplification of the actually used criteria for poorly differentiated carcinomas may be justified.

  4. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  5. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice

    DEFF Research Database (Denmark)

    Clausen, Bettina H; Lambertsen, Kate L; Babcock, Alicia A

    2008-01-01

    BACKGROUND: Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are expressed by microglia and infiltrating macrophages following ischemic stroke. Whereas IL-1beta is primarily neurotoxic in ischemic stroke, TNF-alpha may have neurotoxic and/or neuroprotective effects. We inv...

  6. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    International Nuclear Information System (INIS)

    Zhang, Z; Ho, A; Wang, X; Brown, P; Guha-Thakurta, N; Ferguson, S; Fave, X; Zhang, L; Mackin, D; Court, L; Li, J; Yang, J

    2016-01-01

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for each lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical

  7. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z [Central South University Xiangya Hospital, Changsha, Hunan (China); MD Anderson Cancer Center, Houston, TX (United States); Ho, A [University of Houston, Houston, TX (United States); Wang, X; Brown, P; Guha-Thakurta, N; Ferguson, S; Fave, X; Zhang, L; Mackin, D; Court, L; Li, J; Yang, J [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for each lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical

  8. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    Science.gov (United States)

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  9. Interleukin-6 and tumor necrosis factor alpha in synovial fluid are associated with progression of radiographic knee osteoarthritis in subjects with previous meniscectomy

    DEFF Research Database (Denmark)

    Larsson, S; Englund, M; Struglics, A

    2015-01-01

    concentrations of interleukin (IL)-6, -8 and tumor necrosis factor (TNF)-α by multiplex immunoassay, graded radiographic features of tibiofemoral and patellofemoral OA according to the Osteoarthritis Research Society International (OARSI) atlas, scored patient-reported outcomes using the Knee Injury...

  10. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  11. Challenges With the Diagnosis and Treatment of Cerebral Radiation Necrosis

    International Nuclear Information System (INIS)

    Chao, Samuel T.; Ahluwalia, Manmeet S.; Barnett, Gene H.; Stevens, Glen H.J.; Murphy, Erin S.; Stockham, Abigail L.; Shiue, Kevin; Suh, John H.

    2013-01-01

    The incidence of radiation necrosis has increased secondary to greater use of combined modality therapy for brain tumors and stereotactic radiosurgery. Given that its characteristics on standard imaging are no different that tumor recurrence, it is difficult to diagnose without use of more sophisticated imaging and nuclear medicine scans, although the accuracy of such scans is controversial. Historically, treatment had been limited to steroids, hyperbaric oxygen, anticoagulants, and surgical resection. A recent prospective randomized study has confirmed the efficacy of bevacizumab in treating radiation necrosis. Novel therapies include using focused interstitial laser thermal therapy. This article will review the diagnosis and treatment of radiation necrosis

  12. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Griffith, Thomas S; Fialkov, Jonathan M; Scott, David L; Azuhata, Takeo; Williams, Richard D; Wall, Nathan R; Altieri, Dario C; Sandler, Anthony D

    2002-06-01

    The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.

  13. [Knockdown of indoleamine 2, 3-dioxygenase 2 (IDO2)gene inhibits tumor growth and enhances immune function in mice bearing melanoma].

    Science.gov (United States)

    Liu, Yanling; Liu, Huan; Xiang, Yingqing; Chen, Xiaoyan; Xu, Ping; Min, Weiping

    2017-12-01

    Objective To study the role of indoleamine 2, 3-dioxygenase 2 (IDO2) in anti-tumor therapy and its effect on the immune response when using IDO2 as therapeutic target. Methods B16-BL6 cells were used to construct mouse xenografted melanoma model. IDO2-shRNA that contained IDO2-siRNA or control shRNA (scrambled-shRNA) was injected hydrodynamically via the tail vein to treat melanoma. The tumor size was measured by vernier caliper. Flow cytometry was performed to analyze the percentage of regulatory T cells (Tregs), T cell apoptosis rate in draining lymph nodes and the expressions of co-stimulatory molecules on splenic dendritic cells (DCs) from different treatment groups. The lactate dehydrogenase (LDH) assay was used to determine the CD8 + cytotoxic T lymphocyte (CTL) activity. The serum levels of tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) were detected by ELISA. Results In the IDO2-shRNA treated group, the tumor formation time was delayed, tumor grew slowly, and excised tumor mass was significantly reduced. IDO2-shRNA treatment also decreased the percentage of Tregs and T cell apoptosis in draining lymph nodes and increased the expressions of co-stimulatory molecules CD80 and CD86 on splenic DCs. The capacity of CD8 + T cells to kill B16-BL6 cells was enhanced and the serum levels of TNF-α and IFN-γ were upregulated. Conclusion Silencing IDO2 can effectively inhibit the growth of melanoma and improve the anti-tumor immune response in vivo.

  14. Choice of therapeutic tactics after failure of the first tumor necrosis factor-α inhibitor

    Directory of Open Access Journals (Sweden)

    N. V. Chichasova

    2017-01-01

    Full Text Available The paper discusses whether the effect of different biological agents (BAs can be achieved in patients with active rheumatoid arthritis (RA when they inadequately respond to therapy with tumor necrosis factor-α (TNF-α inhibitors. It gives data on the efficacy of BAs with another mechanism of action (abatacept, tocilizumab, and rituximab and on the comparable efficacy of golimumab (GLM in this group of patients. It is shown that the effect of GLM therapy does not depend on the reasons for discontinuation of a previously used TNF-α inhibitors (inefficacy, adverse events, etc.. It is conclusion that GLM is effective after failure of one or two TNF-α inhibitors.

  15. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  16. MRI Findings of Pericardial Fat Necrosis: Case Report

    International Nuclear Information System (INIS)

    Lee, Hyo Hyeok; Ryu, Dae Shick; Jung, Sang Sig; Jung, Seung Mun; Choi, Soo Jung; Shin, Dae Hee

    2011-01-01

    Pericardial fat necrosis is an infrequent cause of acute chest pain and this can mimic acute myocardial infarction and acute pericarditis. We describe here a patient with the magnetic resonance imaging (MRI) findings of pericardial fat necrosis and this was correlated with the computed tomography (CT) findings. The MRI findings may be helpful for distinguishing pericardial fat necrosis from other causes of acute chest pain and from the fat-containing tumors in the cardiophrenic space of the anterior mediastinum.

  17. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+.

    Science.gov (United States)

    Villalobo, A; Lehninger, A L

    1980-03-25

    Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.

  18. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  19. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    Science.gov (United States)

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  20. Tumor necrosis factor-alpha induces activation of coagulation and fibrinolysis in baboons through an exclusive effect on the p55 receptor

    NARCIS (Netherlands)

    van der Poll, T.; Jansen, P. M.; van Zee, K. J.; Welborn, M. B.; de Jong, I.; Hack, C. E.; Loetscher, H.; Lesslauer, W.; Lowry, S. F.; Moldawer, L. L.

    1996-01-01

    Tumor necrosis factor-alpha (TNF-alpha) can bind to two distinct transmembrane receptors, the p55 and p75 TNF receptors. We compared the capability of two mutant TNF proteins with exclusive affinity for the p55 or p75 TNF receptor with that of wild type TNF, to activate the hemostatic mechanism in

  1. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  2. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  3. Suspected de novo Hepatitis B in a Patient Receiving Anti-Tumor Necrosis Factor Alpha Therapy for the Treatment of Crohn's Disease

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishida

    2014-01-01

    Full Text Available We report a 45-year-old female patient who developed acute hepatic disorder during anti-tumor necrosis factor α therapy for the treatment of Crohn's disease (CD. She was diagnosed as colonic CD and placed on infliximab (IFX. She was negative for hepatitis B surface antigen at the initiation of IFX therapy, but developed acute hepatitis after the 30th administration of IFX 4 years and 1 month after the first administration. She was suspected to have had occult hepatitis B virus infection before IFX therapy, and de novo hepatitis B was considered the most likely diagnosis. Hepatitis subsided after discontinuation of anti-tumor necrosis factor α therapy and initiation of treatment with entecavir. She started to receive adalimumab to prevent relapse of CD. She has continued maintenance therapy with entecavir and adalimumab and has since been asymptomatic. As de novo hepatitis B may be fatal, virological testing for hepatitis B is essential for patients who are being considered for treatment that may weaken the immune system.

  4. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer.

    Science.gov (United States)

    McKeage, Mark J; Baguley, Bruce C

    2010-04-15

    The unique characteristics of tumor vasculature represent an attractive target that may be exploited by vascular-targeting anticancer agents. A promising strategy involves the selective disruption of established tumor blood vessels by tumor-vascular disrupting agents (tumor-VDAs), which exhibit antivascular activity, resulting in inhibition of tumor blood flow and extensive necrosis within the tumor core. The tumor-VDA class can be subdivided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding compounds. ASA404, of the flavonoid class, is the most advanced tumor-VDA in clinical development and has been evaluated preclinically and in several phase 1 and phase 2 studies. Preclinical studies have demonstrated the selective apoptosis of tumor endothelial cells and the inhibition of tumor blood flow. Synergistic activity was observed with ASA404 and with several chemotherapeutic agents, particularly taxanes. In clinical trials, compared with chemotherapy alone, ASA404 was tolerated well and produced improved activity in patients with nonsmall cell lung cancer when combined with paclitaxel and carboplatin. Phase 3 clinical trials are ongoing. Selectively targeting established tumor vasculature with tumor-VDAs represents a promising and innovative approach to improving the efficacy of standard anticancer therapies. (c) 2010 American Cancer Society.

  5. Cytologic anaplasia is a prognostic factor in osteosarcoma biopsies, but mitotic rate or extent of spontaneous tumor necrosis are not: a critique of the College of American Pathologists Bone Biopsy template.

    Science.gov (United States)

    Cates, Justin Mm; Dupont, William D

    2017-01-01

    The current College of American Pathologists cancer template for reporting biopsies of bone tumors recommends including information that is of unproven prognostic significance for osteosarcoma, such as the presence of spontaneous tumor necrosis and mitotic rate. Conversely, the degree of cytologic anaplasia (degree of differentiation) is not reported in this template. This retrospective cohort study of 125 patients with high-grade osteosarcoma was performed to evaluate the prognostic impact of these factors in diagnostic biopsy specimens in predicting the clinical outcome and response to neoadjuvant chemotherapy. Multivariate Cox regression was performed to adjust survival analyses for well-established prognostic factors. Multivariate logistic regression was used to determine odds ratios for good chemotherapy response (≥90% tumor necrosis). Osteosarcomas with severe anaplasia were independently associated with increased overall and disease-free survival, but mitotic rate and spontaneous necrosis had no prognostic impact after controlling for other confounding factors. Mitotic rate showed a trend towards increased odds of a good histologic response, but this effect was diminished after controlling for other predictive factors. Neither spontaneous necrosis nor the degree of cytologic anaplasia observed in biopsy specimens was predictive of a good response to chemotherapy. Mitotic rate and spontaneous tumor necrosis observed in pretreatment biopsy specimens of high-grade osteosarcoma are not strong independent prognostic factors for clinical outcome or predictors of response to neoadjuvant chemotherapy. Therefore, reporting these parameters for osteosarcoma, as recommended in the College of American Pathologists Bone Biopsy template, does not appear to have clinical utility. In contrast, histologic grading schemes for osteosarcoma based on the degree of cytologic anaplasia may have independent prognostic value and should continue to be evaluated.

  6. Ionizing radiation induced production of tumor necrosis factor α in the Ewing's sarcoma cell line RM 82 in vitro and in vivo

    International Nuclear Information System (INIS)

    Ruebe, C.; Schaefer, K.L.; Dockhorn-Dworniczak, B.; Willich, N.

    1997-01-01

    Aim: The expression of cytokines plays an important role in the transmission of the effects of ionizing radiation to tumor cells and normal tissue. Tumor necrosis factor alpha (TNF α), a pleiotropic monokine, is of special interest because of its cytotoxic effect on tumor cells and the induction of hemorrhagic necrosis in tumors. We examined the influence of ionizing radiation on TNF α production in a human Ewing's sarcoma cell line in vitro and in vivo. Methods: The protein and mRNA levels of the Ewing's sarcoma cell line RM 82 were examined in vitro with 'Enhanced Amplified Sensitivity Immunoassay' (EASIA) and semiquantitative RT-PCR before and after treatment with single doses of 2 to 40 Gy, 1 to 72 hours after irradiation. After successful transplantation to nude mice, the time and dose correlation of TNF α mRNA production was examined in vivo. Results: In vitro, RM 82 had a basal protein level of TNF α of 20.1 ± 4.3 pg/ml/10 6 cells. We observed a time- and dose-dependent increase of TNF α expression with a maximum of 125 pg/ml/10 6 (5.9fold) 24 hours after irradiation with 20 Gy. At the mRNA level, the maximal up-regulation occurred 6 to 12 hours after 10 Gy. In vivo, the xenograft tumor maintained the capacity of TNF α expression. Time- and dose-dependency in mRNA production showed a maximum increase 6 hours after treatment with 10 Gy. (orig.) [de

  7. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model

    International Nuclear Information System (INIS)

    Blattmann, C.; University Children's Hospital of Heidelberg; Thiemann, M.; Stenzinger, A.

    2013-01-01

    Background: Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. Methods: Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. Results: Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. Conclusion: Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS. (orig.)

  8. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, C. [Olgahospital, Stuttgart (Germany). Paediatrie 5; University Children' s Hospital of Heidelberg (Germany). Dept. of Pediatric Oncology, Hematology and Immunology; Thiemann, M. [German Cancer Research Center (DKFZ), Heidelberg (Germany). Dept. of Radiotherapy, Molecular- and Translational Radiation Oncology; Stenzinger, A. [Heidelberg Univ. (Germany). Inst. of Pathology; and others

    2013-11-15

    Background: Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. Methods: Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. Results: Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. Conclusion: Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS. (orig.)

  9. A Computational Study of the Oligosaccharide Binding Sites in the Lectin-Like Domain of Tumor Necrosis Factor and the TNF-derived TIP Peptide

    Czech Academy of Sciences Publication Activity Database

    Dulebo, A.; Ettrich, Rüdiger; Lucas, R.; Kaftan, D.

    2012-01-01

    Roč. 18, č. 27 (2012), s. 4236-4243 ISSN 1381-6128 Institutional support: RVO:67179843 Keywords : lectin-like domain * tumor necrosis factor * TIP peptide * oligosaccharides * molecular docking * molecular dynamics simulation * alveolar liquid clearance Subject RIV: CE - Biochemistry Impact factor: 3.311, year: 2012

  10. Monoclonal antibodies in rheumatoid arthritis: comparative effectiveness of tocilizumab with tumor necrosis factor inhibitors

    Directory of Open Access Journals (Sweden)

    Tanaka T

    2014-04-01

    Full Text Available Toshio Tanaka,1,2 Yoshihiro Hishitani,3 Atsushi Ogata2,3 1Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan; 2Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; 3Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan Abstract: Rheumatoid arthritis (RA is a chronic inflammatory disease characterized by persistent joint inflammation, systemic inflammation, and immunological abnormalities. Because cytokines such as tumor necrosis factor (TNF-α and interleukin (IL-6 play a major role in the development of RA, their targeting could constitute a reasonable novel therapeutic strategy for treating RA. Indeed, worldwide clinical trials of TNF inhibiting biologic disease modifying antirheumatic drugs (bDMARDs including infliximab, adalimumab, golimumab, certolizumab pegol, and etanercept as well as the humanized anti-human IL-6 receptor antibody, tocilizumab, have demonstrated outstanding clinical efficacy and tolerable safety profiles, resulting in worldwide approval for using these bDMARDs to treat moderate to severe active RA in patients with an inadequate response to synthetic disease modifying antirheumatic drugs (sDMARDs. Although bDMARDs have elicited to a paradigm shift in the treatment of RA due to the prominent efficacy that had not been previously achieved by sDMARDs, a substantial percentage of patients failed primary or secondary responses to bDMARD therapy. Because RA is a heterogeneous disease in which TNF-α and IL-6 play overlapping but distinct pathological roles, further studies are required to determine the best use of TNF inhibitors and tocilizumab in individual RA patients. Keywords: interleukin-6, rheumatoid arthritis, adalimumab, biologic

  11. Fungi & Health: can polysaccharides from the fungus inonotus obliquus (CHAGA) inhibit tumor growth?

    DEFF Research Database (Denmark)

    Wold, C. W.; Corthay, A.; Kjeldsen, Christian

    Inonotus obliquus (Chaga) – a white rot fungus found on birch trees in the northern hemisphere –has been used in traditional medicine in Europe and Asia for centuries. Native peoples have made use of Chaga by brewing it as a tea to treat gastro-intestinal problems, to heal wounds and even to treat...... cancer. The last few decades, studies have found Chaga to contain biologically active substances such as polysaccharides, triterpenoids, polyphenols and melanin. In vivo effects such as tumor growth inhibition have been observed in mice receiving various Chaga extracts. The main hypothesis behind...... the tumor inhibiting effect is two-fold: i) fungal polysaccharides may inhibit tumor growth indirectly by activating certain immune cells such as macrophages and ii) triterpenoids and other steroids from Chaga may give a direct cytotoxic effect against cancer cells. While triterpenoids from Chaga have been...

  12. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin

    International Nuclear Information System (INIS)

    Shiau, Ai-Li; Wu, Chao-Liang; Lee, Che-Hsin; Teo, Min-Li; Chen, Shin-Yao; Wang, Chrong-Reen; Hsieh, Jeng-Long; Chang, Meng-Ya; Chang, Chih-Jui; Chao, Julie; Chao, Lee

    2010-01-01

    Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Lentiviral vector encoding kallistatin (LV-Kallistatin) was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA), and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, and nuclear factor κB (NF-κB) transcriptional activity were reduced in the LV-Kallistatin-treated mice. Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer

  13. rCBF in radiation necrosis as measured by xenon-enhanced CT

    International Nuclear Information System (INIS)

    Nakamura, Osamu; Nomura, Kazuhiro; Segawa, Hiromu; Nakagomi, Tadayoshi; Tanaka, Hideki; Yoshimasu, Norio; Takakura, Kintomo.

    1986-01-01

    We experienced a case of radiation necrosis in which the necrosis occurred two and a half years after radiation therapy against craniopharyngioma. In this case, we evaluated the regional cerebral blood flow (rCBF) by means of the Xe-enhanced CT method and studied the change in rCBF in comparison with the rCBF pattern of brain tumors or cerebral infarctions. In general, rCBF decreased in accordance with the low-density area in a conventional CT scan. The decrease in rCBF was most significant in the white matter, but the rCBF in the thinned cortex was also lowered. On the contrary, that of the basal ganglia was almost completely preserved. The rCBF pattern was different from those of brain tumors or diffuse cerebral infarction caused by the occlusion of the main arteries and was thought to be characteristic of radiation necrosis. Differential diagnosis between radiation necrosis and the recurrence of brain tumor has been thought to be difficult, but with this rCBF analysis the possibility of differential diagnosis between the two lesions was clearly indicated. (author)

  14. Effect of Tumor Necrosis Factor-α on Neutralization of Ventricular Fibrillation in Rats with Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2011-01-01

    Full Text Available The purpose of this study was to explore the effects of tumor necrosis factor-α (TNF-α on ventricular fibrillation (VF in rats with acute myocardial infarction (AMI. Rats were randomly classified into AMI group, sham operation group and recombinant human tumor necrosis factor receptor:Fc fusion protein (rhTNFR:Fc group. Spontaneous and induced VFs were recorded. Monophasic action potentials (MAPs among different zones of myocardium were recorded at eight time points before and after ligation and MAP duration dispersions (MAPDds were calculated. Then expression of TNF-α among different myocardial zones was detected. After ligation of the left anterior descending coronary artery, total TNF-α expression in AMI group began to markedly increase at 10 min, reached a climax at 20–30min, and then gradually decreased. The time-windows of VFs and MAPDds in the border zone performed in a similar way. At the same time-point, the expression of TNF-α in the ischemia zone was greater than that in the border zone, and little in the non-ischemia zone. Although the time windows of TNF-α expression, the MAPDds in the border zone and the occurrence of VFs in the rhTNFR:Fc group were similar to those in the AMI group, they all decreased in the rhTNFR:Fc group. Our findings demonstrate that TNF-α could enlarge the MAPDds in the border zone, and promote the onset of VFs.

  15. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    Science.gov (United States)

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  16. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N.; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S.

    2012-01-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15–transduced NKT cells. PMID:22565311

  17. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity.

    Science.gov (United States)

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S

    2012-06-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15-transduced NKT cells.

  18. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    Science.gov (United States)

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  19. Vasculitis Associated With Tumor Necrosis Factor-α Inhibitors

    Science.gov (United States)

    Sokumbi, Olayemi; Wetter, David A.; Makol, Ashima; Warrington, Kenneth J.

