WorldWideScience

Sample records for inhibitors efficiently suppress

  1. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    Science.gov (United States)

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  3. Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2007-10-01

    Full Text Available Abstract Background Treatment of feline immunodeficiency virus (FIV infection has been hampered by the absence of a specific combination antiretroviral treatment (ART. Integrase strand transfer inhibitors (INSTIs are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Methods Phylogenetic analysis of lentiviral integrase (IN sequences was carried out using the PAUP* software. A theoretical three-dimensional structure of the FIV IN catalytic core domain (CCD was obtained by homology modeling based on a crystal structure of HIV-1 IN CCD. The interaction of the transferred strand of viral DNA with the catalytic cavity of FIV IN was deduced from a crystal structure of a structurally similar transposase complexed with transposable DNA. Molecular docking simulations were conducted using a genetic algorithm (GOLD. Antiviral activity was tested in feline lymphoblastoid MBM cells acutely infected with the FIV Petaluma strain. Circular and total proviral DNA was quantified by real-time PCR. Results The calculated INSTI-binding sites were found to be nearly identical in FIV and HIV-1 IN CCDs. The close similarity of primate and feline lentivirus IN CCDs was also supported by phylogenetic analysis. In line with these bioinformatic analyses, FIV replication was efficiently inhibited in acutely infected cell cultures by three investigational INSTIs, designed for HIV-1 and belonging to different classes. Of note, the naphthyridine carboxamide INSTI, L-870,810 displayed an EC50 in the low nanomolar range. Inhibition of FIV integration in situ was shown by real-time PCR experiments that revealed accumulation of circular forms of FIV DNA within cells treated with L-870,810. Conclusion We report a drug class (other than nucleosidic reverse transcriptase inhibitors that is capable of inhibiting FIV replication in vitro. The present study helped establish L-870,810, a compound

  4. Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS

    Science.gov (United States)

    Savarino, Andrea; Pistello, Mauro; D'Ostilio, Daniela; Zabogli, Elisa; Taglia, Fabiana; Mancini, Fabiola; Ferro, Stefania; Matteucci, Donatella; De Luca, Laura; Barreca, Maria Letizia; Ciervo, Alessandra; Chimirri, Alba; Ciccozzi, Massimo; Bendinelli, Mauro

    2007-01-01

    Background Treatment of feline immunodeficiency virus (FIV) infection has been hampered by the absence of a specific combination antiretroviral treatment (ART). Integrase strand transfer inhibitors (INSTIs) are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Methods Phylogenetic analysis of lentiviral integrase (IN) sequences was carried out using the PAUP* software. A theoretical three-dimensional structure of the FIV IN catalytic core domain (CCD) was obtained by homology modeling based on a crystal structure of HIV-1 IN CCD. The interaction of the transferred strand of viral DNA with the catalytic cavity of FIV IN was deduced from a crystal structure of a structurally similar transposase complexed with transposable DNA. Molecular docking simulations were conducted using a genetic algorithm (GOLD). Antiviral activity was tested in feline lymphoblastoid MBM cells acutely infected with the FIV Petaluma strain. Circular and total proviral DNA was quantified by real-time PCR. Results The calculated INSTI-binding sites were found to be nearly identical in FIV and HIV-1 IN CCDs. The close similarity of primate and feline lentivirus IN CCDs was also supported by phylogenetic analysis. In line with these bioinformatic analyses, FIV replication was efficiently inhibited in acutely infected cell cultures by three investigational INSTIs, designed for HIV-1 and belonging to different classes. Of note, the naphthyridine carboxamide INSTI, L-870,810 displayed an EC50 in the low nanomolar range. Inhibition of FIV integration in situ was shown by real-time PCR experiments that revealed accumulation of circular forms of FIV DNA within cells treated with L-870,810. Conclusion We report a drug class (other than nucleosidic reverse transcriptase inhibitors) that is capable of inhibiting FIV replication in vitro. The present study helped establish L-870,810, a compound successfully tested in

  5. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

    Science.gov (United States)

    Murakawa, Yasuhiro; Sonoda, Eiichiro; Barber, Louise J; Zeng, Weihua; Yokomori, Kyoko; Kimura, Hiroshi; Niimi, Atsuko; Lehmann, Alan; Zhao, Guang Yu; Hochegger, Helfrid; Boulton, Simon J; Takeda, Shunichi

    2007-09-15

    Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.

  6. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  7. LESS SKILLED READERS HAVE LESS EFFICIENT SUPPRESSION MECHANISMS.

    Science.gov (United States)

    Gernsbacher, Morton Ann

    1993-09-01

    One approach to understanding the component processes and mechanisms underlying adult reading skill is to compare the performance of more skilled and less skilled readers on laboratory experiments. The results of some recent experiments employing this approach demonstrate that less skilled adult readers suppress less efficiently the inappropriate meanings of ambiguous words (e.g., the playing card vs. garden tool meanings of spade ), the incorrect forms of homophones (e.g., patients vs. patience ), the typical-but-absent members of scenes (e.g., a tractor in a farm scene), and words superimposed on pictures. Less skilled readers are not less efficient in activating contextually appropriate information; in fact, they activate contextually appropriate information more strongly than more skilled readers do. Therefore, one conclusion that can be drawn from these experiments is that less skilled adult readers suffer from less efficient suppression mechanisms.

  8. LESS SKILLED READERS HAVE LESS EFFICIENT SUPPRESSION MECHANISMS

    OpenAIRE

    Gernsbacher, Morton Ann

    1993-01-01

    One approach to understanding the component processes and mechanisms underlying adult reading skill is to compare the performance of more skilled and less skilled readers on laboratory experiments. The results of some recent experiments employing this approach demonstrate that less skilled adult readers suppress less efficiently the inappropriate meanings of ambiguous words (e.g., the playing card vs. garden tool meanings of spade), the incorrect forms of homophones (e.g., patients vs. patien...

  9. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    International Nuclear Information System (INIS)

    Orba, Yasuko; Sunden, Yuji; Suzuki, Tadaki; Nagashima, Kazuo; Kimura, Takashi; Tanaka, Shinya; Sawa, Hirofumi

    2008-01-01

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)

  10. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation.

    Science.gov (United States)

    Ikedo, Taichi; Minami, Manabu; Kataoka, Hiroharu; Hayashi, Kosuke; Nagata, Manabu; Fujikawa, Risako; Higuchi, Sei; Yasui, Mika; Aoki, Tomohiro; Fukuda, Miyuki; Yokode, Masayuki; Miyamoto, Susumu

    2017-06-19

    Chronic inflammation plays a key role in the pathogenesis of intracranial aneurysms (IAs). DPP-4 (dipeptidyl peptidase-4) inhibitors have anti-inflammatory effects, including suppressing macrophage infiltration, in various inflammatory models. We examined whether a DPP-4 inhibitor, anagliptin, could suppress the growth of IAs in a rodent aneurysm model. IAs were surgically induced in 7-week-old male Sprague Dawley rats, followed by oral administration of 300 mg/kg anagliptin. We measured the morphologic parameters of aneurysms over time and their local inflammatory responses. To investigate the molecular mechanisms, we used lipopolysaccharide-treated RAW264.7 macrophages. In the anagliptin-treated group, aneurysms were significantly smaller 2 to 4 weeks after IA induction. Anagliptin inhibited the accumulation of macrophages in IAs, reduced the expression of MCP-1 (monocyte chemotactic protein 1), and suppressed the phosphorylation of p65. In lipopolysaccharide-stimulated RAW264.7 cells, anagliptin treatment significantly reduced the production of tumor necrosis factor α, MCP-1, and IL-6 (interleukin 6) independent of GLP-1 (glucagon-like peptide 1), the key mediator in the antidiabetic effects of DPP-4 inhibitors. Notably, anagliptin activated ERK5 (extracellular signal-regulated kinase 5), which mediates the anti-inflammatory effects of statins, in RAW264.7 macrophages. Preadministration with an ERK5 inhibitor blocked the inhibitory effect of anagliptin on MCP-1 and IL-6 expression. Accordingly, the ERK5 inhibitor also counteracted the suppression of p65 phosphorylation in vitro. A DPP-4 inhibitor, anagliptin, prevents the growth of IAs via its anti-inflammatory effects on macrophages. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  11. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22.

    Science.gov (United States)

    Cheng, Fan; Ramos da Silva, Suzane; Huang, I-Chueh; Jung, Jae U; Gao, Shou-Jiang

    2018-02-15

    The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application. IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV

  12. An interesting and efficient green corrosion inhibitor for aluminium ...

    African Journals Online (AJOL)

    An interesting and efficient green corrosion inhibitor for aluminium from extracts of ... Journal Home > Vol 13, No 1 (2014) > ... possible applications in metal surface anodizing and surface coating in industries. Keywords: Moringa oleifera, Aluminium, Hydrochloric acid, Langmuir isotherm, Plant extracts, Corrosion inhibition ...

  13. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program).

    Science.gov (United States)

    Leontieva, Olga V; Demidenko, Zoya N; Blagosklonny, Mikhail V

    2015-09-15

    In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.

  14. EUROGAM: A high efficiency escape suppressed spectrometer array

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, P J [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of {approx} 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs.

  15. EUROGAM: A high efficiency escape suppressed spectrometer array

    International Nuclear Information System (INIS)

    Nolan, P.J.

    1992-01-01

    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of ∼ 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs

  16. Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Petru Edgar

    2010-03-01

    Full Text Available Abstract Background Uterine sarcomas are very rare malignancies with no approved chemotherapy protocols. Histone deacetylase (HDAC inhibitors belong to the most promising groups of compounds for molecular targeting therapy. Here, we described the antitumor effects of suberoylanilide hydroxamic acid (SAHA; vorinostat on MES-SA uterine sarcoma cells in vitro and in vivo. We investigated effects of vorinostat on growth and colony forming ability by using uterine sarcoma MES-SA cells. We analyzed the influence of vorinostat on expression of different HDACs, p21WAF1 and activation of apoptosis. Finally, we examined the antitumor effects of vorinostat on uterine sarcoma in vivo. Results Vorinostat efficiently suppressed MES-SA cell growth at a low dosage (3 μM already after 24 hours treatment. Decrease of cell survival was even more pronounced after prolonged treatment and reached 9% and 2% after 48 and 72 hours of treatment, respectively. Colony forming capability of MES-SA cells treated with 3 μM vorinostat for 24 and 48 hours was significantly diminished and blocked after 72 hours. HDACs class I (HDAC2 and 3 as well as class II (HDAC7 were preferentially affected by this treatment. Vorinostat significantly increased p21WAF1 expression and apoptosis. Nude mice injected with 5 × 106 MES-SA cells were treated for 21 days with vorinostat (50 mg/kg/day and, in comparison to placebo group, a tumor growth reduction of more than 50% was observed. Results obtained by light- and electron-microscopy suggested pronounced activation of apoptosis in tumors isolated from vorinostat-treated mice. Conclusions Our data strongly indicate the high therapeutic potential of vorinostat in uterine sarcomas.

  17. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  18. JTP-103237, a monoacylglycerol acyltransferase inhibitor, prevents fatty liver and suppresses both triglyceride synthesis and de novo lipogenesis

    Directory of Open Access Journals (Sweden)

    Chihiro Okuma

    2015-07-01

    Conclusion: In the present study, JTP-103237 prevented carbohydrate-induced fatty liver and suppressed both TG synthesis and de novo lipogenesis, suggesting MGAT inhibitor may prevent carbohydrate-induced metabolic disorders, including NAFLD, obesity and diabetes.

  19. The tyrosine kinase inhibitor imatinib mesylate suppresses uric acid crystal-induced acute gouty arthritis in mice.

    Directory of Open Access Journals (Sweden)

    Laurent L Reber

    Full Text Available Gouty arthritis is caused by the deposition of monosodium urate (MSU crystals in joints. Despite many treatment options for gout, there is a substantial need for alternative treatments for patients unresponsive to current therapies. Tyrosine kinase inhibitors have demonstrated therapeutic benefit in experimental models of antibody-dependent arthritis and in rheumatoid arthritis in humans, but to date, the potential effects of such inhibitors on gouty arthritis has not been evaluated. Here we demonstrate that treatment with the tyrosine kinase inhibitor imatinib mesylate (imatinib can suppress inflammation induced by injection of MSU crystals into subcutaneous air pouches or into the ankle joint of wild type mice. Moreover, imatinib treatment also largely abolished the lower levels of inflammation which developed in IL-1R1-/- or KitW-sh/W-sh mice, indicating that this drug can inhibit IL-1-independent pathways, as well as mast cell-independent pathways, contributing to pathology in this model. Imatinib treatment not only prevented ankle swelling and synovial inflammation when administered before MSU crystals but also diminished these features when administrated after the injection of MSU crystals, a therapeutic protocol more closely mimicking the clinical situation in which treatment occurs after the development of an acute gout flare. Finally, we also assessed the efficiency of local intra-articular injections of imatinib-loaded poly(lactic-co-glycolic acid (PLGA nanoparticles in this model of acute gout. Treatment with low doses of this long-acting imatinib:PLGA formulation was able to reduce ankle swelling in a therapeutic protocol. Altogether, these results raise the possibility that tyrosine kinase inhibitors might have utility in the treatment of acute gout in humans.

  20. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells

    International Nuclear Information System (INIS)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul; Lee, Mee-Hee; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin; Kim, Sunoh; Yoon, Ho-Geun

    2011-01-01

    Highlights: → Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. → Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. → Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-κB. → Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  1. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Lee, Mee-Hee [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Yoo-Hyun [Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do (Korea, Republic of); Lee, Jeongmin [Department of Medical Nutrition, Kyung Hee University, Kyunggi-do (Korea, Republic of); Jun, Woojin [Department of Food and Nutrition, Chonnam National University, Gwangju (Korea, Republic of); Kim, Sunoh, E-mail: sunoh@korea.ac.kr [Jeollanamdo Institute of Natural Resources Research, Jeonnam (Korea, Republic of); Yoon, Ho-Geun, E-mail: yhgeun@yuhs.ac [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  2. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Terra Vleeshouwer-Neumann

    Full Text Available Embryonal rhabdomyosarcoma (ERMS is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.

  3. Suppression of NFAT5-mediated Inflammation and Chronic Arthritis by Novel κB-binding Inhibitors

    Directory of Open Access Journals (Sweden)

    Eun-Jin Han

    2017-04-01

    Full Text Available Nuclear factor of activated T cells 5 (NFAT5 has been implicated in the pathogenesis of various human diseases, including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of >40,000 chemicals was screened for the suppression of nitric oxide, a direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 activity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5 suppressor KRN2, 13-(2-fluoro-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions. Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, ameliorated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cytokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original compound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic arthritis.

  4. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ge, Zhenzhen; Da, Yurong; Xue, Zhenyi; Zhang, Kai; Zhuang, Hao; Peng, Meiyu; Li, Yan; Li, Wen; Simard, Alain; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2013-03-01

    Vorinostat, a histone deacetylase inhibitor, has been used clinically as an anticancer drug and also has immunosuppressive properties. However, the underlying mechanisms of effects of vorinostat on central nervous system (CNS) inflammatory diseases remain incomplete. Here, this study investigates the effects of vorinostat on human CD14(+) monocyte-derived dendritic cells (DCs) and mouse immature DC in vitro. Furthermore, we explore the therapeutic effects and cellular mechanisms of vorinostat on animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in vivo. Our findings demonstrate that vorinostat inhibited human CD14(+) monocyte-derived DCs differentiation, maturation, endocytosis, and further inhibited mDCs' stimulation of allogeneic T-cell proliferation. In addition, vorinostat inhibited DC-directed Th1- (Type 1T helper) and Th17-polarizing cytokine production. Furthermore, vorinostat ameliorated Th1- and Th17-mediated EAE by reducing CNS inflammation and demyelination. What's more, Th1 and Th17 cell functions were suppressed in vorinostat-treated EAE mice. Finally, vorinostat suppressed expression of costimulatory molecules of DC in EAE mice. These suggest therapeutic effects of vorinostat on EAE which may by suppress DCs and DCs-mediated Th1 and Th17 cell functions. Our findings warrant further investigation in the potential of vorinostat for the treatment of human multiple sclerosis. Copyright © 2012. Published by Elsevier Inc.

  5. Subtype-specific suppression of Shiga toxin 2 released from Escherichia coli upon exposure to protein synthesis inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Malene Gantzhorn; Hansen, Claus; Riise, Erik

    2008-01-01

    Shiga toxins (Stx) are important virulence factors in the pathogenesis of severe disease including hemolytic-uremic syndrome, caused by Stx-producing Escherichia coli (STEC). STEC strains increase the release of Stx in vitro following the addition of fluoroquinolones, whereas protein synthesis...... inhibitors previously have been reported to suppress the release of Stx. The amount of Stx released from wild-type STEC strains incubated with protein synthesis inhibitors was examined by a Vero cell cytotoxicity assay. The amounts released were compared to the Stx type (Stx1 or Stx2) and additionally...... to the individual subtypes and toxin variants of Stx2. In general, Stx2 release was suppressed significantly upon exposure to protein synthesis inhibitors at MICs, which was not observed in the case of Stx1. Also, the average amount of different Stx2 toxin variants released was suppressed to various levels ranging...

  6. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Plasminogen activator inhibitor-1 suppresses endogenous fibrinolysis in a canine model of pulmonary embolism

    International Nuclear Information System (INIS)

    Reilly, C.F.; Fujita, T.; Hutzelmann, J.E.; Mayer, E.J.; Shebuski, R.J.

    1991-01-01

    Plasminogen activator inhibitor-1 (PAI-1), the specific, fast-acting inhibitor of tissue-type plasminogen activator (t-PA), binds to fibrin and has been found in high concentrations within arterial thrombi. These findings suggest that the localization of PAI-1 to a thrombus protects that same thrombus from fibrinolysis. In this study, clot-bound PAI-1 was assessed for its ability to suppress clot lysis in vivo. Autologous, canine whole blood clots were formed in the presence of increasing amounts of activated PAI-1 (0-30 micrograms/ml). Approximately 6-8% of the PAI-1 bound to the clots under the experimental conditions. Control and PAI-1-enriched clots containing iodine-125-labeled fibrin (ogen) were homogenized, washed to remove nonbound elements, and delivered to the lungs of anesthetized dogs where the homogenates subsequently underwent lysis by the endogeneous fibrinolytic system. 125I-labeled fibrin degradation products appeared in the blood of control animals within 10 minutes and were maximal by 90 minutes. PAI-1 reduced fibrin degradation product release in a dose-responsive manner at all times between 30 minutes and 5 hours (greater than or equal to 76% inhibition at 30 minutes, PAI-1 greater than or equal to 6 micrograms/ml). PAI-1 also suppressed D-dimer release from clots containing small amounts of human fibrin (ogen). t-PA administration attenuated the effects of PAI-1, whereas latent PAI-1 (20 micrograms/ml) had no effect on clot lysis. Blood levels of PA and PAI activity remained unaltered during these experiments. The results indicate that PAI-1 markedly inhibits endogenous fibrinolysis in vivo and, moreover, suggest that the localization of PAI-1 to a forming thrombus is an important physiological mechanism for subsequent thrombus stabilization

  8. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522 (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  9. The p53 inhibitor, pifithrin-α, suppresses self-renewal of embryonic stem cells

    International Nuclear Information System (INIS)

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2012-01-01

    Highlights: ► We determine the role of p53 in ES cells under unstressful conditions. ► PFT-α suppresses ES cell proliferation. ► PFT-α induces ES cell cycle arrest. ► PFT-α downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-α, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-α resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-α caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  10. Estimation of efficiency of dust suppressing works at 30-km zone near the Chernobyl' NPP

    International Nuclear Information System (INIS)

    Bakin, R.I.; Tkachenko, A.V.; Sukhoruchkin, A.K.

