WorldWideScience

Sample records for inhibitory activity compound

  1. Inhibitory effect of Sphagnum palustre extract and its bioactive compounds on aromatase activity

    Directory of Open Access Journals (Sweden)

    Hee Jeong Eom

    2016-09-01

    Full Text Available Sphagnum palustre (a moss has been traditionally used in Korea for the cure of several diseases such as cardiac pain and stroke. In this research, the inhibitory effect of S. palustre on aromatase (cytochrome P450 19, CYP19 activity was studied. [1β-3H] androstenedione was used as a substrate and incubated with S. palustre extract and recombinant human CYP19 in the presence of NADPH. S. palustre extract inhibited aromatase in a concentration-dependent manner (IC50 value: 36.4 ± 8.1 µg/mL. To elucidate the major compounds responsible for the aromatase inhibitory effects of S. palustre extract, nine compounds were isolated from the extract and tested for their inhibition of aromatase activity. Compounds 1, 6, and 7 displayed aromatase inhibition, while the inhibition by the other compounds was negligible.

  2. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  3. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb.

    Science.gov (United States)

    Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu

    2014-01-10

    In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be

  4. Four new compounds isolated from Psoralea corylifolia and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    Science.gov (United States)

    Lin, Xin; Li, Ban-Ban; Zhang, Le; Li, Hao-Ze; Meng, Xiao; Jiang, Yi-Yu; Lee, Hyun-Sun; Cui, Long

    2018-05-14

    A new bakuchiol compound Δ 11 -12-hydroxy-12-dimethyl bakuchiol (1), a new flavanone compound 2(S)-6-methoxy-7- hydroxymethylene-4'-hydroxyl-flavanone (8), and two new isoflavanone compounds 4',7-dihydroxy-3'-(6"β-hydroxy-3″,7″-dimethyl-,2″,7″-dibutenyl)-geranylisoflavone (9) and 4',7-dihydroxy-3'-(7″-hydroxy-7″-methyl-2″,5″-dibutenyl)-geranylisoflavone (10) together with eight known compounds (2-7, 11, 12) were isolated from the P. corylifolia. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1/2. Among them, compounds 3, 9 and 10 were found to exhibit selective inhibitory activity on DGAT1 with IC 50 values ranging from 93.7 ± 1.3 to 96.2 ± 1.1 μM. Compound 1 showed inhibition activity on DGAT1 with IC 50 values 73.4 ± 1.3 μM and inhibition of DGAT2 with IC 50 value 121.1 ± 1.3 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum

    Directory of Open Access Journals (Sweden)

    Prachyaporn Inthongkaew

    Full Text Available ABSTRACT A methanol extract from the whole plant of Dendrobium formosum Roxb. ex Lindl., Orchidaceae, showed inhibitory potential against α-glucosidase and pancreatic lipase enzymes. Chromatographic separation of the extract resulted in the isolation of twelve phenolic compounds. The structures of these compounds were determined through analysis of NMR and HR-ESI-MS data. All of the isolates were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities, as well as glucose uptake stimulatory effect. Among the isolates, 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12 showed the highest α-glucosidase and pancreatic lipase inhibitory effects with an IC50 values of 126.88 ± 0.66 µM and 69.45 ± 10.14 µM, respectively. An enzyme kinetics study was conducted by the Lineweaver-Burk plot method. The kinetics studies revealed that compound 12 was a non-competitive inhibitor of α-glucosidase and pancreatic lipase enzymes. Moreover, lusianthridin at 1 and 10 µg/ml and moscatilin at 100 µg/ml showed glucose uptake stimulatory effect without toxicity on L6 myotubes. This study is the first report on the phytochemical constituents and anti-diabetic and anti-obesity activities of D. formosum.

  6. Antiinflammatory and lipoxygenase inhibitory compounds from Vitex agnus-castus.

    Science.gov (United States)

    Choudhary, M Iqbal; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Tareen, Rasool Bakhsh

    2009-09-01

    Several secondary metabolites, artemetin (1), casticin (2), 3,3'-dihydroxy-5,6,7,4'-tetramethoxy flavon (3), penduletin (4), methyl 4-hydroxybenzoate (5), p-hydroxybenzoic acid (6), methyl 3,4-dihydroxybenzoate (7), 5-hydroxy-2-methoxybenzoic acid (8), vanillic acid (9) and 3,4-dihydroxybenzoic acid (10) were isolated from a folkloric medicinal plant, Vitex agnus-castus. The structures of compounds 1-10 were identified with the help of spectroscopic techniques. Compounds 3-10 were isolated for the first time from this plant. These compounds were screened for their antiinflammatory and lipoxygenase inhibitory activities. Compounds 6, 7 and 10 were found to have significant antiinflammatory activity in a cell-based contemporary assay, whereas compounds 1 and 2 exhibited a potent lipoxygenase inhibition.

  7. In vitro assessment of the growth and plasma membrane H+ -ATPase inhibitory activity of ebselen and structurally related selenium- and sulfur-containing compounds in Candida albicans.

    Science.gov (United States)

    Orie, Natalie N; Warren, Andrew R; Basaric, Jovana; Lau-Cam, Cesar; Piętka-Ottlik, Magdalena; Młochowski, Jacek; Billack, Blase

    2017-06-01

    Ebselen (EB, compound 1) is an investigational organoselenium compound that reduces fungal growth, in part, through inhibition of the fungal plasma membrane H + -ATPase (Pma1p). In the present study, the growth inhibitory activity of EB and of five structural analogs was assessed in a fluconazole (FLU)-resistant strain of Candida albicans (S2). While none of the compounds were more effective than EB at inhibiting fungal growth (IC 50  ∼ 18 μM), two compounds, compounds 5 and 6, were similar in potency. Medium acidification assays performed with S2 yeast cells revealed that compounds 4 and 6, but not compounds 2, 3, or 5, exerted an inhibitory activity comparable to EB (IC 50  ∼ 14 μM). Using a partially purified Pma1p preparation obtained from S2 yeast cells, EB and all the analogs demonstrated a similar inhibitory activity. Taken together, these results indicate that EB analogs are worth exploring further for use as growth inhibitors of FLU-resistant fungi. © 2017 Wiley Periodicals, Inc.

  8. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.

    Science.gov (United States)

    Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing

    2014-06-23

    Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  10. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  11. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds.

    Science.gov (United States)

    Pendota, S C; Aderogba, M A; Ndhlala, A R; Van Staden, J

    2013-07-09

    Buddleja salviifolia leaves are used for the treatment of eye infections and neurodegenerative conditions by various tribes in South Africa. This study was designed to isolate the phenolic constituents from the leaf extracts of Buddleja salviifolia and evaluate their antimicrobial and acetylcholinesterase (AChE) activities. Three phenolic compounds were isolated from the ethyl acetate fraction of a 20% aqueous methanol leaf extract of Buddleja salviifolia using Sephadex LH-20 and silica gel columns. Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: mass spectrometry (ESI-TOF-MS) and NMR (1D and 2D). The extracts and isolated compounds were evaluated for antimicrobial and acetylcholinesterase activities using the microdilution technique. The bacteria used for the antimicrobial assays were Gram-positive Bacillus subtilis and Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The isolated compounds were characterized as: 4'-hydroxyphenyl ethyl vanillate (1) a new natural product, acteoside (2) and quercetin (3). The crude extract, fractions and the isolated compounds from the leaves of the plant exhibited a broad spectrum of antibacterial activity. The EtOAc fraction exhibited good activity against Bacillus subtilis and Staphylococcus aureus with MIC values ranging from 780.0 to 390.0 µg/mL. Isolated compound 2 exhibited good activity against Staphylococcus aureus with an MIC value of 62.5 µg/mL. The hexane and DCM fractions of leaves showed the best activity against Candida albicans with MIC and MFC values of 390.0 µg/mL. In the AChE inhibitory test, among the tested extracts, the hexane fraction was the most potent with an IC50 value of 107.4 µg/mL, whereas for the isolated compounds, it was compound (3) (quercetin) with an IC50 value of 66.8 µg/mL. Activities demonstrated by the extracts and isolated compounds support the ethnopharmacological use of Buddleja salviifolia against eye

  12. Inhibitory effect of organotin compounds on rat neuronal nitric oxide synthase through interaction with calmodulin

    International Nuclear Information System (INIS)

    Ohashi, Koji; Kominami, Shiro; Yamazaki, Takeshi; Ohta, Shigeru; Kitamura, Shigeyuki

    2004-01-01

    Organotin compounds, triphenyltin (TPT), tributyltin, dibutyltin, and monobutyltin (MBT), showed potent inhibitory effects on both L-arginine oxidation to nitric oxide and L-citrulline, and cytochrome c reduction catalyzed by recombinant rat neuronal nitric oxide synthase (nNOS). The two inhibitory effects were almost parallel. MBT and TPT showed the highest inhibitory effects, followed by tributyltin and dibutyltin; TPT and MBT showed inhibition constant (IC 50 ) values of around 10 μM. Cytochrome c reduction activity was markedly decreased by removal of calmodulin (CaM) from the complete mixture, and the decrease was similar to the extent of inhibition by TPT and MBT. The inhibitory effect of MBT on the cytochrome c reducing activity was rapidly attenuated upon dilution of the inhibitor, and addition of a high concentration of CaM reactivated the cytochrome c reduction activity inhibited by MBT. However, other cofactors such as FAD, FMN or tetrahydrobiopterin had no such ability. The inhibitory effect of organotin compounds (100 μM) on L-arginine oxidation of nNOS almost vanished when the amount of CaM was sufficiently increased (150-300 μM). It was confirmed by CaM-agarose column chromatography that the dissociation of nNOS-CaM complex was induced by organotin compounds. These results indicate that organotin compounds disturb the interaction between CaM and nNOS, thereby inhibiting electron transfer from the reductase domain to cytochrome c and the oxygenase domain

  13. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  14. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Mehran Fadaeinasab

    2015-11-01

    Full Text Available Background/Aims: Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1 and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2, along with five known, macusine B (3, vinorine (4, undulifoline (5, isoresrpiline (6 and rescinnamine (7 were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Conclusion: Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations.

  16. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    Science.gov (United States)

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  17. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    Science.gov (United States)

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  18. [Chemical Constituents from Leaves of Hibiscus syriacus and Their α-Glucosidase Inhibitory Activities].

    Science.gov (United States)

    Wei, Qiang; Ji, Xiao-ying; Xu, Fei; Li, Qian-rong; Yin, Hao

    2015-05-01

    To study the chemical constituents from Hibiscus syriacus leaves and their α-glucosidase inhibitory activities. Column chromatography including macroporous resins, silica gel and Sephadex LH-20 were used for the isolation and purification of all compounds. Spectroscopic methods including physical and chemical properties, 1H-NMR and 13C-NMR were used for the identification of structures. Their α-glucosidase inhibitory activities were detected by a 96-well microplate. 15 compounds were isolated and identified as β-sitosterol(1), β-daucostero (2), β-amyrin (3), oleanolic acid (4), stigmast-4-en-3-one (5), friedelin (6), syriacusin A (7), kaempferol (8), isovitexin (9), vitexin (10), apigenin (11), apigenin-7-O-β-D-glucopyranoside (12), luteolin-7-O-β-D-glucopyranoside (13), vitexin-7-O-β-D-glucopyranoside (14) and rutin (15). All the compounds are isolated from the leaves of Hibiscus syriacus for the first time. Taking acarbose as positive control, the α-glucosidase inhibitory activities of 15 compounds were evaluated. Compounds 7 and 9 have shown strong α-glucosidase inhibitory activities with IC50 of 39.03 ± 0.38 and 32.12 ± 0.62 mg/L, inhibition ratio of 94.95% and 97.15%, respectively.

  19. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    Science.gov (United States)

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  20. Discrimination and Nitric Oxide Inhibitory Activity Correlation of Ajwa Dates from Different Grades and Origin

    Directory of Open Access Journals (Sweden)

    Nur Ashikin Abdul-Hamid

    2016-10-01

    Full Text Available This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO inhibitory activity. Identification of the metabolites was generated using 1H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.

  1. Two new lignans from Saururus chinensis and their DGAT inhibitory activity.

    Science.gov (United States)

    Li, Na; Tuo, Zhen-Dong; Qi, Shi-Zhou; Xing, Shan-Shan; Lee, Hyun-Sun; Chen, Jian-Guang; Cui, Long

    2015-03-01

    Two new lignans were isolated from Saururus chinensis, along with eight known compounds. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1 and DGAT2. Among them, compounds 2, 3, 5 and 7 were found to exhibit selective inhibitory activity on DGAT1 with IC50 values ranging from 44.3±1.5 to 87.5±1.3μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study.

    Science.gov (United States)

    Adegboye, Akande Akinsola; Khan, Khalid Mohammed; Salar, Uzma; Aboaba, Sherifat Adeyinka; Kanwal; Chigurupati, Sridevi; Fatima, Itrat; Taha, Mohammad; Wadood, Abdul; Mohammad, Jahidul Isalm; Khan, Huma; Perveen, Shahnaz

    2018-04-25

    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC 50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC 50  = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Novel long-chain compounds with both immunomodulatory and MenA inhibitory activities against Staphylococcus aureus and its biofilm.

    Science.gov (United States)

    Choi, Seoung-Ryoung; Frandsen, Joel; Narayanasamy, Prabagaran

    2017-01-10

    Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.

  4. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  5. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2013-01-01

    Full Text Available Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1, quercetin (2, kaempferol-3-O-β-D-glucopyranoside (3, kaempferol-3-O-rutinoside (4, rutin (5, chlorogenic acid (6 and 3,5-dicaffeoylquinic acid methyl ester (7. All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively.

  6. New Biflavonoids with α-Glucosidase and Pancreatic Lipase Inhibitory Activities from Boesenbergia rotunda

    Directory of Open Access Journals (Sweden)

    Nutputsorn Chatsumpun

    2017-10-01

    Full Text Available Roots of Boesenbergia rotunda (L. Mansf. are prominent ingredients in the cuisine of several Asian countries, including Thailand, Malaysia, Indonesia, India, and China. An extract prepared from the roots of this plant showed strong inhibitory activity against enzymes α-glucosidase and pancreatic lipase and was subjected to chromatographic separation to identify the active components. Three new biflavonoids of the flavanone-chalcone type (9, 12, and 13 were isolated, along with 12 known compounds. Among the 15 isolates, the three new compounds showed stronger inhibitory activity against α-glucosidase than the drug acarbose but displayed lower pancreatic lipase inhibitory effect than the drug orlistat. The results indicated the potential of B. rotunda roots as a functional food for controlling after-meal blood glucose levels.

  7. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    Science.gov (United States)

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  8. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  9. Aldose reductase inhibitory compounds from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Ha Na; Lee, Min Young; Kim, Jin-Kyu; Suh, Hong-Won; Lim, Soon Sung

    2013-09-01

    As part of our ongoing search for natural sources of therapeutic and preventive agents for diabetic complications, we evaluated the inhibitory effects of components of the fruit of Xanthium strumarium (X. strumarium) on aldose reductase (AR) and galactitol formation in rat lenses with high levels of glucose. To identify the bioactive components of X. strumarium, 7 caffeoylquinic acids and 3 phenolic compounds were isolated and their chemical structures were elucidated on the basis of spectroscopic evidence and comparison with published data. The abilities of 10 X. strumarium-derived components to counteract diabetic complications were investigated by means of inhibitory assays with rat lens AR (rAR) and recombinant human AR (rhAR). From the 10 isolated compounds, methyl-3,5-di-O-caffeoylquinate showed the most potent inhibition, with IC₅₀ values of 0.30 and 0.67 μM for rAR and rhAR, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate, methyl-3,5-di-O-caffeoylquinate showed competitive inhibition of rhAR. Furthermore, methyl-3,5-di-O-caffeoylquinate inhibited galactitol formation in the rat lens and in erythrocytes incubated with a high concentration of glucose, indicating that this compound may be effective in preventing diabetic complications.

  10. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Science.gov (United States)

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.

    Science.gov (United States)

    Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O

    2017-06-01

    Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. HPLC based activity profiling for 5-lipoxygenase inhibitory activity in Isatis tinctoria leaf extracts.

    Science.gov (United States)

    Oberthür, C; Jäggi, R; Hamburger, M

    2005-06-01

    In the pursuit of the anti-inflammatory constituents in lipophilic woad extracts, the 5-lipoxygenase (5-LOX) inhibitory activity was investigated by HPLC-based activity profiling. In a low-resolution profiling, two time windows with peaks of activity were found. The first coincided with tryptanthrin, a known dual inhibitor of cyclooxygenase-2 (COX-2) and 5-LOX, whereas the major inhibitory fraction was towards the end of the HPLC run. The active fractions were profiled in a peak-resolved manner, and the compounds analyzed by LC-MS, GC and TLC. The activity in the lipophilic fractions of the Isatis extract could be linked to an unsaturated fatty acid, alpha-linolenic acid.

  13. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.

    Science.gov (United States)

    Chao, Shi-Wei; Chen, Liang-Chieh; Yu, Chia-Chun; Liu, Chang-Yi; Lin, Tony Eight; Guh, Jih-Hwa; Wang, Chen-Yu; Chen, Chun-Yung; Hsu, Kai-Cheng; Huang, Wei-Jan

    2018-01-01

    Histone deacetylase (HDAC) is a validated drug target for various diseases. This study combined indole recognition cap with SAHA, an FDA-approved HDAC inhibitor used to treat cutaneous T-cell lymphoma (CTCL). The structure activity relationship of the resulting compounds that inhibited HDAC was disclosed as well. Some compounds exhibited much stronger inhibitory activities than SAHA. We identified two meta-series compounds 6j and 6k with a two-carbon linker had IC 50 values of 3.9 and 4.5 nM for HDAC1, respectively. In contrast, the same oriented compounds with longer carbon chain linkers showed weaker inhibition. The result suggests that the linker chain length greatly contributed to enzyme inhibitory potency. In addition, comparison of enzyme-inhibiting activity between the compounds and SAHA showed that compounds 6j and 6k displayed higher inhibiting activity for class I (HDAC1, -2, -3 and -8). The molecular docking and structure analysis revealed structural differences with the inhibitor cap and metal-binding regions between the HDAC isozymes that affect interactions with the inhibitors and play a key role for selectivity. Further biological evaluation showed multiple cellular effects associated with compounds 6j- and 6k-induced HDAC inhibitory activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  15. Histamine release inhibitory activity of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki

    2008-10-01

    Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.

  16. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    Science.gov (United States)

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  17. Inhibitory activity of a water-soluble morin derivative on phosphatase ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... E-mail: taipinghe@163.com. Tel: 86- ... anthraquinone compounds from Rubia akane show inhibitory activity on .... incubation of the cells at 37°C for 24 h, the phase contrast images ... inverted microscope (Olympus IX50).

  18. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    Science.gov (United States)

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  19. Chemical composition and α-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves.

    Science.gov (United States)

    Gu, Dongyu; Fang, Chen; Yang, Jiao; Li, Minjing; Liu, Hengming; Yang, Yi

    2018-03-01

    Sabina chinensis cv. Kaizuca (SCK) is a variant of S. chinensis L. The essential oil from its leaves exhibited α-amylase inhibitory activity in vitro and the IC 50 value was 187.08 ± 0.56 μg/mL. Nineteen compounds were identified from this essential oil by gas chromatography-mass spectrometry (GC-MS) analysis. The major compounds identified were bornyl acetate (42.6%), elemol (20.5%), β-myrcene (13.7%) and β-linalool (4.0%). In order to study the reason of the α-amylase inhibitory activity of this essential oil, the identified compounds were docked with α-amylase by molecular docking individually. Among these compounds, γ-eudesmol exhibited the lowest binding energy (-6.73 kcal/mol), followed by α-copaen-11-ol (-6.66 kcal/mol), cubedol (-6.39 kcal/mol) and α-acorenol (-6.12 kcal/mol). The results indicated that these compounds were the active ingredients responsible for the α-amylase inhibitory activity of essential oil from SCK.

  20. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives

    Science.gov (United States)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping

    2015-11-01

    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  1. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities.

    Science.gov (United States)

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-05-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products.

  2. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Yuan, Dan; Ma, Bin; Wu, Chunfu; Yang, Jingyu; Zhang, Lijia; Liu, Suiku; Wu, Lijun; Kano, Yoshihiro

    2008-07-01

    Two new isomeric alkaloids, 18,19-dehydrocorynoxinic acid B (1) and 18,19-dehydrocorynoxinic acid (2), were isolated from the CHCl3 extract of the leaves of Uncaria rhynchophylla, together with four known rhynchophylline-type alkaloids, corynoxeine (3), isocorynoxeine (4), rhynchophylline (5), and isorhynchophylline (6), and an indole alkaloid glucoside, vincoside lactam (7). The structures of compounds 1 and 2 were elucidated by spectroscopic methods including UV, IR, HREIMS, 1D and 2D NMR, and CD experiments. The activity assay showed that compounds 3-6, with a C-16 carboxylic ester group, and 7 exhibited inhibitory activity on lipopolysaccharide (LPS)-induced NO release in primary cultured rat cortical microglia (IC 50: 13.7-19.0 microM). However, only weak inhibitory activity was observed for compounds 1 and 2, with a C-16 carboxylic acid group (IC 50: >100 microM).

  3. Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review

    Directory of Open Access Journals (Sweden)

    Atefehalsadat Seyedan

    2015-01-01

    Full Text Available Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.

  4. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  5. Chemical-genetic profile analysis of five inhibitory compounds in yeast

    Directory of Open Access Journals (Sweden)

    Alamgir Md

    2010-08-01

    Full Text Available Abstract Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s. Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  6. Sempervivum davisii: phytochemical composition, antioxidant and lipase-inhibitory activities.

    Science.gov (United States)

    Uzun, Yusuf; Dalar, Abdullah; Konczak, Izabela

    2017-12-01

    Sempervivum davisii Muirhead (Crassulaceae) is a traditional medicinal herb from Eastern Anatolia. To date the composition of phytochemicals and physiological properties of this herb were not subjected to any research. This study identifies compounds in S. davisii hydrophilic extracts and evaluates their potential biological properties. Ethanol-based lyophilized extracts were obtained from aerial parts of plant (10 g of ground dry plant material in 200 mL of acidified aqueous ethanol, shaken for 2 h at 22 °C with supernatant collected and freeze-dried under vacuum). Phytochemical composition was investigated by liquid chromatography mass spectrometry (LC-MS/MS, phenolics) and gas chromatography mass spectrometry (GC-MS, volatiles). Phenolic compounds were quantified by high-performance liquid chromatography (HPLC) and the Folin-Ciocalteu assay. Subsequently, antioxidant capacity [ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) assays] and enzyme inhibitory properties (isolated porcine pancreatic lipase) of the extracts were determined. Polyphenolic compounds were the main constituents of lyophilized extracts, among which kaempferol glycosides and quercetin hexoside dominated. The extracts exhibited potent antioxidant (FRAP values of 1925.2-5973.3 μM Fe 2+ /g DW; ORAC values of 1858.5-4208.7 μM Trolox Eq./g DW) and moderate lipase inhibitory (IC 50 : 11.6-2.96 mg/mL) activities. Volatile compounds (nonanal, dehydroxylinalool oxide isomers, 2-decenal, 2-undecenal, 2,6-di-tetr-butylphenol) were also found. Phenolic compounds with the dominating kaempferol and quercetin derivatives are the sources of potent antioxidant properties of S. davisii hydrophilic extracts. The extracts exhibit moderate inhibitory properties towards isolated pancreatic lipase.

  7. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  8. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity.

    Science.gov (United States)

    Ahn, Jong Hoon; Shin, Eunjin; Liu, Qing; Kim, Seon Beom; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-01-01

    Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. From the EtOAc-soluble fraction of the stem barks of Fraxinus rhynchophylla (Oleaceae), four secoiridoids such as ligstroside (1), oleuropein (2), 2"-hydroxyoleuropein (3) and hydroxyframoside B (4) were isolated. The inhibitory activity of these compounds on pancreatic lipase was assessed using porcine pancreatic lipase as an in vitro assay system. Compound 4 showed the strongest inhibition on pancreatic lipase, which followed by compounds 1-3. In addition, compound 4 exerted inhibitory effect on pancreatic lipase in a mixed mechanism of competitive and noncompetitive manner. Taken together, F. rhynchophylla and its constituents might be beneficial to obesity.

  9. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Wan, Yinhua

    2014-09-01

    Pretreatment of lignocellulosic material produces a wide variety of inhibitory compounds, which strongly inhibit the following enzymatic hydrolysis of cellulosic biomass. Vanillin is a kind of phenolics derived from degradation of lignin. The effect of vanillin on cellulase activity for the hydrolysis of cellulose was investigated in detail. The results clearly showed that vanillin can reversibly and non-competitively inhibit the cellulase activity at appropriate concentrations and the value of IC50 was estimated to be 30 g/L. The inhibition kinetics of cellulase by vanillin was studied using HCH-1 model and inhibition constants were determined. Moreover, investigation of three compounds with similar structure of vanillin on cellulase activity demonstrated that aldehyde group and phenolic hydroxyl groups of vanillin had inhibitory effect on cellulase. These results provide valuable and detailed information for understanding the inhibition of lignin derived phenolics on cellulase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    Science.gov (United States)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  11. Influence of starter culture and a protease on the generation of ACE-inhibitory and antioxidant bioactive nitrogen compounds in Iberian dry-fermented sausage “salchichón”

    Directory of Open Access Journals (Sweden)

    Margarita Fernández

    2016-03-01

    Full Text Available The effect of the addition of an autochthonous starter culture and the protease EPg222 on the generation of angiotensin-I–converting enzyme (ACE-inhibitory and antioxidant compounds by the dry-fermented sausage “salchichón” was investigated. Sausages were prepared with purified EPg222 and Pediococcus acidilactici MS200 and Staphylococcus vitulus RS34 as the starter culture (P200S34, separately and together, ripened for 90 days, and compared to a control batch. Among the ripening time points (20, 35, 65, 90 days studied, batches inoculated with EPg222 had higher nitrogen compound concentrations at 63 days of ripening. ACE-inhibitory and antioxidant activities were also highest in both batches with EPg222 at 63 days of ripening, and these activities were stable in most cases after in vitro simulated gastrointestinal digestion. These activities were correlated with the most relevant compounds detected by HLPC-ESI-MS. The principal components analysis (PCA linked the P200S34 + EPg222 batch with the major compounds identified. The antioxidant activity was higher at 63 days of ripening, especially in highly proteolytic batches, such as P200S34 + EPg222. The ACE-inhibitory activity was not associated with any of the major compounds. The use of the enzyme EPg222 in association with the starter culture P200S34 in the preparation of dry-cured meat products could be of great importance due to their demonstrated ability to produce compounds with high biological activity, such as ACE-inhibitory and antioxidant activity.

  12. Phaeophytins from Thyrsacanthus ramosissimus Moric. with inhibitory activity on human DNA topoisomerase II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Analucia Guedes Silveira; Tenorio-Souza, Fabio Henrique; Moura, Marcelo Dantas; Mota, Sabrina Gondim Ribeiro; Silva Lins, Antonio Claudio da; Dias, Celidarque da Silva; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Frmaceuticas; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas; Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Moleculares; Santos, Creusioni Figueredo dos, E-mail: jbarbosa@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2012-07-01

    Our study reports the extraction and isolation of a new phaeophytin derivative 15{sup 1}-hydroxy-(15{sup 1}-S)-porphyrinolactone, designated anamariaine (1) herein, isolated from the chloroform fraction of aerial parts of Thyrsacanthus ramosissimus Moric. along with the known 15{sup 1}-ethoxy-(15{sup 1}-S)-porphyrinolactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisomerase II-{alpha} at 50 {mu}M. Interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out. (author)

  13. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark.

    Science.gov (United States)

    Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru

    2017-04-20

    Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at

  14. THE ANTIBACTERIAL ACTIVITY OF WATER APPLE LEAVES ACTIVE COMPOUND (Syzygium zeylanicum AGAINST Escherichia coli AND Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    - Hamidah

    2017-07-01

    Full Text Available Escherichia coli is one of the bacteria that cause infections in the human digestive tract such as diarrhea, while Staphylococcus aureus is one of the bacteria that cause infections in the skin injury such as boils and pimples. This study used Syzygium zeylanicum leaves because it has potential as a antibacterial because it contains active compounds. This study aimed was determine the antibacterial activity of the fraction and the active compound in Syzygium zeylanicum leaves against Escherichia coli and Staphylococcus aureus. Research conducted on November 2015 to January 2016. The method used in this research were extraction by maceration, fractionation by liquid fractionation, antibacterial activity test, and determination of minimum inhibitory concentration with the diffusion method and isolation of active compounds by column chromatography method. The bacteria used in this test are Escherichia coli and Staphylococcus aureus. Data are presented in tabular form based on the average value of the inhibition diameter and deviation standard. The results of this research showed the water methanol active fraction against the bacteria that used in this test. The methanol water fraction had obtained one antibacterial compound in bottle 1,3,5 which shows the value of tannin Rf 0,416. The minimum inhibitory concentration of water methanol of water apple leaves is 1000 µg/mL for Escherichia coli and 500 µg/mL for  Staphylococcus aureus. The minimum  inhibitory concentration of the active  compound  to  Escherichia  coli  and  Staphylococcus  aureus  in  500  µg/mL.  The fraction and the active compound of water apple leaves have an antibacterial activity with Escherichia coli and Staphylococcus aureus and the active compound is tannin.

  15. Chemical Constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and Its In Vitro α-Amilase and α-Glucosidase Inhibitory Activities.

    Science.gov (United States)

    Torres-Naranjo, María; Suárez, Alirica; Gilardoni, Gianluca; Cartuche, Luis; Flores, Paola; Morocho, Vladimir

    2016-11-02

    The phytochemical investigation of Muehlenbeckia tamnifolia , collected in Loja-Ecuador, led to the isolation of nine known compounds identified as: lupeol acetate ( 1 ); cis - p -coumaric acid ( 2 ); lupeol ( 3 ); β-sitosterol ( 4 ) trans - p -coumaric acid ( 5 ); linoleic acid ( 6 ) (+)-catechin ( 7 ); afzelin ( 8 ) and quercitrin ( 9 ). The structures of the isolated compounds were determined based on analysis of NMR and MS data, as well as comparison with the literature. The hypoglycemic activity of crude extracts and isolated compounds was assessed by the ability to inhibit α-amylase and α-glucosidase enzymes. The hexane extract showed weak inhibitory activity on α-amylase, with an IC 50 value of 625 µg·mL -1 , while the other extracts and isolated compounds were inactive at the maximum dose tested. The results on α-glucosidase showed more favorable effects; the hexanic and methanolic extracts exhibited a strong inhibitory activity with IC 50 values of 48.22 µg·mL -1 and 19.22 µg·mL -1 , respectively. Four of the nine isolated compounds exhibited strong inhibitory activity with IC 50 values below 8 µM, much higher than acarbose (377 uM). Linoleic acid was the most potent compound (IC 50 = 0.42 µM) followed by afzelin, (+)-catechin and quercitrin.

  16. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of tartary buckwheat sprouts.

    Science.gov (United States)

    Qin, Peiyou; Wei, Aichun; Zhao, Degang; Yao, Yang; Yang, Xiushi; Dun, Baoqing; Ren, Guixing

    2017-06-01

    This study aimed to investigate the effects of different concentrations of sodium bicarbonate (NaHCO 3 ) on the accumulation of flavonoids, total phenolics and d-chiro-inositol (DCI), as well as the antioxidant and α-glucosidase inhibitory activities, in tartary buckwheat sprouts. Treatment with low concentrations of NaHCO 3 (0.05, 0.1, and 0.2%) resulted in an increase in flavonoids, total phenolic compounds and DCI concentrations, and improved DPPH radical-scavenging and α-glucosidase inhibition activities compared with the control (0%). The highest levels of total flavonoids (26.69mg/g DW), individual flavonoids (rutin, isoquercitrin, quercetin, and kaempferol), total phenolic compounds (29.31mg/g DW), DCI (12.56mg/g DW), as well as antioxidant and α-glucosidase inhibition activities, were observed in tartary buckwheat sprouts treated with 0.05% NaHCO 3 for 96h. These results indicated that appropriate treatment with NaHCO 3 could improve the healthy benefits of tartary buckwheat sprouts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Support Vector Machine Classification Model for Benzo[c]phenathridine Analogues with Topoisomerase-I Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2012-04-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, a support vector machine model was performed on a series of 73 analogues to classify BCP derivatives according to TOP-I inhibitory activity. The best SVM model with total accuracy of 93% for training set was achieved using a set of 7 descriptors identified from a large set via a random forest algorithm. Overall accuracy of up to 87% and a Matthews coefficient correlation (MCC of 0.71 were obtained after this SVM classifier was validated internally by a test set of 15 compounds. For two external test sets, 89% and 80% BCP compounds, respectively, were correctly predicted. The results indicated that our SVM model could be used as the filter for designing new BCP compounds with higher TOP-I inhibitory activity.

  18. Inhibitory activities of microalgal extracts against Epstein-Barr Virus (EBV antigen expression in lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Koh Yih Yih

    2014-01-01

    Full Text Available The inhibitory activities of microalgal extracts against the expression of three EBV antigens, latent membrane protein (LMP1, Epstein-Barr nuclear antigen (EBNA1 and Z Epstein-Barr reactivation activator (ZEBRA were assessed by immunocytochemistry. The observation that the methanol extracts and their fractions from Ankistrodesmus convolutus, Synechococcus elongatus and Spirulina platensis exhibited inhibitory activity against EBV proteins in three Burkitt’s lymphoma cell lines at concentrations as low as 20 μg/ml suggests that microalgae could be a potential source of antiviral compounds against EBV.

  19. Biotransformation of isoimperatorin and imperatorin by Glomerella cingulata and beta-secretase inhibitory activity.

    Science.gov (United States)

    Marumoto, Shinsuke; Miyazawa, Mitsuo

    2010-01-01

    Biotransformation studies conducted on the furanocoumarins isoimperatorin (1) and imperatorin (3) have revealed that 1 was metabolized by Glomerella cingulata to give the corresponding reduced acid, 6,7-furano-5-prenyloxy hydrocoumaric acid (2), and 3 was transformed by G. cingulata to give the dealkylated metabolite, xanthotoxol (4) in high yields (83% and 81%), respectively. The structures of the new compound 2 have been established on the basis of spectral data. The metabolites 2 and 4 were tested for the beta-secretase (BACE1) inhibitory activity in vitro, and metabolite 2 slightly inhibited the beta-secretase activity with an IC(50) value of 185.6+/-6.8 microM. The metabolite 4 was less potent activity than compounds 1-3. In addition, methyl ester (2Me), methyl ether (2a) and methyl ester and ether (2aMe) of 2 were synthesized, and investigated for the ability to inhibit beta-secretase. Compound 2aMe exhibited the best beta-secretase inhibitory activity at the IC(50) value 16.2+/-1.2 microM and found to be the 2aMe showed competitive mode of inhibition against beta-secretase with K(i) value 11.3+/-2.8 microM. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Structural Modifications of Benzimidazoles via Multi-Step Synthesis and Their Impact on Sirtuin-Inhibitory Activity.

    Science.gov (United States)

    Yoon, Yeong Keng; Choon, Tan Soo

    2016-01-01

    Benzimidazole derivatives have been shown to possess sirtuin-inhibitory activity. In the continuous search for potent sirtuin inhibitors, systematic changes on the terminal benzene ring were performed on previously identified benzimidazole-based sirtuin inhibitors, to further investigate their structure-activity relationships. It was demonstrated that the sirtuin activities of these novel compounds followed the trend where meta-substituted compounds possessed markedly weaker potency than ortho- and para-substituted compounds, with the exception of halogenated substituents. Molecular docking studies were carried out to rationalize these observations. Apart from this, the methods used to synthesize the interesting compounds are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    Science.gov (United States)

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  2. Cadinane sesquiterpenes from Curcuma phaeocaulis with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Ma, Jianghao; Wang, Ying; Liu, Yue; Gao, Suyu; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Four new cadinane-type sesquiterpenes named phacadinanes A-D (1-4) were isolated from the rhizomes of Curcuma phaeocaulis. Their structures were elucidated by 1D and 2D NMR, as well as accurate mass measurements. Compound 4 was the first example of a rare 4,5-seco-cadinane sesquiterpene isolated from the Zingiberaceae family. Furthermore, inhibitory effects of the isolated compounds on nitric oxide production in LPS-activated macrophages were evaluated. Compounds 1 and 2 showed strong inhibitory activities on NO production with IC50 values of 3.88±0.58 and 2.25±0.71 μM, respectively. A possible biogenetic pathway for 4,5-seco-cadinane sesquiterpene (4) was postulated. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. 2-(2-Pyridyl) Benzimidazole Analogs and their beta-Glucuronidase Inhibitory Activity

    International Nuclear Information System (INIS)

    Kamil, A.; Noureen, S.

    2015-01-01

    Synthesis of 2-(2-Pyridyl) benzimidazole analogs 1-11 have been carried out and evaluated for in vitro beta-glucuronidase inhibitory potential. The compounds 4 (IC/sub 50/ = 4.06 ± 0.34 meuM), 5 (IC/sub 50/ = 09.63 ± 0.81 meuM), 1 (IC/sub 50/ = 19.66 ± 0.44 meuM), 7 (IC/sub 50/ = 24.75 ± 0.25 meuM), 6 (IC/sub 50/ = 26.30 ± 1.37 meuM), and 3 (IC/sub 50/ = 32.11 ± 0.89 meuM), showed beta-glucuronidase inhibitory activity superior to the standard D-saccharic acid 1,4-lactone, with (IC/sub 50/ = 48.4 ± 1.25 meuM). Based on structure-activity relationship, we discover a new class of potent beta-glucuronidase inhibitors. (author)

  4. α-Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas.

    Science.gov (United States)

    Nguyen, T H; Kim, S M

    2015-04-01

    α-Glucosidase inhibitory activities of the various solvent fractions (n-hexane, CHCl3 , EtOAc, BuOH, and water) of sea cucumber internal organ were investigated. 1,3-Dipalmitolein (1) and cis-9-octadecenoic acid (2) with potent α-glucosidase inhibitory activity were purified from the n-hexane fraction of sea cucumber internal organ. IC50 values of compounds 1 and 2 were 4.45 and 14.87 μM against Saccharomyces cerevisiae α-glucosidase. These compounds mildly inhibited rat-intestinal α-glucosidase. In addition, both compounds showed a mixed competitive inhibition against S. cerevisiae α-glucosidase and were very stable at pH 2 up to 60 min. The KI values of compounds 1 and 2 were 0.48 and 1.24 μM, respectively. Therefore, the internal organ of sea cucumber might be a potential new source of α-glucosidase inhibitors suitably used for prevention of obesity and diabetes mellitus. © 2015 Institute of Food Technologists®

  5. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  6. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Science.gov (United States)

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  7. Inhibitory Activity of (+-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    Directory of Open Access Journals (Sweden)

    Yi Yang

    Full Text Available Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+-usnic acid and cetuximab. These results implied that (+-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  8. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    Science.gov (United States)

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  9. Activity of Polyphenolic Compounds against Candida glabrata

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2015-09-01

    Full Text Available Opportunistic mycoses increase the morbidity and mortality of immuno-compromised patients. Five Candida species have been shown to be responsible for 97% of worldwide cases of invasive candidiasis. Resistance of C. glabrata and C. krusei to azoles has been reported, and new, improved antifungal agents are needed. The current study was designed to evaluatethe activity of various polyphenolic compounds against Candida species. Antifungal activity was evaluated following the M27-A3 protocol of the Clinical and Laboratory Standards Institute, and antioxidant activity was determined using the DPPH assay. Myricetin and baicalein inhibited the growth of all species tested. This effect was strongest against C. glabrata, for which the minimum inhibitory concentration (MIC value was lower than that of fluconazole. The MIC values against C. glabrata for myricitrin, luteolin, quercetin, 3-hydroxyflavone, and fisetin were similar to that of fluconazole. The antioxidant activity of all compounds was confirmed, and polyphenolic compounds with antioxidant activity had the greatest activity against C. glabrata. The structure and position of their hydroxyl groups appear to influence their activity against C. glabrata.

  10. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  11. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    Science.gov (United States)

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inhibitory effect of flavonoids from citrus plants on Epstein-Barr virus activation and two-stage carcinogenesis of skin tumors.

    Science.gov (United States)

    Iwase, Y; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H; Kawaii, S; Yano, M; Mou, X Y; Takayasu, J; Tokuda, H; Nishino, H

    2000-06-01

    To search for possible anti-tumor promoters, thirteen flavones (1-13) obtained from the peel of Citrus plants were examined for their inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation by a short-term in vitro assay. Of these flavones, 3,5,6,7,8,3',4'-heptamethoxyflavone (HPT) (13) exhibited significant inhibitory effects on the EBV-EA activation induced by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, compound 13 exhibited remarkable inhibitory effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test.

  13. Influence of thermodynamic parameter in Lanosterol 14alpha-demethylase inhibitory activity as antifungal agents: a QSAR approach.

    Science.gov (United States)

    Vasanthanathan, Poongavanam; Lakshmi, Manickavasagam; Arockia Babu, Marianesan; Kaskhedikar, Sathish Gopalrao

    2006-06-01

    A quantitative structure activity relationship, Hansch approach was applied on twenty compounds of chromene derivatives as Lanosterol 14alpha-demethylase inhibitory activity against eight fungal organisms. Various physicochemical descriptors and reported minimum inhibitory concentration values of different fungal organisms were used as independent variables and dependent variable respectively. The best models for eight different fungal organisms were first validated by leave-one-out cross validation procedure. It was revealed that thermodynamic parameters were found to have overall significant correlationship with anti fungal activity and these studies provide an insight to design new molecules.

  14. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Directory of Open Access Journals (Sweden)

    Anas Subarnas

    2011-04-01

    Full Text Available Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L. leaves, lemongrass (Cymbopogon citrates L. herbs, ki lemo (Litsea cubeba L. bark, and laja gowah (Alpinia malaccencis Roxb. rhizomes on locomotor activity in mice and identify the active component(s that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%, 0.1 (55.72%, 0.5 (60.75%, and 0.1 mL/cage (47.09%, respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  15. Aspartic protease inhibitory and nematocidal activity of phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (Percival dianhydroosazone

    Directory of Open Access Journals (Sweden)

    El Sayed H. El Ashry

    2014-04-01

    Full Text Available We synthesized Phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (compound 3. The structure compound 3 was elucidated with IR, 1H NMR, 13C NMR and EIMS spectra. Compound 3 showed potent inhibitory activity against aspartic proteases, human cathepsin D and Plasmodium falciparum plasmepsin-II with IC50 = 20 μM. Enzyme-inhibitor complexes were predicted to stabilize by electrostatic and hydrophobic interactions between the side chains of amino acid residues at the active center and compound 3. Moreover, compound 3 displayed good nematocidal activity against all developmental stages of C. elegans.

  16. Structure Modification of an Active Azo-Compound as a Route to New Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Simona Concilio

    2017-05-01

    Full Text Available Some novel (phenyl-diazenylphenols 3a–g were designed and synthesized to be evaluated for their antimicrobial activity. A previously synthesized molecule, active against bacteria and fungi, was used as lead for modifications and optimization of the structure, by introduction/removal or displacement of hydroxyl groups on the azobenzene rings. The aim of this work was to evaluate the consequent changes of the antimicrobial activity and to validate the hypothesis that, for these compounds, a plausible mechanism could involve an interaction with protein receptors, rather than an interaction with membrane. All newly synthesized compounds were analyzed by 1H-NMR, DSC thermal analysis and UV-Vis spectroscopy. The in vitro minimal inhibitory concentrations (MIC of each compound was determined against Gram-positive and Gram-negative bacteria and Candida albicans. Compounds 3b and 3g showed the highest activity against S. aureus and C. albicans, with remarkable MIC values of 10 µg/mL and 3 µg/mL, respectively. Structure-activity relationship studies were capable to rationalize the effect of different substitutions on the phenyl ring of the azobenzene on antimicrobial activity.

  17. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea.

    Science.gov (United States)

    Roy, Somendu K; Kumari, Neela; Pahwa, Sonika; Agrahari, Udai C; Bhutani, Kamlesh K; Jachak, Sanjay M; Nandanwar, Hemraj

    2013-10-01

    The purpose of this investigation was to study the modulator and efflux pump inhibitor activity of coumarins isolated from Mesua ferrea against clinical strains as well as NorA-over expressed strain of Staphylococcus aureus 1199B. Seven coumarins were tested for modulator activity using ethidium bromide (EtBr) as a substrate. Compounds 1, 4-7 modulated the MIC of EtBr by ≥ 2 fold against wild type clinical strains of S. aureus 1199 and S. aureus 1199B, whereas compounds 4-7 modulated the MIC of EtBr by ≥ 16 fold against MRSA 831. Compounds 1, 4-7 also reduced the MIC of norfloxacin by ≥ 8 fold against S. aureus 1199B, and 4-6 reduced the MIC of norfloxacin by ≥ 8 fold against MRSA 831 at half of their MICs. Inhibition of EtBr efflux by NorA-overproducing S. aureus 1199B and MRSA 831 confirmed the role of compounds 4-6 as NorA efflux pump inhibitors (EPI). Dose-dependent activity at sub-inhibitory concentration (6.25 μg/mL) suggested that compounds 4 and 5 are promising EPI compared to verapamil against 1199B and MRSA 831 strains. © 2013.

  18. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Yuandani

    2013-01-01

    Full Text Available The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µg/mL. There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells. The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µg/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µg/mL. Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µg/mL. Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.

  19. Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yoichi Sunagawa

    2018-04-01

    Full Text Available The natural compound, curcumin (CUR, possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC and bisdemethoxycurcumin (BDMC are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy.Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure–activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy. Keywords: Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, p300, Cardiomyocyte hypertrophy

  20. Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein.