    2012-01-01

    Objective To describe the clinical characteristics, histopathologic features, and outcomes of patients in whom vasculitis developed in association with use of tumor necrosis factor-α (TNF-α) inhibitors. Patients and Methods This is a retrospective review of patients evaluated at Mayo Clinic, Rochester, Minnesota, from January 1, 1998, through March 31, 2011, with a diagnosis of vasculitis induced by anti–TNF-α therapy. Results Of 8 patients with vasculitis associated with anti–TNF-α therapy (mean age, 48.5 years), 6 (75%) were female. Four (50%) had rheumatoid arthritis, 1 (13%) had Crohn disease, and 3 (38%) had ulcerative colitis. Five (63%) were treated with infliximab, 2 (25%) with etanercept, and 1 (13%) with adalimumab. The mean duration of treatment before development of vasculitis was 34.5 months. The skin was the predominant organ affected (5 patients [63%]), with the most common cutaneous lesion being palpable purpura (4 of 5 [80%]). Two organs involved in systemic vasculitis were the peripheral nervous system (4 patients [50%]) and kidney (1 patient [13%]). All cases of vasculitis were histopathologically confirmed. Seven of 8 patients improved with discontinuation of therapy (mean time to resolution, 6.9 months) and adjuvant treatment (all 8 received prednisone; another agent was also used in 7); rechallenge with anti–TNF-α therapy was not attempted in any patient. At last follow-up, no patients had experienced a recurrence of vasculitis after therapy discontinuation. Conclusion Cutaneous small-vessel vasculitis was the most common finding, but systemic vasculitis, including peripheral nerve and renal vasculitis, was also frequently observed. PMID:22795634

  20. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    Science.gov (United States)

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application

  1. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    Directory of Open Access Journals (Sweden)

    Patel Shonak

    2006-08-01

    Full Text Available Abstract Background Soluble fibrin (sFn is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1, which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2. We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of

  2. Histone deacetylase inhibition sensitizes osteosarcoma to heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Blattmann, Claudia; Oertel, Susanne; Thiemann, Markus; Dittmar, Anne; Roth, Eva; Kulozik, Andreas E.; Ehemann, Volker; Weichert, Wilko; Huber, Peter E.; Stenzinger, Albrecht; Debus, Jürgen

    2015-01-01

    Minimal improvements in treatment or survival of patients with osteosarcoma have been achieved during the last three decades. Especially in the case of incomplete tumor resection, prognosis remains poor. Heavy ion radiotherapy (HIT) and modern anticancer drugs like histone deacetylase inhibitors (HDACi) have shown promising effects in osteosarcoma in vitro. In this study, we tested the effect of HIT and the combination of HIT and the HDACi suberoylanilide hydroxamic acid (SAHA) in a xenograft mouse model. Osteosarcoma xenografts were established by subcutaneous injection of KHOS-24OS cells and treated with either vehicle (DMSO), SAHA, HIT or HIT and SAHA. Tumor growth was determined and tumor necrosis, proliferation rate, apoptotic rate as well as vessel density were evaluated. Here, we show that the combination of HIT and SAHA induced a significant delay of tumor growth through increased rate of apoptosis, increased expression of p53 and p21 Waf1/Cip1 , inhibition of proliferation and angiogenesis compared to tumors treated with HIT only. HIT and in particular the combination of HIT and histone deacetylase inhibition is a promising treatment strategy in OS and may be tested in clinical trials

  3. Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT in DNA repair, apoptosis and necrosis after cisplatin

    Directory of Open Access Journals (Sweden)

    Calkins Anne S

    2011-06-01

    Full Text Available Abstract Background Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK binds to DNA double strand breaks (DSBs through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. Results Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1, Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT. The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. Conclusions DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and

  4. Tumor necrosis factor alpha of teleosts: in silico characterization and homology modeling

    Directory of Open Access Journals (Sweden)

    Tran Ngoc Tuan

    2016-10-01

    Full Text Available Tumor necrosis factor alpha (TNF- is known to be crucial in many biological activities of organisms. In this study, physicochemical properties and modeling of TNF- protein of fish was analyzed using in silico approach. TNF- proteins selected from fish species, including grass carp (Ctenopharyngodon idella, zebra fish (Danio rerio, Nile tilapia (Oreochromis niloticus, goldfish (Carassius auratus, and rainbow trout (Oncorhynchus mykiss were used in this study. Physicochemical characteristics with molecular weight, theoretical isoelectric point, extinction coefficient, aliphatic index, instability index, total number of negatively charged residues and positively charged residues, and grand average of hydropathicity were computed. All proteins were classified as transmembrane proteins. The “transmembrane region” and “TNF” domain were identified from protein sequences. The function prediction of proteins was also performed. Alpha helices and random coils were dominating in the secondary structure of the proteins. Three-dimensional structures were predicted and verified as good structures for the investigation of TNF- of fish by online server validation.

  5. UVEITIS INA RHEUMATOLOGISTS PRACTICE: A ROLE OF TUMOR NECROSIS FACTOR-а INHIBITORS

    Directory of Open Access Journals (Sweden)

    Sergey Valentinovich Moiseyev

    2009-01-01

    Full Text Available Uveitis frequently develops in patients with ankylosing spondylitis (AS and other autoimmune diseases. It is occasionally characterized by a severe recurrent course and untreatable with systemic glucocorticoids (GC and standard immunosuppressive agents. The results of (mainly small clinical trials, as well as some observations suggest that therapy with tumor necrosis factor-а (TNF-а inhibitors is effective in such patients. There is the strongest evidence that they are beneficial in treating recurrent uveitis in patients with AS, infliximab having some efficacy advantages over etanercept and adalimumab. Accordingly, chronic uveitis in AS can be considered as an additional argument in favor of the use of TNF-а inhibitors. Furthermore, treatment with drugs of this group is warranted in severe uveitis refractory to GC and immunosuppressants. It is conceivable that in some forms of uveitis, for example, in patients with Behcet's disease, treatment with TNF-а inhibitors should be initiated at an earlier stage as the efficacy of standard immunosuppressants is generally limited

  6. Isolated limb perfusion with tumor necrosis factor alpha and melphalan for locally advanced soft tissue sarcoma : Three time periods at risk for amputation

    NARCIS (Netherlands)

    van Ginkel, Robert J.; Thijssens, Katja M. J.; Pras, Elisabeth; van der Graaf, Winette T. A.; Suurmeijer, Albert J. H.; Hoekstra, Harald J.

    Background: The aim of this study was to investigate the long-term limb salvage rate and overall survival after isolated limb perfusion (ILP) with tumor necrosis factor alpha and melphalan for locally advanced soft tissue sarcoma (STS). Methods: From 1991 to 2003, 73 patients (36 men, 37 women,

  7. Tl-201 and Tc-99m-DTPA neuro-SPECT in cerebral radiation necrosis

    International Nuclear Information System (INIS)

    Cleto, E.M. Jr.; Holmes, R.A.; Gumerlock, M.K.; Cabeen, M.; Logan, K.W.; Hoffman, T.J.

    1992-01-01

    The results in 3 cases of radiation necrosis demonstrate that by using both radionuclides Tl-201 and Tc-99m-DTPA, one can provide a semi-quantitative method to differentiate recurrent tumor from radiation necrosis. Focally increased cerebral Tl-201 activity in irradiated brain tumor patients is not specific for tumor recurrence, but when used in combination with DTPA, one is able to estimate the amount of Tl-201 activity resulting from increased blood-brain barrier permeability. If the average Tl-201 index is less than the average Tc-99m-DTPA index it suggests that the increased Tl-201 activity results primarily from blood-brain barrier breakdown. Tc-99m-DTPA SPECT, in addition to Tl-201 SPECT, or serial Tl-201 SPECT imaging may increase the accuracy of brain scintigraphy in differentiating radiation necrosis from tumor recurrence. To verify these preliminary findings, we are in the process of analyzing additional SPECT data on 9 more patients with malignant brain tumors. Using a slightly different method of quantifying Tl- 201/Tc-99m-DTPA ratios (computing the ratio of intralesional Tl-201 or Tc-99m-DTPA activity compared to adjacent scalp activity), patients with tumor recurrence have higher Tl-201/Tc-99m-DTPA ratios compared to those with radiation necrosis (verbal communication with Dr. Mary K. Gumerlock). (orig.) [de

  8. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase.

    Science.gov (United States)

    Kim, K H; Rodriguez, A M; Carrico, P M; Melendez, J A

    2001-06-01

    Studies from many laboratories have shown that overexpression of manganese superoxide dismutase (MnSOD) inhibits the growth of numerous tumor cell types. The inhibition of tumor cell growth can be attributed to the increase in the steady-state levels of H2O2 as a result of the increased dismuting activity of MnSOD. Here we demonstrate that overexpression of MnSOD enhances the activity of the superoxide (O2*-)-sensitive enzyme aconitase, decreases the intracellular GSH/GSSG ratio, and dose-dependently inhibits pyruvate carboxylase activity. Thus, alterations in the steady-state concentrations of mitochondrial O2*- and H2O2 as a result of MnSOD overexpression can alter the metabolic capacity of the cell leading to inhibition of cell growth. Furthermore, we propose that MnSOD overexpression can modulate the activity of nitric oxide (*NO) by preventing its reaction with O2*-. This hypothesis suggests that the redox environment of the mitochondria can be altered to favor the activity of *NO rather than peroxynitrite (ONOO-) and may explain the enhanced toxicity of *NO-generating compounds toward MnSOD-overexpressing cell lines. These findings indicate that therapeutic strategies targeted at overexpressing MnSOD in tumor tissue may be more effective when used in combination with agents that deplete the oxidant-buffering and enhance the *NO-generating capacity of the tumor and host, respectively.

  9. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  10. Treatment of therapy-resistant perineal metastatic Crohn's disease after proctectomy using anti-tumor necrosis factor chimeric monoclonal antibody, cA2 - Report of two cases

    NARCIS (Netherlands)

    van Dullemen, HM; de Jong, E; Slors, F; Tytgat, GNJ; van Denventer, SJH

    PURPOSE: Two young females with well-documented Crohn's disease and nonhealing perineal wounds following proctectomy compatible with "metastatic Crohn's disease" are described, We hypothesized that metastatic Crohn's disease would be a tumor necrosis factor-dependent inflammatory-reaction and have

  11. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis

    International Nuclear Information System (INIS)

    Taylor, June S.; Langston, James W.; Reddick, Wilburn E.; Kingsley, Peter B.; Ogg, Robert J.; Pui, Margaret H.; Kun, Larry E.; Jenkins, Jesse J.; Gang, Chen; Ochs, Judith J.; Sanford, Robert A.; Heideman, Richard L.

    1996-01-01

    Purpose: Delayed cerebral necrosis (DN) is a significant risk for brain tumor patients treated with high-dose irradiation. Although differentiating DN from tumor progression is an important clinical question, the distinction cannot be made reliably by conventional imaging techniques. We undertook a pilot study to assess the ability of proton magnetic resonance spectroscopy ( 1 H MRS) to differentiate prospectively between DN or recurrent/residual tumor in a series of children treated for primary brain tumors with high-dose irradiation. Methods and Materials: Twelve children (ages 3-16 years), who had clinical and MR imaging (MRI) changes that suggested a diagnosis of either DN or progressive/recurrent brain tumor, underwent localized 1 H MRS prior to planned biopsy, resection, or other confirmatory histological procedure. Prospective 1 H MRS interpretations were based on comparison of spectral peak patterns and quantitative peak area values from normalized spectra: a marked depression of the intracellular metabolite peaks from choline, creatine, and N-acetyl compounds was hypothesized to indicate DN, and median-to-high choline with easily visible creatine metabolite peaks was labeled progressive/recurrent tumor. Subsequent histological studies identified the brain lesion as DN or recurrent/residual tumor. Results: The patient series included five cases of DN and seven recurrent/residual tumor cases, based on histology. The MRS criteria prospectively identified five out of seven patients with active tumor, and four out of five patients with histologically proven DN correctly. Discriminant analysis suggested that the primary diagnostic information for differentiating DN from tumor lay in the normalized MRS peak areas for choline and creatine compounds. Conclusions: Magnetic resonance spectroscopy shows promising sensitivity and selectivity for differentiating DN from recurrent/progressive brain tumor. A novel diagnostic index based on peak areas for choline and

  12. Characterization of receptors for recombinant human tumor necrosis factor-alpha from human placental membranes

    International Nuclear Information System (INIS)

    Aiyer, R.A.; Aggarwal, B.B.

    1990-01-01

    High affinity receptors for recombinant human tumor necrosis factor-alpha (rhTNF-alpha) were identified on membranes prepared from full term human placenta. Highly purified rhTNF-alpha iodinated by the iodogen method was found to bind placental membranes in a displaceable manner with an approximate dissociation constant (KD) of 1.9 nM. The membrane bound TNF-alpha receptor could be solubilized by several detergents with optimum extraction being obtained with 1% Triton X-100. The binding of 125I-rhTNF-alpha to the solubilized receptor was found to be time and temperature dependent, yielding maximum binding within 1 h, 24 h and 48 h at 37 degrees C, 24 degrees C and 4 degrees C, respectively. However, the maximum binding obtainable at 4 degrees C was only 40% of that at 37 degrees C. The binding 125I-rhTNF-alpha to solubilized placental membrane extracts was displaceable by unlabeled rhTNF-alpha, but not by a related protein recombinant human tumor necrosis factor-beta (rhTNF-beta; previously called lymphotoxin). This is similar to the behavior of TNF-alpha receptors derived from detergent-solubilized cell extracts, although on intact cells, both rhTNF-alpha and rhTNF-beta bind with equal affinity to TNF receptors. The Scatchard analysis of the binding data of the solubilized receptor revealed high affinity binding sites with a KD of approximately 0.5 nM and a receptor concentration of about 1 pmole/mg protein. Gel filtration of the solubilized receptor-ligand complexes on Sephacryl S-300 revealed two different peaks of radioactivity at approximate molecular masses of 50,000 Da and 400,000 Da. The 400,000 dalton peak corresponded to the receptor-ligand complex. Overall, our results suggest that high affinity receptors for TNF-alpha are present on human placental membranes and provide evidence that these receptors may be different from that of rhTNF-beta

  13. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  14. Tumor Necrosis Factor-α Produced in Cardiomyocytes Mediates a Predominant Myocardial Inflammatory Response to Stretch in Early Volume Overload

    OpenAIRE

    Chen, Yuanwen; Pat, Betty; Zheng, Junying; Cain, Laura; Powell, Pamela; Shi, Ke; Sabri, Abdelkarim; Husain, Ahsan; Dell’Italia, Louis J

    2010-01-01

    Acute stretch caused by volume overload (VO) of aorto-caval fistula (ACF) induces a variety of myocardial responses including mast cell accumulation, matrix metalloproteinase (MMP) activation and collagen degradation, all of which are critical in dictating long term left ventricle (LV) outcome to VO. Meanwhile, these responses can be part of myocardial inflammation dictated by tumor necrosis factor-α (TNF-α) which is elevated after acute ACF. However, it is unknown whether TNF-α mediates a ma...

  15. Characterization of a Canine Tetranucleotide Microsatellite Marker Located in the First Intron of the Tumor Necrosis Factor Alpha Gene

    OpenAIRE

    WATANABE, Masashi; TANAKA, Kazuaki; TAKIZAWA, Tatsuya; SEGAWA, Kazuhito; NEO, Sakurako; TSUCHIYA, Ryo; MURATA, Michiko; MURAKAMI, Masaru; HISASUE, Masaharu

    2013-01-01

    ABSTRACT A polymorphic tetranucleotide (GAAT)n microsatellite in the first intron of the canine tumor necrosis factor alpha (TNFA) gene was characterized in this study; 139 dogs were analyzed: 22 Beagles, 26 Chihuahuas, 20 Miniature Dachshunds, 24 Miniature Poodles, 22 Pembroke Welsh Corgis and 25 Shiba Inus. We detected the presence of the 4 alleles (GAAT)5, (GAAT)6, (GAAT)7 and (GAAT)8, including 9 of the 10 expected genotypes. The expected heterozygosity (He) and the polymorphic informatio...

  16. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Dominguez, Helena; Storgaard, Heidi; Rask-Madsen, Christian

    2005-01-01

    OBJECTIVE: The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) impairs insulin action in insulin-sensitive tissues, such as fat, muscle and endothelium, and causes endothelial dysfunction. We hypothesized that TNF-alpha blockade with etanercept could reverse vascular and metabolic...... glucose uptake remained unchanged as well. Beta-cell function tended to improve. CONCLUSION: Although short-term etanercept treatment had a significant beneficial effect on systemic inflammatory markers, no improvement of vascular or metabolic insulin sensitivity was observed....

  17. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    Science.gov (United States)

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    Science.gov (United States)

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  19. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    Science.gov (United States)

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  20. Radioprotection by murine and human tumor-necrosis factor; Dose-dependent effects on hematopoiesis in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, L; Muench, M O; Warren, D J; Moore, M A.S. [James Ewing Laboratory of Developmental Hematopoiesis, Memorial Sloan-Kettering Cancer Center, New York (USA)

    1989-01-01

    Tumor-necrosis factor (TNF) has been shown to confer significant radioprotection in murine models. Herein, we demonstrate a dose-dependent enhancement of hematological recovery when single doses of either murine or human recombinant TNF are administered prior to irradiation. In addition to its action upon leukocytes and erythocytes, TNF also alleviates radiation-induced thrombocytopenia in the mouse. These effects on circulating blood constituents are further reflected in increased numbers of both primitive (CFU-S) and more differentiated (CFU-GM, CFU-Mega) hematopoietic progenitors in TNF-treated animals. This suggests that TNF exerts it radioprotective effects on a pool of primitive multi-potential hematopoietic cells. (author).

  1. Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes

    Directory of Open Access Journals (Sweden)

    Aline Lopes Ribeiro

    2017-01-01

    Full Text Available Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.

  2. Tumor Necrosis Factor α Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl–Rank Interaction

    Science.gov (United States)

    Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo

    2000-01-01

    Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272

  3. Coordinate viral induction of tumor necrosis factor α and interferon β in human B cells and monocytes

    International Nuclear Information System (INIS)

    Goldfeld, A.E.; Maniatis, T.

    1989-01-01

    Human tumor necrosis factor α (TNF-α) gene expression can be induced primarily in cells of the monocyte/macrophage lineage by a variety of inducers, including lipopolysaccharide, phorbol esters such as phorbol 12-myristate 13-acetate, and virus or synthetic double-stranded RNA [poly(I)·poly(C)]. In this paper the authors show that the TNF-α gene also responds to virus and phorbol 12-myristate 13-acetate in B lymphocytes and that virus is the most potent inducer of TNF-α mRNA in both monocyte and B-cell lines. In addition, they show that viral infection coinduces the expression of TNF-α and interferon β mRNA and that viral induction of both genes is blocked by the kinase inhibitor 2-aminopurine. Inhibition of protein synthesis with cycloheximide had no effect on mRNA expression of the genes in one of three cell lines tested (U937) but blocked the viral induction of both genes in another (Namalwa). Thus, the regulatory factors required for mRNA induction of both genes are present prior to the addition of virus in U937 but not in Namalwa cells. However, in a third cell line (JY), cycloheximide blocked viral induction of the interferon β gene but not the TNF-α gene. Taken together, these observations suggest that viral induction of TNF-α and interferon β gene expression may involve overlapping pathways with both common and distinct regulatory factors

  4. 201Tl scintigraphic evaluation of tumor mass and viability of bone and soft-tissue tumors

    International Nuclear Information System (INIS)

    Tsuda, Takatoshi; Kubota, Masahiro; Yoshida, Satoru; Shibata, Masahito; Wakabayashi, Jun-ichi; Obata, Hiroyuki; Matsuyama, Toshikatsu; Usui, Masamichi; Ishii, Sei-ichi.

    1994-01-01

    To characterize 201 Tl uptake in patients with bone and soft-tissue tumor, we studied 49 patients with surgically proven tumors and one patient with a tumor diagnosed arteriographically. In 37 of our 50 patients, the tumor was evaluated with 201 Tl and arteriography. Moreover, in 14 of patients with pre-operative chemotherapy, pathologic changes were graded on the basis of percent tumor necrosis as defined histologically. The percent tumor necrosis histologically was compared with changes in the scintigraphic and conventional angiographic studies. Radiologic comparisons demonstrated a high degree of correlation with images of 201 Tl and both arterial and blood pool phase of 99m Tc-HMDP. Ninety-six percent of 28 malignant tumors had positive 201 Tl uptake. None of the patients showed any thallium accumulation in the soft tissues or skeleton adjacent to the lesion. Activity of 201 Tl was mainly dependent upon a tumor blood flow and a vascular density. In of 14 cases with the preoperative chemotherapeutic treatment, 201 Tl scintigraphic changes showed concordance with % tumor necrosis. Thallium-201 was superior to 99m Tc-HMDP in predicting tumor response to chemotherapy. Interestingly, delayed images of 99m Tc-HMDP of 5 responders with >90% tumor necrosis showed decreased uptake in the adjacent bone to the tumor mass lesions. It seems to be quite all right to consider that a major determinant of 201 Tl uptake is intratumoral angiogenecity, which is closely connected with tumor viability. Therefore, 201 Tl is a sensitive radiopharmaceutical for detection of vascular rich bone and soft-tissue tumors, and appears to be a simple and an accurate test for evaluating the response to specific therapeutic regimens of malignant bone and soft-tissue tumors. (author)

  5. Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration.

    Science.gov (United States)

    Neis, Vivian Binder; Manosso, Luana Meller; Moretti, Morgana; Freitas, Andiara E; Daufenbach, Juliana; Rodrigues, Ana Lúcia S

    2014-03-15

    Agmatine, an endogenous cationic amine, has been shown to exert antidepressant-like effects. This study investigated the ability of agmatine administered orally to abolish the depressive-like behavior induced by the administration of the pro-inflammatory cytokine, tumor necrosis factor (TNF-α) in mice. In control animals, agmatine (0.001, 0.01, 0.1, and 1 mg/kg) reduced the immobility time in the tail suspension test (TST). Acute administration of TNF-α (0.001 fg/mouse, i.c.v.) increased immobility time in the TST, indicative of a depressive-like behavior, and agmatine (0.0001, 0.1, and 1 mg/kg) prevented this effect. Additionally, we examined the effects of the combined administration of sub-effective doses of agmatine with antidepressants, the NMDA receptor antagonist MK-801 and the neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) in mice exposed to either TNF-α or saline. In control mice, administration of a sub-effective dose of agmatine (0.0001 mg/kg) combined with sub-effective doses of either fluoxetine (5 mg/kg, p.o.), imipramine (0.1 mg/kg, p.o.), bupropion (1 mg/kg, p.o.), MK-801 (0.001 mg/kg, p.o.) or 7-NI (25 mg/kg, i.p.) produced a synergistic antidepressant-like effect in the TST. All these administrations prevented the increased immobility time induced by TNF-α. The effect of agmatine in the TNF-α model of depression appears to be associated, at least partially, with an activation of the monoaminergic systems and inhibition of NMDA receptors and nitric oxide synthesis, although converging signal transduction pathways that may underlie the effect of agmatine should be further investigated. This set of results indicates that agmatine may constitute a new therapeutic alternative for the treatment of depression associated with inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin

    Directory of Open Access Journals (Sweden)

    Chao Julie

    2010-05-01

    Full Text Available Abstract Background Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Methods Lentiviral vector encoding kallistatin (LV-Kallistatin was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA, and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. Results The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF, tumor necrosis factor (TNF-α, and nuclear factor κB (NF-κB transcriptional activity were reduced in the LV-Kallistatin-treated mice. Conclusion Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer.