    1989-01-01

    Data on efficiency of dust suppressing works at 30-km zone near NPP are analyzed. It is necessary: to reduce radionuclide content in the air in the spring, when the weather is dry, to conduct dust suppressing works on roads and sections of surface with nonfixed ground; in the summer, to wash roads every day. 3 figs

  11. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brand, Alexander [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  12. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  13. Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System.

    Science.gov (United States)

    Weidemann, Benjamin J; Voong, Susan; Morales-Santiago, Fabiola I; Kahn, Michael Z; Ni, Jonathan; Littlejohn, Nicole K; Claflin, Kristin E; Burnett, Colin M L; Pearson, Nicole A; Lutter, Michael L; Grobe, Justin L

    2015-06-11

    Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance.

  14. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    Science.gov (United States)

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-09

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.

  15. Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2015-08-01

    Full Text Available Yuanyuan Zhao,1,* Jing Zhang,2,* Ying Tian,1,* Cong Xue,1 Zhihuang Hu,1 Li Zhang1,3 1Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, 2Department of Medical Oncology, the First Affiliated Hospital of Guang Zhou Traditional Chinese Medicine University, 3National Anti-Cancer Drug Research Centre, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China*These authors contributed equally to this work Purpose: We explored the effect of hepatocyte growth factor (HGF/Met signaling pathway on nasopharyngeal carcinoma (NPC cells in vitro and in vivo, and investigated the ability of Met tyrosine kinase inhibitor (TKI to block HGF-induced biological signaling.Experimental design: Met TKI inhibitor PF-2341066 alone, or in combination with cisplatin, was investigated for its ability to block HGF-induced signaling and biological effects in vitro and in vivo. HGF/Met expression and activation of signaling in NPC cells were detected by using Western blot and immunohistochemistry. Biological evaluation, including wound healing, cell proliferation, and invasion of NPC cells, was also examined, and the correlation between HGF/Met expression of primary and metastatic tumor in NPC patients and clinical prognosis were also analyzed.Results: Met TKI inhibitor, PF-2341066, inhibited growth of NPC cells in vivo with half maximal inhibitory concentration of 0.79±0.21 µmol/L, and suppressed invasion and migration of NPC cells; also, the inhibition of PF-2341066 was synergized with cisplatin treatment. Compared with the control group, Met TKI inhibited metastasis of transplanted NPC in nude mice (the number of live metastases [mean ± SD]: 5.8±2.2 versus 11.8±2.2, P=0.03; the number of lung metastases: 2.3±1.5 versus

  16. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Nina; Kosec, Tadeja, E-mail: tadeja.kosec@zag.si; Legat, Andraž

    2016-12-01

    The aim of the present work was to characterize the efficiency of a corrosion inhibitor on steel in a simulated concrete pore solution. Laboratory measurements were performed at various chloride and inhibitor concentrations in order to simulate different applications of the inhibitor when used for the protection or rehabilitation of steel reinforcement in concrete. Two electrochemical techniques, i.e. potentiodynamic polarization scans and electrochemical impedance spectroscopy, were used for this study. The exposed surfaces of the steel specimens were subsequently investigated by Raman spectroscopy and scanning electron microscopy. It was found that the inhibitor can efficiently retard the corrosion of steel in a simulated concrete pore solution at concentrations of the inhibitor >2.0% and of chlorides <0.3% at a pH 10.5. On the other hand, when these conditions are not fulfilled, localized corrosion was observed. The results of the Raman and SEM/EDS analysis showed various morphologies of corrosion products and different types of corrosion attack depending on the pH of the pore solution, and the applied concentrations of the chlorides and the inhibitor. - Highlights: • Electrochemical studies performed at various Cl{sup −} and inhibitor concentrations. • Exposed steel surfaces investigated by Raman spectroscopy and SEM. • Cl{sup −}/inhibitor ratio is important parameter for the inhibitor's efficiency. • The corrosion can re-occur if the concentration of the inhibitor is reduced. • Different corrosion behaviour and oxides in the presence of inhibitor and/or Cl{sup −}.

  17. Suppression of elongation and growth of tomato seedlings by auxin biosynthesis inhibitors and modeling of the growth and environmental response.

    Science.gov (United States)

    Higashide, Tadahisa; Narukawa, Megumi; Shimada, Yukihisa; Soeno, Kazuo

    2014-04-02

    To develop a growth inhibitor, the effects of auxin inhibitors were investigated. Application of 30 μM L-α-aminooxy-β-phenylpropionic acid (AOPP) or (S)-methyl 2-((1,3-dioxoisoindolin-2-yl)oxy)-3-phenylpropanoate (KOK1101), decreased the endogenous IAA levels in tomato seedlings at 8 days after sowing. Then, 10-1200 μM AOPP or KOK1101 were sprayed on the leaves and stem of 2-3 leaf stage tomato plants grown under a range of environmental conditions. We predicted plant growth and environmental response using a model based on the observed suppression of leaf enlargement. Spraying AOPP or KOK1101 decreased stem length and leaf area. Concentration-dependent inhibitions and dose response curves were observed. Although the effects of the inhibitors on dry weight varied according to the environmental conditions, the net assimilation rate was not influenced by the inhibitors. Accordingly, the observed decrease in dry weight caused by the inhibitors may result from decreased leaf area. Validation of the model based on observed data independent of the dataset showed good correlations between the observed and predicted values of dry weight and leaf area index.

  18. Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations.

    Science.gov (United States)

    Huang, Mugen; Luo, Jiaowan; Hu, Linchao; Zheng, Bo; Yu, Jianshe

    2017-12-14

    To suppress wild population of Aedes mosquitoes, the primary transmission vector of life-threatening diseases such as dengue, malaria, and Zika, an innovative strategy is to release male mosquitoes carrying the bacterium Wolbachia into natural areas to drive female sterility by cytoplasmic incompatibility. We develop a model of delay differential equations, incorporating the strong density restriction in the larval stage, to assess the delicate impact of life table parameters on suppression efficiency. Through mathematical analysis, we find the sufficient and necessary condition for global stability of the complete suppression state. This condition, combined with the experimental data for Aedes albopictus population in Guangzhou, helps us predict a large range of releasing intensities for suppression success. In particular, we find that if the number of released infected males is no less than four times the number of mosquitoes in wild areas, then the mosquito density in the peak season can be reduced by 95%. We introduce an index to quantify the dependence of suppression efficiency on parameters. The invariance of some quantitative properties of the index values under various perturbations of the same parameter justifies the applicability of this index, and the robustness of our modeling approach. The index yields a ranking of the sensitivity of all parameters, among which the adult mortality has the highest sensitivity and is considerably more sensitive than the natural larvae mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  20. CG13250, a novel bromodomain inhibitor, suppresses proliferation of multiple myeloma cells in an orthotopic mouse model

    International Nuclear Information System (INIS)

    Imayoshi, Natsuki; Yoshioka, Makoto; Chauhan, Jay; Nakata, Susumu; Toda, Yuki; Fletcher, Steven; Strovel, Jeffrey W.; Takata, Kazuyuki; Ashihara, Eishi

    2017-01-01

    Multiple myeloma (MM) is characterized by the clonal proliferation of neoplastic plasma cells. Despite a stream of new molecular targets based on better understanding of the disease, MM remains incurable. Epigenomic abnormalities contribute to the pathogenesis of MM. bromodomain 4 (BRD4), a member of the bromodomain and extraterminal (BET) family, binds to acetylated histones during M/G1 transition in the cell cycle promoting progression to S phase. In this study, we investigated the effects of a novel BET inhibitor CG13250 on MM cells. CG13250 inhibited ligand binding to BRD4 in a dose-dependent manner and with an IC 50 value of 1.1 μM. It inhibited MM proliferation in a dose-dependent manner and arrested cells in G1, resulting in the induction of apoptosis through caspase activation. CG13250 inhibited the binding of BRD4 to c-MYC promoter regions suppressing the transcription of the c-MYC gene. Administered in vivo, CG13250 significantly prolonged survival of an orthotopic MM-bearing mice. In conclusion, CG13250 is a novel bromodomain inhibitor that is a promising molecular targeting agent against MM. - Highlights: • A novel bromodomain inhibitor CG13250 suppresses MM cell proliferation. • CG13250 decreases C-MYC expression, resulting in the induction of apoptosis. • CG13250 prolongs the survivals of MM-bearing mice.

  1. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis.

    Science.gov (United States)

    Katuwal, Hari; Calkin, David E; Hand, Michael S

    2016-01-15

    This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.

    Directory of Open Access Journals (Sweden)

    Jijun Hao

    Full Text Available The bone morphogenetic protein (BMP signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

  3. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  4. A Novel Small-molecule WNT Inhibitor, IC-2, Has the Potential to Suppress Liver Cancer Stem Cells.

    Science.gov (United States)

    Seto, Kenzo; Sakabe, Tomohiko; Itaba, Noriko; Azumi, Junya; Oka, Hiroyuki; Morimoto, Minoru; Umekita, Yoshihisa; Shiota, Goshi

    2017-07-01

    The presence of cancer stem cells (CSCs) contributes to metastasis, recurrence, and resistance to chemo/radiotherapy in hepatocellular carcinoma (HCC). The WNT signaling pathway is reportedly linked to the maintenance of stemness of CSCs. In the present study, in order to eliminate liver CSCs and improve the prognosis of patients with HCC, we explored whether small-molecule compounds targeting WNT signaling pathway suppress liver CSCs. The screening was performed using cell proliferation assay and reporter assay. We next investigated whether these compounds suppress liver CSC properties by using flow cytometric analysis and sphere-formation assays. A mouse xenograft model transplanted with CD44-positive HuH7 cells was used to examine the in vivo antitumor effect of IC-2. In HuH7 human HCC cells, 10 small-molecule compounds including novel derivatives, IC-2 and PN-3-13, suppressed cell viability and WNT signaling activity. Among them, IC-2 significantly reduced the CD44-positive population, also known as liver CSCs, and dramatically reduced the sphere-forming ability of both CD44-positive and CD44-negative HuH7 cells. Moreover, CSC marker-positive populations, namely CD90-positive HLF cells, CD133-positive HepG2 cells, and epithelial cell adhesion molecule-positive cells, were also reduced by IC-2 treatment. Finally, suppressive effects of IC-2 on liver CSCs were also observed in a xenograft model using CD44-positive HuH7 cells. The novel derivative of small-molecule WNT inhibitor, IC-2, has the potential to suppress liver CSCs and can serve as a promising therapeutic agent to improve the prognosis of patients with HCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.

    Directory of Open Access Journals (Sweden)

    Li Shen

    Full Text Available Immunosuppressive factors such as regulatory T cells (Tregs limit the efficacy of immunotherapies. Histone deacetylase (HDAC inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA model or a survivin-based vaccine therapy (SurVaxM in a castration resistant prostate cancer (CR Myc-CaP model.RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs. In vitro low dose entinostat (0.5 µM induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat.These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.

  6. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells.

    Science.gov (United States)

    Sherman, Alexandra; Su, Jin; Lin, Shina; Wang, Xiaomei; Herzog, Roland W; Daniell, Henry

    2014-09-04

    Hemophilia A is the X-linked bleeding disorder caused by deficiency of coagulation factor VIII (FVIII). To address serious complications of inhibitory antibody formation in current replacement therapy, we created tobacco transplastomic lines expressing FVIII antigens, heavy chain (HC) and C2, fused with the transmucosal carrier, cholera toxin B subunit. Cholera toxin B-HC and cholera toxin B-C2 fusion proteins expressed up to 80 or 370 µg/g in fresh leaves, assembled into pentameric forms, and bound to GM1 receptors. Protection of FVIII antigen through bioencapsulation in plant cells and oral delivery to the gut immune system was confirmed by immunostaining. Feeding of HC/C2 mixture substantially suppressed T helper cell responses and inhibitor formation against FVIII in mice of 2 different strain backgrounds with hemophilia A. Prolonged oral delivery was required to control inhibitor formation long-term. Substantial reduction of inhibitor titers in preimmune mice demonstrated that the protocol could also reverse inhibitor formation. Gene expression and flow cytometry analyses showed upregulation of immune suppressive cytokines (transforming growth factor β and interleukin 10). Adoptive transfer experiments confirmed an active suppression mechanism and revealed induction of CD4(+)CD25(+) and CD4(+)CD25(-) T cells that potently suppressed anti-FVIII formation. In sum, these data support plant cell-based oral tolerance for suppression of inhibitor formation against FVIII. © 2014 by The American Society of Hematology.

  7. The dopamine β-hydroxylase inhibitor, nepicastat, suppresses chocolate self-administration and reinstatement of chocolate seeking in rats.

    Science.gov (United States)

    Zaru, Alessandro; Maccioni, Paola; Colombo, Giancarlo; Gessa, Gian Luigi

    2013-10-01

    Craving for chocolate is a common phenomenon, which may evolve to an addictive-like behaviour and contribute to obesity. Nepicastat is a selective dopamine β-hydroxylase (DBH) inhibitor that suppresses cocaine-primed reinstatement of cocaine seeking in rats. We verified whether nepicastat was able to modify the reinforcing and motivational properties of a chocolate solution and to prevent the reinstatement of chocolate seeking in rats. Nepicastat (25, 50 and 100 mg/kg, intraperitoneal) produced a dose-related inhibition of operant self-administration of the chocolate solution in rats under fixed-ratio 10 (FR10) and progressive-ratio schedules of reinforcement, measures of the reinforcing and motivational properties of the chocolate solution, respectively. The effect of nepicastat on the reinstatement of chocolate seeking was studied in rats in which lever-responding had been extinguished by removing the chocolate solution for approximately 8 d. Nepicastat dose-dependently suppressed the reinstatement of lever-responding triggered by a 'priming' of the chocolate solution together with cues previously associated with the availability of the reward. In a separate group of food-restricted rats trained to lever-respond for regular food pellets, nepicastat reduced FR10 lever-responding with the same potency as for the chocolate solution. Spontaneous locomotor activity was not modified by nepicastat doses that reduced self-administration of the chocolate solution and regular food pellets and suppressed the reinstatement of chocolate seeking. The results indicate that nepicastat reduces motivation to food consumption sustained by appetite or palatability. Moreover, the results suggest that DBH inhibitors may be a new class of pharmacological agents potentially useful in the prevention of relapse to food seeking in human dieters.

  8. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  9. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    Science.gov (United States)

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  10. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    Notch-1 signaling is crucial for stem cell maintenance and in a variety of tissues. Previous research has demonstrated that Notch-1 activity plays a key role in prostate tumorigenesis. However, the function of Notch-1 signaling in tumorigenesis can be either oncogene or suppressor gene. In our paper, γ- secretase inhibitor ...

  11. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Kim, Jin Ho; Chie, Eui Kyu; Da Young, Park; Kim, In Ah; Kim, Il Han

    2012-01-01

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair

  12. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  13. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression.

    Science.gov (United States)

    Cai, Nan; Zhou, Wei; Ye, Lan-Lan; Chen, Jun; Liang, Qiu-Ni; Chang, Gang; Chen, Jia-Jie

    2017-01-01

    Currently, there is a considerable need to develop new treatments for osteosarcoma (OS), a very aggressive bone cancer. The activation of STAT3 signaling is positively associated with poor prognosis and aggressive progression in OS patients. Our previous study reported that the FDA-approved antipsychotic drug pimozide had anti-tumor activity against hepatocellular carcinoma and prostate cancer cells by suppressing STAT3 activity. Therefore, the aim of this study was to investigate the specific effect of pimozide on OS cells and the underlying molecular mechanism. Pimozide inhibited cell proliferation, colony formation, and sphere formation capacities of the OS cells in a dose-dependent manner, inducing G0/G1 phase cell cycle arrest. Pimozide reduced the percentage of side population cells representing cancer stem-like cells and enhanced the sensitivity of OS cells to 5-FU induced proliferative inhibition. In addition, pimozide induced apoptosis of U2OS cells, which showed increased expression of cleaved-PARP, a marker of programmed cell death. Moreover, pimozide suppressed Erk signaling in OS cells. Importantly, pimozide induced ROS generation by downregulating the expression of the antioxidant enzyme catalase (CAT). NAC treatment partially reversed the ROS generation and cytotoxic effects induced by pimozide. CAT treatment attenuated the pimozide-induced proliferation inhibition. The decrease of CAT expression induced by pimozide was potentially mediated through the suppression of cellular STAT3 activity in OS cells. Thus, pimozide may be a novel STAT3 inhibitor that suppresses cellular STAT3 activity to inhibit OS cells or stem-like cells and is a novel potential anti-cancer agent in OS treatment.

  14. Targeting Pin1 by inhibitor API-1 regulates microRNA biogenesis and suppresses hepatocellular carcinoma development.

    Science.gov (United States)

    Pu, Wenchen; Li, Jiao; Zheng, Yuanyuan; Shen, Xianyan; Fan, Xin; Zhou, Jian-Kang; He, Juan; Deng, Yulan; Liu, Xuesha; Wang, Chun; Yang, Shengyong; Chen, Qiang; Liu, Lunxu; Zhang, Guolin; Wei, Yu-Quan; Peng, Yong

    2018-01-30

    Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018). © 2018 by the American Association for the Study of Liver Diseases.