    Science.gov (United States)

    Gamba, Elia; Mori, Mattia; Kovalenko, Lesia; Giannini, Alessia; Sosic, Alice; Saladini, Francesco; Fabris, Dan; Mély, Yves; Gatto, Barbara; Botta, Maurizio

    2018-02-10

    In this report, we present a new benzoxazole derivative endowed with inhibitory activity against the HIV-1 nucleocapsid protein (NC). NC is a 55-residue basic protein with nucleic acid chaperone properties, which has emerged as a novel and potential pharmacological target against HIV-1. In the pursuit of novel NC-inhibitor chemotypes, we performed virtual screening and in vitro biological evaluation of a large library of chemical entities. We found that compounds sharing a benzoxazolinone moiety displayed putative inhibitory properties, which we further investigated by considering a series of chemical analogues. This approach provided valuable information on the structure-activity relationships of these compounds and, in the process, demonstrated that their anti-NC activity could be finely tuned by the addition of specific substituents to the initial benzoxazolinone scaffold. This study represents the starting point for the possible development of a new class of antiretroviral agents targeting the HIV-1 NC protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity

    DEFF Research Database (Denmark)

    Nguyen, Phi Hung; Dao, Trong Tuan; Kim, Jayeon

    2011-01-01

    .9 ± 1.6 to 19.2 ± 1.1 μM), while compounds (3, 5, and 9) with 2,2-dimethylpyrano ring showed less inhibitory effect (IC₅₀ 22.6 ± 2.3 to 72.9 ± 9.7 μM). These results suggest that prenyl and methoxy groups may be responsible for the increase on the activity of 5-deoxyflavonoids against PTP1B......, but the presence of 2,2-dimethylpyrano ring on the B ring may be induced the decrease of PTP1B inhibitory activity....

  2. Synthesis and 5α-Reductase Inhibitory Activity of C21 Steroids Having 1,4-diene or 4,6-diene 20-ones and 4-Azasteroid 20-Oximes

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2011-12-01

    Full Text Available The synthesis and evaluation of 5α-reductase inhibitory activity of some 4-azasteroid-20-ones and 20-oximes and 3β-hydroxy-, 3β-acetoxy-, or epoxy-substituted C21 steroidal 20-ones and 20-oximes having double bonds in the A and/or B ring are described. Inhibitory activity of synthesized compounds was assessed using 5α-reductase enzyme and [1,2,6,7-3H]testosterone as substrate. All synthesized compounds were less active than finasteride (IC50: 1.2 nM. Three 4-azasteroid-2-oximes (compounds 4, 6 and 8 showed good inhibitory activity (IC50: 26, 10 and 11 nM and were more active than corresponding 4-azasteroid 20-ones (compounds 3, 5 and 7. 3β-Hydroxy-, 3β-acetoxy- and 1α,2α-, 5α,6α- or 6α,7α-epoxysteroid-20-one and -20-oxime derivatives having double bonds in the A and/or B ring showed no inhibition of 5α-reductase enzyme.

  3. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    Science.gov (United States)

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  4. Evaluation of Aldose Reductase, Protein Glycation, and Antioxidant Inhibitory Activities of Bioactive Flavonoids in Matricaria recutita L. and Their Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2018-01-01

    Full Text Available The inhibitory activities of Matricaria recutita L. 70% methanol extract were evaluated by isolating and testing 10 of its compounds on rat lens aldose reductase (RLAR, advanced glycation end products (AGEs, and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging. Among these compounds, apigenin-7-O-β-D-glucoside, luteolin-7-O-β-D-glucoside, apigenin-7-O-β-D-glucuronide, luteolin-7-O-β-D-glucuronide, 3,5-O-di-caffeoylquinic acid, apigenin, and luteolin showed potent inhibition, and their IC50 values in RLAR were 4.25, 1.12, 1.16, 0.85, 0.72, 1.72, and 1.42 μM, respectively. Furthermore, these compounds suppressed sorbitol accumulation in rat lens under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. Notably, luteolin-7-O-β-D-glucuronide and luteolin showed antioxidative as well as AGE-inhibitory activities (IC50 values of these compounds in AGEs were 3.39 and 6.01 μM. These results suggest that the M. recutita extract and its constituents may be promising agents for use in the prevention or treatment of diabetic complications.

  5. Antioxidant and α-glucosidase inhibitory ingredients identified from Jerusalem artichoke flowers.

    Science.gov (United States)

    Wang, Yan-Ming; Zhao, Jian-Qiang; Yang, Jun-Li; Idong, Pema Tsering; Mei, Li-Juan; Tao, Yan-Duo; Shi, Yan-Ping

    2017-11-09

    Jerusalem artichoke (JA, Helianthus tuberosus L.) has been researched extensively due to its wide range of uses, but there are limited studies on its flowers. In this study, we report the first detailed phytochemical study on JA flowers, which yielded 21 compounds. Compound 4 was identified as a major water-soluble yellow pigment of JA flowers. In addition, the methanol extract of JA flowers and the isolates were evaluated for their antioxidant and α-glucosidase inhibitory activities. Among the tested compounds, compound 13 showed the strongest ABTS + free radical scavenging activity with SC 50 value of 2.30 ± 0.13 μg/mL, and compound 6 showed most potent α-glucosidase inhibitory activity with inhibition rate of 60.0% ± 10.3% at a concentration of 250 μg/mL. Results showed that methanol extract of JA flowers exhibited antioxidant and α-glucosidase inhibitory activities which could be attributed to its phenolic ingredients including chlorogenic acid derivatives, flavonoids and phenols.

  6. Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus

    Directory of Open Access Journals (Sweden)

    Yong-Zhe Zhu

    2018-03-01

    Full Text Available The human β-site amyloid cleaving enzyme (BACE1 has been considered as an effective drug target for treatment of Alzheimer’s disease (AD. In this study, Urechis unicinctus (U. unicinctus, which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4-en-3-one, cholesta-4,6-dien-3-ol, and hurgadacin. These compounds were identified by their mass spectrometry, 1H, and 13C NMR spectral data, comparing those data with NIST/EPA/NIH Mass spectral database (NIST11 and published values. Hecogenin and cholest-4-en-3-one showed significant inhibitory activity against BACE1 with EC50 values of 116.3 and 390.6 µM, respectively. Cholesta-4,6-dien-3-ol and hurgadacin showed broad spectrum antimicrobial activity, particularly strongly against Escherichia coli (E. coli, Salmonella enterica (S. enterica, Pasteurella multocida (P. multocida, and Physalospora piricola (P. piricola, with minimal inhibitory concentration (MIC ranging from 0.46 to 0.94 mg/mL. This is the first report regarding those four known compounds that were isolated from U. unicinctus and their anti-BACE1 and antimicrobial activity, highlighting the fact that known natural compounds may be a critical source of new medicine leads. These findings provide scientific evidence for potential application of those bioactive compounds for the development of AD drugs and antimicrobial agents.

  7. Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus.

    Science.gov (United States)

    Zhu, Yong-Zhe; Liu, Jing-Wen; Wang, Xue; Jeong, In-Hong; Ahn, Young-Joon; Zhang, Chuan-Jie

    2018-03-14

    The human β-site amyloid cleaving enzyme (BACE1) has been considered as an effective drug target for treatment of Alzheimer's disease (AD). In this study, Urechis unicinctus (U. unicinctus) , which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4- en -3-one, cholesta-4,6- dien -3-ol, and hurgadacin. These compounds were identified by their mass spectrometry, ¹H, and 13 C NMR spectral data, comparing those data with NIST/EPA/NIH Mass spectral database (NIST11) and published values. Hecogenin and cholest-4- en -3-one showed significant inhibitory activity against BACE1 with EC 50 values of 116.3 and 390.6 µM, respectively. Cholesta-4,6- dien -3-ol and hurgadacin showed broad spectrum antimicrobial activity, particularly strongly against Escherichia coli (E. coli) , Salmonella enterica (S. enterica) , Pasteurella multocida (P. multocida) , and Physalospora piricola (P. piricola) , with minimal inhibitory concentration (MIC) ranging from 0.46 to 0.94 mg/mL. This is the first report regarding those four known compounds that were isolated from U. unicinctus and their anti-BACE1 and antimicrobial activity, highlighting the fact that known natural compounds may be a critical source of new medicine leads. These findings provide scientific evidence for potential application of those bioactive compounds for the development of AD drugs and antimicrobial agents.

  8. Trypsin inhibitory activity of artemisinin and its biotransformed product

    International Nuclear Information System (INIS)

    Shahwar, D.; Raza, M.A.

    2013-01-01

    Summary: Artemisinin (1 ), a sesquiterpene lactone is an important constituent of anti-malarial drugs. In the present study, it was extracted from aerial parts of Artemisia roxburghiana Besser. Biotransformation of artemisinin ( 1 ) was carried out in the culture of Aspergillus niger GC-4 which yielded 5-hydroxy artemisinin (2 ) The structures of 1-2 were confirmed through spectral studies. Both compounds were screened against trypsin using colorimetric method. The biotransformed product 2 showed significant protease inhibitory activity with 53.5 +- 1.6% inhibition and IC/sub 50/ = 0.29 +- 0.02 mM as compared to artemisinin (20.4 +- 0.3% inhibition). (author)

  9. Melanogenesis-inhibitory and cytotoxic activities of diarylheptanoids from Acer nikoense bark and their derivatives.

    Science.gov (United States)

    Akihisa, Toshihiro; Takeda, Ayano; Akazawa, Hiroyuki; Kikuchi, Takashi; Yokokawa, Satoru; Ukiya, Motohiko; Fukatsu, Makoto; Watanabe, Kensuke

    2012-08-01

    Nine cyclic diarylheptanoids, 1-9, including two new compounds, i.e., 9-oxoacerogenin A (8) and 9-O-β-D-glucopyranosylacerogenin K (9), along with three acyclic diarylheptanoids, 10-12, and four phenolic compounds, 13-16, were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K (17) and D-glucose. Two of the cyclic diarylheptanoids, acerogenin A (1) and (R)-acerogenin B (5), were converted to their ether and ester derivatives, 18-24 and 27-33, respectively, and to the dehydrated derivatives, 25, 26, 34, and 35. Upon evaluation of compounds 1-16 and 18-35 for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone (α-MSH), eight natural glycosides, i.e., six diarylheptanoid glycosides, 2-4, 6, 9, and 12, and two phenolic glycosides, 15 and 16, exhibited inhibitory activities with 24-61% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (88-106% of cell viability at 100 μM). In addition, when compounds 1-16 and 18-35 were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, 10 and 11, ten ether and ester derivatives, 18-22 and 27-31, and two dehydrated derivatives, 34 and 35, exhibited potent cytotoxicities against HL60 human leukemia cell line (IC(50) 8.1-19.3 μM), and five compounds, 10, 11, 20, 29, and 30, against CRL1579 human melanoma cell line (IC(50) 10.1-18.4 μM). Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  10. α-Glucosidase inhibitory activity of selected Malaysian plants

    Directory of Open Access Journals (Sweden)

    Dzatil Awanis Mohd Bukhari

    2017-01-01

    Full Text Available Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  11. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants.

    Science.gov (United States)

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  12. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis

    Directory of Open Access Journals (Sweden)

    Zia Uddin

    2018-03-01

    Full Text Available Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95% of Dodonaea viscosa aerial parts afforded nine (1-9 polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5–57.9 μM. Among them, viscosol (4 was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7, and 9 were found to be the most abundant metabolites in D. viscosa extract.

  13. Isolation and characterization of protein tyrosine phosphatase 1B (PTP1B) inhibitory polyphenolic compounds from Dodonaea viscosa and their kinetic analysis

    Science.gov (United States)

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-03-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5-57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7 and 9 were found to be the most abundant metabolites in D.viscosa extract.

  14. Metabolites with Gram-negative bacteria quorum sensing inhibitory activity from the marine animal endogenic fungus Penicillium sp. SCS-KFD08.

    Science.gov (United States)

    Kong, Fan Dong; Zhou, Li Man; Ma, Qing Yun; Huang, Sheng Zhuo; Wang, Pei; Dai, Hao Fu; Zhao, You Xing

    2017-01-01

    Three new compounds named penicitor A, aculene E and penicitor B, as well as four known compounds, were isolated from the fermentation broth of Penicillium sp. SCS-KFD08 associated with a marine animal Sipunculus nudus from the Haikou bay of China. Their planar structures and absolute configurations were unambiguously elucidated by spectroscopic data, Mosher's method, CD spectrum analysis along with quantum ECD calculation. Among them, compounds 2-7 showed quorum sensing inhibitory activity against Chromobacterium violaceum CV026, and could significantly reduce violacein production in N-hexanoyl-l-homoserine lactone (C6-HSL) induced C. violaceum CV026 cultures at sub-inhibitory concentrations.

  15. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase.

    Science.gov (United States)

    Chen, Xian-Qiang; Zhao, Jing; Chen, Ling-Xiao; Wang, Shen-Fei; Wang, Ying; Li, Shao-Ping

    2018-05-01

    Eighteen previously undescribed lanostane triterpenes and thirty known analogues were obtained from the fruiting bodies of Ganoderma resinaceum. Resinacein C was isolated from a natural source for the first time. The structures of all the above compounds were elucidated by extensive spectroscopic analysis and comparisons of their spectroscopic data with those reported in the literature. Furthermore, in an in vitro assay, Resinacein C, ganoderic acid Y, lucialdehyde C, 7-oxo-ganoderic acid Z 3 , 7-oxo-ganoderic acid Z, and lucidadiol showed strong inhibitory effects against α-glucosidase compared with the positive control drug acarbose. The structure-activity relationships of ganoderma triterpenes on α-glucosidase inhibition showed that the C-24/C-25 double bond is necessary for α-glucosidase inhibitory activity. Moreover, the carboxylic acid group at C-26 and the hydroxy group at C-15 play important roles in enhancing inhibitory effects of these triterpenes. Copyright © 2018. Published by Elsevier Ltd.

  16. Evaluation of phenolic profile, enzyme inhibitory and antimicrobial activities of Nigella sativa L. seed extracts

    Directory of Open Access Journals (Sweden)

    Anela Topcagic

    2017-11-01

    Full Text Available Black cumin (Nigella sativa L. [N.sativa] seed extracts demonstrated numerous beneficial biological effects including, among others, antidiabetic, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, antihypertensive, and antioxidant activity. To better understand the phytochemical composition of N. sativa seeds, methanol seed extracts were analyzed for phenolic acid and flavonoid content. Furthermore, we tested N. sativa methanol, n-hexane, and aqueous seed extracts for their inhibitory activity against butyrylcholinesterase (BChE and catalase (CAT as well as for antimicrobial activity against several bacterial and a yeast strains. The phenolic content of N. sativa was analyzed using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS. The inhibition of BChE was assessed by modified Ellman’s method, and the inhibition of CAT was determined by monitoring hydrogen peroxide consumption. The extracts were tested against Bacillus subtilis, Staphylococcus aureus, Salmonella enterica, and Escherichia coli using the agar diffusion method. The UHPLC-MS/MS method allowed the identification and quantification of 23 phenolic compounds within 15 minutes. The major components found in N. sativa seed extract were sinapinic acid (7.22 ± 0.73 µg/mg as a phenolic acid and kaempferol (11.74 ± 0.92 µg/mg as a flavonoid. All extracts showed inhibitory activity against BChE, with methanol seed extract demonstrating the highest inhibitory activity (inhibitory concentration 50% [IC50] 79.11 ± 6.06 µg/ml. The methanol seed extract also showed strong inhibitory activity against CAT with an IC50 value of 6.61 ± 0.27 µg/ml. Finally, the methanol extract exhibited considerable inhibitory activity against the tested microbial strains. Overall, this is the first study to investigate the ability of black cumin seed extracts to inhibit CAT. Our results indicate that N. sativa seed can be considered as an effective inhibitor

  17. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya.

    Science.gov (United States)

    Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A

    2017-04-01

    The antimicrobial properties of morel compounds from wild edible mushrooms (Morchella esculenta and Verpa bohemica) from Kashmir valley was investigated against different clinical pathogens. The butanol crude fraction of most popular or true morel M. esculenta showed highest 19 mm IZD against E.coli while as same fraction of Verpa bohemica exhibited 15 mm IZD against same strain. The ethyl acetate and butanol crude fractions of both morels also exhibited good antifungal activity with highest IZD shown against A. fumigates. The three morel compounds showed quite impressive anti bacterial and fungal activities. The Cpd 3 showed highest inhibitory activity almost equivalent to the synthetic antibiotics used as control. The MIC/MBC values revealed the efficiency of isolated compounds against the pathogenic strains. In the current study significant inhibitory activity of morel compounds have been obtained paying the way for their local use from ancient times. Copyright © 2017. Published by Elsevier Ltd.

  18. Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.

    Science.gov (United States)

    Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah

    2017-03-01

    The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.

  19. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2013-01-01

    Full Text Available Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ranging from 57.8 to 133.1 μg/mL in the inhibitory assay. AChE was inhibited dose dependently by all tested flavonoids, and compound 6 displayed the highest inhibitory effect against AChE with IC50 values of 57.8 μg/mL.

  20. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    Science.gov (United States)

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  1. β-Sitosterol and flavonoids isolated from Bauhinia malabarica found during screening for Wnt signaling inhibitory activity.

    Science.gov (United States)

    Park, Hyun Young; Toume, Kazufumi; Arai, Midori A; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2014-01-01

    Screening with a cell-based luciferase assay was conducted to identify bioactive natural products which inhibit Wnt signaling activity-guided separation of an MeOH extract of Bauhinia malabarica (Caesalpiniaceae) leaves yielded five compounds, which were identified as β-sitosterol (1), quercetin (2), 6,8-C-dimethyl kaempferol-3-O-rhamnopyranoside (3), hyperin (4), and 6,8-C-dimethyl kaempferol-3-methyl ether (5). The tested compounds 1, 3, and 5 exhibited Wnt signaling inhibitory activity, with IC50 values of 0.77, 0.74, and 16.6 μM, respectively.

  2. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  3. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2013-01-01

    Full Text Available A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported.ResultsReactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 muM.DiscussionThe compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  4. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ziarani Ghodsi Mohammadi

    2013-01-01

    Full Text Available Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM. Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  5. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  6. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    Science.gov (United States)

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances.

  7. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  8. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  9. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  10. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity.

    Science.gov (United States)

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Pedada, Srinivasa Rao; Kalle, Arunasree M; Satya, A Krishna

    2016-11-01

    Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a-10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski's rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a-10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract.

    Science.gov (United States)

    Padilla-Camberos, Eduardo; Flores-Fernandez, Jose Miguel; Fernandez-Flores, Ofelia; Gutierrez-Mercado, Yanet; Carmona-de la Luz, Joel; Sandoval-Salas, Fabiola; Mendez-Carreto, Carlos; Allen, Kirk

    2015-01-01

    Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE) was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg) and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  12. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2015-01-01

    Full Text Available Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  13. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    Science.gov (United States)

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  14. Chemical Constituents of Malaysian U. cordata var. ferruginea and Their in Vitro α-Glucosidase Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Nur Hakimah Abdullah

    2016-04-01

    Full Text Available Continuing our interest in the Uncaria genus, the phytochemistry and the in-vitro α-glucosidase inhibitory activities of Malaysian Uncaria cordata var. ferruginea were investigated. The phytochemical study of this plant, which employed various chromatographic techniques including recycling preparative HPLC, led to the isolation of ten compounds with diverse structures comprising three phenolic acids, two coumarins, three flavonoids, a terpene and an iridoid glycoside. These constituents were identified as 2-hydroxybenzoic acid or salicylic acid (1, 2,4-dihydroxybenzoic acid (2, 3,4-dihydroxybenzoic acid (3, scopoletin or 7-hydroxy-6-methoxy-coumarin (4, 3,4-dihydroxy-7-methoxycoumarin (5, quercetin (6, kaempferol (7, taxifolin (8, loganin (9 and β-sitosterol (10. Structure elucidation of the compounds was accomplished with the aid of 1D and 2D Nuclear Magnetic Resonance (NMR spectral data and Ultraviolet-Visible (UV-Vis, Fourier Transform Infrared (FTIR spectroscopy and mass spectrometry (MS. In the α-glucosidase inhibitory assay, the crude methanolic extract of the stems of the plant and its acetone fraction exhibited strong α-glucosidase inhibition activity of 87.7% and 89.2%, respectively, while its DCM fraction exhibited only moderate inhibition (75.3% at a concentration of 1 mg/mL. The IC50 values of both fractions were found to be significantly lower than the standard acarbose suggesting the presence of potential α-glucosidase inhibitors. Selected compounds isolated from the active fractions were then subjected to α-glucosidase assay in which 2,4-dihydroxybenzoic acid and quercetin showed strong inhibitory effects against the enzyme with IC50 values of 549 and 556 μg/mL compared to acarbose (IC50 580 μg/mL while loganin and scopoletin only showed weak α-glucosidase inhibition of 44.9% and 34.5%, respectively. This is the first report of the isolation of 2-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and loganin from the genus

  15. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  16. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  17. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.

    Science.gov (United States)

    Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per

    2012-05-01

    To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.

  18. Facile alkylation of 4-nitrobenzotriazole and its platelet aggregation inhibitory activity.

    Science.gov (United States)

    Singh, Dhandeep; Silakari, Om

    2017-10-15

    We explored the facile alkylation of 4-nitrobenzotriazole under basic conditions and the synthesized derivatives were tested for their potential ADP induced platelet aggregation inhibition activity in comparison with standard drug ticagrelor (selective P2Y12 inhibitor). The nitro group at 4-position is highly activating toward alkylation reactions (under strong basic conditions) and resulted in formation of degradation product like 3-nitrobenzene-1,2-diamine which make isolation of alkyl products very difficult. We optimized the reaction under mild basic condition (potassium carbonate and DMF) which is devoid of any degradation product. This is perhaps the first report of 4-nitrobenzotriazole derivatives possessing platelet aggregation inhibitory activity. Generally activity increases with increase in length of alkyl chain and 1-alkyl positional isomers were found to be more potent than 2-alkyl isomers. The benzoyl derivative was found to be the most potent [compound 22; (4-Nitro-1H-benzotriazol-1-yl)(phenyl)methanone; IC 50 =0.65±0.10mM] which may be attributed to electronegative oxygen atom and aromatic ring. Benzyl derivatives [compound 20; 1-Benzyl-4-nitro-1H-benzotriazole; IC 50 =0.81±0.08mM, compound 21; 2-Benzyl-4-nitro-2H-benzotriazole; IC 50 =0.82±0.19mM] and sulfonyl derivative [compound 23; 1-[(4-Methylphenyl)sulfonyl]-4-nitro-1H-benzotriazole; IC 50 =0.82±0.19mM] are also found to be highly active. Furthermore, all compounds possess P2Y12 binding affinity as confirmed by VASP/P2Y12 phosphorylation assay. Copyright © 2017. Published by Elsevier Ltd.

  19. An evaluation of the RNase H inhibitory effects of Vietnamese medicinal plant extracts and natural compounds.

    Science.gov (United States)

    Tai, Bui Huu; Nhut, Nguyen Duy; Nhiem, Nguyen Xuan; Quang, Tran Hong; Thanh Ngan, Nguyen Thi; Thuy Luyen, Bui Thi; Huong, Tran Thu; Wilson, Jennifer; Beutler, John A; Ban, Ninh Khac; Cuong, Nguyen Manh; Kim, Young Ho

    2011-10-01

    Acquired immune deficiency syndrome (AIDS) is a severe pandemic disease especially prevalent in poor and developing countries. Thus, developing specific, potent antiviral drugs that restrain infection by human immunodeficiency virus type 1 (HIV-1), a major cause of AIDS, remains an urgent priority. This study evaluated 32 extracts and 23 compounds from Vietnamese medicinal plants for their inhibitory effects against HIV-1 ribonuclease H (RNase H) and their role in reversing the cytopathic effects of HIV. The plants were air-dried and extracted in different solvent systems to produce plant extracts. Natural compounds were obtained as previously published. Samples were screened for RNase H inhibition followed by a cytopathic assay. Data were analyzed using the Microsoft Excel. At 50 μg/mL, 11 plant extracts and five compounds inhibited over 90% of RNase H enzymatic activity. Methanol extracts from Phyllanthus reticulatus and Aglaia aphanamixis leaves inhibited RNase H activity by 99 and 98%, respectively, whereas four extracts showed modest protection against the cytopathic effects of HIV. The screening results demonstrated that the butanol (BuOH) extract of Celastrus orbiculata leaves, methanol (MeOH) extracts of Glycosmis stenocarpa stems, Eurya ciliata leaves, and especially P. reticulatus leaves showed potential RNase H inhibition and protection against the viral cytopathic effects of HIV-1. Further chemical investigations should be carried out to find the active components of these extracts and compounds as potential anti-HIV drug candidates.

  20. Phenolic Compounds from Halimodendron halodendron (Pall. Voss and Their Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jihua Wang

    2012-09-01

    Full Text Available Halimodendron halodendron has been used as forage in northwestern China for a long time. Its young leaves and flowers are edible and favored by indigenous people. In this study, eleven phenolic compounds were bioassay-guided and isolated from the aerial parts of H. halodendron for the first time. They were identified by means of physicochemical and spectrometric analysis as quercetin (1, 3,5,7,8,4'-pentahydroxy-3'-methoxy flavone (2, 3-O-methylquercetin (3, 3,3'-di-O-methylquercetin (4, 3,3'-di-O-methylquercetin-7-O-β-D-glucopyranoside (5, isorhamentin-3-O-β-D-rutinoside (6, 8-O-methylretusin (7, 8-O-methylretusin-7-O-β-D-glucopyranoside (8, salicylic acid (9, p-hydroxybenzoic acid (ferulic acid (10, and 4-hydroxy-3-methoxy cinnamic acid (11. They were sorted as flavonols (1–6, soflavones (7 and 8, and phenolic acids (9–11. Among the compounds, flanools 1–4 revealed a strong antibacterial activity with minimum inhibitory concentration (MIC values of 50–150 μg/mL, and median inhibitory concentration (IC50 values of 26.8–125.1 μg/mL. The two isoflavones (7 and 8 showed moderate inhibitory activity on the test bacteria. Three phenolic acids (9, 10 and 11 showed strong antibacterial activity with IC50 values of 28.1–149.7 μg/mL. Antifungal activities of the compounds were similar to their antibacterial activities. All these phenolic compounds showed significant antimicrobial activity with a broad spectrum as well as antioxidant activity based on 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and β-carotene-linoleic acid bleaching assays. In general, the flavonol aglycones with relatively low polarity exhibited stronger activities than the glycosides. The results suggest the potential of this plant as a source of functional food ingredients and provide support data for its utilization as forage as well.

  1. Cholinesterase inhibitory activity and structure elucidation of a new phytol derivative and a new cinnamic acid ester from Pycnanthus angolensis

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    Full Text Available ABSTRACT The leaves of Pycnanthus angolensis (Welw. Warb., Myristicaceae, are used as memory enhancer and anti-ageing in Nigerian ethnomedicine. This study aimed at evaluating the cholinesterase inhibitory property as well as isolates the bioactive compounds from the plant. The acetylcholinesterase and butyrylcholinesterase inhibitory potentials of extracts, fractions, and isolated compounds were evaluated by colorimetric and TLC bioautographic assay techniques. The extract inhibited both enzymes with activity increasing with purification, ethyl acetate fraction being most active fraction at 65.66 ± 1.06% and 49.38 ± 1.66% against acetylcholinesterase and butyrylcholinesterase, respectively while the supernatant had 77.44 ± 1.18 inhibition against acetylcholinesterase. Two new bioactive compounds, (2E, 18E-3,7,11,15,18-pentamethylhenicosa-2,18-dien-1-ol (named eluptol and [12-(4-hydroxy-3-methyl-oxo-cyclopenta-1,3-dien-1yl-11-methyl-dodecyl](E-3-(3,4-dimethylphenylprop-2-enoate (named omifoate A were isolated from the plant with IC50 of 22.26 µg/ml (AChE, 34.61 µg/ml (BuChE and 6.51 µg/ml (AChE, 9.07 µg/ml (BuChE respectively. The results showed that the plant has cholinesterase inhibitory activity which might be responsible for its memory enhancing action, thus justifying its inclusion in traditional memory enhancing preparations

  2. Anti-human rhinoviral activity of polybromocatechol compounds isolated from the rhodophyta, Neorhodomela aculeata.

    Science.gov (United States)

    Park, Soon-Hye; Song, Jae-Hyoung; Kim, Taejung; Shin, Woon-Seob; Park, Gab Man; Lee, Seokjoon; Kim, Young-Joo; Choi, Pilju; Kim, Heejin; Kim, Hui-Seong; Kwon, Dur-Han; Choi, Hwa Jung; Ham, Jungyeob

    2012-10-01

    An extract of the red alga, Neorhodomela aculeata, exhibited antiviral activity against human rhinoviruses. Bioassay-guided purification was performed to yield six compounds, which were subsequently identified as lanosol (1) and five polybromocatechols (2-6) by spectroscopic methods, including 1D and 2D NMR and mass spectrometric analyses. Structurally, all of these compounds, except compound 5, contain one or two 2,3-dibromo-4,5-dihydroxyphenyl moieties. In a biological activity assay, compound 1 was found to possess antiviral activity with a 50% inhibitory concentration (IC₅₀) of 2.50 μg/mL against HRV2. Compound 3 showed anti-HRV2 activity, with an IC₅₀ of 7.11 μg/mL, and anti-HRV3 activity, with an IC₅₀ of 4.69 μg/mL, without demonstrable cytotoxicity at a concentration of 20 μg/mL. Collectively, the results suggest that compounds 1 and 3 are candidates for novel therapeutics against two different groups of human rhinovirus.

  3. LC-MS guided isolation of diterpenoids from Sapium insigne with α-glucosidase inhibitory activities.

    Science.gov (United States)

    Yan, De-Xiu; Geng, Chang-An; Yang, Tong-Hua; Huang, Xiao-Yan; Li, Tian-Ze; Gao, Zhen; Ma, Yun-Bao; Peng, Hua; Zhang, Xue-Mei; Chen, Ji-Jun

    2018-04-08

    Ten new (1-10) and ten known (11-20) diterpenoids involving ent-atisane, ent-seco-atisane, ent-kaurane and ent-seco-kaurane types were isolated from Sapium insigne under the guidance of LCMS-IT-TOF analyses. Their structures were characterized by extensive spectroscopic analyses (HRESIMS, UV, IR, 1D and 2D NMR). A putative biosynthetic pathway was proposed for ent-seco-atisane diterpenoids. Their inhibitory activities on α-glucosidase in vitro were tested for the first time. Compound 4 showed moderate inhibitory effect on α-glucosidase with an IC 50 value of 0.34 mM via a noncompetitive inhibition mechanism (K i  = 0.27 mM). The preliminary structure-activity relationships of the ent-atisane diterpenoids inhibiting α-glucosidase were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities.

    Science.gov (United States)

    Ma, Jiang-Hao; Wang, Ying; Liu, Yue; Gao, Su-Yu; Ding, Li-Qin; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2015-05-01

    Three new guaiane-type sesquiterpenes named phaeocaulisins K-M (1-3), and one germacrane-type sesquiterpenoid with new ring system of 1,5- and 1,8-ether groups named phagermadiol (4), were isolated from rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compound 1, the first example of norsesquiterpene with tropone backbone, and compound 3 with a novel 1,2-dioxolane sesquiterpene alcohol were isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compound 3 inhibited NO production with IC50 value of 6.05 ± 0.43 μM. The plausible biosynthetic pathway for compounds 3 and 4 in C. phaeocaulis was also discussed.

  5. Antioxidant, xanthine oxidase and lipoxygenase inhibitory activities and phenolics of Bauhinia rufescens Lam. (Caesalpiniaceae).

    Science.gov (United States)

    Compaoré, M; Lamien, C E; Lamien-Meda, A; Vlase, L; Kiendrebeogo, M; Ionescu, C; Nacoulma, O G

    2012-01-01

    An aqueous acetone extract of the stem with the leaves of Bauhinia rufescens and its fractions were analysed for their antioxidant and enzyme-inhibitory activities, as well as their phytochemical composition. For measurement of the antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzoline-6-sulphonate) and the ferric-reducing methods were used. The results indicated that the aqueous acetone, its ethyl acetate and n-butanol fractions possessed considerable antioxidant activity. Further, the xanthine oxidase and lipoxygenase inhibitory assays showed that the n-butanol fraction possessed compounds that can inhibit both these enzymes. In the phytochemical analysis, the ethyl acetate and the n-butanol fractions of the aqueous acetone extract were screened by HPLC-MS for their phenolic content. The results indicated the presence of hyperoside, isoquercitrin, rutin quercetin, quercitrin, p-coumaric and ferulic acids in the non-hydrolysed fractions. In the hydrolysed fractions, kaempferol, p-coumaric and ferulic acids were identified.

  6. Four new neolignans isolated from Eleutherococcus senticosus and their protein tyrosine phosphatase 1B inhibitory activity (PTP1B).

    Science.gov (United States)

    Zhang, Le; Li, Ban-Ban; Li, Hao-Ze; Meng, Xiao; Lin, Xin; Jiang, Yi-Yu; Ahn, Jong-Seog; Cui, Long

    2017-09-01

    Four new compounds, erythro-7'E-4-hydroxy-3,3'-dimethoxy-8,5'-oxyneoligna-7'-ene-7,9-diol-9'-al (1), (7S,8S)-4-hydroxy-3,1',3'-trimethoxy-4',7-epoxy-8,5'-neolign-9-ol (5), (7S,8S,7'E)-5-hydroxy-3,3'-dimethoxy-4',7-epoxy-8,5'-neolign-7'-ene-9,9'-diol (6) and (7S,8S,7'E)-5-hydroxy-3,3',9'-trimethoxy-4'-7-epoxy-8,5'-neolign-7'-ene-9-ol (7). Along with four known compounds (2-4, 8) were isolated from the EtOAc-soluble extract of Eleutherococcus senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the compounds were evaluated for in vitro inhibitory activity against PTP1B, VHR and PP1. Among them, compounds 1-4 and 6-8 were found to exhibit selective inhibitory activity on PTP1B with IC 50 values ranging from 17.2±1.6 to 32.7±1.2μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.

    Science.gov (United States)

    Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S

    2017-01-01

    The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  8. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  9. Aglaiabbrevins A-D, New Prenylated Bibenzyls from the Leaves of Aglaia abbreviata with Potent PTP1B Inhibitory Activity.

    Science.gov (United States)

    Sun, Pan; Jiang, Chang-Sheng; Zhang, Yi; Liu, Ai-Hong; Liang, Tong-Jun; Li, Jia; Guo, Yue-Wei; Jiang, Jian-Mei; Mao, Shui-Chun; Wang, Bin

    2017-01-01

    Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC 50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC 50 =2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.

  10. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  12. Anti-Human Rhinoviral Activity of Polybromocatechol Compounds Isolated from the Rhodophyta, Neorhodomela aculeata

    Directory of Open Access Journals (Sweden)

    Hui-Seong Kim

    2012-10-01

    Full Text Available An extract of the red alga, Neorhodomela aculeata, exhibited antiviral activity against human rhinoviruses. Bioassay-guided purification was performed to yield six compounds, which were subsequently identified as lanosol (1 and five polybromocatechols (2–6 by spectroscopic methods, including 1D and 2D NMR and mass spectrometric analyses. Structurally, all of these compounds, except compound 5, contain one or two 2,3-dibromo-4,5-dihydroxyphenyl moieties. In a biological activity assay, compound 1 was found to possess antiviral activity with a 50% inhibitory concentration (IC50 of 2.50 μg/mL against HRV2. Compound 3 showed anti-HRV2 activity, with an IC50 of 7.11 μg/mL, and anti-HRV3 activity, with an IC50 of 4.69 μg/mL, without demonstrable cytotoxicity at a concentration of 20 μg/mL. Collectively, the results suggest that compounds 1 and 3 are candidates for novel therapeutics against two different groups of human rhinovirus.

  13. Evaluation of the Stability of the Total Antioxidant Capacity, Polyphenol Contents, and Starch Hydrolase Inhibitory Activities of Kombucha Teas Using an In Vitro Model of Digestion

    Directory of Open Access Journals (Sweden)

    Mindani I. Watawana

    2015-01-01

    Full Text Available The objective of this study was to evaluate and compare antioxidant and starch hydrolase inhibitory activity of three different types of Kombucha beverages prepared by three pellicles with different microbial compositions. The fermentation process was carried out for 7 days and the assessments of antioxidant and starch hydrolase inhibitory activities as well as tea phenolic compounds were carried out. These parameters were also evaluated after subjecting the final fermented samples to gastric and duodenal digestion in an in vitro digestion model. The pH had a statistically significant decrease during the period of fermentation. The total phenolics content and antioxidant activities had increased during the fermentation process as well as when subjected to digestion. The starch hydrolase inhibitory activities also increased in a similar manner during the different phases. The α-amylase and α-glucosidase inhibitory activities showed statistically significant increases (P<0.05 as the fermentation progressed, while an increase was observed after being subjected to pancreatic and duodenal digestion as well. All three types of tea showed a higher α-amylase inhibitory activity than α-glucosidase inhibitory activity.

  14. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus

    Science.gov (United States)

    Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross

    2009-01-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...

  15. Inhibitory Effects of Chemical Compounds Isolated from the Rhizome of Smilax glabra on Nitric Oxide and Tumor Necrosis Factor-α Production in Lipopolysaccharide-Induced RAW264.7 Cell

    Directory of Open Access Journals (Sweden)

    Chuan-li Lu

    2015-01-01

    Full Text Available The rhizome of Smilax glabra has been used for a long time as both food and folk medicine in many countries. The present study focused on the active constituents from the rhizome of S. glabra, which possess potential anti-inflammatory activities. As a result, nine known compounds were isolated from the rhizome of S. glabra with the bioassay-guiding, and were identified as syringaresinol (1, lasiodiplodin (2, de-O-methyllasiodiplodin (3, syringic acid (4, 1,4-bis(4-hydroxy-3,5-dimethoxyphenyl-2,3-bis(hydroxymethyl-1,4-butanediol (5, lyoniresinol (6, trans-resveratrol (7, trans-caffeic acid methyl ester (8, and dihydrokaempferol (9. Among these compounds, 2 and 3 were isolated for the first time from S. glabra. In addition, the potential anti-inflammatory activities of the isolated compounds were evaluated in vitro in lipopolysaccharide- (LPS- induced RAW264.7 cells. Results indicated that 4 and 7 showed significant inhibitory effects on NO production of RAW264.7 cells, and 1, 2, 3, and 5 showed moderate suppression effects on induced NO production. 1, 7, and 5 exhibited high inhibitory effects on TNF-α production, with the IC50 values less than 2.3, 4.4, and 16.6 μM, respectively. These findings strongly suggest that compounds 1, 2, 3, 4, 5, 7, and 9 were the potential anti-inflammatory active compositions of S. glabra.

  16. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp.

    Science.gov (United States)

    Sohn, Jae Hak; Lee, Yu-Ri; Lee, Dong-Sung; Kim, Youn-Chul; Oh, Hyuncheol

    2013-09-28

    The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 micrometer, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

  17. Four new sesqui-lignans isolated from Acanthopanax senticosus and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    Science.gov (United States)

    Li, Jia-Lin; Li, Na; Lee, Hyun-Sun; Xing, Shan-Shan; Qi, Shi-Zhou; Tuo, Zhen-Dong; Zhang, Le; Li, Ban-Ban; Chen, Jian-Guang; Cui, Long

    2016-03-01

    Four new sesqui-lignans, (7R, 7'R, 7″S, 8S, 8'S, 8″S)-4',5″-dihydroxy-3,5,3',4″-tetramethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineo-lignan-7″,9″-diol (1), (7R, 7'R, 7″S, 8S, 8'S, 8″S)-4',3″-dihydroxy-3,5,3',5',4″-pentamethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineo-lignan-7″,9″-diol (2), (7R, 7'R, 7″S, 8S, 8'S, 8″S)-3',4″-dihydroxy-3,5,4',5″-tetramethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineo-lignan-7″,9″-diol (3) and acanthopanax A (7) together with three known compounds (4-6) were isolated from the EtOAc-soluble extract of Acanthopanax senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1 and DGAT2. Among them, compounds 1-6 were found to exhibit selective inhibitory activity on DGAT1 with IC50 values ranging from 61.1 ± 1.3 to 97.7 ± 1.1 μM and compound 7 showed selective inhibition of DGAT2 with IC50 value 93.2 ± 1.2. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nitric oxide inhibitory substances from Curcuma mangga rhizomes

    Directory of Open Access Journals (Sweden)

    Kanidta Kaewkroek

    2009-08-01

    Full Text Available Curcuma mangga Val. & Zijp. is a member of the Zingiberaceae family commonly grown in Thailand. It is locally known as mango tumeric because of its mango-like smell when the fresh rhizomes are cut. C. mangga is a popular vegetable, the tips of the young rhizomes and shoots are consumed raw with rice. Medicinally, the rhizomes are used as a stomachic and for chest pains, fever, and general debility. It is also used in postpartum care. In the present study, we investigated the anti-inflammatory effect of the extract and compounds from C. mangga rhizomes against lipopolysaccharide (LPS-induced nitric oxide (NO production in RAW 264.7 cell line. From bioassay-guided fractionation, the chloroform fraction exhibited the most potent inhibitory activity with an IC50 value of 2.1 g/ml, followed by the hexane fraction (IC50 = 3.8 g/ml and the ethyl acetate fraction (IC50 = 23.5 g/ml, respectively. Demethoxycurcumin (1 and 3-buten-2-one, 4-[(1R, 4aR, 8aR-decahydro-5, 5, 8a-trimethyl-2-methylene-1-naphthalenyl]-, (3E-rel- (2 were isolated from the chloroform- and hexane fractions, respectively. Bisdemethoxycurcumin (3 whose structure is similar to that of 1 was also tested for NO inhibitory activity. Of the tested compounds, compound 1 exhibited the highest activity with an IC50 value of 12.1 μM, followed by 3(IC50 = 16.9 M and 2 (IC50 = 30.3 M. These results suggest that C. mangga and its compounds exert NO inhibitory activity and have a potential to be developed as a pharmaceutical preparation for treatment of inflammatory-related diseases. Moreover, this is the first report of compound 2 that was isolated from C. mangga rhizomes.

  19. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    International Nuclear Information System (INIS)

    Kandhasamy, Subramani; Ramanathan, Giriprasath; Muthukumar, Thangavelu; Thyagarajan, SitaLakshmi; Umamaheshwari, Narayanan; Santhanakrishnan, V P; Sivagnanam, Uma Tiruchirapalli; Perumal, Paramasivan Thirumalai

    2017-01-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  20. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Kandhasamy, Subramani [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Ramanathan, Giriprasath [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Muthukumar, Thangavelu [Department of Clinical and Experimental Medicine (IKE), Division of Neuro and Inflammation Sciences (NIV), Linkoping University (Sweden); Thyagarajan, SitaLakshmi [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Umamaheshwari, Narayanan [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Santhanakrishnan, V P [Department of Plant Biotechnology, TNAU, Coimbatore, Tamilnadu (India); Sivagnanam, Uma Tiruchirapalli, E-mail: suma67@gmail.com [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Perumal, Paramasivan Thirumalai, E-mail: ptperumal@gmail.com [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India)

    2017-05-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  1. [Study on the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria].

    Science.gov (United States)

    Yang, D; Hu, H; Huang, S; Chaumont, J P; Millet, J

    2000-05-01

    In this paper, we concentrated in examining, in vitro, the antiseptic activity of the baicalein and baicalin upon the seventeen pathogenic skin fungal and sixteen skin bacterial strains, these two flavonic compounds were known principally as the biosubstances of a traditional Chinese medicinal plant: Scutellaria baicalensis. In agar media, the baicalein possessed potent specific activity against the pathogenic yeasts with MICs of 70-100 micrograms/ml; But in the same condition, no inhibitory effect was observed upon dermatophytes and filamentous imperfect fungi for baicalein, and upon all used strains for baicalin. According to the antibacterial test of baicalein, a high efficacy was achieved against certain causative specie of axillary and foot's odour such as Micrococcus sedentarius, Staphylococcus epidermidis, S. hominis and C. xerosis with a MICs inferior to 250 micrograms/ml. The good inhibitory activity of baicalein could be linked to the group hydroxyl (-OH) in position seven of the molecule.

  2. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  3. COMPARATIVE EVALUATION OF INHIBITORY ACTIVITY OF ...

    African Journals Online (AJOL)

    Osondu

    2013-02-26

    Feb 26, 2013 ... especially the four bacteria isolates used in this study are present in the epiphgram of both normal and ... Keyword: Albino snail, Archachatina marginata, Inhibitory activity, Epiphgram, Bacteria isolate. Introduction .... evolution.

  4. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    Science.gov (United States)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  5. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities.

    Science.gov (United States)

    Abd El-All, Amira S; Magd-El-Din, Asmaa A; Ragab, Fatma A F; ElHefnawi, Mahmoud; Abdalla, Mohamed M; Galal, Shadia A; El-Rashedy, Ahmed A

    2015-07-01

    A newly synthesized series of anticancer compounds comprising thiazolo[3,2-a]pyrimidine derivatives 6a-q bearing a benzimidazole moiety was produced via a one-pot reaction of N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-2-cyanoacetamide 5 with 2-aminothiazole and an appropriate aromatic aldehyde. Compound 7 was obtained via the reaction of 4-(1H-benzo[d]imidazol-2yl)benzenamide 1 with carbon disulphide and methyl iodide in the presence of concentrated aqueous solution of NaOH, then treated with o-phenylenediamine to give N-(4-1H-benzo[d]imidazol-2-yl)phenyl)-1H-benzo[d]imidazol-2-amine 8. The structures of the newly synthesized compounds were confirmed by analytical and spectroscopic measurements (IR, MS, and (1) H NMR). The synthesized products were screened and studied for their in vitro antitumor activity against three human cancer cell lines (namely colorectal cancer cell line HCT116, human liver cancer cell line HepG2, and human ovarian cancer cell line A2780) and their Aurora A kinase and KSP inhibitory activities. All newly synthesized compounds revealed marked results comparable with the standard drug CK0106023. The compounds 6e and 6k of the thiazolopyrimidine derivatives were the most active compounds when tested against the three cell lines in comparison with the standard drug CK0106023, and showed potent dual KSP and Aurora A kinase inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  7. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  8. Tyrosinase inhibitory effects and antioxidative activities of saponins from Xanthoceras Sorbifolia nutshell.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    Full Text Available Certain saponins are bioactive compounds with anticancer, antivirus and antioxidant activities. This paper discussed inhibitory effects of saponins from Xanthoceras Sorbifolia on tyrosinase, through the research of the rate of tyrosinase catalyzed L-DOPA oxidation. The inhibition rate of tyrosinase activity presented non-linear changes with the saponins concentration. The rate reached 52.0% when the saponins concentration was 0.96 mg/ml. Antioxidant activities of saponins from Xanthoceras Sorbifolia were evaluated by using hydroxyl and superoxide radical scavenging assays. The hydroxyl radical scavenging effects of the saponins were 15.5-68.7%, respectively at the concentration of 0.18-2.52 mg/ml. The superoxide radical scavenging activity reduced from 96.6% to 7.05% with the time increasing at the concentration of 1.44 mg/ml. All the above antioxidant evaluation indicated that saponins from Xanthoceras Sorbifolia exhibited good antioxidant activity in a concentration- dependent manner.