  7. Magnetic Resonance Imaging of Therapy-Induced Necrosis Using Gadolinium-Chelated Polyglutamic Acids

    International Nuclear Information System (INIS)

    Jackson, Edward F.; Esparza-Coss, Emilio; Wen Xiaoxia; Ng, Chaan S.; Daniel, Sherita L.; Price, Roger E.; Rivera, Belinda; Charnsangavej, Chusilp; Gelovani, Juri G.; Li Chun

    2007-01-01

    Purpose: Necrosis is the most common morphologic alteration found in tumors and surrounding normal tissues after radiation therapy or chemotherapy. Accurate measurement of necrosis may provide an early indication of treatment efficacy or associated toxicity. The purpose of this report is to evaluate the selective accumulation of polymeric paramagnetic magnetic resonance (MR) contrast agents-gadolinium p-aminobenzyl-diethylenetriaminepentaacetic acid-poly(glutamic acid) (L-PG-DTPA-Gd and D-PG-DTPA-Gd)-in necrotic tissue. Methods and Materials: Two different solid tumor models, human Colo-205 xenograft and syngeneic murine OCA-1 ovarian tumors, were used in this study. Necrotic response was induced by treatment with poly(L-glutamic acid)-paclitaxel conjugate (PG-TXL). T 1 -weighted spin-echo images were obtained immediately and up to 4 days after contrast injection and compared with corresponding histologic specimens. Two low-molecular-weight contrast agents, DTPA-Gd and oligomeric(L-glutamic acid)-DTPA-Gd, were used as nonspecific controls. Results: Initially, there was minimal tumor enhancement after injection of either L-PG-DTPA-Gd or D-PG-DTPA-Gd, but rapid enhancement after injection of low-molecular-weight agents. However, polymeric contrast agents, but not low-molecular-weight contrast agents, caused sustained enhancement in regions of tumor necrosis in both tumors treated with PG-TXL and untreated tumors. These data indicate that high molecular weight, rather than in vivo biodegradation, is necessary for the specific localization of polymeric MR contrast agents to necrotic tissue. Moreover, biotinylated L-PG-DTPA-Gd colocalized with macrophages in the tumor necrotic areas, suggesting that selective accumulation of L- and D-PG-DTPA-Gd in necrotic tissue was mediated through residing macrophages. Conclusions: Our data suggest that MR imaging with PG-DTPA-Gd may be a useful technique for noninvasive characterization of treatment-induced necrosis

  8. Programmed necrosis and necroptosis – molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Agata Giżycka

    2015-12-01

    Full Text Available Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  9. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation o...

  10. Differential Effects of Self-Reported Lifetime Marijuana Use on Interleukin-1 Alpha and Tumor Necrosis Factor in African American Adults

    OpenAIRE

    Keen, Larry; Turner, Arlener D.; Callender, Clive; Campbell, Alfonso

    2015-01-01

    It is unknown how lifetime marijuana use affects different proinflammatory cytokines. The purpose of the current study is to explore potential differential effects of lifetime marijuana use on interleukin-1 alpha (IL-1α) and tumor necrosis factor (TNF) in a community based sample. Participants included 168 African American adults (51% female, median age= 47 years). Upon study entry, blood was drawn and the participants completed questions regarding illicit drug use history whose answers were ...

  11. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    Full Text Available Tumor necrosis factor (TNF-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters' and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.

  12. Effect of disrupted mitochondria as a source of damage-associated molecular patterns on the production of tumor necrosis factor α by splenocytes from dogs.

    Science.gov (United States)

    Friedenberg, Steven G; Strange, Heather R; Guillaumin, Julien; VanGundy, Zachary C; Crouser, Elliott D; Papenfuss, Tracey L

    2016-06-01

    OBJECTIVE To evaluate the effects of damage-associated molecular patterns (DAMPs) derived from disrupted mitochondria on canine splenocytes and other immune cells. SAMPLES Liver, spleen, and bone marrow samples obtained from 8 cadavers of healthy research Beagles that had been euthanized for other purposes. PROCEDURES Mitochondria were obtained from canine hepatocytes, and mitochondrial DAMPs (containing approx 75% mitochondrial proteins) were prepared. Mitochondrial DAMPs and the nuclear cytokine high-mobility group box protein 1 were applied to splenocytes, bone marrow-differentiated dendritic cells, and a canine myelomonocytic cell (DH82) line for 6 or 24 hours. Cell culture supernatants from splenocytes, dendritic cells, and DH82 cells were assayed for tumor necrosis factor α with an ELISA. Expression of tumor necrosis factor α mRNA in splenocytes was evaluated with a quantitative real-time PCR assay. RESULTS In all cell populations evaluated, production of tumor necrosis factor α was consistently increased by mitochondrial DAMPs at 6 hours (as measured by an ELISA). In contrast, high-mobility group box protein 1 did not have any independent proinflammatory effects in this experimental system. CONCLUSIONS AND CLINICAL RELEVANCE The study revealed an in vitro inflammatory effect of mitochondrial DAMPs (containing approx 75% mitochondrial proteins) in canine cells and validated the use of an in vitro splenocyte model to assess DAMP-induced inflammation in dogs. This experimental system may aid in understanding the contribution of DAMPs to sepsis and the systemic inflammatory response syndrome in humans. Further studies in dogs are needed to validate the biological importance of these findings and to evaluate the in vivo role of mitochondrial DAMPs in triggering and perpetuating systemic inflammatory states.

  13. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    International Nuclear Information System (INIS)

    Nie, Yunzhong; Du, Leilei; Mou, Yongbin; Xu, Zhenjun; Weng, Leihua; Du, Youwei; Zhu, Yanan; Hou, Yayi; Wang, Tingting

    2013-01-01

    We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 10 5 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma

  14. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Mark Merchant

    Full Text Available Mitogen-activated protein kinase (MAPK pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output and tumor growth in vivo to a greater extent than the maximum tolerated doses of single agents, and results in improved anti-tumor activity in multiple xenografts as well as in two Kras mutant genetically engineered mouse (GEM models. Collectively, these data demonstrate that combined MEK and ERK inhibition is functionally unique, yielding greater than additive anti-tumor effects and

  15. Age related changes in tumor vascularity

    International Nuclear Information System (INIS)

    Loerelius, L.E.; Stridbeck, H.

    1984-01-01

    VX 2 tumors in the rabbit hind leg were investigated at one, two and three weeks of age. Angiograms were compared with vascular casts. The tumors grew rapidly the first two weeks of age. Large variations in vascularity were noted between tumors of different ages. With increasing age arteriovenous shunts at the tumor periphery and areas of avascularity of necrosis in the tumor center increased in size. Possible reasons for tumor necrosis are increased tissue pressure, anoxia caused by arteriovenous shunts and elevation in venous pressure. The natural history of the VX 2 tumor must be considered in every experimental study of the effect of any treatment. (orig.)

  16. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuli [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Nanjing Affiliated First Hospital, Nanjing Medical University, Nanjing (China); Zhao, Guangfeng; Xie, Hao; Huang, Yahong [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Hou, Yayi [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing (China)

    2012-01-27

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex){sub 1.3}(DOX){sub 20}. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers.

  17. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    International Nuclear Information System (INIS)

    Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi

    2012-01-01

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex) 1.3 (DOX) 20 . In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers

  18. Tumor Necrosis Factor Alpha Signaling in Trigeminal Ganglion Contributes to Mechanical Hypersensitivity in Masseter Muscle During Temporomandibular Joint Inflammation.

    Science.gov (United States)

    Ito, Reio; Shinoda, Masamichi; Honda, Kuniya; Urata, Kentaro; Lee, Jun; Maruno, Mitsuru; Soma, Kumi; Okada, Shinji; Gionhaku, Nobuhito; Iwata, Koichi

    To determine the involvement of tumor necrosis factor alpha (TNFα) signaling in the trigeminal ganglion (TG) in the mechanical hypersensitivity of the masseter muscle during temporomandibular joint (TMJ) inflammation. A total of 55 male Sprague-Dawley rats were used. Following injection of Complete Freund's Adjuvant into the TMJ, the mechanical sensitivities of the masseter muscle and the overlying facial skin were measured. Satellite glial cell (SGC) activation and TNFα expression in the TG were investigated immunohistochemically, and the effects of their inhibition on the mechanical hypersensitivity of the masseter muscle were also examined. Student t test or two-way repeated-measures analysis of variance followed by Bonferroni multiple comparisons test were used for statistical analyses. P < .05 was considered to reflect statistical significance. Mechanical allodynia in the masseter muscle was induced without any inflammatory cell infiltration in the muscle after TMJ inflammation. SGC activation and an increased number of TNFα-immunoreactive cells were induced in the TG following TMJ inflammation. Intra-TG administration of an inhibitor of SGC activity or of TNFα-neutralizing antibody depressed both the increased number of TG cells encircled by activated SGCs and the mechanical hypersensitivity of the masseter following TMJ inflammation. These findings suggest that persistent masseter hypersensitivity associated with TMJ inflammation was mediated by SGC-TG neuron interactions via TNFα signaling in the TG.

  19. Tumor necrosis factor-α regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells

    NARCIS (Netherlands)

    Giraudo, E.; Primo, L.; Audero, E.; Gerber, H.-P.; Koolwijk, P.; Soker, S.; Klagsbrun, M.; Ferrara, N.; Bussolino, F.

    1998-01-01

    Tumor necrosis factor-α (TNF-α) modulates gene expression in endothelial cells and is angiogenic in vivo. TNF-α does not activate in vitro migration and proliferation of endothelium, and its angiogenic activity is elicited by synthesis of direct angiogenic inducers or of proteases. Here, we show

  20. Anorectal stenosis after treatment with tumor necrosis factor α antibodies: a case series

    Directory of Open Access Journals (Sweden)

    Keegan Denise

    2010-07-01

    Full Text Available Abstract Introduction We identified three patients who developed anorectal stenosis after successful treatment with anti-tumor necrosis factor α (anti-TNF-α agents. Case presentation Two patients, a 24-year-old Irish Caucasian man and a 64-year-old Irish Caucasian woman, developed symptoms attributable to anorectal stenosis four to six weeks after treatment. A further patient, a 25-year-old Irish Caucasian male, presented three years after treatment with anorectal stenosis, having been asymptomatic with his stenosis for the preceding three years. No patients had evidence of active inflammation at time of representation or had previous anal canal surgery. Conclusion Anorectal stenosis in these patients appears to be independent of active inflammation. No other cause of new stenosis could be identified. We postulate that rapid clinical response to anti-TNF-α agents led to aberrant mucosal healing. This in turn led to anorectal stenosis. This is the first report of this complication in association with the use of biologic agents.

  1. Feline Toxoplasmosis: Tumor Necrosis Factor, Nitric Oxide, and Free Radicals in Seropositive Cats.

    Science.gov (United States)

    Faria, Joice L M; Couto, Caroline do; Wierzynski, Sheron L; Bottari, Nathieli B; Baldissera, Matheus D; Pereira, Wanderson A B; Da Silva, Aleksandro S

    2018-02-01

    Toxoplasma gondii is a cosmopolitan protozoan that causes disease in several species, including humans. In cats, these infections are usually asymptomatic, but in other species they can lead to high levels of inflammatory and cell damage markers, causing cellular damage. Therefore, the aim of this study was to measure levels of tumor necrosis factor (TNF-α), reactive oxygen species (ROS), and nitric oxide (nitrite/nitrate-NO x ) in the serum of cats seropositive for T. gondii. Initially, we investigated the presence of antibodies against T. gondii in cats in the city of Concordia, Santa Catarina, Brazil, with the use of indirect immunofluorescence (IFA), and found 30 cats seropositive for T. gondii and 30 seronegative cats. In this study, seropositive cats showed higher levels of TNF-α, ROS, and NO x compared to seronegative cats. Although cats do not show clinical signs of disease, constant inflammatory response can cause cell damage, which over time may adversely affect the animal.

  2. The influence of X-radiation on production of interleukin-6 and alpha-tumor necrosis factor by perepheral blood mononuclears

    International Nuclear Information System (INIS)

    Komarovskaya, M.E.; Dryk, S.I.; Krivenko, S.I.; Karkanitsa, L.V.

    1993-01-01

    The influence of X-radiation on production of interleurin-6 (IL-6) and α-tumor necrosis factor (TNF) has been investigated. Irradiation with doses of 45, 90 and 900 cGy was shown to increase considerably TNF and IL-6 production both in intact mononuclear cultures of human peripheral blood and in cultures stimulated by phytohemagglutinin. In addition to an absolute increase in the production, the stimulatory effect was manifested by earlier accumulation of IL-6 and TNF activities in supernatant fractions of the cultures under study

  3. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    Science.gov (United States)

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  4. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  5. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  6. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    Science.gov (United States)

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  7. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells12

    OpenAIRE

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-01-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation ...

  8. Biomimetic sulfated polyethylene glycol hydrogel inhibits proteoglycan loss and tumor necrosis factor-α-induced expression pattern in an osteoarthritis in vitro model.

    Science.gov (United States)

    Hemmati-Sadeghi, Shabnam; Dey, Pradip; Ringe, Jochen; Haag, Rainer; Sittinger, Michael; Dehne, Tilo

    2018-04-16

    This study aimed to evaluate the potential of an anti-inflammatory polyethylene glycol (PEG) hydrogel for osteoarthritis (OA) management in an OA in vitro model. Freshly isolated porcine chondrocytes were maintained in high-density cultures to form cartilage-like three-dimensional micromasses. Recombinant porcine tumor necrosis factor-alpha (TNF-α) was used to induce OA-like changes. Normal and OA-like micromasses were treated with dendritic polyglycerol sulfate-based PEG hydrogel. Live/dead staining showed that all micromasses remained vital and presented similar morphological characteristics. Safranin-O staining demonstrated a typical depletion of glycosaminoglycans in TNF-α-treated micromasses but not in the presence of the hydrogel. There was no distinct difference in immunohistochemical detection of type II collagen. Microarray data showed that rheumatoid arthritis and TNF signaling pathways were down regulated in hydrogel-treated OA-like micromasses compared to nontreated OA-like micromasses. The hydrogel alone did not affect genes related to OA such as ANPEP, COMP, CXCL12, PTGS2, and TNFSF10, but it prevented their regulation caused by TNF-α. This study provides valuable insights toward a fully synthetic hydrogel for the intra-articular treatment of OA. The findings proved the potential of this hydrogel to prevent the development of TNF-α-induced OA with regard to proteoglycan loss and TNF-α-induced expression pattern without additional signs of differentiation and inflammation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  9. Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-α Inhibition.

    Science.gov (United States)

    Zhu, Lin; Giunzioni, Ilaria; Tavori, Hagai; Covarrubias, Roman; Ding, Lei; Zhang, Youmin; Ormseth, Michelle; Major, Amy S; Stafford, John M; Linton, MacRae F; Fazio, Sergio

    2016-08-01

    Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages. Lethally irradiated low-density lipoprotein receptor (LDLR)(-/-) mice were reconstituted with bone marrow from either wild-type, MΦLRP1(-/-), apoE(-/-) or apoE(-/-)/MΦLRP1(-/-)(DKO) mice, and then treated with the TNF-α inhibitor adalimumab while fed a Western-type diet. Adalimumab reduced plasma TNF-α concentration, suppressed blood ly6C(hi) monocyte levels and their migration into the lesion, and reduced lesion cellularity and inflammation in both wild-type→LDLR(-/-) and apoE(-/-)→LDLR(-/-) mice. Overall, adalimumab reduced lesion burden by 52% to 57% in these mice. Adalimumab reduced TNF-α and blood ly6C(hi) monocyte levels in MΦLRP1(-/-)→LDLR(-/-) and DKO→LDLR(-/-) mice, but it did not suppress ly6C(hi) monocyte migration into the lesion or atherosclerosis progression. Our results show that TNF-α blockade exerts antiatherosclerotic effects that are dependent on the presence of macrophage LRP1. © 2016 American Heart Association, Inc.

  10. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  11. Is tumor necrosis factor - 376a promoter polymorphism associated with susceptibility to multiple sclerosis? ¿El polimorfismo-376A del promotor del gen del factor de necrosis tumoral se asocia con una mayor susceptibilidad a padecer esclerosis múltiple?

    Directory of Open Access Journals (Sweden)

    Marcelo A. Kauffman

    2007-10-01

    Full Text Available A single nucleotide polymorphism (SNP at position -376 of the tumor necrosis factor á gene (TNFA has been associated with susceptibility to multiple sclerosis (MS in Spain. However, no association was found in populations from the USA and The Netherlands. Here we investigate the association between the TNFA - 376A SNP and MS susceptibility in Argentinean patients with MS. The A/G genotype was found in 4.4% of patients (n=90 and in 4.8% of healthy individuals (n=84; p=0.92; odds ratio=0.93; confidence interval: 0.23- 3.84. Thus, no significant differences in genotype and allele frequencies were found between healthy individuals and patients with MS in Argentina.Un polimorfismo de nucleótido único (SNP, por sus iniciales en inglés en la posición -376 del gen codificante del factor de necrosis tumoral á (TNFA ha sido asociado en España con un mayor riesgo a padecer esclerosis múltiple (EM. Sin embargo, esta asociación no fue encontrada en estudios hechos en poblaciones provenientes de los EE.UU. y Holanda. Aquí investigamos la asociación entre el SNP TNFA -376A y el desarrollo de EM en una población de pacientes argentinos con EM. El genotipo A/G fue encontrado en 4.4% de los pacientes (n=90 y en 4.8% de los controles sanos (n=84; p=0.92; odds ratio=0.93; intervalo de confianza: 0.23-3.84. En consecuencia, no encontramos diferencias en las frecuencias alélicas y genotípicas entre los sujetos enfermos y los controles sanos en Argentina.

  12. Magnetic resonance imaging after radiofrequency ablation in a rodent model of liver tumor: tissue characterization using a novel necrosis-avid contrast agent

    International Nuclear Information System (INIS)

    Ni, Yicheng; Yu, Jie; Marchal, Guy; Chen, Feng; Mulier, Stefaan; Sun, Xihe; Landuyt, Willy; Verbruggen, Alfons

    2006-01-01

    We exploited a necrosis-avid contrast agent ECIV-7 for magnetic resonance imaging (MRI) in rodent liver tumors after radiofrequency ablation (RFA). Rats bearing liver rhabdomyosarcoma (R1) were randomly allocated to three groups: group I, complete RFA, group II, incomplete RFA, and group III, sham ablation. Within 24 h after RFA, T1-weighted (T1-w) MRI was performed before and after injection of ECIV-7 at 0.05 mmol/kg and followed up from 6-24 h. Signal intensities (SIs) were measured with relative enhancement (RE) and contrast ratio (CR) calculated. The MRI findings were verified histomorphologically. On plain T1-w MRI the contrasts between normal liver, RFA lesion, residual and/or intact tumor were vague. Early after administration of ECIV-7, the liver SI was strongly enhanced (RE=40-50%), leaving the RFA lesion as a hypointense region in groups I and II. At delayed phase, two striking peri-ablational enhancement patterns appeared (RE=90% and CR=1.89%), i.e., ''O'' type of hyperintense rim in group I and ''C'' type of incomplete rim in group II. These MRI manifestations could be proven histologically. In this study, tissue components after RFA could be characterized with discernable contrasts by necrosis-avid contrast agent (NACA)-enhanced MRI, especially at delayed phase. This approach may prove useful for defining the ablated area and identifying residual tumor after RFA. (orig.)

  13. An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles

    NARCIS (Netherlands)

    Wilson, A. G.; de Vries, N. [=Niek; Pociot, F.; di Giovine, F. S.; van der Putte, L. B.; Duff, G. W.

    1993-01-01

    The tumor necrosis factor (TNF) alpha gene lies within the class III region of the major histocompatibility complex (MHC), telomeric to the class II and centromeric to the class I region. We have recently described the first polymorphism within the human TNF-alpha locus. This is biallelic and lies

  14. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening.

    Science.gov (United States)

    Kumar, Deepak; Moore, Robert M; Mercer, Brian M; Mansour, Joseph M; Mesiano, Sam; Schatz, Frederick; Lockwood, Charles J; Moore, John J

    2017-12-01

    The progestogen 17-α hydroxyprogesterone caproate (17-OHPC) is 1 of only 2 agents recommended for clinical use in the prevention of spontaneous preterm delivery, and studies of its efficacy have been conflicting. We have developed an in-vitro model to study the fetal membrane weakening process that leads to rupture in preterm premature rupture of the fetal membranes (pPROM). Inflammation/infection associated with tumor necrosis factor-α (TNF-α) induction and decidual bleeding/abruption associated thrombin release are leading causes of preterm premature rupture of the fetal membranes. Both agents (TNF-α and thrombin) cause fetal membrane weakening in the model system. Furthermore, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both TNF-α and thrombin-induced fetal membrane weakening. In a previous report, we demonstrated that 3 progestogens, progesterone, 17-alpha hydroxyprogesterone (17-OHP), and medroxyprogesterone acetate (MPA), each inhibit both TNF-α- and thrombin-induced fetal membrane weakening at 2 distinct points of the fetal membrane weakening pathway. Each block both the production of and the downstream action of the critical intermediate granulocyte-macrophage colony-stimulating factor. The objective of the study was to characterize the inhibitory effects of 17-OHPC on TNF-α- and thrombin-induced fetal membrane weakening in vitro. Full-thickness human fetal membrane fragments from uncomplicated term repeat cesarean deliveries were mounted in 2.5 cm Transwell inserts and cultured with/without 17-alpha hydroxyprogesterone caproate (10 -9 to 10 -7 M). After 24 hours, medium (supernatant) was removed and replaced with/without the addition of tumor necrosis factor-alpha (20 ng/mL) or thrombin (10 U/mL) or granulocyte-macrophage colony-stimulating factor (200 ng/mL). After 48 hours of culture, medium from the maternal side compartment of the model was assayed for granulocyte-macrophage colony

  15. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  16. DNA fragmentation and cytotoxicity by recombinant human tumor necrosis factor in L929 fibroblast cells

    International Nuclear Information System (INIS)

    Kosaka, T.; Kuwabara, M.; Koide, F.