  15. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  16. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Liang Y

    2016-05-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Johannes D Aebi,2 Salman M Hyder1 1Dalton Cardiovascular Research Center and Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO, USA; 2Medicinal Chemistry, Roche Pharma Research and Early Development (pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland Abstract: Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration; however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4'-[6-(allylmethylaminohexyloxy]-4-bromo-2'-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071 (RO, which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway, on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the

  17. Suppression of tau propagation using an inhibitor that targets the DK-switch of nSMase2.

    Science.gov (United States)

    Bilousova, Tina; Elias, Chris; Miyoshi, Emily; Alam, Mohammad Parvez; Zhu, Chunni; Campagna, Jesus; Vadivel, Kanagasabai; Jagodzinska, Barbara; Gylys, Karen Hoppens; John, Varghese

    2018-05-23

    Targeting of molecular pathways involved in the cell-to-cell propagation of pathological tau species is a novel approach for development of disease-modifying therapies that could block tau pathology and attenuate cognitive decline in patients with Alzheimer's disease and other tauopathies. We discovered cambinol through a screening effort and show that it is an inhibitor of cell-to-cell tau propagation. Our in vitro data demonstrate that cambinol inhibits neutral sphingomyelinase 2 (nSMase2) enzyme activity in dose response fashion, and suppresses extracellular vesicle (EV) production while reducing tau seed propagation. Our in vivo testing with cambinol shows that it can reduce the nSMase2 activity in the brain after oral administration. Our molecular docking and simulation analysis reveals that cambinol can target the DK-switch in the nSMase2 active site. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  19. Suppressing traffic-driven epidemic spreading by use of the efficient routing protocol

    International Nuclear Information System (INIS)

    Yang, Han-Xin; Wu, Zhi-Xi

    2014-01-01

    Despite extensive work on the interplay between traffic dynamics and epidemic spreading, the control of epidemic spreading by routing strategies has not received adequate attention. In this paper, we study the impact of an efficient routing protocol on epidemic spreading. In the case of infinite node-delivery capacity, where the traffic is free of congestion, we find that that there exist optimal values of routing parameter, leading to the maximal epidemic threshold. This means that epidemic spreading can be effectively controlled by fine tuning the routing scheme. Moreover, we find that an increase in the average network connectivity and the emergence of traffic congestion can suppress the epidemic outbreak. (paper)

  20. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells

    International Nuclear Information System (INIS)

    Xu, Xing-dong; Yang, Lan; Zheng, Li-yun; Pan, Yan-yan; Cao, Zhi-fei; Zhang, Zhi-qing; Zhou, Quan-sheng; Yang, Bo; Cao, Cong

    2014-01-01

    Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent. PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots. Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition. This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent

  1. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Yao Dai

    Full Text Available Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1, with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be

  2. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation

    International Nuclear Information System (INIS)

    Nguyen, Aaron N.; Stebbins, Elizabeth G.; Henson, Margaret; O'Young, Gilbert; Choi, Sun J.; Quon, Diana; Damm, Debby; Reddy, Mamatha; Ma, Jing Y.; Haghnazari, Edwin; Kapoun, Ann M.; Medicherla, Satyanarayana; Protter, Andy; Schreiner, George F.; Kurihara, Noriyoshi; Anderson, Judy; Roodman, G. David; Navas, Tony A.; Higgins, Linda S.

    2006-01-01

    The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38α MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNFα-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNFα-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNFα-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1α as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM

  3. Hesperetin, a Selective Phosphodiesterase 4 Inhibitor, Effectively Suppresses Ovalbumin-Induced Airway Hyperresponsiveness without Influencing Xylazine/Ketamine-Induced Anesthesia

    Directory of Open Access Journals (Sweden)

    Chung-Hung Shih

    2012-01-01

    Full Text Available Hesperetin, a selective phosphodiesterase (PDE4 inhibitor, is present in the traditional Chinese medicine, “Chen Pi.” Therefore, we were interested in investigating its effects on ovalbumin- (OVA- induced airway hyperresponsiveness, and clarifying its rationale for ameliorating asthma and chronic obstructive pulmonary disease (COPD. Hesperetin was revealed to have a therapeutic (PDE4H/PDE4L ratio of >11. Hesperetin (10 ~ 30 μmol/kg, intraperitoneally (i.p. dose-dependently and significantly attenuated the airway hyperresponsiveness induced by methacholine. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF. It dose-dependently and significantly suppressed total and OVA-specific immunoglobulin E levels in the BALF and serum. However, hesperetin did not influence xylazine/ketamine-induced anesthesia, suggesting that hesperetin has few or no emetic effects. In conclusion, the rationales for ameliorating allergic asthma and COPD by hesperetin are anti-inflammation, immunoregulation, and bronchodilation.

  4. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    Science.gov (United States)

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  5. Blebbistatin, a myosin II inhibitor, suppresses Ca(2+)-induced and "sensitized"-contraction of skinned tracheal muscles from guinea pig.

    Science.gov (United States)

    Yumoto, Masatoshi; Watanabe, Masaru

    2013-01-01

    Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.

  6. Cyclopamine tartrate, an inhibitor of Hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells

    International Nuclear Information System (INIS)

    Alam, Md Maksudul; Sohoni, Sagar; Kalainayakan, Sarada Preeta; Garrossian, Massoud; Zhang, Li

    2016-01-01

    Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT’s impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and

  7. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    Directory of Open Access Journals (Sweden)

    Jenna eJarvis

    2013-06-01

    Full Text Available How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat’s echoes, but additional mechanisms are needed to explain the bat sonar system’s exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other’s pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat’s emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  8. Suppression of follicular rupture with meloxicam, a cyclooxygenase-2 inhibitor: potential for emergency contraception.

    Science.gov (United States)

    Jesam, Cristián; Salvatierra, Ana María; Schwartz, Jill L; Croxatto, Horacio B

    2010-02-01

    There is evidence that cyclooxygenase-2 (COX-2) inhibitors can prevent or delay follicular rupture. COX-2 inhibitors, such as meloxicam, may offer advantages over emergency contraception with levonorgestrel, such as extending the therapeutic window for up to 24 h. We assessed the effect of meloxicam administered in the late follicular phase upon ovulation in women. This was a single center, double blind, crossover study designed to assess the effects in 27 eligible women (18-40 years old, surgically sterilized with regular menstrual cycles) of meloxicam, 15 or 30 mg/day, administered orally for five consecutive days during the late follicular phase, starting when the leading follicle reached 18 mm diameter. Volunteers underwent two treatment cycles separated by one resting cycle, with randomization to dose sequence. Main outcomes were follicular rupture; serum LH, progesterone and estradiol (E2) levels; and incidence of adverse events. Twenty-two volunteers completed the study. There were no differences between meloxicam doses in menstrual cycle length. Dysfunctional ovulation was observed in 11/22 (50%) cycles treated with 15 mg/day and 20/22 (90.9%) cycles with 30 mg/day (P = 0.0068). All women had normal luteal phase progesterone levels; mean maximal values +/- SEM were 42 +/- 4.1 and 46.8 +/- 2.6 nmol/l for 15 and 30 mg/day groups, respectively. There were no serious adverse events, and no changes in LH and E2 levels or in cycle length. Meloxicam 30 mg given for five consecutive days in the late follicular phase is safe, effective and may be an alternative form of emergency contraception.

  9. A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer.

    Directory of Open Access Journals (Sweden)

    Takuya Sakamoto

    Full Text Available Epithelial-mesenchymal transition (EMT is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC, EMT is induced by transforming growth factor-beta 1 (TGF-β1. The EMT is reversible; therefore, it is conceivable that it could be related to some epigenetic changes. We focused on histone deacetylase (HDAC inhibitors as regulators of TGF-β1 signaling, and investigated their effect on EMT and chemoresistance. We employed four BTC cell lines (MzChA-1, gemcitabine-resistant MzChA-1, TFK-1, and gemcitabine-resistant TFK-1 and used vorinostat as the HDAC inhibitor. The relative mRNA expression of an epithelial marker (CDH1 and mesenchymal markers (CDH2, vimentin, SNAI1 were measured by qRT-PCR to evaluate factors associated with EMT. MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed to evaluate the chemoresistance of each cell line. In addition, NOD/SCID mice were used to evaluate the effect of vorinostat in vivo. In the parent MzChA-1 and TFK-1 cell lines, TGF-β1 induced EMT and chemoresistance; while vorinostat inhibited the EMT and chemoresistance induced by TGF-β1. In gemcitabine-resistant cell lines that highly expressed TGF-β1, vorinostat inhibited EMT and attenuated chemoresistance. We showed that vorinostat inhibits nuclear translocation of SMAD4 which is a signaling factor of TGF-β1, and this is one of the mechanisms by which vorinostat regulates EMT. We also showed that vorinostat attenuates the binding affinity of SMAD4 to the CDH1-related transcription factors SNAI1, SNAI2, ZEB1, ZEB2, and TWIST. Furthermore, combination therapy with vorinostat and gemcitabine improved survival time in the mice xenografted with gemcitabine resistant MzChA-1 cells. In conclusion, vorinostat regulated TGF-β1-induced EMT and chemoresistance through inhibition of SMAD4 nuclear translocation.

  10. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis

    Science.gov (United States)

    Boyle, D L; Soma, K; Hodge, J; Kavanaugh, A; Mandel, D; Mease, P; Shurmur, R; Singhal, A K; Wei, N; Rosengren, S; Kaplan, I; Krishnaswami, S; Luo, Z; Bradley, J; Firestein, G S

    2015-01-01

    Objective Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. Methods A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Results Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (pTofacitinib significantly decreased plasma CXCL10 (pTofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. Trial registration number NCT00976599. PMID:25398374

  11. Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc

    Directory of Open Access Journals (Sweden)

    Phung Thi Tuyen

    2018-02-01

    Full Text Available This study isolated, determined, and quantified plant growth inhibitors in Japanese chestnut (Castanea crenata Sieb. et Zucc, a deciduous species native to Japan and Korea. In laboratory assays, C. crenata leaves showed strong inhibition on germination and seedling growth of Echinochloa crus-galli (barnyardgrass, Lactuca sativa (lettuce, and Raphanus sativus (radish. Laboratory and greenhouse trials showed that leaves of C. crenata appeared as a promising material to manage weeds, especially the dicot weeds. By GC-MS and HPLC analyses, gallic, protocatechuic, p-hydroxybenzoic, caffeic, ferulic, ellagic, and cinnamic acids were identified and quantified, of which ellagic acid was present in the highest quantity (2.36 mg/g dried leaves. By column chromatography and spectral data (1H- and 13C-NMR, IR, and LC-MS analysis, a compound identified as 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid (1 was purified from the methanolic leaf extract of C. crenata (0.93 mg/g dried leaves. This constituent showed potent inhibition on growth of E. crus-galli, a problematic weed in agricultural practice. The inhibition of the compound 1 (IC50 = 2.62 and 0.41 mM was >5 fold greater than that of p-hydroxybenzoic acid (IC50 = 15.33 and 2.11 mM on shoot and root growth of E. crus-galli, respectively. Results suggest that the isolated the compound 1 has potential to develop natural herbicides to manage E. crus-galli. This study is the first to isolate and identify 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid in a plant and report its plant growth inhibitory potential.

  12. An Overview of Crop Hail Damage and Evaluation of Hail Suppression Efficiency in Bulgaria.

    Science.gov (United States)

    Simeonov, Petio

    1996-09-01

    The space time distribution of the crop hail loss-to-risk ratio over the whole. Bulgarian territory has been ascertained using the rank approach. The relationships between hailfall characteristics (sizes and kinetic energy) and the percentage of the crop damage for wheat, corn, and vines were obtained using field observations and hailpad data. A physical statistical method for evaluating the changes in damaged crop areas was tested over a 5000-km2 target area (numbers for three hail suppression ranges). Using a regression equation (worked out for 120 nonseeded days) for evaluation of the damaged area changes, reductions in damaged area of 34% 48% were obtained for 7 and 9 years of heavy hail. The magnitude of the reduction is comparable with the one obtained using double-mass ratio and bivariate test of loss-to-risk data in the control and target areas. Similar results were obtained in other hail suppression projects in France, North Dakota, and Greece. A short overview of the physical effects of cloud seeding is presented. The physical-statistical approach for severe hailstorms, based on the regression between thermodynamical indices of instability and damaged areas, shows promise as a perspective to evaluate the efficiency of the seeding operations in problematic cases.

  13. A phosphatidylinositol 3-kinase inhibitor strongly suppressed pulmonary vascular remodeling of allergic vasculitis in a murine model.

    Science.gov (United States)

    Oikawa, Yuka; Sasaki, Nobuhito; Niisato, Miyuki; Nakamura, Yutaka; Yamauchi, Kohei

    2016-04-01

    We investigated the effects of pan-class I PI3K inhibitor, ZSTK474 on vascular remodeling using a murine model of allergic vasculitis with eosinophil infiltration. C57BL/6 mice were sensitized with OVA. The positive controls were exposed to aerosolized OVA daily for 7 days. The other group of mice were administered ZSTK474 (30 mg/kg, p.o. daily) in parallel with daily exposure to aerosolized OVA for 7 days. On the 3rd and 7th day, bronchoalveolar lavage (BAL) was performed and the lungs were excised for pathological analysis. Cell differentials were determined and the concentrations of IL-4, IL-5, IL-13 and TGF-βin BAL fluid were measured. The total cell numbers and eosinophil numbers in BALF were greatly reduced in the ZSTK474-treated group on the 3rd and 7th day after exposure to OVA. The numbers of total white blood cells and eosinophils in the peripheral blood were significantly reduced in the ZSTK474-treated group on the 3rd and 7th day after exposure to OVA. The concentrations of IL-4, IL-5, and IL-13 in BAL fluids were also reduced significantly on the 3rd day in the ZSTK474-treated group. The concentrations of TGF-β in BAL fluids were also reduced significantly on the 3rd and 7th day in the ZSTK474-treated group. The pathological scores reduced significantly in the ZSTK474-treated group compared to the control group. The PI3K inhibitor, ZSTK474 suppressed pulmonary vascular remodeling in the murine model of allergic vasculitis with eosinophil infiltration. PI3K signal transduction may have a critical role in the immunological process that induces allergic vasculitis.

  14. Effects of selective serotonin reuptake inhibitors on thought-action fusion, metacognitions, and thought suppression in obsessive-compulsive disorder.

    Science.gov (United States)

    Besiroglu, Lutfullah; Çetinkaya, Nuralay; Selvi, Yavuz; Atli, Abdullah

    2011-01-01

    We aimed to assess whether cognitive processes change over time in patients with obsessive-compulsive disorder (OCD) receiving selective serotonin reuptake inhibitors without cognitive behavioral therapy and to investigate the factors associated with probable cognitive changes. During the 16 weeks of the study, 55 patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria for OCD received open-label treatment with sertraline (100-200 mg/d) or fluoxetine (40-80 mg/d) and were assessed using the Yale-Brown Obsessive-Compulsive Scale, Beck Depression Inventory (BDI), Thought-Action Fusion Scale (TAFS), Metacognitions Questionnaire (MCQ-30), and White Bear Suppression Inventory (WBSI). The Yale-Brown Obsessive-Compulsive Scale (P < .001), BDI (P < .001), TAFS morality (P < .005), MCQ-30 (P < .01), and WBSI (P < .005) scores at follow-up were significantly lower than baseline scores. When we excluded OCD patients with depressive disorder (n = 12), statistical significance in paired comparisons for MCQ and WBSI disappeared. Similarly, when OCD patients with religious obsessions (n = 16) were excluded, paired comparisons for MCQ and TAF morality were not statistically significant. Changes in BDI, TAFS morality, MCQ-30, and WBSI (P < .005) were significantly correlated with changes in severity of obsessions, but not that of compulsions. After controlling for the change in depression severity, significant correlations between changes in obsessive and cognitive scales did not continue to have statistical significance. The BDI changes (P < .05) significantly explained the changes in symptom severity in a linear regression model. Our findings suggest that selective serotonin reuptake inhibitors can change appraisals of obsessive intrusions via their effects on negative emotions. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. An efficient approach to suppress the negative role of contrarian oscillators in synchronization

    Science.gov (United States)

    Zhang, Xiyun; Ruan, Zhongyuan; Liu, Zonghua

    2013-09-01

    It has been found that contrarian oscillators usually take a negative role in the collective behaviors formed by conformist oscillators. However, experiments revealed that it is also possible to achieve a strong coherence even when there are contrarians in the system such as neuron networks with both excitable and inhibitory neurons. To understand the underlying mechanism of this abnormal phenomenon, we here consider a complex network of coupled Kuramoto oscillators with mixed positive and negative couplings and present an efficient approach, i.e., tit-for-tat strategy, to suppress the negative role of contrarian oscillators in synchronization and thus increase the order parameter of synchronization. Two classes of contrarian oscillators are numerically studied and a brief theoretical analysis is provided to explain the numerical results.

  16. In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors

    Science.gov (United States)

    Gantner, Florian; Kupferschmidt, Rochus; Schudt, Christian; Wendel, Albrecht; Hatzelmann, Armin

    1997-01-01

    During in vitro culture in 10% human AB serum, human peripheral blood monocytes acquire a macrophage-like phenotype. The underlying differentiation was characterized by increased activities of the macrophage marker enzymes unspecific esterase (NaF-insensitive form) and acid phosphatase, as well as by a down-regulation in surface CD14 expression. In parallel, a dramatic change in the phosphodiesterase (PDE) profile became evident within a few days that strongly resembled that previously described for human alveolar macrophages. Whereas PDE1 and PDE3 activities were augmented, PDE4 activity, which represented the major cyclic AMP-hydrolysing activity of peripheral blood monocytes, rapidly declined. Monocytes and monocyte-derived macrophages responded to lipopolysaccharide (LPS) with the release of tumour necrosis factor-α (TNF). In line with the change in CD14 expression, the EC50 value of LPS for induction of TNF release increased from approximately 0.1 ng ml−1 in peripheral blood monocytes to about 2 ng ml−1 in macrophages. Both populations of cells were equally susceptible towards inhibition of TNF release by cyclic AMP elevating agents such as dibutyryl cyclic AMP, prostaglandin E2 (PGE2) or forskolin, which all led to a complete abrogation of TNF production in a concentration-dependent manner and which were more efficient than the glucocorticoid dexamethasone. In monocytes, PDE4 selective inhibitors (rolipram, RP73401) suppressed TNF formation by 80%, whereas motapizone, a PDE3 selective compound, exerted a comparatively weak effect (10–15% inhibition). Combined use of PDE3 plus PDE4 inhibitors resulted in an additive effect and fully abrogated LPS-induced TNF release as did the mixed PDE3/4 inhibitor tolafentrine. In monocyte-derived macrophages, neither PDE3- nor PDE4-selective drugs markedly affected TNF generation when used alone (<15% inhibition), whereas in combination, they led to a maximal inhibition of TNF formation by about 40–50

  17. Suppressive Effects of the Site 1 Protease (S1P Inhibitor, PF-429242, on Dengue Virus Propagation

    Directory of Open Access Journals (Sweden)

    Leo Uchida

    2016-02-01

    Full Text Available Dengue virus (DENV infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs, which are activated by serine protease, site 1 protease (S1P. Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.

  18. Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation.

    Science.gov (United States)

    Uchida, Leo; Urata, Shuzo; Ulanday, Gianne Eduard L; Takamatsu, Yuki; Yasuda, Jiro; Morita, Kouichi; Hayasaka, Daisuke

    2016-02-10

    Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.

  19. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury.