  9. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    Science.gov (United States)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  10. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. Copyright © 2016. Published by Elsevier B.V.

  11. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases.

    Science.gov (United States)

    Baraldi, Patrícia T; Magro, Angelo J; Matioli, Fábio F; Marcussi, Silvana; Lemke, Ney; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M; Correa, Arlene G; Fontes, Marcos R M

    2016-02-01

    Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms. Copyright © 2015 Elsevier B.V. and Société Française de

  12. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  13. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica.

    Science.gov (United States)

    Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang

    2014-11-28

    Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate.

  14. Acetylcholinesterase inhibitory, antioxidant, and antimicrobial activities of Salvia tomentosa Mill. essential oil

    Directory of Open Access Journals (Sweden)

    ANDREY MARCHEV

    2015-08-01

    Full Text Available Chemical composition and bioactivity of essential oil from Salvia tomentosa Mill. natively grown in Bulgaria were investigated. GC-MS analysis identified 60 compounds which represented 98% of the oil constituents. The prevalent constituents were monoterpenes with eight dominant compounds being identified: borneol (10.3%, β-pinene (9%, camphor (7.9%, α-pinene (6%, camphene (4%, 1.8-cineole (3.8%, α-limonene (3.5% and β-caryophyllene (3%. The essential oil showed considerable acetylcholinesterase inhibitory activity (IC50=0.28±0.06 µg/mL, comparable with that of galanthamine. Study of antioxidant activity strongly suggested that the hydrogen atom transfer reaction was preferable over the electron transfer (ORAC=175.0±0.40 µM Trolox equivalents/g oil and FRAP=1.45±0.21 mM Trolox equivalents/g oil. The essential oil showed moderate antifungal and antibacterial activities against Candida albicans and Gram-positive bacteria, whereas it was almost inactive against the investigated Gram-negative strains. The results suggested that the essential oil of Bulgarian S. tomentosa could be considered as a prospective active ingredient for prevention of oxidative stress-related and neurodegenerative disorders in aromatherapy. Because of the high antioxidant capacity, the oil could be considered as natural supplement or antioxidant in cosmetics and food products.

  15. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  16. Lipase inhibitory activity of Carica papaya, Chrysophyllum cainito, Corcorus olitorius, Cympogon citrates and Syzygium cumini extracts

    Directory of Open Access Journals (Sweden)

    Briones, A.T.

    2017-09-01

    Full Text Available The lipase inhibitory action of Carica papaya, Chrysophyllum cainito, Corcorus olitorius, Cymbopogon citrates and Syzygium cumini were evaluated to explore for the presence of anti-obesity compounds and their potential weight-lowering activity. Enzyme inhibition results of the alcoholic extracts of the five plants showed that C. cainito has the highest percent inhibition at 74.91% while S. cumini, C. citratus, C. olitorius and C. papaya obtained less than 50% average inhibition. C. cainito was partitioned using hexane and ethyl acetate to further concentrate the bioactive compounds. The lipase inhibition assay of hexane and ethyl acetate extracts showed 92.11% inhibition and 21.9% inhibition, respectively. The greater activity in the former may imply that majority of potential anti-lipase constituents are found in the hexane portion.

  17. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  18. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    Science.gov (United States)

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Preliminary phytochemical screening and alpha-glucosidase inhibitory activity of Philippine taro (Colocasia esculenta (L.) Schott var. PSB-VG #9)

    Science.gov (United States)

    Lebosada, Richemae Grace R.; Librando, Ivy L.

    2017-01-01

    The study was conducted to determine the anti-hyperglycemic property in terms of α-glucosidase inhibitory activity of the various parts (corm, leaf and petiole) of Colocasia esculenta (L.) Schott var. PSB-VG #9. Each of the plant parts were extracted with 95% ethanol and concentrated using a rotary evaporator at 40 °C. The crude extracts were screened for the presence of alkaloids, flavonoids, glycosides and saponins using Thin Layer Chromatography. The α-glucosidase inhibitory activity of the crude extracts (50 mg/L) were assayed spectrophotometrically using a microplate reader. The results of the phytochemical screening revealed the presence of alkaloids, flavonoids, and saponins in the leaf part while flavonoids and saponins were detected in the petiole and only saponins were present in the corm. The assay showed that the percentage α-glucosidase inhibition of the 50 mg/L ethanolic crude extract of the corm, leaves and petiole of C. esculenta are 68.03, 71.64 and 71.39%, respectively. Statistical analysis shows significant differences in the α-glucosidase inhibition among the various plant parts. It can be concluded that the ethanolic crude extracts of the different parts of C. esculenta (L.) Schott var. PSB-VG #9 exhibited inhibitory activity against α-glucosidase and the presence of phytochemicals like alkaloids, flavonoids and saponins may have contributed greatly to the inhibitory activity of the plant extract and can be further subjected for isolation of the therapeutically active compounds with antidiabetes potency.

  20. Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug-drug interactions.

    Science.gov (United States)

    Takaoka, Naoki; Sanoh, Seigo; Okuda, Katsuhiro; Kotake, Yaichiro; Sugahara, Go; Yanagi, Ami; Ishida, Yuji; Tateno, Chise; Tayama, Yoshitaka; Sugihara, Kazumi; Kitamura, Shigeyuki; Kurosaki, Mami; Terao, Mineko; Garattini, Enrico; Ohta, Shigeru

    2018-04-17

    As aldehyde oxidase (AOX) plays an emerging role in drug metabolism, understanding its significance for drug-drug interactions (DDI) is important. Therefore, we tested 10 compounds for species-specific and substrate-dependent differences in the inhibitory effect of AOX activity using genetically engineered HEK293 cells over-expressing human AOX1, mouse AOX1 or mouse AOX3. The IC 50 values of 10 potential inhibitors of the three AOX enzymes were determined using phthalazine and O 6 -benzylguanine as substrates. 17β-Estradiol, menadione, norharmane and raloxifene exhibited marked differences in inhibitory effects between the human and mouse AOX isoforms when the phthalazine substrate was used. Some of the compounds tested exhibited substrate-dependent differences in their inhibitory effects. Docking simulations with human AOX1 and mouse AOX3 were conducted for six representative inhibitors. The rank order of the minimum binding energy reflected the order of the corresponding IC 50 values. We also evaluated the potential DDI between an AOX substrate (O 6 -benzylguanine) and an inhibitor (hydralazine) using chimeric mice with humanized livers. Pretreatment of hydralazine increased the maximum plasma concentration (C max ) and the area under the plasma concentration-time curve (AUC 0-24 ) of O 6 -benzylguanine compared to single administration. Our in vitro data indicate species-specific and substrate-dependent differences in the inhibitory effects on AOX activity. Our in vivo data demonstrate the existence of a DDI which may be of relevance in the clinical context. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity

    Directory of Open Access Journals (Sweden)

    Nelson Jeng-Yeou Chear

    2016-04-01

    Full Text Available Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences.

  2. Anti-inflammatory activities of compounds from twigs of Morus alba.

    Science.gov (United States)

    Tran, Huynh Nguyen Khanh; Nguyen, Van Thu; Kim, Jeong Ah; Rho, Seong Soo; Woo, Mi Hee; Choi, Jae Sui; Lee, Jeong-Hyung; Min, Byung Sun

    2017-07-01

    Five new compounds, 10-oxomornigrol F (1), (7″R)-(-)-6-(7″-hydroxy-3″,8″-dimethyl-2″,8″-octadien-1″-yl)apigenin (2), ramumorin A (3), ramumorin B (4), and (4S,7S,8R)-trihydroxyoctadeca-5Z-enoic acid (5), together with 31 known compounds (6-36), were isolated from the twigs of Morus alba (Moraceae). The chemical structures of these compounds were established using spectroscopic analyses, 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and Mosher's methods. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW 264.7 cells. Compounds 1, 2, 13, 17, 19, 25-28, and 32 showed inhibitory effects with IC 50 values ranging from 2.2 to 5.3μg/mL. Compounds 1, 2, 17, 25, and 32 reduced LPS-induced inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner. In addition, pretreating the cells with compound 1, 17, and 32 significantly suppressed LPS-induced expression of cyclooxygenase-2 (COX-2) protein. Copyright © 2017. Published by Elsevier B.V.

  3. Synthesis and GGCT Inhibitory Activity of N-Glutaryl-L-alanine Analogues.

    Science.gov (United States)

    Ii, Hiromi; Yoshiki, Tatsuhiro; Hoshiya, Naoyuki; Uenishi, Jun'ichi

    2016-01-01

    γ-Glutamylcyclotransferase (GGCT) is an important enzyme that cleaves γ-glutamyl-amino acid in the γ-glutamyl cycle to release 5-oxoproline and amino acid. Eighteen N-acyl-L-alanine analogues including eleven new compounds have been synthesized and examined for their inhibitory activity against recombinant human GGCT protein. Simple N-glutaryl-L-alanine was found to be the most potent inhibitor for GGCT. Other N-glutaryl-L-alanine analogues having methyl and dimethyl substituents at the 2-position were moderately effective, while N-(3R-aminoglutary)-L-alanine, the substrate having an (R)-amino group at the 3-position or N-(N-methyl-3-azaglutaryl)-L-alanine, the substrate having an N-methyl substituent on the 3-azaglutaryl carbon, in constract, exhibited excellent inhibition properties.

  4. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    Science.gov (United States)

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2012-08-01

    Full Text Available Abstract Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide and late apoptotic cells (Annexin V+/PI+ increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  6. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells.

    Science.gov (United States)

    Wu, Jian; Yi, Wenshi; Jin, Linhong; Hu, Deyu; Song, Baoan

    2012-08-31

    Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  7. Fruit Wines Inhibitory Activity Against α-Glucosidase.

    Science.gov (United States)

    Cakar, Uros; Grozdanic, Nada; Petrovic, Aleksandar; Pejin, Boris; Nastasijevic, Branislav; Markovic, Bojan; Dordevic, Brizita

    2017-01-01

    Fruit wines are well known for their profound health-promoting properties including both enzyme activations and inhibitions. They may act preventive in regard to diabetes melitus and other chronic diseases. Potential α-glucosidase inhibitory activity of fruit wines made from blueberry, black chokeberry, blackberry, raspberry and sour cherry was the subject of this study. In order to increase the alcohol content due to enriched extraction of total phenolics, sugar was added in the fruit pomace of the half of the examined fruit wine samples. Compared with acarbose used as a positive control (IC50 = 73.78 µg/mL), all fruit wine samples exhibited higher α-glucosidase inhibitory activity. Indeed, blueberry wine samples stood out, both prepared with IC50 = 24.14 µg/mL, lyophilised extract yield 3.23% and without IC50 = 46.39 µg/mL, lyophilised extract yield 2.89% and with addition of sugar before fermentation. Chlorogenic acid predominantly contributed to α-glucosidase inhibitory activity of the blueberry, black chokeberry and sour cherry wine samples. However, ellagic acid, a potent α-glucosidase inhibitor possessing a planar structure, only slightly affected the activity of the blueberry wine samples, due to the lower concentration. In addition to this, molecular docking study of chlorogenic acid pointed out the importance of binding energy (-8.5 kcal/mol) for the inhibition of the enzyme. In summary, fruit wines made from blueberry should be primarily taken into consideration as a medicinal food targeting diabetes mellitus type 2 in the early stage, if additional studies would confirm their therapeutic potential for the control of postprandial hyperglycemia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Sesquiterpenes from Curcuma wenyujin with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Gao, Suyu; Xia, Guiyang; Wang, Liqing; Zhou, Li; Zhao, Feng; Huang, Jian; Chen, Lixia

    2017-03-01

    One new sesquiterpene, 7α,11-epoxy-6α-hydroxy-carabrane-4,8-dione, along with 10 known ones were isolated from the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling. Their structures were established based on extensive spectroscopic analysis. The absolute configuration of compound 1 was determined by the CD analysis of the insitu formed [Rh 2 (OCOCF 3 ) 4 ] complex, and the CD data analysis based on the octane rule of cyclohexanone. The inhibitory effects of these sesquiterpenes on nitric oxide production in lipopolysaccharide-activated macrophages were also evaluated. Furthermore, the biosynthesis pathway of the isolated compounds was proposed.

  9. Polyoxygenated Cyclohexenoids with Promising α-Glycosidase Inhibitory Activity Produced by Phomopsis sp. YE3250, an Endophytic Fungus Derived from Paeonia delavayi.

    Science.gov (United States)

    Huang, Rong; Jiang, Bo-Guang; Li, Xiao-Nian; Wang, Ya-Ting; Liu, Si-Si; Zheng, Kai-Xuan; He, Jian; Wu, Shao-Hua

    2018-02-07

    Seven new polyoxygenated cyclohexenoids, namely, phomopoxides A-G (1-7), were isolated from the fermentation broth extract of an endophytic fungal strain Phomopsis sp. YE3250 from the medicinal plant Paeonia delavayi Franch. The structures of these compounds were established by spectroscopic interpretation. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis and chemical derivative approach. All isolated compounds showed weak cytotoxic activities toward three human tumor cell lines (Hela, MCF-7, and NCI-H460) and weak antifungal activities against five pathogenic fungi (Candida albicans, Aspergillus niger, Pyricularia oryzae, Fusarium avenaceum, and Hormodendrum compactum). In addition, compounds 1-7 showed a promising α-glycosidase inhibitory activity with IC 50 values of 1.47, 1.55, 1.83, 2.76, 2.88, 3.16, and 2.94 mM, respectively, as compared with a positive control of acarbose (IC 50 = 1.22 mM).

  10. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica.

    Science.gov (United States)

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2015-11-01

    Four new flavonoids, mortatarins A-D (1-4, resp.), along with eight known flavonoids (5-12) were isolated from the root bark of Morus alba var. tatarica. Their structures were established on the basis of spectroscopic data analysis, and the absolute configuration of 4 was determined by analysis of its CD spectrum. All isolates were tested for inhibitory activities against α-glucosidase. Compounds 4, 7, and 8 exhibited a significant degree of inhibition with IC50 values of 5.0 ± 0.3, 7.5 ± 0.5, and 5.9 ± 0.2 μM, respectively. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Two new compounds from the fruiting bodies of Ganoderma philippii.

    Science.gov (United States)

    Yang, Shuang; Ma, Qing-Yun; Kong, Fan-Dong; Xie, Qing-Yi; Huang, Sheng-Zhuo; Zhou, Li-Man; Dai, Hao-Fu; Yu, Zhi-Fang; Zhao, You-Xing

    2018-03-01

    Two new compounds, philippin (1) and 3β,9α,14α-trihydroxy-(22E,24R)-ergost-22-en-7-one (2), were isolated from the fruiting bodies of Ganoderma philippii. Their structures were elucidated on the basis of the spectroscopic technologies, including 1D and 2D NMR as well as MS. The bioassay of inhibitory activity against acetylcholinesterase (AChE) showed compound 1 exhibited weak inhibitory activity against AChE.

  12. Chemical constituents of Hericium erinaceum associated with the inhibitory activity against cellular senescence in human umbilical vascular endothelial cells.

    Science.gov (United States)

    Noh, Hyung Jun; Yang, Hyo Hyun; Kim, Geum Soog; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Lee, Eun Suk; Ji, Seung Heon; Kang, Ki Sung; Park, Hye-Jin; Kim, Jae-Ryong; Kim, Ki Hyun

    2015-12-01

    Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (1-6) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.

  13. Lanostane triterpenoids from Ganoderma curtisii and their NO production inhibitory activities of LPS-induced microglia.

    Science.gov (United States)

    Jiao, Yang; Xie, Ting; Zou, Lu-Hui; Wei, Qian; Qiu, Li; Chen, Li-Xia

    2016-08-01

    Twenty-nine lanostane triterpenoids (1-29) were obtained from the EtOH extract of fruiting bodies of the Ganoderma curtisii. Among them, compound 1 was a new lanostane triterpenoid and compounds 2-5 were isolated from the genus Ganoderma for the first time and their structures were unambiguously identified in this work. The NMR data of the four known lanostane triterpenoids (2-5) were reported for the first time because their structures were all tentatively characterized by interpreting the MS data from the methanol extract of Ganoderma lucidum or from the metabolites in rat bile after oral administration of crude extract of the fruiting bodies of G. lucidum using fragmentation rules. Their anti-inflammatory activities were tested by measuring their inhibitory effects on nitric oxide (NO) production in BV-2 microglia cells activated by lipopolysaccharide. Their IC50 values were in a range from 3.65±0.41 to 28.04±2.81μM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database.

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P S; Agarwal, Subhash M

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC(50)/ED(50)/EC(50)/GI(50)), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients' Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI(50) data.

  15. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  16. Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Fukuhama, Akiko; Naruto, Shunsuke; Fujita, Tadashi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2009-07-01

    A 50% ethanolic extract (MCS-ext) from seeds of Morinda citrifolia ("noni" seeds) showed more potent in vitro inhibition of elastase and tyrosinase, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than extracts of M. citrifolia leaves or flesh. Activity-guided fractionation of MCS-ext using in vitro assays led to the isolation of ursolic acid as an active constituent of elastase inhibitory activity. 3,3'-Bisdemethylpinoresinol, americanin A, and quercetin were isolated as active constituents having both tyrosinase inhibitory and radical scavenging activities. Americanin A and quercetin also showed superoxide dismutase (SOD)-like activity. These active compounds were isolated from noni seeds for the first time.

  17. Chemistry and Selective Tumor Cell Growth Inhibitory Activity of Polyketides from the South China Sea Sponge Plakortis sp.

    Science.gov (United States)

    Li, Jiao; Li, Cui; Riccio, Raffaele; Lauro, Gianluigi; Bifulco, Giuseppe; Li, Tie-Jun; Tang, Hua; Zhuang, Chun-Lin; Ma, Hao; Sun, Peng; Zhang, Wen

    2017-05-03

    Simplextone E ( 1 ), a new metabolite of polyketide origin, was isolated with eight known analogues ( 2 - 9 ) from the South China Sea sponge Plakortis sp. The relative configuration of the new compound was elucidated by a detailed analysis of the spectroscopic data and quantum mechanical calculation of NMR chemical shifts, aided by the newly reported DP4+ approach. Its absolute configuration was determined by the TDDFT/ECD calculation. Simplextone E ( 1 ) is proven to be one of the isomers of simplextone D. The absolute configuration at C-8 in alkyl chain of plakortone Q ( 2 ) was also assigned based on the NMR calculation. In the preliminary in vitro bioassay, compounds 6 and 7 showed a selective growth inhibitory activity against HCT-116 human colon cancer cells with IC 50 values of 8.3 ± 2.4 and 8.4 ± 2.3 μM, corresponding to that of the positive control, adriamycin (IC 50 4.1 μM). The two compounds also showed selective activities towards MCF-7 human breast cancer and K562 human erythroleukemia cells while compound 3 only displayed weak activity against K562 cells.

  18. Tyrosinase Inhibition Type of Isolated Compounds Obtained from Pachyrhizus erosus

    Directory of Open Access Journals (Sweden)

    Endang Lukitaningsih

    2013-12-01

    Full Text Available In Indonesia, Bengkoang (Phacyrhizus erosus have been used as one of cosmetics especially as sun screening and skin whitening materials. Six active compounds in Bengkoang with antioxidant and skin whitening activities have been isolated, namely daidzein, daidzin, genistin, (8,9-furanyl-pterocarpan-3-ol, 4-(2-(furane-2-ylethyl-2-methyl-2,5-dihydro-furane-3-carbaldehyde and 2-butoxy-2,5-bis(hydroxymethyl-tetrahydrofurane-3,4-diol. According to literatures, the type of their tyrosinase inhibitory activity has not yet reported. The determination of whitening activity of each compound was evaluated by the evaluation of Lineweaver-Burk plot. The result showed that five compounds had competitive inhibitory activity and 8,9-furanyl-pterocarpan-3-ol showed a non-competitive inhibition.

  19. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.

    Science.gov (United States)

    Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee

    2016-06-25

    Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Antioxidant and protease-inhibitory potential of extracts from grains of oat

    Directory of Open Access Journals (Sweden)

    Krošlák Erik

    2016-01-01

    Full Text Available The most of important crops cultivated for production of foods and feeds could be considered as plants possessing nutraceutical or medically interesting compounds, especially if can be eaten without processing. Chemical and biological parameters that were evaluated in 100 oat (Avena sativa L. genotypes were others than those that are important in food and feed production. Contents of polyphenols and flavonoids, radical scavenging activity (DPPH, and inhibitory activities against five proteases (trypsin, thrombin, urokinase, elastase, cathepsin B were analyzed in extracts from mature grains. The antioxidant activity (DPPH correlated to the content of total polyphenols. Only a minority (15 from 100 of analyzed genotypes created separate subgroup with a high content of polyphenols, flavonoids, and high antioxidant activity. The best in these parameters were genotypes CDC-SOL-FI, Saul, and Avesta, respectively. Fifteen other genotypes assembled another minority subgroup (also 15 from 100 on the basis of their high inhibitory activities against tested proteases. The highest trypsin-, urokinase-, and elastase-inhibitory activities were in genotype Racoon, the best in thrombin-, and cathepsin B-inhibitory activities were genotypes Expression and SW Kerstin, respectively. Three oats genotypes – Rhea, AC Percy, and Detvan appeared in both subgroups.

  1. Two New Monoterpene Glycosides from Qing Shan Lu Shui Tea with Inhibitory Effects on Leukocyte-Type 12-Lipoxygenase Activity

    Directory of Open Access Journals (Sweden)

    Ding Zhi Fang

    2013-04-01

    Full Text Available We evaluated the inhibitory effect of 12 Chinese teas on leukocyte-type 12-lipoxygenase (LOX activity. Tea catechins such as epigallocatechin gallate have been known to exhibit leukocyte-type 12-LOX inhibition. Qing Shan Lu Shui, which contains lower catechin levels than the other tested teas, suppressed leukocyte-type 12-LOX activity. To characterize the bioactive components of Qing Shan Lu Shui, leukocyte-type 12-LOX inhibitory activity–guided fractionation of the aqueous ethanol extract of the tea was performed, resulting in the isolation of two new monoterpene glycosides: liguroside A (1 and B (2. The structures of compounds 1 and 2 were characterized as (2E,5E-7-hydroperoxy-3,7-dimethyl-2,5-octadienyl-O-(α-L-rhamnopyranosyl-(1″→3′-(4′″-O-trans-p-coumaroyl-β-D-glucopyranoside and (2E,5E-7-hydroperoxy-3,7-dimethyl-2,5-octa-dienyl- O-(α-L-rhamnopyranosyl-(1″→3′-(4′″-O-cis-p-coumaroyl-β-D-glucopyranoside, respectively, based on spectral and chemical evidence. Ligurosides A (1 and B (2 showed inhibitory effects on leukocyte-type 12-LOX activity, with IC50 values of 1.7 and 0.7 μM, respectively.

  2. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla.

    Science.gov (United States)

    Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C

    1999-10-01

    Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.

  3. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut).

    Science.gov (United States)

    Zhang, Lin; Gao, Hui-yuan; Baba, Masaki; Okada, Yoshihito; Okuyama, Toru; Wu, Li-jun; Zhan, Li-bin

    2014-10-28

    Castanea mollissima Blume (Chinese chestnut), as a food product is known for its various nutrients and functional values to the human health. The present study was carried out to analyze the anti-diabetic complications and anti-cancer activities of the bioactive compounds present in C. mollissima. The kernels (CK), shells (CS) and involucres (CI) parts of C. Blume were extracted with 90% alcohol. The water suspension of these dried alcohol extracts were extracted using EtOAc and n-BuOH successively. The n-BuOH fraction of CI (CI-B) was isolated by silica gel column, Sephadex LH 20 column and preparative HPLC. The isolated compounds were identified by 1H-NMR, 13C-NMR, HMBC, HMQC and ESI-Q-TOF MS, All the fractions and compounds isolated were evaluated on human recombinant aldose reductase (HR-AR) assay, advanced glycation end products (AGEs) formation assay and human COLO 320 DM colon cancer cells inhibitory assay. CI-B was found to show a significant inhibitory effect in above biological screenings. Six flavonoids and three polyphenolic acids were obtained from CI-B. They were identified as kaempferol (1), kaempferol-3-O-[6''-O-(E)-p-coumaroyl]-β-D-glucopyranoside (2), kaempferol-3-O-[6''-O-(E)-p-coumaroyl]-β-D-galactopyranoside (3), kaempferol-3-O-[2''-O-(E)-p-coumaroyl]-β-D-glucopyranoside (4), kaempferol-3-O-[2", 6"-di-O-(E)-p-coumaroyl]-β-D-glucopyranoside (5) and kaempferol-3-O-[2", 6"-di-O-(E)-p-coumaroyl]-β-D-galactopyranoside (6), casuariin (7), casuarinin (8) and castalagin (9). Compounds 2-9 were found to show higher activity than quercetin (positive control) in the AR assay. Compounds 3-6, 8, and 9 showed stronger inhibitory effects than amino guanidine (positive control) on AGEs production. Compounds 4-6, 7, and 8 showed much higher cytotoxic activity than 5-fluorouracil (positive control) against the human COLO 320 DM colon cancer cells. Our results suggest that flavonoids and polyphenolic acids possesses anti-diabetes complications and anti

  4. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L. Gaertner

    Directory of Open Access Journals (Sweden)

    Siew Ling Ong

    2016-01-01

    Full Text Available Eleusine indica (Linnaeus Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica, hexane fraction showed the highest inhibitory activity of 27.01±5.68% at 100 μg/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica, namely, β-sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98±1.04%, with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were β-sitosterol (2.99±0.80% and stigmasterol (2.68±0.38%. The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  5. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L.) Gaertner.

    Science.gov (United States)

    Ong, Siew Ling; Mah, Siau Hui; Lai, How Yee

    2016-01-01

    Eleusine indica (Linnaeus) Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL) among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica , hexane fraction showed the highest inhibitory activity of 27.01 ± 5.68% at 100  μ g/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica , namely,  β -sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98 ± 1.04%), with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were  β -sitosterol (2.99 ± 0.80%) and stigmasterol (2.68 ± 0.38%). The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  6. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes

    Directory of Open Access Journals (Sweden)

    ANDERSON A. SIMÃO

    Full Text Available ABSTRACT Leaves of Psidium guajava L. (guava have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated. In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  7. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes.

    Science.gov (United States)

    Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D

    2017-01-01

    Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  8. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    Science.gov (United States)

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  9. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    Science.gov (United States)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  10. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus.

    Science.gov (United States)

    Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige

    2015-08-01

    Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  12. Partial purification of endogenous digitalis-like compound(s) in cord blood

    Energy Technology Data Exchange (ETDEWEB)

    Balzan, S.; Ghione, S.; Biver, P.; Gazzetti, P.; Montali, U. (C.N.R. Institute of Clinical Physiology, Pisa (Italy))

    1991-02-01

    Increasing evidence indicates the presence of endogenous digitalis-like compound(s) in human body fluids. In this preliminary report, we describe a study of the partial purification by HPLC of these compounds in the plasma of neonates (who have particularly high concentrations of this substance) and adults. Plasma samples from neonates (cord blood) and adults, lyophilized and extracted with methanol, were applied on a 300 x 3.9 mm C18 Nova Pak column and eluted with a mobile phase of acetonitrile/methanol/water (17/17/66 or 14/14/72 by vol) and, after 30 min, with 100% methanol. We assayed eluted fractions for inhibitory activity of 86Rb uptake and for digoxin-like immunoreactivity. The elution profile revealed a first peak of inhibitory activity of 86Rb uptake at the beginning of the chromatography; another peak was eluted with the 100% methanol. The two peaks also cross-reacted with antidigoxin antibodies. Because the second peak could possibly reflect the nonspecific interference of various lipophilic compounds, we focused our attention on the first peak. For these fractions dose-response curves for 86Rb uptake and for displacement of digoxin were parallel, respectively, to those of ouabain and digoxin, suggesting similarities of digoxin-like immunoreactive substance to cardiac glycosides. Similar chromatographic profiles were also obtained for plasma from adults, suggesting that the endogenous glycoside-like compound(s) in the neonate may be the same as those in the adult.

  13. Efficient discovery of responses of proteins to compounds using active learning

    Science.gov (United States)

    2014-01-01

    Background Drug discovery and development has been aided by high throughput screening methods that detect compound effects on a single target. However, when using focused initial screening, undesirable secondary effects are often detected late in the development process after significant investment has been made. An alternative approach would be to screen against undesired effects early in the process, but the number of possible secondary targets makes this prohibitively expensive. Results This paper describes methods for making this global approach practical by constructing predictive models for many target responses to many compounds and using them to guide experimentation. We demonstrate for the first time that by jointly modeling targets and compounds using descriptive features and using active machine learning methods, accurate models can be built by doing only a small fraction of possible experiments. The methods were evaluated by computational experiments using a dataset of 177 assays and 20,000 compounds constructed from the PubChem database. Conclusions An average of nearly 60% of all hits in the dataset were found after exploring only 3% of the experimental space which suggests that active learning can be used to enable more complete characterization of compound effects than otherwise affordable. The methods described are also likely to find widespread application outside drug discovery, such as for characterizing the effects of a large number of compounds or inhibitory RNAs on a large number of cell or tissue phenotypes. PMID:24884564

  14. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus John; Yuk, Heung Joo; Wang, Yan; Zhuang, Ningning; Lee, Kon Ho; Jeon, Kwon Seok; Park, Ki Hun

    2014-01-01

    Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).

  15. A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs.

    Science.gov (United States)

    Basilico, N; Pagani, E; Monti, D; Olliaro, P; Taramelli, D

    1998-07-01

    The malaria parasite metabolizes haemoglobin and detoxifies the resulting haem by polymerizing it to form haemozoin (malaria pigment). A polymer identical to haemozoin, beta-haematin, can be obtained in vitro from haematin at acidic pH. Quinoline-containing anti-malarials (e.g. chloroquine) inhibit the formation of either polymer. Haem polymerization is an essential and unique pharmacological target. To identify molecules with haem polymerization inhibitory activity (HPIA) and quantify their potency, we developed a simple, inexpensive, quantitative in-vitro spectrophotometric microassay of haem polymerization. The assay uses 96-well U-bottomed polystyrene microplates and requires 24 h and a microplate reader. The relative amounts of polymerized and unpolymerized haematin are determined, based on solubility in DMSO, by measuring absorbance at 405 nm in the presence of test compounds as compared with untreated controls. The final product (a solid precipitate of polymerized haematin) was validated using infrared spectroscopy and the assay proved reproducible; in this assay, activity could be partly predicted based on the compound's chemical structure. Both water-soluble and water-insoluble compounds can be quantified by this method. Although the throughput of this assay is lower than that of radiometric methods, the assay is easier to set up and cheaper, and avoids the problems related to radioactive waste disposal.

  16. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    Science.gov (United States)

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  17. Rapid Screening of Active Components with an Osteoclastic Inhibitory Effect in Herba epimedii Using Quantitative Pattern–Activity Relationships Based on Joint-Action Models

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yuan

    2017-10-01

    Full Text Available Screening of bioactive components is important for modernization and quality control of herbal medicines, while the traditional bioassay-guided phytochemical approach is time-consuming and laborious. The presented study proposes a strategy for rapid screening of active components from herbal medicines. As a case study, the quantitative pattern–activity relationship (QPAR between compounds and the osteoclastic inhibitory effect of Herba epimedii, a widely used herbal medicine in China, were investigated based on joint models. For model construction, standard mixtures data showed that the joint-action models are better than the partial least-squares (PLS model. Then, the Good2bad value, which could reflect components’ importance based on Monte Carlo sampling, was coupled with the joint-action models for screening of active components. A compound (baohuoside I and a component composed of compounds with retention times in the 6.9–7.9 min range were selected by our method. Their inhibition rates were higher than icariin, the key bioactive compound in Herba epimedii, which could inhibit osteoclast differentiation and bone resorption in a previous study. Meanwhile, the half-maximal effective concentration, namely, EC50 value of the selected component was 7.54 μg/mL, much smaller than that of baohuoside I—77 μg/mL—which indicated that there is synergistic action between compounds in the selected component. The results clearly show our proposed method is simple and effective in screening the most-bioactive components and compounds, as well as drug-lead components, from herbal medicines.

  18. Inhibitory effects of astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities.

    Science.gov (United States)

    Zheng, Yu Fen; Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Choi, Hye Duck; Shin, Wan Gyoon; Bae, Soo Kyung

    2013-09-01

    Astaxanthin, β-cryptoxanthin, canthaxanthin, lutein and zeaxanthin, the major xanthophylls, are widely used in food, medicine, and health care products. To date, no studies regarding the inhibitory effects of these xanthophylls on the nine CYPs isozymes have been reported. This study investigated the reversible and time-dependent inhibitory potentials of five xanthophylls on CYPs activities in vitro. The reversible inhibition results showed that the five compounds had only a weak inhibitory effect on the nine CYPs. Lutein did not inhibit the nine CYPs activities. Astaxanthin weakly inhibited CYP2C19, with an IC₅₀ of 16.2 μM; and β-cryptoxanthin weakly inhibited CYP2C8, with an IC₅₀ of 13.8 μM. In addition, canthaxanthin weakly inhibited CYP2C19 and CYP3A4/5, with IC₅₀ values of 10.9 and 13.9 μM, respectively. Zeaxanthin weakly inhibited CYP3A4/5, with an IC₅₀ of 15.5 μM. However, these IC₅₀ values were markedly greater than the Cmax values reported in humans. No significant IC₅₀ shift was observed in the time-dependent inhibition screening. Based on these observations, it is unlikely that these five xanthophylls from the diet or nutritional supplements alter the pharmacokinetics of drugs metabolized by CYPs. These findings provide some useful information for the safe use of these five xanthophylls in clinical practice. Copyright © 2013. Published by Elsevier Ltd.

  19. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Aldose Reductase Inhibitory and Antiglycation Activities of Four Medicinal Plant Standardized Extracts and Their Main Constituents for the Prevention of ... levels in galactosemic condition by using reverse phase high pressure liquid chromatography (RP-HPLC) and gas liquid chromatography (GLC) was determined.

  20. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry.

    Science.gov (United States)

    Llorent-Martínez, E J; Ortega-Barrales, P; Zengin, G; Mocan, A; Simirgiotis, M J; Ceylan, R; Uysal, S; Aktumsek, A

    2017-09-01

    The genus Lathyrus has great importance in terms of food and agricultural areas. In this study, the in vitro antioxidant activity (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and metal chelating) and enzyme inhibitory activity evaluation (acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase) of L. cicera and L. digitatus were investigated, as well as their phytochemical profiles. The screening of the main phytochemical compounds in aerial parts of L. cicera and L. digitatus was carried out by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MS n ), observing that flavonoids represent the highest percentage of identified compounds, with abundance of tri- and tetra-glycosilated flavonoids, including acylated ones, especially in L. cicera. Generally, L. digitatus exhibited stronger antioxidant and enzyme inhibitory activities in correlation with its higher level of phenolics. The high number of phenolic compounds and the results of the antioxidant and enzyme assays suggest that these plants may be further used as sources of bioactive compounds, and for the preparation of new nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1.

    Science.gov (United States)

    Liu, Yayue; Xia, Guoping; Li, Hanxiang; Ma, Lin; Ding, Bo; Lu, Yongjun; He, Lei; Xia, Xuekui; She, Zhigang

    2014-07-01

    Three new vermistatin derivatives, 6-demethylpenisimplicissin (1), 5'-hydroxypenisimplicissin (2), and 2''-epihydroxydihydrovermistatin (3), along with five known vermistatin analogues, methoxyvermistatin (4), vermistatin (5), 6-demethylvermistatin (6), hydroxyvermistatin (7), and penisimplicissin (8), were isolated from the culture of the mangrove endophytic fungus Penicillium sp. HN29-3B1 from Cerbera manghas. Their structures were elucidated mainly by nuclear magnetic resonance spectroscopy. The absolute configurations of compounds 1 and 2 were deduced on the basis of circular dichroism data. The absolute structures of compounds 3 and 5 were confirmed by a single-crystal X-ray diffraction experiment using Cu Kα radiation. In the bioactivity assay, compounds 1 and 3 exhibited α-glucosidase inhibitory activity with IC50 values of 9.5 ± 1.2 and 8.0 ± 1.5 µM, respectively. The plausible biosynthetic pathways for all compounds are discussed. Georg Thieme Verlag KG Stuttgart · New York.

  2. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  3. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase

    DEFF Research Database (Denmark)

    Zaharudin, Nazikussabah Binti; Asunción Salmeán, Armando; Dragsted, Lars Ove

    2018-01-01

    Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition......,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ± 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ± 0.010–0.103 ± 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide...... information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia....

  4. Inhibitory activities of some vitamins on the formation of cholesterol oxidation products in beef patties.

    Science.gov (United States)

    Wong, Daniel; Wang, Mingfu

    2013-09-04

    The capacities of 15 vitamins to inhibit the formation of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol were examined in beef patties. Their inhibitory activities were tested at a concentration of 0.4 mmol in 30 g of beef. Among them, L-ascorbic acid, retinoic acid, and α-(±)-tocopherol were found to exert a potent inhibitory effect (30-50%) on 7-ketocholesterol formation and (~20%) on 7α-hydroxycholesterol and 7β-hydroxycholesterol formations. Pyridoxamine inhibited 7-ketocholesterol formation by 60% with a statistically significant difference (p cholesterol oxidation, a chemical model with pyridoxamine added in the cholesterol oxidation system (heated at 140 °C for 240 min in dimethyl sulfoxide) was employed. It was demonstrated that pyridoxamine could directly react with 7-ketocholesterol via the addition reaction. The reaction involved a nucleophilic attack of the free amine group of pyridoxamine on 7-ketocholesterol (an α,β-unsaturated carbonyl compound). This type of reaction was also found to occur in beef patties by chromatographic and spectral analyses.

  5. Effects of phenylated compounds of methylglyoxal bis(guanylhydrazone) on diamine oxidase activity from rat small intestine.

    Science.gov (United States)

    Balaña-Fouce, R; Pulido, T G; Escudero, D O; Sanz-Sanchez, F

    1986-01-01

    Two phenylated compounds of methylglyoxal bis(guanylhydrazone), potentially inhibitors of diamine oxidase activity, have been synthesized: phenylglyoxal bis(guanylhydrazone) and diphenylglyoxal bis(guanylhydrazone). Their inhibitory capacity was tested: while PGBG was able to reduce the enzyme activity by 50% at 1.3 microM, DPGBG was only able to reduce diamine oxidase activity by less than 2% at a concentration 1000-fold higher. The inhibition of PGBG was non-competitive and the Ki calculated by a Dixon plot was estimated as 1.7 microM.

  6. Two novel compounds from the root bark of Morus alba L.

    Science.gov (United States)

    Li, Ming; Wu, Xuewei; Wang, Xiaoning; Shen, Tao; Ren, Dongmei

    2018-01-01

    Chemical investigation of the root bark of Morus alba led to the isolation of a new flavone, dioxycudraflavone A (1) and a new 2-arylbenzofuran, 5-hydroxyethyl moracin M (2), together with seven known compounds namely sanggenon V (3), morusin (4), morusignin L (5), licoflavone C (6), moracin C (7), alfafuran (8) and mulberrofuran G (9). The structure elucidation of these compounds was based on analyses of spectroscopic data including 1D, 2D NMR and HR-ESI-MS. All compounds were evaluated for the α-glucosidase inhibitory and cytotoxic activities. Compounds 2-4, 8 and 9 exhibited strong α-glucosidase inhibitory activities with IC 50 less than 10 μM, while only 4 and 9 showed moderate cytotoxic effects against lung cancer cells.

  7. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae).

    Science.gov (United States)

    Dzoyem, Jean P; Melong, Raduis; Tsamo, Armelle T; Tchinda, Alembert T; Kapche, Deccaux G W F; Ngadjui, Bonaventure T; McGaw, Lyndy J; Eloff, Jacobus N

    2017-03-06

    Entada abyssinica is a plant traditionally used against gastrointestinal bacterial infections. Eight compounds including three flavonoids, three terpenoids, a monoglyceride and a phenolic compound isolated from E. abyssinica were investigated for their cytotoxicity, antibacterial and antioxidant activity. Compounds 7 and 2 had remarkable activity against Salmonella typhimurium with the lowest respective minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL. The antioxidant assay gave IC 50 values varied from 0.48 to 2.87 μg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, from 2.53 to 17.04 μg/mL in the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay and from 1.43 to 103.98 µg/mL in the FRAP assay. Compounds had relatively low cytotoxicity (LC 50 values ranging from 22.42 to 80.55 µg/mL) towards Vero cells. Ursolic acid had the most potent cytotoxicity against THP-1 and RAW 264.7 cells with LC 50 values of 9.62 and 4.56 μg/mL respectively, and selectivity index values of 7.32 and 15.44 respectively. Our findings suggest that among the terpenoid and flavonoid compounds studied, entadanin (compound 7) possess tremendous antibacterial activity against S. typhimurium and could be developed for the treatment of bacterial diseases.

  8. Fungal growth inhibitory properties of new phytosphingolipid analogues.

    Science.gov (United States)

    Mormeneo, D; Manresa, A; Casas, J; Llebaria, A; Delgado, A

    2008-04-01

    To study the growth inhibitory properties of a series of phytosphingosine (PHS) and phytoceramide (PHC) analogues. A panel of two yeast (Candida albicans and Saccharomyces cerevisiae) and six moulds (Aspergillus repens, Aspergillus niger, Penicillium chrysogenum, Cladosporium cladosporioides, Arthroderma uncinatum and Penicillium funiculosum) has been used in this study. A series of new PHS and PHC analogues differing at the sphingoid backbone and the functional group at C1 position were synthesized. Among PHS analogues, 1-azido derivative 1c, bearing the natural D-ribo stereochemistry, showed a promising growth inhibitory profile. Among PHC analogues, compound 12, with a bulky N-pivaloyl group and a Z double bond at C3 position of the sphingoid chain, was the most active growth inhibitor. Minimal inhibitory concentration values were in the range of 23-48 micromol l(-1) for 1c and 44-87 micromol l(-1) for 12. Only scattered data on the antifungal activity of phytosphingolipids have been reported in the literature. This is the first time that a series of analogues of this kind are tested and compared to discern their structural requirements for antifungal activity.

  9. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease.

    Science.gov (United States)

    Intra, Bungonsiri; Mungsuntisuk, Isada; Nihira, Takuya; Igarashi, Yasuhiro; Panbangred, Watanalai

    2011-04-01

    Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude

  10. Evaluation of In Vitro Inhibitory Activity of Rye-Buckwheat Ginger Cakes with Rutin on the Formation of Advanced Glycation End-Products (AGEs

    Directory of Open Access Journals (Sweden)

    Przygodzka Małgorzata

    2015-09-01

    Full Text Available In this study, the relationship between the inhibitory effects of extracts from rye-buckwheat ginger cakes supplemented with low and high rutin dosage baked without or with dough fermentation step on the formation of fluorescent advanced glycation end-products (AGEs, and phenolic compounds, rutin, D-chiro-inositol and antioxidant capacity were addressed. The cakes were based on rye flour substituted by light buckwheat flour or flour from roasted buckwheat groats at 30% level, and were produced with or without dough fermentation step. The inhibitory effect against AGEs formation was studied in bovine serum albumin (BSA-glucose and BSA-methylglyoxal (MGO systems. The antioxidant capacity was measured by 2,2-diphenyl- -1-picrylhydrazyl (DPPH and cyclic voltammetry (CV, rutin and D-chiro-inositol contents by HPLC and total phenolics (TPC by spectrophotometric assays. The study showed the inhibitory effects of extracts from rye-buckwheat ginger cakes supplemented with low and high rutin dosage. The results of the inhibitory activity were highly correlated in two applied model systems. Enrichment of rye-buckwheat ginger cakes with rutin improved their antioxidant properties. The correlation studies showed that the inhibitory effects of rye-buckwheat ginger cakes produced with dough fermentation step and enhanced with rutin against formation of AGEs were highly correlated with TPC, rutin and D-chiro-inositol contents, and antioxidant capacity. Moreover, the effect of rutin enrichment was clearly seen in cakes obtained with dough fermentation step, even the inhibitory activity was slightly lower as compared to the cakes produced without dough fermentation.

  11. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  12. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  13. FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139

    Directory of Open Access Journals (Sweden)

    Andrea Roxanne J. Anas

    2017-08-01

    Full Text Available The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC50 10.62 µM, which was more efficient than thrombin inhibition of EC50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.

  14. Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus

    OpenAIRE

    Yong-Zhe Zhu; Jing-Wen Liu; Xue Wang; In-Hong Jeong; Young-Joon Ahn; Chuan-Jie Zhang

    2018-01-01

    The human β-site amyloid cleaving enzyme (BACE1) has been considered as an effective drug target for treatment of Alzheimer’s disease (AD). In this study, Urechis unicinctus (U. unicinctus), which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4-en-3-one,...

  15. Obtusifoliol related steroids from Euphorbia sogdiana with cell growth inhibitory activity and apoptotic effects on breast cancer cells (MCF-7 and MDA-MB231).