    1992-01-01

    Induction of cell DNA fragmentation by treatment of recombinant human Tumor Necrosis Factor alpha (rhTNF alpha) was examined by using mouse L929 cells derived from mouse fibroblast cells. The amount of DNA fragments derived from rhTNF alpha-treated cells, detected by alkaline elution technique, was smaller than that derived from X-irradiated cells. The rhTNF alpha caused the DNA fragmentation depending on its incubation time and concentration. The DNA damage caused by rhTNF alpha treatment correlated with its cytotoxicity. This result suggested that the DNA fragmentation is one of causes of cell death. The treatment with proteinase K of DNA obtained from rhTNF alpha-treated cells did not increase the amount of DNA fragmentation, which indicates that rhTNF alpha causes DNA-fragmentation but not DNA-protein cross-linking

  17. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    Science.gov (United States)

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  18. Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor alpha-induced adhesion molecule expression in human umbilical vein endothelial cells

    NARCIS (Netherlands)

    Weber, Nina C.; Kandler, Jennis; Schlack, Wolfgang; Grueber, Yvonne; Frädorf, Jan; Preckel, Benedikt

    2008-01-01

    BACKGROUND: The barrier properties of the endothelium are of critical importance during pathophysiologic processes. These barrier properties depend on an intact cytoskeleton and are regulated by cell adhesion molecules. Tumor necrosis factor alpha (TNF-alpha) is known to induce cell adhesion

  19. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    Science.gov (United States)

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  20. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  1. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  2. Value of multiparametric magnetic resonance imaging of the breast for the differentiation of fat necrosis and tumor recurrence after breast-conserving surgery. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, Jonas; Krug, Kathrin Barbara [University Hospital Cologne (Germany). Dept. of Diagnostic and Interventional Radiology; Malter, Wolfram [University Hospital Cologne (Germany). Dept. of Obstetrics and Gynaecology; Markiefka, Birgid [University Hospital Cologne (Germany). Inst. of Pathology

    2018-02-15

    In rare cases the differentiation of tumor recurrence and fat necrosis in patients with breast-conserving surgery with or without radiotherapy can be challenging. In such cases magnetic resonance imaging features, in particular strong vs. faint contrast enhancement and diffusion restriction vs. non-restriction can help to characterize such lesions.

  3. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    International Nuclear Information System (INIS)

    Yin, Shu-Cheng; Guo, Wei; Tao, Ze-Zhang

    2013-01-01

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression

  4. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  5. Chimeric monoclonal antibody to tumor necrosis factor alpha (infliximab in psoriasis

    Directory of Open Access Journals (Sweden)

    Sridhar J

    2006-01-01

    Full Text Available Background: Insights into the pathogenesis of psoriasis have provided opportunities to target key steps in the disease process. Tumor necrosis factor-alpha (TNF-a being crucial to the pathogenesis of psoriasis, monoclonal antibodies against this cytokine have proved useful in its treatment. Aim: To study the efficacy of chimeric monoclonal antibody to TNF-a (infliximab in Indian patients with recalcitrant psoriasis vulgaris. Materials and Methods: Three patients with recalcitrant psoriasis vulgaris were studied. Baseline haemogram, biochemical parameters, chest radiograph and Mantoux skin test were performed. A loading dose regimen of 5 mg/kg infliximab was administered at weeks 0, 2 and 6. PASI assessment, adverse drug event monitoring and laboratory assessments were carried out at 2-week intervals until week 10. Patients were followed up until week 22 for relapse. Results: Infliximab was well tolerated. The mean PASI was 25.4 at presentation and declined to 5.5 at 10 weeks. PASI 75 was attained at a mean of 9.6 weeks. Relapse occurred at a mean of 18.6 weeks after the first infusion. Conclusions: This study on Indian patients brings out the importance of cytokine-based therapies in psoriasis. Indigenous production could make these therapies a viable therapeutic option for psoriasis patients in the near future.

  6. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Science.gov (United States)

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-09-15

    Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  7. Supernatants from Staphylococcus epidermidis grown in the presence of different antibiotics induce differential release of tumor necrosis factor alpha from human monocytes.

    OpenAIRE

    Mattsson, E; Van Dijk, H; Verhoef, J; Norrby, R; Rollof, J

    1996-01-01

    Bacterial products from gram-positive bacteria, such as peptidoglycan, teichoic acid, and toxins, activate mononuclear cells to produce tumor necrosis factor alpha (TNF). The present study evaluated the release of soluble cell wall components from Staphylococcus epidermidis capable of inducing TNF after exposure of the bacteria to various antibiotics. A clinical S. epidermidis isolate (694) was incubated with either penicillin, oxacillin, vancomycin, or clindamycin at five times the MIC. Supe...

  8. Minocycline hydrochloride nanoliposomes inhibit the production of TNF-α in LPS-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Liu D

    2012-08-01

    Full Text Available D Liu, P S YangShandong Provincial Key Laboratory of Oral Biomedicine, College of Stomatology, Shandong University, Shandong Province, People's Republic of ChinaBackground: As an adjunctive treatment of chronic periodontitis, it seems that the application of periocline or the other antimicrobials is effective against periodontopathogens. In this study, nanoliposomes were investigated as carriers of minocycline hydrochloride and the inhibition effects of minocycline hydrochloride nanoliposomes on the proliferation and lipopolysaccharide (LPS-stimulated production of tumor necrosis factor-α (TNF-α of macrophages were elucidated.Methods: After stimulation with 10 µg/mL LPS, murine macrophages (ANA-1 were treated with 10, 20, 40, 50 and 70 µg/mL 2% minocycline hydrochloride nanoliposomes, minocycline hydrochloride solution, and periocline for 6, 12, 24, 48 and 60 hours, respectively. A tetrazolium (MTT assay was used to evaluate macrophages cell proliferation rate and the levels of TNF-α mRNA were measured by SYBR Green Real Time PCR.Results: Ten to 70 µg/mL 2% minocycline hydrochloride nanoliposomes, minocycline hydrochloride solution, and periocline showed dose- and time-dependent inhibition of ANA-1 proliferation. Minocycline hydrochloride nanoliposomes showed dose- and ratio-dependent inhibition of LPS-stimulated TNF-α secretion of ANA-1. The inhibition effect of 10 µg/mL minocycline hydrochloride nanoliposomes was significantly better than that of two positive control groups, and equated to that of 60 or 70 µg/mL periocline. The expression of TNF-α mRNA in experimental group continued to reduce linearly with time.Conclusion: All three preparations of minocycline hydrochloride showed dose- and time-dependent inhibition of proliferation of ANA-1. Minocycline hydrochloride nanoliposomes have stronger and longer inhibition effect on LPS-stimulated TNF-α secretion of macrophages cell than minocycline hydrochloride solution and periocline

  9. Effect of bevacizumab on radiation necrosis of the brain

    International Nuclear Information System (INIS)

    Gonzalez, Javier; Kumar, Ashok J.; Conrad, Charles A.; Levin, Victor A.

    2007-01-01

    Purpose: Because blocking vascular endothelial growth factor (VEGF) from reaching leaky capillaries is a logical strategy for the treatment of radiation necrosis, we reasoned that bevacizumab might be an effective treatment of radiation necrosis. Patients and Methods: Fifteen patients with malignant brain tumors were treated with bevacizumab or bevacizumab combination for their tumor on either a 5 mg/kg/2-week or 7.5 mg/kg/3-week schedule. Radiation necrosis was diagnosed in 8 of these patients on the basis of magnetic resonance imaging (MRI) and biopsy. MRI studies were obtained before treatment and at 6-week to 8-week intervals. Results: Of the 8 patients with radiation necrosis, posttreatment MRI performed an average of 8.1 weeks after the start of bevacizumab therapy showed a reduction in all 8 patients in both the MRI fluid-attenuated inversion-recovery (FLAIR) abnormalities and T1-weighted post-Gd-contrast abnormalities. The average area change in the T1-weighted post-Gd-contrast abnormalities was 48% (±22 SD), and the average change in the FLAIR images was 60% (±18 SD). The average reduction in daily dexamethasone requirements was 8.6 mg (±3.6). Conclusion: Bevacizumab, alone and in combination with other agents, can reduce radiation necrosis by decreasing capillary leakage and the associated brain edema. Our findings will need to be confirmed in a randomized trial to determine the optimal duration of treatment

  10. Comparison of the sensitivity and specificity of CT and MR imaging in the detection of cervical nodal tumor necrosis and extracapsular tumor spread

    International Nuclear Information System (INIS)

    Yousem, D.M.; Som, P.M.; Schjwaibold, F.; Hendrix, R.

    1991-01-01

    This paper evaluates if MR imaging can achieve the sensitivity and specificity of enhanced CT in detecting tumoral nodal necrosis (TNN) and extracapsular tumor spread (ETS). Enhanced CT scans and unenhanced and enhanced MR images were retrospectively and separately reviewed by a study-blinded radiologist. Fifty-eight lymph nodes were evaluated for TNN and ETS. Readings were given for CT, T1-weighted MR, T2-weighted MR, T1-weighted and T2-weighted MR, enhanced T1-weighted fat-suppressed MR, and T1-weighted, T2-weighted, and enhanced fat suppressed T1-weighted MR. Pathology proof was used to assess TNN; CT and used to assess ETS. Enhanced CT had the highest sensitivity for TNN. The sensitivity of unenhanced MR ranged from 33% to 50%; that of enhanced MR was 47%. All MR sequences and cT had specificities for TNN >92%. The highest accuracy of MR for TNN was the unenhanced T1-weighted and T2-weighted images alone; CT accuracy was 90%. MR sensitivity for ETS was maximal with T1-weighted images; all sequences had specificities >90%. Gadolinium-enhanced images did not improve accuracy in TNN or ETS

  11. Lipopolysaccharide (LPS) stimulates fresh human monocytes to lyse actinomycin D-treated WEHI-164 target cells via increased secretion of a monokine similar to tumor necrosis factor

    International Nuclear Information System (INIS)

    Chen, A.R.; McKinnon, K.P.; Koren, H.S.

    1985-01-01

    The effects of lipopolysaccharide (LPS) on tumoricidal activity of human monocytes freshly isolated from peripheral blood were studied. Actinomycin D-treated WEHI-164 cells were used as targets because they are NK insensitive and are lysed rapidly by monocytes in 6-hr 51 Cr-release assays. Monocytes exhibited significant spontaneous activity without endotoxin. Monocytes either pretreated for 1 hr with LPS or assayed in the presence of LPS exhibited 100- to 1000-fold increased cytolytic activity. Cytolytic activity was heat labile and trypsin sensitive, and was recovered from Sepharose S-200 columns in a single peak with an apparent m.w. between 25,000 and 40,000. Actinomycin D or cycloheximide treatment of monocytes before the addition of LPS inhibited cytolytic monokine production. Cytolytic monokine activity was practically neutralized by specific rabbit antisera to human tumor necrosis factor (TNF). It was concluded that, although fresh human monocytes exhibit spontaneous tumoricidal activity, LPS is a potent activating agent. Its stimulatory effects depend on new transcription and translation and are mediated by enhanced secretion of a cytolytic monokine similar to TNF

  12. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  13. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...

  14. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Directory of Open Access Journals (Sweden)

    Tian Yufeng

    2010-06-01

    Full Text Available Abstract Background New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. Results In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. Conclusion Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.

  15. Reactivation of pulmonary tuberculosis (TBC) with the use of antagonist of the tumor necrosis factor alpha (FNTα) in rheumatoid arthritis: On purpose of a case

    International Nuclear Information System (INIS)

    Martinez V, Jose B; Medina V, Yimy F; Parga, Roberto; Restrepo, Jose Felix; Iglesias G, Antonio; Rondon, Federico

    2005-01-01

    Woman 56 years old, with history of rheumatoid arthritis who develops reactivation of pulmonary tuberculosis (TBC) after 1 year of treatment with biological therapy (antagonist of the tumor necrosis factor alpha). It is discussed pathophysiologic mechanisms, diagnostic approach, treatment of TBC and some recommendations for the use of biological therapy in patients with rheumatic disease

  16. A synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the TNFα-induced invasive capability of MDA-MB-231 human breast cancer cells by inhibiting NF-κB-mediated GROα expression.

    Science.gov (United States)

    Lee, Da Young; Lee, Da Hyun; Jung, Jung You; Koh, Dongsoo; Kim, Geum-Soog; Ahn, Young-Sup; Lee, Young Han; Lim, Yoongho; Shin, Soon Young

    2016-01-01

    2-Hydroxy-3',5,5'-trimenthoxyochalcone (DK-139) is a synthetic chalcone-derived compound. This study evaluated the biological activity of DK-139 on the inhibition of tumor metastasis. Growth-regulated oncogene-alpha (GROα) plays an important role in the progression of tumor development by stimulating angiogenesis and metastasis. In this study, DK-139 inhibited tumor necrosis factor alpha (TNFα)-induced GROα gene promoter activity by inhibiting of IκB kinase (IKK) in MDA-MB231 cells. In addition, DK-139 prevented the TNFα-induced cell migration, F-actin formation, and invasive capability of MDA-MB-231 cells. These findings suggest that DK-139 is a potential drug candidate for the inhibition of tumor cell locomotion and invasion via the suppression of NF-κB-mediated GROα expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Regulation of bitter taste responses by tumor necrosis factor.

    Science.gov (United States)

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Directory of Open Access Journals (Sweden)

    Nina Mayorek

    Full Text Available BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX, diclofenac potently inhibits phospholipase A(2 (PLA(2, thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac treatment (30 mg/kg/bw for 11 days of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. CONCLUSION/SIGNIFICANCE: In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  19. Inhibition of Lung Cancer Growth in Mice by Dietary Mixed Tocopherols

    Science.gov (United States)

    Lambert, Joshua D.; Lu, Gang; Lee, Mao-Jung; Hu, Jennifer; Ju, Jihyeung; Yang, Chung S.

    2009-01-01

    Tocopherols are lipophilic antioxidants found in vegetable oils. Here, we examined the growth inhibitory effect of a γ-tocopherol-enriched tocopherol mixture (γTmT) against CL13 murine lung cancer cells grown in culture and as subcutaneous tumors in A/J mice. We found γTmT had no effect after 2 d and weakly inhibited the growth of CL13 in culture after 5 d (28% growth inhibition at 80 µM). Dietary treatment with 0.1% and 0.3% γTmT for 50 d inhibited the growth of CL13 tumors in A/J mice by 53.9 and 80.5%, respectively. Histopathological analysis revealed an increase in tumor necrosis compared to control tumors (80% and 240% increase by 0.1% and 0.3% γTmT, respectively). Dietary treatment with γTmT dose-dependently increased γ- (10.0 – 37.6-fold) and δ-tocopherol (8.9 – 26.7-fold) in the tumors of treated mice compared to controls. Dietary treatment with γTmT also increased plasma γ- (5.4 – 6.7-fold) and δ-tocopherol (5.5 – 7-fold). Whereas others have demonstrated the cancer preventive activity of γTmT against mammary and colon cancer, this is the first report of growth inhibitory activity against lung cancer. Further studies are needed to determine the underlying mechanisms for this anticancer activity, and to determine if such activity occurs in other models of cancer. PMID:19557822

  20. Endotoxin and tumor necrosis factor-receptor levels in portal and hepatic vein of patients with alcoholic liver cirrhosis receiving elective transjugular intrahepatic portosystemic shunt

    DEFF Research Database (Denmark)

    Trebicka, Jonel; Krag, Aleksander; Gansweid, Stefan

    2011-01-01

    In cirrhosis portal hypertension can promote bacterial translocation and increase serum endotoxin levels. Vice versa, endotoxin aggravates portal hypertension by induction of systemic and splanchnic vasodilation, and by triggering hepatic inflammatory response via tumor necrosis factor α (TNFα......). However, the hepatic elimination of endotoxin in cirrhotic patients with severe portal hypertension, in the absence of acute complications, has not been investigated so far....

  1. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Science.gov (United States)

    Lin, Marie C; Lee, Nikki P; Zheng, Ning; Yang, Pai-Hao; Wong, Oscar G; Kung, Hsiang-Fu; Hui, Chee-Kin; Luk, John M; Lau, George Ka-Kit

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins. METHODS: The gene expression profile was compared in a pair of HBV-infected twins. RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV, whereas the other became a chronic HBV carrier. Eighty-eight and forty-six genes were found to be up- or down-regulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RT-PCR. However, upon HBV core antigen stimulation, TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+ channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins. CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV. PMID:16437679

  2. Tumor Necrosis Factor-Alpha in Peripical Tissue Exudates of Teeth with Apical Periodontitis

    Directory of Open Access Journals (Sweden)

    Sonja Pezelj-Ribaric

    2007-01-01

    Full Text Available Aim. The aim of this study was to determine tumor necrosis factor-alpha (TNF-α levels in periapical exudates and to evaluate their relationship with radiological findings. Methodology. Periapical exudates were collected from root canals of 60 single-rooted teeth using absorbent paper points. TNF-α levels were determined by enzyme-linked immunosorbent assays. The samples were divided into three groups according to the periapical radiolucent area. Results. Nonparametric Kruskal-Wallis test revealed significant differences between TNF-α concentrations in control group (40, 57±28, 15 pg/mL and group with larger radiolucent areas (2365, 79±582, 95 pg/mL, as well as between control and canals with small radiolucent areas (507, 66±278, 97 (P<.05. Conclusions. The levels of TNF-α increase significantly in teeth with periapical pathosis, from smaller to bigger lesions. This research and its results have shown that objective analysis of the TNF-α levels enables establishment of a relationship between different concentrations of TNF-α and different radiological changes.

  3. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    Directory of Open Access Journals (Sweden)

    Rahul Jandial

    2018-01-01

    Full Text Available Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1 to detoxify the toxic glycolytic byproduct methylglyoxal (MG and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs. Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM, the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA approaches. Inhibition of GLO1 with S-(p-bromobenzyl glutathione dicyclopentyl ester (p-BrBzGSH(Cp2 increased levels of the DNA-AGE N2-1-(carboxyethyl-2′-deoxyguanosine (CEdG, a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE; and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  4. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    Science.gov (United States)

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  5. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  6. Golimumab and certolizumab: The two new anti-tumor necrosis factor kids on the block

    Directory of Open Access Journals (Sweden)

    Mittal Mohit

    2010-01-01

    Full Text Available Anti-tumor necrosis factor (anti-TNF agents have revolutionized treatment of psoriasis and many other inflammatory diseases of autoimmune origin. They have considerable advantages over the existing immunomodulators. Anti-TNF agents are designed to target a very specific component of the immune-mediated inflammatory cascades. Thus, they have lower risks of systemic side-effects. In a brief period of 10 years, a growing number of biological therapies are entering the clinical arena while many more biologicals remain on the horizon. With time, the long-term side-effects and efficacies of these individual agents will become clearer and help to determine which ones are the most suitable for long-term care. Golimumab (a human monoclonal anti-TNF-α antibody and Certolizumab (a PEGylated Fab fragment of humanized monoclonal TNF-α antibody are the two latest additions to the anti-TNF regimen. Here, we are providing a brief description about these two drugs and their uses.

  7. Combination therapy with gefitinib and doxorubicin inhibits tumor growth in transgenic mice with adrenal neuroblastoma

    International Nuclear Information System (INIS)

    Kawano, Kumi; Hattori, Yoshiyuki; Iwakura, Hiroshi; Akamizu, Takashi; Maitani, Yoshie

    2013-01-01

    Highly relevant mouse models of human neuroblastoma (NB) are needed to evaluate new therapeutic strategies against NB. In this study, we characterized transgenic mice with bilateral adrenal tumors. On the basis of information from the tumoral gene expression profiles, we examined the antitumor effects of unencapsulated and liposomal doxorubicin (DXR), alone and in combination with gefitinib, on adrenal NB. We showed that intravenous injection of unencapsulated or liposomal DXR alone inhibited tumor growth in a dose-dependent manner, as assessed by magnetic resonance imaging (MRI). However, liposomal DXR did not exhibit greater antitumor effect than unencapsulated DXR. Immunohistochemical analysis revealed that the adrenal tumor vasculature with abundant pericyte coverage was a less leaky structure for liposomes. Combination therapy with unencapsulated or liposomal DXR plus gefitinib strongly suppressed tumor growth and delayed tumor regrowth than treatment with unencapsulated or liposomal DXR alone, even at a lower dose of DXR. Dynamic contrast-enhanced MRI analysis revealed that gefitinib treatment increased blood flow in the tumor, indicating that gefitinib treatment changes the tumor vascular environment in a manner that may increase the antitumor effect of DXR. In conclusion, the combination of gefitinib and DXR induces growth inhibition of adrenal NBs in transgenic mice. These findings will provide helpful insights into new treatments for NB

  8. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingwen [Shanghai Chest Hospital, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Jiang, Songmin [State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Han, Baohui [Shanghai Chest Hospital, Shanghai 200433 (China); Sun, Tongwen [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China); Li, Zhengnan; Zhao, Lina; Gao, Qiang [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Sun, Jialin, E-mail: jialin_sun@126.com [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  9. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor–superantigen conjugate

    International Nuclear Information System (INIS)

    Sun, Qingwen; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-01-01

    Highlights: ► We construct and purify a fusion protein VEGF–SEA. ► VEGF–SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. ► T cells driven by VEGF–SEA were accumulated around tumor cells bearing VEGFR by mice image model. ► VEGF–SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. ► The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF–SEA treated with 15 μg, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4 + and CD8 + T cells driven by VEGF–SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF–SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  10. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    International Nuclear Information System (INIS)

    Ruch, R.J.

    1988-01-01

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of [5- 3 H]uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes

  11. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Jiang, Wen-guo; Zhen, Yong-su; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; Zhang, Sheng-hua; Zhou, Daifu; Li, Liang; Li, Yi; Luo, Yongzhang

    2013-01-01

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  12. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingjun, E-mail: menglingjun@nibs.ac.cn [College of Biological Sciences, China Agricultural University, Beijing 100094 (China); National Institute of Biological Sciences, Beijing 102206 (China); Jin, Wei [Institute for Immunology, Tsinghua University, Beijing 100084 (China); Wang, Yuhui [Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing 100191 (China); Huang, Huanwei; Li, Jia; Zhang, Cai [National Institute of Biological Sciences, Beijing 102206 (China)

    2016-04-29

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.