    Science.gov (United States)

    Sun, Ying; Guo, Chen; Ma, Ping; Lai, Yumei; Yang, Fan; Cai, Jun; Cheng, Zhehao; Zhang, Kuo; Liu, Zhongzhen; Tian, Yeteng; Sheng, Yue; Tian, Ruijun; Deng, Yi; Xiao, Guozhi; Wu, Chuanyue

    2017-12-01

    Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor α (RhoGDI α ) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDI α and resulted in the dissociation of Rac1 from RhoGDI α , leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDI α -Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases. Copyright © 2017 by the American Society of Nephrology.

  20. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    International Nuclear Information System (INIS)

    Alao, John P; Sunnerhagen, Per

    2009-01-01

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

  1. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  2. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  3. Impact of urease inhibitors on utilization efficiency of N-urea in rice paddy

    International Nuclear Information System (INIS)

    Chen Wei; Lu Wanfang

    1998-01-01

    Urea applied to the paddy field rapidly released ammonium (NH 4 + ) through hydrolysis. The released NH 4 + -N was usually at peak two days after the application. The peak was found to be lower and delay one day when a mixture of urea and urease inhibitors was applied. Based on tracing of 15 N in the urea used, the two urease inhibitors, phenylphosphordiamidate (PPD) and N-(N-butyl) thiophosphoric triamide (NBPT), were found to enhance the efficiency of urea utilization by rice plants due to more absorption and also stimulate rice growth. The grain yields in the treatments applied with the mixture containing PPD or NBPT were higher, particularly at high N level, than that in the treatment applied with urea only. However, the urea inhibitor, hydroquinone (HQ), displayed far less effect than PPD and NBPT in the experiment. The application of rice straw was found to decrease the absorption of rice plants to N in urea but increase its residue in the soil

  4. The impact of nevirapine- versus protease inhibitor-based regimens on virological markers of HIV-1 persistence during seemingly suppressive ART.

    Science.gov (United States)

    Kiselinova, Maja; Anna, Maria; Malatinkova, Eva; Vervish, Karen; Beloukas, Apostolos; Messiaen, Peter; Bonczkowski, Pawel; Trypsteen, Wim; Callens, Steven; Verhofstede, Chris; De Spiegelaere, Ward; Vandekerckhove, Linos

    2014-01-01

    The source and significance of residual plasma HIV-1 RNA detection during suppressive ART remain controversial. It has been proposed that nevirapine (NVP)-based regimens achieve a greater HIV-1 RNA suppression than regimens containing a protease inhibitor (PI). The aim of this study was to compare the effect of receiving NVP- vs PI-based ART on the virological markers of HIV persistence in peripheral blood. The study population comprised 161 HIV-1 infected patients receiving either NVP-based (n=81) or PI-based (n=80) ART and showing a HIV-1 RNA load stably suppressed ART, with median (IQR) levels of 5 (3-6) and 5 (3-8) copies/mL, respectively. HIV-1 RNA detection was associated with shorter duration of suppressive ART regardless of treatment arm (p=0.007), and lower CD4 nadir (p=0.015). HIV-1 DNA levels were median 282 (120-484) and 213 (87-494) copies/106 PBMCs in the two groups respectively, and were lowest (ART HIV-1 RNA load (p=0.0001). In this comprehensive characterization of patients on long-term suppressive ART, we did not observe evidence for a greater suppressive activity of NVP-based over PI-based therapy on plasma and intracellular markers of virus persistence. Overall excellent correlation was observed between the markers, allowing the identification of a subset of treated patients with low HIV-1 expression as an important cohort for future HIV cure studies.

  5. High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold

    KAUST Repository

    Chan, Khaileok

    2012-01-01

    An efficient blue light emitting diode based on solution processable pyrene-1,3-alt-calix[4]arene is demonstrated, providing a record current efficiency of 10.5 cd A -1 in a simple non-doped OLED configuration. Complete suppression of pyrene aggregation in the solid state is achieved by controlling chromophore dispersion using the 1,3-alt-calix[4]arene scaffold. © 2012 The Royal Society of Chemistry.

  6. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans.

    Science.gov (United States)

    Nakajima, Katsumasa; Chatelain, Ricardo; Clairmont, Kevin B; Commerford, Renee; Coppola, Gary M; Daniels, Thomas; Forster, Cornelia J; Gilmore, Thomas A; Gong, Yongjin; Jain, Monish; Kanter, Aaron; Kwak, Youngshin; Li, Jingzhou; Meyers, Charles D; Neubert, Alan D; Szklennik, Paul; Tedesco, Vivienne; Thompson, James; Truong, David; Yang, Qing; Hubbard, Brian K; Serrano-Wu, Michael H

    2017-06-08

    Modification of a gut restricted class of benzimidazole DGAT1 inhibitor 1 led to 9 with good oral bioavailability. The key structural changes to 1 include bioisosteric replacement of the amide with oxadiazole and α,α-dimethylation of the carboxylic acid, improving DGAT1 potency and gut permeability. Since DGAT1 is expressed in the small intestine, both 1 and 9 can suppress postprandial triglycerides during acute oral lipid challenges in rats and dogs. Interestingly, only 9 was found to be effective in suppressing body weight gain relative to control in a diet-induced obese dog model, suggesting the importance of systemic inhibition of DGAT1 for body weight control. 9 has advanced to clinical investigation and successfully suppressed postprandial triglycerides during an acute meal challenge in humans.

  7. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  8. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    2007-01-01

    Full Text Available A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA. Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4 inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  9. Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

    Science.gov (United States)

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  10. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA on SIV-infected Chinese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Binhua Ling

    Full Text Available Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM treated with intensive combination antiretroviral therapy (cART and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA.SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations.Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters.The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  11. Glycogen synthase kinase-3 inhibitors suppress the AR-V7-mediated transcription and selectively inhibit cell growth in AR-V7-positive prostate cancer cells.

    Science.gov (United States)

    Nakata, Daisuke; Koyama, Ryokichi; Nakayama, Kazuhide; Kitazawa, Satoshi; Watanabe, Tatsuya; Hara, Takahito

    2017-06-01

    Recent evidence suggests that androgen receptor (AR) splice variants, including AR-V7, play a pivotal role in resistance to androgen blockade in prostate cancer treatment. The development of new therapeutic agents that can suppress the transcriptional activities of AR splice variants has been anticipated as the next generation treatment of castration-resistant prostate cancer. High-throughput screening of AR-V7 signaling inhibitors was performed using an AR-V7 reporter system. The effects of a glycogen synthase kinase-3 (GSK3) inhibitor, LY-2090314, on endogenous AR-V7 signaling were evaluated in an AR-V7-positive cell line, JDCaP-hr, by quantitative reverse transcription polymerase chain reaction. The relationship between AR-V7 signaling and β-catenin signaling was assessed using RNA interference. The effect of LY-2090314 on cell growth in various prostate cancer cell lines was also evaluated. We identified GSK3 inhibitors as transcriptional suppressors of AR-V7 using a high-throughput screen with an AR-V7 reporter system. LY-2090314 suppressed the reporter activity and endogenous AR-V7 activity in JDCaP-hr cells. Because silencing of β-catenin partly rescued the suppression, it was evident that the suppression was mediated, at least partially, via the activation of β-catenin signaling. AR-V7 signaling and β-catenin signaling reciprocally regulate each other in JDCaP-hr cells, and therefore, GSK3 inhibition can repress AR-V7 transcriptional activity by accumulating intracellular β-catenin. Notably, LY-2090314 selectively inhibited the growth of AR-V7-positive prostate cancer cells in vitro. Our findings demonstrate the potential of GSK3 inhibitors in treating advanced prostate cancer driven by AR splice variants. In vivo evaluation of AR splice variant-positive prostate cancer models will help illustrate the overall significance of GSK3 inhibitors in treating prostate cancer. © 2017 Wiley Periodicals, Inc.

  12. Peripheral Inhibitor of AChE, Neostigmine, Prevents the Inflammatory Dependent Suppression of GnRH/LH Secretion during the Follicular Phase of the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2017-01-01

    Full Text Available The study was designed to test the hypothesis that the inhibition of acetylcholinesterase (AChE activity at the periphery by Neostigmine (0.5 mg/animal will be sufficient to prevent inflammatory dependent suppression of the gonadotropin-releasing hormone (GnRH/luteinising hormone (LH secretion in ewes in the follicular phase of the estrous cycle, and this effect will be comparable with the systemic AChE inhibitor, Donepezil (2.5 mg/animal. An immune/inflammatory challenge was induced by peripheral administration of lipopolysaccharide (LPS; 400 ng/kg. Peripheral treatment with Donepezil and Neostigmine prevented the LPS-induced decrease (P<0.05 in LHβ gene expression in the anterior pituitary gland (AP and in LH release. Moreover, Donepezil completely abolished (P<0.05 the suppressory effect of inflammation on GnRH synthesis in the preoptic area, when pretreatment with Neostigmine reduced (P<0.05 the decrease in GnRH content in this hypothalamic structure. Moreover, administration of both AChE inhibitors diminished (P<0.05 the inhibitory effect of LPS treatment on the expression of GnRH receptor in the AP. Our study shows that inflammatory dependent changes in the GnRH/LH secretion may be eliminated or reduced by AChE inhibitors suppressing inflammatory reaction only at the periphery such as Neostigmine, without the need for interfering in the central nervous system.

  13. Serine protease inhibitor A3K suppressed the formation of ocular surface squamous metaplasia in a mouse model of experimental dry eye.

    Science.gov (United States)

    Lin, Zhirong; Zhou, Yueping; Wang, Yuqian; Zhou, Tong; Li, Jie; Luo, Pingping; He, Hui; Wu, Huping; Liu, Zuguo

    2014-08-07

    To investigate the effects and possible mechanisms of serine protease inhibitor A3K (SERPINA3K) on the formation of ocular surface squamous metaplasia in a mouse dry eye model induced by topical benzalkonium chloride (BAC). The eye drops containing SERPINA3K were topically administered during the induction of BAC-induced dry eye. The clinical indications of dry eye were evaluated on day (D)16, including tear break-up time (BUT), tear volume, corneal fluorescein staining, and inflammatory index. Global specimens were collected on D16 and the following examinations were performed: histologic investigation, immunostaining of cytokeratin 10 (K10), p63 and Ki67 in the cornea, and Western blot analysis of tumor necrosis factor-α (TNF-α). Serine protease inhibitor A3K suppressed the formation of BAC-induced dry eye, presenting with longer BUTs, lower corneal fluorescein staining scores, and inflammatory index, while no significant changes in tear volume. It also reduced the severity of abnormal differentiation and proliferation on ocular surface with lower expressions of K10, p63, and Ki67, and retained the number of goblet cells in the conjunctival fornix. Serine protease inhibitor A3K significantly decreased the levels of TNF-α in the cornea. Topical application of SERPINA3K ameliorated the severity of ocular surface squamous metaplasia and suppressed the formation of BAC-induced dry eye. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. Identification of a novel polyprenylated acylphloroglucinol‑derived SIRT1 inhibitor with cancer‑specific anti-proliferative and invasion-suppressing activities.

    Science.gov (United States)

    Zhu, Lijia; Qi, Ji; Chiao, Christine Ya-Chi; Zhang, Qiang; Porco, John A; Faller, Douglas V; Dai, Yan

    2014-11-01

    SIRT1, a class III histone deacetylase, plays a critical role in regulating cancer cell growth, migration and invasion, which makes it a potential target for cancer therapeutics. In this study, we screened derivatives of several groups of natural products and identified a novel SIRT1 inhibitor JQ-101, a synthetic derivative of the polyprenylated acylphloroglucinol (PPAP) natural products, with an IC(50) for SIRT1 of 30 µM in vitro, with 5-fold higher activity for SIRT1 vs. SIRT2. Exposure of tumor cells to JQ-101 significantly enhanced acetylation of p53 and histone H4K16 at known sites of SIRT1 deacetylation, validating SIRT1 as its cellular target. JQ-101 suppressed cancer cell growth and survival by targeting SIRT1, and also exhibited selective cytotoxicity towards a panel of human tumor cell lines, while producing no toxicity in two normal human cell types at comparable concentrations. JQ-101 induced both apoptosis and cell senescence, and suppressed cancer cell invasion in vitro. In summary, we have identified JQ-101 as a new SIRT1 inhibitor which may have potential application in cancer treatment through its ability to induce tumor cell apoptosis and senescence and suppress cancer cell invasion.

  15. Identification of a novel polyprenylated acylphloroglucinol-derived SIRT1 inhibitor with cancer-specific anti-proliferative and invasion-suppressing activities

    Science.gov (United States)

    ZHU, LIJIA; QI, JI; CHIAO, CHRISTINE YA-CHI; ZHANG, QIANG; PORCO, JOHN A.; FALLER, DOUGLAS V.; DAI, YAN

    2014-01-01

    SIRT1, a class III histone deacetylase, plays a critical role in regulating cancer cell growth, migration and invasion, which makes it a potential target for cancer therapeutics. In this study, we screened derivatives of several groups of natural products and identified a novel SIRT1 inhibitor JQ-101, a synthetic derivative of the polyprenylated acylphloroglucinol (PPAP) natural products, with an IC50 for SIRT1 of 30 μM in vitro, with 5-fold higher activity for SIRT1 vs. SIRT2. Exposure of tumor cells to JQ-101 significantly enhanced acetylation of p53 and histone H4K16 at known sites of SIRT1 deacetylation, validating SIRT1 as its cellular target. JQ-101 suppressed cancer cell growth and survival by targeting SIRT1, and also exhibited selective cytotoxicity towards a panel of human tumor cell lines, while producing no toxicity in two normal human cell types at comparable concentrations. JQ-101 induced both apoptosis and cell senescence, and suppressed cancer cell invasion in vitro. In summary, we have identified JQ-101 as a new SIRT1 inhibitor which may have potential application in cancer treatment through its ability to induce tumor cell apoptosis and senescence and suppress cancer cell invasion. PMID:25189993

  16. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Itoh, Tatsuki [Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara (Japan); Imano, Motohiro [Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Tanabe, Genzoh; Muraoka, Osamu [Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka (Japan); Matsuda, Hideaki [Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Satou, Takao [Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Nishida, Shozo, E-mail: nishida@phar.kindai.ac.jp [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan)

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.

  17. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation.

    Science.gov (United States)

    Kamisato, Chikako; Furugohri, Taketoshi; Morishima, Yoshiyuki

    2016-05-01

    We have demonstrated that antithrombin (AT)-independent thrombin inhibitors paradoxically increase thrombin generation (TG) in human plasma in a thrombomodulin (TM)- and protein C (PC)-dependent manner. We determined the effects of AT-independent thrombin inhibitors on the negative-feedback system, activation of PC and production and degradation of factor Va (FVa), as possible mechanisms underlying the paradoxical enhancement of TG. TG in human plasma containing 10nM TM was assayed by means of the calibrated automated thrombography. As an index of PC activation, plasma concentration of activated PC-PC inhibitor complex (aPC-PCI) was measured. The amounts of FVa heavy chain and its degradation product (FVa(307-506)) were examined by western blotting. AT-independent thrombin inhibitors, melagatran and dabigatran (both at 25-600nM) and 3-30μg/ml active site-blocked thrombin (IIai), increased peak levels of TG. Melagatran, dabigatran and IIai significantly decreased plasma concentration of aPC-PCI complex at 25nM or more, 75nM or more, and 10 and 30μg/ml, respectively. Melagatran (300nM) significantly increased FVa and decreased FVa(307-506). In contrast, a direct factor Xa inhibitor edoxaban preferentially inhibited thrombin generation (≥25nM), and higher concentrations were required to inhibit PC activation (≥150nM) and FVa degradation (300nM). The present study suggests that the inhibitions of protein C activation and subsequent degradation of FVa and increase in FVa by antithrombin-independent thrombin inhibitors may contribute to the paradoxical TG enhancement, and edoxaban may inhibit PC activation and FVa degradation as a result of TG suppression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  19. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    Science.gov (United States)

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  20. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  1. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficience

    NARCIS (Netherlands)

    Abalos, D.; Jeffery, S.L.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A.

    2014-01-01

    Nitrification and urease inhibitors are proposed as means to reduce nitrogen losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly

  2. Suppression of adhesion-induced protein tyrosine phosphorylation decreases invasive and metastatic potentials of B16-BL6 melanoma cells by protein tyrosine kinase inhibitor genistein.

    Science.gov (United States)

    Yan, C; Han, R

    1997-01-01

    Protein tyrosine kinase (PTK) appears to be involved in the activation of signaling during cell attachment to and spreading on extracellular matrix (ECM) in the metastatic cascade. To verify the assumption that PTK inhibitors might impair ECM signaling and prevent cancer metastasis, the highly metastatic B16-BL6 mouse melanoma cells were exposed to the PTK inhibitor genistein for 3 days. The ability of the cells to invade through reconstituted basement membrane (Matrigel) and to establish experimental pulmonary metastatic foci in C57BL/6 mice decreased after genistein exposure. The genistein-treated cells were also prevented from attaching to Matrigel and spread extremely poorly on the ECM substratum. Immunoblot analysis showed that tyrosine phosphorylation of a 125-kD protein in response to cell spreading on Matrigel was suppressed in the genistein-treated cells. Adhesion-induced protein tyrosine phosphorylation represents the earlier and specific event in the activation of ECM signaling, so this result implied ECM signaling was impaired in the treated cells. With immunofluorescence microscopy, the adhesion-induced tyrosine phosphorylated proteins were located at the pericytoplasms of well-spread cells, but not at the periphery of poorly spread genistein-treated cells. Therefore, this paper suggests that genistein might impair ECM signaling and subsequently prevent cancer cells from spreading well and invading or establishing metastasis through the suppression of adhesion-induced protein tyrosine phosphorylation. PTKs and adhesion-induced protein tyrosine phosphorylation might play a role in the control of invasion and metastasis.

  3. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.

    Science.gov (United States)

    Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  4. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  5. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins.

    Science.gov (United States)

    Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta

    2008-01-01

    Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.

  6. Nitrogen management and nitrification inhibitor effects on nitrogen-15 urea: 1. Yield and fertilizer use efficiency

    International Nuclear Information System (INIS)

    Walters, D.T.; Malzer, G.L.

    1990-01-01

    Nitrification inhibitors (NI) are sometimes recommended for use with ammoniacal fertilizers in corn (Zea mays L.) production to improve fertilizer N use efficiency (FUE). The objectives of this experiment were to evaluate the effects of the NI nitrapyrin [2-chloro-6-(trichloromethyl) pyridine] application on yield and FUE of irrigated corn, and to monitor the fate of a single application of 15 N-enriched urea during a multiyear period in both soil and plant. Treatments included a factorial combination of two N rates (90 or 180 kg urea-N ha -1 yr -1 ) applied during a 3-yr period, with or without a NI and with or without incorporation, plus a zero-N control. Twenty-seven nonweighing lysimeters were used to quantify leaching load. Treatment effects on yield and FUE differed each year due to interactions of climate and N-management variables. Nonincorporated urea + NI reduced grain yield when leaching load was low and increased yield at the 90 kg ha -1 N rate when leaching load was low. The NI increased FUE only at the 90 kg ha -1 N rate when leaching load was high. Incorporation of urea + NI reduced plant recovery of fertilizer-derived N (FDN) in the year of application, but resulted in increased uptake of residual FDN in subsequent years. Incorporation of NI with moderate N rates coupled with conservative irrigation management should reduce the risk of yield loss and minimize NO 3 movement to groundwater

  7. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.