    Science.gov (United States)

    Aghaei, Mahmoud; Yazdiniapour, Zeinab; Ghanadian, Mustafa; Zolfaghari, Behzad; Lanzotti, Virginia; Mirsafaee, Vahid

    2016-11-01

    From the aerial parts of Euphorbia sogdiana Popov, obtusifoliol (1) and two related steroids (2-3) have been isolated and characterized along with a known cycloartane derivative (4). The chemical structure of the obtusifoliol-related compounds, obtained by 1D and 2D NMR, and MS measurements, have been determined as: 3β,7α-dihydroxy-4α,14α-dimethyl-5α-ergosta-8,24(28)-diene-11-one (2) and 3β-hydroxy-4α,14α-dimethyl-5α-ergosta-8,24(28)-diene-1-one (3). Compound 2 has been previously isolated from Euphorbia chamaesyce while compound 3 was never reported before. The isolated compounds 1-4 were subjected to cytotoxic tests on the breast cancer cells, MCF-7 and MDA-MB231. Further pharmacological tests on the more active compounds 2 and 3 indicated their action to be related to cell growth inhibitory activity and apoptotic effects on the tested cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ultrasonic extraction of polysaccharides from Laminaria japonica and their antioxidative and glycosidase inhibitory activities

    Science.gov (United States)

    Wan, Peng; Yang, Xiaoman; Cai, Bingna; Chen, Hua; Sun, Huili; Chen, Deke; Pan, Jianyu

    2015-08-01

    In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Laminaria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities are investigated. Box-Behnken design (BBD) combined with response surface methodology (RSM) is applied to optimize ultrasonic extraction for polysaccharides. The optimized conditions are obtained as extraction time at 54 min, ultrasonic power at 1050 W, extraction temperature at 80°C and ratio of material to solvent at 1:50 (g mL-1). Under these optimal ultrasonic extraction conditions, an actual experimental yield (5.75% ± 0.3%) is close to the predicted result (5.67%) with no significant difference ( P > 0.05). Vitro antioxidative and glycosidase inhibitory activities tests indicate that the crude polysaccharides (LJP) and two major ethanol precipitated fractions (LJP1 and LJP2) are in a concentration-dependent manner. LJP2 (30%-60% ethanol precipitated polysaccharides) possesses the strongest α-glucosidase inhibitory activity and moderate scavenging activity against hydroxyl radicals (66.09% ± 2.19%, 3.0 mg mL-1). Also, the inhibitory activity against α-glucosidase (59.08% ± 3.79%, 5.0 mg mL-1) is close to that of acarbose (63.99% ± 3.27%, 5.0 mg mL-1). LJP1 (30% ethanol precipitated polysaccharides) exhibits the strongest scavenging activity against hydroxyl radicals (99.80% ± 0.00%, 3.0 mg mL-1) and moderate α-glucosidase inhibitory activity (47.76% ± 1.92%, 5.0 mg mL-1). LJP shows the most remarkable DPPH scavenging activity (66.20% ± 0.11%, 5.0 mg mL-1) but weakest α-glucosidase inhibitory activity (37.77% ± 1.30%, 5.0 mg mL-1). However, all these LJPs exert weak inhibitory effects against α-amylase. These results show that UET is an effective method for extracting bioactive polysaccharides from seaweed materials. LJP1 and LJP2 can be developed as a potential ingredient in hypoglycemic agents or functional food for the management of

  17. The cartilage protein melanoma inhibitory activity contributes to inflammatory arthritis

    NARCIS (Netherlands)

    Yeremenko, Nataliya; Härle, Peter; Cantaert, Tineke; van Tok, Melissa; van Duivenvoorde, Leonie M.; Bosserhoff, Anja; Baeten, Dominique

    2014-01-01

    Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in

  18. Identification of methionine aminopeptidase 2 as a molecular target of the organoselenium drug ebselen and its derivatives/analogues: Synthesis, inhibitory activity and molecular modeling study.

    Science.gov (United States)

    Węglarz-Tomczak, Ewelina; Burda-Grabowska, Małgorzata; Giurg, Mirosław; Mucha, Artur

    2016-11-01

    A collection of twenty-six organoselenium compounds, ebselen and its structural analogues, provided a novel approach for inhibiting the activity of human methionine aminopeptidase 2 (MetAP2). This metalloprotease, being responsible for the removal of the amino-terminal methionine from newly synthesized proteins, plays a key role in angiogenesis, which is essential for the progression of diseases, including solid tumor cancers. In this work, we discovered that ebselen, a synthetic organoselenium drug molecule with anti-inflammatory, anti-oxidant and cytoprotective activity, inhibits one of the main enzymes in the tumor progression pathway. Using three-step synthesis, we obtained twenty-five ebselen derivatives/analogues, ten of which are new, and tested their inhibitory activity toward three neutral aminopeptidases (MetAP2, alanine and leucine aminopeptidases). All of the tested compounds proved to be selective, slow-binding inhibitors of MetAP2. Similarly to ebselen, most of its analogues exhibited a moderate potency (IC 50 =1-12μM). Moreover, we identified three strong inhibitors that bind favorably to the enzyme with the half maximal inhibitory concentration in the submicromolar range. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluating the antioxidant and acetylcholinesterase inhibitory activity of three Centaurea species

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-01-01

    Full Text Available Factors such as oxidative stress and reduced acetylcholine level have been implicated in Alzheimer’s disease (AD pathology and recently there has been a trend towards natural product research to find potential sources of antioxidants and acetylcholinesterase inhibitors in the plants kingdom. Centaurea is a genus with about 500 species world wild, many of them have shown to possess biologic activity; Centaurea albonites, C. aucheri and C. pseudoscabiosa are three species which little investigation has been carried out about their biological properties. In the present study, the antioxidant and acetylcholinesterase inhibitory activity of the above mentioned species have been evaluated. The ability of the total extract and methanol fraction of the plants to scavenge free radicals has been assessed through DPPH radical scavenging assay, and the acetylcholinesterase inhibitory property has been evaluated by Ellman method. The total extract of all species exhibited moderate antioxidant activity whereas the extracts of C. pseudoscabiosa showed the strongest antioxidant property; its total extract also demonstrated the highest acetylcholinesterase inhibitory activity among the evaluated samples (19.2% inhibition. The results suggest the species as potential sources of natural antioxidants which could be focused in future studies of Alzheimer’s disease.

  20. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  1. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    Science.gov (United States)

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P Maillard reaction (P reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  2. The in-vitro and in-vivo inhibitory activity of biflorin in melanoma.

    Science.gov (United States)

    Vasconcellos, Marne C; Bezerra, Daniel P; Fonseca, Aluísio M; Araújo, Ana Jérsia; Pessoa, Cláudia; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico; Montenegro, Raquel C

    2011-04-01

    Biflorin, an ortho-naphthoquinone, is an active compound found in the roots of Capraria biflora L. It has been reported that biflorin presents anticancer activity, inhibiting both tumor cell line growth in culture and tumor development in mice. The aim of this study was to examine the effectiveness of biflorin treatment using both in-vitro and in-vivo melanoma models. Biflorin displayed considerable cytotoxicity against all tested cell lines, with half maximal inhibitory concentration values ranging from 0.58 μg/ml in NCI H23 (human lung adenocarcinoma) to 14.61 μg/ml in MDA-MB-231 (human breast cancer) cell lines. In a second set of experiments using B16 melanoma cells as a model, biflorin reduced cell viability but did not cause significant increase in the number of nonviable cells. In addition, the DNA synthesis was significantly inhibited. Flow cytometry analysis showed that biflorin may lead to an apoptotic death in melanoma cells, inducing DNA fragmentation and mitochondria depolarization, without affecting membrane integrity. In B16 melanoma-bearing mice, administration of biflorin (25mg/day) for 10 days inhibited tumor growth, and also increased the mean survival rate from 33.3±0.9 days (control) to 44.5±3.4 days (treated). Our findings suggest that biflorin may be considered as a promising lead compound for designing new drugs to be used in the treatment of melanoma.

  3. A new phenylpropanoid and an alkylglycoside from Piper retrofractum leaves with their antioxidant and α-glucosidase inhibitory activity.

    Science.gov (United States)

    Luyen, Bui Thi Thuy; Tai, Bui Huu; Thao, Nguyen Phuong; Yang, Seo Young; Cuong, Nguyen Manh; Kwon, Young In; Jang, Hae Dong; Kim, Young Ho

    2014-09-01

    Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-D-xylopyranosyl (1→6)-O-β-D-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-D-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-D-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3'-O-β-D-glucopyranoside (7), isopropyl O-β-D-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-D-glucopyranoside (10), isoheptanol 2(S)-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher's method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60±1.74% to 11.97±3.30%) and antioxidant activities under the tested conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  5. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis.

    Science.gov (United States)

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-09-01

    In our previous efforts to find new tyrosinase inhibitory materials, we investigated 44 Indonesian medicinal plants belonging to 24 families. Among those plants, the extract of Artocarpus heterophyllus was one of the strongest inhibitors of tyrosinase activity. By activity-guided fractionation of A. heterophyllus wood extract, we isolated artocarpanone, which inhibited both mushroom tyrosinase activity and melanin production in B16 melanoma cells. This compound is a strong candidate as a remedy for hyperpigmentation in human skin.

  6. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.

    Science.gov (United States)

    Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J

    2011-09-01

    Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Seasonal Difference in Antioxidant Capacity and Active Compounds Contents of Eucommia ulmoides Oliver Leaf

    Directory of Open Access Journals (Sweden)

    Jingfang Zhang

    2013-02-01

    Full Text Available Leaf of Eucommia ulmoides Oliver (EU is a Traditional Chinese Medicine and a functional food in China. Antioxidant contents of EU leaves, which were collected monthly during the period of May–October in three years, were determined. Samples’ antioxidant capacity was characterized by DPPH radical scavenging activity, hydroxyl radical scavenging activity, ferrous chelating ability, and antioxidant capacity in linoleic acid emulsion and in rapeseed oil assays. The results showed that contents of some active compounds and antioxidant activity were related to a certain time of the year. Samples collected in August showed high content of phenolics, and the samples collected in May contained higher amount of flavonoids than other samples. Leaves collected in May or June exhibited high contents of rutin, quercetin, geniposidic acid and aucubin. The August leaves showed stable and high DPPH radical scavenging activity, and ferrous chelating ability. May samples showed strong inhibitory effects on oxidation of rapeseed oil and linoleic acid. The DPPH radical scavenging activity was related to the total phenolics content. Flavonoids played an important role in the inhibitory effects on rapeseed oil and linoleic acid oxidation. Therefore, August and May were indicated as the best months to harvest EU leaves for industry.

  8. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro.

    Science.gov (United States)

    Fujimaki, Takahiro; Mori, Shoko; Horikawa, Manabu; Fukui, Yuko

    2018-05-15

    The red wines made from Vitis vinifera were identified as skin-whitening effectors by using in vitro assays. OPCs in the wine were evaluated for tyrosinase activity and melanogenesis. Strong tyrosinase inhibitory activity was observed in fractions with high oligomeric proanthocyanidin (OPC) content. Among OPC dimers, a strong inhibitory effect on tyrosinase was observed with OPCs which contain (+)-catechin as an upper unit. Melanogenesis inhibitory effect was observed with OPCs which have (-)-epicatechin as upper units. Also, OPC trimers, upper and middle units joined with 4 → 8 bonds, showed stronger effects compared to trimers with 4 → 6 linkages. Interestingly, (-)-epicatechin-(4β → 8)-(-)-epicatechin 3-O-gallate, which is a unique component of grapes has potent inhibitory effects on both tyrosinase and melanogenesis. Our data provide structural information about such active compounds. These results suggest that red wines containing OPC, have high melanogenesis inhibitory effect and are supposed to have skin-whitening effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    Science.gov (United States)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  10. Enzyme Inhibitory and Molecular Docking Studies on Some Organic Molecules of Natural Occurrence

    International Nuclear Information System (INIS)

    Abbasi, M. A.; Hussain, G.; Rehman, A. U.; Shahwar, D.; Mohyuddin, A.; Ashraf, M.; Rahman, J.; Lodhi, M. A.; Khan, F. A.

    2016-01-01

    In the present study, in vitro enzyme inhibitory studies on cinchonidine (1), cinchonine (2), quinine (3), noscapine (narcotine, 4) and santonine (5) were carried out. The various enzymes included in the study were lipoxygenase, xanthine oxidase, acetyl cholinesterase, butyryl cholinesterase and protease. The results revealed that 2, 3, and 4 were moderate active against lipoxygenase and xanthine oxidase enzymes. The molecule 3 possessed weak activity against butyryl cholinesterase enzyme while remaining molecules were inactive against this enzyme. However, all these compounds were inactive against acetyl cholinestrase and protease enzymes. The synthesized compounds were computationally docked into the active site of lipoxygenase enzyme. The compounds 3 and 4 showed decent interactions, hence strengthening the observed results. (author)

  11. Anti-inflammatory and enzyme inhibitory activities of a crude extract and a pterocarpan isolated from the aerial parts of Vitex agnus-castus.

    Science.gov (United States)

    Ahmad, Bashir; Azam, Sadiq; Bashir, Shumaila; Khan, Ibrar; Adhikari, Achyut; Choudhary, Muhammad Iqbal

    2010-11-01

    A new compound, 6a,11a-dihydro-6H-[1] benzofuro [3,2-c][1,3]dioxolo[4,5-g]chromen-9-ol was isolated from the ethyl acetate fraction of Vitex agnus-castus. The structure of this compound was identified with the help of spectroscopic techniques ((13)C NMR, (1)H NMR, HMBC, HMQC, NOESY and COSY). The compound showed low urease- (32.0%) and chymotrypsin- (31.4%) inhibitory activity, and moderate (41.3%) anti-inflammatory activity. The crude extract and various fractions obtained from the aerial parts of the plant were also screened for possible in vitro hemagglutination, antibacterial and phytotoxic activities. No hemagglutination activity against human erythrocytes was observed in crude extracts and fractions of V. agnus-castus. The fractions and crude methanolic extract showed moderate and low antibacterial activity. Exceptions were the CHCl(3) fraction, which showed significant antibacterial activity against Klebsiella pneumonia (81% with MIC(50)=2.19 mg/mL), the n-hexane fraction, which exhibited no activity against Salmonella typhi, and the CHCl(3) and aqueous fractions, which showed no activity against Bacillus pumalis. Moderate phytotoxic activity (62.5%) was observed by n-hexane fraction of V. agnus-castus against Lemna minor L at 1000 μg/mL.

  12. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium.

    Science.gov (United States)

    Gamboa-Gómez, Claudia I; González-Laredo, Rubén F; Gallegos-Infante, José Alberto; Pérez, Mş Del Mar Larrosa; Moreno-Jiménez, Martha R; Flores-Rueda, Ana G; Rocha-Guzmán, Nuria E

    2016-09-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical ( i . e . lower IC 50 ). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens ); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC 50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  13. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    Directory of Open Access Journals (Sweden)

    Claudia I. Gamboa-Gómez

    2016-01-01

    Full Text Available Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profi le measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50 % of DPPH radical (i.e. lower IC50. Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14 % of E. camaldulensis and 49 % of L. glaucescens; whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril. The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  14. Chemical composition and acetylcholinesterase inhibitory activity of Artemisia maderaspatana essential oil.

    Science.gov (United States)

    Jyotshna; Srivastava, Nidhi; Singh, Bhuwanendra; Chanda, Debabrata; Shanker, Karuna

    2015-01-01

    To date, there are no reports to validate the Indian traditional and folklore claims of Artemisia maderaspatana L. (syn. Grangea maderaspatana L.) (Asteraceae) for the treatment of Alzheimer's disease. The present study characterizes the volatile components (non-polar compounds) of A. maderaspatana and evaluates its acetylcholinesterase inhibition potential. The essential oils (yield 0.06% v/w) were obtained from fresh aerial part of A. maderaspatana. The characterization of volatile components (non-polar compounds) was performed by GC-MS data and with those of reference compounds compiled in the spectral library of in-house database. The in vitro acetylcholinesterase (AChE) inhibition of the volatile organic constituents (VOC's) of A. maderaspatana aerial part was evaluated in varying concentration ranges (0.70-44.75 µg/mL) with Ellman's method. The major components were α-humulene (46.3%), β-caryophyllene (9.3%), α-copaene (8.2%), β-myrcene (4.3%), Z(E)-α-farnesene (3.7%), and calarene (3.5%). Chemical variability among other Artemisia spp. from different climatic regions of India and countries namely Iran and France was observed. The experimental results showed that diverse volatile organic constituents of A. maderaspatana have significant acetylcholinesterase inhibitory activity (an IC50 value of 31.33 ± 1.03 µg/mL). This is the first report on the inhibition of acetylcholinesterase properties of essential oil of A. maderaspatana obtained from fresh aerial part. The present results indicate that essential oil of A. maderaspatana isolated from the northern region of India could inhibit AChE moderately. Therefore, the possibility of novel AChE inhibitors might exist in VOCs of this plant.

  15. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source.

    Science.gov (United States)

    Sales, Paloma Michelle; Souza, Paula Monteiro; Simeoni, Luiz Alberto; Silveira, Damaris

    2012-01-01

    Inhibition of α-amylase, enzyme that plays a role in digestion of starch and glycogen, is considered a strategy for the treatment of disorders in carbohydrate uptake, such as diabetes and obesity, as well as, dental caries and periodontal diseases. Plants are an important source of chemical constituents with potential for inhibition of α-amylase and can be used as therapeutic or functional food sources. A review about crude extracts and isolated compounds from plant source that have been tested for α-amylase inhibitory activity has been done. The analysis of the results shows a variety of crude extracts that present α-amylase inhibitory activity and some of them had relevant activity when compared with controls used in the studies. Amongst the phyto-constituents that have been investigated, flavonoids are one of them that demonstrated the highest inhibitory activities with the potential of inhibition related to number of hydroxyl groups in the molecule of the compound. Several phyto-constituents and plant species as α-amylase inhibitors are being reported in this article. Majority of studies have focused on the anti-amylase phenolic compounds.

  16. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  17. Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fMRI study

    Directory of Open Access Journals (Sweden)

    David J. Paulsen

    2015-02-01

    Full Text Available We investigated changes in brain function supporting inhibitory control under age-controlled incentivized conditions, separating age- and performance-related activation in an accelerated longitudinal design including 10- to 22-year-olds. Better inhibitory control correlated with striatal activation during neutral trials, while Age X Behavior interactions in the striatum indicated that in the absence of extrinsic incentives, younger subjects with greater reward circuitry activation successfully engage in greater inhibitory control. Age was negatively correlated with ventral amygdala activation during Loss trials, suggesting that amygdala function more strongly mediates bottom-up processing earlier in development when controlling the negative aspects of incentives to support inhibitory control. Together, these results indicate that with development, reward-modulated cognitive control may be supported by incentive processing transitions in the amygdala, and from facilitative to obstructive striatal function during inhibitory control.

  18. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria.

    Science.gov (United States)

    Khan, Ilyas; Rahman, Hazir; Abd El-Salam, Nasser M; Tawab, Abdul; Hussain, Anwar; Khan, Taj Ali; Khan, Usman Ali; Qasim, Muhammad; Adnan, Muhammad; Azizullah, Azizullah; Murad, Waheed; Jalal, Abdullah; Muhammad, Noor; Ullah, Riaz

    2017-05-03

    Medicinal plants are rich source of traditional herbal medicine around the globe. Most of the plant's therapeutic properties are due to the presence of secondary bioactive compounds. The present study analyzed the High Pressure Liquid Chromatography (HPLC) fractions of Puncia granatum (peel) extracts (aqueous, chloroform, ethanol and hexane) against multidrug resistant bacterial pathogens (Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus). All the fractions having antibacterial activity was processed for bioactive compounds identification using LC MS/MS analysis. Among total HPLC fractions (n = 30), 4 HPLC fractions of P. granatum (peel) showed potential activity against MDR pathogens. Fraction 1 (F1) and fraction 4 (F4) collected from aqueous extract showed maximum activity against P. aeruginosa. Fraction 2 (F2) of hexane showed antibacterial activity against three pathogens, while ethanol F4 exhibited antibacterial activity against A. baumannii. The active fractions were processed for LC MS/MS analysis to identify bioactive compounds. Valoneic acid dilactone (aqueous F1 and F4), Hexoside (ethanol F4) and Coumaric acid (hexane F2) were identified as bioactive compounds in HPLC fractions. Puncia granatum peel extracts HPLC fractions exhibited potential inhibitory activity against MDR bacterial human pathogens. Several bioactive compounds were identified from the HPLC fractions. Further characterization of these compounds may be helpful to conclude it as therapeutic lead molecules against MDR pathogens.

  19. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-11-01

    Full Text Available Abstract Background Dioscorea bulbifera is an African medicinal plant used to treat microbial infections. In the present study, the methanol extract, fractions (DBB1 and DBB2 and six compounds isolated from the bulbils of D. bulbifera, namely bafoudiosbulbins A (1, B (2, C (3, F (4, G (5 and 2,7-dihydroxy-4-methoxyphenanthrene (6, were tested for their antimicrobial activities against Mycobacteria and Gram-negative bacteria involving multidrug resistant (MDR phenotypes expressing active efflux pumps. Methods The microplate alamar blue assay (MABA and the broth microdilution methods were used to determine the minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of the above samples. Results The results of the MIC determinations indicated that when tested alone, the crude extract, fractions DBB1 and DBB2 as well as compounds 2 to 5 were able to prevent the growth of all the fifteen studied microorganisms, within the concentration range of 8 to 256 μg/mL. The lowest MIC value for the methanol extract and fractions (16 μg/mL was obtained with DBB1 and DBB2 on E, coli AG100A and DBB2 on Mycobacterium tuberculosis MTCS2. The lowest value for individual compounds (8 μg/mL was recorded with compound 3 on M. smegmatis and M. tuberculosis ATCC and MTCS2 strains respectively. The activity of the samples on many MDR bacteria such as Enterobacter aerogenes EA289, CM64, Klebsiella pneumoniae KP63 and Pseudomonas aeruginosa PA124 was better than that of chloramphenicol. When tested in the presence of the efflux pump inhibitor against MDR Gram-negative bacteria, the activity of most of the samples increased. MBC values not greater than 512 μg/mL were recorded on all studied microorganisms with fraction DBB2 and compounds 2 to 5. Conclusions The overall results of the present investigation provided evidence that the crude extract D. bulbifera as well as some of the compounds and mostly compounds 3 could be considered as potential

  20. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity.

    Science.gov (United States)

    Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami

    2018-02-01

    A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.

  1. Investigation of lactic acid bacterial strains for meat fermentation and the product's antioxidant and angiotensin-I-converting-enzyme inhibitory activities.

    Science.gov (United States)

    Takeda, Shiro; Matsufuji, Hisashi; Nakade, Koji; Takenoyama, Shin-Ichi; Ahhmed, Abdulatef; Sakata, Ryoichi; Kawahara, Satoshi; Muguruma, Michio

    2017-03-01

    In the lactic acid bacteria (LAB) strains screened from our LAB collection, Lactobacillus (L.) sakei strain no. 23 and L. curvatus strain no. 28 degraded meat protein and tolerated salt and nitrite in vitro. Fermented sausages inoculated strains no. 23 and no. 28 showed not only favorable increases in viable LAB counts and reduced pH, but also the degradation of meat protein. The sausages fermented with these strains showed significantly higher antioxidant activity than those without LAB or fermented by each LAB type strain. Angiotensin-I-converting-enzyme (ACE) inhibitory activity was also significantly higher in the sausages fermented with strain no. 23 than in those fermented with the type strain. Higher ACE inhibitory activity was also observed in the sausages fermented with strain no. 28, but did not differ significantly from those with the type strain. An analysis of the proteolysis and degradation products formed by each LAB in sausages suggested that those bioactivities yielded fermentation products such as peptides. Therefore, LAB starters that can adequately ferment meat, such as strains no. 23 and no. 28, should contribute to the production of bioactive compounds in meat products. © 2016 Japanese Society of Animal Science.

  2. Free-Radical-Scavenging, Antityrosinase, and Cellular Melanogenesis Inhibitory Activities of Synthetic Isoflavones.

    Science.gov (United States)

    Lu, Tzy-Ming; Ko, Horng-Huey; Ng, Lean-Teik; Hsieh, Yen-Pin

    2015-06-01

    In this study, we examined the potential of synthetic isoflavones for application in cosmeceuticals. Twenty-five isoflavones were synthesized and their capacities of free-radical-scavenging and mushroom tyrosinase inhibition, as well as their impact on cell viability of B16F10 murine melanoma cells and HaCaT human keratinocytes were evaluated. Isoflavones that showed significant mushroom tyrosinase inhibitory activities were further studied on reduction of cellular melanin formation and antityrosinase activities in B16F10 melanocytes in vitro. Among the isoflavones tested, 6-hydroxydaidzein (2) was the strongest scavenger of both ABTS(.+) and DPPH(.) radicals with SC50 values of 11.3 ± 0.3 and 9.4 ± 0.1 μM, respectively. Texasin (20) exhibited the most potent inhibition of mushroom tyrosinase (IC50 14.9 ± 4.5 μM), whereas retusin (17) showed the most efficient inhibition both of cellular melanin formation and antityrosinase activity in B16F10 melanocytes, respectively. In summary, both retusin (17) and texasin (20) exhibited potent free-radical-scavenging capacities as well as efficient inhibition of cellular melanogenesis, suggesting that they are valuable hit compounds with potential for advanced cosmeceutical development. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Antioxidant and Antiacetylcholinesterase Activities of Some Commercial Essential Oils and Their Major Compounds

    Directory of Open Access Journals (Sweden)

    Smail Aazza

    2011-09-01

    Full Text Available The commercial essential oils of Citrus aurantium L., Cupressus sempervirens L., Eucalyptus globulus Labill., Foeniculum vulgare Mill. and Thymus vulgaris L., isolated by steam distillation by a company of Morocco were evaluated in terms of in vitro antioxidant activity through several methods. In vitro acetylcholinesterase inhibitory activity was also determined. Citrus limon (L. Burm. f. oil was also studied, but it was obtained by peel expression. The best antioxidant was T. vulgaris oil, independent of the method used, mainly due to the presence of the phenolic monoterpenes thymol and carvacrol, which when studied as single compounds also presented the best activities. Concerning the acetylcholinesterase inhibition activity, E. globulus was the most effective. Nevertheless its main components 1,8-cineole and limonene were not the most active, a feature that corresponded to d-3-carene.

  4. A PM7 dynamic residue-ligand interactions energy landscape of the BACE1 inhibitory pathway by hydroxyethylamine compounds. Part I: The flap closure process.

    Science.gov (United States)

    Gueto-Tettay, Carlos; Martinez-Consuegra, Alejandro; Zuchniarz, Joshua; Gueto-Tettay, Luis Roberto; Drosos-Ramírez, Juan Carlos

    2017-09-01

    BACE1 is an enzyme of scientific interest because it participates in the progression of Alzheimer's disease. Hydroxyethylamines (HEAs) are a family of compounds which exhibit inhibitory activity toward BACE1 at a nanomolar level, favorable pharmacokinetic properties and oral bioavailability. The first step in the inhibition of BACE1 by HEAs consists of their entrance into the protease active site and the resultant conformational change in the protein, from Apo to closed form. These two conformations differ in the position of an antiparallel loop (called the flap) which covers the entrance to the catalytic site. For BACE1, closure of this flap is vital to its catalytic activity and to inhibition of the enzyme due to the new interactions thereby formed with the ligand. In the present study a dynamic energy landscape of residue-ligand interaction energies (ReLIE) measured for 112 amino acids in the BACE1 active site and its immediate vicinity during the closure of the flap induced by 8 HEAs of different inhibitory power is presented. A total of 6.272 million ReLIE calculations, based on the PM7 semiempirical method, provided a deep and quantitative view of the first step in the inhibition of the aspartyl protease. The information suggests that residues Asp93, Asp289, Thr292, Thr293, Asn294 and Arg296 are anchor points for the ligand, accounting for approximately 45% of the total protein-ligand interaction. Additionally, flap closure improved the BACE1-HEA interaction by around 25%. Furthermore, the inhibitory activity of HEAs could be related to the capacity of these ligands to form said anchor point interactions and maintain them over time: the lack of some of these anchor interactions delayed flap closure or impeded it completely, or even caused the flap to reopen. The methodology employed here could be used as a tool to evaluate future structural modifications which lead to improvements in the favorability and stability of BACE1-HEA ReLIEs, aiding in the design of

  5. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare

    Directory of Open Access Journals (Sweden)

    Daiane Einhardt Blank

    2017-05-01

    Full Text Available The equine arteritis virus (EAV is responsible by an important respiratory and reproductive disease in equine populations and there is no specific antiviral treatment available. The objective of this study was to investigate the activity of an ethanolic crude extract of Origanum vulgare (EEO and of isolated compound caffeic acid, p-coumaric acid, rosmarinic acid, quercetin, luteolin, carnosol, carnosic acid, kaempferol and apigenin against EAV. The assays were performed using non-cytotoxic concentrations. The antiviral activity was monitored initially by cytopathic effect inhibition (CPE assay in RK13 cells in the presence or absence of EEO. Pre-incubated cells with EEO were also examined to show prophylactic effect. Direct viral inactivation by EEO and isolated compounds was evaluated by incubation at 37°C or 20°C. After the incubation period, the infectivity was immediately determined by virus titrations on cell cultures and expressed as 50% tissue culture infective dose (TCID50/100 µL. There was significant virucidal activity of EEO and of the compounds caffeic acid, p-coumaric acid, quercetin, carnosic acid and kaempferol. When EEO was added after infection, EEO inhibited the virus growth in infected cells, as evidenced by significant reduction of the viral titre. The results provide evidence that the EEO exhibit an inhibitory effect anti-EAV. Among the main compounds evaluated, caffeic acid, p-coumaric acid, carnosic acid, kaempferol and mainly quercetin, contributed to the activity of EEO. EEO may represent a good prototype for the development of a new antiviral agent, presenting promising for combating arteriviruses infections.

  6. Free Radical Scavenging and Alpha/Beta-glucosidases Inhibitory Activities of Rambutan (Nephelium lappaceum L. Peel Extract

    Directory of Open Access Journals (Sweden)

    Wahyu Widowati

    2015-12-01

    Full Text Available BACKGROUND: Diabetes mellitus (DM is associated with oxidative reaction and hyperglycemic condition. Human body has an antioxidant defense system toward free radical, but overproduction of free radical causing imbalance condition between the free radical and the antioxidant defense in the body that lead to several diseases, including DM. Glucosidase is an enzyme that hydrolize carbohydrates causing increase of blood glucose level, so by inhibiting this enzyme blood glucose level in plasma could be effectively decreased. Rambutan (Nephelium lappaceum L. peel has been reported to have many potential roles, such as antioxidant and anti-glycemia. Therefore our current study was conducted to evaluate possible effectivity of Rambutan peel to scavenge free radical and to inhibit α- and β-glucosidases. METHODS: Rambutan peel extraction (RPE was performed based on maceration method. Geraniin was used as control. For antioxidant study, 2,2-diphenyl-1- picrylhydrazyl (DPPH free radical scavenging test was performed. For glucosidase inhibitory activity study,  α- and β-glucosidases inhibitory activity tests were performed. Results were analyzed for median of Inhibitory Concentration (IC50. RESULTS: The scavenging activity of RPE was comparable with Geraniin. Meanwhile, the α-glucosidase inhibitory activity of RPE was higher than the one of Geraniin. The α-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 0.106±0.080 μg/ml and 16.12±0.29 μg/ml, respectively. The β-glucosidase inhibitory activity of RPE was also higher than the one of Geraniin. The β-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 7.02±0.99 μg/ml and 19.81±0.66 μg/ml, respectively. CONCLUSIONS: Since RPE showed comparable free radical scavenging activity with Geraniin and higher α- and β-glucosidases inhibitory activities than Geraniin, RPE could be suggested as a promising antioxidant and antiglycemic agent.  KEYWORDS

  7. Bioassay Guided Isolation of Active Compounds from Alchemilla barbatiflora Juz.

    Directory of Open Access Journals (Sweden)

    Gülin Renda

    2018-01-01

    Full Text Available The aerial parts of Alchemilla L. species (Rosaceae are used internally as diuretic, laxative, tonic and externally for wound healing in Turkish folk medicine. Antioxidant effects of the extracts, fractions and isolated compounds from the aerial parts of A. barbatiflora Juz. were investigated with following methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH, and superoxide radical scavenging (SOD, phosphomolibdenum-reducing antioxidant power (PRAP, ferric-reducing antioxidant power (FRAP assays. In addition, tyrosinase, α-glucosidase and acetylcholinesterase inhibition activities of samples were analyzed. The methanol extract from the aerial parts of plant was consecutively fractionated into four subextracts; n-hexane, chloroform, and remaining water extracts. Further studies were carried out on the most active water subextract and the fractions obtained from water subextract with column chromatography. Phytochemical studies on active fractions of the water subextract led to the isolation of seven metabolites including catechin (1 and a catechin dimer; procyanidin B3 (2, a flavonol glucuronide; quercetin-3-O- β-D-glucuronic acid (miquelianin (3 with flavonoid glycosides; quercetin-3-O- β-D-galactoside (hyperoside (4, quercetin-3-O- β-D-arabinoside (guaiaverin (5, kaempferol-3-O-β-D-xylopyranoside (6 and kaempferol-3-O -(6″-coumaroyl-β-D-glycoside (tiliroside (7. Their structures were elucidated by spectral techniques (1D and 2D NMR. The experimental data verified that procyanidin B3 displayed remarkable enzyme inhibitory activity among the whole isolated compounds.

  8. Magterpenoids A-C, Three Polycyclic Meroterpenoids with PTP1B Inhibitory Activity from the Bark of Magnolia officinalis var. biloba.

    Science.gov (United States)

    Li, Chuan; Li, Chuang-Jun; Ma, Jie; Chen, Fang-You; Li, Li; Wang, Xiao-Liang; Ye, Fei; Zhang, Dong-Ming

    2018-06-15

    Magterpenoid A (1), possessing a rare 4,6,11-trioxatricyclo[5.3.1.0 1,5 ]undecane framework with an irregular monoterpenoid moiety, magterpenoid B (2), with an unprecedented 6/6/6/6 polycyclic skeleton, and magterpenoid C (3), a novel terpenoid quinone with a C6-C3 unit, were isolated from the bark of Magnolia officinalis var. biloba. Plausible biogenetic pathways of 1-3 are presented. Compounds 1 and 3 exhibited significant PTP1B inhibitory activities with IC 50 values of 1.44 and 0.81 μM, respectively.

  9. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Maira R. Segura-Campos

    2013-01-01

    Full Text Available Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%. Hydrophobic residues contributed substantially to the peptides’ inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (% ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 ( μg/mL from the 5–10 kDa fraction and F1 ( μg/mL from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry.

  10. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina.

    Science.gov (United States)

    Wickramaratne, M Nirmali; Punchihewa, J C; Wickramaratne, D B M

    2016-11-15

    Diabetes has caused a major burden to the health sector in the developing countries and has shown an increasing trend among the urban population. It is estimated that most patients are with type II diabetes which could be easily treated with dietary changes, exercise, and medication. Sri Lanka carries a long history ayurvedic medicine where it uses the plant for treating many diseases. Therefore it is important to screen medicinal plants scientifically so they could be used safely and effectively in the traditional medical system and also be used for further investigations. Adenanthera pavonina is a plant used in the Ayurvedic medical system in Sri Lanka for treating many diseases including diabetics. We evaluated the anti-diabetic properties and the antioxidant properties of Adenanthera pavonina leaves. The methanol extract of the leaves was sequentially extracted with petroleum ether and thereafter was partitioned between EtOAc, and water. The α-amylase inhibition assay was performed using the 3,5- dinitrosalicylic acid method. The antioxidant activities were measured using the DPPH free radical scavenging activity and the total phenolic content using Folin-Ciocalteu's reagent. The cytotoxicity of the extract was evaluated using the Brine shrimp bioassay. The IC 50 values of α amylase inhibitory activity of MeOH, EtOAc, petroleum ether, and water were 16.16 ± 2.23, 59.93 ± 0.25, 145.49 ± 4.86 and 214.85 ± 9.72 μg/ml respectively and was similar to that of Acarbose (18.63 ± 1.21 (μg/ml). Antioxidant activities were also determined and the EtOAc fraction showed the highest total phenolic content (34. 62 ± 1.14 mg/g extract) and the highest DPPH scavenging activity with an IC 50 of 249.92 ± 3.35 μg/ml. The leaf extracts of Adenanthera pavonina exhibit remarkable α-amylase inhibitory activity in the crude methanolic extract. Hence leaves of Adenanthera pavonina has a potential to be used as a regular green vegetable and

  11. Chemical constituents from Chirita longgangensis var. hongyao with inhibitory activity against porcine respiratory and reproductive syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yao; Wang, Yue-Hu; Tan, Ying; Yang, Jun; Liu, Hong-Xin; Gu, Wei; Long, Chun-Lin, E-mail: long@mail.kib.ac.cn [Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (China); Bi, Jun-Long; Yin, Ge-Fen, E-mail: yingefen383@sohu.com [College of Animal Science and Technology, Yunnan Agricultural University (China)

    2012-10-15

    Two new quinonoids chiritalone A and B, and a new neolignan 7'E-4,9-dihydroxy- 3,3',5'-trimethoxy-8,4'-oxyneolign-7'-en-9'-al, along with known (-)-8-hydroxy-{alpha}-dunnione, digiferruginol, 2,5-dimethoxy-1,4-benzoquinone and hederagenin, were isolated from the stems of Chirita longgangensis var. hongyao. The structures of the new compounds were elucidated by detailed analysis from NMR (nuclear magnetic resonance) and MS (mass spectrometry) data, and the absolute configuration of chiritalone A was determined by single crystal X-ray diffraction analysis using the Flack parameter. The inhibitory activity of compounds against porcine respiratory and reproductive syndrome virus (PRRSV) was measured by the cytopathic effect (CPE) method. Digiferruginol and hederagenin showed weak effect on PRRSV with an IC{sub 50} value of 80.5 {+-} 16.9 {mu}mol L{sup -1} (SI = 19.9) and 43.2 {+-} 7.4 {mu}mol L{sup -1} (SI = 13.1), respectively. (author)

  12. Chemical constituents from Chirita longgangensis var. hongyao with inhibitory activity against porcine respiratory and reproductive syndrome virus

    International Nuclear Information System (INIS)

    Su, Yao; Wang, Yue-Hu; Tan, Ying; Yang, Jun; Liu, Hong-Xin; Gu, Wei; Long, Chun-Lin; Bi, Jun-Long; Yin, Ge-Fen

    2012-01-01

    Two new quinonoids chiritalone A and B, and a new neolignan 7'E-4,9-dihydroxy- 3,3',5'-trimethoxy-8,4'-oxyneolign-7'-en-9'-al, along with known (-)-8-hydroxy-α-dunnione, digiferruginol, 2,5-dimethoxy-1,4-benzoquinone and hederagenin, were isolated from the stems of Chirita longgangensis var. hongyao. The structures of the new compounds were elucidated by detailed analysis from NMR (nuclear magnetic resonance) and MS (mass spectrometry) data, and the absolute configuration of chiritalone A was determined by single crystal X-ray diffraction analysis using the Flack parameter. The inhibitory activity of compounds against porcine respiratory and reproductive syndrome virus (PRRSV) was measured by the cytopathic effect (CPE) method. Digiferruginol and hederagenin showed weak effect on PRRSV with an IC 50 value of 80.5 ± 16.9 μmol L -1 (SI = 19.9) and 43.2 ± 7.4 μmol L -1 (SI = 13.1), respectively. (author)

  13. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  14. Identification of a New Antibacterial Sulfur Compound from Raphanus sativus Seeds

    Directory of Open Access Journals (Sweden)

    Jeries Jadoun

    2016-01-01

    Full Text Available Raphanus sativus L. (radish, a member of Brassicaceae, is widely used in traditional medicine in various cultures for treatment of several diseases and disorders associated with microbial infections. The antibacterial activity of the different plant parts has been mainly attributed to several isothiocyanate (ITC compounds. However, the low correlation between the ITC content and antibacterial activity suggests the involvement of other unknown compounds. The objective of this study was to investigate the antibacterial potential of red radish seeds and identify the active compounds. A crude ethanol seed extract was prepared and its antibacterial activity was tested against five medically important bacteria. The ethanol extract significantly inhibited the growth of all tested strains. However, the inhibitory effect was more pronounced against Streptococcus pyogenes and Escherichia coli. Bioassay-guided fractionation of the ethanol extract followed by HPLC, 1H-NMR, 13C-NMR, 15N-NMR, and HMBC analysis revealed that the active fraction consisted of a single new compound identified as [5-methylsulfinyl-1-(4-methylsulfinyl-but-3-enyl-pent-4-enylidene]-sulfamic acid, which consisted of two identical sulfur side chains similar to those found in ITCs. The minimal inhibitory concentration values of the isolated compound were in the range of 0.5–1 mg/mL. These results further highlight the role of radish as a rich source of antibacterial compounds.

  15. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jeny P Ghartey

    Full Text Available Female genital tract secretions inhibit E. coli ex vivo and the activity may prevent colonization and provide a biomarker of a healthy microbiome. We hypothesized that high E. coli inhibitory activity would be associated with a Lactobacillus crispatus and/or jensenii dominant microbiome and differ from that of women with low inhibitory activity.Vaginal swab cell pellets from 20 samples previously obtained in a cross-sectional study of near-term pregnant and non-pregnant healthy women were selected based on having high (>90% inhibition or low (<20% inhibition anti-E. coli activity. The V6 region of the 16S ribosomal RNA gene was amplified and sequenced using the Illumina HiSeq 2000 platform. Filtered culture supernatants from Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis were also assayed for E. coli inhibitory activity.Sixteen samples (10 with high and 6 with low activity yielded evaluable microbiome data. There was no difference in the predominant microbiome species in pregnant compared to non-pregnant women (n = 8 each. However, there were significant differences between women with high compared to low E. coli inhibitory activity. High activity was associated with a predominance of L. crispatus (p<0.007 and culture supernatants from L. crispatus exhibited greater E. coli inhibitory activity compared to supernatants obtained from L. iners or G. vaginalis. Notably, the E. coli inhibitory activity varied among different strains of L. crispatus.Microbiome communities with abundant L. crispatus likely contribute to the E. coli inhibitory activity of vaginal secretions and efforts to promote this environment may prevent E. coli colonization and related sequelae including preterm birth.

  16. Inhibitory effects of ascorbic acid, vitamin E, and vitamin B-complex on the biological activities induced by Bothrops venom.

    Science.gov (United States)

    Oliveira, Carlos Henrique de Moura; Assaid Simão, Anderson; Marcussi, Silvana

    2016-01-01

    Natural compounds have been widely studied with the aim of complementing antiophidic serum therapy. The present study evaluated the inhibitory potential of ascorbic acid and a vitamin complex, composed of ascorbic acid, vitamin E, and all the B-complex vitamins, on the biological activities induced by snake venoms. The effect of vitamins was evaluated on the phospholipase, proteolytic, coagulant, and fibrinogenolytic activities induced by Bothrops moojeni (Viperidae), B. jararacussu, and B. alternatus snake venoms, and the hemagglutinating activity induced by B. jararacussu venom. The vitamin complex (1:5 and 1:10 ratios) totally inhibited the fibrinogenolytic activity and partially the phospholipase activity and proteolytic activity on azocasein induced by the evaluated venoms. Significant inhibition was observed in the coagulation of human plasma induced by venoms from B. alternatus (1:2.5 and 1:5, to vitamin complex and ascorbic acid) and B. moojeni (1:2.5 and 1:5, to vitamin complex and ascorbic acid). Ascorbic acid inhibited 100% of the proteolytic activities of B. moojeni and B. alternatus on azocasein, at 1:10 ratio, the effects of all the venoms on fibrinogen, the hemagglutinating activity of B. jararacussu venom, and also extended the plasma coagulation time induced by all venoms analyzed. The vitamins analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms, suggesting their interaction with toxins belonging to the phospholipase A2, protease, and lectin classes. The results can aid further research in clarifying the possible mechanisms of interaction between vitamins and snake enzymes.

  17. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Bero, J; Beaufay, C; Hannaert, V; Hérent, M-F; Michels, P A; Quetin-Leclercq, J

    2013-02-15

    Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms

  18. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis.

    Science.gov (United States)

    Johann, Susana; Sá, Nívea P; Lima, Luciana A R S; Cisalpino, Patricia S; Cota, Betania B; Alves, Tânia M A; Siqueira, Ezequias P; Zani, Carlos L

    2010-10-12

    The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds.

  19. Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.

    Science.gov (United States)

    Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi

    2002-09-25

    The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.

  20. Steroid-like compounds in Chinese medicines promote blood circulation via inhibition of Na+/K+ -ATPase.

    Science.gov (United States)

    Chen, Ronald J Y; Chung, Tse-yu; Li, Feng-yin; Yang, Wei-hung; Jinn, Tzyy-rong; Tzen, Jason T C

    2010-06-01

    To examine if steroid-like compounds found in many Chinese medicinal products conventionally used for the promotion of blood circulation may act as active components via the same molecular mechanism triggered by cardiac glycosides, such as ouabain. The inhibitory potency of ouabain and the identified steroid-like compounds on Na(+)/K(+)-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of these compounds to Na(+)/K(+)-ATPase. All the examined steroid-like compounds displayed more or less inhibition on Na(+)/K(+)-ATPase, with bufalin (structurally almost equivalent to ouabain) exhibiting significantly higher inhibitory potency than the others. In the pentacyclic triterpenoids examined, ursolic acid and oleanolic acid were moderate inhibitors of Na(+)/K(+)-ATPase, and their inhibitory potency was comparable to that of ginsenoside Rh2. The relatively high inhibitory potency of ursolic acid or oleanolic acid was due to the formation of a hydrogen bond between its carboxyl group and the Ile322 residue in the deep cavity close to two K(+) binding sites of Na(+)/K(+)-ATPase. Moreover, the drastic difference observed in the inhibitory potency of ouabain, bufalin, ginsenoside Rh2, and pentacyclic triterpenoids is ascribed mainly to the number of hydrogen bonds and partially to the strength of hydrophobic interaction between the compounds and residues around the deep cavity of Na(+)/K(+)-ATPase. Steroid-like compounds seem to contribute to therapeutic effects of many cardioactive Chinese medicinal products. Chinese herbs, such as Prunella vulgaris L, rich in ursolic acid, oleanolic acid and their glycoside derivatives may be adequate sources for cardiac therapy via effective inhibition on Na(+)/K(+)-ATPase.

  1. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds.

    Science.gov (United States)

    Bernard, Angela; Lacroix, Céline; Cabiddu, Maria G; Neyts, Johan; Leyssen, Pieter; Pompei, Raffaello

    2015-04-01

    The Enterovirus genus of the Picornaviridae is represented by several viral pathogens that are associated with human disease, namely Poliovirus 1, Enterovirus 71 and Rhinoviruses. Enterovirus 71 has been associated with encephalitis, while Rhinoviruses are a major cause of asthma exacerbations and chronic obstructive pulmonary disease. Based on the structure of both pleconaril and pirodavir, we previously synthesized some original compounds as potential inhibitors of Rhinovirus replication. These compounds were explored for in vitro antiviral potential on other human pathogenic Enteroviruses, namely Enterovirus 71 on rhabdo-myosarcoma cells, Coxsackievirus B3 on Vero cells, Poliovirus 1 and Echovirus 11 on BGM cells. Activity was confirmed for compound against Rhinovirus 14. Furthermore, few compounds showed a cell-protective effect on Enterovirus 71, presented a marked improvement as compared to the reference drug pleconaril for inhibitory activity on both Enterovirus 71 and Poliovirus 1. The most striking observation was the clear cell protective effect for the set of analogues in a virus-cell-based assay for Echovirus 11 with an effective concentration (EC50) as low as 0.3 µM (Selectivity index or SI = 483), and selectivity indexes greater than 857 (EC50 = 0.6 µM) and 1524 (EC50 = 0.33 µM). Some of the evaluated compounds showed potent and selective antiviral activity against several enterovirus species, such as Enterovirus 71 (EV-A), Echovirus 11 (EV-B), and Poliovirus 1 (EV-C). This could be used as a starting point for the development of other pleconaril/pirodavir-like enterovirus inhibitors with broad-spectrum activity and improved effects as compared to the reference drugs. © The Author(s) 2015.