  13. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    International Nuclear Information System (INIS)

    Meng, Lingjun; Jin, Wei; Wang, Yuhui; Huang, Huanwei; Li, Jia; Zhang, Cai

    2016-01-01

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.

  14. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-beta (= lymphotoxin-alpha) and cytolysin appeared early and before onset of clinical...... signs of EAE; (ii) TNF-alpha peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-gamma (IFN-gamma) mRNA shown previously is consistent with a role of IL-12 in promoting...... proliferation and activation of T helper 1 (Th1) type cells producing IFN-gamma. The TNF-beta mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-alpha was suggested from these observations that TNF-alpha mRNA expression...

  15. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Lambert, Robert G W

    2011-01-01

    To investigate the relationship of circulating biomarkers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6], and YKL-40), angiogenesis (vascular endothelial growth factor), cartilage turnover (C-terminal crosslinking telopeptide of type II collagen [CTX-II], total aggrecan, matrix...... metalloproteinase 3 [MMP-3], and cartilage oligomeric matrix protein [COMP]), and bone turnover (CTX-I and osteocalcin) to inflammation on magnetic resonance imaging (MRI) and radiographic progression in patients with axial spondylarthritis (SpA) beginning tumor necrosis factor α (TNFα) inhibitor therapy....

  16. Cost of tumor necrosis factor blockers per patient with rheumatoid arthritis in a multistate Medicaid population

    Directory of Open Access Journals (Sweden)

    Bonafede M

    2014-09-01

    Full Text Available Machaon Bonafede,1 George J Joseph,2 Neel Shah,2 Nicole Princic,1 David J Harrison2 1Truven Health Analytics, Cambridge, MA, 2Amgen Inc., Thousand Oaks, CA, USA Background: The purpose of this study was to estimate the annual cost per treated patient for the tumor necrosis factor (TNF blockers, etanercept, adalimumab, and infliximab in rheumatoid arthritis (RA patients covered by Medicaid. Methods: The MarketScan Medicaid Multistate Database was used to identify adult RA patients who used etanercept, adalimumab, or infliximab (index agents from 2007 to 2011. The index date was the first claim preceded by 180 days and followed by 360 days of continuous enrollment. Patients with other conditions for which these agents are approved by the US Food and Drug Administration were excluded. “Continuing” patients had one or more pre-index claim for their index biologic, and "new" patients did not. Cost per treated patient was calculated in the 360 day post-index period for each index agent as the total index drug and administration cost to the payer and the costs of switched-to agents divided by the number of patients who received the index agent. Results: A total of 1,085 patients met the study criteria. Forty-eight percent received etanercept (n=521; 37% received adalimumab (n=405; and 15% received infliximab (n=159. Patient characteristics were similar across groups (mean age 47.4 years, 83% female. The annual cost per treated patient was lowest for etanercept ($18,466, followed by adalimumab ($20,983 and infliximab ($26,516. For all agents, annual costs were lower for new patients ($17,996 for etanercept, $18,992 for adalimumab, and $24,756 for infliximab than for continuing patients ($19,004 for etanercept, $24,438 for adalimumab, and $28,127 for infliximab. Conclusion: Etanercept had lower costs per treated patient than adalimumab or infliximab in both new and continuing Medicaid enrollees with RA. Keywords: cost, tumor necrosis factor

  17. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  18. Evaluation of tumor necrosis factor alpha serum level in obese and lean women with clomiphene citrate resistant polycystic ovary disease

    OpenAIRE

    Seyam, Emaduldin; Hasan, Momen; Khalifa, Eissa M.; Ramadan, Ahmad; Hefzy, Enas

    2017-01-01

    Objective: The aim of this work was to investigate the level of the serum level of tumor necrosis factor alpha (TNF-α) as an inflammatory biomarker in lean and obese women with polycystic ovary disease (PCOD), who are resistant to clomiphene citrate (CCR-PCOD). Patients and design: It is a case controlled study, where one hundred and fifty (n = 150) PCOD women (study group), who are resistant to clomiphene citrate (CCR-PCOD) had been recruited, in addition to one hundred (n = 100) women wi...

  19. Expression of human soluble tumor necrosis factor (TNF)-related ...

    African Journals Online (AJOL)

    DR NJ TONUKARI

    2011-06-06

    Jun 6, 2011 ... bio-technique in bacterial (Lin et al., 2007), yeast (Xu et al., 2003) ... biological activity, such as human somatotropin (hST) .... sion way with chloroplast transit peptide (Wang et al., .... chloroplast protein synthesis capacity by massive expression of a ... necrosis factor-related apoptosis-inducing ligand in vivo.

  20. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    International Nuclear Information System (INIS)

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC

  1. Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (Apo2 ligand) in vivo

    Czech Academy of Sciences Publication Activity Database

    Weber, T.; Lu, M.; Anděra, Ladislav; Lahm, H.; Gellert, N.; Fariss, M. W.; Kořínek, Vladimír; Sattler, W.; Ucker, D. S.; Terman, A.; Schroder, A.; Erl, W.; Brunk, U. T.; Coffey, R. J.; Weber, C.; Neuzil, J.

    2002-01-01

    Roč. 8, - (2002), s. 863-869 ISSN 1078-0432 R&D Projects: GA ČR GA312/99/0348 Institutional research plan: CEZ:AV0Z5052915 Keywords : Vitamin E, Antineoplastic Agent, Tumor Necrosis Factor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.991, year: 2002

  2. Tumor necrosis factor-alpha modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver "stem-like" cells

    Czech Academy of Sciences Publication Activity Database

    Umannová, Lenka; Zatloukalová, Jiřina; Machala, M.; Krčmář, P.; Májková, Z.; Hennig, B.; Kozubík, Alois; Vondráček, Jan

    2007-01-01

    Roč. 99, č. 1 (2007), s. 79-89 ISSN 0388-1350 R&D Projects: GA ČR(CZ) GA524/05/0595 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : tumor necrosis factor-alpha * xenobiotic metabolizing enzymes * dioxin Subject RIV: BO - Biophysics

  3. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α.

    Directory of Open Access Journals (Sweden)

    Yuko Ono

    Full Text Available Circulating lipopolysaccharide (LPS concentrations are often elevated in patients with sepsis or with various endogenous diseases that are associated with metabolic endotoxemia. Involuntary loss of skeletal muscle, termed muscle wasting, is commonly observed in these conditions, suggesting that circulating LPS might play an essential role in its development. Although impairment of muscle regeneration is an important determinant of skeletal muscle wasting, it is unclear whether LPS affects this process and, if so, by what mechanism. Here, we used the C2C12 myoblast cell line to investigate the effects of LPS on myogenesis.C2C12 myoblasts were grown to 80% confluence and induced to differentiate in the absence or presence of LPS (0.1 or 1 μg/mL; TAK-242 (1 μM, a specific inhibitor of Toll-like receptor 4 (TLR4 signaling; and a tumor necrosis factor (TNF-α neutralizing antibody (5 μg/mL. Expression of a skeletal muscle differentiation marker (myosin heavy chain II, two essential myogenic regulatory factors (myogenin and MyoD, and a muscle negative regulatory factor (myostatin was analyzed by western blotting. Nuclear factor-κB (NF-κB DNA-binding activity was measured using an enzyme-linked immunosorbent assay.LPS dose-dependently and significantly decreased the formation of multinucleated myotubes and the expression of myosin heavy chain II, myogenin, and MyoD, and increased NF-κB DNA-binding activity and myostatin expression. The inhibitory effect of LPS on myogenic differentiation was reversible, suggesting that it was not caused by nonspecific toxicity. Both TAK-242 and anti-TNF-α reduced the LPS-induced increase in NF-κB DNA-binding activity, downregulation of myogenic regulatory factors, and upregulation of myostatin, thereby partially rescuing the impairment of myogenesis.Our data suggest that LPS inhibits myogenic differentiation via a TLR4-NF-κB-dependent pathway and an autocrine/paracrine TNF-α-induced pathway. These pathways

  4. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Piwen Wang

    2017-06-01

    Full Text Available The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (<2 μM significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30–50% at 48 h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50 mg/kg (LD or 100 mg/kg (HD b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD and 70% (HD compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its

  5. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  6. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  7. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.; Ledinko, N.; Smith, D.J.

    1986-01-01

    The biological activity of retinoids was assayed in an in vitro quantitative assay of human tumor cell invasion using human amnion basement membrane (BM). The effects measured were the inhibition of tumor cell migration through the BM and tumor cell degradative enzyme activity on 14 C-proline labeled collagenous and noncollagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested, the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.009 μg/mL, and of TC-106 cells at 0.07 μg/mL. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels over 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more potent than retinol palmitate. The model system will be useful for investigating antiinvasive activity of other retinoids as well as other compounds

  8. Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum

    NARCIS (Netherlands)

    Prins, J. M.; Kuijper, E. J.; Mevissen, M. L.; Speelman, P.; van Deventer, S. J.

    1995-01-01

    The concentration and accessibility of endotoxin can increase following antibiotic killing of gram-negative bacteria. There are indications that antibiotics may differ in this respect. We measured endotoxin levels in RPMI 1640 and tumor necrosis factor alpha (TNF-alpha) and interleukin-6 production

  9. TNF-a and IL-6 inhibitory effects of cyclic dipeptides isolated from marine bacteria Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Nalli, Y.; Gupta, S.; Khajuria, V.; Singh, V.P.; Sajgotra, M.; Ahmed, Z.; Thakur, N.L.; Ali, A.

    necrosis factor-a which efficiently inhibited tumor necrosis factor-a release in a dose-dependent manner and decreased lipopolysaccharide induced tumor necrosis factor-a production in human peripheral blood mononuclear cells in both the in vitro and in vivo...

  10. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  11. The repeatability of interleukin-6, tumor necrosis factor-α, and C-reactive protein in COPD patients over one year

    Directory of Open Access Journals (Sweden)

    Umme Kolsum

    2009-04-01

    Full Text Available Umme Kolsum, Kay Roy, Cerys Starkey, Zoë Borrill, Nick Truman, Jørgen Vestbo, Dave SinghNorth West Lung Research Centre, University of Manchester, South Manchester University Hospitals Trust, Wythenshawe, Manchester, UKBackground: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of Interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and C-reactive protein (CRP over one year and examined the relationships between these systemic markers in COPD.Methods: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-α were measured. Repeatability was expressed by intraclass correlation coefficient (Ri and the Bland–Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits.Results: There was moderate repeatability with a very high degree of statistical significance (p ≤ 0.001 between the two visits for all the systemic biomarkers (IL-6, CRP, and TNF-α. CRP was significantly associated with IL-6 at both visits (r = 0.55, p = 0.0001, r = 0.51, p = 0.0002, respectively. There were no other significant associations between the systemic markers at either of the visits.Conclusions: Systemic inflammatory biomarkers IL-6, CRP, and TNF-α were moderately repeatable over a twelve month period in COPD patients. We have also shown that a robust and repeatable association between IL-6 and CRP exists.Keywords: interleukin-6, tumor necrosis factor-α, C-reactive protein, repeatability, COPD   

  12. [Effects of occupational stress on serum tumor necrosis factor-α and interleukins].

    Science.gov (United States)

    Zhou, Wen-Hui; Yu, Shan-Fa; Jiang, Kai-You

    2010-12-01

    To explore the effect of occupational stress on serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-2 and IL-4. A cross-sectional epidemiological study was conducted in 200 workers from the refrigerator assembly line in Henan province in China. Psychosocial work conditions were measured by using the job demand-control model, the effort-reward imbalance model questionnaires and occupational stress measurement scale. Serum TNF-α, IL-1β, IL-2, and IL-4 concentrations were measured by radioimmunoassay or immunoradiometric assay method respectively. Serum TNF-α concentration was statistically significantly different between workers with higher affective balance level and control groups [(1.947 ± 0.173) and (2.029 ± 0.240) fmol/ml] (P life stress level and control groups [(1.759 ± 0.361) and (1.606 ± 0.381) ng/ml] (P life stress and role ambiguity were the predictors of serum IL-2 (R(2) was 0.040, 0.078 and 0.104, respectively). Reward was the predictor of serum IL-4 (R(2) = 0.030). Unhealthy psychological stress factor might be induce a marked increase in the concentrations of serum TNF-α, IL-1β, IL-2, as well as IL-4.

  13. Effects of Tumor Necrosis Factor Blocker on Salicylate-Induced Tinnitus in Mice.

    Science.gov (United States)

    Hwang, Juen-Haur; Huang, David Chang-Wei; Lu, Yin-Chang; Yang, Wei-Shiung; Liu, Tien-Chen

    2017-06-01

    Neuroinflammation is considered a novel mechanism for acute tinnitus. Here, we investigated the effects of a tumor necrosis factor (TNF) blocker on the gene expression of inflammatory-cytokine in the cochlea in a tinnitus animal model. Enbrel® (30 mg/kg, intraperitoneally (i.p.)) were administrated to the mice with the salicylate induced tinnitus for 3 days. Tinnitus score and mRNA expression levels of TNFR1, TNFR2, and N-methyl-d-aspartate receptor subunit 2B (NR2B) and its downstream regulatory element antagonist modulator (DREAM) in the cochlea of mice were measured and compared to the control. The tinnitus score significantly decreased in the Enbrel® treated group. The mRNA levels of both TNFR1 and TNFR2 were significantly lower in the treatment than in the control group. The mRNA levels of NR2B and DREAM followed a similar trend. we found that treatment with 30 mg/ kg Enbrel® decreased salicylate-induced behavior associated with tinnitus and reduced the mRNA expression levels of TNFR1/R2, NR2B, and DREAM in the cochlea of mice. These findings supported the hypothesis that neuroinflammation might be a novel mechanism for salicylate-induced tinnitus.

  14. Anti-tumor effect of adenovirus-mediated suicide gene therapy under control of tumor-specific and radio-inducible chimeric promoter in combination with γ-ray irradiation in vivo

    International Nuclear Information System (INIS)

    Sun Wenjie; Yu Haijun; Xiongjie; Xu Yu; Liao Zhengkai; Zhou Fuxiang; Xie Conghua; Zhou Yunfeng

    2011-01-01

    Objective: To detect the selective inhibitory effects of irradiation plus adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic acid (IAA) suicide gene system using tumor-specific and radio-inducible chimeric promoter on human hepatocellular carcinoma subcutaneously xenografted in nude mouse. Methods: Recombinant replicated-deficient adenovirus vector containing HRP gene and chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 radio-inducible CArG elements was constructed. A human subcutaneous transplanting hepatocellular carcinoma (MHCC97 cell line) model was treated with γ-ray irradiation plus intra-tumor injections of adenoviral vector and intra-peritoneal injections of prodrug IAA. The change of tumor volume and tumor growth inhibiting rate, the survival time of nude mice, as well as histopathology of xenograft tumor and normal tissues were evaluated. Results: Thirty one days after the treatment, the relative tumor volumes in the negative, adenovirus therapy, irradiation, and combination groups were 49.23±4.55, 27.71±7.74, 28.53±10.48 and 11.58±3.23, respectively.There was a significantly statistical difference among them (F=16.288, P<0.01).The inhibition effect in the combination group was strongest as compared with that in other groups, and its inhibition ratio was 76.5%. The survival period extended to 43 d in the combination group, which showed a significantly difference with that in the control group (χ 2 =18.307, P<0.01). The area of tumors necrosis in the combination group was larger than that in the other groups, and the normal tissues showed no treatment-related toxic effect in all groups. However, multiple hepatocellular carcinoma metastases were observed in the liver in the control group, there were a few metastases in the monotherapy groups and no metastasis in the combination group. Conclusions: Adenovirus-mediated suicide gene therapy plus radiotherapy dramatically could inhibit tumor growth and prolong

  15. Tumor microenvironmental changes induced by the sulfamate carbonic anhydrase IX inhibitor S4 in a laryngeal tumor model.

    Directory of Open Access Journals (Sweden)

    Tineke W H Meijer

    Full Text Available BACKGROUND AND PURPOSE: Carbonic anhydrase IX (CAIX plays a pivotal role in pH homeostasis, which is essential for tumor cell survival. We examined the effect of the CAIX inhibitor 4-(3'(3",5"-dimethylphenyl-ureidophenyl sulfamate (S4 on the tumor microenvironment in a laryngeal tumor model by analyzing proliferation, apoptosis, necrosis, hypoxia, metabolism and CAIX ectodomain shedding. METHODS: SCCNij202 tumor bearing-mice were treated with S4 for 1, 3 or 5 days. CAIX ectodomain shedding was measured in the serum after therapy. Effects on tumor cell proliferation, apoptosis, necrosis, hypoxia (pimonidazole and CAIX were investigated with quantitative immunohistochemistry. Metabolic transporters and enzymes were quantified with qPCR. RESULTS: CAIX ectodomain shedding decreased after treatment with S4 (p<0.01. S4 therapy did neither influence tumor cell proliferation nor the amount of apoptosis and necrosis. Hypoxia (pimonidazole and CAIX expression were also not affected by S4. CHOP and MMP9 mRNA as a reference of intracellular pH did not change upon treatment with S4. Compensatory mechanisms of pH homeostasis at the mRNA level were not observed. CONCLUSION: As the clinical and biological meaning of the decrease in CAIX ectodomain shedding after S4 therapy is not clear, studies are required to elucidate whether the CAIX ectodomain has a paracrine or autocrine signaling function in cancer biology. S4 did not influence the amount of proliferation, apoptosis, necrosis and hypoxia. Therefore, it is unlikely that S4 can be used as single agent to influence tumor cell kill and proliferation, and to target primary tumor growth.

  16. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α

    International Nuclear Information System (INIS)

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki

    2007-01-01

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol α from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol α with IC 50 value of 0.5 μM, and did not influence the activities of other replicative pols such as pols δ and ε, but also showed no effect on pol α activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD 50 values of 38.0-44.4 μM. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol α-specific inhibitor, but also as a candidate drug for anti-cancer treatment

  17. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    Science.gov (United States)

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  18. Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    OpenAIRE

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-01-01

    BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac tre...

  19. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  20. Experimental assessment of the role of the blood flow inhibition in hyperglycemia-enhanced radiation injury to tumor

    International Nuclear Information System (INIS)

    Kozin, S.V.; Sevast'yanov, A.I.; Yarmonenko, S.P.

    1986-01-01

    Experimental assessment of the role of the blood flow inhibition in enhancement of radiation injury to tumors using short-term hyperglycemia was provided. Experiments on mice with Ehrlich solid carcinoma showed the dependence of a rise of the antitumor effect of preceding radiation induced by glucose and glucose combined with mexamin on a degree of the blood flow inhibition under the influence of these modifying agents. It was established that a considerable enhancement of radiation injury occured but in such tumors where short-term hyperglycemia and mexamin decreased the blood flow level not less than 5-10 fold as estimated by 133 Xe clearance. The results of the above experiments showed that the noticeable inhibition of the blood flow in tumors was a necessary tough, probably, not the only condition for a high efficacy of short-term hyperglycemia used an ajuvant to radiotherapy

  1. Relationship between increased serum tumor necrosis factor levels and insulin resistance in patients with essential hypertension

    International Nuclear Information System (INIS)

    Wang Weimin; Li Jinliang; Huang Yongqiang

    2010-01-01

    Objective: To investigate the relationship between serum tumor necrosis factor-α (TNF-α) levels and insulin resistance (IR) in patients with essential by pertension. Methods: Serum TNF-α and free insulin (fINS)levels were measured with RIA in 41 patients with essential hypertension and 38 controls. Insulin resistance was calculated with insulin resistance index (HOMA-IR). Results: The serum TNF-α levels were significantly higher in patients with essential hypertension than those in the controls (P<0.001). The HOMA-IR was also significantly higher in hypertension group than that in controls (P<0.001). Serum TNF-α levels was positively correlated with BMI, HOMA-IR and SBP both in hypertension group and control group (P<0.05). Conclusion: Serum TNF-α level was increased in hypertensive patients and positively correlated with obesity and IR. (authors)

  2. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  3. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    Science.gov (United States)

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  5. The reason for discontinuation of the first tumor necrosis factor (TNF) blocking agent does not influence the effect of a second TNF blocking agent in patients with rheumatoid arthritis.

    NARCIS (Netherlands)

    Blom, M.; Kievit, W.; Fransen, J.; Kuper, I.H.; Broeder, A. den; Gendt, C.M. de; Jansen, T.L.Th.A.; Brus, H.L.; Laar, M.A. van der; Riel, P.L.C.M. van

    2009-01-01

    OBJECTIVE: To investigate whether the reason for discontinuation of the first tumor necrosis factor (TNF) blocking agent influences the effect of a second TNF blocking agent. METHODS: Data were used from 2 Dutch registries including patients with rheumatoid arthritis (RA) treated with TNF blocking

  6. The reason for discontinuation of the first tumor necrosis factor (TNF) blocking agent does not influence the effect of a second TNF blocking agent in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Blom, Marlies; Kievit, Wietske; Fransen, Jaap; Kuper, Ina H.; den Broeder, Alfons A.; De Gendt, Carla M.A.; Jansen, Tim L.; Brus, Herman L.M.; van de Laar, Mart A.F.J.; van Riel, Piet L.C.M.

    2009-01-01

    OBJECTIVE:To investigate whether the reason for discontinuation of the first tumor necrosis factor (TNF) blocking agent influences the effect of a second TNF blocking agent. METHODS:Data were used from 2 Dutch registries including patients with rheumatoid arthritis (RA) treated with TNF blocking

  7. Quantitative assessment of the influence of tumor necrosis factor alpha polymorphism with gastritis and gastric cancer risk.