    Science.gov (United States)

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G

    2011-10-01

    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.

    Science.gov (United States)

    Liu, Tongxin; Sun, Quanquan; Li, Qi; Yang, Hua; Zhang, Yuqin; Wang, Rong; Lin, Xiaoshan; Xiao, Dong; Yuan, Yawei; Chen, Longhua; Wang, Wei

    2015-02-01

    Although combined chemoradiotherapy has provided considerable improvements for nasopharyngeal carcinoma (NPC), recurrence and metastasis are still frequent. The PI3K/Akt/mTOR pathway plays a critical role in tumor formation and tumor cell survival after radiation-induced DNA damage. In the present study, we evaluated whether inhibition of PI3K/mTOR by two novel dual inhibitors, GSK2126458 and PKI-587, could suppress tumor progression and sensitize NPC cells to radiation. Four NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) were used to analyze the effects of GSK216458 and PKI-587 on cell proliferation, migration, invasion, clonogenic survival, amount of residual γ-H2AX foci, cell cycle, and apoptosis after radiation. A 5-8F xenograft model was used to evaluate the in vivo effects of the two compounds in combination with ionizing radiation (IR). Both GSK216458 and PKI-587 effectively inhibited cell proliferation and motility in NPC cells and suppressed phosphorylation of Akt, mTOR, S6, and 4EBP1 proteins in a concentration- and time-dependent manner. Moreover, both compounds sensitized NPC cells to IR by increasing DNA damage, enhancing G2-M cell-cycle delay, and inducing apoptosis. In vivo, the combination of IR with GSK2126458 or PKI-587 significantly inhibited tumor growth. Antitumor effect was correlated with induction of apoptosis and suppression of the phosphorylation of mTOR, Akt, and 4EBP1. These new findings suggest the usefulness of PI3K/mTOR dual inhibition for antitumor and radiosensitizing. The combination of IR with a dual PI3K/mTOR inhibitor, GSK2126458 or PKI-587, might be a promising therapeutic strategy for NPC. ©2014 American Association for Cancer Research.

  9. Suppression of Homologous Recombination by insulin-like growth factor-1 inhibition sensitizes cancer cells to PARP inhibitors

    International Nuclear Information System (INIS)

    Amin, Oreekha; Beauchamp, Marie-Claude; Nader, Paul Abou; Laskov, Ido; Iqbal, Sanaa; Philip, Charles-André; Yasmeen, Amber; Gotlieb, Walter H.

    2015-01-01

    Impairment of homologous recombination (HR) is found in close to 50 % of ovarian and breast cancer. Tumors with BRCA1 mutations show increased expression of the Insulin-like growth factor type 1 receptor (IGF-1R). We previously have shown that inhibition of IGF-1R results in growth inhibition and apoptosis of ovarian tumor cells. In the current study, we aimed to investigate the correlation between HR and sensitivity to IGF-1R inhibition. Further, we hypothesized that IGF-1R inhibition might sensitize HR proficient cancers to Poly ADP ribose polymerase (PARP) inhibitors. Using ovarian and breast cancer cellular models with known BRCA1 status, we evaluated their HR functionality by RAD51 foci formation assay. The 50 % lethal concentration (LC50) of Insulin-like growth factor type 1 receptor kinase inhibitor (IGF-1Rki) in these cells was assessed, and western immunoblotting was performed to determine the expression of proteins involved in the IGF-1R pathway. Moreover, IGF-1R inhibitors were added on HR proficient cell lines to assess mRNA and protein expression of RAD51 by qPCR and western blot. Also, we explored the interaction between RAD51 and Insulin receptor substance 1 (IRS-1) by immunoprecipitation. Next, combination effect of IGF-1R and PARP inhibitors was evaluated by clonogenic assay. Cells with mutated/methylated BRCA1 showed an impaired HR function, and had an overactivation of the IGF-1R pathway. These cells were more sensitive to IGF-1R inhibition compared to HR proficient cells. In addition, the IGF-IR inhibitor reduced RAD51 expression at mRNA and protein levels in HR proficient cells, and sensitized these cells to PARP inhibitor. Targeting IGF-1R might lead to improved personalized therapeutic approaches in cancer patients with HR deficiency. Targeting both PARP and IGF-1R might increase the clinical efficacy in HR deficient patients and increase the population of patients who may benefit from PARP inhibitors

  10. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression.

    Science.gov (United States)

    Tsai, Chun-Hao; Yang, Dong-Ying; Lin, Chih-Yang; Chen, Tsung-Ming; Tang, Chih-Hsin; Huang, Yuan-Li

    2017-10-01

    Chondrosarcoma is the second most common primary malignancy form of bone cancer, exhibiting resistance to chemotherapy and radiation therapy as well as developing high metastasis ability in late-stage tumors. Thus, understanding the metastatic processes of chondrosarcoma is considered a strategy for the treatment of this disease. Sphingosine 1-phosphate (S1P), a bioactive sphingolipid, is produced intracellularly by sphingosine kinase (SphK) and is regarded as a second signaling molecule that regulates inflammation, proliferation, angiogenesis, and metastasis. However, the effect of S1P on chondrosarcoma remains uncertain. As demonstrated by the transwell, immunoblotting, and real-time PCR analyses, we found that S1P inhibited cell migration and MMP-2 expression through the upregulation of the tissue inhibitor of metalloproteinase-3 (TIMP-3) expression in human chondrosarcoma cells. Additionally, we also showed that microRNA (miRNA)-101, which targets the 3' untranslated region (3'UTR) of TIMP-3, decreased significantly following S1P treatment. After transfection with miR-101 mimics, the S1P-regulated cell migration and TIMP-3 expression were both reversed. Furthermore, we also showed that the S1P-inhibited cell migration is mediated through the c-Src/MEK/ERK signaling axis. Meanwhile, the in vivo study indicated that overexpression of SphK1 decreases chondrosarcoma metastasis to the lungs. Our results illustrate the clinical significance between SphK1, TIMP-3, and miR-101 in human chondrosarcoma patients. Taken together, our results suggest that S1P and miR-101 may prove to be potential therapeutic targets for future chondrosarcoma treatment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  11. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2013-01-01

    Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

  12. ATG4B inhibitors with a benzotropolone core structure block autophagy and augment efficiency of chemotherapy in mice.

    Science.gov (United States)

    Kurdi, Ammar; Cleenewerck, Matthias; Vangestel, Christel; Lyssens, Sophie; Declercq, Wim; Timmermans, Jean-Pierre; Stroobants, Sigrid; Augustyns, Koen; De Meyer, Guido R Y; Van Der Veken, Pieter; Martinet, Wim

    2017-08-15

    Autophagy is a cell survival mechanism hijacked by advanced tumors to endure a rough microenvironment. Late autophagy inhibitors such as (hydroxy)chloroquine have been used clinically to halt tumor progression with modest success. However, given the toxic nature of these compounds and their lack of specificity, novel targets should be considered. We recently identified a benzotropolone derivative that significantly inhibited the essential autophagy protein ATG4B. Therefore, we synthesized and tested additional benzotropolone compounds to identify a promising ATG4B inhibitor that impairs autophagy both in vitro and in vivo. A compound library containing 27 molecules with a benzotropolone backbone was synthesized and screened for inhibition of recombinant ATG4B. Depending on the benzotropolone compound, inhibition of recombinant ATG4B ranged from 3 to 82%. Active compounds were evaluated in cellular assays to confirm inhibition of ATG4B and suppression of autophagy. Seven compounds inhibited processing of the autophagy protein LC3 and autophagosome formation. Compound UAMC-2526 was selected for further in vivo use because of its fair plasma stability. This compound abolished autophagy both in nutrient-deprived GFP-LC3 mice and in CD1 -/- Foxn1nu mice bearing HT29 colorectal tumor xenografts. Moreover, addition of UAMC-2526 to the chemotherapy drug oxaliplatin significantly improved inhibition of tumor growth. Our data indicate that suppression of autophagy via ATG4B inhibition is a feasible strategy to augment existing chemotherapy efficacy and to halt tumor progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination.

    Science.gov (United States)

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J; Durrant, James R; McCulloch, Iain

    2018-05-25

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm -2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  14. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J.; Durrant, James R.; McCulloch, Iain

    2018-01-01

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  15. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya

    2018-05-21

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  16. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    Science.gov (United States)

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  17. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    Directory of Open Access Journals (Sweden)

    Yufeng Li

    2017-11-01

    Full Text Available Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  18. An efficient method for synthesis of succinate-based MMP inhibitors.

    Science.gov (United States)

    Sibi, Mukund P; Hasegawa, Hikaru

    2002-10-03

    A differentially protected fumarate undergoes radical addition followed by allylstannane trapping to provide disubstituted succinates in good yields and high anti diastereoselectivity. The conversion of the succinate to a known MMP inhibitor has been accomplished. [reaction: see text

  19. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Balas, Bogdan; Baig, Muhammad R; Watson, Catherine

    2007-01-01

    AIMS/HYPOTHESIS: Vildagliptin is a selective dipeptidyl peptidase IV inhibitor that augments meal-stimulated levels of biologically active glucagon-like peptide-1. Chronic vildagliptin treatment decreases postprandial glucose levels and reduces hemoglobin A1c in type 2 diabetic patients. However......, little is known about the mechanism(s) by which vildagliptin promotes reduction in plasma glucose concentration. METHODS: Sixteen patients with type 2 diabetes (age, 48+/-3 yr; body mass index, 34.4+/-1.7 kg/m2; hemoglobin A1c, 9.0+/-0.3%) participated in a randomized, double-blind, placebo......-controlled trial. On separate days patients received 100 mg vildagliptin or placebo at 1730 h followed 30 min later by a meal tolerance test (MTT) performed with double tracer technique (3-(3)H-glucose iv and 1-(14)C-glucose orally). RESULTS: After vildagliptin, suppression of endogenous glucose production (EGP...

  20. Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    International Nuclear Information System (INIS)

    Pappano, William N; Sheppard, George S; Donawho, Cherrie; Buchanan, Fritz G; Davidsen, Steven K; Bell, Randy L; Wang, Jieyi; Jung, Paul M; Meulbroek, Jonathan A; Wang, Yi-Chun; Hubbard, Robert D; Zhang, Qian; Grudzien, Meagan M; Soni, Niru B; Johnson, Eric F

    2009-01-01

    The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation

  1. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing Th17-cell differentiation and regulating cytokine production.

    Science.gov (United States)

    Liu, Haijie; Wan, Chunxiao; Ding, Yanan; Han, Ranran; He, Yating; Xiao, Jinting; Hao, Junwei

    2017-04-01

    Experimental autoimmune neuritis (EAN) is a CD4 + T-cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system. It has been replicated in an animal model of human inflammatory demyelinating polyradiculoneuropathy, Guillain-Barré syndrome. In this study, we evaluated the therapeutic efficacy of a selective inhibitor of the immunoproteasome subunit, low-MW polypeptide 7 (PR-957) in rats with EAN. Our results showed that PR-957 significantly delayed onset day, reduced severity and shortened duration of EAN, and alleviated demyelination and inflammatory infiltration in sciatic nerves. In addition to significantly regulating expression of the cytokine profile, PR-957 treatment down-regulated the proportion of proinflammatory T-helper (T h )17 cells in sciatic nerves and spleens of rats with EAN. Data presented show the role of PR-957 in the signal transducer and activator of transcription 3 (STAT3) pathway. PR-957 not only decreased expression of IL-6 and IL-23 but also led to down-regulation of STAT3 phosphorylation in CD4 + T cells. Regulation of the STAT3 pathway led to a reduction in retinoid-related orphan nuclear receptor γ t and IL-17 production. Furthermore, reduction of STAT3 phosphorylation may have directly suppressed T h 17-cell differentiation. Therefore, our study demonstrates that PR-957 could potently alleviate inflammation in rats with EAN and that it may be a likely candidate for treating Guillain-Barré syndrome.-Liu, H., Wan, C., Ding, Y., Han, R., He, Y., Xiao, J., Hao, J. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing T h 17-cell differentiation and regulating cytokine production. © FASEB.

  2. Anti-apoptotic effect of caspase inhibitors on H₂O₂-treated HeLa cells through early suppression of its oxidative stress.

    Science.gov (United States)

    Park, Woo Hyun

    2014-05-01

    Oxidative stress-induced cytotoxicity in cervical cancer cells may be of toxicological interest. In the present study, the effects of exogenous H2O2 on cell growth and death in HeLa cervical cancer cells were investigated, and the anti-apoptotic effects of various caspase (pan-caspase, caspase-3, -8 or -9) inhibitors on H2O2-treated HeLa cells were also evaluated with regard to reactive oxygen species (ROS) and glutathione (GSH) levels. Based on MTT assays, H2O2 inhibited the growth of HeLa cells with an IC50 value of ~75 µM at 24 h. H2O2 increased the number of dead cells and Annexin V-FITC-positive cells in the HeLa cells, which was accompanied by the activation of caspase-3 and the loss of mitochondrial membrane potential (MMP; ΔΨm). However, relatively higher doses of H2O2 induced necrosis in HeLa cells. Caspase inhibitors significantly prevented H2O2-induced HeLa cell death. H2O2 increased ROS including O2•- at 24 h and increased the activity of catalase in HeLa cells. H2O2 also increased the ROS level at 1 h, and several caspase inhibitors attenuated the increased level at 1 h but not at 6, 12 and 24 h. H2O2 decreased the GSH level in HeLa cells at 1 h, and several caspase inhibitors attenuated the decreased level of GSH at this time. H2O2 induced GSH depletion at 24 h. In conclusion, H2O2 inhibited the growth of HeLa cells via apoptosis and/or necrosis, which was accompanied by intracellular increases in ROS levels and GSH depletion. Caspase inhibitors are suggested to suppress H2O2-induced oxidative stress to rescue HeLa cells at the early time point of 1 h.

  3. Design of group IIA secreted/synovial phospholipase A(2 inhibitors: an oxadiazolone derivative suppresses chondrocyte prostaglandin E(2 secretion.

    Directory of Open Access Journals (Sweden)

    Jean-Edouard Ombetta

    Full Text Available Group IIA secreted/synovial phospholipase A(2 (GIIAPLA(2 is an enzyme involved in the synthesis of eicosanoids such as prostaglandin E(2 (PGE(2, the main eicosanoid contributing to pain and inflammation in rheumatic diseases. We designed, by molecular modeling, 7 novel analogs of 3-{4-[5(indol-1-ylpentoxy]benzyl}-4H-1,2,4-oxadiazol-5-one, denoted C1, an inhibitor of the GIIAPLA(2 enzyme. We report the results of molecular dynamics studies of the complexes between these derivatives and GIIAPLA(2, along with their chemical synthesis and results from PLA(2 inhibition tests. Modeling predicted some derivatives to display greater GIIAPLA(2 affinities than did C1, and such predictions were confirmed by in vitro PLA(2 enzymatic tests. Compound C8, endowed with the most favorable energy balance, was shown experimentally to be the strongest GIIAPLA(2 inhibitor. Moreover, it displayed an anti-inflammatory activity on rabbit articular chondrocytes, as shown by its capacity to inhibit IL-1beta-stimulated PGE(2 secretion in these cells. Interestingly, it did not modify the COX-1 to COX-2 ratio. C8 is therefore a potential candidate for anti-inflammatory therapy in joints.

  4. Transforming growth factor β-activated kinase 1 inhibitor suppresses the proliferation in triple-negative breast cancer through TGF-β/TGFR pathway.

    Science.gov (United States)

    Zhang, Liangyu; Fu, Zelong; Li, Xia; Tang, Haitao; Luo, Jiesi; Zhang, Dehui; Zhuang, Yongzhi; Han, Zhiyang; Yin, Mingzhu

    2017-09-01

    Breast cancer is one of the most invasive cancer types in female population. The functional activity of Transforming growth factor β-activated kinase 1 (TAK1) in breast cancer progression increasingly attracts attention as it provides a potential target for antibreast cancer drug development. However, the fundamental role of TAK1 for triple-negative breast cancer (TNBC) progression and the effect of potential anti-TAK1 drug candidate needs to be further evaluated. Herein, we focused on the role of TAK1 in human breast cancer cells, and we hypothesized that the inhibition of TAK1 activation can repress the growth of human TNBC cells. We found that the TAK1 is robustly activated within cancer cell population of clinic-derived TNBC samples and the human breast cancer cell lines in culture. Furthermore, we determined the effect of 5Z-7-oxozeaenol (5Z-O), a TAK1-specific small molecule inhibitor, on proliferation of human TNBC cell line. 5Z-O treatment significantly suppressed the proliferation of human TNBC cells. Collectively, these demonstrate the role of TAK1 in human breast cancer and the antiproliferate effect of TAK1 inhibitor. Our study sets the stage for further research on TAK1 as a promising target for development of anti-TNBC drugs and therapeutic strategies. © 2017 John Wiley & Sons A/S.

  5. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  6. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa.

    Science.gov (United States)

    Boor, Patrick P C; de Ruiter, Petra E; Asmawidjaja, Patrick S; Lubberts, Erik; van der Laan, Luc J W; Kwekkeboom, Jaap

    2017-10-01

    Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Bromodomain and Extra Terminal (BET Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation.

    Directory of Open Access Journals (Sweden)

    Thi Hiep Nguyen

    Full Text Available Exacerbations of asthma are linked to significant decline in lung function and are often poorly controlled by corticosteroid treatment. Clinical investigations indicate that viral and bacterial infections play crucial roles in the onset of steroid-resistant inflammation and airways hyperresponsiveness (AHR that are hallmark features of exacerbations. We have previously shown that interferon γ (IFNγ and lipopolysaccharide (LPS cooperatively activate pulmonary macrophages and induce steroid-resistant airway inflammation and AHR in mouse models. Furthermore, we have established a mouse model of respiratory syncytial virus (RSV-induced exacerbation of asthma, which exhibits macrophage-dependent, steroid-resistant lung disease. Emerging evidence has demonstrated a key role for bromo- and extra-terminal (BET proteins in the regulation of inflammatory gene expression in macrophages. We hypothesised that BET proteins may be involved in the regulation of AHR and airway inflammation in our steroid-resistant exacerbation models.We investigated the effects of a BET inhibitor (I-BET-762 on the development of steroid-resistant AHR and airway inflammation in two mouse models. I-BET-762 administration decreased macrophage and neutrophil infiltration into the airways, and suppressed key inflammatory cytokines in both models. I-BET treatment also suppressed key inflammatory cytokines linked to the development of steroid-resistant inflammation such as monocyte chemoattractant protein 1 (MCP-1, keratinocyte-derived protein chemokine (KC, IFNγ, and interleukin 27 (IL-27. Attenuation of inflammation was associated with suppression of AHR.Our results suggest that BET proteins play an important role in the regulation of steroid-resistant exacerbations of airway inflammation and AHR. BET proteins may be potential targets for the development of future therapies to treat steroid-resistant inflammatory components of asthma.