  2. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  3. In vivo hypotensive effect and in vitro inhibitory activity of some Cyperaceae species

    Directory of Open Access Journals (Sweden)

    Monica Lacerda Lopes Martins

    2013-12-01

    Full Text Available In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES, a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg, with acetylcholine (ACh as positive control (5 µg/kg, i.v.. The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.. Captopril (30 mg/kg was used as positive control. Bulbostylis capillaris (86.89 ± 15.20% and ERE (74.89 ± 11.95%, ERE were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%. ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.

  4. Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning?

    Science.gov (United States)

    Baumeister, Sarah; Wolf, Isabella; Holz, Nathalie; Boecker-Schlier, Regina; Adamo, Nicoletta; Holtmann, Martin; Ruf, Matthias; Banaschewski, Tobias; Hohmann, Sarah; Brandeis, Daniel

    2018-05-15

    Neurofeedback training (NF) is a promising non-pharmacological treatment for ADHD that has been associated with improvement of attention-deficit/hyperactivity disorder (ADHD)-related symptoms as well as changes in electrophysiological measures. However, the functional localization of neural changes following NF compared to an active control condition, and of successful learning during training (considered to be the critical mechanism for improvement), remains largely unstudied. Children with ADHD (N=16, mean age: 11.81, SD: 1.47) were randomly assigned to either slow cortical potential (SCP, n=8) based NF or biofeedback control training (electromyogram feedback, n=8) and performed a combined Flanker/NoGo task pre- and post-training. Effects of NF, compared to the active control, and of learning in transfer trials (approximating successful transfer to everyday life) were examined with respect to clinical outcome and functional magnetic resonance imaging (fMRI) changes during inhibitory control. After 20 sessions of training, children in the NF group presented reduced ADHD symptoms and increased activation in areas associated with inhibitory control compared to baseline. Subjects who were successful learners (n=9) also showed increased activation in an extensive inhibitory network irrespective of the type of training. Activation increased in an extensive inhibitory network following NF training, and following successful learning through NF and control biofeedback. Although this study was only powered to detect large effects and clearly requires replication in larger samples, the results suggest a crucial role for learning effects in biofeedback trainings. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  6. Design, synthesis, α-glucosidase inhibitory activity, molecular docking and QSAR studies of benzimidazole derivatives

    Science.gov (United States)

    Dinparast, Leila; Valizadeh, Hassan; Bahadori, Mir Babak; Soltani, Somaieh; Asghari, Behvar; Rashidi, Mohammad-Reza

    2016-06-01

    In this study the green, one-pot, solvent-free and selective synthesis of benzimidazole derivatives is reported. The reactions were catalyzed by ZnO/MgO containing ZnO nanoparticles as a highly effective, non-toxic and environmentally friendly catalyst. The structure of synthesized benzimidazoles was characterized using spectroscopic technics (FT-IR, 1HNMR, 13CNMR). Synthesized compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 3c, 3e, 3l and 4n were potent inhibitors with IC50 values ranging from 60.7 to 168.4 μM. In silico studies were performed to explore the binding modes and interactions between enzyme and synthesized benzimidazoles. Developed linear QSAR model based on density and molecular weight could predict bioactivity of newly synthesized compounds well. Molecular docking studies revealed the availability of some hydrophobic interactions. In addition, the bioactivity of most potent compounds had good correlation with estimated free energy of binding (ΔGbinding) which was calculated according to docked best conformations.

  7. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch

    2005-10-01

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 μg/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 μg/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities

  8. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Thongphasuk, Jarunee [Office of Atoms for Peace, Bangkok (Thailand); Thongphasuk, Piyanuch [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani (Thailand)

    2005-10-15

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 {mu}g/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 {mu}g/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities.

  9. Sulforaphane Analogues with Heterocyclic Moieties: Syntheses and Inhibitory Activities against Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ye-Hui Shi

    2016-04-01

    Full Text Available Recent studies have shown that sulforaphane (SFN selectively inhibits the growth of ALDH+ breast cancer stem-like cells.Herein, a series of SFN analogues were synthesized and evaluated against breast cancer cell lines MCF-7 and SUM-159, and the leukemia stem cell-like cell line KG-1a. These SFN analogues were characterized by the replacement of the methyl group with heterocyclic moieties, and the replacement of the sulfoxide group with sulfide or sulfone. A growth inhibitory assay indicated that the tetrazole analogs 3d, 8d and 9d were significantly more potent than SFN against the three cancer cell lines. Compound 14c, the water soluble derivative of tetrazole sulfide 3d, demonstrated higher potency against KG-1a cell line than 3d. SFN, 3d and 14c significantly induced the activation of caspase-3, and reduced the ALDH+ subpopulation in the SUM159 cell line, while the marketed drug doxrubicin(DOX increased the ALDH+ subpopulation.

  10. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity

    International Nuclear Information System (INIS)

    Aparecida Britta, Elizandra; Conceição da Silva, Cleuza; Forti Rubira, Adley; Vataru Nakamura, Celso; Borsali, Redouane

    2016-01-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. - Highlights: • The spherical nanoparticles were obtained using distinct diblock copolymers. • BZTS was successfully encapsulated in the nanoparticles. • BZTS nanoparticle suspensions presented activity in Leishmania amazonensis.

  11. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity

    Energy Technology Data Exchange (ETDEWEB)

    Aparecida Britta, Elizandra [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá (Brazil); Conceição da Silva, Cleuza; Forti Rubira, Adley [Departamento de Química, Universidade Estadual de Maringá (Brazil); Vataru Nakamura, Celso, E-mail: cvnakamura@uem.br [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá (Brazil); Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr [Centro de Pesquisas em Macromoléculas Vegetais, CERMAV, Grenoble (France)

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. - Highlights: • The spherical nanoparticles were obtained using distinct diblock copolymers. • BZTS was successfully encapsulated in the nanoparticles. • BZTS nanoparticle suspensions presented activity in Leishmania amazonensis.

  12. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats

    DEFF Research Database (Denmark)

    Albertí, Elena; Mikkelsen, Hanne Birte; Wang, Xuanyu

    2007-01-01

    The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c-kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was markedly...... as indirect innervation via ICC. In summary, loss of ICC markedly affects pacemaker and motor activities of the rat colon. Inhibitory innervation is largely maintained but nitrergic innervation is reduced possibly related to the loss of ICC-mediated relaxation....

  13. Chemical constituents of the stem bark of Vochysia thyrsoidea Pohl. (Vochysiaceae) and evaluation of their cytotoxicity and inhibitory activity against cathepsins B and K

    International Nuclear Information System (INIS)

    Sousa, Lorena Ramos Freitas de; Silva, Jame's A. da; Vieira, Paulo Cezar; Costa, Maisa Borges; Santos, Mirley Luciene dos; Menezes, Antonio Carlos Severo; Sbardelotto, Aline Borba; Pessoa, Claudia do O; Moraes, Manoel Odorico de

    2014-01-01

    A new flavonoid, catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC 50 = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC 50 = 36.80 μM and IC 50 = 25.37 μM, respectively (author)

  14. Effects of Different Working Modes of Ultrasound on Structural Characteristics of Zein and ACE Inhibitory Activity of Hydrolysates

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ren

    2017-01-01

    Full Text Available Ultrasound was used as a new technology to pretreat protein prior to proteolysis to improve enzymolysis efficiency. The effects of different working modes of ultrasound on the angiotensin I-converting enzyme (ACE inhibitory activity of zein hydrolysates and the structural characteristics of zein were investigated. The solubility, surface hydrophobicity (H0, ultraviolet-visible (UV-Vis spectra, intrinsic fluorescence spectra, and circular dichroism (CD spectra of zein pretreated with ultrasound were determined. All ultrasound pretreatments significantly improved the ACE inhibitory activity of zein hydrolysates (p<0.05. The highest ACE inhibitory activity, representing an increase of 99.21% over the control, was obtained with dual sweeping frequency ultrasound of 33±2 and 68±2 kHz. The effects of single sweeping frequency and dual fixed frequency ultrasound were stronger than those of single fixed frequency ultrasound for improving the ACE inhibitory activity of zein. Structural changes in zein were induced by ultrasound, as confirmed by changes in the solubility, H0, UV-Vis spectra, intrinsic fluorescence spectra, and CD spectra of zein, and these were consistent with the corresponding ACE inhibitory activities of zein hydrolysates. Thus, ultrasound working mode and frequency have significant effects on the structure of zein and the ACE inhibitory activity of zein hydrolysates.

  15. Structure-activity studies of peptidomimetics based on kinase-inhibitory region of suppressors of cytokine signaling 1.

    Science.gov (United States)

    La Manna, Sara; Lopez-Sanz, Laura; Leone, Marilisa; Brandi, Paola; Scognamiglio, Pasqualina Liana; Morelli, Giancarlo; Novellino, Ettore; Gomez-Guerrero, Carmen; Marasco, Daniela

    2017-11-20

    Suppressors of Cytokine Signaling (SOCS) proteins are negative regulators of JAK proteins that are receptor-associated tyrosine kinases, which play key roles in the phosphorylation and subsequent activation of several transcription factors named STATs. Unlike the other SOCS proteins, SOCS1 and 3 show, in the N-terminal portion, a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Drug discovery processes of compounds based on KIR sequence demonstrated promising in functional in vitro and in inflammatory animal models and we recently developed a peptidomimetic called PS5, as lead compound. Here, we investigated the cellular ability of PS5 to mimic SOCS1 biological functions in vascular smooth muscle cells and simultaneously we set up a new binding assay for the screening and identification of JAK2 binders based on a SPR experiment that revealed more robust with respect to previous ELISAs. On this basis, we designed several peptidomimetics bearing new structural constraints that were analyzed in both affinities toward JAK2 and conformational features through Circular Dichroism and NMR spectroscopies. Introduced chemical modifications provided an enhancement of serum stabilities of new sequences that could aid the design of future mimetic molecules of SOCS1 as novel anti-inflammatory compounds. © 2017 Wiley Periodicals, Inc.

  16. Heterocyclic organobismuth (III) compounds containing an eight-membered ring: Inhibitory effects on cell cycle progression.

    Science.gov (United States)

    Iuchi, Katsuya; Yagura, Tatsuo

    2018-03-21

    We previously showed that heterocyclic organobismuth compounds have excellent antimicrobial and antitumor potential. These compounds structurally consist of either six- or eight-membered rings. Previous research has shown that bi-chlorodibenzo[c,f][1,5]thiabismocine (Compound 3), an eight-membered ring, induced G 2 /M arrest via inhibition of tubulin polymerization in HeLa cells. Additionally, N-tert-butyl-bi-chlorodi-benzo[c,f][1,5]azabismocine (Compound 1), another eight-membered ring, exhibited higher cytotoxicity than Compound 3 against several cancer cell lines, including HeLa and K562. Finally, bi-chlorophenothiabismin-S,S-dioxide (Compound 5), a six-membered ring, exhibited lower antitumor activity than eight-membered ring compounds. In this study, we investigated the antimitotic activity of Compounds 1 and 5 in HeLa cells. At low concentrations, (0.1 and 0.25 μM), Compound 1 inhibited cell growth and arrested the cell cycle in mitosis. However, 0.5 μM Compound 1 exhibited no antimitotic activity. Conversely, Compound 5 weakly inhibited cell growth and did not markedly arrest the cell cycle. Flow cytometry showed that Compound 1 arrested the cell cycle at G 2 /M, resulting in apoptosis. Compound 1 inhibited tubulin polymerization as revealed by a cell-free assay, and both Compounds 1 and 3 inhibited microtubule spindle formation and chromosome alignment during prometaphase. These results suggest that eight-membered ring-containing organobismuth compounds can induce mitotic arrest by perturbing spindle dynamics. Copyright © 2018. Published by Elsevier Ltd.

  17. Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang

    2016-01-01

    Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.

  18. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities.

    Science.gov (United States)

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Ko, Wonmin; Kim, Dong-Cheol; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-15

    Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis.

    Science.gov (United States)

    Danz, Henning; Stoyanova, Stefka; Thomet, Olivier A R; Simon, Hans-Uwe; Dannhardt, Gerd; Ulbrich, Holger; Hamburger, Matthias

    2002-10-01

    The indolo[2,1- b]quinazoline alkaloid tryptanthrin has previously been identified as the cyclooxygenase-2 (COX-2) inhibitory principle in the extract ZE550 prepared from the medicinal plant Isatis tinctoria (Brassicaceae). We here investigated the potential inhibitory activity of tryptanthrin and ZE550 on COX-2, COX-1 in cellular and cell-free systems. A certain degree of selectivity towards COX-2 was observed when COX-1-dependent formation of thromboxane B(2) (TxB(2)) in HEL cells and COX-2-dependent formation of 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) in Mono Mac 6 and RAW 264.7 cells were compared. Preferential inhibition of COX-2 by two orders of magnitude was found in phorbol myristate acetate (PMA) activated bovine aortic coronary endothelial cells (BAECs). Assays with purified COX isoenzymes from sheep confirmed the high selectivity towards COX-2. The leukotriene B(4) (LTB(4)) release from calcium ionophore-stimulated human granulocytes (neutrophils) was used as a model to determine 5-lipoxygenase (5-LOX) activity. Tryptanthrin and the extract ZE550 inhibited LTB(4) release in a dose dependent manner and with a potency comparable to that of the clinically used 5-LOX inhibitor zileuton.

  20. B16-BL6 melanoma cells release inhibitory factor(s) of active pump activity in isolated lymph vessels.

    Science.gov (United States)

    Nakaya, K; Mizuno, R; Ohhashi, T

    2001-12-01

    We investigated whether supernatant cultured with melanoma cell lines B16-BL6 and K1735 or the Lewis lung carcinoma cell line (LLC) can regulate lymphatic pump activity with bioassay preparations isolated from murine iliac lymph vessels. B16-BL6 and LLC supernatants caused significant dilation of lymph microvessels with cessation of pump activity. B16-BL6 supernatant produced dose-related cessation of lymphatic pump activity. There was no significant tachyphylaxis in the supernatant-mediated inhibitory response of lymphatic pump activity. Pretreatment with 3 x 10(-5) M N(omega)-nitro-L-arginine methyl ester (L-NAME) or 10(-7) M or 10(-6) M glibenclamide and 5 x 10(-4) M 5-hydroxydecanoic acid caused significant reduction of supernatant-mediated inhibitory responses. Simultaneous treatment with 10(-3) M L-arginine and 3 x 10(-5) M L-NAME significantly lessened L-NAME-induced inhibition of the supernatant-mediated response, suggesting that endogenous nitric oxide (NO) plays important roles in supernatant-mediated inhibitory responses. Chemical treatment dialyzed substances of B16-BL6 cells may release nonpeptide substance(s) of <1,000 MW, resulting in significant cessation of lymphatic pump activity via production and release of endogenous NO and activation of mitochondrial ATP-sensitive K(+) channels.

  1. Diverse models for the prediction of CDK4 inhibitory activity of ...

    Indian Academy of Sciences (India)

    employed for development of models for the prediction of CDK4 inhibitory activity using a dataset comprising of 52 analogues of ... index; molecular connectivity index; connective eccentricity topochemical index. 1. ... 80% of human cancers.

  2. Mutagenic activities of metal compounds in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H

    1975-01-01

    Environmental contaminations by certain metal compounds are bringing about serious problems to human health, including genetic hazards. It has been reported that some compounds of iron, manganese and mercury induce point mutations in microorganisms. Also it has been observed that those of aluminum, antimony, arsenic, cadmium, lead and tellurium cause chromosome aberrations in plants, insects and cultured human cells. The mechanism of mutation induction by these metals remains, however, still obscure. For screening of chemical mutagens, Kada et al, recently developed a simple and efficient method named rec-assay by observing differential growth sensitivities to drugs in wild and recombination-deficient strains of Bacillus subtilis. When a chemical is more inhibitory for Rec/sup -/ than for Rec/sup +/ cells, it is reasonable to suspect mutagenicity based on its DNA-damaging capacity. In the present report, 56 metal compounds were tested by the rec-assay. Compounds showing positive results in the assay such as potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/), ammonium molybdate ((NH/sub 4/)/sub 6/Mo/sub 7/O/sub 24/) and sodium arsenite (NaAsO/sub 2/) were then examined as to their capacities to induce reversions in E. coli Trp/sup -/ strains possessing different DNA repair pathways. 11 references, 3 tables.

  3. Application of QSAR models in analysis of antibacterial activity of some benzimidazole derivatives against Sarcina lutea

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2013-01-01

    Full Text Available In the present paper, a quantitative structure activity relationship (QSAR has been carried out on a series of 2-methyl and 2-aminobenzimidazole derivatives to identify the lipophilicity requirements for their inhibitory activity against bacteria Sarcina lutea. The tested compounds displayed in vitro antibacterial activity and minimum inhibitory concentration (MIC was determined for all compounds. The partition coefficients of the studied compounds were measured by the shake flask method (log P and by theoretical calculation (Clog P. The relationships between lipophilicity descriptors and antibacterial activities were investigated and the mathematical models have been developed as a calibration models for predicting the inhibitory activity of this class of compounds. The models were validated by leave-one-out (LOO technique as well as by the calculation of statistical parameters for the established models. Therefore, QSAR analysis reveals that lipophilicity descriptor govern the inhibitory activity of benzimidazoles studied against Sarcina lutea.

  4. Antimicrobial Activity of Some Synthetic Compounds on Fungi Associated with Post Harvest Rot of Red Pepper (Capsicum annum

    Directory of Open Access Journals (Sweden)

    Matthew O. KOLAWOLE

    2012-11-01

    Full Text Available Rhizopus sp, Mucor sp, Collectotrichum capsici and Geotrichum candidum were isolated but pathogenic test revealed that Collectotrichum capsici and Geotrichum candidum were the most pathogenic of all the isolates. Ni2+ + Azo has the highest inhibitory effect, closely followed by Ni2+ + PAN while Copper (II complex of Thiourea has the lowest inhibitory effect. However, 10mg/ml concentration proved to be the most effective when radial mycelial growth of the test fungi was measured. The inhibitory effects of each complex on the isolates increases with increase in incubation period. There is the feasibility of using synthetic associated with the symptoms. The three synthetic compounds, Copper (II complex of Thiourea, Ni2+ + compounds as preservatives for harvested red pepper.

  5. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata.

    Science.gov (United States)

    Meerungrueang, W; Panichayupakaranant, P

    2014-09-01

    Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.

  6. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    Science.gov (United States)

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  7. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Noorlidah Abdullah

    2012-01-01

    Full Text Available Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC. Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI. Ganoderma lucidum (30.1%, Schizophyllum commune (27.6%, and Hericium erinaceus (17.7% showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL. Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents.

  8. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Science.gov (United States)

    Abdullah, Noorlidah; Ismail, Siti Marjiana; Aminudin, Norhaniza; Shuib, Adawiyah Suriza; Lau, Beng Fye

    2012-01-01

    Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC). Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI). Ganoderma lucidum (30.1%), Schizophyllum commune (27.6%), and Hericium erinaceus (17.7%) showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL). Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents. PMID:21716693

  9. Synthesis of dansyl-labeled probe of thiophene analogue of annonaceous acetogenins for visualization of cell distribution and growth inhibitory activity toward human cancer cell lines.

    Science.gov (United States)

    Kojima, Naoto; Suga, Yuki; Matsumoto, Takuya; Tanaka, Tetsuaki; Akatsuka, Akinobu; Yamori, Takao; Dan, Shingo; Iwasaki, Hiroki; Yamashita, Masayuki

    2015-03-15

    The convergent synthesis of the dansyl-labeled probe of the thiophene-3-carboxamide analogue of annonaceous acetogenins, which shows potent antitumor activity, was accomplished by two asymmetric alkynylations of the 2,5-diformyl THF equivalent with an alkyne having a thiophene moiety and another alkyne tagged with a dansyl group. The growth inhibitory profiles toward 39 human cancer cell lines revealed that the probe retained the biological function of its mother compound, and would be useful for studying cellular activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. GC-MS Analysis of Fixed Oil from Nelumbo nucifera Gaertn Seeds: Evaluation of Antimicrobial, Antileishmanial and Urease Inhibitory Activities

    International Nuclear Information System (INIS)

    Shahnaz, A.; Khan, H.; Shah, A.; Khan, N.M.

    2016-01-01

    In the present study, chemical composition of fixed oil (NnFO) obtained from Nelumbo nucifera seeds was determined by GC-MS analysis which revealed the presence of 39 compounds mainly comprised of 20.8 % keto fatty acids with high content of methyl ester of palmitic acid (13.59 %) and methyl ester of 9-oxo-nonanoic acid (11.89 %). The other major constituents identified were; fumaric acid-3-methylbut-3-enyl nonyl ester, 2-decenal and methyl ester of 9E-octadecenoic acid as 6.45 %, 5.09 %, 5.06 %, respectively. NnFO along with other fractions were tested for in vitro antimicrobial, antileishmanial and urease inhibitory assays. NnFO showed weak antibacterial activities against the tested bacteria while promising antifungal effect against Candida albicans (68 %), Candida glaberata (65 %) and Aspergillus flavus (64 %). NnFO showed strong antileishmanial activity with IC50 = 7.34 ±0.72 as compared to reference drug (5.1± 0.29) probably due to the presence of keto-ene derivatives. NnFO showed weak urease inhibitory activity while the ethyl acetate fraction (N3) strongly inhibited both J.B. urease (IC50= 21.45 %) and B.P. urease (IC50= 28.65%) respectively. In conclusion, N. nucifera seeds fixed oil possess promising therapeutic potential as a new antifungal and antileishmanial agent. (author)

  11. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  12. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    Directory of Open Access Journals (Sweden)

    Jeanne F. Millogo

    2012-06-01

    Full Text Available This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus and Amaranthus hybridus (A. hybridus, two food plant species found in Burkina Faso. Hydroacetonic (HAE, methanolic (ME, and aqueous extracts (AE from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method and iron reducing power (FRAP method ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants.

  13. Effects of inhibitory GABA-active neurosteroids on cocaine seeking and cocaine taking in rats.

    Science.gov (United States)

    Schmoutz, Christopher D; Runyon, Scott P; Goeders, Nicholas E

    2014-09-01

    Several compounds that potentiate GABA-induced inhibitory currents also decrease stress, anxiety and addiction-related behaviors. Because of the well-established connection between stress and addiction, compounds that reduce stress-induced responses might be efficacious in treating addiction. Since endogenous neurosteroids such as allopregnanolone may function in a manner similar to benzodiazepines to reduce HPA axis activation and anxiety following stressful stimuli, we hypothesized that exogenously applied neurosteroids would reduce cocaine reinforcement in two animal models. Male Wistar rats were trained to self-administer cocaine and food under a concurrent alternating operant schedule of reinforcement. Two separate groups of rats were trained to self-administer cocaine or food pellets and were then exposed to similar cue-induced reinstatement paradigms. Both groups of rats were pretreated with various doses of neurosteroids. Allopregnanolone and 3α-hydroxy-3β-methyl-17β-nitro-5α-androstane (R6305-7, a synthetic neurosteroid) were ineffective in selectively decreasing cocaine relative to food self-administration. On the other hand, both allopregnanolone and R6305-7 significantly decreased the cue-induced reinstatement of extinguished cocaine seeking, confirmed by one-way ANOVA. These results suggest that neurosteroids may be effective in reducing the relapse to cocaine use without affecting ongoing cocaine self-administration.

  14. Tumor cell proliferation and cyclooxygenase inhibitory constituents in horseradish (Armoracia rusticana) and Wasabi (Wasabia japonica).

    Science.gov (United States)

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2005-03-09

    Cyclooxygenase and human tumor cell growth inhibitory extracts of horseradish (Armoracia rusticana) and wasabi (Wasabia japonica) rhizomes upon purification yielded active compounds 1-3 from horseradish and 4 and 5 from wasabi rhizomes. Spectroscopic analyses confirmed the identities of these active compounds as plastoquinone-9 (1), 6-O-acyl-beta-d-glucosyl-beta-sitosterol (2), 1,2-dilinolenoyl-3-galactosylglycerol (3), linolenoyloleoyl-3-beta-galactosylglycerol (4), and 1,2-dipalmitoyl-3-beta-galactosylglycerol (5). 3-Acyl-sitosterols, sinigrin, gluconasturtiin, and phosphatidylcholines isolated from horseradish and alpha-tocopherol and ubiquinone-10 from wasabi rhizomes isolated were inactive in our assays. At a concentration of 60 microg/mL, compounds 1 and 2 selectively inhibited COX-1 enzyme by 28 and 32%, respectively. Compounds 3, 4, and 5 gave 75, 42, and 47% inhibition of COX-1 enzyme, respectively, at a concentration of 250 microg/mL. In a dose response study, compound 3 inhibited the proliferation of colon cancer cells (HCT-116) by 21.9, 42.9, 51.2, and 68.4% and lung cancer cells (NCI-H460) by 30, 39, 44, and 71% at concentrations of 7.5, 15, 30, and 60 microg/mL, respectively. At a concentration of 60 microg/mL, compound 4 inhibited the growth of colon, lung, and stomach cancer cells by 28, 17, and 44%, respectively. This is the first report of the COX-1 enzyme and cancer cell growth inhibitory monogalactosyl diacylglycerides from wasabi and horseradish rhizomes.

  15. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium.

    Science.gov (United States)

    Morikawa, Toshio; Ninomiya, Kiyofumi; Akaki, Junji; Kakihara, Namiko; Kuramoto, Hiroyuki; Matsumoto, Yurie; Hayakawa, Takao; Muraoka, Osamu; Wang, Li-Bo; Wu, Li-Jun; Nakamura, Seikou; Yoshikawa, Masayuki; Matsuda, Hisashi

    2015-10-01

    A methanol extract of everlasting flowers of Helichrysum arenarium L. Moench (Asteraceae) was found to inhibit the increase in blood glucose elevation in sucrose-loaded mice at 500 mg/kg p.o. The methanol extract also inhibited the enzymatic activity against dipeptidyl peptidase-IV (DPP-IV, IC50 = 41.2 μg/ml), but did not show intestinal α-glucosidase inhibitory activities. From the extract, three new dimeric dihydrochalcone glycosides, arenariumosides V-VII (2-4), were isolated, and the stereostructures were elucidated based on their spectroscopic properties and chemical evidence. Of the constituents, several flavonoid constituents, including 2-4, were isolated, and these isolated constituents were investigated for their DPP-IV inhibitory effects. Among them, chalconaringenin 2'-O-β-D-glucopyranoside (16, IC50 = 23.1 μM) and aureusidin 6-O-β-D-glucopyranoside (35, 24.3 μM) showed relatively strong inhibitory activities.

  16. Five Ochna species have high antibacterial activity and more than ten antibacterial compounds

    Directory of Open Access Journals (Sweden)

    Jacobus N. Eloff

    2012-01-01

    Full Text Available New measures to control infections in humans and other animals are continuously being sought because of the increasing resistance of bacteria to antibiotics. In a wide tree screening survey of the antimicrobial activity of extracts of tree leaves (www.up.ac.za/phyto, Ochna pulchra, a small tree found widely in southern Africa, had good antibacterial activity. We therefore investigated the antibacterial activity of acetone leaf extracts of some other available Ochna spp. Antibacterial activity and the number of antibacterial compounds in acetone leaf extracts of Ochna natalitia, Ochna pretoriensis, O. pulchra, Ochna gamostigmata and Ochna serullata were determined with a tetrazolium violet serial microplate dilution assay and bioautography against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa, bacteria commonly associated with nosocomial infections. The percentage yields of the extracts varied from 2.5% to 8%. The minimum inhibitory concentrations of the five species ranged from 40 µg/mL to 1250 µg/mL. E. coli was sensitive to all the extracts. The O. pretoriensis extract was the most active with minimum inhibitory concentrations of 0.065 mg/mL and 0.039 mg/mL against E. coli and E. faecalis, respectively. The O. pretoriensis extract also had the highest total activities of 923 mL/g and 1538 mL/g, indicating that the acetone extract from 1 g of dried plant material could be diluted to 923 mL or 1538 mL and would still kill these bacteria. Based on the bioautography results, the two most active species, O. pretoriensis and O. pulchra, contained at least 10 antibacterial compounds with similar Rf values. Some of these antibacterial compounds were polar and others were non-polar. Variation in the chemical composition of the species

  17. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    DEFF Research Database (Denmark)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao

    2016-01-01

    OBJECTIVES: To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. METHODS: The design was cross-sectional. A convenient sample of 869 sixth and seventh gra...

  18. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L.

    Science.gov (United States)

    Qin, Jing; Fan, Min; He, Juan; Wu, Xing-De; Peng, Li-Yan; Su, Jia; Cheng, Xiao; Li, Yan; Kong, Ling-Mei; Li, Rong-Tao; Zhao, Qin-Shi

    2015-01-01

    Six Diels-Alder adducts (1-6) and nine prenylated flavanones (7-15) were isolated from the root bark of Morus alba L. Among them, soroceal B (1) and sanggenol Q (7) were new compounds. Their structures were elucidated on the basis of extensive spectroscopic methods, including 1D and 2D NMR techniques. Compounds 1-3, 9, 10, 12, 13 and 15 exhibited cytotoxic activity against five human tumour lines and compound 2 inhibited significantly selective cytotoxic activities towards HL-60 and AGS cells with IC50 of 3.4 and 3.6 μM. Compounds 3, 5, 9 and 12 exhibited moderate inhibitory activity against nitric oxide production in LPS-activated RAW264.7.

  19. Phytochemical profile, aldose reductase inhibitory, and antioxidant activities of Indian traditional medicinal Coccinia grandis (L.) fruit extract.

    Science.gov (United States)

    Kondhare, Dasharath; Lade, Harshad

    2017-12-01

    Coccinia grandis (L.) fruits (CGFs) are commonly used for culinary purposes and has several therapeutic applications in the Southeast Asia. The aim of this work was to evaluate phytochemical profile, aldose reductase inhibitory (ARI), and antioxidant activities of CGF extract. The CGFs were extracted with different solvents including petroleum ether, dichloromethane, acetone, methanol, and water. The highest yield of total extractable compounds (34.82%) and phenolic content (11.7 ± 0.43 mg of GAE/g dried extract) was found in methanol extract, whereas water extract showed the maximum content of total flavonoids (82.8 ± 7.8 mg QE/g dried extract). Gas chromatography-mass spectroscopy (GC-MS) analysis of methanol and water extract revealed the presence of flavonoids, phenolic compounds, alkaloids, and glycosides in the CGFs. Results of the in vitro ARI activity against partially purified bovine lens aldose reductase showed that methanol extract of CGFs exhibited 96.6% ARI activity at IC 50 value 6.12 µg/mL followed by water extract 89.1% with the IC 50 value 6.50 µg/mL. In addition, methanol and water extracts of CGF showed strong antioxidant activities including ABTS *+ scavenging, DPPH* scavenging, and hydroxyl radical scavenging. Our results suggest that high percentage of both flavonoids and phenolic contents in the CGFs are correlated with the ARI and antioxidant activities. The fruits of C. grandis are thus potential bifunctional agents with ARI and antioxidant activities that can be used for the prevention and management of DM and associated diseases.

  20. The isolation of antiprotozoal compounds from Libyan propolis.

    Science.gov (United States)

    Siheri, Weam; Igoli, John O; Gray, Alexander I; Nasciemento, Ticiano G; Zhang, Tong; Fearnley, James; Clements, Carol J; Carter, Katharine C; Carruthers, John; Edrada-Ebel, RuAngelie; Watson, David G

    2014-12-01

    Propolis is increasingly being explored as a source of biologically active compounds. Until now, there has been no study of Libyan propolis. Two samples were collected in North East Libya and tested for their activity against Trypanosoma brucei. Extracts from both samples had quite high activity. One of the samples was fractionated and yielded a number of active fractions. Three of the active fractions contained single compounds, which were found to be 13-epitorulosal, acetyl-13-epi-cupressic acid and 13-epi-cupressic acid, which have been described before in Mediterranean propolis. Two of the compounds had a minimum inhibitory concentration value of 1.56 µg/mL against T. brucei. The active fractions were also tested against macrophages infected with Leishmania donovani, and again moderate to strong activity was observed with the compounds having IC50 values in the range 5.1-21.9 µg/mL. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum.

    Science.gov (United States)

    Lu, Hai-Peng; Jia, Ya-Nan; Peng, Ya-Lin; Yu, Yan; Sun, Si-Long; Yue, Meng-Ting; Pan, Min-Hui; Zeng, Ling-Shu; Xu, Li

    2017-12-01

    Morus alba L. (mulberry) twig is known to have an inhibitory effect on pathogens in traditional Chinese medicine. In the present study, the dermophytic fungus, Trichophyton rubrum, was used to evaluate the inhibitory effect of total M. alba twig extract and extracts obtained using solvents with different polarities by the method of 96-well MTT colorimetry. The main active substance was isolated and identified by tracking its activity. In addition, the inhibitory effects of active extracts and a single active substance were investigated in combination with miconazole nitrate. Our data indicated that ethyl acetate extracts of mulberry twig (TEE) exhibited a desired inhibitory activity on T. rubrum with the minimum inhibitory concentration (MIC) of 1.000 mg/mL. With activity tracking, the main substance showing antimicrobial activity was oxyresveratrol (OXY), which was isolated from TEE. Its MIC for inhibiting the growth of T. rubrum was 0.500 mg/mL. The combined use of miconazole nitrate and OXY showed a synergistic inhibitory effect, as shown by a significant decrease in the MIC of both components. Based on the OXY content in TEE, the contribution rate of OXY to the inhibitory effect of TEE on T. rubrum was 80.52%, so it was determined to be the main antimicrobial substance in M. alba twig. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  3. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... curcumin, could have important effect on treatment of lung cancer. Curcumin ... study inhibitory effect of C. longa total extract on telomerase in A549 lung cancer cell line as in vitro model of ..... If A > 2× (OD of negative control), then, telomerase activity ... radiation, chemotherapy, laser therapy, photodynamic.

  4. Self-reported Physical Activity Predicts Pain Inhibitory and Facilitatory Function

    Science.gov (United States)

    Naugle, Kelly M.; Riley, Joseph L.

    2013-01-01

    Considerable evidence suggests regular physical activity can reduce chronic pain symptoms. Dysfunction of endogenous facilitatory and inhibitory systems has been implicated in multiple chronic pain conditions. However, few studies have investigated the relationship between levels of physical activity and descending pain modulatory function. Purpose This study’s purpose was to determine whether self-reported levels of physical activity in healthy adults predicted 1) pain sensitivity to heat and cold stimuli, 2) pain facilitatory function as tested by temporal summation of pain (TS), and 3) pain inhibitory function as tested by conditioned pain modulation (CPM) and offset analgesia. Methods Forty-eight healthy adults (age range 18–76) completed the International Physical Activity Questionnaire (IPAQ) and the following pain tests: heat pain thresholds (HPT), heat pain suprathresholds, cold pressor pain (CPP), temporal summation of heat pain, conditioned pain modulation, and offset analgesia. The IPAQ measured levels of walking, moderate, vigorous and total physical activity over the past seven days. Hierarchical linear regressions were conducted to determine the relationship between each pain test and self-reported levels of physical activity, while controlling for age, sex and psychological variables. Results Self-reported total and vigorous physical activity predicted TS and CPM (p’s pain and greater CPM. The IPAQ measures did not predict any of the other pain measures. Conclusion Thus, these results suggest that healthy older and younger adults who self-report greater levels of vigorous and total physical activity exhibit enhanced descending pain modulatory function. Improved descending pain modulation may be a mechanism through which exercise reduces or prevents chronic pain symptoms. PMID:23899890

  5. Antifouling Compounds from Marine Macroalgae.

    Science.gov (United States)

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  6. Inhibitory effect of tocotrienol on eukaryotic DNA polymerase λ and angiogenesis

    International Nuclear Information System (INIS)

    Mizushina, Yoshiyuki; Nakagawa, Kiyotaka; Shibata, Akira; Awata, Yasutoshi; Kuriyama, Isoko; Shimazaki, Noriko; Koiwai, Osamu; Uchiyama, Yukinobu; Sakaguchi, Kengo; Miyazawa, Teruo; Yoshida, Hiromi

    2006-01-01

    Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase λ (pol λ) in vitro. These compounds did not influence the activities of replicative pols such as α, δ, and ε, or even the activity of pol β which is thought to have a very similar three-dimensional structure to the pol β-like region of pol λ. Since δ-tocotrienol had the strongest inhibitory effect among the four (α- to δ-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol λ. The inhibitory effect of δ-tocotrienol on both intact pol λ (residues 1-575) and a truncated pol λ lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol λ) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 μM, respectively. However, del-2 pol λ (residues 245-575) containing the C-terminal pol β-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with δ-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol λ and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol λ and anti-angiogenesis by δ-tocotrienol was discussed

  7. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?

    Science.gov (United States)

    Truman, Penelope; Grounds, Peter; Brennan, Katharine A

    2017-03-01

    Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Mariano Fracchiolla

    2007-12-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  9. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  10. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  11. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hwayong Park

    2013-01-01

    Full Text Available To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  12. A New Monoterpene from the Leaves of a Radiation Mutant Cultivar of Perilla frutescens var. crispa with Inhibitory Activity on LPS-Induced NO Production

    Directory of Open Access Journals (Sweden)

    Bomi Nam

    2017-09-01

    Full Text Available The leaves of Perilla frutescens var. crispa (Lamiaceae—known as ‘Jureum-soyeop’ or ‘Cha-jo-ki’ in Korean, ‘ZI SU YE’ in Chinese, and ‘Shiso’ in Japan—has been used as a medicinal herb. Recent gamma irradiated mutation breeding on P. frutescens var. crispa in our research group resulted in the development of a new perilla cultivar, P. frutescens var. crispa (cv. Antisperill; PFCA, which has a higher content of isoegomaketone. The leaves of PFCA were extracted by supercritical carbon dioxide (SC-CO2 extraction, and phytochemical investigation on this extract led to the isolation and identification of a new compound, 9-hydroxy-isoegomaketone [(2E-1-(3-furanyl-4-hydroxy-4-methyl-2-penten-1-one; 1]. Compound 1 exhibited inhibitory activity on nitric oxide (NO production in lipopolysaccharide (LPS-activated RAW264.7 cells with an IC50 value of 14.4 μM. The compounds in the SC-CO2 extracts of the radiation mutant cultivar and the original plant were quantified by high-performance liquid chromatography with diode array detection.

  13. A New Monoterpene from the Leaves of a Radiation Mutant Cultivar of Perilla frutescens var. crispa with Inhibitory Activity on LPS-Induced NO Production.

    Science.gov (United States)

    Nam, Bomi; So, Yangkang; Kim, Hyo-Young; Kim, Jin-Baek; Jin, Chang Hyun; Han, Ah-Reum

    2017-09-04

    The leaves of Perilla frutescens var. crispa (Lamiaceae)-known as 'Jureum-soyeop' or 'Cha-jo-ki' in Korean, 'ZI SU YE' in Chinese, and 'Shiso' in Japan-has been used as a medicinal herb. Recent gamma irradiated mutation breeding on P. frutescens var. crispa in our research group resulted in the development of a new perilla cultivar, P. frutescens var. crispa (cv. Antisperill; PFCA), which has a higher content of isoegomaketone. The leaves of PFCA were extracted by supercritical carbon dioxide (SC-CO₂) extraction, and phytochemical investigation on this extract led to the isolation and identification of a new compound, 9-hydroxy-isoegomaketone [(2 E )-1-(3-furanyl)-4-hydroxy-4-methyl-2-penten-1-one; 1 ]. Compound 1 exhibited inhibitory activity on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW264.7 cells with an IC 50 value of 14.4 μM. The compounds in the SC-CO₂ extracts of the radiation mutant cultivar and the original plant were quantified by high-performance liquid chromatography with diode array detection.

  14. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    Science.gov (United States)

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (ptea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparison of Inhibitory Activities of meta and para Substituted N-aryl 3-Hydroxypyridin-4-one Mannosides Towards Type 1 Fimbriated E. coli

    Directory of Open Access Journals (Sweden)

    Vesna Petrović Peroković

    2016-06-01

    Full Text Available In uropathogenic Escherichia coli, mannose-specific adhesion is mediated by the FimH adhesin located at the tip of type 1 fimbriae. Novel mannosylated N-aryl substituted 3-hydroxypyridin-4ones with meta substituents on the aryl part of the molecule were prepared, and their inhibitory properties towards the adhesion of E. coli to guinea pig erythrocytes explored using the hemagglutination assay. These results were compared with inhibitory potencies of analogous para derivatives. The assays revealed greater preference of FimH towards para substituted compounds in general, with p-nitro and p-methoxy substituted substrates being much more effective then the hydrophobic p-methyl compound. When substituents are in meta position the positive affect on the binding of compounds in the FimH binding site was observed with all compounds tested but the structure with an alkyl group was shown to be the most effective one. This study provides guidelines for the rational design of novel, more effective series of FimH antagonists. This work is licensed under a Creative Commons Attribution 4.0 International License.

  16. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull

    DEFF Research Database (Denmark)

    Saaby, Lasse; Rasmussen, Hasse Bonde; Jäger, Anna Katharina

    2009-01-01

    AIM OF THE STUDY: This study investigated MAO-A inhibitory activity of methanol extract of Calluna vulgaris (L.) Hull., which traditionally has been used as a nerve calming remedy. MATERIALS AND METHODS: A methanolic extract of Calluna vulgaris was partitioned against heptane, ethyl acetate...

  17. Inhibitory activity and conformational transition of alpha 1-proteinase inhibitor variants

    NARCIS (Netherlands)

    Schulze, A.J.; Huber, R.; Degryse, E.; Speck, D.; Bischoff, Rainer

    1991-01-01

    Several variants of alpha 1-proteinase inhibitor (alpha 1-PI) were investigated by spectroscopic methods and characterized according to their inhibitory activity. Replacement of Thr345 (P14) with Arg in alpha 1-PI containing an Arg residue in position 358 (yielding [Thr345----Arg,

  18. Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition.

    Science.gov (United States)

    Vlahakis, Jason Z; Rahman, Mona N; Roman, Gheorghe; Jia, Zongchao; Nakatsu, Kanji; Szarek, Walter A

    2011-01-01

    Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition

  19. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    African Journals Online (AJOL)

    Results: The results show that the inhibitory activity of phloretin in BGC823 gastric cancer cells was mediated by induction of apoptosis ... anti-proliferative effects of phloretin was dose-dependent and inhibited the growth of BGC823 gastric cancer cells by 73 % at 30 μM; .... weeks at 37 °C in 5 % CO2 in humidified incubator.

  20. Identification and Bioactivity of Compounds from the Mangrove Endophytic Fungus Alternaria sp.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    2015-07-01

    Full Text Available Racemic new cyclohexenone and cyclopentenone derivatives, (±-(4R*,5S*,6S*-3-amino-4,5,6-trihydroxy-2-methoxy-5-methyl-2-cyclohexen-1-one (1 and (±-(4S*,5S*-2,4,5-trihydroxy-3-methoxy-4-methoxycarbonyl-5-methyl-2-cyclopenten-1-one (2, and two new xanthone derivatives 4-chloro-1,5-dihydroxy-3-hydroxymethyl-6-methoxycarbonyl-xanthen-9-one (3 and 2,8-dimethoxy-1,6-dimethoxycarbonyl-xanthen-9-one (4, along with one known compound, fischexanthone (5, were isolated from the culture of the mangrove endophytic fungus Alternaria sp. R6. The structures of these compounds were elucidated by analysis of their MS (Mass, one and two dimensional NMR (nuclear magnetic resonance spectroscopic data. Compounds 1 and 2 exhibited potent ABTS [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid] scavenging activities with EC50 values of 8.19 ± 0.15 and 16.09 ± 0.01 μM, respectively. In comparison to Triadimefon, compounds 2 and 3 exhibited inhibitory activities against Fusarium graminearum with minimal inhibitory concentration (MIC values of 215.52 and 107.14 μM, respectively, and compound 3 exhibited antifungal activity against Calletotrichum musae with MIC value of 214.29 μM.

  1. Entecavir Exhibits Inhibitory Activity against Human Immunodeficiency Virus under Conditions of Reduced Viral Challenge▿

    Science.gov (United States)

    Lin, Pin-Fang; Nowicka-Sans, Beata; Terry, Brian; Zhang, Sharon; Wang, Chunfu; Fan, Li; Dicker, Ira; Gali, Volodymyr; Higley, Helen; Parkin, Neil; Tenney, Daniel; Krystal, Mark; Colonno, Richard

    2008-01-01

    Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients. PMID:18316521

  2. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: stepwise multiple linear regression analysis.

    Science.gov (United States)

    Zhang, Yanyan; Ma, Haile; Wang, Bei; Qu, Wenjuan; Wali, Asif; Zhou, Cunshan

    2016-08-01

    Ultrasound pretreatment of wheat gluten (WG) before enzymolysis can improve the angiotensin converting enzyme (ACE) inhibitory activity of the hydrolysates by alerting the structure of substrate proteins. Establishment of a relationship between the structure of WG and ACE inhibitory activity of the hydrolysates to judge the end point of the ultrasonic pretreatment is vital. The results of stepwise multiple linear regression (MLR) showed that the contents of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil were significantly correlated to ACE Inhibitory activity of the hydrolysate, with the standard partial regression coefficients were 3.729, -0.676, -0.252, 0.022 and 0.156, respectively. The R(2) of this model was 0.970. External validation showed that the stepwise MLR model could well predict the ACE inhibitory activity of hydrolysate based on the content of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil of WG before hydrolysis. A stepwise multiple linear regression model describing the quantitative relationships between the structure of WG and the ACE Inhibitory activity of the hydrolysates was established. This model can be used to predict the endpoint of the ultrasonic pretreatment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Benzoquinones and terphenyl compounds as phosphodiesterase-4B inhibitors from a fungus of the order Chaetothyriales (MSX 47445).