    Science.gov (United States)

    Li, Ming; Wang, Yinping; Gu, Yahong

    2014-02-01

    Tumor necrosis factor alpha (TNFA) is an important molecule in inflammatory, infectious, and tumoral processes. Inflammation is one of the early phases in the development of gastric cancer (GC). Therefore, several studies have examined the association of polymorphism in TNFA with gastritis and GC risk. A functional polymorphism, -308G>A (rs1800629), which is located in the promoter of TNFA gene, has been suggested to alter the production of TNF-α and influence cancer risk. To date, a number of studies have been carried out to investigate the relationship between the polymorphism and gastritis or GC susceptibility, but the results were conflicting. To investigate this inconsistency, we performed a meta-analysis of 36 studies for TNFA -308G>A polymorphism to evaluate the effect of TNFA on genetic susceptibility for gastritis and GC. An overall random-effects per-allele odds ratio of 1.16 (95 % confidence interval 1.04-1.29, P = 0.008) was found for the polymorphism. Significant results were also observed using dominant or recessive genetic models. In the subgroup analyses by ethnicity, significant results were found in Caucasians, whereas no significant associations were found among East Asians and other ethnic populations. No associations between the polymorphism and gastritis were observed. In addition, our data indicate that TNFA is involved in GC susceptibility and confers its effect primarily in diffuse type of tumors. Besides, -308G>A polymorphism was found to be significantly associated with both cardiac and noncardiac tumors. This meta-analysis demonstrated that the TNFA -308G>A polymorphism is a risk factor for developing GC, but the associations vary in different ethnic populations.

  8. In vitro inhibition of enterobacteria-reactive CD4+CD25- T cells and suppression of immunoinflammatory colitis in mice by the novel immunomodulatory agent VGX-1027

    DEFF Research Database (Denmark)

    Mangano, Katia; Sardesai, Niranjan; D'Alcamo, Maria

    2008-01-01

    VGX-1027 is an isozaxoline compound that has recently been found to primarily target the function of murine macrophages but not of T cells, inhibiting secretion of tumor necrosis factor (TNF)-alpha in response to different Toll-like receptor agonists in vitro and in vivo. The well-defined role of...

  9. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  10. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  11. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells

    International Nuclear Information System (INIS)

    Savion, N.; Disatnik, M.H.; Nevo, Z.

    1987-01-01

    Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells attach, invade, and penetrate confluent vascular endothelial cell monolayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [ 35 S]O 4 - -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The degradation of [ 35 S]O 4 - -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10μg/ml), arteparon (10μg/ml), and heparin at a concentration of 3 μg/ml. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage haparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis

  12. Inflammatory cytokine tumor necrosis factor α suppresses neuroprotective endogenous erythropoietin from astrocytes mediated by hypoxia-inducible factor-2α.

    Science.gov (United States)

    Nagaya, Yoshiaki; Aoyama, Mineyoshi; Tamura, Tetsuya; Kakita, Hiroki; Kato, Shin; Hida, Hideki; Saitoh, Shinji; Asai, Kiyofumi

    2014-12-01

    Interest in erythropoietin (EPO) as a neuroprotective mediator has grown since it was found that systemically administered EPO is protective in several animal models of disease. However, given that the blood-brain barrier limits EPO entry into the brain, alternative approaches that induce endogenous EPO production in the brain may be more effective clinically and associated with fewer untoward side-effects. Astrocytes are the main source of EPO in the central nervous system. In the present study we investigated the effect of the inflammatory cytokine tumor necrosis factor α (TNFα) on hypoxia-induced upregulation of EPO in rat brain. Hypoxia significantly increased EPO mRNA expression in the brain and kidney, and this increase was suppressed by TNFα in vivo. In cultured astrocytes exposed to hypoxic conditions for 6 and 12 h, TNFα suppressed the hypoxia-induced increase in EPO mRNA expression in a concentration-dependent manner. TNFα inhibition of hypoxia-induced EPO expression was mediated primarily by hypoxia-inducible factor (HIF)-2α rather than HIF-1α. The effects of TNFα in reducing hypoxia-induced upregulation of EPO mRNA expression probably involve destabilization of HIF-2α, which is regulated by the nuclear factor (NF)-κB signaling pathway. TNFα treatment attenuated the protective effects of astrocytes on neurons under hypoxic conditions via EPO signaling. The effective blockade of TNFα signaling may contribute to the maintenance of the neuroprotective effects of EPO even under hypoxic conditions with an inflammatory response. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Fatal infections in older patients with inflammatory bowel disease on anti-tumor necrosis factor therapy

    Directory of Open Access Journals (Sweden)

    Way-Seah Lee

    2017-10-01

    Full Text Available Anti-tumor necrosis factor (anti-TNF is highly effective in inflammatory bowel disease (IBD; however, it is associated with an increased risk of infections, particularly in older adults. We reviewed 349 patients with IBD, who were observed over a 12-month period, 74 of whom had received anti-TNF therapy (71 patients were aged <60 years and 3 were aged ≥60 years. All the 3 older patients developed serious infectious complications after receiving anti-TNFs, although all of them were also on concomitant immunosuppressive therapy. One patient developed disseminated tuberculosis, another patient developed cholera diarrhea followed by nosocomial pneumonia, while the third patient developed multiple opportunistic infections (Pneumocystis pneumonia, cryptococcal septicemia and meningitis, Klebsiella septicemia. All 3 patients died within 1 year from the onset of the infection(s. We recommend that anti-TNF, especially when combined with other immunosuppressive therapy, should be used with extreme caution in older adult patients with IBD.

  14. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes

    International Nuclear Information System (INIS)

    Kim, Young Jun; Nam, Chang-Hoon; Jin, Young-Hyun; Stieglitz, Thomas; Salieb-Beugelaar, Georgette B

    2014-01-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications. (paper)

  15. The MC160 Protein Expressed by the Dermatotropic Poxvirus Molluscum Contagiosum Virus Prevents Tumor Necrosis Factor Alpha-Induced NF-κB Activation via Inhibition of I Kappa Kinase Complex Formation

    Science.gov (United States)

    Nichols, Daniel Brian; Shisler, Joanna L.

    2006-01-01

    The pluripotent cytokine tumor necrosis factor alpha (TNF-α) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-κB transcription factor. To prevent the detrimental effects of TNF-α in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-α-mediated NF-κB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-κB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-κB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-κB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes. PMID:16378960

  16. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    International Nuclear Information System (INIS)

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-01-01

    Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNFα, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNFα-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNFα on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

  17. El factor de necrosis tumoral-α, la resistencia a la insulina, el metabolismo de lipoproteínas y la obesidad en humanos

    OpenAIRE

    M.ª M. Ramírez Alvarado; C. Sánchez Roitz

    2012-01-01

    En la obesidad el tejido adiposo produce moléculas proinflamatorias como el Factor de Necrosis tumoral-α, que tiene efectos locales en la fisiología del adipocito y efectos sistémicos en otros órganos. Muchos estudios relacionando TNF-α, obesidad, resistencia a la insulina y metabolismo lipídico se han realizado en ratas, conejos y perros, pero los resultados observados en varios de estos estudios han sido contradictorios y muchos de ellos no se han logrado reproducir en humanos, lo que hace ...

  18. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    Guillen, Isabel A; Berlanga, Jorge; Camacho, Hanlet

    2013-01-01

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  19. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    Science.gov (United States)

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  20. Effect of dipeptidyl peptidase-4 inhibitors on circulating tumor necrosis factor-α concentrations: A systematic review and meta-analysis of controlled trials.

    Science.gov (United States)

    Atkin, Stephen L; Katsiki, Niki; Banach, Maciej; Mikhailidis, Dimitri P; Pirro, Matteo; Sahebkar, Amirhossein

    2017-09-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors improve glycemic control in patients with type 2 diabetes mellitus. There are also reports of an effect of these drugs in reducing inflammation through inhibition of tumor necrosis factor-α (TNF-α) that is an important mediator for several inflammatory processes. The present systematic review and meta-analysis were performed to evaluate the effect of DPP-4 inhibitors on circulating TNF-α levels in T2DM patients. A systematic review and a meta-analysis were undertaken on all controlled trials of DPP-4 inhibitors that included measurement of TNF-α. The search included PubMed-Medline, Scopus, ISI Web of Knowledge and Google Scholar databases. Quantitative data synthesis was performed using a random-effects model, with standardized mean difference (SMD) and 95% confidence interval (CI) as summary statistics. Meta-regression and leave-one-out sensitivity analysis were performed to assess the modifiers of treatment response. Eight eligible articles (6 with sitagliptin and 2 with vildagliptin) comprising 9 treatment arms were selected for this meta-analysis. Meta-analysis suggested a significant reduction of circulating TNF-α concentrations following treatment with DPP-4 inhibitors (SMD: -1.84, 95% CI: -2.88, -0.80, p=0.001). The effect size was robust in the sensitivity analysis and not mainly driven by a single study. A subgroup analysis did not suggest any significant difference between the TNF-α-lowering activity of sitagliptin (SMD: -1.49, 95% CI: -2.89, -0.10) and vildagliptin (SMD: -2.80, 95% CI: -4.98, -0.61) (p=0.326). This meta-analysis of the 8 available controlled trials showed that DPP-4 inhibition in patients with type 2 diabetes mellitus was associated with significant reductions in plasma TNF-α levels with no apparent difference between sitagliptin and vildagliptin. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  2. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  3. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  4. Prognostic factors of tumor recurrence in completely resected non-small cell lung cancer

    International Nuclear Information System (INIS)

    Tantraworasin, Apichat; Saeteng, Somcharoen; Lertprasertsuke, Nirush; Arreyakajohn, Nuttapon; Kasemsarn, Choosak; Patumanond, Jayanton

    2013-01-01

    Patients with completely resected non-small cell lung cancer (NSCLC) have an excellent outcome; however tumor recurs in 30%–77% of patients. This study retrospectively analyzed the clinicopathologic features of patients with any operable stage of NSCLC to identify the prognostic factors that influence tumor recurrence, including intratumoral blood vessel invasion (IVI), tumor size, tumor necrosis, and intratumoral lymphatic invasion. From January 2002 to December 2011, 227 consecutive patients were enrolled in this study. They were divided into two groups: the “no recurrence” group and the “recurrence” group. Recurrence-free survival was analyzed by multivariable Cox regression analysis, stratified by tumor staging, chemotherapy, and nodal involvement. IVI, tumor necrosis, tumor diameter more than 5 cm, and nodal involvement were identified as independent prognostic factors of tumor recurrence. The hazard ratio (HR) of patients with IVI was 2.1 times higher than that of patients without IVI (95% confident interval [CI]: 1.4–3.2) (P = 0.001).The HR of patients with tumor necrosis was 2.1 times higher than that of patients without tumor necrosis (95% CI: 1.3–3.4) (P = 0.001). Patients who had a maximum tumor diameter greater than 5 cm had significantly higher risk of recurrence than patients who had a maximum tumor diameter of less than 5 cm (HR 1.9, 95% CI: 1.0–3.5) (P = 0.033). IVI, tumor diameter more than 5 cm, and tumor necrosis are prognostic factors of tumor recurrence in completely resected NSCLC. Therefore, NSCLC patients, with or without nodal involvement, who have one or more prognostic factors of tumor recurrence may benefit from adjuvant chemotherapy for prevention of tumor recurrence

  5. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    International Nuclear Information System (INIS)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-01-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  6. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  7. Temporary reversal by topotecan of marked insulin resistance in a patient with myelodysplastic syndrome: case report and possible mechanism for tumor necrosis factor alpha (TNF-alpha)-induced insulin resistance.

    Science.gov (United States)

    Huntington, M O; Krell, K E; Armour , W E; Liljenquist, J E

    2001-06-01

    Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor. We report here a remarkable degree of insulin resistance in a patient with adult respiratory distress syndrome and myelodysplasia.

  8. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    Science.gov (United States)

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.

  9. Tumor necrosis factor (TNF-alpha) and C-reactive protein (CRP) are positively associated with the risk of chronic kidney disease in patients with type 2 diabetes.

    Science.gov (United States)

    Yeo, Eun-Sil; Hwang, Ji-Yun; Park, Ji Eun; Choi, Young Ju; Huh, Kap Bum; Kim, Wha Young

    2010-07-01

    Chronic low-grade inflammation may induce chronic kidney disease in patients with type 2 diabetes. This study investigated the relation between inflammatory biomarkers and chronic kidney disease in patients with type 2 diabetes, which has not yet been reported in Asian populations. A cross-sectional study was performed in 543 patients recruited from diabetic clinics for an ongoing, prospective study. Multivariate logistic regression was used to evaluate the association between inflammatory biomarkers and the presence of chronic kidney disease (estimated glomerular filtration rate Disease equation using plasma creatinine). The risk of chronic kidney disease increased in the highest quartiles of C-reactive protein (CRP) [multivariate odds ratio (OR) = 3.73; 95% CI = 1.19-1.70] and tumor necrosis factor-alpha (multivariate OR = 4.45; 95% CI = 1.63-12.11) compared to the lowest quartiles after adjustments for age, sex, zinc intake, and other putative risk factors for chronic kidney disease. Our results suggest that CRP and tumor necrosis factor-alpha may be independent risk factors for chronic kidney disease in patients with type 2 diabetes. A causal mechanism of this association should be evaluated in a followup study of Korean patients with type 2 diabetes.

  10. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, Jyoti; Bakhshi, Sameer [Dr. B. R. A. Institute Rotary Cancer Hospital, Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi (India); Gamnagatti, Shivanand [All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi (India); Kumar, Rakesh; Malhotra, Arun [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Sreenivas, Vishnubhatla [All India Institute of Medical Sciences, Department of Biostatistics, New Delhi (India); Sharma, Mehar Chand; Safaya, Rajni [All India Institute of Medical Sciences, Department of Pathology, New Delhi (India); Khan, Shah Alam; Rastogi, Shishir [All India Institute of Medical Sciences, Department of Orthopedics, New Delhi (India)

    2011-04-15

    Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy. To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease. Thirty-one treatment-naive osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006-2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response {>=}90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out. Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume. In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma. (orig.)

  11. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis

    International Nuclear Information System (INIS)

    Bajpai, Jyoti; Bakhshi, Sameer; Gamnagatti, Shivanand; Kumar, Rakesh; Malhotra, Arun; Sreenivas, Vishnubhatla; Sharma, Mehar Chand; Safaya, Rajni; Khan, Shah Alam; Rastogi, Shishir

    2011-01-01

    Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy. To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease. Thirty-one treatment-naive osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006-2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response ≥90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out. Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume. In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma. (orig.)

  12. Predisposing Factors of Liver Necrosis after Transcatheter Arterial Chemoembolization in Liver Metastases from Neuroendocrine Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Joskin, Julien, E-mail: j.joskin@gmail.com; Baere, Thierry de, E-mail: Thierry.DEBAERE@igr.fr [Institut Gustave Roussy, Department of Interventional Radiology (France); Auperin, Anne, E-mail: Anne.AUPERIN@igr.fr [Institut Gustave Roussy, Department of Epidemiology (France); Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Guiu, Boris, E-mail: boris.guiu@chu-dijon.fr; Farouil, Geoffroy, E-mail: g.farouil@gmail.com [Institut Gustave Roussy, Department of Interventional Radiology (France); Boige, Valérie, E-mail: boige@igr.fr; Malka, David, E-mail: david.malka@igr.fr [Institut Gustave Roussy, Department of Digestive Oncology (France); Leboulleux, Sophie, E-mail: sophie.leboulleux@igr.fr [Institut Gustave Roussy, Department of Nuclear Medicine and Endocrine Oncology (France); Ducreux, Michel, E-mail: ducreux@igr.fr [Institut Gustave Roussy, Department of Digestive Oncology (France); Baudin, Eric, E-mail: baudin@igr.fr [Institut Gustave Roussy, Department of Nuclear Medicine and Endocrine Oncology (France); Deschamps, Frédéric, E-mail: frederic.deschamps@igr.fr [Institut Gustave Roussy, Department of Interventional Radiology (France)

    2015-04-15

    PurposeTo investigate predictive factors for liver necrosis after transcatheter arterial chemoembolization (TACE) of neuroendocrine liver metastases.MethodsA total of 164 patients receiving 374 TACE were reviewed retrospectively to analyze predictive factors of liver necrosis. We analyzed patient age and sex; metastasis number and location; percentage of liver involvement; baseline liver function test; and pretreatment imaging abnormalities such as bile duct dilatation (BDD), portal vein narrowing (PVN), and portal vein thrombosis (PVT). We analyzed TACE technique such as Lipiodol or drug-eluting beads (DEB) as the drug’s vector; dose of chemotherapy; diameter of DEB; and number, frequency, and selectivity of TACE.ResultsLiver necrosis developed after 23 (6.1 %) of 374 TACE. In multivariate analysis, DEB > 300 μm in size induced more liver necrosis compared to Lipiodol (odds ratio [OR] 35.20; p < 0.0001) or with DEB < 300 μm in size (OR 19.95; p < 0.010). Pretreatment BDD (OR 119.64; p < 0.0001) and PVT (OR 9.83; p = 0.030) were predictive of liver necrosis. BDD or PVT responsible for liver necrosis were present before TACE in 59 % (13 of 22) and were induced by a previous TACE in 41 % (9 of 22) of cases.ConclusionDEB > 300 μm in size, BDD, and PVT are responsible for increased rate of liver necrosis after TACE. Careful analysis of BDD or PVT on pretreatment images as well as images taken between two courses can help avoid TACE complications.

  13. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    type, necrosis, and grade. METHODS:: Whole-tumor sections from 239 soft tissue sarcomas of the extremities were reviewed for the following prognostic factors: size, vascular invasion, necrosis, and growth pattern. A new prognostic model, referred to as SING (Size, Invasion, Necrosis, Growth......), was established and compared with other clinically applied systems. RESULTS:: Size, vascular invasion, necrosis, and peripheral tumor growth pattern provided independent prognostic information with hazard ratios of 2.2-2.6 for development of metastases in multivariate analysis. When these factors were combined...... into the prognostic model SING, high risk of metastasis was predicted with a sensitivity of 74% and a specificity of 85%. Moreover, the prognostic performance of SING compared favorably with other widely used systems. CONCLUSIONS:: SING represents a promising prognostic model, and vascular invasion and tumor growth...

  14. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  15. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells.

    Science.gov (United States)

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-08-01

    Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Efficacy of ONC201 in Desmoplastic Small Round Cell Tumor.

    Science.gov (United States)

    Hayes-Jordan, Andrea A; Ma, Xiao; Menegaz, Brian A; Lamhamedi-Cherradi, Salah-Eddine; Kingsley, Charles V; Benson, Jalen A; Camacho, Pamela E; Ludwig, Joseph A; Lockworth, Cynthia R; Garcia, Gloria E; Craig, Suzanne L

    2018-05-01

    Desmoplastic Small Round Cell Tumor (DSRCT) is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing's sarcoma gene (EWSR1) and the Wilms' tumor suppressor gene (WT1). Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4) within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT. Copyright © 2018. Published by Elsevier Inc.

  17. Efficacy of ONC201 in Desmoplastic Small Round Cell Tumor

    Directory of Open Access Journals (Sweden)

    Andrea A. Hayes-Jordan

    2018-05-01

    Full Text Available Desmoplastic Small Round Cell Tumor (DSRCT is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing’s sarcoma gene (EWSR1 and the Wilms’ tumor suppressor gene (WT1. Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4 within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT.

  18. Effects of a Tumor Necrosis Factor-α Antagonist on Experimentally Induced Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Kim

    2011-01-01

    Full Text Available This prospective, randomized, and controlled study examined the effects of tumor necrosis factor soluble receptor type I (sTNFRI, a TNF-α antagonist on experimentally induced rhinosinusitis in rats. The experimental groups received an instillation of lipopolysaccharide (LPS plus an intramuscular injection of amoxicillin/clavulanate (antibiotic group, an instillation of sTNFRI (sTNFRI group, an instillation of sTNFRI and an injection of amoxicillin/clavulanate (sTNFRI/antibiotic group, or no additional treatment (LPS group. Histopathological changes were determined using hematoxylin-eosin and periodic acid-Schiff (PAS staining. Leakage of exudate was determined using fluorescence microscopy. Vascular permeability was measured using the Evans blue dye technique. Expression of MUC5AC was measured using reverse transcriptase PCR. The sTNFRI, antibiotic, and sTNFRI/antibiotic groups had significantly less capillary permeability, mucosal edema, PAS staining, and expression of MUC5AC than the LPS group. There were no differences in capillary permeability, mucosal edema, PAS staining, and MUC5AC expression between the sTNFRI and sTNFRI/antibiotic groups. The antibiotic group had PAS staining similar to that of the sTNFRI and sTNFRI/antibiotic groups but had a greater increase in capillary permeability, mucosal edema, and MUC5AC expression. This study shows that sTNFRI reduces inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats.

  19. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes

    Science.gov (United States)

    Cooper, Zachary A; Frederick, Dennie T; Juneja, Vikram R; Sullivan, Ryan J; Lawrence, Donald P; Piris, Adriano; Sharpe, Arlene H; Fisher, David E; Flaherty, Keith T; Wargo, Jennifer A

    2013-01-01

    There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3 (CDR3) of rearranged T-cell receptor (TCR) β chain-coding genes in tumor biopsies obtained before the initiation of BRAFi and 10–14 d later. We observed an increase in the clonality of tumor-infiltrating lymphocytes in 7 of 8 patients receiving BRAFi, with a statistically significant 21% aggregate increase in clonality. Over 80% of individual T-cell clones detected after initiation of BRAFi treatment were new clones. Interestingly, the comparison of tumor infiltrates with clinical responses revealed that patients who had a high proportion of pre-existing dominant clones after the administration of BRAFi responded better to therapy than patients who had a low proportion of such pre-existing dominant clones following BRAFi. These data suggest that although the inhibition of BRAF in melanoma patients results in tumor infiltration by new lymphocytes, the response to treatment appears to be related to the presence of a pre-existing population of tumor-infiltrating T-cell clones. PMID:24251082

  20. An autopsy case of cerebral radiation necrosis simulating recurrent malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Tadashi; Kushi, Hidehiko; Miyagi, Atsushi; Miyagami, Mitsusuke; Tsubokawa, Takashi (Nihon Univ., Tokyo (Japan). School of Medicine)

    1993-01-01

    The present case was a 60-year-old man. After removal of a malignant glioma (astrocytoma grade 3), radiation therapy was performed. From 1 year and 2 months after radiation therapy, disturbance of consciousness and right hemiparesis appeared. An abnormal shadow was noted on CT scan in the region from which the tumor had been extracted. Recurrence of the tumor was thus suspected. The symptoms were not relieved by steroid therapy or ACNU chemotherapy. The disturbance of consciousness gradually became aggravated and was complicated with respiration disorder. The patient died after a total course of 3 years and 6 months from the initial treatment. The findings of CT scans suggested a polymorphological tumor mass occupying the left frontal lobe with invasion to the right hemisphere via the corpus callosum. The gross and histological findings at autopsy mainly consisted of an extensive coagulation necrosis focus. There was also extensive vascular disturbance probably ascribable to radiation damage. Extensive investigations for residual tumor cells yielded negative results. The findings of CT scans were therefore considered to reflect changes in radiation necrosis with time. In the present case, autopsy findings, clinical course and image findings resembled those of recurrent malignant glioma but no residual tumor cells at the histological level. (author).