  8. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors

    Science.gov (United States)

    Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra

    2018-01-01

    In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.

  9. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  10. Recombinant VP1, an Akt inhibitor, suppresses progression of hepatocellular carcinoma by inducing apoptosis and modulation of CCL2 production.

    Directory of Open Access Journals (Sweden)

    Tai-An Chen

    Full Text Available BACKGROUND: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1 of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC, one of the most common human cancers worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC₅₀ values in the range of 0.1-0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. CONCLUSIONS/SIGNIFICANCE: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.

  11. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  12. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    Science.gov (United States)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  13. Next-generation proteasome inhibitor oprozomib synergizes with modulators of the unfolded protein response to suppress hepatocellular carcinoma.

    Science.gov (United States)

    Vandewynckel, Yves-Paul; Coucke, Céline; Laukens, Debby; Devisscher, Lindsey; Paridaens, Annelies; Bogaerts, Eliene; Vandierendonck, Astrid; Raevens, Sarah; Verhelst, Xavier; Van Steenkiste, Christophe; Libbrecht, Louis; Geerts, Anja; Van Vlierberghe, Hans

    2016-06-07

    Hepatocellular carcinoma (HCC) responds poorly to conventional systemic therapies. The first-in-class proteasome inhibitor bortezomib has been approved in clinical use for hematologic malignancies and has shown modest activity in solid tumors, including HCC. However, a considerable proportion of patients fail to respond and experience important adverse events. Recently, the next-generation orally bioavailable irreversible proteasome inhibitor oprozomib was developed. Here, we assessed the efficacy of oprozomib and its effects on the unfolded protein response (UPR), a signaling cascade activated through the ATF6, PERK and IRE1 pathways by accumulation of unfolded proteins in the endoplasmic reticulum, in HCC. The effects of oprozomib and the role of the UPR were evaluated in HCC cell lines and in diethylnitrosamine-induced and xenograft mouse models for HCC. Oprozomib dose-dependently reduced the viability and proliferation of human HCC cells. Unexpectedly, oprozomib-treated cells displayed diminished cytoprotective ATF6-mediated signal transduction as well as unaltered PERK and IRE1 signaling. However, oprozomib increased pro-apoptotic UPR-mediated protein levels by prolonging their half-life, implying that the proteasome acts as a negative UPR regulator. Supplementary boosting of UPR activity synergistically improved the sensitivity to oprozomib via the PERK pathway. Oral oprozomib displayed significant antitumor effects in the orthotopic and xenograft models for HCC, and importantly, combining oprozomib with different UPR activators enhanced the antitumor efficacy by stimulating UPR-induced apoptosis without cumulative toxicity. In conclusion, next-generation proteasome inhibition by oprozomib results in dysregulated UPR activation in HCC. This finding can be exploited to enhance the antitumor efficacy by combining oprozomib with clinically applicable UPR activators.

  14. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    International Nuclear Information System (INIS)

    Klenke, Frank Michael; Gebhard, Martha-Maria; Ewerbeck, Volker; Abdollahi, Amir; Huber, Peter E; Sckell, Axel

    2006-01-01

    The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

  15. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zadorsky, S P; Sopova, Y V; Andreichuk, D Y; Startsev, V A; Medvedeva, V P; Inge-Vechtomov, S G

    2015-06-01

    The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Wortmannin efficiently suppresses the recovery from radiation-induced damage in pimonidazole-unlabeled quiescent tumor cell population

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Ono, Koji; Sakurai, Yoshinori; Tanaka, Hiroki; Maruhashi, Akira

    2013-01-01

    Labeling of proliferating (P) cells in mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2'-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after pimonidazole administration followed by caffeine or wortmannin treatment. Twenty-four hours later, assessment of the responses of quiescent (Q) and total (=P+Q) cell populations were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. The pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using an assay performed 24 hours after irradiation, was more clearly observed in Q cells than total cells. In both the pimonidazole-unlabeled and the whole cell fractions, wortmannin efficiently suppressed the reduction in sensitivity due to delayed assay. Wortmannin combined with γ-ray irradiation is useful for suppressing the recovery from radiation-induced damage especially in the pimonidazole-unlabeled cell fraction within the total and Q tumor cell populations. (author)

  17. An Improved Mouse Model of Atopic Dermatitis and Suppression of Skin Lesions by an Inhibitor of Tec Family Kinases

    Directory of Open Access Journals (Sweden)

    Yuko Kawakami

    2007-01-01

    Conclusions: We established a highly efficient, highly reproducible protocol to induce skin lesions in NC/Nga mice and successfully applied it to show the efficacy of terreic acid in treating skin lesions. This mouse model of atopic dermatitis will be useful to study the pathogenetic processes of atopic dermatitis and to evaluate the efficacy of drug candidates.

  18. AV-65, a novel Wnt/β-catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model

    International Nuclear Information System (INIS)

    Yao, H; Ashihara, E; Strovel, J W; Nakagawa, Y; Kuroda, J; Nagao, R; Tanaka, R; Yokota, A; Takeuchi, M; Hayashi, Y; Shimazaki, C; Taniwaki, M; Strand, K; Padia, J; Hirai, H; Kimura, S; Maekawa, T

    2011-01-01

    Multiple myeloma (MM) is a malignant neoplasm of plasma cells. Although new molecular targeting agents against MM have been developed based on the better understanding of the underlying pathogenesis, MM still remains an incurable disease. We previously demonstrated that β-catenin, a downstream effector in the Wnt pathway, is a potential target in MM using RNA interference in an in vivo experimental mouse model. In this study, we have screened a library of more than 100 000 small-molecule chemical compounds for novel Wnt/β-catenin signaling inhibitors using a high-throughput transcriptional screening technology. We identified AV-65, which diminished β-catenin protein levels and T-cell factor transcriptional activity. AV-65 then decreased c-myc, cyclin D1 and survivin expression, resulting in the inhibition of MM cell proliferation through the apoptotic pathway. AV-65 treatment prolonged the survival of MM-bearing mice. These findings indicate that this compound represents a novel and attractive therapeutic agent against MM. This study also illustrates the potential of high-throughput transcriptional screening to identify candidates for anticancer drug discovery

  19. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells.

    Science.gov (United States)

    Zhang, Jianjun; Zheng, Zhichao; Zhao, Yan; Zhang, Tao; Gu, Xiaohu; Yang, Wei

    2013-11-01

    The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.

  20. Enhancement of the Inhibitor Efficiency of Atropine Methochloride in Corrosion Control of Mild Steel in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2008-01-01

    Full Text Available The inhibition efficiency and synergistic behaviour of 10-4 M Atropine methochloride was carried out using mass loss and polarisation methods in the presence of (i metal ions, Ni2+ and Cu2+ between 10-2 M to 10-6 M concentrations, (ii different concentrations of metal ions and 10-3 M I-, 10-3 M Cl- and 10-3 M Br- solutions and (iii different metal ions, 10-3M I- and at three different temperatures. The analysis reveals that the inhibition efficiency of Atropine methochloride was maximum at 10-2 M in 5 hours of immersion period. Halides decreased the corrosion rate of mild steel in Sulphuric acid. The decrease is maximum with 10-3 M I-. As the temperature increased from 298K to 308K, the inhibition efficiency gradually decreased. The inhibitor was found to be effective up to 303K

  1. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes

    Science.gov (United States)

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T.H.; Hsiao, Michael

    2016-01-01

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM. PMID:27564106

  2. Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor

    International Nuclear Information System (INIS)

    Yeh, Bi-Wen; Li, Wei-Ming; Li, Ching-Chia; Kang, Wan-Yi; Huang, Chun-Nung; Hour, Tzyh-Chyuan; Liu, Zi-Miao

    2016-01-01

    Gemcitabine and cisplatin (GC) has been widely used for advanced and metastatic urothelial carcinoma (UC). However, resistance to this remedy has been noticed. We have demonstrated that increase of TG-interacting factor (TGIF) in specimens is associated with worse prognosis of upper tract UC (UTUC) patients. The roles of TGIF in the gemcitabine resistance of UC were explored. Specimens of 23 locally advanced/advanced stage UTUC patients who received GC systemic chemotherapy after radical nephroureterectomy were collected to evaluate the alterations of TGIF in the resistance to the remedy by using immunohistochemistry. In vitro characterizations of mechanisms mediating TGIF in gemcitabine resistance were conducted by analyzing NTUB1 cells and their gemcitabine-resistant subline, NGR cells. Our results show that increased TGIF is significantly associated with chemo-resistance, poor progression-free survival, and higher cancer-related deaths of UTUC patients. Higher increases of TGIF, p-AKT Ser473 and invasive ability were demonstrated in NGR cells. Overexpression of TGIF in NTUB1 cells upregulated p-AKT Ser473 activation, enhanced migration ability, and attenuated cellular sensitivity to gemcitabine. Knockdown of TGIF in NGR cells downregulated p-AKT Ser473 activation, declined migration ability, and enhanced cellular sensitivity to gemcitabine. In addition, histone deacetylases inhibitor trichostatin A (TSA) inhibited TGIF, p-AKT Ser473 expression and migration ability. Synergistic effects of gemcitabine and TSA on NGR cells were also demonstrated. Collectively, TGIF contributes to the gemcitabine resistance of UC via AKT activation. Combined treatment with gemcitabine and TSA might be a promising therapeutic remedy to improve the gemcitabine resistance of UC. - Highlights: • TGIF expression in UC cells is associated with chemoresistance to gemcitabine. • TGIF-regulated AKT activation contributes to the gemcitabine resistance. • Increased TGIF is significantly

  3. Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Li, Wei-Ming [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Li, Ching-Chia [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Kang, Wan-Yi [Department of Pathology, Kuo General Hospital, Tainan 701, Taiwan (China); Huang, Chun-Nung [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Hour, Tzyh-Chyuan [Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liu, Zi-Miao [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); and others

    2016-01-01

    Gemcitabine and cisplatin (GC) has been widely used for advanced and metastatic urothelial carcinoma (UC). However, resistance to this remedy has been noticed. We have demonstrated that increase of TG-interacting factor (TGIF) in specimens is associated with worse prognosis of upper tract UC (UTUC) patients. The roles of TGIF in the gemcitabine resistance of UC were explored. Specimens of 23 locally advanced/advanced stage UTUC patients who received GC systemic chemotherapy after radical nephroureterectomy were collected to evaluate the alterations of TGIF in the resistance to the remedy by using immunohistochemistry. In vitro characterizations of mechanisms mediating TGIF in gemcitabine resistance were conducted by analyzing NTUB1 cells and their gemcitabine-resistant subline, NGR cells. Our results show that increased TGIF is significantly associated with chemo-resistance, poor progression-free survival, and higher cancer-related deaths of UTUC patients. Higher increases of TGIF, p-AKT{sup Ser473} and invasive ability were demonstrated in NGR cells. Overexpression of TGIF in NTUB1 cells upregulated p-AKT{sup Ser473} activation, enhanced migration ability, and attenuated cellular sensitivity to gemcitabine. Knockdown of TGIF in NGR cells downregulated p-AKT{sup Ser473} activation, declined migration ability, and enhanced cellular sensitivity to gemcitabine. In addition, histone deacetylases inhibitor trichostatin A (TSA) inhibited TGIF, p-AKT{sup Ser473} expression and migration ability. Synergistic effects of gemcitabine and TSA on NGR cells were also demonstrated. Collectively, TGIF contributes to the gemcitabine resistance of UC via AKT activation. Combined treatment with gemcitabine and TSA might be a promising therapeutic remedy to improve the gemcitabine resistance of UC. - Highlights: • TGIF expression in UC cells is associated with chemoresistance to gemcitabine. • TGIF-regulated AKT activation contributes to the gemcitabine resistance. • Increased

  4. Computer aided drug discovery of highly ligand efficient, low molecular weight imidazopyridine analogs as FLT3 inhibitors.

    Science.gov (United States)

    Frett, Brendan; McConnell, Nick; Smith, Catherine C; Wang, Yuanxiang; Shah, Neil P; Li, Hong-yu

    2015-04-13

    The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing.

    Directory of Open Access Journals (Sweden)

    Datsen George Wei

    2014-04-01

    Full Text Available Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD, a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM compared with vorinostat (VOR; EC50 = 3,950 nM and other histone deacetylase (HDAC inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM. The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART, a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.

  6. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation.

    Science.gov (United States)

    Alkan, Gözde; Yagmurlu, Bengi; Cakmakoglu, Seckin; Hertel, Tobias; Kaya, Şerif; Gronen, Lars; Stopic, Srecko; Friedrich, Bernd

    2018-04-04

    The need of light weight alloys for future transportation industry puts Sc and Ti under a sudden demand. While these metals can bring unique and desired properties to alloys, lack of reliable sources brought forth a supply problem which can be solved by valorization of the secondary resources. Bauxite residue (red mud), with considerable Ti and Sc content, is a promising resource for secure supply of these metals. Due to drawbacks of the direct leaching route from bauxite residue, such as silica gel formation and low selectivity towards these valuable metals, a novel leaching process based on oxidative leaching conditions, aiming more efficient and selective leaching but also considering environmental aspects via lower acid consumption, was investigated in this study. Combination of hydrogen peroxide (H 2 O 2 ) and sulfuric acid (H 2 SO 4 ) was utilized as the leaching solution, where various acid concentrations, solid-to-liquid ratios, leaching temperatures and times were examined in a comparative manner. Leaching with 2.5 M H 2 O 2 : 2.5 M H 2 SO 4 mixture at 90 °C for 30 min was observed to be the best leaching conditions with suppressed silica gel formation and the highest reported leaching efficiency with high S/L ratio for Sc and Ti; 68% and 91%; respectively.

  7. Suppression of external quantum efficiency roll-off of nanopatterned organic-light emitting diodes at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Kuwae, Hiroyuki; Kasahara, Takashi [Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Nitta, Atsushi; Yoshida, Kou; Inoue, Munetomo [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Matsushima, Toshinori; Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Shoji, Shuichi [Nano-Science and Nano-Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Mizuno, Jun [JST, ERATO, Adachi Molecular Exciton Engineering Project, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku, Tokyo 162-0041 (Japan)

    2015-10-21

    We developed organic light-emitting diodes (OLEDs) with nanopatterned current flow regions using electron-beam lithography with the aim of suppressing singlet–polaron annihilation (SPA). Nanopatterns composed of lines and circles were used in the current flow regions of nano-line and nano-dot OLEDs, respectively. Excitons partially escape from the current flow regions where SPA takes place. As such, current densities where external quantum efficiencies were half of their initial values (J{sub 0}) increased as line width and circle diameter were decreased to close to the exciton diffusion length. Circles were more efficient at enhancing exciton escape and increasing J{sub 0} than lines. The J{sub 0} increase in the nano-dot OLEDs containing nanopatterned circles with a diameter of 50 nm was approximately 41-fold that of a conventional OLED with a current flow region of 4 mm{sup 2}. The dependence of J{sub 0} on the size and shape of the nanopatterns was well explained by an SPA model that considered exciton diffusion. Nanopatterning of OLEDs is a feasible method of obtaining large J{sub 0}.

  8. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12.

    Science.gov (United States)

    Akcora, Büsra Öztürk; Storm, Gert; Bansal, Ruchi

    2018-03-01

    Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using β-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFβ-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl 4 -induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  10. Corrosion of steels in saline mediums with CO2, efficiency of inhibitors as a function of the degree of pre-corrosion and microstructure

    International Nuclear Information System (INIS)

    Paolinelli, LD; Perez, T; Simison, S.N

    2004-01-01

    Despite the big influence of the microstructure and chemical composition of plain carbon steels and low alloy steels on corrosion in saline mediums with CO 2 , the results found in the literature are contradictory. An aspect that is less studied is the effect of these variables on the formation and characteristics of the films as products of corrosion and on the efficiency of the inhibitors used in oil production. Previous works have shown that the efficiency of the inhibitors is affected by the microstructure and that this effect depends on the inhibitor's molecular structure. This work aims to further define the relationship between the films of corrosion products, the steel microstructure and the efficiency of the inhibitors. A plain carbon steel was studied with two different microstructures in a 5% NaCl deoxygenated solution at 40 o C, pH 6, saturated with CO 2 under laminar flow conditions. The efficiency of an imidazoline-based commercial inhibitor commonly used in oil production was characterized. The inhibitor was added after different periods of pre-corrosion: 24, 48 and 72 hours. The characteristics of the surface films were analyzed by SEM. Electrochemical tests were carried out (electrochemical impedance, resistance to lineal polarization every 24 h.) and the corrosion potentials were also recorded. The results show that the properties of the surface films and the inhibitor's efficiency depend on the microstructure with higher values for the quenched and tempered samples than for the annealed samples. While the inhibitor's efficiency diminishes in all cases along with the degree of pre-corrosion, the amount of this decrease is different for each microstructural condition (CW)

  11. Urease inhibitor (NBPT and efficiency of single or split application of urea in wheat crop

    Directory of Open Access Journals (Sweden)

    Marcelo Curitiba Espindula

    2014-04-01

    Full Text Available NBPT (N-(n-butyl thiophosphoric triamide, a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1 or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering, in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.

  12. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-05-01

    Full Text Available Abstract Background The eukaryotic RNase ribonuclease/angiogenin inhibitors (RI are a protein group distinguished by a unique structure - they are composed of hydrophobic leucine-rich repeat motifs (LRR and contain a high amount of reduced cysteine residues. The members of this group are difficult to produce in E. coli and other recombinant hosts due to their high aggregation tendency. Results In this work dithiothreitol (DTT was successfully applied for improving the yield of correctly folded ribonuclease/angiogenin inhibitor in E. coli K12 periplasmic and cytoplasmic compartments. The feasibility of the in vivo folding concepts for cytoplasmic and periplasmic production were demonstrated at batch and fed-batch cultivation modes in shake flasks and at the bioreactor scale. Firstly, the best secretion conditions of RI in the periplasmic space were evaluated by using a high throughput multifactorial screening approach of a vector library, directly with the Enbase fed-batch production mode in 96-well plates. Secondly, the effect of the redox environment was evaluated in isogenic dsbA+ and dsbA- strains at the various cultivation conditions with reducing agents in the cultivation medium. Despite the fusion to the signal peptide, highest activities were found in the cytoplasmic fraction. Thus by removing the signal peptide the positive effect of the reducing agent DTT was clearly proven also for the cytoplasmic compartment. Finally, optimal periplasmic and cytoplasmic RI fed-batch production processes involving externally added DTT were developed in shake flasks and scaled up to the bioreactor scale. Conclusions DTT highly improved both, periplasmic and cytoplasmic accumulation and activity of RI at low synthesis rate, i.e. in constructs harbouring weak recombinant synthesis rate stipulating genetic elements together with cultivation at low temperature. In a stirred bioreactor environment RI folding was strongly improved by repeated pulse addition

  13. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mahat, Nur Akma; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sahrani, Fathul Karim [School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  14. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    International Nuclear Information System (INIS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-01-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces

  15. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Science.gov (United States)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  16. Evaluation of the efficiency of silicone polyether additives as foam inhibitor in crude oil

    International Nuclear Information System (INIS)

    Fraga, Assis K.; Santos, Raquel F.; Mansur, Claudia R.E.