    Science.gov (United States)

    El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-03-22

    Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.

  4. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    Science.gov (United States)

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of β-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum

    Directory of Open Access Journals (Sweden)

    Ting Zhao

    2013-01-01

    Full Text Available It was reported that the main chemical constituents in plants of genus Peganum were a serial of β-carboline and quinoline alkaloids. These alkaloids were quantitatively assessed for selective inhibitory activities on acetylcholinesterase (AChE and butyrylcholinesterase (BChE by in vitro Ellman method. The results indicated that harmane was the most potent selective AChE inhibitor with an IC50 of 7.11 ± 2.00 μM and AChE selectivity index (SI, IC50 of BChE/IC50 of AChE of 10.82. Vasicine was the most potent BChE inhibitor with feature of dual AChE/BChE inhibitory activity, with an IC50 versus AChE/BChE of 13.68 ± 1.25/2.60 ± 1.47 μM and AChE SI of 0.19. By analyzing and comparing the IC50 and SI of those chemicals, it was indicated that the β-carboline alkaloids displayed more potent AChE inhibition but less BChE inhibition than quinoline alkaloids. The substituent at the C7 position of the β-carboline alkaloids and C3 and C9 positions of quinoline alkaloids played a critical role in AChE or BChE inhibition. The potent inhibition suggested that those alkaloids may be used as candidates for treatment of Alzheimer’s disease. The analysis of the quantitative structure-activity relationship of those compounds investigated might provide guidance for the design and synthesis of AChE and BChE inhibitors.

  6. Inhibitory Activity of Marine Sponge-Derived Natural Products against Parasitic Protozoa

    Directory of Open Access Journals (Sweden)

    Deniz Tasdemir

    2010-01-01

    Full Text Available In this study, thirteen sponge-derived terpenoids, including five linear furanoterpenes: furospinulosin-1 (1, furospinulosin-2 (2, furospongin-1 (3, furospongin-4 (4, and demethylfurospongin-4 (5; four linear meroterpenes: 2-(hexaprenylmethyl-2-methylchromenol (6, 4-hydroxy-3-octaprenylbenzoic acid (7, 4-hydroxy-3-tetraprenyl-phenylacetic acid (8, and heptaprenyl-p-quinol (9; a linear triterpene, squalene (10; two spongian-type diterpenes dorisenone D (11 and 11β-acetoxyspongi-12-en-16-one (12; a scalarane-type sesterterpene; 12-epi-deoxoscalarin (13, as well as an indole alkaloid, tryptophol (14 were screened for their in vitro activity against four parasitic protozoa; Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Cytotoxic potential of the compounds on mammalian cells was also assessed. All compounds were active against T. brucei rhodesiense, with compound 8 being the most potent (IC50 0.60 μg/mL, whereas 9 and 12 were the most active compounds against T. cruzi, with IC50 values around 4 μg/mL. Compound 12 showed the strongest leishmanicidal activity (IC50 0.75 µg/mL, which was comparable to that of miltefosine (IC50 0.20 µg/mL. The best antiplasmodial effect was exerted by compound 11 (IC50 0.43 µg/mL, followed by compounds 7, 10, and 12 with IC50 values around 1 µg/mL. Compounds 9, 11 and 12 exhibited, besides their antiprotozoal activity, also some cytotoxicity, whereas all other compounds had low or no cytotoxicity towards the mammalian cell line. This is the first report of antiprotozoal activity of marine metabolites 1–14, and points out the potential of marine sponges in discovery of new antiprotozoal lead compounds.

  7. Synthesis and Nrf2 Activating Ability of Thiourea and Vinyl Sulfoxide Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Young Sun; Hwang, Hyun Sook; Nam, Ghilsoo; Choi, Kyung Il [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-08-15

    Thiourea and vinyl sulfoxide derivatives were designed based on the structures of sulforaphene and gallic acid, prepared and tested for HO-1 inducing activity as a measure of Nrf2 activation, and inhibitory effect on NO production as a measure of anti-inflammatory activity. Both series of compounds showed moderate activity on HO-1 induction, and no inhibitory effect on NO production. Interestingly the thiourea compound 6d showed better HO-1 induction (71% SFN) than the corresponding isothiocyanate compound 6a (55% SFN). Overall, it seemed that more efficient electrophile is needed to get more effective Nrf2 activator.

  8. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  9. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus.

    Science.gov (United States)

    Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken

    2005-06-01

    Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.

  10. Separation of antioxidant and α-glucosidase inhibitory flavonoids from the aerial parts of Asterothamnus centrali-asiaticus.

    Science.gov (United States)

    Wang, Yan-Ming; Zhao, Jian-Qiang; Yang, Jun-Li; Tao, Yan-Duo; Mei, Li-Juan; Shi, Yan-Ping

    2017-06-01

    A new flavonoid, along with 16 known ones, was separated from the aerial parts of Asterothamnus centrali-asiaticus. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR techniques and HRESIMS. To confirm the structure of the new compound, computational prediction of its 13 C chemical shifts was performed. All of the 17 flavonoids were reported from A. centrali-asiaticus for the first time. In addition, all flavonoids were evaluated for their antioxidant and α-glucosidase inhibitory activities. The results showed that 10 of them exhibited antioxidant activity. Meanwhile, four flavonoids displayed α-glucosidase inhibitory effect with IC 50 values ranging from 38.9 to 299.7 μM.

  11. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities.

    Science.gov (United States)

    Qin, Ning-Bo; Jia, Cui-Cui; Xu, Jun; Li, Da-Hong; Xu, Fan-Xing; Bai, Jiao; Li, Zhan-Lin; Hua, Hui-Ming

    2017-06-01

    Two new amide compounds, mariamides A and B (1-2), were obtained together with fourteen known compounds from the seeds of milk thistle (Silybum marianum). Their structures were established on the basis of extensive 1D and 2D NMR analyses, as well as HR-ESI-MS data. Most of the compounds showed significant antioxidant activities than positive control in ABTS and FRAP assays. However, only amide compounds 1-4 showed moderate DPPH radical scavenging activity and compounds 7 and 16 showed the most potent activity against DPPH. Most of the compounds showed moderate to stronger α-glucosidase inhibitory activities. Nevertheless, only flavonoids showed strong PTP1B inhibitory activities. These results indicate a use of milk thistle seed extracts as promising antioxidant and antidiabetic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ophiamides A-B, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum.

    Science.gov (United States)

    Firdous, Sadiqa; Ansari, Nida Hassan; Fatima, Itrat; Malik, Abdul; Afza, Nighat; Iqbal, Lubna; Lateef, Mehreen

    2012-07-01

    Ophiamides A (1) and B (2), two new sphingolipids have been isolated from the n-hexane subfraction of the MeOH extract of the whole plant of Heliotropium ophioglossum along with glycerol monopalmitate (3) and β-sitosterol 3-O-β-D: -glucoside (4) reported for the first time from this species. Their structures were elucidated by spectroscopic techniques including MS and 2D-NMR spectroscopy. Both the compounds 1 and 2 showed potent inhibitory activity against the enzyme urease.

  13. Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaeia

    2016-07-01

    Full Text Available Background: There has been evidence that proteins are potentially excellent source of antioxidants, antihypertensive and antimicrobial peptides, and that enzymatic hydrolysis is an effective method to release these peptides from protein molecules. The functional properties of protein hydrolysates depends on the protein substrate, the specificity of the enzymes, the conditions used during proteolysis, degree of hydrolysis, and the nature of peptides released including molecular weight, amino acid composition, and hydrophobicity. Context and purpose of this study: The biomass of Kluyveromyces marxianus was considered as a source of ACE inhibitory, antioxidant and antimicrobial peptides. Results: Autolysis and enzymatic hydrolysis were completed respectively, after 96 h and 5 h. Overall, trypsin (18.52% DH and chymotrypsin (21.59% DH treatments were successful in releasing antioxidant and ACE inhibitory peptides. Autolysate sample (39.51% DH demonstrated poor antioxidant and ACE inhibitory activity compared to trypsin and chymotrypsin hydrolysates. The chymotrypsin 3-5 kDa (301.6±22.81 μM TE/mg protein and trypsin < 3 kDa (280.16±39.16 μM TE/mg protein permeate peptide fractions showed the highest DPPH radical scavenging activity. The trypsin <3 kDa permeate peptide fraction showed the highest ABTS radical scavenging (1691.1±48.68 μM TE/mg protein and ACE inhibitory (IC50=0.03±0.001 mg/mL activities. The fraction (MW=5-10 kD obtained after autolysis treatment showed antibacterial activity against St. aureus and Lis. monocytogenes in well diffusion screening. The minimum inhibitory concentration (MIC value was 13.3 mg/mLagainst St. aureus and Lis. monocytogenes calculated by turbidimetric assay and it showed bactericidal activity against St. aureus at 21.3 mg/mL protein concentration. Conclusions: Altogether, the results of this study reveal that K. marxianus proteins contain specific peptides in their sequences which can be released by

  14. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities.

    Science.gov (United States)

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2014-01-01

    Ten new geranylated 2-arylbenzofuran derivatives, including two monoterpenoid 2-arylbenzofurans (1 and 2), two geranylated 2-arylbenzofuran enantiomers (3a and 3b), and six geranylated 2-arylbenzofurans (4-9), along with four known 2-arylbenzofurans (10-13) were isolated from the root bark of Morus alba var. tatarica. Their structures and relative configurations were established on the basis of spectroscopic data analysis. Compounds 3-7 with one asymmetric carbon at C-7″ were supposed to be enantiomeric mixtures confirmed by chiral HPLC analysis, and the absolute configurations of each enantiomer in 3-7 were determined by Rh2(OCOCF3)4-induced CD and Snatzke's method. The enantiomers with the substituting group at C-2' exhibited better resolutions on a Chiralpak AD-H column than those with the substituting group at C-4'. Compounds 1-7, 10, 11 and 13, showed α-glucosidase inhibitory activities with IC50 values of 11.9-131.9 μM, and compounds 1 and 9-13 inhibited protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 7.9-38.1 μM. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  16. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  17. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  18. Characterization of Compounds with Tumor–Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii Mycelia Produced by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Henan Zhang

    2017-04-01

    Full Text Available The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC, high-speed countercurrent chromatography (HSCCC, and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS spectroscopic methods as ergosterol (RF1, ergosta-7,22-dien-3β-yl pentadecanoate (RF3, 3,4-dihydroxy benzaldehyde(RF6, inoscavinA (RF7, baicalein(RF10, and 24-ethylcholesta-5,22-dien-3β-ol (RF13. To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  19. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    International Nuclear Information System (INIS)

    Ni Yun; Wu Liang; Wu Dan; Zhu Shiqun

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales. (interdisciplinary physics and related areas of science and technology)

  20. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L ...

    African Journals Online (AJOL)

    In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family malvaceae) on selected cytochrome p450 isoforms. SS Johnson, FT Oyelola, T Ari, H Juho. Abstract. Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was ...

  1. In Silico and In Vitro Anticancer Activity of Isolated Novel Marker Compound from Chemically Modified Bioactive Fraction from Curcuma longa (NCCL).

    Science.gov (United States)

    Naqvi, Arshi; Malasoni, Richa; Gupta, Swati; Srivastava, Akansha; Pandey, Rishi R; Dwivedi, Anil Kumar

    2017-10-01

    Turmeric ( Curcuma longa ) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell

  2. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P.

    2006-01-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-κB, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment

  3. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57.

    Science.gov (United States)

    Wang, Mengjie; Dong, Qi; Wang, Hua; He, Yaqing; Chen, Ying; Zhang, Hong; Wu, Rong; Chen, Xinchun; Zhou, Boping; He, Jason; Kung, Hsiang-Fu; Huang, Canhua; Wei, Yuquan; Huang, Jian-dong; Xu, Hongxi; He, Ming-Liang

    2016-02-23

    There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection.

  4. In vitro inhibitory effects of pulvinic acid derivatives isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity.

    Science.gov (United States)

    Huang, Yu-Ting; Onose, Jun-ichi; Abe, Naoki; Yoshikawa, Kunie

    2009-04-23

    Increasing attention has been focused on food-drug interactions. We have investigated the inhibitory effect of Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 (CYP) 1A2, 2C9, 2D6, and 3A4, the main drug-metabolizing enzymes. Three pulvinic acid derivatives, atromentic acid (1), variegatic acid (2), and xerocomic acid (3), isolated from Boletus calopus and Suillus bovinus, revealed nonspecific inhibitory effects on all four CYPs. Using these compounds, the maximum IC50 values obtained with CYP3A4 in vitro were atromentic acid (1), 65.1+/-3.9 microM; variegatic acid (2), 2.2+/-0.1 microM; and xerocomic acid (3), 2.4+/-0.1 microM. Variegatic acid (2) and xerocomic acid (3) were effective inhibitors, comparable to cimetidine, dicoumarol, erythromycin, safrole, and uniconazole. Variegatic acid (2) and xerocomic acid (3) efficiently reduced ferryl myoglobin in CYPs. Reduction of ferryl heme to ferric heme is likely the mechanism of the nonspecific inhibitory effects of these compounds on CYPs.

  5. Synthesis and Herbicidal Activity of New Hydrazide and Hydrazonoyl Derivatives

    Directory of Open Access Journals (Sweden)

    František Šeršeň

    2015-08-01

    Full Text Available Three new hydrazide and five new hydrazonoyl derivatives were synthesized. The chemical structures of these compounds were confirmed by 1H-NMR, IR spectroscopy and elemental analysis. The prepared compounds were tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts and growth of the green algae Chlorella vulgaris. IC50 values of these compounds varied in wide range, from a strong to no inhibitory effect. EPR spectroscopy showed that the active compounds interfered with intermediates Z•/D•, which are localized on the donor side of photosystem II. Fluorescence spectroscopy suggested that the mechanism of inhibitory action of the prepared compounds possibly involves interactions with aromatic amino acids present in photosynthetic proteins.

  6. Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory effect of rhubarb on α-glucosidase activity in the small intestine of rats with type 1 diabetes. Methods: Type 1 diabetic rat model was established by intraperitoneally injecting 30 male SD rats with 1 % streptozocin (STZ). Rats with fasting blood glucose > 11 mmol/L (24) were used for the ...

  7. Polyphenols from the stems of Morus alba and their inhibitory activity against nitric oxide production by lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Rivière, Céline; Krisa, Stéphanie; Péchamat, Laurent; Nassra, Merian; Delaunay, Jean-Claude; Marchal, Axel; Badoc, Alain; Waffo-Téguo, Pierre; Mérillon, Jean-Michel

    2014-09-01

    Neuroinflammatory processes are involved in the pathogenesis of many neurodegenerative disorders. Microglial cells, the main immune cells of the central nervous system, represent a target of interest to search for naturally occurring anti-inflammatory products. In this study, we evaluated the anti-inflammatory properties of polyphenols obtained from the stems of Morus alba. This edible species, known as white mulberry, is frequently studied because of its traditional use in Asian medicine and its richness in different types of polyphenols, some of which are known to be phytoalexins. One new coumarin glycoside, isoscopoletin 6-(6-O-β-apiofuranosyl-β-glucopyranoside) (1) was mainly isolated by CPC (centrifugal partition chromatography) from this plant, together with seven known polyphenols (2-8). Their structures were established on the basis of spectroscopic analyses including extensive 2D NMR studies. The eight isolated compounds were evaluated for their inhibitory activities on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. The absence of cell toxicity is checked by a MTT assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein.

    Science.gov (United States)

    Bellio, Pierangelo; Di Pietro, Letizia; Mancini, Alisia; Piovano, Marisa; Nicoletti, Marcello; Brisdelli, Fabrizia; Tondi, Donatella; Cendron, Laura; Franceschini, Nicola; Amicosante, Gianfranco; Perilli, Mariagrazia; Celenza, Giuseppe

    2017-06-15

    RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC 50 ) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were

  9. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    OpenAIRE

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Ro, Hyunju; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in ? -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respect...

  10. A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-03-01

    Full Text Available A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

  11. The Inhibitory Effect of Prunella vulgaris L. on Aldose Reductase and Protein Glycation

    Directory of Open Access Journals (Sweden)

    Hong Mei Li

    2012-01-01

    Full Text Available To evaluate the aldose reductase (AR enzyme inhibitory ability of Prunella vulgaris L. extract, six compounds were isolated and tested for their effects. The components were subjected to in vitro bioassays to investigate their inhibitory assays using rat lens aldose reductase (rAR and human recombinant AR (rhAR. Among them, caffeic acid ethylene ester showed the potent inhibition, with the IC50 values of rAR and rhAR at 3.2±0.55 μM and 12.58±0.32 μM, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, this compound showed noncompetitive inhibition against rhAR. Furthermore, it inhibited galactitol formation in a rat lens incubated with a high concentration of galactose. Also it has antioxidative as well as advanced glycation end products (AGEs inhibitory effects. As a result, this compound could be offered as a leading compound for further study as a new natural products drug for diabetic complications.

  12. Synthesis and phytotoxic activity of 1,2,3-triazole derivatives

    International Nuclear Information System (INIS)

    Borgati, Thiago F.; Alves, Rosemeire B.

    2013-01-01

    Thirteen triazole derivatives bearing halogenated benzyl substituents were synthesized using the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), a leading example of the click chemistry approach, as the key step. The biological activity of the compounds was evaluated, and it was found that these compounds interfere with the germination and radicle growth (shoots and roots) of two dicotyledonous species, Lactuca sativa and Cucumis sativus, and one monocotyledonous species, Allium cepa. The compounds showed predominantly inhibitory activity related to the evaluated species mainly at the concentration of 10 -4 mol L -1 . Some of them presented inhibitory activity comparable to 2,4-D (2,4-dichlorophenoxyacetic acid), used as positive control. (author)

  13. Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone.

    Science.gov (United States)

    Sunohara, Yukari; Baba, Yohei; Matsuyama, Shigeru; Fujimura, Kaori; Matsumoto, Hiroshi

    2015-07-01

    Screening and identification of phytotoxic volatile compounds were performed using 71 medicinal plant species to find new natural compounds, and the characterization of the promising compound was investigated to understand the mode of action. The volatile compounds from Asarum sieboldii Miq. showed the strongest inhibitory effect on the hypocotyl growth of lettuce seedlings (Lactuca sativa L.cv. Great Lakes 366), followed by those from Schizonepeta tenuifolia Briquet and Zanthoxylum piperitum (L.) DC.. Gas chromatography-mass spectrometry (GC/MS) identified four volatile compounds, α-pinene (2,6,6-trimethylbicyclo[3.1.1]hept-2-ene), β-pinene (6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane), 3-carene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene), and eucarvone (2,6,6-trimethy-2,4-cycloheptadien-1-one), from A. sieboldii, and three volatile compounds, limonene (1-methyl-4-(1-methylethenyl)-cyclohexene), menthone (5-methyl-2-(propan-2-yl)cyclohexan-1-one), and pulegone (5-methyl-2-propan-2-ylidenecyclohexan-1-one), from S. tenuifolia. Among these volatile compounds, eucarvone, menthone, and pulegone exhibited strong inhibitory effects on both the root and shoot growth of lettuce seedlings. Eucarvone-induced growth inhibition was species-selective. Cell death, the generation of reactive oxygen species (ROS), and lipid peroxidation were induced in susceptible finger millet seedlings by eucarvone treatment, whereas this compound (≤158 μM) did not cause the increase of lipid peroxidation and ROS production in tolerant maize. The results of the present study show that eucarvone can have strong phytotoxic activity, which may be due to ROS overproduction and subsequent oxidative damage in finger millet seedlings.

  14. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    Science.gov (United States)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  15. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    Science.gov (United States)

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  16. Synthesis and evaluation of 2-benzylidene-1-tetralone derivatives for monoamine oxidase inhibitory activity.

    Science.gov (United States)

    Amakali, Klaudia T; Legoabe, Lesetja Jan; Petzer, Anel; Petzer, Jacobus P

    2018-05-01

    Chalcone has been identified as a promising lead for the design of monoamine oxidase (MAO) inhibitors. This study attempted to discover potent and selective chalcone-derived MAO inhibitors by synthesising a series consisting of various cyclic chalcone derivatives. The cyclic chalcones were selected based on the possibility that their restricted structures would confer a higher degree of MAO isoform selectivity, and included the following chemical classes: 1-indanone, 1-tetralone, 1-benzosuberone, chromone, thiochromone, 4-chromanone and 4-thiochromanone. The results showed that the cyclic chalcones are in general good potency, and in most instances specific inhibitors of the human MAO-B isoform. Among these compounds, the 4-chromanone derivative was the most potent MAO-B inhibitor with an IC50 value of 0.156 µM. To further investigate the MAO inhibition of cyclic chalcones, a series of twenty-three 2-benzylidene-1-tetralone derivatives were synthesised and evaluated as MAO inhibitors. Most 2-benzylidene-1-tetralones possess good inhibitory activity and specificity for MAO-B with the most potent inhibitor displaying an IC50 value of 0.0064 µM, while the most potent MAO-A inhibitor possessed an IC50 value of 0.754 µM. This study thus shows that certain cyclic chalcones are human MAO-B inhibitors, compounds that could be suitable for the treatment of neurodegenerative disorders such as Parkinson's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Bioactive Compounds from the Red Sea Marine Sponge Hyrtios Species

    Directory of Open Access Journals (Sweden)

    Hani Z. Asfour

    2013-03-01

    Full Text Available In continuation of our search for drug leads from Red Sea sponges we have investigated the ethyl acetate fraction of the organic extract of the Red Sea sponge Hyrtios species. Bioassay-directed fractionation of the active fraction resulted into the identification of three new alkaloids, hyrtioerectines D–F (1–3. Hyrtioerectines D–F belong to the rare marine alkaloids in which the indole and β-carboline fragments of the molecule are linked through C-3/C-3 of both moieties. The structures of the isolated compounds were established based on different spectroscopic data including UV, IR, 1D and 2D NMR (COSY, HSQC, and HMBC and high-resolution mass spectral studies. The antimicrobial activity against several pathogens and the free radical scavenging activity of the compounds using DPPH reagent were evaluated. In addition, the growth inhibitory activity of the compounds against three cancer cell lines was also evaluated. Hyrtioerectines D–F (1–3 displayed variable antimicrobial, free radical scavenging and cancer growth inhibition activities. Generally, compounds 1 and 3 were more active than compound 2.

  18. In vitro evaluation of capsaicin inhibitory effects on zonula occludens toxin in vibrio cholerae ATCC14035 strain

    Directory of Open Access Journals (Sweden)

    Soroor Erfanimanesh

    2014-10-01

    Conclusion: Capsaicin is one of the active compounds of red chili that can drastically suppress zot gene expression and shows promising inhibitory effect against V. cholerae zot production. Thus, routine intake of red chilli, which is easily available and inexpensive, may be an alternative approach to prevent and control symptoms of cholera.

  19. Molecular Descriptors Family on Vertex Cutting: Relationships between Acelazolamide Structures and their Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2009-12-01

    Full Text Available Aim: To investigate the relationship between the structural information of acetazolamides and their inhibitory activity on carbonic anhydrase II. Material and Method: A sample of previously reported acetazolamides was studied. A pool of descriptors was calculated based on matrix representation and vertex cut in order to be included in the multiple linear regression analysis. The best performing model in terms of goodness-of-fit was analysed in order to assess its validity and reliability. The model was compared with previously reported models using a series of information and prediction criteria besides the Steiger’s Z test. Results: A model with a 99.77% determination coefficient proved to be the best performing model. The obtained model proved to have a less than 5% average of the absolute difference between the observed and the estimated inhibitory activity. The information and prediction criteria showed that the obtained model was better than the previously reported models. This conclusion is also sustained by the results of Steiger’s Z test (7.78; p = 3.66·10-15. Conclusion: The inhibitory activity on carbonic anhydrase II of acetazolamides proved to be of geometric and topologic nature and depended on the compounds’ melting point, relative atomic mass and atomic electronegativity.

  20. Inhibitory Effect and Mechanism of Arctium lappa Extract on NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Kim, Young-Kyu; Koppula, Sushruta; Shim, Do-Wan; In, Eun-Jung; Kwak, Su-Bin; Kim, Myong-Ki; Yu, Sang-Hyeun; Lee, Kwang-Ho; Kang, Tae-Bong

    2018-01-01

    Arctium lappa (A. lappa) , Compositae, is considered a potential source of nutrition and is used as a traditional medicine in East Asian countries for centuries. Although several studies have shown its biological activities as an anti-inflammatory agent, there have been no reports on A. lappa with regard to regulatory role in inflammasome activation. The purpose of this study was to investigate the inhibitory effects of A. lappa extract (ALE) on NLRP3 inflammasome activation and explore the underlying mechanisms. We found that ALE inhibited IL-1 β secretion from NLRP3 inflammasome activated bone marrow derived macrophages but not that secreted by NLRC4 and AIM2 inflammasomes activation. Mechanistic studies revealed that ALE suppressed the ATPase activity of purified NLRP3 and reduced mitochondrial reactive oxygen species (mROS) generated during NLRP3 activation. Therefore, the inhibitory effect of ALE on NLRP3 inflammasome might be attributed to its ability to inhibit the NLRP3 ATPase function and attenuated the mROS during inflammasome activation. In addition, ALE significantly reduced the LPS-induced increase of plasma IL-1 β in mouse peritonitis model. These results provide evidence of novel anti-inflammatory mechanisms of A. lappa , which might be used for therapeutic applications in the treatment of NLRP3 inflammasome-associated inflammatory disorders.

  1. Epipolythiodiketopiperazines from the Marine Derived Fungus Dichotomomyces cejpii with NF-κB Inhibitory Potential

    Directory of Open Access Journals (Sweden)

    Henrik Harms

    2015-08-01

    Full Text Available The Ascomycota Dichotomomyces cejpii was isolated from the marine sponge Callyspongia cf. C. flammea. A new gliotoxin derivative, 6-acetylmonodethiogliotoxin (1 was obtained from fungal extracts. Compounds 2 and 3, methylthio-gliotoxin derivatives were formerly only known as semi-synthetic compounds and are here described as natural products. Additionally the polyketide heveadride (4 was isolated. Compounds 1, 2 and 4 dose-dependently down-regulated TNFα-induced NF-κB activity in human chronic myeloid leukemia cells with IC50s of 38.5 ± 1.2 µM, 65.7 ± 2.0 µM and 82.7 ± 11.3 µM, respectively. The molecular mechanism was studied with the most potent compound 1 and results indicate downstream inhibitory effects targeting binding of NF-κB to DNA. Compound 1 thus demonstrates potential of epimonothiodiketopiperazine-derived compounds for the development of NF-κB inhibitors.

  2. Melanogenesis-inhibitory activity of aromatic glycosides from the stem bark of Acer buergerianum.

    Science.gov (United States)

    Akihisa, Toshihiro; Orido, Masashi; Akazawa, Hiroyuki; Takahashi, Akitomo; Yamamoto, Ayako; Ogihara, Eri; Fukatsu, Makoto

    2013-02-01

    A new benzyl glucoside, 3-O-demethylnikoenoside (1), along with eleven known compounds, including seven aromatic glycosides, 2-8, three lignans, 9-11, and one cyclitol, 12, were isolated from the BuOH-soluble fraction of a MeOH extract of Acer buergerianum stem bark. The structures of the new compound were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of compounds 1-12 on melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three compounds, i.e., hovetrichoside B (8), pinoresinol 4-O-β-D-glucopyranoside (9), and pinoresinol 4-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside (10), have been found to exhibit inhibitory effects with 41-49% melanin content compared to the control at 100 μM and low cytotoxicity to the cells (81-92% cell viability at 100 μM). Western blot analysis showed that compound 8 reduced the protein levels of MITF (=microphtalmia-associated transcription factor) and tyrosinase, in a concentration-dependent manner, suggesting that 8 inhibits melanogenesis in α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase. On the other hand, upon Western blotting, compound 9 was found to reduce the protein levels of tyrosinase and TRP-2, while it increased MITF and TRP-1 (=tyrosine-related protein 1), in a concentration-dependent manner, indicating that 9 inhibits melanogenesis in α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of tyrosinase and TRP-2. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies.

    Science.gov (United States)

    Taha, Muhammad; Imran, Syahrul; Ismail, Nor Hadiani; Selvaraj, Manikandan; Rahim, Fazal; Chigurupati, Sridevi; Ullah, Hayat; Khan, Fahad; Salar, Uzma; Javid, Muhammad Tariq; Vijayabalan, Shantini; Zaman, Khalid; Khan, Khalid Mohammed

    2017-10-01

    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1 H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC 50 =0.38±0.82µM) and 23 (IC 50 =1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC 50 =1.77-2.98µM when compared with the standard acarbose (IC 50 =1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    aureus growth and copper-induced peroxidation of human low-density lipoprotein, confirming antimicrobial and antioxidant activities of the extract. On the other hand, bark extract inhibited cellulase cocktail activity by reducing cellulose hydrolysis by 82.32% after 48 h of incubation. Overall, phenolic compounds generated from biomass fractionation are important players in cellulolytic enzyme inhibition; removal of biomass extractives prior to pretreatment could reduce inhibitory compounds in prehydrolyzate while generating phytochemicals with societal benefits.

  5. Effects of Heat, pH, and Gamma Irradiation Treatments on Lipase Inhibitory Activity of Sargassum thunbergii Ethanol Extract

    International Nuclear Information System (INIS)

    Kim, D.H.; Kim, K.B.W.R.; Kim, M.J.; Sunwoo, C.; Jung, S.A.; Kim, H.J.; Jeong, D.H.; Ahn, D.H.; Kim, T.W.; Cho, Y.J.

    2012-01-01

    Inhibitory activity of Sagassum thunbergii (ST) against porcine pancreatic lipase was assessed after heat treatment, pH changes, and gamma irradiation. This analysis revealed that the ST ethanol extract exhibited high lipase inhibitory activity (37.37%) at 5 mg/mL. The ST ethanol extract was treated with heat at 60°C for 10, 30, and 60 min; 80 and 100°C for 10 and 20 min; and 121°C for 15 min, pH (2, 4, 6, 8 and 10) and γ -irradiation (3, 7 and 20 kGy). The lipase inhibitory activity of the ST ethanol extract increased in all heat treatments, especially at 121°C for 15 min (51.55%) compared with the control. With regard to pH stability, the ST ethanol extract showed no significant changes at pH 4 ~ 8, but somewhat decreased inhibitory activity was revealed at pH 2 (26.25%) and 10 (29.93%). On the other hand, the ST ethanol extract was not affected by γ -irradiation treatment conditions used in this study. These results suggest that ST has a potential role as a functional food agent. (author)

  6. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    Science.gov (United States)

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  7. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives

    Directory of Open Access Journals (Sweden)

    Prachayasittikul V

    2014-08-01

    Full Text Available Veda Prachayasittikul,1 Ratchanok Pingaew,2 Chanin Nantasenamat,3 Supaluk Prachayasittikul,3 Somsak Ruchirawat,4,5 Virapong Prachayasittikul1 1Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 2Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand; 3Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 4Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 5Chulabhorn Graduate Institute, Bangkok, Thailand Purpose: Estrogens play important roles in the pathogenesis and progression of breast cancer as well as estrogen-related diseases. Aromatase is a key enzyme in the rate-limiting step of estrogen production, in which its inhibition is one strategy for controlling estrogen levels to improve prognosis of estrogen-related cancers and diseases. Herein, a series of metal (Mn, Cu, and Ni complexes of 8-hydroxyquinoline (8HQ and uracil derivatives (4–9 were investigated for their aromatase inhibitory and cytotoxic activities. Methods: The aromatase inhibition assay was performed according to a Gentest™ kit using CYP19 enzyme, wherein ketoconazole and letrozole were used as reference drugs. The cytotoxicity was tested on normal embryonic lung cells (MRC-5 using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: Only Cu complexes (6 and 9 exhibited aromatase inhibitory effect with IC50 0.30 and 1.7 µM, respectively. Cytotoxicity test against MRC-5 cells showed that Mn and Cu complexes (5 and 6, as well as free ligand 8HQ, exhibited activity with IC50 range 0.74–6.27 µM. Conclusion: Cu complexes (6 and 9 were found to act as a novel class of aromatase inhibitor. Our findings suggest that these 8HQ–Cu–uracil complexes are promising agents that could be potentially developed as a selective anticancer agent for breast cancer

  8. New α-Pyridones with Quorum-Sensing Inhibitory Activity from Diversity-Enhanced Extracts of a Streptomyces sp. Derived from Marine Algae.

    Science.gov (United States)

    Du, Yuqi; Sun, Jian; Gong, Qianhong; Wang, Yi; Fu, Peng; Zhu, Weiming

    2018-02-28

    Four new α-pyrones (1-4) and eight known analogues (5-12) were identified from the secondary metabolites of Streptomyces sp. OUCMDZ-3436 derived from the marine green algae Enteromorpha prolifera. Seven new α-pyridones (14-20) were constructed by diversity-oriented synthesis, which has been an effective approach to expanding the chemical space of natural-product-like compounds. Compounds 16, 17, 19, and 20 were found to have inhibitory effect on the gene expression controlled by quorum sensing in Pseudomonas aeruginosa QSIS-lasI.

  9. Description of two Enterococcus strains isolated from traditional Peruvian artisanal-produced cheeses with a bacteriocin-like inhibitory activity

    Directory of Open Access Journals (Sweden)

    Aguilar Galvez A.

    2009-01-01

    Full Text Available The aim of this work was to isolate and to characterize strains of lactic acid bacteria (LAB with bacteriocin-like inhibitory activity from 27 traditional cheeses artisanal-produced obtained from different Peruvian regions. Twenty Gram+ and catalasenegative strains among 2,277 isolates exhibited bacteriocin-like inhibitory activity against Listeria monocytogenes CWBIB2232 as target strain. No change in inhibitory activity was observed after organic acid neutralization and treatment with catalase of the cell-free supernatant (CFS. The proteinic nature of the antimicrobial activity was confirmed for the twenty LAB strains by proteolytic digestion of the CFS. Two strains, CWBI-B1431 and CWBI-B1430, with the best antimicrobial activity were selected for further researches. These strains were taxonomically identified by phenotypic and genotypic analyses as Enterococcus mundtii (CWBI-B1431 and Enterococcus faecium (CWBI-B1430. The two strains were sensitive to vancomycin (MIC 2 μg.ml-1 and showed absence of haemolysis.

  10. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity.

    Science.gov (United States)

    Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng

    2018-02-20

    Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.

  11. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  12. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  13. Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities.

    Science.gov (United States)

    Ji, Wei; Zhang, Chaohua; Ji, Hongwu

    2017-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) are considered useful in managing 2 often associated conditions: diabetes and hypertension. In this study, corolase PP was used to hydrolyze Antarctic krill protein. The hydrolysate (AKH) was isolated by ultrafiltration and purified by size-exclusion chromatography, ion exchange chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) sequentially. The in vitro inhibitory activities of all AKHs and several fractions obtained against ACE and DPP-IV were assessed. Two peptides, purified with dual-strength inhibitory activity against ACE and DPP-IV, were identified by TOF-MS/MS. Results indicated that not all fractions exhibited dual inhibitory activities of ACE and DPP-IV. The purified peptide Lys-Val-Glu-Pro-Leu-Pro had half-maximal inhibitory concentrations (IC 50 ) of 0.93±0.05 and 0.73±0.04 mg/mL against ACE and DPP-IV, respectively. The other peptide Pro-Ala-Leu had IC 50 values of 0.64±0.05 and 0.88±0.03 mg/mL against ACE and DPP-IV, respectively. This study firstly reported the sequences of dual bioactive peptides from Antarctic krill proteins, further provided new insights into the bioactive peptides responsible for the ACE and DPP-IV inhibitory activities from the Antarctic krill protein hydrolysate to manage hypertension and diabetes. © 2017 Institute of Food Technologists®.

  14. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE-inhibitory activity

    Directory of Open Access Journals (Sweden)

    Vioque, Javier

    2004-12-01

    Full Text Available ACE activity is related to increased arterial pressure and coronary diseases. A rapeseed protein isolate was hydrolyzed with the protease Alcalase in order to investigate the possible presence of ACE inhibitory peptides in the resulting hydrolysates. Hydrolysis for 30 min yielded a hydrolysate with the highest ACE inhibitory activity. Two fractions of this hydrolysate obtained by Biogel P2 gel filtration chromatography were used for further purification of ACE inhibitory peptides. Three fractions with ACE inhibitory activity were purified by reverse-phase HPLC of Biogel P2 f ractions. This demonstrates that rapeseed protein hydrolysates represent a good source of ACE inhibitory peptides .La actividad de ECA está relacionada con una presión arterial alta y enfermedades cardíacas. Un aislado proteico de colza se hidrolizó con alcalasa para estudiar la posible presencia de péptidos inhibidores de ECA en el hidrolizado. La hidrólisis durante 30 min produjo el hidrolizado con la mayor actividad inhibidora de ECA. Dos fracciones de este hidrolizado, obtenidas por cromatografía de filtración en gel Biogel P2, se usaron para la purificación de péptidos inhibidores de ECA. Tres fracciones con actividad inhibidora de ECA se purificaron mediante HPLC en fase reversa de las fracciones obtenidas mediante Biogel P2. Esto demuestra que los hidrolizados proteicos de colza representan una buena fuente de péptidos inhibidores de ECA.

  15. Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production.

    Science.gov (United States)

    Xia, Guiyang; Zhou, Li; Ma, Jianghao; Wang, Ying; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Three new sesquiterpenes including a new elemane-type sesquiterpene, 5βH-elem-1,3,7,8-tetraen-8,12-olide (1), and two new carabrane-type sesquiterpenes, 7α,11-epoxy-6α-methoxy-carabrane-4,8-dione (2) and 8,11-epidioxy-8-hydroxy-4-oxo-6-carabren (3), together with eight known sesquiterpenes (4-11) were isolated from Curcuma wenyujin Y. H. Chen et C. Ling. Their structures were elucidated based on extensive spectroscopic analyses. A possible biogenetic scheme for the related compounds was postulated. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Meanwhile, preliminary structure-activity relationships for these compounds are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    Science.gov (United States)

    Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017

  17. The frontal lobes and inhibitory function

    International Nuclear Information System (INIS)

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  18. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli.

    Science.gov (United States)

    Soumet, C; Fourreau, E; Legrandois, P; Maris, P

    2012-07-06

    Bacterial adaptation to quaternary ammonium compounds (QACs) is mainly documented for benzalkonium chloride (BC) and few data are available for other QACs. The aim of this study was to assess the effects of repeated exposure to different quaternary ammonium compounds (QACs) on the susceptibility and/or resistance of bacteria to other QACs and antibiotics. Escherichia coli strains (n=10) were adapted by daily exposure to increasingly sub-inhibitory concentrations of a QAC for 7 days. Three QACs were studied. Following adaptation, we found similar levels of reduction in susceptibility to QACs with a mean 3-fold increase in the minimum inhibitory concentration (MIC) compared to initial MIC values, whatever the QAC used during adaptation. No significant differences in antibiotic susceptibility were observed between the tested QACs. Antibiotic susceptibility was reduced from 3.5- to 7.5-fold for phenicol compounds, β lactams, and quinolones. Increased MIC was associated with a shift in phenotype from susceptible to resistant for phenicol compounds (florfenicol and chloramphenicol) in 90% of E. coli strains. Regardless of the QAC used for adaptation, exposure to gradually increasing concentrations of this type of disinfectant results in reduced susceptibility to QACs and antibiotics as well as cross-resistance to phenicol compounds in E. coli strains. Extensive use of QACs at sub-inhibitory concentrations may lead to the emergence of antibiotic-resistant bacteria and may represent a public health risk. Published by Elsevier B.V.

  19. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  20. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF.

    Science.gov (United States)

    Suzuki, Keisuke; Mizushima, Hiroto; Abe, Hiroyuki; Iwamoto, Ryo; Nakamura, Haruki; Mekada, Eisuke

    2015-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a ligand of EGF receptor, is involved in the growth and malignant progression of cancers. Cross-reacting material 197, CRM197, a non-toxic mutant of diphtheria toxin (DT), specifically binds to the EGF-like domain of HB-EGF and inhibits its mitogenic activity, thus CRM197 is currently under evaluation in clinical trials for cancer therapy. To develop more potent DT mutants than CRM197, we screened various mutant proteins of R domain of DT, the binding site for HB-EGF. A variety of R-domain mutant proteins fused with maltose-binding protein were produced and their inhibitory activity was evaluated in vitro. We found four R domain mutants that showed much higher inhibitory activity against HB-EGF than wild-type (WT) R domain. These R domain mutants suppressed HB-EGF-dependent cell proliferation more effectively than WT R domain. Surface plasmon resonance revealed their higher affinity to HB-EGF than WT R domain. CRM197(R460H) carrying the newly identified mutation showed increased cell proliferation inhibitory activity and affinity to HB-EGF. These results suggest that CRM197(R460H) or other recombinant proteins carrying newly identified mutation(s) in the R domain are potential therapeutics targeting HB-EGF. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds.

    Science.gov (United States)

    Omar, Raed; Li, Liya; Yuan, Tao; Seeram, Navindra P

    2012-08-24

    Three new hydrolyzable tannins including two gallotannins, jamutannins A (1) and B (2), and an ellagitannin, iso-oenothein C (3), along with eight known phenolic compounds were isolated from the seeds of Eugenia jambolana fruit. The structures were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for α-glucosidase inhibitory effects compared to the clinical drug acarbose.

  2. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign.

    Directory of Open Access Journals (Sweden)

    Melissa L Sykes

    Full Text Available Human African Trypanosomiasis (HAT is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1 determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC, and 2 estimate the time to kill.

  3. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  4. Identification of HMG-CoA Reductase Inhibitor Active Compound in Medicinal Forest Plants

    Directory of Open Access Journals (Sweden)

    Shelly Rahmania

    2017-08-01

    Full Text Available Cardiovascular disease is a leading cause of death worldwide, hypercholesterolemia is one of the causes. Three medicinal forest plants are potential natural resources to be developed as cholesterol-reducing herbal product, but scientific informations on their mechanism is still limited. The objective of this research is to explore the potency of the leaf of Jati Belanda (Guazuma ulmifolia, Jabon (Antocephalus macrophyllus, and Mindi (Melia azedarach as inhibitor of HMG-CoA reductase (HMGR, a key enzyme in the regulation of cholesterol biosynthesis. Samples were macerated in ethanol 96% and the filtrate was partitioned using n-hexane and chloroform to obtain the ethanolic flavonoid extract. The effect of each extracts on the HMG-CoA reductase activity were analyzed using HMGR assay kit. At concentration of 10 ppm the G.ulmifolia ethanolic extract showed the highest inhibitory activity as well as pravastatin control inhibitor.  The phenolic content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 11.00, 34.83, and 13.67 mg gallic acid AE/g dried leaves, respectively. The flavonoid content of the ethanolic extracts of G.ulmifolia, A.macrophyllus, and M.azedarach were: 0.22, 0.64, and 0.78 mg QE/g dried leaves, respectively. Interestingly, G.ulmifolia extract the lowest concentration of phenolic and flavonoid content. HPLC analysis showed that all samples contain quercetin at similiar small concentrations (6.7%, 6.6%, and 7.0% for G.ulmifolia, A.macrophyllus, and M.azedarach, respectively. This indicating other active compounds may play some roles in this inhibitory action on HMG-CoA reductase activity. Further identification using LC-MS/MS showed that G.ulmifolia flavonoid extract contained an unidetified coumpound with molecural weight of 380.0723 Da.  

  5. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    Science.gov (United States)

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  6. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  7. Synthesis and phytotoxic activity of 1,2,3-triazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Borgati, Thiago F.; Alves, Rosemeire B., E-mail: thfborgati@gmail.com, E-mail: rosebrondi@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Quimica; Teixeira, Robson R.; Freitas, Rossimiriam P. de; Perdigao, Thays G.; Silva, Silma F. da; Santos, Aline Aparecida dos [Universidade Federal de Vicosa, MG (Brazil). Departamento de Quimica; Bastidas, Alberto de Jesus O. [Laboratorio de Quimica Ecologica, Departamento de Quimica, Universidad de Los Andes, Nucleo Universitario Pedro Rincon Gutierrez, Merida (Viet Nam)

    2013-06-15

    Thirteen triazole derivatives bearing halogenated benzyl substituents were synthesized using the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), a leading example of the click chemistry approach, as the key step. The biological activity of the compounds was evaluated, and it was found that these compounds interfere with the germination and radicle growth (shoots and roots) of two dicotyledonous species, Lactuca sativa and Cucumis sativus, and one monocotyledonous species, Allium cepa. The compounds showed predominantly inhibitory activity related to the evaluated species mainly at the concentration of 10{sup -4} mol L{sup -1}. Some of them presented inhibitory activity comparable to 2,4-D (2,4-dichlorophenoxyacetic acid), used as positive control. (author)

  8. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay

    Directory of Open Access Journals (Sweden)

    Kwang Jin Lee

    2015-01-01

    Full Text Available This study investigated the antioxidant activity of one hundred kinds of pure chemical compounds found within a number of natural substances and oriental medicinal herbs (OMH. Three different methods were used to evaluate the antioxidant activity of DPPH radical-scavenging activity, ABTS radical-scavenging activity, and online screening HPLC-ABTS assays. The results indicated that 17 compounds exhibited better inhibitory activity against ABTS radical than DPPH radical. The IC50 rate of a more practical substance is determined, and the ABTS assay IC50 values of gallic acid hydrate, (+-catechin hydrate, caffeic acid, rutin hydrate, hyperoside, quercetin, and kaempferol compounds were 1.03 ± 0.25, 3.12 ± 0.51, 1.59 ± 0.06, 4.68 ± 1.24, 3.54 ± 0.39, 1.89 ± 0.33, and 3.70 ± 0.15 μg/mL, respectively. The ABTS assay is more sensitive to identifying the antioxidant activity since it has faster reaction kinetics and a heightened response to antioxidants. In addition, there was a very small margin of error between the results of the offline-ABTS assay and those of the online screening HPLC-ABTS assay. We also evaluated the effects of 17 compounds on the NO secretion in LPS-stimulated RAW 264.7 cells and also investigated the cytotoxicity of 17 compounds using a cell counting kit (CCK in order to determine the optimal concentration that would provide an effective anti-inflammatory action with minimum toxicity. These results will be compiled into a database, and this method can be a powerful preselection tool for compounds intended to be studied for their potential bioactivity and antioxidant activity related to their radical-scavenging capacity.