  1. An autopsy case of cerebral radiation necrosis simulating recurrent malignant glioma

    International Nuclear Information System (INIS)

    Shibuya, Tadashi; Kushi, Hidehiko; Miyagi, Atsushi; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1993-01-01

    The present case was a 60-year-old man. After removal of a malignant glioma (astrocytoma grade 3), radiation therapy was performed. From 1 year and 2 months after radiation therapy, disturbance of consciousness and right hemiparesis appeared. An abnormal shadow was noted on CT scan in the region from which the tumor had been extracted. Recurrence of the tumor was thus suspected. The symptoms were not relieved by steroid therapy or ACNU chemotherapy. The disturbance of consciousness gradually became aggravated and was complicated with respiration disorder. The patient died after a total course of 3 years and 6 months from the initial treatment. The findings of CT scans suggested a polymorphological tumor mass occupying the left frontal lobe with invasion to the right hemisphere via the corpus callosum. The gross and histological findings at autopsy mainly consisted of an extensive coagulation necrosis focus. There was also extensive vascular disturbance probably ascribable to radiation damage. Extensive investigations for residual tumor cells yielded negative results. The findings of CT scans were therefore considered to reflect changes in radiation necrosis with time. In the present case, autopsy findings, clinical course and image findings resembled those of recurrent malignant glioma but no residual tumor cells at the histological level. (author)

  2. Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB

    Science.gov (United States)

    Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.

    2016-01-01

    We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639

  3. The tumor necrosis factor alpha - 308G>A polymorphism is associated with dementia in the oldest-old

    DEFF Research Database (Denmark)

    Bruunsgaard, Helle; Benfield, Thomas L; Andersen-Ranberg, Karen

    2004-01-01

    OBJECTIVES: To test the hypothesis that the tumor necrosis factor (TNF) -308 G>A promoter gene polymorphism is a risk factor in age-related dementia and longevity. DESIGN: A cross-sectional and a longitudinal study. SETTING: A population-based sample of Danish centenarians. PARTICIPANTS: One...... was investigated (Fischer exact test). Furthermore, whether the TNF -308 G>A polymorphism was associated with the prevalence of dementia (logistic regression analysis), the plasma level of TNF-alpha (analysis of variance), and mortality in the following 5 years (Cox regression analysis) within the cohort...... higher plasma levels of TNF-alpha, but the significance was questionable due to a low number of subjects with this genotype. CONCLUSION: It is possible that the TNF -308 A allele is maintained during aging because subjects who are heterozygous for this polymorphism possess the optimal inflammatory...

  4. Functional discrepancies between tumor necrosis factor and lymphotoxin alpha explained by trimer stability and distinct receptor interactions

    DEFF Research Database (Denmark)

    Schuchmann, M; Hess, S; Bufler, P

    1995-01-01

    Tumor necrosis factor (TNF) and lymphotoxin alpha (LT alpha) are closely related cytokines which bind with nearly identical affinities to the same pair of cell surface receptors, p55 and p75TNFR. Therefore it is assumed that TNF and LT alpha are redundant cytokines. This study, however......, demonstrates that TNF and LT alpha differ significantly with regard to their mitogenic and cytotoxic potentials. LT alpha's superior mitogenic effect could be explained by its formation of a more stable trimer. In contrast to the TNF trimer, which disintegrated under physiological conditions into biologically...... inactive monomers, the LT alpha trimer remained stable for several days. Accordingly, LT alpha more effectively induced fibroblast growth which demands long-term presence of the cytokine. TNF's superior cytotoxicity, which requires only short-term impact of the cytokine, could be attributed to a distinct...

  5. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Jang, Ji-Young; Lee, Jong-Kuen; Jeon, Yoon-Kyung; Kim, Chul-Woo

    2013-01-01

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  6. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  7. The tumor necrosis factor-α inhibitor golimumab in the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Natalia Vladimirovna Chichasova

    2014-01-01

    Full Text Available The tumor necrosis factor-α (TNF-α golimumab (GLM, that is a fully human monoclonal anti-body, was registered in Russia in 2012 to treat rheumatic diseases, such as rheumatoid arthritis (RA, ankylosing spondylitis, and psoriatic arthritis. Its distinguishing characteristics are a high affinity for TNF-α and easiness-to-use: the drug as a 0.5-ml solution is injected subcutaneously once monthly. The registration of the medication was followed by the implementation of a massive program of clinical trials. The randomized placebo-controlled GO-FORWARD, GO-BEFORE, and GO-AFTER studies have indicated that GLM is effective in patients with RA from different subgroups and has a favorable safety profile as compared to that of the entire class of biological agents. According to the data of these studies, GLM had a positive effect on the functional status and quality of life in patients with RA: there was a significantly greater decrease in HAQ scores in both the early and long open treatment phases (to 5 years and in fatigability than in the control group (p=0.032, physical and mental health improvements, as shown by the SF-36 questionnaire, and a significant reduction in disability.

  8. Soluble tumor necrosis factor receptor-I in preterm infants with chorioamnionitis.

    Science.gov (United States)

    Sato, Miho; Nishimaki, Shigeru; An, Hiromi; Shima, Yoshio; Naruto, Takuya; Sugai, Toshiyuki; Iwasaki, Shiho; Seki, Kazuo; Imagawa, Tomoyuki; Mori, Masaaki; Yokota, Shumpei

    2009-04-01

    The aim of our study was (i) to determine whether chorioamnionitis (CAM) is associated with an elevated soluble tumor necrosis factor receptor I (sTNFR-I) level and (ii) to examine the time course of the concentration of sTNFR-I in preterm infants after birth. We measured sTNFR-I levels in the cord blood of 112 preterm infants (gestational age < or =34 weeks), and those in peripheral blood of 30 preterm infants on days 7, 14, 21 and 28. The median value for the sTNFR-I was significantly elevated in 33 infants with CAM at stage 3 (4618 pg/mL) compared with the 52 infants without CAM (2866 pg/mL), or the 13 infants with CAM at stage 1 (3638 pg/mL) and the 14 infants at stage 2 (3242 pg/mL). The severity of CAM is an independent factor for the elevation of cord blood sTNFR-I. The sTNFR-I level on day 0 was significantly higher in eight infants with CAM at stage 3 than in the 22 infants without CAM or with CAM at stage 1 and 2; however there were no significant differences on days 7, 14, 21 and 28. The serum level of sTNFR-I showed a significant gradual decline with time. We suggest that there is an association between elevated sTNFR-I levels in cord blood and maternal CAM, and this elevation may reflect the fetal inflammation. However the elevation of sTNFR-I could not persist postnatally for a long time.

  9. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  10. Association between Interleukin-10-1082 G/A and Tumor Necrosis Factor-α 308 G/A Gene Polymorphisms and Respiratory Distress Syndrome in Iranian Preterm Infants

    OpenAIRE

    Khoshdel, Abolfazl; Kheiri, Soleiman; Omidvari, Peyman; Moradi, Fahimeh; Hamidi, Majid; Teimori, Hossein

    2017-01-01

    Cytokine polymorphisms may contribute to the prevalence of respiratory distress syndrome. The present study was done to investigate the frequency of interleukin- (IL-) 10 and tumor necrosis factor- (TNF-) ? gene polymorphisms and their association with the risk of RDS in preterm infants. One-hundred and nineteen patients with RDS and 119 healthy preterm infants were enrolled. PCR restriction fragment length polymorphism was used to determine the frequency of IL-10 and TNF-? genotypes at -1082...

  11. Restriction spectrum imaging of bevacizumab-related necrosis in a patient with GBM

    Directory of Open Access Journals (Sweden)

    Nikdokht eFarid

    2013-09-01

    Full Text Available Importance:With the increasing use of antiangiogenic agents in the treatment of high grade gliomas, we are becoming increasingly aware of distinctive imaging findings seen in a subset of patients treated with these agents. Of particular interest is the development of regions of marked and persistent restricted diffusion. We describe a case with histopathologic validation, confirming that this region of restricted diffusion represents necrosis and not viable tumor. Observations:We present a case report of a 52-year-old man with GBM treated with temozolomide, radiation, and concurrent bevacizumab following gross total resection. The patient underwent sequential MRI's which included restriction-spectrum imaging (RSI, an advanced diffusion-weighted imaging (DWI technique, and MR perfusion. Following surgery, the patient developed an area of restricted diffusion on RSI which became larger and more confluent over the next several months. Marked signal intensity on RSI and very low cerebral blood volume (CBV on MR perfusion led us to favor bevacizumab-related necrosis over recurrent tumor. Subsequent histopathologic evaluation confirmed coagulative necrosis.Conclusions and Relevance:Our report increases the number of pathologically-proven cases of bevacizumab-related necrosis in the literature from three to four. Furthermore, our case demonstrates this phenomenon on RSI, which has been shown to have good sensitivity to restricted diffusion.

  12. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Son, Young-Ok; Jang, Yong-Suk; Lee, Kyung-Yeol; Lee, Seung-Ah; Kim, Beom-Soo; Lee, Hyun-Jeong; Lee, Jeong-Chae

    2008-01-01

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH 2 -terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein as well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids

  13. Effects of sucralfate on gastric irritant-induced necrosis and apoptosis in cultured guinea pig gastric mucosal cells.

    Science.gov (United States)

    Hoshino, Tatsuya; Takano, Tatsunori; Tomisato, Wataru; Tsutsumi, Shinji; Hwang, Hyun-Jung; Koura, Yuko; Nishimoto, Kiyo; Tsuchiya, Tomofusa; Mizushima, Tohru

    2003-01-01

    We previously reported that several gastric irritants, including ethanol, hydrogen peroxide, and hydrochloric acid, induced both necrosis and apoptosis in cultured gastric mucosal cells. In the present study, we examined the effects of sucralfate, a unique gastroprotective drug, on gastric irritant-induced necrosis and apoptosis produced in vitro. Sucralfate strongly inhibited ethanol-induced necrosis in primary cultures of guinea pig gastric mucosal cells. The preincubation of cells with sucralfate was not necessary for its cytoprotective effect to be observed, thus making its mechanism of action different from that of other gastroprotective drugs. Necrosis of gastric mucosal cells induced by hydrogen peroxide or indomethacin was also suppressed by sucralfate. On the other hand, sucralfate only weakly inhibited ethanol-induced apoptosis. These results suggest that the cytoprotective effect of sucralfate on gastric mucosa in vivo can be explained, at least in part, by its inhibitory effect on gastric irritant-induced necrosis.

  14. Expression of tumor necrosis factor receptor-associated protein 1 and its clinical significance in kidney cancer.

    Science.gov (United States)

    Si, Tong; Yang, Guosheng; Qiu, Xiaofu; Luo, Youhua; Liu, Baichuan; Wang, Bingwei

    2015-01-01

    To investigate the expression and clinical significance of TRAP1 (tumor necrosis factor receptor-associated protein 1) in kidney cancer. TRAP1 expression was detected in kidney cancer and normal kidney tissues by qRT-PCR and immunohistochemistry (IHC), respectively. Then, the correlation of TRAP1 expression with clinicopathological characters and patients' prognosis was evaluated in kidney cancer. IHC results revealed that the high-expression rates of TRAP1 in kidney cancer tissues and normal kidney tissues were 51.3% (41/80), 23.3% (7/30), and the difference was statistically significant (P=0.01). Also, TRAP1 mRNA level in kidney cancer was found to be significantly greater compared with those in normal kidney by qRT-PCR. In addition, TRAP1 expression in kidney cancer significantly correlated with lymph node metastasis and clinical stage (Pkidney cancer and correlates with patients prognosis, which may be served as a potential marker for the diagnosis and treatment of kidney cancer.

  15. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J

    2015-11-01

    Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Percutaneous radiofrequency ablation of renal tumors: Midterm results in 16 patients

    International Nuclear Information System (INIS)

    Memarsadeghi, Mazda; Schmook, Theresia; Remzi, Mesut; Weber, Michael; Poetscher, Gerda; Lammer, Johannes; Kettenbach, Joachim

    2006-01-01

    Purpose: To evaluate the outcome of 16 patients after percutaneous radiofrequency ablation of renal tumors. Materials and methods: Sixteen patients (nine women, seven men; mean age, 61 ± 9 years) with 24 unresectable renal tumors (mean volume, 4.3 ± 4.3 cm 3 ) underwent CT-guided (n = 20) or MR imaging-guided (n = 4) percutaneous radiofrequency ablation using an expandable electrode (Starburst XL TM , RITA Medical Systems, Mountain View, CA) with a 150-W generator. The initial follow-up imaging was performed within 1-30 days after RF ablation, then at 3-6 month intervals using either CT or MRI. Residual tumor volume and coagulation necrosis was assessed, and statistical correlation tests were obtained to determine the strength of the relationship between necrosis volume and number of ablations. Results: Overall, 97 overlapping RF ablations were performed (mean, 3.5 ± 1.5 ablations per tumor) during 24 sessions. Five or more RF ablations per tumor created significant larger necrosis volumes than 1-2 (p .034) or 3-4 ablations (p = .020). A complete ablation was achieved in 20/24 tumors (primary technical success, 83%; mean volume of coagulation necrosis: 10.2 ± 7.2 cm 3 ). Three of four residual tumors were retreated and showed complete necrosis thereafter. Three major complications (one percuatneous urinary fistula and two ureteral strictures) were observed after RF ablation. No further clinically relevant complications were observed and renal function remained stable. During a mean follow-up of 11.2 months (range, 0.2-31.5), 15/16 patients (94%) were alive. Only one patient had evidence of local recurrent tumor. Conclusion: The midterm results of percutaneous RF ablation for renal tumors are promising and show that RF ablation is well-suited to preserve renal function

  17. Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis

    Science.gov (United States)

    Gaman, Laura; Robu, Georgiana Catalina; Radoi, Mugurel Petrinel; Stroica, Laura; Badea, Mihaela

    2018-01-01

    Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis. PMID:29686719

  18. Recurrent abdominal pain as the presentation of tumor necrosis factor receptor-associated periodic syndrome (TRAPS) in an Asian girl: a case report and review of the literature.

    Science.gov (United States)

    Chen, Yun-Ju; Yu, Hsin-Hui; Yang, Yao-Hsu; Lau, Yu-Lung; Lee, Wen-I; Chiang, Bor-Luen

    2014-12-01

    Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is characterized by periodic fever, cutaneous rash, conjunctivitis, lymphadenopathy, abdominal pain, myalgia, and arthralgia. It is a rare autosomal dominant disease and strongly associated with heterozygous mutations in the tumor necrosis factor (TNF) receptor super family 1A (TNFRSF1A) gene. It is believed to be more common in Western countries than in Asian countries. Here, we present the case of a 14-year-old girl with periodic fever and abdominal pain with elevation of inflammatory markers for 2 years. After extensive work-up of infectious etiology with negative results, the diagnosis of TRAPS was made although no gene mutations were identified in the TNFRSF1A gene, MVK gene, and NALP3/CIAS1 gene. She had partial clinical response to corticosteroids and immunomodulatory agents. However, the treatment response to TNF-α inhibitor etanercept was dramatic. She has remained symptom free under regular weekly to biweekly etanercept treatment for 2 years. We also reviewed the related literature and summarized the data of 10 Asian cases of TRAPS. Copyright © 2012. Published by Elsevier B.V.

  19. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Science.gov (United States)

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  20. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Serk In, E-mail: serkin@korea.edu [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul (Korea, Republic of); Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN (United States); Park, Sung-Jun [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Laboratory of Obesity and Aging Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Lee, Junghan; Kim, Hye Eun; Park, Su Jin; Sohn, Jeong-Won [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Park, Yun Gyu, E-mail: parkyg@korea.ac.kr [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.

  1. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity

    International Nuclear Information System (INIS)

    Park, Serk In; Park, Sung-Jun; Lee, Junghan; Kim, Hye Eun; Park, Su Jin; Sohn, Jeong-Won; Park, Yun Gyu

    2016-01-01

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.

  2. Curcumin attenuates lipolysis stimulated by tumor necrosis factor-α or isoproterenol in 3T3-L1 adipocytes.

    Science.gov (United States)

    Xie, Xiao-yun; Kong, Po-Ren; Wu, Jin-feng; Li, Ying; Li, Yan-xiang

    2012-12-15

    Curcumin, an active component derived from dietary spice turmeric (Curcuma longa), has been demonstrated antihyperglycemic, antiinflammatory and hypocholesterolemic activities in obesity and diabetes. These effects are associated with decreased level of circulating free fatty acids (FFA), however the mechanism has not yet been elucidated. The flux of FFA and glycerol from adipose tissue to the blood stream primarily depends on the lipolysis of triacylglycerols in the adipocytes. Adipocyte lipolysis is physiologically stimulated by catecholamine hormones. Tumor necrosis factor-α (TNFα) stimulates chronic lipolysis in obesity and type 2 diabetes. In this study, we examined the role of curcumin in inhibiting lipolytic action upon various stimulations in 3T3-L1 adipocytes. Glycerol release from TNFα or isoproterenol-stimulated 3T3-L1 adipocytes in the absence or presence of curcumin was determined using a colorimetric assay (GPO-Trinder). Western blotting was used to investigate the TNFα-induced phosphorylation of MAPK and perilipin expression. Fatcake and cytosolic fractions were prepared to examine the isoproterenol-stimulated hormone-sensitive lipase translocation. Treatment with curcumin attenuated TNFα-mediated lipolysis by suppressing phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) and reversing the downregulation of perilipin protein in TNFα-stimulated adipocytes (p<0.05). The acute lipolytic response to adrenergic stimulation of isoproterenol was also restricted by curcumin (10-20 μM, p<0.05), which was compatible with reduced perilipin phosphorylation(29%, p<0.05) and hormone-sensitive lipase translocation(20%, p<0.05). This study provides evidence that curcumin acts on adipocytes to suppress the lipolysis response to TNFα and catecholamines. The antilipolytic effect could be a cellular basis for curcumin decreasing plasma FFA levels and improving insulin sensitivity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model.

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad R; Shariati, Mehdi; Rahmani, Mohammad R; Allahtavakoli, Mohammad

    2017-08-01

    Stroke is a major cause of mortality and long-term disability in adults. Transient receptor potential vanilloid-1 (TRPV1) plays a crucial role in neuroinflammation. In this study, the effects of TRPV1 agonist (capsaicin) and antagonist (AMG9810) on cerebral ischemia were investigated. Forty male Wistar rats were assigned to the following experimental groups: sham, vehicle) ischemic), AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke), and capsaicin (1 mg/kg; 3 h after stroke). Stroke was induced by permanent middle cerebral artery occlusion and neurological deficits were evaluated 1, 3, and 7 days after stroke. Then, infarct volume, brain edema, body temperature, mRNA expression of TRPV1, and serum concentrations of tumor necrosis factor-alpha (TNF-α) and IL-10 were measured. Compared to the vehicle group, AMG9810 significantly decreased the infarct volume (P < 0.01). Latency for the removal of sticky labels from the forepaw and the hanging time were significantly decreased and increased, respectively, following administration of AMG9810 (P < 0.01 and P < 0.001 vs. vehicle) 3 and 7 days after stroke. Compared to the sham group, the mRNA expression of TRPV1 was significantly increased in vehicle group (P < 0.01). Administration of AMG9810 significantly increased the anti-inflammatory cytokine IL-10 and decreased the inflammatory cytokine TNF-α (P < 0.05). Moreover, our results indicate that AMG9810 might a promising candidate for the hypothermic treatment of stroke. The findings also suggest a key role for AMG9810 in reducing inflammation after stroke and imply that TRPV1 could be a potential target for the treatment of ischemic stroke. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  4. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    Science.gov (United States)

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  6. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey.

    Science.gov (United States)

    Aggarwal, Bharat B; Gupta, Subash C; Kim, Ji Hye

    2012-01-19

    Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-β. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease.

  7. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  8. The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year

    DEFF Research Database (Denmark)

    Kolsum, Umme; Roy, Kay; Starkey, Cerys

    2009-01-01

    BACKGROUND: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD) are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein......(i)) and the Bland-Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits. RESULTS: There was moderate repeatability with a very high degree of statistical significance (p...... (CRP) over one year and examined the relationships between these systemic markers in COPD. METHODS: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-alpha were measured. Repeatability was expressed by intraclass correlation coefficient (R...

  9. The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year

    DEFF Research Database (Denmark)

    Kolsum, Umme; Roy, Kay; Starkey, Cerys

    2009-01-01

    BACKGROUND: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD) are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein......(i)) and the Bland-Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits. RESULTS: There was moderate repeatability with a very high degree of statistical significance (p...... (CRP) over one year and examined the relationships between these systemic markers in COPD. METHODS: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-alpha were measured. Repeatability was expressed by intraclass correlation coefficient (R...