    2011-01-01

    This work evaluates the chemical and physico-chemical properties of commercial anti-foam products based on silicone polyethers along with their efficiency in inhibiting foaming. The commercial surfactants were characterized by nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), determination of solubility in different solvents and measurement of the surface and interfacial tensions. A method to test the formation of foam in oil was used to mimic the operating conditions in gas-oil separators. The results show that the most polar additive was the most efficient in breaking up the foam. (author)

  17. [X-linked inhibitor of apoptosis protein (XIAP) and Survivin suppression on human pancreatic cancer cells Panc-1 proliferation and chemosensitivety].

    Science.gov (United States)

    Zai, Hong-yan; Yi, Xiao-ping; Li, Yi-xiong; You, Xue-ying; Cao, Li-ping; Liu, Hui

    2013-04-18

    To investigate the effect on cell proliferation and chemosensitivity of human pancreatic cancer cells Panc-1 after X-linked inhibitor of apoptosis protein (XIAP) and Survivin are inhibited simultaneously, and to compare it with the separate gene suppression strategy by which expression of XIAP or Survivin is inhibited respectively. Panc-1 (Panc-1-X, Panc-1-S and Panc-1-XS) in which expression of XIAP and/or Survivin was inhibited, was established by using XIAP-shRNA lentiviral and Survivin-shRNA lentiviral we had built. The expressions of XIAP and Survivin mRNA and protein were evaluated by Real-time PCR and Semi-quantitatively Western blot analysis; cell proliferation was investigated by cell counting and colony formation assay; cell apoptosis was investigated by Caspase-3/7 activity assay kit and flow cytometry; gemcitabine (Gem) chemosensitivity was investigated by MTT assay. The pancreatic cell line Panc-1 in which the expression of XIAP and/or Survivin was stablely inhibited was successfully established. The cell proliferation of Panc-1-XS cells decreased significantly. The colony formation rate of Panc-1-XS cells (10.12%± 1.33%), was significantly lower than that of Panc-1-XncSnc cells (96.61% ± 7.89%) and Panc-1 cells (100.28% ± 8.97%) respectively (PPanc-1-XS cells (15.02 ± 0.57) was significantly higher than that of Panc-1 cells and Panc-1-XncSnc cells (8.87 ± 0.19 and 9.05 ± 0.23, respectively; PPanc-1-XS cells (24.09% ± 2.75%) was significantly higher than that of Panc-1-XncSnc cells and Panc-1 cells (12.09% ± 1.97% and 12.06% ± 1.22%, respectively; PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-XncSnc cells [(2.18 ± 0.13) mg/L] and Panc-1 cells [(2.13 ± 0.18) mg/L, PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-X cells [(0.76 ± 0.07) mg/L] and Panc-1-S cells [(0.87 ± 0.09) mg/L, PPanc-1 cells was significantly suppressed and the Gem chemosensitivity was significantly

  18. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    National Research Council Canada - National Science Library

    Liu, Yiliang

    2001-01-01

    We have previously identified and characterized a novel tumor growth inhibitor and a fatty acid binding protein in human mammary gland and named it as Mammary derived growth inhibitor Related Gene MRG...

  19. Enhancement of the efficiency of photodynamic therapy by combination with the microtubule inhibitor vincristine

    Science.gov (United States)

    Ma, Li Wei; Berg, Kristian; Danielsen, Havard E.; Iani, Vladimir; Moan, Johan

    1996-01-01

    Combination effects of photodynamic therapy (PDT) with meso-tetra (di-adjacent- sulfonatophenyl) porphine (TPPS2a) and the microtubule (MT) inhibitor, vincristine (VCR), were studied in the CaD2 mouse tumor model in mice. A synergistic effect was found when VCR, at an almost nontoxic dose (1 mg/kg), was injected i.p. into the mice 6 hr before PDT. The data on mitotic index show a 4 - 5 fold accumulation of the cells in mitosis 6 hr after injection of VCR into the mice. Cell cycle and ploidy distributions in tumor tissues were determined by means of image analysis with measurement of integrated optical density after Feulgen reaction on monolayers. Ploidy distribution of the tumors was not significantly changed 6 and 12 hr after administration of VCR only, while an increasing aneuploidy was observed 24 and 48 hr after VCR treatment. No prominent changes of the cell cycle and ploidy distributions were found in the tumor tissues after PDT or PDT combined with VCR.

  20. Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities

    International Nuclear Information System (INIS)

    Zhao, Yukun; Yun, Feng; Li, Yufeng; Feng, Lungang; Ding, Wen; Huang, Yi; Wu, Zhaoxin; Jiao, Bo; Li, Sanfeng; Zhang, Ye

    2016-01-01

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm"2, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio is suppressed from 43.6% to 25.9% at 250 mA/cm"2, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.

  1. Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yukun [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn; Li, Yufeng; Feng, Lungang; Ding, Wen [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Huang, Yi [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Wu, Zhaoxin; Jiao, Bo; Li, Sanfeng [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Ye [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-07-04

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio is suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.

  2. Efficient secretory expression of functional barley limit dextrinase inhibitor by high cell-density fermentation of Pichia pastoris

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Vester-Christensen, Malene Bech; Møller, Marie Sofie

    2011-01-01

    The limit dextrinase inhibitor (LDI) from barley seeds acts specifically on limit dextrinase (LD), an endogenous starch debranching enzyme. LDI is a 14kDa hydrophobic protein containing four disulfide bonds and one unpaired thiol group previously found to be either glutathionylated or cysteinylated...... the identity of the produced glutathionylated LDI-His6. At a 1:1M ratio the recombinant LDI completely inhibited hydrolysis of pullulan catalyzed by 5–10nM LD. LDI retained stability in the pH 2–12 range and at pH 6.5 displayed a half-life of 53 and 33min at 90 and 93°C, respectively. The efficient...

  3. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  4. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-02-01

    , but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl and B-cell lymphoma 2 (Bcl-2, but increased the expression of Bcl-2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK and extracellular signal-regulated kinases 1 and 2 (Erk1/2 and inhibited the activation of protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E

  5. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K

    2007-09-01

    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  6. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  7. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    Science.gov (United States)

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  8. The Histone Deacetylase Inhibitors MS-275 and SAHA Suppress the p38 Mitogen-Activated Protein Kinase Signaling Pathway and Chemotaxis in Rheumatoid Arthritic Synovial Fibroblastic E11 Cells

    Directory of Open Access Journals (Sweden)

    Hai-Shu Lin

    2013-11-01

    Full Text Available MS-275 (entinostat and SAHA (vorinostat, two histone deacetylase (HDAC inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA. To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α  MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1, an endogenous suppressor of p38α  in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation of p38α  was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2, monocyte chemotactic protein-2 (MCP-2 and macrophage migration inhibitory factor (MIF in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.

  9. Enhanced life time and suppressed efficiency roll-off in phosphorescent organic light-emitting diodes with multiple quantum well structures

    Directory of Open Access Journals (Sweden)

    Ja-Ryong Koo

    2012-03-01

    Full Text Available We demonstrate red phosphorescent organic light-emitting diodes (OLEDs with multiple quantum well structures which confine triplet exciton inside an emitting layer (EML region. Five types of OLEDs, from a single to five quantum wells, are fabricated with charge control layers to produce high efficiencies, and the performance of the devices is investigated. The improved quantum efficiency and lifetime of the OLED with four quantum wells, and its suppressed quantum efficiency roll-off of 17.6%, can be described by the increased electron–hole charge balance owing to the bipolar property as well as the efficient triplet exciton confinement within each EML, and by prevention of serious triplet–triplet and/or triplet–polaron annihilation as well as the Förster self-quenching due to charge control layers.

  10. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lou, Hai-zhou; Weng, Xiao-chuan; Pan, Hong-ming; Pan, Qin; Sun, Peng; Liu, Li-li; Chen, Bin

    2014-01-01

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment

  11. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  12. Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway

    Directory of Open Access Journals (Sweden)

    Kelley Todd W

    2009-11-01

    Full Text Available Abstract Background Regulatory T cells (Tregs can employ a cell contact- and granzyme B-dependent mechanism to mediate suppression of bystander T and B cells. Murine studies indicate that granzyme B is involved in the Treg-mediated suppression of anti-tumor immunity in the tumor microenvironment and in the Treg-mediated maintenance of allograft survival. In spite of its central importance, a detailed study of granzyme B expression patterns in human Tregs has not been performed. Results Our data demonstrated that natural Tregs freshly isolated from the peripheral blood of normal adults lacked granzyme B expression. Tregs subjected to prolonged TCR and CD28 triggering, in the presence of IL-2, expressed high levels of granzyme B but CD3 stimulation alone or IL-2 treatment alone failed to induce granzyme B. Treatment of Tregs with the mammalian target of rapamycin (mTOR inhibitor, rapamycin or the PI3 kinase (PI3K inhibitor LY294002 markedly suppressed granzyme B expression. However, neither rapamycin, as previously reported by others, nor LY294002 inhibited Treg proliferation or induced significant cell death in TCR/CD28/IL-2 stimulated cells. The proliferation rate of Tregs was markedly higher than that of CD4+ conventional T cells in the setting of rapamycin treatment. Tregs expanded by CD3/CD28/IL-2 stimulation without rapamycin demonstrated increased in vitro cytotoxic activity compared to Tregs expanded in the presence of rapamycin in both short term (6 hours and long term (48 hours cytotoxicity assays. Conclusion TCR/CD28 mediated activation of the PI3K-mTOR pathway is important for granyzme B expression but not proliferation in regulatory T cells. These findings may indicate that suppressive mechanisms other than granzyme B are utilized by rapamycin-expanded Tregs.

  13. Efficiency and corrosion rate analysis of organic inhibitor utilization from bawang dayak leaves (EleutherineamericanaMerr.) on API 5L steel

    Science.gov (United States)

    Sari, Shaimah Rinda; Sari, Eli Novita; Rizky, Yoel; Sulistijono, Triana, Yunita

    2018-05-01

    This research studied the inhibition of corrosion by bawang dayak leaves extract (EleutherineamericanaMerr.) on API 5L steel in brine water environment (3.5% NaCl). The inhibitor was extracted using maceration process from bawang dayak leaves that was cultivated in Paser District, East Kalimantan. The test of antioxidant activity showed that bawang dayak leaves extract is a very powerful antioxidant with IC50 value of 27.30204. The results from FTIR test show the presence of electronegative atoms and double bonds of the alkenes groups that provide the potential of the extract as a corrosion inhibitor. Efficiency of inhibition reached up to 93.158% for the addition of inhibitor with 300 ppm concentration and 20 days of immersion time. This inhibitory behavior is also supported by polarization measurements where the lowest corrosion rate of 0.00128 mm/year is obtained at the same concentration and immersion time.

  14. New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies

    International Nuclear Information System (INIS)

    Zarrouk, A.; Hammouti, B.; Lakhlifi, T.; Traisnel, M.; Vezin, H.; Bentiss, F.

    2015-01-01

    Highlights: • 1H-pyrrole derivatives act as good corrosion inhibitors for carbon steel in 1 M HCl. • Adsorption of the inhibitors on carbon steel surface obeys Langmuir’s isotherm. • XPS showed that the inhibitors are chemisorbed on the metal surface. • Quantum chemical parameters were correlated with experimental results. - Abstract: New 1H-pyrrole-2,5-dione derivatives, namely 1-phenyl-1H-pyrrole-2,5-dione (PPD) and 1-(4-methylphenyl)-1H-pyrrole-2,5-dione (MPPD) were synthesised and their inhibitive action against the corrosion of carbon steel in 1 M HCl solution were investigated at 308 K by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results showed that the investigated 1H-pyrrole-2,5-dione derivatives are good corrosion inhibitors for carbon steel in 1 M HCl medium, their inhibition efficiency increased with inhibitor concentration, and MPPD is slightly more effective than PPD. Potentiostatic polarization study showed that PPD and MPPD are mixed-type inhibitors in 1 M HCl. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. The results obtained from electrochemical and weight loss studies were in reasonable agreement. The adsorption of MPPD and PPD on steel surface obeyed Langmuir’s adsorption isotherm. Thermodynamic data and XPS analysis clearly indicated that the adsorption mechanism of 1H-pyrrole-2,5-dione derivatives on carbon steel surface in 1 M HCl solution is mainly controlled by a chemisorption process. Quantum chemical calculations using the Density Functional Theory (DFT) were performed on 1H-pyrrole-2,5-dione derivatives to determine the relationship between molecular structures and their inhibition efficiencies

  15. High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile

    Directory of Open Access Journals (Sweden)

    Mukthavaram R

    2013-10-01

    Full Text Available Rajesh Mukthavaram,1 Pengfei Jiang,1 Rohit Saklecha,1 Dmitri Simberg,3,4 Ila Sri Bharati,1 Natsuko Nomura,1 Ying Chao,1 Sandra Pastorino,1 Sandeep C Pingle,1 Valentina Fogal,1 Wolf Wrasidlo,1,2 Milan Makale,1,2 Santosh Kesari1,21Translational Neuro-Oncology Laboratories, 2Department of Neurosciences, 3Solid Tumor Therapeutics Program, Moores Cancer Center, UC San Diego, La Jolla, CA, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, CO, USAAbstract: Staurosporine (STS is a potent pan-kinase inhibitor with marked activity against several chemotherapy-resistant tumor types in vitro. The translational progress of this compound has been hindered by poor pharmacokinetics and toxicity. We sought to determine whether liposomal encapsulation of STS would enhance antitumor efficacy and reduce toxicity, thereby supporting the feasibility of further preclinical development. We developed a novel reverse pH gradient liposomal loading method for STS, with an optimal buffer type and drug-to-lipid ratio. Our approach produced 70% loading efficiency with good retention, and we provide, for the first time, an assessment of the in vivo antitumor activity of STS. A low intravenous dose (0.8 mg/kg inhibited U87 tumors in a murine flank model. Biodistribution showed preferential tumor accumulation, and body weight data, a sensitive index of STS toxicity, was unaffected by liposomal STS, but did decline with the free compound. In vitro experiments revealed that liposomal STS blocked Akt phosphorylation, induced poly(ADP-ribose polymerase cleavage, and produced cell death via apoptosis. This study provides a basis to explore further the feasibility of liposomally encapsulated STS, and potentially related compounds for the management of resistant solid tumors.Keywords: liposomes, staurosporine, glioblastoma, biodistribution, efficacy

  16. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field

    Science.gov (United States)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-10-01

    A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.

  17. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  18. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis.

    Science.gov (United States)

    Perimenis, Philippos; Galaris, Apostolos; Voulgari, Alexandra; Prassa, Margarita; Pintzas, Alexander

    2016-08-12

    High expression levels of Inhibitors of Apoptosis Proteins (IAPs) have been correlated with poor cancer prognosis and block the cell death pathway by interfering with caspase activation. SMAC-mimetics are small-molecule inhibitors of IAPs that mimic the endogenous SMAC and promote the induction of cell death by neutralizing IAPs. In this study, anti-tumour activity of new SMAC-mimetics Birinapant and AT-406 is evaluated against colorectal adenocarcinoma cells and IAP cross-talk with either oncogenic BRAF or BCL-2, or with the TRAIL are further exploited towards rational combined protocols. It is shown that pre-treatment of SMAC-mimetics followed by their combined treatment with BRAF inhibitors can decrease cell viability, migration and can very efficiently sensitize colorectal tumour cells to apoptosis. Moreover, co-treatment of TRAIL with SMAC-mimetics can efficiently sensitize resistant tumour cells to apoptosis synergistically, as shown by median effect analysis. Finally, Birinapant and AT-406 can synergise with BCL-2 inhibitor ABT-199 to reduce viability of adenocarcinoma cells with high BCL-2 expression. Proposed synergistic rational anticancer combined protocols of IAP antagonists Birinapant and AT-406 in 2D and 3D cultures can be later further exploited in vivo, from precision tumour biology to precision medical oncology.

  19. Suppression of External NADPH Dehydrogenase—NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism

    Science.gov (United States)

    Podgórska, Anna; Borysiuk, Klaudia; Tarnowska, Agata; Jakubiak, Monika; Burian, Maria; Rasmusson, Allan G.

    2018-01-01

    Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants. PMID:29747392

  20. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.P. [Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester LE1 9HN (United Kingdom); Chow, S.C., E-mail: chow.sek.chuen@monash.edu [School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan (Malaysia)

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  1. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    Science.gov (United States)

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  2. Emotion Regulation and Complex Brain Networks: Association Between Expressive Suppression and Efficiency in the Fronto-Parietal Network and Default-Mode Network

    Directory of Open Access Journals (Sweden)

    Junhao Pan

    2018-03-01

    Full Text Available Emotion regulation (ER refers to the “implementation of a conscious or non-conscious goal to start, stop or otherwise modulate the trajectory of an emotion” (Etkin et al., 2015. Whereas multiple brain areas have been found to be involved in ER, relatively little is known about whether and how ER is associated with the global functioning of brain networks. Recent advances in brain connectivity research using graph-theory based analysis have shown that the brain can be organized into complex networks composed of functionally or structurally connected brain areas. Global efficiency is one graphic metric indicating the efficiency of information exchange among brain areas and is utilized to measure global functioning of brain networks. The present study examined the relationship between trait measures of ER (expressive suppression (ES and cognitive reappraisal (CR and global efficiency in resting-state functional brain networks (the whole brain network and ten predefined networks using structural equation modeling (SEM. The results showed that ES was reliably associated with efficiency in the fronto-parietal network and default-mode network. The finding advances the understanding of neural substrates of ER, revealing the relationship between ES and efficient organization of brain networks.