  9. Inhibitory Effect and Mechanism of Arctium lappa Extract on NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Young-Kyu Kim

    2018-01-01

    Full Text Available Arctium lappa (A. lappa, Compositae, is considered a potential source of nutrition and is used as a traditional medicine in East Asian countries for centuries. Although several studies have shown its biological activities as an anti-inflammatory agent, there have been no reports on A. lappa with regard to regulatory role in inflammasome activation. The purpose of this study was to investigate the inhibitory effects of A. lappa extract (ALE on NLRP3 inflammasome activation and explore the underlying mechanisms. We found that ALE inhibited IL-1β secretion from NLRP3 inflammasome activated bone marrow derived macrophages but not that secreted by NLRC4 and AIM2 inflammasomes activation. Mechanistic studies revealed that ALE suppressed the ATPase activity of purified NLRP3 and reduced mitochondrial reactive oxygen species (mROS generated during NLRP3 activation. Therefore, the inhibitory effect of ALE on NLRP3 inflammasome might be attributed to its ability to inhibit the NLRP3 ATPase function and attenuated the mROS during inflammasome activation. In addition, ALE significantly reduced the LPS-induced increase of plasma IL-1β in mouse peritonitis model. These results provide evidence of novel anti-inflammatory mechanisms of A. lappa, which might be used for therapeutic applications in the treatment of NLRP3 inflammasome-associated inflammatory disorders.

  10. Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice, and its potentially active compounds.

    Science.gov (United States)

    Hiraki, Eri; Furuta, Shoko; Kuwahara, Rika; Takemoto, Naomichi; Nagata, Toshiro; Akasaka, Taiki; Shirouchi, Bungo; Sato, Masao; Ohnuki, Koichiro; Shimizu, Kuniyoshi

    2017-07-01

    Hericium erinaceus (H. erinaceus) improves the symptoms of menopause. In this study, using ovariectomized mice as a model of menopause, we investigated the anti-obesity effect of this mushroom in menopause. Mice fed diets containing H. erinaceus powder showed significant decreases in the amounts of fat tissue, plasma levels of total cholesterol, and leptin. To determine the mechanism, groups of mice were respectively fed a diet containing H. erinaceus powder, a diet containing ethanol extract of H. erinaceus, and a diet containing a residue of the extract. As a result, H. erinaceus powder was found to increase fecal lipid levels in excreted matter. Further in vitro investigation showed that ethanol extract inhibited the activity of lipase, and four lipase-inhibitory compounds were isolated from the extract: hericenone C, hericenone D, hericenone F, and hericenone G. In short, we suggest that H. erinaceus has an anti-obesity effect during menopause because it decreases the ability to absorb lipids.

  11. Microbial inhibitory and radical scavenging activities of cold-pressed terpeneless Valencia orange (Citrus sinensis) oil in different dispersing agents.

    Science.gov (United States)

    Chalova, Vesela I; Crandall, Philip G; Ricke, Steven C

    2010-04-15

    Due to their low solubility in water, oil-based bioactive compounds require dispersion in a surface-active agent or appropriate solvents to ensure maximum contact with microorganisms. These combinations, however, may change their physical and/or chemical characteristics and consequently alter the desired functionality. The objective of this study was to determine the impact of selected dispersing agents, ethanol, dimethyl sulfoxide (DMSO), and Tween-80, on cold-pressed terpeneless (CPT) Valencia orange oil to function as a free radical scavenger and an antimicrobial food additive. When dissolved in ethanol or DMSO, the orange oil fraction had similar minimum inhibitory concentrations (MIC) for Listeria monocytogenes ATCC 19 115 (0.3% and 0.25% v/v respectively), which were significantly lower (P orange oil (up to 3%) in an aqueous solution of 0.1% Tween-80 yielded no inhibitory activities against any of the test bacteria. However, the 1% natural orange oil dispersed in Tween-80 exhibited 56.86% 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical inhibition versus 18.37% and 16.60% when the same level of orange oil was dissolved in DMSO or ethanol, respectively. At the same orange oil concentration, the oil/Tween-80 suspension yielded 57.92% neutralization of hydroxyl radicals. This represents 71.37% of the mannitol antioxidant activity, which was used as a positive control. These findings suggest that Tween-80 is an appropriate dispersing agent only if the antioxidant functionality is desired. If both antimicrobial and antioxidant properties are needed, the CPT Valencia orange oil should be dispersed in either DMSO or ethanol. (c) 2010 Society of Chemical Industry.

  12. Argania spinosa var. mutica and var. apiculata: variation of fatty-acid composition, phenolic content, and antioxidant and α-amylase-inhibitory activities among varieties, organs, and development stages.

    Science.gov (United States)

    El Adib, Saifeddine; Aissi, Oumayma; Charrouf, Zoubida; Ben Jeddi, Fayçal; Messaoud, Chokri

    2015-09-01

    Argania spinosa includes two varieties, var. apiculata and var. mutica. These argan varieties were introduced into Tunisia in ancient times and are actually cultivated in some botanic gardens. Little is known about the chemical differentiation among these argan varieties. Hence, the aim of this study was to determine the fatty-acid composition, the total phenolic and flavonoid contents, and the antioxidant and α-amylase-inhibitory activities of leaf, seed, and pulp extracts of both argan varieties harvested during the months of January to April. The fatty-acid distribution was found to depend on the argan variety, the plant organ, and the harvest time. Significant variations in the phenolic contents were observed between the investigated varieties as well as between leaves, pulps, and seeds of each variety. As expected, phenolic compounds were found to be contributors to the antioxidant and α-amylase-inhibitory activities of both argan varieties. The chemical differentiation observed among the two argan varieties, based mainly on the fatty-acid composition, might have some chemotaxonomic value. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  13. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    Science.gov (United States)

    Lee, Dong-Sung; Jang, Jae-Hyuk; Ko, Wonmin; Kim, Kyoung-Su; Sohn, Jae Hak; Kang, Myeong-Suk; Ahn, Jong Seog; Kim, Youn-Chul; Oh, Hyuncheol

    2013-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1. PMID:23612372

  14. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    Directory of Open Access Journals (Sweden)

    Youn-Chul Kim

    2013-04-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1, and two known metabolites, anhydrofulvic acid (2 and citromycetin (3. Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1 also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP, an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1 on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1 suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1.

  15. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  16. Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: can Asphodeline roots be considered as a new source of natural compounds?

    Science.gov (United States)

    Zengin, Gokhan; Locatelli, Marcello; Ceylan, Ramazan; Aktumsek, Abdurrahman

    2016-10-01

    Plant-based foods have become attractive for scientists and food producers. Beneficial effects related to their consumption as dietary supplements are due to the presence of natural occurring secondary metabolites. In this context, studies on these products are important for natural and safely food ingredients evaluation. The aim of this study was to evaluate root extract of eight Asphodeline species as antioxidants, enzyme inhibitors and phytochemical content. Spectrophotometric antioxidant and enzyme inhibitory assays were performed. Total phenolic and flavonoids contents as well as the chemical free-anthraquinones profiles were determined using routinely procedure (HPLC-PDA). Data show that Asphodeline roots can be considered as a new source of natural compounds and can be used as a valuable dietary supplement. Some differences related to biological activities can be inferred to other phytochemicals that can be considered in the future for their synergic or competitive activities.

  17. Anti-proliferative, Cytotoxic and NF-ĸB Inhibitory Properties of Spiro(Lactone-Cyclohexanone) Compounds in Human Leukemia.

    Science.gov (United States)

    Bouhenna, Mustapha M; Orlikova, Barbora; Talhi, Oualid; Schram, Ben; Pinto, Diana C G A; Taibi, Nadia; Bachari, Khaldoun; Diederich, Marc; Silva, Artur M S; Mameri, Nabil

    2017-09-01

    NF-ĸB affects most aspects of cellular physiology. Deregulation of NF-ĸB signaling is associated with inflammatory diseases and cancer. In this study, we evaluated the cytotoxic and NF-ĸB inhibition potential of new spiro(lactone-cyclohexanone) compounds in two different human leukemia cell lines (U937 and K562). The anti-proliferative effects of the spiro(lactone-cyclohexanone) compounds on human K562 and U937 cell lines was evaluated by trypan blue staining, as well as their involvement in NF-kB regulation were analyzed by luciferase reporter gene assay, Caspase-3/7 activities were evaluated to analyze apoptosis induction. Both spiro(coumarin-cyclohexanone) 4 and spiro(6- methyllactone-cyclohexanone) 9 down-regulated cancer cell viability and proliferation. Compound 4 inhibited TNF-α-induced NF-ĸB activation in a dose-dependent manner and induced caspase-dependent apoptosis in both leukemia cell lines. Results show that compound 4 and compound 9 have potential as anti-cancer agents. In addition, compound 4 exerted NF-kB inhibition activity in leukemia cancer cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    International Nuclear Information System (INIS)

    Lacroix, M.; Chiasson, F.

    2004-01-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5x10 7 CFU/ml). Active compounds were added at the concentration corresponding to ((1)/(30)) of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D 10 values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D 10 values were reduced to 0.046 for E. coli and to 0.110 for S. typhi

  19. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    The partially purified inhibitory compounds were screened by agar spot assay method for antagonistic ... The partially purified compounds exhibited strong activity against ... Keywords: Bacteriocins, lactic acid bacteria (LAB), target organisms, ...

  20. Design, synthesis and activity of BBI608 derivatives targeting on stem cells.

    Science.gov (United States)

    Zhou, Qifan; Peng, Chen; Du, Fangyu; Zhou, Linbo; Shi, Yajie; Du, Yang; Liu, Dongdong; Sun, Wenjiao; Zhang, Meixia; Chen, Guoliang

    2018-05-10

    STAT3 plays a vital role in maintaining the self-renewal of tumor stem cells. BBI608, a small molecule identified by its ability to inhibit gene transcription driven by STAT3 and cancer stemness properties, can inhibit stemness gene expression and kill stemness-high cancer cells isolated from a variety of cancer types. In order to improve the pharmacokinetic properties of BBI608 and the antitumor activity, a series of BBI608 derivatives were designed and synthesized here. Most of these compounds were more potent than BBI608 on HepG2 cells, compound LD-8 had the most potent inhibitory activity among them and was 5.4-fold more potent than BBI608 (IC 50  = 11.2 μM), but had considerable activity on normal liver cells L-02. Compounds LD-17 (IC 50  = 3.5 μM) and LD-19 (IC 50  = 2.9 μM) were found to possess significant inhibitory activities and good selectivity. The results showed that compound LD-19 was worthy to investigate further as a lead compound according to its potent inhibitory activity, ideal ClogP value and better water solubility. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening.

    Science.gov (United States)

    Lei, Hao; Jones, Christopher; Zhu, Tian; Patel, Kavankumar; Wolf, Nina M; Fung, Leslie W-M; Lee, Hyun; Johnson, Michael E

    2016-02-15

    The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods-saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301μM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14μM to 700μM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme. Published by Elsevier Ltd.

  2. DC-159a Shows Inhibitory Activity against DNA Gyrases of Mycobacterium leprae.

    Science.gov (United States)

    Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko

    2016-09-01

    Fluoroquinolones are a class of antibacterial agents used for leprosy treatment. Some new fluoroquinolones have been attracting interest due to their remarkable potency that is reportedly better than that of ofloxacin, the fluoroquinolone currently recommended for treatment of leprosy. For example, DC-159a, a recently developed 8-methoxy fluoroquinolone, has been found to be highly potent against various bacterial species. Nonetheless, the efficacy of DC-159a against Mycobacterium leprae is yet to be examined. To gather data that can support highly effective fluoroquinolones as candidates for new remedies for leprosy treatment, we conducted in vitro assays to assess and compare the inhibitory activities of DC-159a and two fluoroquinolones that are already known to be more effective against M. leprae than ofloxacin. The fluoroquinolone-inhibited DNA supercoiling assay using recombinant DNA gyrases of wild type and ofloxacin-resistant M. leprae revealed that inhibitory activities of DC-159a and sitafloxacin were at most 9.8- and 11.9-fold higher than moxifloxacin. Also the fluoroquinolone-mediated cleavage assay showed that potencies of those drugs were at most 13.5- and 9.8-fold higher than moxifloxacin. In addition, these two drugs retained their inhibitory activities even against DNA gyrases of ofloxacin-resistant M. leprae. The results indicated that DC-159a and sitafloxacin are more effective against wild type and mutant M. leprae DNA gyrases than moxifloxacin, suggesting that these antibacterial drugs can be good candidates that may supersede current fluoroquinolone remedies. DC-159a in particular is very promising because it is classified in a subgroup of fluoroquinolones that is known to be less likely to cause adverse effects. Our results implied that DC-159a is well worth further investigation to ascertain its in vivo effectiveness and clinical safety for humans.

  3. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Yoko Miyasaki

    Full Text Available The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  4. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  5. Report: screening of selected medicinal plants for their enzyme inhibitory potential - a validation of their ethnopharmacological uses.

    Science.gov (United States)

    Khuda, Fazli; Iqbal, Zafar; Khan, Ayub; Zakiullah; Shah, Yasar; Khan, Abad

    2014-05-01

    In present study four medicinal plants namely Valeriana wallichii, Xanthium strumarium, Achyranthes aspera and Duchesnea indica belonging to different families were collected in Khyber Pakhtunkhwa province and crude extract and subsequent fractions were analyzed for their inhibitory potential against acetylcholinesterase, butyrylcholinesterase and α-glucosidase enzymes. Valeriana wallichii, Xanthium strumarium and Achyranthes aspera were significantly active against cholinesterases. Chloroform and ethylacetate fractions of Valeriana wallichii exhibited significant activity against acetylcholinesterase (IC50: 61μg/ml) and butyrylcholinesterase enzymes (IC50: 58μg/ml), respectively. Similarly ethylacetate fraction of Achyranthes aspera showed significant activity against acetylcholinesterase (IC50: 61 μg/ml) and butyrylcholinesterase enzymes (IC50: 61 μg/ml), respectively. In case of α-glucosidase enzyme, the chloroform fraction of Xanthium strumarium exhibited significant inhibitory activity (IC50: 72 μg/ml) as compared to the standard compound acarbose (IC50: 483 μg/ml). Duchesnea indica showed no such activities.

  6. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom

    Science.gov (United States)

    2013-01-01

    Background The derivatives of thieno[2,3-b]thiophene belong to a significant category of heterocyclic compounds, which have shown a wide spectrum of medical and industrial application. Results A new building block with two electrophilic center of thieno[2,3-b]thiophene derivatives 2 has been reported by one-pot reaction of diketone derivative 1 with Br2/AcOH in excellent yield. A variety of heteroaromatics having bis(1H-imidazo[1,2a] benzimidazole), bis(1H-imidazo[1,2-b][1,2,4]triazole)-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives, dioxazolo-, dithiazolo-, and 1H-imidazolo-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives as well pyrrolo, thiazolo -3-methyl-4-phenylthieno[2,3-b]thiophene derivatives have been designed, synthesized, characterized, and evaluated for their biological activity. Compounds 3–9 showed good bioassay result. These new derivatives were evaluated for anti-cancer activity against PC-3 cell lines, in vitro antioxidant potential and β-glucuronidase and α-glucosidase inhibitory activities. Compound 3 (IC50 = 56.26 ± 3.18 μM) showed a potent DPPH radical scavenging antioxidant activity and found to be more active than standard N-acetylcystein (IC50 = 105.9 ± 1.1 μM). Compounds 8a (IC50 = 13.2 ± 0.34 μM) and 8b (IC50 = 14.1 ± 0.28 μM) found as potent inhibitor of α-glucusidase several fold more active than the standard acarbose (IC50 = 841 ± 1.73 μM). Most promising results were obtained in β-glucuronidase enzyme inhibition assay. Compounds 5 (IC50 = 0.13 ± 0.019 μM), 6 (IC50 = 19.9 ± 0.285 μM), 8a (IC50 = 1.2 ± 0.0785 μM) and 9 (IC50 = 0.003 ± 0.09 μM) showed a potent inhibition of β-glucuronidase. Compound 9 was found to be several hundred fold more active than standard D-Saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 μM). Conclusions Synthesis, characterization, and in vitro biological activity of a series of

  7. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities

    Institute of Scientific and Technical Information of China (English)

    XIONG Jia; GRACE Mary H; ESPOSITO Debora; KOMARNYTSKY Slavko; WANG Fei; LILA Mary Ann

    2017-01-01

    The present study was designed to characterize the polyphenols isolated from Acacia mearnsii bark crude extract (B) and fractions (B1-B7) obtained by high-speed counter-current chromatography (HSCCC) and evaluate their anti-inflammatory and carbolytic enzymes (α-glucosidase and α-amylase) inhibitory activities.Fractions B4,B5,B6,B7 (total phenolics 850.3,983.0,843.9,and 572.5 mg·g-1,respectively;proanthocyanidins 75.7,90.5,95.0,and 44.8 mg·g-1,respectively) showed significant activities against reactive oxygen species (ROS),nitric oxide (NO) production,and expression of pro-inflammatory genes interleukin-lβ (IL-1β) and inducible nitric oxide synthase (iNOS) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line RAW 264.7.All the extracts suppressed α-glucosidase and α-amylase activities,two primary enzymes responsible for carbohydrate digestion.A.mearnsii bark samples possessed significantly stronger inhibitory effects against α-glucosidase enzyme (IC50 of 0.4-1.4 tg·mL-1) than the pharmaceutical acarbose (IC50 141.8 μg·mL-1).B6 and B7 (IC5017.6 and 11.7 μg·mL-1,respectively) exhibited α-amylase inhibitory activity as efficacious as acarbose (IC50 15.4 μg·mL-1).Moreover,B extract,at 25 μg·mL-l,significantly decreased the non-mitochondrial oxidative burst that is often associated with inflammatory response in human monocytic macrophages.

  8. The effect of lipophilicity on the antibacterial activity of some 1-benzylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    D. J. BARNA

    2008-10-01

    Full Text Available In the present paper, the antibacterial activity of some 1-benzylbenzimidazole derivatives were evaluated against the Gram-negative bacteria Escherichia coli. The minimum inhibitory concentration was determined for all the compounds. Quantitative structure–activity relationship (QSAR was employed to study the effect of the lipophilicity parameters (log P on the inhibitory activity. Log P values for the target compounds were experimentally determined by the “shake-flask” method and calculated by using eight different software products. Multiple linear regression was used to correlate the log P values and antibacterial activity of the studied benzimidazole derivatives. The results are discussed based on statistical data. The most acceptable QSAR models for the prediction of the antibacterial activity of the investigated series of benzimidazoles were developed. High agreement between the experimental and predicted inhibitory values was obtained. The results of this study indicate that the lipophilicity parameter has a significant effect on the antibacterial activity of this class of compounds, which simplifies the design of new biologically active molecules.

  9. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    Science.gov (United States)

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities.

    Science.gov (United States)

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-09-01

    We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  11. Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW(T), Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts.

    Science.gov (United States)

    Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai

    2016-06-29

    Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.

  12. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Abdel kader, S.M.; El Sayed, M.M.; El Malt, E.A.; Shaker, E.S.; Abdel Aziz, H.G.

    2010-01-01

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  13. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L.

    Science.gov (United States)

    Li, Xiu-Mei; Luo, Xue-Gang; He, Jun-Fang; Wang, Nan; Zhou, Hao; Yang, Pei-Long; Zhang, Tong-Cun

    2018-03-01

    Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.

  14. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre

    DEFF Research Database (Denmark)

    Halldórsdóttir, Elsa Steinunn; Jaroszewski, Jerzy W; Olafsdottir, Elin Soffia

    2010-01-01

    The aim of this study was to investigate structures and acetylcholinesterase inhibitory activities of lycopodane-type alkaloids isolated from an Icelandic collection of Lycopodium annotinum ssp. alpestre. Ten alkaloids were isolated, including annotinine, annotine, lycodoline, lycoposerramine M...

  15. Kaempferol glycosides from the twigs of Cinnamomum osmophloeum and their nitric oxide production inhibitory activities.

    Science.gov (United States)

    Lin, Huan-You; Chang, Shang-Tzen

    2012-12-15

    In the present study, ethanolic extract of twigs from Cinnamomum osmophloeum led to isolate nine kaempferol glycosides including two new kaempferol triglycosides that were characterized as kaempferol 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinofuranosyl-7-O-α-L-rhamnopyranoside (1) and kaempferol 3-O-β-D-xylopyranosyl-(1→2)-α-L-rhamnopyranosyl-7-O-α-L-rhamnopyranoside (2). The structures of these compounds were assigned by the application of 1D and 2D NMR spectroscopy and other techniques. Among these nine compounds, kaempferol 7-O-α-L-rhamnopyranoside (9) revealed inhibitory effect against LPS-induced production of nitric oxide in RAW 264.7 macrophages with an IC(50) value of 41.2 μM. It also slightly reduced PGE(2) accumulation by 26% at the concentration of 50 μM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Science.gov (United States)

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-01-01

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381

  17. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Directory of Open Access Journals (Sweden)

    Rong-Dih Lin

    2015-12-01

    Full Text Available Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9 and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13, as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.

  18. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-12-01

    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  19. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro.

    Science.gov (United States)

    McCue, Patrick P; Shetty, Kalidas

    2004-01-01

    Porcine pancreatic alpha-amylase (PPA) was allowed to react with herbal extracts containing rosmarinic acid (RA) and purified RA. The derivatized enzyme-phytochemical mixtures obtained were characterized for residual amylase activity. These in vitro experiments showed that the amylase activity was inhibited in the presence of these phytochemicals. The extent of amylase inhibition correlated with increased concentration of RA. RA-containing oregano extracts yielded higher than expected amylase inhibition than similar amount of purified RA, suggesting that other phenolic compounds or phenolic synergies may contribute to additional amylase inhibitory activity. The significance of food-grade, plant-based amylase inhibitors for modulation of diabetes mellitus and other oxidation-linked diseases is hypothesized and discussed.

  20. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.

    Science.gov (United States)

    Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming

    2018-07-01

    Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.

  1. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells

    Directory of Open Access Journals (Sweden)

    Eun Young Bae

    2015-05-01

    Full Text Available Endoplasmic reticulum (ER stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  2. Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains.

    Science.gov (United States)

    Boyanova, L; Gergova, G; Markovska, R; Yordanov, D; Mitov, I

    2017-12-01

    The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free supernatant (CFS) types. Activity of non-neutralized and non-heat-treated (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase-treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of test strains and those of four GLB strains were active against >71% of antibiotic resistant strains. Two H. pylori strains were BLIS resistant. The heating did not reduce the CFS activity. Briefly, all GLB strains evaluated produced heat-stable BLISs, although GLB and H. pylori strain susceptibility patterns exhibited differences. Bacteriocin-like inhibitory substance activity can be an advantage for the probiotic choice for H. pylori infection control. In this study, anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. © 2017 The Society for Applied Microbiology.

  3. Antifeedant, insecticidal and growth inhibitory activities of selected plant oils on black cutworm, Agrotis ipsilon (Hufnagel (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Alagarmalai Jeyasankar

    2012-05-01

    Full Text Available Objective: To evaluate antifeedant, insecticidal and insect growth inhibitory activities of eucalyptus oil (Eucalyptus globules and gaultheria oil (Gaultheria procumbens L. against black cutworm, Agrotis ipsilon. Methods: Antifeedant, insecticidal and growth inhibitory activities of eucalyptus oil and gaultheria oil were tested against black cutworm, A. ipsilon. Results: Significant antifeedant activity was found in eucalyptus oil (96.24% where as the highest insecticidal activity was noticed in gaultheria oil (86.92%. Percentages of deformities were highest on gaultheria oil treated larvae and percentage of adult emergence was deteriorated also by gaultheria oil. Conclusions: These plants oil has potential to serve as an alternative eco-friendly control of insect pest.

  4. Separation, Identification, and Antidiabetic Activity of Catechin Isolated from Arbutus unedo L. Plant Roots.

    Science.gov (United States)

    Mrabti, Hanae Naceiri; Jaradat, Nidal; Fichtali, Ismail; Ouedrhiri, Wessal; Jodeh, Shehdeh; Ayesh, Samar; Cherrah, Yahia; Faouzi, My El Abbes

    2018-04-12

    Phytopharmaceuticals play an essential role in medicine, since the need to investigate highly effective and safe drugs for the treatment of diabetes mellitus disease remains a significant challenge for modern medicine. Arbutus unedo L. root has various therapeutic properties, and has been used widely in the traditional medicine as an antidiabetic agent. The current study aimed to isolate the pharmacologically active compound from A. unedo roots using accelerated solvent extraction technology, to determine its chemical structure using different instrumental analytical methods, and also to evaluate the α-glucosidase inhibitory activity. The roots of A. unedo were exhaustively extracted by high-pressure static extraction using the Zippertex ® technology (Dionex-ASE, Paris, France), and the extract was mixed with XAD-16 resin to reach quantifiable amounts of active compounds which were identified by high-pressure liquid chromatography (HPLC), ¹H NMR (300 MHz), and 13 C NMR. The antidiabetic activity of the isolated compound was evaluated using the α-glucosidase inhibitory assay. The active compound was isolated, and its structure was identified as catechin using instrumental analysis.The results revealed that the isolated compound has potential α-glucosidase inhibitory activity with an IC 50 value of 87.55 ± 2.23 μg/mL greater than acarbose. This was used as a positive control, which has an IC 50 value of 199.53 ± 1.12 μg/mL. According to the results achieved, the roots of A. unedo were considered the best source of catechin and the Zippertex ® technology method of extraction is the best method for isolation of this therapeutic active compound. In addition, the α-glucosidase inhibitory activity results confirmed the traditional use of A. unedo roots as an antidiabetic agent. Future clinical trials and investigations of antidiabetic and other pharmacological effects such as anticancer are required.

  5. Separation, Identification, and Antidiabetic Activity of Catechin Isolated from Arbutus unedo L. Plant Roots

    Directory of Open Access Journals (Sweden)

    Hanae Naceiri Mrabti

    2018-04-01

    Full Text Available Phytopharmaceuticals play an essential role in medicine, since the need to investigate highly effective and safe drugs for the treatment of diabetes mellitus disease remains a significant challenge for modern medicine. Arbutus unedo L. root has various therapeutic properties, and has been used widely in the traditional medicine as an antidiabetic agent. The current study aimed to isolate the pharmacologically active compound from A. unedo roots using accelerated solvent extraction technology, to determine its chemical structure using different instrumental analytical methods, and also to evaluate the α-glucosidase inhibitory activity. The roots of A. unedo were exhaustively extracted by high-pressure static extraction using the Zippertex® technology (Dionex-ASE, Paris, France, and the extract was mixed with XAD-16 resin to reach quantifiable amounts of active compounds which were identified by high-pressure liquid chromatography (HPLC, 1H NMR (300 MHz, and 13C NMR. The antidiabetic activity of the isolated compound was evaluated using the α-glucosidase inhibitory assay. The active compound was isolated, and its structure was identified as catechin using instrumental analysis.The results revealed that the isolated compound has potential α-glucosidase inhibitory activity with an IC50 value of 87.55 ± 2.23 μg/mL greater than acarbose. This was used as a positive control, which has an IC50 value of 199.53 ± 1.12 μg/mL. According to the results achieved, the roots of A. unedo were considered the best source of catechin and the Zippertex® technology method of extraction is the best method for isolation of this therapeutic active compound. In addition, the α-glucosidase inhibitory activity results confirmed the traditional use of A. unedo roots as an antidiabetic agent. Future clinical trials and investigations of antidiabetic and other pharmacological effects such as anticancer are required.

  6. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Science.gov (United States)

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  7. Triterpenoid saponins from Polaskia chichipe Backbg. and their inhibitory or promotional effects on the melanogenesis of B16 melanoma cells.

    Science.gov (United States)

    Fujihara, Koji; Takahashi, Kunio; Koyama, Kiyotaka; Kinoshita, Kaoru

    2017-10-01

    Five new oleanane-type saponins 1-5 together with a known saponin 6 and a steroidal glycoside 7 were isolated from Polaskia chichipe Backbg., and their structures were determined from their 1D and 2D NMR and HRFABMS spectral data. The six isolated saponins 1-6 were tested for their effects on the melanogenesis of B16 melanoma 4A5 cells. Compound 1 exerted an inhibitory effect at 100 μM whereas compound 3 promoted melanogenesis at the same concentration, even though these two compounds contain the same aglycon structure. The dose-dependent activities of compounds 1 and 3 on melanin synthesis were investigated.

  8. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta.

    Science.gov (United States)

    Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing

    2014-03-06

    Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.

  9. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues

    Directory of Open Access Journals (Sweden)

    Dajun Zhang

    2012-12-01

    Full Text Available A novel class of thioflavone and flavonoid derivatives has been prepared and their antiviral activities against enterovirus 71 (EV71 and the coxsackievirus B3 (CVB3 and B6 (CVB6 were evaluated. Compounds 7d and 9b showed potent antiviral activities against EV71 with IC50 values of 8.27 and 5.48 μM, respectively. Compound 7f, which has been synthesized for the first time in this work, showed the highest level of inhibitory activity against both CVB3 and CVB6 with an IC50 value of 0.62 and 0.87 μM. Compounds 4b, 7a, 9c and 9e also showed strong inhibitory activities against both the CVB3 and CVB6 at low concentrations (IC50=1.42−7.15 μM, whereas compounds 4d, 7c, 7e and 7g showed strong activity against CVB6 (IC50=2.91–3.77 μM together with low levels of activity against CVB3. Compound 7d exhibited stronger inhibitory activity against CVB3 (IC50=6.44 μM than CVB6 (IC50>8.29 μM. The thioflavone derivatives 7a, 7c, 7d, 7e, 7f and 7g, represent a new class of lead compounds for the development of novel antiviral agents.

  10. Determination of a-glucosidase inhibitory activity from selected Fabaceae plants.

    Science.gov (United States)

    Dej-Adisai, Sukanya; Pitakbut, Thanet

    2015-09-01

    Nineteen plants from Fabaceae family, which were used in Thai traditional medicine for treatment of diabetes, were determined of α-glucosidase inhibitory activity via enzymatic reaction. In this reaction, α-glucosidase was used as enzyme, which, reacted with the substrate, p-nitrophenol-D-glucopyranoside (pNPG). After that the product, p-nitro phenol (pNP) will be occurred and observed the yellow colour at 405 nm. In this study, acarbose was used as positive standard which, inhibited this enzyme with IC₅₀ as 331 ± 4.73 μg/ml. Caesalpinia pulcherrima leaves showed the highest activity with IC₅₀ as 436.97 ± 9.44 μg/ml. Furthermore, Bauhinia malabarica leaves presented moderately activity with IC₅₀ as 745.08 ± 11.15 μg/ml. However, the other plants showed mild to none activity of α-glucosidase inhibition. Accordingly, this study can support anti-diabetes of these plants in traditional medicine and it will be the database of the biological activity of Fabaceae plant.

  11. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    Science.gov (United States)

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2015-01-01

    Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs) using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones) and rifampicin (10.32–24.84 mm inhibition zones). ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%), nitric oxide scavenging (25.62%), ABTS scavenging (29.42%), and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16%) could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a potential low-cost green method of synthesizing ANPs from food waste materials. Significant biopotentials of synthesized ANPs could make it a potential

  12. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  13. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Shin, Eunjin; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Lee, Chong-Kil; Hwang, Bang Yeon; Lee, Mi Kyeong

    2010-01-01

    In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Fraxinus rhynchophylla DENCE (Oleaceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of six coumarins such as esculetin (1), scopoletin (2), fraxetin (3), fraxidin (4) esculin (5) and fraxin (6). Among the six coumarins isolated, esculetin (1) showed the most potent inhibitory activity on adipocyte differentiation, followed by fraxetin (3). Further studies with interval treatment demonstrated that esculetin (1) exerted inhibitory activity on adipocyte differentiation when treated within 2 d (days 0-2) after differentiation induction. We further investigated the effect of esculetin (1) on peroxisome proliferator activated receptor gamma (PPARgamma), one of the early adipogenic transcription factors. Esculetin (1) significantly blocked the induction of PPARgamma protein expression and inhibited adipocyte differentiation induced by troglitazone, a PPARgamma agonist. Taken together, these results suggest that esculetin (1), an active compound from F. rhynchophylla, inhibited early stage of adipogenic differentiation, in part, via inhibition of PPARgamma-dependent pathway.

  14. Insight into eukaryotic topoisomerase II-inhibiting fused heterocyclic compounds in human cancer cell lines by molecular docking.

    Science.gov (United States)

    Taskin, T; Yilmaz, S; Yildiz, I; Yalcin, I; Aki, E

    2012-01-01

    Etoposide is effective as an anti-tumour drug by inhibiting eukaryotic DNA topoisomerase II via establishing a covalent complex with DNA. Unfortunately, its wide therapeutic application is often hindered by multidrug resistance (MDR), low water solubility and toxicity. In our previous study, new derivatives of benzoxazoles, benzimidazoles and related fused heterocyclic compounds, which exhibited significant eukaryotic DNA topoisomerase II inhibitory activity, were synthesized and exhibited better inhibitory activity compared with the drug etoposide itself. To expose the binding interactions between the eukaryotic topoisomerase II and the active heterocyclic compounds, docking studies were performed, using the software Discovery Studio 2.1, based on the crystal structure of the Topo IIA-bound G-segment DNA (PDB ID: 2RGR). The research was conducted on a selected set of 31 fused heterocyclic compounds with variation in structure and activity. The structural analyses indicate coordinate and hydrogen bonding interactions, van der Waals interactions and hydrophobic interactions between ligands and the protein, as Topo IIA-bound G-segment DNA are responsible for the preference of inhibition and potency. Collectively, the results demonstrate that the compounds 1a, 1c, 3b, 3c, 3e and 4a are significant anti-tumour drug candidates that should be further studied.

  15. Strychnos pseudoquina and Its Purified Compounds Present an Effective In Vitro Antileishmanial Activity

    Directory of Open Access Journals (Sweden)

    Paula Sousa Lage

    2013-01-01

    Full Text Available The development of new and cost-effective alternative therapeutic strategies to treat leishmaniasis has become a high priority. In the present study, the antileishmanial activity of Strychnos pseudoquina St. Hil. was investigated and pure compounds that presented this biological effect were isolated. An ethyl acetate extract was prepared, and it proved to be effective against Leishmania amazonensis. A bioactivity-guided fractionation was performed, and two flavonoids were identified, quercetin 3-O-methyl ether and strychnobiflavone, which presented an effective antileishmanial activity against L. amazonensis, and studies were extended to establish their minimum inhibitory concentrations (IC50, their leishmanicidal effects on the intra-macrophage Leishmania stage, as well as their cytotoxic effects on murine macrophages (CC50, and in O+ human red blood cells. The data presented in this study showed the potential of an ethyl acetate extract of S. pseudoquina, as well as two flavonoids purified from it, which can be used as a therapeutic alternative on its own, or in association with other drugs, to treat disease evoked by L. amazonensis.

  16. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells

    OpenAIRE

    Tharmalingam, Nagendran; Kim, Sa-Hyun; Park, Min; Woo, Hyun Jun; Kim, Hyun Woo; Yang, Ji Yeong; Rhee, Ki-Jong; Kim, Jong Bae

    2014-01-01

    Background Piperine is a compound comprising 5-9% of black pepper (Piper nigrum), which has a variety of biological roles related to anticancer activities. Helicobacter pylori has been classified as a gastric carcinogen, because it causes gastritis and gastric cancer by injecting the virulent toxin CagA and translocating VacA. The present study investigated the inhibitory action of piperine on H. pylori growth and adhesion. Methods Inhibition of H. pylori growth was determined by the broth ma...

  17. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shumei Mao

    2015-01-01

    Full Text Available Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE and its possible mechanisms in spontaneously hypertensive rats (SHR rats. Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats were used in this study. Rats were, respectively, given EFE (EFE group, captopril (captopril group, or phosphate-buffered saline (PBS (normal control group and SHR group for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP and diastolic blood pressure (DBP were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II, aldosterone (Ald, and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α in plasma were determined by radioimmunoassay, and serum nitric oxide (NO concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL. After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.

  18. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  19. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Science.gov (United States)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao; Gejl, Anne Kær; Andersen, Lars Bo; Froberg, Karsten; Bugge, Anna

    2016-01-01

    To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive performance.

  20. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Directory of Open Access Journals (Sweden)

    Sidsel L Domazet

    Full Text Available To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents.The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer.Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance.Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive

  1. Antimicrobial activity of some potential active compounds against ...

    African Journals Online (AJOL)

    Antimicrobial activities of six potential active compounds (acetic acid, chitosan, catechin, gallic acid, lysozyme, and nisin) at the concentration of 500 g/ml against the growth of Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cerevisiae were determined. Lysozyme showed the highest ...

  2. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq

    Directory of Open Access Journals (Sweden)

    Al-Bayati Firas A

    2009-06-01

    Full Text Available Abstract Background Mentha longifolia L. (Lamiaceae leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. Methods The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. Results A known compound was isolated from the essential oil of the plant and was identified as (- menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20 was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6–125.0 μg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 μg/ml while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 μg/ml. Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1–18.5 mm; MIC: 125.0. Conclusion The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation.

  3. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Toxicity and anti termite activities of the essential oils from Piper sarmentosum

    International Nuclear Information System (INIS)

    Chieng, T.C.; Assim, Z.B.; Fasihuddin, B.A.

    2008-01-01

    The leaves of Piper sarmentosum were hydro distilled using the modified Clevenger-type apparatus, and an average yield of essential oil of 1.10 % (v/ dry weight) was obtained. The leaf oils were analyzed by GC and GC-MS. A total of 31 components were identified. Spathulenol (21.0 %), myristicin (18.8 %), β-caryophyllene (18.2 %) and (E,E)-farnesol (10.5 %) were the major compounds found in the leaf oil. The leaf oil showed inhibitory activity against the larvae of Artemia salina with LC 50 value of 35.2 μg/ mL, and 100 % mortality within two days at 1 % concentration against the subterranean termite (Coptotermes sp.). The crude extract was then subjected to bioassay-guided isolation using silica gel column chromatography, and eluted with hexane containing increasing volumes of ethyl acetate and yielded three pure compounds. Their toxicity and anti termite activities of the three compounds were determined. Compound 2 showed the most potent activity against the larvae of A. salina with LC 50 value of 7.5 μg/ mL, while the LC 50 values for compound 3 and compound 1 were 17.2 μg/ mL and 22.5 μg/ mL respectively. Compound 3 showed the strongest inhibitory activity against the subterranean termite (Coptotermes sp.) with 100 % mortality after 3 days at 0.1 % concentration followed by compound 2 with the same mortality rate at 0.5 % concentration. Compound 1 showed the weakest inhibitory activity with 80 % mortality after 3 days at 2 % concentration. Based on spectroscopic data and comparison with published information, compound 1 and 2 have been identified as caryophyllene and myristicin respectively. Compound 3 is still being studied in order to elucidate its structure. (author)

  5. Inhibitory Effect of Capparis spinosa Extract on Pancreatic Alpha-Amylase Activity

    Directory of Open Access Journals (Sweden)

    Mostafa Selfayan

    2016-04-01

    Full Text Available Background Diabetes mellitus is a metabolic disorder characterized by high blood glucose level caused due to deficiency of insulin secretion or insulin function. The inhibition of carbohydrate hydrolyzing enzymes such as α-amylase can be an important strategy for decrease postprandial blood glucose level in patients with type II diabetes. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Objectives The aim of the present study is to investigate the effect of the ethanolic extract of Capparis spinosa on pancreatic α-amylase activities to find out the relevance of the plant in controlling blood sugar. Materials and Methods In this experimental study, root and leaves of C. spinosa were tested for α-amylase inhibition. Different concentrations (1.56, 3.12, 6.25, 12.5 and 25 mg/mL of extracts were incubated with enzyme substrate solution and the spectrometric method used for measure enzyme activity. Also acarbose was used as the standard inhibitor. Results Both root and leaves extracts showed inhibition of α-amylase (root = 97.31% and leaves = 98.92%. The root and leaves extracts of C. spinosa exhibited appreciable α-amylase inhibitory activity with an IC50 values 5.93 mg/mL and 3.89 mg/mL respectively, when compared with acarbose (IC50 value 0.038 mg/mL. Conclusions This study supports that root and leaves extracts of C. spinosa exhibit considerable α-amylase inhibitory activities. These results could be useful for developing functional foods by combination of plant-based foods for treatment of diabetes mellitus.

  6. Aporphine alkaloids with antitubercular activity isolated from Ocotea discolor Kunth (Lauraceae

    Directory of Open Access Journals (Sweden)

    Monica Constanza Avila Murillo

    2017-09-01

    Full Text Available Tuberculosis disease causes thousands of deaths worldwide and, currently, the used drugs are either not enough or obsolete for its treatment. Therefore, new compounds that combat this disease are been seek. Thus, the antituberculosis activity of the alkaloids ocoxilonine (1, ocoteine (2, dicentrine (3 and 1,2-methylenedioxy-3,10,11-trimethoxyaporphine (4, isolated from Ocotea discolor wood was evaluated. Their structures were identified by analysis of nuclear magnetic resonance spectroscopic data (NMR 1D – 1H, 13C, 2D – COSY, HSQC and HMBC, mass spectra, and comparison with literature data. All the isolated compounds demonstrated antituberculosis activity, with ocoteine (2 being the most active compound, with a minimum inhibitory concentration value of 140 μM against the virulent strain Mycobacterium tuberculosis H37Rv. All the isolated compounds showed antituberculosis activity, with a variation range in the minimum inhibitory concentration between 140 to 310 μM, being ocoteine (2 the most active compound against the virulent strain Mycobacterium tuberculosis H37Rv.

  7. The Effect of Novel Heterocyclic Compounds on Cryptococcal Biofilm

    Science.gov (United States)

    Korem, Maya; Kagan, Sarah

    2017-01-01

    Biofilm formation by microorganisms depends on their communication by quorum sensing, which is mediated by small diffusible signaling molecules that accumulate in the extracellular environment. During human infection, the pathogenic yeast Cryptococcus neoformans can form biofilm on medical devices, which protects the organism and increases its resistance to antifungal agents. The aim of this study was to test two novel heterocyclic compounds, S-8 (thiazolidinedione derivative, TZD) and NA-8 (succinimide derivative, SI), for their anti-biofilm activity against strains of Cryptococcus neoformans and Cryptococcus gattii. Biofilms were formed in a defined medium in 96-well polystyrene plates and 8-well micro-slides. The effect of sub-inhibitory concentrations of S-8 and NA-8 on biofilm formation was measured after 48 h by a metabolic reduction assay and by confocal laser microscopy analysis using fluorescent staining. The formation and development of cryptococcal biofilms was inhibited significantly by these compounds in concentrations below the minimum inhibitory concentration (MIC) values. These compounds may have a potential role in preventing fungal biofilm development on indwelling medical devices or even as a therapeutic measure after the establishment of biofilm. PMID:29371559

  8. Synthesis and antimicrobial activity of some 2 ...

    African Journals Online (AJOL)

    These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds ...

  9. In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzimidazoles

    Science.gov (United States)

    Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.

    1998-01-01

    Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748

  10. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca; Chiasson, F

    2004-10-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5x10{sup 7} CFU/ml). Active compounds were added at the concentration corresponding to ((1)/(30)) of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D{sub 10} values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D{sub 10} values were reduced to 0.046 for E. coli and to 0.110 for S. typhi.

  11. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology.

    Science.gov (United States)

    Jeong, Ji Yeon; Liu, Qing; Kim, Seon Beom; Jo, Yang Hee; Mo, Eun Jin; Yang, Hyo Hee; Song, Dae Hye; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-05-14

    Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae) have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  12. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ji Yeon Jeong

    2015-05-01

    Full Text Available Melanin is a natural pigment that plays an important role in the protection of skin, however, hyperpigmentation cause by excessive levels of melatonin is associated with several problems. Therefore, melanogenesis inhibitory natural products have been developed by the cosmetic industry as skin medications. The leaves of Morus alba (Moraceae have been reported to inhibit melanogenesis, therefore, characterization of the melanogenesis inhibitory constituents of M. alba leaves was attempted in this study. Twenty compounds including eight benzofurans, 10 flavonoids, one stilbenoid and one chalcone were isolated from M. alba leaves and these phenolic constituents were shown to significantly inhibit tyrosinase activity and melanin content in B6F10 melanoma cells. To maximize the melanogenesis inhibitory activity and active phenolic contents, optimized M. alba leave extraction conditions were predicted using response surface methodology as a methanol concentration of 85.2%; an extraction temperature of 53.2 °C and an extraction time of 2 h. The tyrosinase inhibition and total phenolic content under optimal conditions were found to be 74.8% inhibition and 24.8 μg GAE/mg extract, which were well-matched with the predicted values of 75.0% inhibition and 23.8 μg GAE/mg extract. These results shall provide useful information about melanogenesis inhibitory constituents and optimized extracts from M. alba leaves as cosmetic therapeutics to reduce skin hyperpigmentation.

  13. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids.