  10. Tumor necrosis factor-α and -β genetic polymorphisms as a risk factor in Saudi patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Kadasah S

    2017-04-01

    Full Text Available Saeed Kadasah,1 Misbahul Arfin,2 Sadaf Rizvi,2 Mohammed Al-Asmari,2 Abdulrahman Al-Asmari2 1Department of Psychiatry, 2Division of Molecular Biology & Genetics, Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia Background: Schizophrenia is one of the most common devastating psychiatric disorders that negatively affects the quality of life and psychosocial functions. Its etiology involves the interplay of complex polygenic influences and environmental risk factors. Inflammatory markers are well-known etiological factors for psychiatric disorders, including schizophrenia. Objective: The aim of this study was to investigate the association of proinflammatory cytokine genes, tumor necrosis factor (TNF-α (-308G/A and TNF-β (+252A/G polymorphisms with schizophrenia susceptibility. Subjects and methods: TNF-α and TNF-β genes were amplified using amplification refractory mutation system primers in 180 schizophrenia patients and 200 healthy matched controls recruited from the Psychiatry Clinic of Prince Sultan Military Medical City, Riyadh. The frequencies of alleles and genotypes of TNF-α (-308G/A and TNF-β (+252A/G polymorphisms in patients were compared with those in controls. Results: The frequencies of TNF-α (-308 allele A and genotype GA were significantly higher, while those of allele G and genotype GG were lower in schizophrenia patients as compared to controls, indicating that genotype GA and allele A of TNF-α (-308G/A may increase susceptibility to schizophrenia, while genotype GG and allele G may reduce it. On the other hand, the distribution of alleles and genotypes of TNF-β (+252A/G polymorphism does not differ significantly in patients from controls; however, the frequency of genotype GG of TNF-β (+252A/G was significantly higher in male patients than in female patients. The distribution of TNF-α (-308G/A and TNF-β (+252A/G polymorphisms was almost similar in schizophrenia patients with

  11. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer.

    Science.gov (United States)

    Yi, Fuming; Amarasinghe, Baru; Dang, Thao P

    2013-01-01

    Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation.

  12. CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth.

    Science.gov (United States)

    Mendelsohn, John; Prewett, Marie; Rockwell, Patricia; Goldstein, Neil I

    2015-01-15

    Murine mAb 225 was effective against the EGFR tyrosine kinase and inhibited tumor growth in preclinical studies. A phase I trial showed safety, tumor localization, and satisfactory pharmacokinetics. Human:murine chimeric C225 retained biologic activity, which was essential for the conduct of subsequent combination therapy trials and eventual regulatory approval. ©2015 American Association for Cancer Research.

  13. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  14. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    Science.gov (United States)

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs. © 2014 Society for Endocrinology.

  15. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    Science.gov (United States)

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  16. Wogonin suppresses melanoma cell B16-F10 invasion and migration by inhibiting Ras-medicated pathways.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available The patients diagnosed with melanoma have a bad prognosis for early regional invasion and distant metastases. Wogonin (5,7-dihydroxy-8-methoxyflavone is one of the active components of flavonoids that extracts from Scutellariae radix. Several previous studies reported that wogonin possesses antitumor effect against leukemia, gastrointestinal cancer and breast cancer. In this study, we used melanoma cell B16-F10 to further investigate the anti-invasive and anti-migratory activity of wogonin. Our date showed that wogonin caused suppression of cell migration, adhesion, invasion and actin remodeling by inhibiting the expression of matrix metalloproteinase-2 and Rac1 in vitro. Wogonin also reduced the number of the tumor nodules on the whole surface of the lung in vivo. Furthermore, the examination of mechanism revealed that wogonin inhibited Extracellular Regulated protein Kinases and Protein Kinase B pathways, which are both medicated by Ras. Insulin-like growth factor-1-induced or tumor necrosis factor-α-induced invasion was also inhibited by wogonin. Therefore, the inhibitory mechanism of melanoma cell invasion by wogonin might be elucidated.

  17. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    type, necrosis, and grade. METHODS:: Whole-tumor sections from 239 soft tissue sarcomas of the extremities were reviewed for the following prognostic factors: size, vascular invasion, necrosis, and growth pattern. A new prognostic model, referred to as SING (Size, Invasion, Necrosis, Growth...

  18. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    Science.gov (United States)

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  19. Doxorubicin plus tumor necrosis factor alpha combination treatments in EL4-lymphoma-bearing C57BL/6 mice.

    Science.gov (United States)

    Ehrke, M J; Verstovsek, S; Ujházy, P; Meer, J M; Eppolito, C; Maccubbin, D L; Mihich, E

    1998-02-01

    The therapeutic efficacy of a total of 42 single-agent or combination protocols involving doxorubicin (Adriamycin, ADM) and tumor necrosis factor alpha (TNFalpha) were evaluated in the syngeneic murine lymphoma model, C57BL/6-EL4. Combination treatments were the most effective and the therapeutic effects were schedule-dependent; e.g. it was generally advantageous for ADM to precede TNFalpha administration. Two protocols selected for further study were 4 mg/kg ADM i.v. on days 1 and 8 plus TNFalpha, i.v., at either 16000 U (7 microg)/injection, on days 1 and 8 or 4000 U (1.7 microg)/injection, on days 11-15. Survival of mice bearing one of four EL4 sublines having different in vitro drug sensitivities was assessed. These sublines were E10 (ADM-sensitive/TNFalpha-resistant), E16 (sensitive/sensitive), ER2 (ADM-resistant/TNFalpha-sensitive) and ER13 (resistant/resistant). Between 80% and 100% long-term survivors (i.e. tumor free on day 60) were obtained with the two treatments in mice bearing ADM-sensitive sublines, even though one of these sublines, E10, was resistant to TNFalpha in vitro. Induction of long-term survival appeared, therefore, to correlate with in vitro defined sensitivity/resistance to ADM, but not to TNFalpha Treatment-induced modulations of tumoricidal immune effector functions were also examined. Taken together, the results indicated that induction of long-term survival involved complex interactions of: (1) ADM-induced tumor modifications, including, but not limited to, tumor debulking, (2) combination-treatment-induced modifications of splenic cytolytic T cell and macrophage activities, and (3) the restoration of thymus cellularity. Finally, when long-term survivors resulting from treatment of E10- or E16-bearing mice were implanted with ER2 on day 120, the majority survived, indicating that long-term immune memory, capable of recognizing drug resistant variants, had been established.

  20. Radio (111In) capillary tube leukocyte adherence inhibition assay for the detection of specific tumor-associated immunity

    International Nuclear Information System (INIS)

    Peng, R.; Myers, W.L.

    1984-01-01

    The specific tumor-associated immune response of C3H/HeJ mice was determined at various times after subcutaneous injection with a transplantable mammary adenocarcinoma (H2712) using a radio ( 111 In) leukocyte adherence inhibition (LAI) assay carried out in capillary tubes. Solubilized tumor-associated antigen prepared by a single phase 1-butanol extraction of the specific tumor and other transplantable tumors of different histological origin were used in the evaluation of LAI reactivity. The assay was found to be capable of detecting a significant antitumor response before the subcutaneous tumors became detectable by palpation. The response remained significant until the tumors were greater than 20 mm in diameter

  1. Tumor necrosis factor-alpha induced enhancement of cryosurgery

    Science.gov (United States)

    Goel, Raghav; Paciotti, Guilio F.; Bischof, John C.

    2008-02-01

    Local recurrence of cancer after cryosurgery is related to the inability to monitor and predict destruction of cancer (temperatures > -40°C) within an iceball. We previously reported that a cytokine adjuvant TNF-α could be used to achieve complete cancer destruction at the periphery of an iceball (0 to -40°C). This study is a further development of that work in which cryosurgery was performed using cryoprobes operating at temperatures > -40°C. LNCaP Pro 5 tumor grown in a dorsal skin fold chamber (DSFC) was frozen at -6°C after TNF-α incubation for 4 or 24 hours. Tumors grown in the hind limb were frozen with a probe tip temperature of -40°C, 4 or 24 hours after systemic injection with TNF-α. Both cryosurgery alone or TNF-α treatment alone caused only a minimal damage to the tumor tissue at the conditions used in the study. The combination of TNF-α and cryosurgery produced a significant damage to the tumor tissue in both the DSFC and the hind limb model system. This augmentation in cryoinjury was found to be time-dependent with 4-hour time period between the two treatments being more effective than 24-hour. These results suggests the possibility of cryotreatment at temperatures > -40°C with the administration of TNF-α.

  2. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  3. Vascular Targeting in Pancreatic Cancer: The Novel Tubulin-Binding Agent ZD6126 Reveals Antitumor Activity in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Axel Kleespies

    2005-10-01

    Full Text Available ZD6126 is a novel vascular-targeting agent that acts by disrupting the tubulin cytoskeleton of an immature tumor endothelium, leading to an occlusion of tumor blood vessels and a subsequent tumor necrosis. We wanted to evaluate ZD6126 in primary and metastatic tumor models of human pancreatic cancer. Nude mice were injected orthotopically with L3.6pl pancreatic cancer cells. In single and multiple dosing experiments, mice received ZD6126, gemcitabine, a combination of both agents, or no treatment. For the induction of metastatic disease, additional groups of mice were injected with L3.6pl cells into the spleen. Twenty-four hours after a single-dose treatment, ZD6126 therapy led to an extensive central tumor necrosis, which was not seen after gemcitabine treatment. Multiple dosing of ZD6126 resulted in a significant growth inhibition of primary tumors and a marked reduction of spontaneous liver and lymph node metastases. Experimental metastatic disease could be significantly controlled by a combination of ZD6126 and gemcitabine, as shown by a reduction of the number and size of established liver metastases. As shown by additional in vitro and in vivo experiments, possible mechanisms involve antivascular activities and subsequent antiproliferative and proapoptotic effects of ZD6126 on tumor cells, whereas direct activities against tumor cells seem unlikely. These data highlight the antitumor and antimetastatic effects of ZD6126 in human pancreatic cancer and reveal benefits of adding ZD6126 to standard gemcitabine therapy.

  4. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    Science.gov (United States)

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  5. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  6. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas......-mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha sensitizes them to become apoptotic upon stimulation...... of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-gamma and TNF-alpha was accompanied by a significant upregulation of Fas and FLICE...

  7. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    International Nuclear Information System (INIS)

    Peddaboina, Chander; Smythe, W Roy; Cao, Xiaobo; Jupiter, Daniel; Fletcher, Steven; Yap, Jeremy L; Rai, Arun; Tobin, Richard P; Jiang, Weihua; Rascoe, Philip; Rogers, M Karen Newell

    2012-01-01

    It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors

  8. Inhibition of pancreatic tumoral cells by snake venom disintegrins.

    Science.gov (United States)

    Lucena, Sara; Castro, Roberto; Lundin, Courtney; Hofstetter, Amanda; Alaniz, Amber; Suntravat, Montamas; Sánchez, Elda Eliza

    2015-01-01

    Pancreatic cancer often has a poor prognosis, even when diagnosed early. Pancreatic cancer typically spreads rapidly and is rarely detected in its early stages, which is a major reason it is a leading cause of cancer death. Signs and symptoms may not appear until pancreatic cancer is quite advanced, and complete surgical removal is not possible. Furthermore, pancreatic cancer responds poorly to most chemotherapeutic agents. The importance of integrins in several cell types that affect tumor progression has made them an appealing target for cancer therapy. Some of the proteins found in the snake venom present a great potential as anti-tumor agents. In this study, we summarize the activity of two integrins antagonist, recombinant disintegrins mojastin 1 and viridistatin 2, on human pancreatic carcinoma cell line (BXPC-3). Both recombinant disintegrins inhibited some essential aspects of the metastasis process such as proliferation, adhesion, migration, and survival through apoptosis, making these proteins prominent candidates for the development of drugs for the treatment of pancreatic cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Therapeutic Non-Toxic Doses of TNF Induce Significant Regression in TNFR2-p75 Knockdown Lewis Lung Carcinoma Tumor Implants

    Science.gov (United States)

    Sasi, Sharath P.; Bae, Sanggyu; Song, Jin; Perepletchikov, Aleksandr; Schneider, Douglas; Carrozza, Joseph; Yan, Xinhua; Kishore, Raj; Enderling, Heiko; Goukassian, David A.

    2014-01-01

    Tumor necrosis factor-alpha (TNF) binds to two receptors: TNFR1/p55-cytotoxic and TNFR2/p75-pro-survival. We have shown that tumor growth in p75 knockout (KO) mice was decreased more than 2-fold in Lewis lung carcinoma (LLCs). We hypothesized that selective blocking of TNFR2/p75 LLCs may sensitize them to TNF-induced apoptosis and affect the tumor growth. We implanted intact and p75 knockdown (KD)-LLCs (>90%, using shRNA) into wild type (WT) mice flanks. On day 8 post-inoculation, recombinant murine (rm) TNF-α (12.5 ng/gr of body weight) or saline was injected twice daily for 6 days. Tumor volumes (tV) were measured daily and tumor weights (tW) on day 15, when study was terminated due to large tumors in LLC+TNF group. Tubular bones, spleens and peripheral blood (PB) were examined to determine possible TNF toxicity. There was no significant difference in tV or tW between LLC minus (-) TNF and p75KD/LLC-TNF tumors. Compared to 3 control groups, p75KD/LLC+TNF showed >2-5-fold decreases in tV (ptumors were 100% necrotic, the remaining revealed 40-60% necrosis. No toxicity was detected in bone marrow, spleen and peripheral blood. We concluded that blocking TNFR2/p75 in LLCs combined with intra-tumoral rmTNF injections inhibit LLC tumor growth. This could represent a novel and effective therapy against lung neoplasms and a new paradigm in cancer therapeutics. PMID:24664144

  10. Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells

    Science.gov (United States)

    2012-01-01

    Introduction The taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance. Methods MCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR). Results MCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes

  11. B-lymfocytdepletring og andre biologiske behandlingsmuligheder ved Graves' oftalmopatiTumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    DEFF Research Database (Denmark)

    El, Fassi D.; Hegedus, L.; Nielsen, Claus Henrik

    2008-01-01

    The current medical treatment options for Graves' ophthalmopathy (GO) are unsatisfactory. Recent treatment of GO patients with the B-lymphocyte depleting monoclonal antibody rituximab or with the anti-tumor necrosis factor-alpha agents etanercept and infliximab has shown promising results. We...

  12. Inhibition of Matrix Metalloproteinase Activity Prevents Increases in Myocardial Tumor Necrosis Factor-α

    Science.gov (United States)

    Murray, David B.; Levick, Scott P; Brower, Gregory L.; Janicki, Joseph S.

    2010-01-01

    Aim TNF-α is known to cause adverse myocardial remodeling. While we have previously shown a role for cardiac mast cells in mediating myocardial TNF-α, matrix metalloproteinases (MMP) activation of TNF-α may also be contributory. We sought to determine the relative roles of MMPs and cardiac mast cells in the activation of TNF-α in the hearts of rats subjected to chronic volume overload. Methods Interventions with the broad spectrum MMP inhibitor, GM6001, or the mast cell stabilizer, nedocromil, were performed in the rat aortocaval fistula (ACF) model of volume overload. Results Myocardial TNF-α levels were significantly increased in the ACF. This increase was prevented by MMP inhibition with GM6001 (p ≤ 0.001 vs. ACF). Conversely, myocardial TNF-α levels were increased in the ACF + nedocromil treated fistula groups (p ≤ 0.001 vs. sham). The degradation of interstitial collagen volume fraction seen in the untreated ACF group was prevented in both the GM6001 and nedocromil treated hearts. Significant increases in LV myocardial ET-1 levels also occurred in the ACF group at 3 days post-fistula. Whereas administration of GM6001 significantly attenuated this increase, mast cell stabilization with nedocromil markedly exacerbated the increase, producing ET-1 levels 6.5 fold and 2 fold greater than that in the sham-operated control and ACF group, respectively. Conclusion The efficacy of the MMP inhibitor, GM6001, to prevent increased levels of myocardial TNF-α is indicative of MMP-mediated cleavage of latent extracellular membrane bound TNF-α protein as the primary source of bioactive TNF-α in the myocardium of the volume-overload heart. PMID:20403361

  13. Avascular Necrosis

    Science.gov (United States)

    ... Financial Reports Watchdog Ratings Feedback Contact Select Page Avascular Necrosis Home > Cancer Resources > Late Effects of Treatment > Avascular Necrosis Avascular necrosis (AVN) is a disorder resulting from ...

  14. Differentiation of Brain Tumor Recurrence from Post-Radiotherapy Necrosis with 11C-Methionine PET: Visual Assessment versus Quantitative Assessment.

    Directory of Open Access Journals (Sweden)

    Ryogo Minamimoto

    Full Text Available The aim of this multi-center study was to assess the diagnostic capability of visual assessment in L-methyl-11C-methionine positron emission tomography (MET-PET for differentiating a recurrent brain tumor from radiation-induced necrosis after radiotherapy, and to compare it to the accuracy of quantitative analysis.A total of 73 brain lesions (glioma: 31, brain metastasis: 42 in 70 patients who underwent MET-PET were included in this study. Visual analysis was performed by comparison of MET uptake in the brain lesion with MET uptake in one of four regions (around the lesion, contralateral frontal lobe, contralateral area, and contralateral cerebellar cortex. The concordance rate and logistic regression analysis were used to evaluate the diagnostic ability of visual assessment. Receiver-operating characteristic curve analysis was used to compare visual assessment with quantitative assessment based on the lesion-to-normal (L/N ratio of MET uptake.Interobserver and intraobserver κ-values were highest at 0.657 and 0.714, respectively, when assessing MET uptake in the lesion compared to that in the contralateral cerebellar cortex. Logistic regression analysis showed that assessing MET uptake in the contralateral cerebellar cortex with brain metastasis was significantly related to the final result. The highest area under the receiver-operating characteristic curve (AUC with visual assessment for brain metastasis was 0.85, showing no statistically significant difference with L/Nmax of the contralateral brain (AUC = 0.89 or with L/Nmean of the contralateral cerebellar cortex (AUC = 0.89, which were the areas that were the highest in the quantitative assessment. For evaluation of gliomas, no specific candidate was confirmed among the four areas used in visual assessment, and no significant difference was seen between visual assessment and quantitative assessment.The visual assessment showed no significant difference from quantitative assessment of MET

  15. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose

    Science.gov (United States)

    Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah

    2013-01-01

    Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807

  16. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose

    Directory of Open Access Journals (Sweden)

    Safar Farajnia

    2013-02-01

    Full Text Available Purpose: Recombinant tumor necrosis factor-alpha (TNF-α has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods: In this study, we examined the potential of our produced anti-TNF-scFv fragments for purification of TNF-α produced by Raji cells. he Raji cells were induced by lipopolysaccharides (LPS to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications.

  17. Dual Inhibition of MEK and PI3K/Akt Rescues Cancer Cachexia through Both Tumor Extrinsic and Intrinsic Activities

    Science.gov (United States)

    Mace, Thomas A.; Farren, Matthew R.; Farris, Alton B.; Young, Gregory S.; Elnaggar, Omar; Che, Zheng; Timmers, Cynthia D.; Rajasekera, Priyani; Maskarinec, Jennifer M.; Bloomston, Mark; Bekaii-Saab, Tanios; Guttridge, Denis C.; Lesinski, Gregory B.

    2016-01-01

    Involuntary weight loss, a part of the cachexia syndrome, is a debilitating co-morbidity of cancer and currently has no treatment options. Results from a recent clinical trial at our institution showed that biliary tract cancer patients treated with a MEK inhibitor exhibited poor tumor responses, but surprisingly gained weight and increased their skeletal muscle mass. This implied that MEK inhibition might be anti-cachectic. To test this potential effect of MEK inhibition, we utilized the established Colon-26 model of cancer cachexia and the MEK1/2 inhibitor MEK162. Results showed that MEK inhibition effectively prevented muscle wasting. Importantly, MEK162 retained its ability to spare muscle loss even in mice bearing a Colon-26 clone resistant to the MEK inhibitor, demonstrating that the effects of blocking MEK is at least in part independent of the tumor. Because single agent MEK inhibitors have been limited as a front-line targeted therapy due to compensatory activation of other oncogenic signaling pathways, we combined MEK162 with the PI3K/Akt inhibitor buparlisib. Results showed that this combinatorial treatment significantly reduced tumor growth due to a direct activity on Colon-26 tumor cells in vitro and in vivo, while also preserving skeletal muscle mass. Together, our results suggest that as a monotherapy MEK inhibition preserves muscle mass, but when combined with a PI3K/Akt inhibitor exhibits potent anti-tumor activity. Thus, combinatorial therapy might serve as a new approach for the treatment of cancer cachexia. PMID:27811010

  18. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  19. Interleukin-10 to tumor necrosis factor-alpha ratio is a predictive biomarker in nonalcoholic fatty liver disease: interleukin-10 to tumor necrosis factor-alpha ratio in steatohepatitis.

    Science.gov (United States)

    Hashem, Reem M; Mahmoud, Mona F; El-Moselhy, Mohamed A; Soliman, Hala M

    2008-10-01

    Fatty liver disease is commonly associated with diabetes mellitus (DM). Insulin resistance (IR) as an investigative biomarker is only concerned with fatty liver that results from DM type 2 associated with metabolic syndrome. Irrespective of IR, DM is generally characterized by overproduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), whereas action of the latter is modulated by the anti-inflammatory cytokine interleukin-10 (IL-10). The aim of this study was to investigate the efficacy of using TNF-alpha alone or IL-10/TNF-alpha ratio compared to IR, as a promising biomarker for fatty liver assessment in DM. Furthermore, we hypothesized that using garlic as an immunomodulator may decrease TNF-alpha and increase IL-10 production to improve steatohepatitis. DM was induced metabolically by a high-fat diet to bring about IR, or chemically by alloxan, producing insulin deficiency, in male albino rats. Garlic powder was supplemented (15 mg/kg per day) for 3 weeks. Fatty liver was depicted histologically and biochemically (aspartic aminotransferase, alanine aminotransferase, HOMA-IR, TNF-alpha, IL-10, IL-10/TNF-alpha ratio). We found that, in contrast to obese rats, garlic decreased IL-10/TNF-alpha ratio, despite decreasing TNF-alpha in alloxan diabetic rats in agreement with the histology, which revealed more prominent improvement in the obese group. Moreover, the effect of garlic was not linked to improvement of IR in obese rats. We conclude that IL-10/TNF-alpha ratio may be considered as a convenient biomarker for investigation of fatty liver of different grades, apart from being associated with IR, and immunomodulation of this ratio in favor of increasing it may exert significant improvement.

  20. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.