    Science.gov (United States)

    Fais, Antonella; Corda, Marcella; Era, Benedetta; Fadda, M Benedetta; Matos, Maria Joao; Quezada, Elias; Santana, Lourdes; Picciau, Carmen; Podda, Gianni; Delogu, Giovanna

    2009-07-13

    In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC(50) values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin (8)is the most potentcompound (0.27 mM), more so than umbelliferone (0.42 mM), used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  14. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT assay and Larvicidal Activities

    Directory of Open Access Journals (Sweden)

    Saeed Tavakoli

    2017-10-01

    Full Text Available Background: We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant.Methods: Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Anti­oxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anoph­eles stephensi was carried out according to the method described by WHO.Results: In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-ver­benol (9.66%, isobutyl acetate (25.73% and E-β-caryophyllene (8.68% were main compounds. The oil showed (IC50= 111.2µg/ml in DPPH and IC50= 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD50= 1.1µg/ml in brine shrimp lethality test and with (IC50= 22.0, 25.0 and 42.55 µg/ml on three cancerous cell lines (MCF-7, A-549 and HT-29 respectively. LC50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli, Asper­gillus niger and Candida albicans.Conclusion: The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  15. Antimycoplasmal Activities of Compounds from Solanum aculeastrum and Piliostigma thonningii against Strains from the Mycoplasma mycoides Cluster

    Directory of Open Access Journals (Sweden)

    Francisca Kama-Kama

    2017-12-01

    Full Text Available Infections caused by Mycoplasma species belonging to the ‘mycoides cluster’ negatively affect the agricultural sector through losses in livestock productivity. These Mycoplasma strains are resistant to many conventional antibiotics due to the total lack of cell wall. Therefore, there is an urgent need to develop new antimicrobial agents from alternative sources such as medicinal plants to curb the resistance threat. Recent studies on extracts from Solanum aculeastrum and Piliostigma thonningii revealed interesting antimycoplasmal activities hence the motivation to investigate the antimycoplasmal activities of constituent compounds. The CH2Cl2/MeOH extracts from the berries of S. aculeastrum yielded a new β-sitosterol derivative (1 along with six known ones including; lupeol (2, two long-chain fatty alcohols namely undecyl alcohol (3 and lauryl alcohol (4; two long-chain fatty acids namely; myristic acid (5 and nervonic acid (6 as well as a glycosidic steroidal alkaloid; (25R-3β-O-α-L-rhamnopyranosyl-(1→2-O-[α-L-rhamnopyranosyl-(1→4]-β-D-glucopyranosyloxy-22α-N-spirosol-5-ene (7 from the MeOH extracts. A new furan diglycoside, (2,5-D-diglucopyranosyloxy-furan (8 was also characterized from the CH2Cl2/MeOH extract of stem bark of P. thonningii. The structures of the compounds were determined on the basis of spectroscopic evidence and comparison with literature data. Compounds 1, 3, 4, 7, and 8 isolated in sufficient yields were tested against the growth of two Mycoplasma mycoides subsp. mycoides (Mmm, two M. mycoides. capri (Mmc, and one M. capricolum capricolum (Mcc using broth dilution methods, while the minimum inhibitory concentration (MIC was determined by serial dilution. The inhibition of Mycoplasma in vitro growth was determined by the use of both flow cytometry (FCM and color change units (CCU methods. Compounds 4 and 7 showed moderate activity against the growth of Mmm and Mmc but were inactive against the growth of Mcc

  16. New phenolic compounds from the twigs of Artocarpus heterophyllus.

    Science.gov (United States)

    Di, X; Wang, S; Wang, B; Liu, Y; Yuan, H; Lou, H; Wang, X

    2013-02-01

    Two new chalcones, artocarpusins A and B (1 and 2), one new flavone, artocarpusin C (3), one new 2-arylbenzofuran derivative, artocarstilene A (4), and 15 flavonoids were isolated from the twigs of Artocarpus heterophyllus. Their structures were established on the basis of extensive spectroscopic analysis. Compounds 9 and 16 showed moderate inhibitory activity on the proliferation of the PC-3 and H460 cell lines.

  17. Effects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers.

    Science.gov (United States)

    Luijten, Maartje; O'Connor, David A; Rossiter, Sarah; Franken, Ingmar H A; Hester, Robert

    2013-11-01

    Susceptibility to use of addictive substances may result, in part, from a greater preference for an immediate small reward relative to a larger delayed reward or relative insensitivity to punishment. This functional magnetic resonance imaging (fMRI) study examined the neural basis of inhibiting an immediately rewarding stimulus to obtain a larger delayed reward in smokers. We also investigated whether punishment could modulate inhibitory control. The Monetary Incentive Go/NoGo (MI-Go/NoGo) task was administered that provided three types of reward outcomes contingent upon inhibitory control performance over rewarding stimuli: inhibition failure was either followed by no monetary reward (neutral condition), a small monetary reward with immediate feedback (reward condition) or immediate monetary punishment (punishment condition). In the reward and punishment conditions, successful inhibitory control resulted in larger delayed rewards. Community sample of smokers in the Melbourne (Australia) area. Nineteen smokers were compared with 17 demographically matched non-smoking controls. Accuracy, reaction times and brain activation associated with the MI-Go/NoGo task. Smokers showed hyperactivation in the right insula (P rewarding stimulus to obtain a larger delayed reward, and during inhibition of neutral stimuli. Group differences in brain activity were not significant in the punishment condition in the right insula and dorsolateral prefrontal cortex, most probably as a result of increased activation in non-smoking controls. Compared with non-smokers, smokers showed increased neural activation when resisting immediately rewarding stimuli and may be less sensitive to punishment as a strategy to increase control over rewarding stimuli. © 2013 Society for the Study of Addiction.

  18. College Binge Drinking Associated with Decreased Frontal Activation to Negative Emotional Distractors during Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Julia E. Cohen-Gilbert

    2017-09-01

    Full Text Available The transition to college is associated with an increase in heavy episodic alcohol use, or binge drinking, during a time when the prefrontal cortex and prefrontal-limbic circuitry continue to mature. Traits associated with this immaturity, including impulsivity in emotional contexts, may contribute to risky and heavy episodic alcohol consumption. The current study used blood oxygen level dependent (BOLD multiband functional magnetic resonance imaging (fMRI to assess brain activation during a task that required participants to ignore background images with positive, negative, or neutral emotional valence while performing an inhibitory control task (Go-NoGo. Subjects were 23 college freshmen (seven male, 18–20 years who engaged in a range of drinking behavior (past 3 months’ binge episodes range = 0–19, mean = 4.6, total drinks consumed range = 0–104, mean = 32.0. Brain activation on inhibitory trials (NoGo was contrasted between negative and neutral conditions and between positive and neutral conditions using non-parametric testing (5000 permutations and cluster-based thresholding (z = 2.3, p ≤ 0.05 corrected. Results showed that a higher recent incidence of binge drinking was significantly associated with decreased activation of dorsolateral prefrontal cortex (DLPFC, dorsomedial prefrontal cortex (DMPFC, and anterior cingulate cortex (ACC, brain regions strongly implicated in executive functioning, during negative relative to neutral inhibitory trials. No significant associations between binge drinking and brain activation were observed for positive relative to neutral images. While task performance was not significantly associated with binge drinking in this sample, subjects with heavier recent binge drinking showed decreased recruitment of executive control regions under negative versus neutral distractor conditions. These findings suggest that in young adults with heavier recent binge drinking, processing of negative emotional

  19. Inhibition of TNF-α and IL-1 by compounds from selected plants for ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory activities of herbal compounds from Curcuma longa, Sophora japonica and Camellia sinensis against tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) using in vivo and in silico tools. Methods: The extracts of the medicinal herbs (Curcuma longa, Sophora japonica and ...

  20. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds.

    Science.gov (United States)

    Thorsteinsson, Thorsteinn; Másson, Már; Kristinsson, Karl G; Hjálmarsdóttir, Martha A; Hilmarsson, Hilmar; Loftsson, Thorsteinn

    2003-09-11

    A series of soft quaternary ammonium antimicrobial agents, which are analogues to currently used quaternary ammonium preservatives such as cetyl pyridinium chloride and benzalkonium chloride, were synthesized. These soft analogues consist of long alkyl chain connected to a polar headgroup via chemically labile spacer group. They are characterized by facile nonenzymatic and enzymatic degradation to form their original nontoxic building blocks. However, their chemical stability has to be adequate in order for them to have antimicrobial effects. Stability studies and antibacterial and antiviral activity measurements revealed relationship between activity, lipophilicity, and stability. Their minimum inhibitory concentration (MIC) was as low as 1 microg/mL, and their viral reduction was in some cases greater than 6.7 log. The structure-activity studies demonstrate that the bioactive compounds (i.e., MIC for Gram-positive bacteria of <10 microg/mL) have an alkyl chain length between 12 and 18 carbon atoms, with a polar headgroup preferably of a small quaternary ammonium group, and their acquired inactivation half-life must be greater than 3 h at 60 degrees C.

  1. Medicinal flowers. XXXX . Structures of dihydroisocoumarin glycosides and inhibitory effects on aldose reducatase from the flowers of Hydrangea macrophylla var.thunbergii.

    Science.gov (United States)

    Liu, Jiang; Nakamura, Seikou; Zhuang, Yan; Yoshikawa, Masayuki; Hussein, Ghazi Mohamed Eisa; Matsuo, Kyohei; Matsuda, Hisashi

    2013-01-01

    Six dihydroisocoumarin glycosides, florahydrosides I and II, thunberginol G 8-O-β-d-glucopyranoside, thunberginol C 8-O-β-d-glucopyranoside, 4-hydroxythunberginol G 3'-O-β-d-glucopyranoside, and thunberginol D 3'-O-β-d-glucopyranoside, have been isolated from the flowers of Hydrangea macrophylla Seringe var. thunbergii Makino (Saxifragaceae) together with 20 known compounds. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. Among the constituents, acylated quinic acid analog, neochlorogenic acid, was shown to substantially inhibit aldose reductase [IC50=5.6 µm]. In addition, the inhibitory effects on aldose reductase of several caffeoylquinic acid analogs were examined for structure-activity relationship study. As the results, 4,5-O-trans-p-dicaffeoyl-d-quinic acid was found to exhibit a potent inhibitory effect [IC50=0.29 µm].

  2. Isolation and characterization of flavanols from Anthocephalus cadamba and evaluation of their antioxidant, antigenotoxic, cytotoxic and COX-2 inhibitory activities

    Directory of Open Access Journals (Sweden)

    Madhu Chandel

    Full Text Available ABSTRACT In search of lead molecules for use in disease prevention and as food additive from natural sources, two flavanols were isolated from leaves of Anthocephalus cadamba (Roxb. Miq., Rubiaceae. Their structures were established as 6-hydroxycoumarin-(4"→8-(--epicatechin and 6-hydroxycoumarin-(4"→8-(--epicatechin-(4→6‴-(--epicatechin on the basis of spectroscopic data. Both the compounds exhibited potent antioxidant and antigenotoxic activity. 6-Hydroxycoumarin-(4"→8-(--epicatechin scavenged DPPH, ABTS+.and superoxide anion radicals with IC50 values of 6.09 µg/ml, 5.95 µg/ml and 42.70 µg/ml respectively whereas the IC50 values for 6-hydroxycoumarin-(4"→8-(--epicatechin-(4→6‴-(--epicatechin were 6.62 µg/ml for DPPH free radicals, 6.93 µg/ml for ABTS radical cations and 49.08 µg/ml for superoxide anion radicals. Both the compounds also exhibited potent reducing potential in reducing power assay and protected the plasmid DNA (pBR322 against the attack of hydroxyl radicals generated by Fenton's reagent in DNA protection assay. In SOS chromotest, 6-hydroxycoumarin-(4"→8-(--epicatechin decreased the induction factor induced by 4NQO (20 µg/ml and aflatoxin B1 (20 µg/ml by 31.78% and 65.04% respectively at a concentration of 1000 µg/ml. On the other hand, 6-hydroxycoumarin-(4"→8-(--epicatechin-(4→6‴-(--epicatechin decreased the genotoxicity of these mutagens by 37.11% and 47.05% respectively. It also showed cytotoxicity in COLO-205 cancer cell line with GI50 of 435.71 µg/ml. Both the compounds showed moderate cyclooxygenase-2 inhibitory activity.

  3. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models

    Science.gov (United States)

    2014-01-01

    Background Alzheimer’s disease (AD) is the most common type of presenile and senile dementia. The human β-amyloid precursor cleavage enzyme (BACE-1) is a key enzyme responsible for amyloid plaque production, which implicates the progress and symptoms of AD. Here we assessed the anti-BACE-1 and behavioral activities of curcuminoids from rhizomes of Curcuma longa (Zingiberaceae), diarylalkyls curcumin (CCN), demethoxycurcumin (DMCCN), and bisdemethoxycurcumin (BDMCCN) against AD Drosophila melanogaster models. Methods Neuro-protective ability of the curcuminoids was assessed using Drosophila melanogaster model system overexpressing BACE-1 and its substrate APP in compound eyes and entire neurons. Feeding and climbing activity, lifespan, and morphostructural changes in fly eyes also were evaluated. Results BDMCCN has the strongest inhibitory activity toward BACE-1 with 17 μM IC50, which was 20 and 13 times lower than those of CCN and DMCCN respectively. Overexpression of APP/BACE-1 resulted in the progressive and measurable defects in morphology of eyes and locomotion. Remarkably, supplementing diet with either 1 mM BDMCCN or 1 mM CCN rescued APP/BACE1-expressing flies and kept them from developing both morphological and behavioral defects. Our results suggest that structural characteristics, such as degrees of saturation, types of carbon skeleton and functional group, and hydrophobicity appear to play a role in determining inhibitory potency of curcuminoids on BACE-1. Conclusion Further studies will warrant possible applications of curcuminoids as therapeutic BACE-1 blockers. PMID:24597901

  4. Simultaneous quantification of ten constituents of Xanthoceras sorbifolia Bunge using UHPLC-MS methods and evaluation of their radical scavenging, DNA scission protective, and α-glucosidase inhibitory activities.

    Science.gov (United States)

    Zhang, Yu; Ma, Jian-Nan; Ma, Chun-Li; Qi, Zhi; Ma, Chao-Mei

    2015-11-01

    The present study was designed to investigate the bioactive constituents of Xanthoceras sorbifolia in terms of amounts and their antioxidant, DNA scission protection, and α-glucosidase inhibitory activities. Simultaneous quantification of 10 X. sorbifolia constituents was carried out by a newly established ultra-high performance liquid chromatography-quadrupole mass spectrometry method (UHPLC-MS). The antioxidant activities were evaluated by measuring DPPH radical scavenging and DNA scission protective activities. The α-glucosidase inhibitory activities were investigated by using an assay with α-glucosidase from Bacillus Stearothermophilus and disaccharidases from mouse intestine. We found that the wood of X. sorbifolia was rich in phenolic compounds with the contents of catechin, epicatechin, myricetin, and dihydromyricetin being 0.12-0.19, 1.94-2.16, 0.77-0.91, and 6.76-7.89 mg·g(-1), respectively. The four constituents strongly scavenged DPPH radicals (with EC50 being 4.2, 3.8 and 5.7 μg·mL(-1), respectively) and remarkably protected peroxyl radical-induced DNA strand scission (92.10%, 94.66%, 75.44% and 89.95% of protection, respectively, at a concentration of 10 μmol·L(-1)). A dimeric flavan 3-ol, epigallocatechin-(4β→8, 2β→O-7)-epicatechin potently inhibited α-glucosidase with an IC50 value being as low as 1.2 μg·mL(-1). The established UHPLC-MS method could serve as a quality control tool for X. sorbifolia. In conclusion, the high contents of antioxidant and α-glucosidase inhibitory constituents in X. sorbifolia support its use as complementation of other therapeutic agents for metabolic disorders, such as diabetes and hypertension. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Flavor Enhancer From Catfish (Clarias batrachus) Bekasam Powder and Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity in Various Dishes

    Science.gov (United States)

    Lestari, Yanesti N.; Murwani, Retno; Agustini, Tri W.

    2018-02-01

    Flavor enhancer is characterized by high glutamic acid content and it can be obtained from fermented food such as Bekasam. Fermented food had inhibitory effect on Angiotensin-I-Converting Enzyme (ACE) activity which is advantageous for hypertension. However, such activity was not known to sustain in food system. The aim of this research was to study addition of flavour enhancer from Catfish Bekasam Powder (CBP) in various food systems and to determine the ACE inhibitory (ACEI) activity in the food system. Four food system consisted of carrot, champignon, and chicken meat dishes were boiled in water and added with CBP or MSG. Each food system was added with graded level of CBP (0%; 0.5%; 0.8%; 1.1%; and 1,4%) and for control monosodium glutamate (MSG) was used. ACEI activity in each food system and organoleptic test using multiple comparison differentiation on 15 semi-trained panellists were determined. The results showed that there were fluctuation of ACEI activity in the carrot, champignon, and chicken meat dishes (p=0.017; 0.043; and 0.032). The MSG containing dishes showed the lowest ACEI activity. Addition of graded level of CBP on carrot, champignon, and chicken meat dishes were directly proportional to glutamic acid content but inversely proportional to ACEI activity (pacid content but reduced ACE-inhibitory activity significantly (p<0.05). Comparing CBP to MSG addition in champignon dish revealed that increasing level of CBP increased the flavour preference of the panellists. On the contrary the higher the addition CBP in noodle and chicken meat dishes the worse were the flavour score (p<0.05). It can be concluded that the addition of CBP as flavour enhancer on various dishes can deliver better flavour and ACE-inhibitory activity than the addition of commercial MSG.

  6. Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells.

    Science.gov (United States)

    Jiang, Wen-Jun; Daikonya, Akihiro; Ohkawara, Mitsuyoshi; Nemoto, Takashi; Noritake, Ryusuke; Takamiya, Tomoko; Kitanaka, Susumu; Iijima, Hiroshi

    2017-01-15

    We isolated flavonoids from herbal specimens from the Tibetan region (Sophora yunnanensis and Rhodiola sacra) that suppress nitric oxide (NO) production in macrophages stimulated by lipopolysaccharide and interferon-γ. The isolated flavonoids carry symmetric substitutions in the B ring (R 3' =R 5' ). We analyzed the quantitative structure-activity relationship of the inhibitory activity by comparative molecular field analysis (CoMFA) using this series of flavonoids. Use of flavonoids with symmetrical substitutions in the B ring made it simpler to align molecules because it was not necessary to consider a huge number of combinations due to the B-ring conformation. The CoMFA model, whose cross-validated q 2 value was 0.705, suggested the existence of a hydroxy group at the 5-position, the choice of the A/C-ring scaffold (chromane or chromene) and electrostatic field around the B ring are important for NO inhibitory activity. Flavonoids synthesized based on the CoMFA model exhibited significant inhibitory potential against NO production, validating the predictive capability of the CoMFA model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae

    Directory of Open Access Journals (Sweden)

    Mbaveng Armelle T

    2012-06-01

    Full Text Available Abstract Background Dorstenia mannii (Moraceae is a medicinal herb used traditionally for the treatment of many diseases. In the present study, the methanol extract of D. mannii and nine of its isolated compounds, namely dorsmanin A (1, B (2, C (3, D (4, E (6, F (7, G (8 dorsmanin I (9 and 6,8-diprenyleriodictyol (5, were tested for their antimicrobial activities against yeast, Mycobacteria and Gram-negative bacteria. Methods The microplate alamar blue assay (MABA and the broth microdilution method were used to determine the minimal inhibitory concentration (MIC and minimal microbicidal concentration (MMC of the above extract and compounds on a panel of bacterial species. Results The results of the MIC determinations demonstrated that the methanol extract as well as compounds 3 and 8 were able to prevent the growth of all the fourteen studied microorganisms within the concentration range of 4 to 1024 μg/ml. The lowest MIC value for the methanol extract (64 μg/ml was obtained on Candida albicans. The lowest value for individual compounds (4 μg/ml was recorded with compounds 3 on Pseudomonas aeruginosa PA01 and 7 on Eschericia coli ATCC strain. The MIC values recorded with compounds 3 on P. aeruginosa PA01, 6 on C. albicans,7 on P. aeruginosa PA01 and K. pneumoniae ATCC strain and C. albicans,and 8 on P. aeruginosa PA01, PA124, P. stuartii, M. tuberculosis MTCS1 were lower than or equal to those of the reference drugs. MMC values not greater than 1024 μg/ml were recorded on all studied microorganisms with compounds 3 and 8. Conclusion The overall results of the present investigation provided evidence that the crude extract of D. mannii as well as some of its compounds such compounds 3 and 8 could be a potential source of natural antimicrobial products.

  8. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl-N-(5-cyclopropyl-1H-pyrazol-3-yl-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity

    Directory of Open Access Journals (Sweden)

    Tianxiao Wu

    2018-02-01

    Full Text Available A series of novel 2,4-diaminoquinazoline derivatives were designed, synthesized, and evaluated as p21-activated kinase 4 (PAK4 inhibitors. All compounds showed significant inhibitory activity against PAK4 (half-maximal inhibitory concentration IC50 < 1 μM. Among them, compounds 8d and 9c demonstrated the most potent inhibitory activity against PAK4 (IC50 = 0.060 μM and 0.068 μM, respectively. Furthermore, we observed that compounds 8d and 9c displayed potent antiproliferative activity against the A549 cell line and inhibited cell cycle distribution, migration, and invasion of this cell line. In addition, molecular docking analysis was performed to predict the possible binding mode of compound 8d. This series of compounds has the potential for further development as PAK4 inhibitors for anticancer activity.

  9. Synthesis, biological activity and computational studies of novel azo-compounds

    International Nuclear Information System (INIS)

    Ashraf, J.; Murtaza, S.; Mughal, E.U.; Sadiq, A.

    2017-01-01

    In the present protocol, we report the synthesis and characterization of some novel azo-compounds starting from 4-methoxyaniline and 4-aminophenazone, which were diazotized at low temperature. 4-nitrophenol, 2-aminobenzoic acid, benzamide, 4-aminobenzoic acid, resorcinol, o-bromonitrobenzene and 2-nitroaniline were used as active aromatic coupling compounds for the second step. The synthesized compounds were investigated for their potential antibacterial activities by using disc diffusion method against Escherichia coli, Shigellasonnei, Streptococcus pyrogenes, Staphylococcus aureus and Neisseria gonorrhoeae strains. They were also subjected to antioxidant activities by using DPPH method. Results revealed that the compounds of 4-methoxyaniline and 4-aminophenazone showed good antibacterial activity against all strains, where as some azo-compounds have moderate to good antioxidant activities. Furthermore, these compounds were studied by computational analysis. (author)

  10. A Structure-Activity Relationship (SAR Study of Neolignan Compounds with Anti-schistosomiasis Activity

    Directory of Open Access Journals (Sweden)

    Alves Claúdio N.

    2002-01-01

    Full Text Available A set of eighteen neolignan derivative compounds with anti-schistosomiasis activity was studied by using the quantum mechanical semi-empirical method PM3 and other theoretical methods in order to calculate selected molecular properties (variables or descriptors to be correlated to their biological activities. Exploratory data analysis (principal component analysis, PCA, and hierarchical cluster analysis, HCA, discriminant analysis (DA and the Kth nearest neighbor (KNN method were employed for obtaining possible relationships between the calculated descriptors and the biological activities studied and predicting the anti-schistosomiasis activity of new compounds from a test set. The molecular descriptors responsible for the separation between active and inactive compounds were: hydration energy (HE, molecular refractivity (MR and charge on the C19 carbon atom (Q19. These descriptors give information on the kind of interaction that can occur between the compounds and their respective biological receptor. The prediction study was done with a new set of ten derivative compounds by using the PCA, HCA, DA and KNN methods and only five of them were predicted as active against schistosomiasis.

  11. Antimicrobial and antioxidant activities of phenolic compound extracted from new verbascum species growing in Turkey

    International Nuclear Information System (INIS)

    Saltan, F.Z.; Sokmen, M.; Akin, M.; Saracoglu, H.T.; Gokturk, R.S.; Ahmad, M.; Ali, M.; Shah, M.R.

    2011-01-01

    The aim of this study was to evaluate the antimicrobial and antioxidant potential of the aerial parts of four new Verbascum L. (Scrophulariaceae) species namely, Verbascum bellum Hub.-Mor., Verbascum detersile Boiss. and Heldr., Verbascum myriocarpum Boiss. and Heldr. and Verbascum pestalozzae Boiss., growing in Turkey. Plant materials were extracted with chloroform, ethylacetate and methanol for antimicrobial tests. These extracts were assayed against both gram-positive and gram-negative bacteria by the microdilution method. The minimum inhibitory concentrations of the Verbascum species varied between 150-0.59 mg/ml. In general, ethylacetate extract was effective for E. coli (ATCC 25922, 1.88 mg/ml). Ethyl acetate extract of V. pestalozzae exhibited the highest effect on P. aeroginosa (ATCC 29853, 0.59 mg/ml). The antioxidant capacity of the studied species was only tested with methanol extracts. Their antioxidant action was tested by DPPH and beta-carotene-linoleic acid methods. While V. pestalozzae (IC/sub 50/=15 mu g/ml) exhibited the strongest activity in DPPH assay, V. detersile and V. pestalozzae provided an excellent inhibition effect (100% RAA) in the beta-caroten- linoleic acid system. HPLC analysis of methanol extracts was also carried out to determine the composition of the phenolic compounds responsible for the activity. Methanol extracts were also subjected to HPLC analysis to determine their phenolic compound profile. (author)

  12. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay.

    Directory of Open Access Journals (Sweden)

    Ikechukwu Okoli

    2009-09-01

    Full Text Available Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans-C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.

  13. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  14. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  15. Do piperacillin/tazobactam and other antibiotics with inhibitory activity against Clostridium difficile reduce the risk for acquisition of C. difficile colonization?

    Science.gov (United States)

    Kundrapu, Sirisha; Sunkesula, Venkata C K; Jury, Lucy A; Cadnum, Jennifer L; Nerandzic, Michelle M; Musuuza, Jackson S; Sethi, Ajay K; Donskey, Curtis J

    2016-04-18

    Systemic antibiotics vary widely in in vitro activity against Clostridium difficile. Some agents with activity against C. difficile (e.g., piperacillin/tazobactam) inhibit establishment of colonization in mice. We tested the hypothesis that piperacillin/tazobactam and other agents with activity against C. difficile achieve sufficient concentrations in the intestinal tract to inhibit colonization in patients. Point-prevalence culture surveys were conducted to compare the frequency of asymptomatic rectal carriage of toxigenic C. difficile among patients receiving piperacillin/tazobactam or other inhibitory antibiotics (e.g. ampicillin, linezolid, carbapenems) versus antibiotics lacking activity against C. difficile (e.g., cephalosporins, ciprofloxacin). For a subset of patients, in vitro inhibition of C. difficile (defined as a reduction in concentration after inoculation of vegetative C. difficile into fresh stool suspensions) was compared among antibiotic treatment groups. Of 250 patients, 32 (13 %) were asymptomatic carriers of C. difficile. In comparison to patients receiving non-inhibitory antibiotics or prior antibiotics within 90 days, patients currently receiving piperacillin/tazobactam were less likely to be asymptomatic carriers (1/36, 3 versus 7/36, 19 and 15/69, 22 %, respectively; P = 0.024) and more likely to have fecal suspensions with in vitro inhibitory activity against C. difficile (20/28, 71 versus 3/11, 27 and 4/26, 15 %; P = 0.03). Patients receiving other inhibitory antibiotics were not less likely to be asymptomatic carriers than those receiving non-inhibitory antibiotics. Our findings suggest that piperacillin/tazobactam achieves sufficient concentrations in the intestinal tract to inhibit C. difficile colonization during therapy.

  16. Nanocapsular Dispersion of Cinnamaldehyde for Enhanced Inhibitory Activity against Aflatoxin Production by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Hongbo Li

    2015-04-01

    Full Text Available Cinnamaldehyde (CA is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.

  17. Synthesis and anti-inflammatory activity of phenylbutenoid dimer analogs

    International Nuclear Information System (INIS)

    Kim, Sung Soo; Fang, Yuan Ying; Park, Hae Eil

    2015-01-01

    Several phenylbutenoid dimer (PBD) analogs were synthesized and evaluated for their inhibitory activities against nitric oxide (NO) production and TNF-α release. The PBD analogs were synthesized via Diels–Alder and subsequent Schlosser reactions as key steps. Among the tested compounds, two analogs (8c, 8f) exhibited much stronger inhibitory activity against LPS-stimulated NO production and TNF-α release in RAW 264.7 cells than that of wogonin

  18. Design, synthesis, and in vitro antituberculosis activity of 2(5H)-Furanone derivatives

    CSIR Research Space (South Africa)

    Ngwane, AH

    2016-01-01

    Full Text Available growth (Bioscreen C system). In screening the active first-generation compounds for growth inhibition against Mycobacterium tuberculosis H37Rv, the most active compound was identified with a minimum inhibitory concentration (MIC99 ) of 8.07 µg/mL (15.8 µ...

  19. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    Science.gov (United States)

    Huang, Tao; Gejl, Anne Kær; Froberg, Karsten

    2016-01-01

    Objectives To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. Methods The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12–14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Results Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Conclusions Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the

  20. Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds

    Directory of Open Access Journals (Sweden)

    Joel R. Coats

    2000-04-01

    Full Text Available The insecticidal activities of several cyanohydrins, cyanohydrin esters and monoterpenoid esters (including three monoterpenoid esters of a cyanohydrin were evaluated. Topical toxicity to Musca domestica L. adults was examined, and testing of many compounds at 100 mg/fly resulted in 100% mortality. Topical LD50 values of four compounds for M. domestica were calculated. Testing of many of the reported compounds to brine shrimp (Artemia franciscana Kellog resulted in 100% mortality at 10 ppm, and two compounds caused 100% mortality at 1 ppm. Aquatic LC50 values were calculated for five compounds for larvae of the yellow fever mosquito (Aedes aegypti (L.. Monoterpenoid esters were among the most toxic compounds tested in topical and aquatic bioassays.

  1. Evaluation of antioxidant activity and phenolic compounds content in methanol extract obtained from leaves Commiphora Myrrha

    Directory of Open Access Journals (Sweden)

    Celia Eliane de Lara da Silva

    2013-09-01

    Full Text Available This work presents shows the study of antioxidant activity and quantification of phenolic content determined for the methanol extract obtained from Commiphora myrrha. The high content of phenolic compounds were evaluated against the potential to sequester free radical through the model 2,2-diphenyl-1-picrizil hydrazyl (DPPH and compared with a standard rutin. The results show that the inhibitory capacity of the extract (IC50 was 0.21 mg.L-1. The extract pursued an antioxidant activity of 91.3% compared to the scavenging ability of rutin standard. The content of phenolic extract was assessed by using the Folin-Ciocalteu determined where the IC50 was 3,02 mg.L-1. The concentration of total phenols was determined 1.176 ± 0.263 mg gallic acid equivalent . g-1 of extract (n=5. The results show that extracts of C. myrrha have high antioxidant potential and additional studies are needed for isolation, characterization and use of their property in pharmaceutical, nutritinal and cosmetology.

  2. Tyrosinase Inhibitor Activity of Coumarin-Resveratrol Hybrids

    Directory of Open Access Journals (Sweden)

    Giovanna Delogu

    2009-07-01

    Full Text Available In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC50 values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3’,4’,5’-trihydroxyphenyl-6,8-dihydroxycoumarin (8is the most potentcompound (0.27 mM, more so than umbelliferone (0.42 mM, used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  3. Chemical characterization of essential oils from Drimys angustifolia miers (Winteraceae) and antibacterial activity of their major compounds

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thalita G.; Dognini, Jocinei; Begnini, Ieda M.; Rebelo, Ricardo A., E-mail: ricardorebelo@furb.br [Universidade Regional de Blumenau (FURB), SC (Brazil). Dept. de Quimica; Verdi, Marcio [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Botanica; Gasper, Andre L. de [Universidade Regional de Blumenau (FURB), SC (Brazil). Dept. de Ciencias Naturais; Dalmarco, Eduardo M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Analises Clinicas

    2013-01-15

    Essential oils have been extensively studied in recent years as a natural source of new antimicrobial agents. In this work, essential oils of leaf and branch from Drimys angustifolia growing in Southern Brazil were obtained by hydrodistillation and analyzed by gas chromatographies with flame ionization detector (GC-FID) and with mass spectrometer (GC-MS). Drimenol and bicyclogermacrene were isolated by column chromatography from branch and leaf essential oils, respectively. Oils, isolated compounds and combinations of them were assayed against Gram-(+) and Gram-(-) bacteria. The oils showed to be more active against Bacillus cereus, with minimum inhibitory concentration (MIC) 125 and 250 {mu}g mL{sup -1} for branch and leaf oils, respectively, strongly inhibiting bacterial growth. Bicyclogermacrene was more active then drimenol, providing a MIC value of 167 {mu}g mL-1 against B. cereus. Synergism was not observed in any of the combinations tested. (author)

  4. Chemical characterization of essential oils from Drimys angustifolia miers (Winteraceae) and antibacterial activity of their major compounds

    International Nuclear Information System (INIS)

    Santos, Thalita G.; Dognini, Jocinei; Begnini, Ieda M.; Rebelo, Ricardo A.; Verdi, Marcio; Gasper, Andre L. de; Dalmarco, Eduardo M.

    2013-01-01

    Essential oils have been extensively studied in recent years as a natural source of new antimicrobial agents. In this work, essential oils of leaf and branch from Drimys angustifolia growing in Southern Brazil were obtained by hydrodistillation and analyzed by gas chromatographies with flame ionization detector (GC-FID) and with mass spectrometer (GC-MS). Drimenol and bicyclogermacrene were isolated by column chromatography from branch and leaf essential oils, respectively. Oils, isolated compounds and combinations of them were assayed against Gram-(+) and Gram-(–) bacteria. The oils showed to be more active against Bacillus cereus, with minimum inhibitory concentration (MIC) 125 and 250 μg mL -1 for branch and leaf oils, respectively, strongly inhibiting bacterial growth. Bicyclogermacrene was more active then drimenol, providing a MIC value of 167 μg mL-1 against B. cereus. Synergism was not observed in any of the combinations tested. (author)

  5. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    Science.gov (United States)

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  6. Inhibitory Activity of Artemisia spicigera Essential Oil Against Fungal Species Isolated From Minced Meat

    Directory of Open Access Journals (Sweden)

    Ghajarbeygi

    2015-11-01

    Full Text Available Background Meat is an important source of several nutrients. The capability top of fresh meat to rot, causing the group of studies food science, biological and chemical stability meat consideration. Objectives This study was conducted to examine the inhibitory effect of Artemisias spicigera essential oil against fungal species isolated from minced meat. Materials and Methods Two types of media dichloran 18% glycerol (DG18 agar and dichloran rosebengal chloramphenicol (DRBC agar were selected for the mycological analysis of the minced meat samples. To evaluate the antifungal activity of essential oils, the microdilution broth method based on the CLSI (M27A guideline was used. Results Artemisias spicigera essential oil has an inhibitory effect on the growth of fungi found in samples of minced meat. Aspergillus, Penicillium and Cladosporium were the most common genera on both medium types. Average Minimum Inhibitory Concentration 50 = 1.88 µL/mL and MIC90 = 2 µL/mL were reported. The genus of Mucor with MIC = 1.0 µL/mL was the most sensitive and Aspergilus versicolor was the most resistant species to the essential oil with MIC = 4 µL/mL. Conclusions The results of the present study show a favorable inhibitory effect of Artemisias spicigera essential oil on fungal growth, especially Aspergillus species. According to the results, antifungal components of Artemisias spicigera in different forms are used to prevent fungal pollution.

  7. Catecholic amides as potential selective phosphodiesterase 4D inhibitors: Design, synthesis, pharmacological evaluation and structure-activity relationships.

    Science.gov (United States)

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping

    2015-11-15

    In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis.

    Science.gov (United States)

    Kloucek, Pavel; Smid, Jakub; Flesar, Jaroslav; Havlik, Jaroslav; Titera, Dalibor; Rada, Vojtech; Drabek, Ondrej; Kokoska, Ladislav

    2012-02-01

    This work evaluates the in vitro inhibitory activity of 70 essential oils (EOs) in the vapor phase for the control of Chalkbrood disease caused by Ascosphaera apis Maassen ex Claussen (Olive et Spiltoir). Two wild strains isolated from infected honey bee colonies together with one standard collection strain were tested by the microatmosphere method. From 70 EOs, 39 exhibited an antifungal effect against A. apis standard and wild strains. The greatest antifungal action was observed for EO vapors from Armoracia rusticana, followed by Thymus vulgaris, Cymbopogon flexosus, Origanum vulgare and Allium sativum. An investigation of chemical composition by GC-MS revealed, that the most active EOs contained allyl isothiocyanate, citral, carvacrol and diallyl sulfides as the main constituents. The chemical composition plays a key role, as activities of different EOs from the same botanical species were different according to their composition.

  9. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model.

    Science.gov (United States)

    Liu, Yan; Yao, Weiming; Si, Lanlan; Hou, Jun; Wang, Jiabo; Xu, Zhihui; Li, Weijie; Chen, Jianhong; Li, Ruisheng; Li, Penggao; Bo, Lvping; Xiao, Xiaohe; Lan, Jinchu; Xu, Dongping

    2018-04-24

    The present study aimed to investigate anti-HBV effect and major active compounds of Su-duxing, a medicine extracted from Chinese herbs. HBV-replicating cell lines HepG2.2.15 (wild-type) and HepG2. A64 (entecavir-resistant) were used for in vitro test. C57BL/6 mice infected by adeno-associated virus carrying 1.3 mer wild-type HBV genome were used for in vivo test. Inhibitory rates of Su-duxing (10 μg/mL) on HBV replicative intermediate and HBsAg levels were 75.1%, 51.0% in HepG2.2.15 cells and 65.2%, 42.9% in HepG2. A64 cells. The 50% inhibitory concentration of Su-duxing and entecavir on HBV replicative intermediates had 0.2-fold and 712.5-fold increase respectively for entecavir-resistant HBV compared to wild-type HBV. Mice treated with Su-duxing (45.0 mg kg -1  d -1 for 2 weeks) had 1.39 log 10 IU/mL decrease of serum HBV DNA, and 48.9% and 51.7% decrease of serum HBsAg and HBeAg levels. GeneChip and KEGG analysis proposed that anti-HBV mechanisms included relief of HBx stability and viral replication, deregulation of early cell cycle checkpoints, and induction of type I interferon. Six active compounds (Matrine, Oxymatrine, Chlorogenic acid, Sophocarpine, Baicalein, and Wogonin) against HBV were identified in Su-duxing. Greater anti-HBV effects were observed in some compound pairs compared to each single compound. In conclusion, Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant HBV. Its effects were associated with coordinated roles of active compounds in its composition. Copyright © 2018. Published by Elsevier B.V.

  10. Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders.

    Science.gov (United States)

    Zengin, Gokhan; Sarikurkcu, Cengiz; Gunes, Erdogan; Uysal, Ahmet; Ceylan, Ramazan; Uysal, Sengul; Gungor, Halil; Aktumsek, Abdurrahman

    2015-08-01

    This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.

  11. Synthesis and Antimicrobial Activity of Some 2-Amino-4-(7 ...

    African Journals Online (AJOL)

    The synthesized compounds were investigated for their antimicrobial activity against four bacteria and five fungi by serial plate dilution method using ofloxacin and ketoconazole as reference antimicrobial drugs, respectively, and their minimum inhibitory concentrations (MICs) were determined. Results: Compounds 1 (p ...

  12. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  13. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus.

    Science.gov (United States)

    Taha, Muhammad; Rahim, Fazal; Imran, Syahrul; Ismail, Nor Hadiani; Ullah, Hayat; Selvaraj, Manikandan; Javid, Muhammad Tariq; Salar, Uzma; Ali, Muhammad; Khan, Khalid Mohammed

    2017-10-01

    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1 H NMR, EI-MS, and 13 C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC 50 =2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC 50 =895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential

    Directory of Open Access Journals (Sweden)

    Patra JK

    2015-12-01

    Full Text Available Jayanta Kumar Patra, Kwang-Hyun Baek School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea Abstract: Biological synthesis of nanoparticles using nontoxic, eco-friendly approaches is gaining importance owing to their fascinating biocompatibility and environmentally benign nature. This study describes the green synthesis approach for synthesis of gold nanoparticles (ANPs using aqueous extract of the rind of watermelon as a fruit waste and evaluate its biopotential in terms of proteasome inhibitory activity, antibacterial, and antioxidant potential. The synthesized ANPs were characterized using UV–vis spectroscopy, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The surface plasmon resonance spectra of ANPs were obtained at 560 nm. Scanning electron microscopy image revealed that particles had a spherical shape and have a size distribution of 20–140 nm, followed by the elemental analysis by energy-dispersive X-ray spectroscopy. X-ray diffraction analysis confirmed the crystallite nature of the ANPs and Fourier-transform infrared spectroscopy revealed the involvement of bioactive compounds from watermelon rind in the synthesis, capping, and stabilization of ANPs. ANPs exhibited potential antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between 9.23 and 11.58 mm. They also displayed strong synergistic antibacterial activity together with kanamycin (11.93–21.08 mm inhibition zones and rifampicin (10.32–24.84 mm inhibition zones. ANPs displayed strong antioxidant activity in terms of DPPH radical scavenging (24.69%, nitric oxide scavenging (25.62%, ABTS scavenging (29.42%, and reducing power. Significantly high proteasome inhibitory potential of the ANPs (28.16% could be highly useful for cancer treatment and targeted cancer drug delivery. Overall, results highlight a

  15. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  16. Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation.

    Science.gov (United States)

    Liao, Y H; Houghton, P J; Hoult, J R

    1999-09-01

    We have undertaken a systematic survey of the genus Buddleja used in traditional Chinese medicine for antiinflammatory and other indications by testing extracts and isolated natural products for their activity against the enzymes of the arachidonate cascade. This was done by using elicited rat peritoneal leukocytes, a physiologically relevant established whole cell system that expresses both cyclo-oxygenase (COX) and 5-lipoxygenase (5-LOX) activity. Lipophilic extracts of B. globosa roots and B. myriantha stem exhibited inhibitory activities in the 5-LOX and COX enzyme assays, whereas those of B. officinalis flowers, B. yunanesis stems, and B. asiatica stems showed inhibitory activities only against COX. The phytochemical investigation of these extracts, and consequent structure elucidation of isolated compounds using spectroscopic data, led to the isolation from B. globosa of three new terpenoid compounds named dihydrobuddledin A, buddledone A, and buddledone B and four known compounds-buddledins A, B, and C and zerumbone; 12 known compounds from B. officinalis-calceolarioside, campneoside, verbascoside, echinacoside, forsythoside B, angoroside A, crocetin monogentibiosyl ester, acacetin, acacetin-7-O-alpha-L-rhamnopyranosyl (1-6)-beta-D-glucopyranoside, acacetin-7-O-alpha-L-rhamnopyranosyl (1-6)[alpha-L-rhamnopyranosyl (1-2)]-beta-D-glucopyranoside, songarosaponin A, delta-amyrone; and eight known compounds fromB. yunanesis-11,14-dihydroxy-8,11, 13-abietatrien-7-one, beta-sitosterol, verbascoside, echinacoside, forsythoside B, angoroside A, methylcatapol, and sucrose. Tests on the isolated compounds for inhibition of eicosanoid synthesis showed that buddledin A, crocetin monogentibiosyl ester, and acacetin exhibited an inhibitory effect on COX with IC(50) values of 13.7 microM, 28.2 microM, and 77.5 microM, respectively, whereas buddledin A exhibited inhibitory effect on 5-LOX with an IC(50) value of 50.4 microM.

  17. Design, Synthesis and Antiviral Activity Studies of Schizonepetin Derivatives

    Directory of Open Access Journals (Sweden)

    Anwei Ding

    2013-08-01

    Full Text Available A series of schizonepetin derivatives have been designed and synthesized in order to obtain potent antivirus agents. The antiviral activity against HSV-1 and influenza virus H3N2 as well as the cytotoxicity of these derivatives was evaluated by using cytopathic effect (CPE inhibition assay in vitro. Compounds M2, M4, M5 and M34 showed higher inhibitory activity against HSV-1 virus with the TC50 values being in micromole. Compounds M28, M33, and M35 showed higher inhibitory activity against influenza virus H3N2 with their TC50 values being 96.4, 71.0 and 75.4 μM, respectively. Preliminary biological activity evaluation indicated that the anti-H3N2 and anti-HSV-1 activities improved obviously through the introduction of halogen into the structure of schizonepetin.

  18. In vitro activity of natural honey alone and in combination with curcuma starch against Rhodotorula mucilaginosa in correlation with bioactive compounds and diastase activity.

    Science.gov (United States)

    Ahmed, Moussa; Djebli, Noureddine; Aissat, Saad; Khiati, Baghdad; Meslem, Abdelmalek; Bacha, Salima

    2013-10-01

    To evaluate the in vitro activity and synergism of the combinations of natural honey and curcuma starch against Rhodotorula mucilaginosa in correlation with total phenolic, flavonoid contents, and diastase activity. The Folin-Ciocalteu test was used to determine the total polyphenols content and the flavonoid content was analyzed using by the aluminum chloride method. The antifungal activity of the natural honey, determined by an agar well diffusion assay and agar incorporation method. Total phenolic content varied from (63.930.11) to (95.366.08) mg GAE/100 g honey as gallic acid equivalent. Total flavonoids content varied from (5.41±0.04) to (9.94±0.54) mg CE/100 g. Diastase activity values were between (7.3±2.8) and (26±2.8). The zone inhibition diameter for the six honey samples without starch ranged between 6 and 20 mm. When starch was mixed with honey and then added to well, a zone inhibition increase diameter 7 and 21 mm. The percentage increase was noticed with each variety and it ranged between 5% and 62.5%. The minimal inhibitory concentrations for the six varieties of honey without starch against Rhodotorula mucilaginosa ranged between 28% and 36% (v/v). When starch was incubated with honey and then added to media, a minimal inhibitory concentration drop has been noticed with each variety. It ranged between 6.66 % and 20% (w/v). No significant correlation was established between diastase activity and bioactive compounds. The mixture of curcuma starch and honey could lead to the development of new combination antibiotics against Rhodotorula infections. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  19. [Study on the seasonal variations of the active components in Acer truncatum leaves and the inhibitory ability on fatty acid synthase].

    Science.gov (United States)

    Fan, Yuan-Jie; Ye, Yan-Bin; Gao, Wen; Zhang, Feng; Zhang, Ying-Xia

    2010-11-01

    To study the dynamic variations of the contents of total polyphenols, flvonoids and chlorogenic acid from Acer truncatum leaves in different months, and their inhibitory activities on fatty acid synthase. Spectrophotometry was used to determine the contents of total polyphenols, flavonoids and chlorogenic acid in extracts and the extracts' inhibitory effects were also investigated. All Leaves picked from May to November have inhibitory effect. But the contents of polyphenols in leaves of July appeared to be higher than other months', and consequently exhibited stronger inhibition against FAS. A positive correlation between the content of polyphenols in leaves extract and the inhibitory efficacy on FAS could be established.

  20. Analogues of Cucurbita maxima trypsin inhibitor III (CMTI-III) with elastase inhibitory activity.

    Science.gov (United States)

    Rózycki, J; Kupryszewski, G; Rolka, K; Ragnarsson, U; Zbyryt, T; Krokoszyńska, I; Wilusz, T

    1994-04-01

    Three new CMTI-III analogues containing the Val residue in the reactive site (position 5) were synthesized by the solid-phase method. The analogues displayed an elastase inhibitory activity. It is shown that the removal of the N-terminal Arg residue and the introduction of the Gly-Pro-Gln tripeptide in the region 23-25 decreases the antielastase activity by two orders of magnitude. The removal of the disulfide bridge in positions 16-28 and the substitution of Ala for Cys16 and Gly for Cys28 decreases the activity (measured as Ka with HLE) by five orders of magnitude as compared with [Val5]CMTI-III.