  3. A novel fermentation strategy for removing the key inhibitor acetic acid and efficiently utilizing the mixed sugars from lignocellulosic hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Eiteman PHD; Elliot Altman Phd

    2009-02-11

    As part of preliminary research efforts, we have completed several experiments which demonstrate 'proof of concept.' These experiments addressed the following three questions: (1) Can a synthetic mixed sugar solution of glucose and xylose be efficiently consumed using the multi-organism approach? (2) Can this approach be used to accumulate a model product? (3) Can this approach be applied to the removal of an inhibitor, acetate, selectively from mixtures of xylose and glucose? To answer the question of whether this multi-organism approach can effectively consume synthetic mixed sugar solutions, we first tested substrate-selective uptake using two strains, one unable to consume glucose and one unable to consume xylose. The xylose-selective strain ALS998 has mutations in the three genes involved in glucose uptake, rendering it unable to consume glucose: ptsG codes for the Enzyme IICB{sup Glc} of the phosphotransferase system (PTS) for carbohydrate transport (Postma et al., 1993), manZ codes for the IID{sup Man} domain of the mannose PTS permease (Huber, 1996), glk codes for glucokinase (Curtis and Epstein 1975) We also constructed strain ALS1008 which has a knockout in the xylA gene encoding for xylose isomerase, rendering ALS1008 unable to consume xylose. Two batch experiments and one continuous bioprocess were completed. In the first experiment, each strain was grown separately in a defined medium of 8 g/L xylose and 15 g/L glucose which represented xylose and glucose concentrations that can be generated by actual biomass. In the second experiment, the two strains were grown together in batch in the same defined, mixed-sugar medium. In a third experiment, we grew the strains continuously in a 'chemostat', except that we shifted the concentrations of glucose and xylose periodically to observe how the system would respond. (For example, we shifted the glucose concentration suddenly from 15 g/L to 30 g/L in the feed).

  4. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events.

    Science.gov (United States)

    Lucera, Mark B; Tilton, Carisa A; Mao, Hongxia; Dobrowolski, Curtis; Tabler, Caroline O; Haqqani, Aiman A; Karn, Jonathan; Tilton, John C

    2014-09-01

    Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4(+) T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4(+) T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a "shock-and-kill" strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the

  5. The influence of Desulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbon steel in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, Carlos A. [Facultad de Quimica UNAM, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico)], E-mail: gorc74@yahoo.com; Rodriguez-Gomez, Francisco J.; Genesca-Llongueras, Joan [Facultad de Quimica UNAM, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico)

    2008-12-01

    The action of Desulfovibrio vulgaris (Dv) during a corrosion process has been reported in literature, but the influence of imidazoline in the formation of biofilms is not clear, as well as the effect of bacteria on the efficiency of the corrosion inhibitors. The aim of this work is to determine the behavior of bacteria in the presence of imidazoline. Therefore, the growth of Dv, isolated and characterized from a morphological point of view, was monitored during 21 days, during which synthetic seawater was used as the culture medium, according to the ASTM D665-98 standard. Electrochemical noise (EN) was employed to establish the corrosion type generated by the microorganism on an AISI 1018 steel cylinder. The attack was observed using scanning electron microscopy (SEM). In order to evaluate the efficiency of the corrosion inhibitor, Tafel extrapolation was used; the optimum concentration of the inhibitor was used in the presence of sulphate-reducing bacteria (SRB). In general, two forms of corrosion were observed: localized corrosion (in the LAG phase) and mixed corrosion (in the LOG phase)

  6. The influence of Desulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbon steel in seawater

    International Nuclear Information System (INIS)

    Gonzalez-Rodriguez, Carlos A.; Rodriguez-Gomez, Francisco J.; Genesca-Llongueras, Joan

    2008-01-01

    The action of Desulfovibrio vulgaris (Dv) during a corrosion process has been reported in literature, but the influence of imidazoline in the formation of biofilms is not clear, as well as the effect of bacteria on the efficiency of the corrosion inhibitors. The aim of this work is to determine the behavior of bacteria in the presence of imidazoline. Therefore, the growth of Dv, isolated and characterized from a morphological point of view, was monitored during 21 days, during which synthetic seawater was used as the culture medium, according to the ASTM D665-98 standard. Electrochemical noise (EN) was employed to establish the corrosion type generated by the microorganism on an AISI 1018 steel cylinder. The attack was observed using scanning electron microscopy (SEM). In order to evaluate the efficiency of the corrosion inhibitor, Tafel extrapolation was used; the optimum concentration of the inhibitor was used in the presence of sulphate-reducing bacteria (SRB). In general, two forms of corrosion were observed: localized corrosion (in the LAG phase) and mixed corrosion (in the LOG phase)

  7. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells

    Science.gov (United States)

    Li, Luyuan; Paz, Ana C.; Wilky, Breelyn A.; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C.

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas. PMID:26368816

  8. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Luyuan Li

    Full Text Available Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2 were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.

  9. Effect of gamma irradiation, evaporation retardants and transpiration suppressants on grain yield, nutrient uptake and moisture-use efficiency on bread wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Dash, D.K.; Sen, Avijit; Misra, N.M.

    1988-01-01

    A field trial was conducted on 'Malaviya 37' bread wheat (Triticum aestivum Linn. emend. Fiori and Paol.) in 1982-83 and 1983-84. It included 4 dos es of gamma irradiation of seeds (0, 2.5, 4.5 and 6.5 kR) and 5 treatments of evaporation retardants and transpiration suppressants, viz. control, rice (Oryza sativa Linn.) straw, wheat straw, rice straw + phenyl mercuric acetate (150 ppm) and wheat straw + kaolin (6 per cent). Seed irradiation with gamma-rays at 6.5 kR and wheat straw + kaolin gave 11.76 and 61.37 per cent higher yield than the control respectively. For moisture-use efficiency and NPK uptake these treatments also showed the same trend. (author). 12 refs

  10. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    Science.gov (United States)

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  11. Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells.

    Science.gov (United States)

    Fuse, Marisa A; Plati, Stephani Klingeman; Burns, Sarah S; Dinh, Christine T; Bracho, Olena; Yan, Denise; Mittal, Rahul; Shen, Rulong; Soulakova, Julia N; Copik, Alicja J; Liu, Xue Zhong; Telischi, Fred F; Chang, Long-Sheng; Franco, Maria Clara; Fernandez-Valle, Cristina

    2017-11-01

    Neurofibromatosis type 2 (NF2) is a nervous system tumor disorder caused by inactivation of the merlin tumor suppressor encoded by the NF2 gene. Bilateral vestibular schwannomas are a diagnostic hallmark of NF2. Mainstream treatment options for NF2-associated tumors have been limited to surgery and radiotherapy; however, off-label uses of targeted molecular therapies are becoming increasingly common. Here, we investigated drugs targeting two kinases activated in NF2-associated schwannomas, c-Met and Src. We demonstrated that merlin-deficient mouse Schwann cells (MD-MSC) treated with the c-Met inhibitor, cabozantinib, or the Src kinase inhibitors, dasatinib and saracatinib, underwent a G 1 cell-cycle arrest. However, when MD-MSCs were treated with a combination of cabozantinib and saracatinib, they exhibited caspase-dependent apoptosis. The combination therapy also significantly reduced growth of MD-MSCs in an orthotopic allograft mouse model by greater than 80% of vehicle. Moreover, human vestibular schwannoma cells with NF2 mutations had a 40% decrease in cell viability when treated with cabozantinib and saracatinib together compared with the vehicle control. This study demonstrates that simultaneous inhibition of c-Met and Src signaling in MD-MSCs triggers apoptosis and reveals vulnerable pathways that could be exploited to develop NF2 therapies. Mol Cancer Ther; 16(11); 2387-98. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    Science.gov (United States)

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  13. ITE, A Novel Endogenous Nontoxic Aryl Hydrocarbon Receptor Ligand, Efficiently Suppresses EAU and T-Cell–Mediated Immunity

    Science.gov (United States)

    Nugent, Lindsey F.; Shi, Guangpu; Vistica, Barbara P.; Ogbeifun, Osato; Hinshaw, Samuel J. H.; Gery, Igal

    2013-01-01

    Purpose. Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. Methods. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Results. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. Conclusions. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans. PMID:24150760

  14. Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors.

    Science.gov (United States)

    Mohammadi-Ostad-Kalayeh, Sona; Hrupins, Vjaceslavs; Helmsen, Sabine; Ahlbrecht, Christin; Stahl, Frank; Scheper, Thomas; Preller, Matthias; Surup, Frank; Stadler, Marc; Kirschning, Andreas; Zeilinger, Carsten

    2017-12-15

    A facile method for testing ATP binding in a highly miniaturized microarray environment using human HSP70 and DnaK from Mycobacterium tuberculosis as biological targets is reported. Supported by molecular modelling studies we demonstrate that the position of the fluorescence label on ATP has a strong influence on the binding to human HSP70. Importantly, the label has to be positioned on the adenine ring and not to the terminal phosphate group. Unlabelled ATP displaced bound Cy5-ATP from HSP70 in the micromolar range. The affinity of a well-known HSP70 inhibitor VER155008 for the ATP binding site in HSP70 was determined, with a EC 50 in the micromolar range, whereas reblastin, a HSP90-inhibitor, did not compete for ATP in the presence of HSP70. The applicability of the method was demonstrated by screening a small compound library of natural products. This unraveled that terphenyls rickenyl A and D, recently isolated from cultures of the fungus Hypoxylon rickii, are inhibitors of HSP70. They compete with ATP for the chaperone in the range of 29 µM (Rickenyl D) and 49 µM (Rickenyl A). Furthermore, the microarray-based test system enabled protein-protein interaction analysis using full-length HSP70 and HSP90 proteins. The labelled full-length human HSP90 binds with a half-maximal affinity of 5.5 µg/ml (∼40 µM) to HSP70. The data also demonstrate that the microarray test has potency for many applications from inhibitor screening to target-oriented interaction studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. JTT-130, a Novel Intestine-Specific Inhibitor of Microsomal Triglyceride Transfer Protein, Improves Hyperglycemia and Dyslipidemia Independent of Suppression of Food Intake in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shohei Sakata

    2014-01-01

    Full Text Available We investigated the effects of JTT-130 on glucose and lipid metabolism independent of the suppression of feeding by comparing with pair-fed animals. Male Zucker diabetic fatty (ZDF rats were divided into control, JTT-130 treatment, and pair-fed groups. The rats were fed with a regular powdered diet with or without JTT-130 as a food admixture for 6 weeks. We compared the effects on glucose and lipid metabolism in JTT-130 treatment group with those in pair-fed group. Results. Hyperglycemia in ZDF rats was prevented in both JTT-130 treatment and pair-fed groups, but the prevention in pair-fed group became poor with time. Moreover, reduction in plasma cholesterol levels was observed only in JTT-130 treatment group. JTT-130 treatment group showed improved glucose tolerance at 5 weeks after treatment and significant elevation of portal glucagon-like peptide-1 (GLP-1 levels. The hepatic lipid content in JTT-130 treatment group was decreased as compared with pair-fed group. Furthermore, pancreatic protection effects, such as an increase in pancreatic weight and an elevation of insulin-positive area in islets, were observed after JTT-130 treatment. Conclusions. JTT-130 improves hyperglycemia and dyslipidemia via a mechanism independent of suppression of food intake, which is ascribed to an enhancement of GLP-1 secretion and a reduction of lipotoxicity.

  16. Ayanin, a non-selective phosphodiesterase 1-4 inhibitor, effectively suppresses ovalbumin-induced airway hyperresponsiveness without affecting xylazine/ketamine-induced anesthesia.

    Science.gov (United States)

    Lee, Fei-Peng; Shih, Chwen-Ming; Shen, Hsin-Yi; Chen, Chien-Ming; Chen, Chi-Ming; Ko, Wun-Chang

    2010-06-10

    In recent in vitro reports, the IC(50) value of ayanin (quercetin-3,7,4'-O-trimethylether) was 2.2microM for inhibiting interleukin (IL)-4 production from purified basophils, and its therapeutic ratio was >19. Therefore, we were interested in investigating the effects on ovalbumin induced airway hyperresponsiveness in vivo, and to clarify its potential for treating asthma. Ayanin (30-100micromol/kg, orally (p.o.)) dose-dependently and significantly attenuated the enhanced pause (P(enh)) value induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including IL-2, IL-4, IL-5, and tumor necrosis factor (TNF)-alpha in bronchoalveolar lavage fluid of these mice. However, at 100micromol/kg, it significantly enhanced the level of interferon (IFN)-gamma. In addition, ayanin (30-100micromol/kg, p.o.) dose-dependently and significantly suppressed total and OVA-specific immunoglobulin (Ig)E levels in the serum and bronchoalveolar lavage fluid, and enhanced the IgG(2a) level in serum of these mice. In the present results, ayanin did not affect xylazine/ketamine-induced anesthesia, suggesting that ayanin has few or no adverse effects, such as nausea, vomiting, and gastric hypersecretion. In conclusion, the above results suggest that ayanin may have the potential for use in treating allergic asthma.

  17. Viral resuppression and detection of drug resistance following interruption of a suppressive non-nucleoside reverse transcriptase inhibitor-based regimen

    DEFF Research Database (Denmark)

    Fox, Zoe; Phillips, Andrew; Cohen, Cal

    2008-01-01

    the NRTIs, or by replacing the NNRTI with another drug before interruption. Simultaneous interruption of all antiretrovirals was discouraged. Resuppression rates 4-8 months after reinitiating NNRTI-therapy were assessed, as was the detection of drug-resistance mutations within 2 months of the treatment...... regimen. NNRTI drug-resistance mutations were observed in a relatively high proportion of patients. These data provide additional support for a staggered or switched interruption strategy for NNRTI drugs.......BACKGROUND: Interruption of a non-nucleoside reverse transcriptase inhibitor (NNRTI)-regimen is often necessary, but must be performed with caution because NNRTIs have a low genetic barrier to resistance. Limited data exist to guide clinical practice on the best interruption strategy to use...

  18. The selective dopamine uptake inhibitor, D-84, suppresses cocaine self-administration, but does not occasion cocaine-like levels of generalization.

    Science.gov (United States)

    Batman, Angela M; Dutta, Aloke K; Reith, Maarten E A; Beardsley, Patrick M

    2010-12-01

    A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED(50) value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED(50) value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine-lever responding, while reducing response rates with lower potency than cocaine (ED(50)=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pretreatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine-abusing patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice.

    Science.gov (United States)

    Kwon, Kwang-Chul; Sherman, Alexandra; Chang, Wan-Jung; Kamesh, Aditya; Biswas, Moanaro; Herzog, Roland W; Daniell, Henry

    2017-11-06

    Inhibitor formation is a serious complication of factor VIII (FVIII) replacement therapy for the X-linked bleeding disorder haemophilia A and occurs in 20%-30% of patients. No prophylactic tolerance protocol currently exists. Although we reported oral tolerance induction using FVIII domains expressed in tobacco chloroplasts, significant challenges in clinical advancement include expression of the full-length CTB-FVIII sequence to cover the entire patient population, regardless of individual CD4 + T-cell epitope responses. Codon optimization of FVIII heavy chain (HC) and light chain (LC) increased expression 15- to 42-fold higher than the native human genes. Homoplasmic lettuce lines expressed CTB fusion proteins of FVIII-HC (99.3 kDa), LC (91.8 kDa), C2 (31 kDa) or single chain (SC, 178.2 kDa) up to 3622, 263, 3321 and 852 μg/g in lyophilized plant cells, when grown in a cGMP hydroponic facility (Fraunhofer). CTB-FVIII-SC is the largest foreign protein expressed in chloroplasts; despite a large pentamer size (891 kDa), assembly, folding and disulphide bonds were maintained upon lyophilization and long-term storage as revealed by GM1-ganglioside receptor binding assays. Repeated oral gavages (twice/week for 2 months) of CTB-FVIII-HC/CTB-FVIII-LC reduced inhibitor titres ~10-fold (average 44 BU/mL to 4.7 BU/mL) in haemophilia A mice. Most importantly, increase in the frequency of circulating LAP-expressing CD4 + CD25 + FoxP3 + Treg in tolerized mice could be used as an important cellular biomarker in human clinical trials for plant-based oral tolerance induction. In conclusion, this study reports the first clinical candidate for oral tolerance induction that is urgently needed to protect haemophilia A patients receiving FVIII injections. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Ochratoxin A inhibits the production of tissue factor and plasminogen activator inhibitor-2 by human blood mononuclear cells: Another potential mechanism of immune-suppression

    International Nuclear Information System (INIS)

    Rossiello, Maria R.; Rotunno, Crescenzia; Coluccia, Addolorata; Carratu, Maria R.; Di Santo, Angelomaria; Evangelista, Virgilio; Semeraro, Nicola; Colucci, Mario

    2008-01-01

    The mycotoxin ochratoxin A (OTA), an ubiquitous contaminant of food products endowed with a wide spectrum of toxicity, affects several functions of mononuclear leukocytes. Monocytes/macrophages play a major role in fibrin accumulation associated with immune-inflammatory processes through the production of tissue factor (TF) and plasminogen activator inhibitor 2 (PAI-2). We studied the effect of OTA on TF and PAI-2 production by human blood mononuclear cells (MNC). The cells were incubated for 3 or 18 h at 37 deg. C with non toxic OTA concentrations in the absence and in the presence of lipopolysaccharide (LPS) or other inflammatory agents. TF activity was measured by a one-stage clotting test. Antigen assays were performed by specific ELISAs in cell extracts or conditioned media and specific mRNAs were assessed by RT-PCR. OTA had no direct effect on TF and PAI-2 production by MNC. However, OTA caused a dose-dependent reduction in LPS-induced TF (activity, antigen and mRNA) and PAI-2 (antigen and mRNA) production with > 85% inhibition at 1 μg/ml. Similar results were obtained when monocyte-enriched preparations were used instead of MNC. TF production was also impaired by OTA (1 μg/ml) when MNC were stimulated with phorbol myristate acetate (98% inhibition), IL-1β (83%) or TNF-α (62%). The inhibition of TF and PAI-2 induction might represent a hitherto unrecognized mechanism whereby OTA exerts immunosuppressant activity

  1. The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar. viciae on Vicia sativa subsp. nigra by suppressing the 'Thick and short roots' phenotype.

    Science.gov (United States)

    Zaat, S A; Van Brussel, A A; Tak, T; Lugtenberg, B J; Kijne, J W

    1989-02-01

    Nodulation of Vicia sativa subsp. nigra L. by Rhizobium bacteria is coupled to the development of thick and short roots (Tsr). This root phenotype as well as root-hair induction (Hai) and root-hair deformation (Had) are caused by a factor(s) produced by the bacteria in response to plant flavonoids. When very low inoculum concentrations (0.5-5 bacteria·ml(-1)) were used, V. sativa plants did not develop the Tsr phenotype and became nodulated earlier than plants with Tsr roots. Furthermore, the nodules of these plants were located on the primary root in contrast to nodules on Tsr roots, which were all located at sites of lateral-root emergence. The average numbers of nodules per plant were not significantly different for these two types of nodulation. Root-growth inhibition and Hai, but not Had, could be mimicked by ethephon, and inhibited by aminoethoxyvinylglycine (AVG). Addition of AVG to co-cultures of Vicia sativa and the standard inoculum concentration of 5·10(5) bacteria·ml(-1) suppressed the development of the Tsr phenotype and restored nodulation to the pattern that was observed with very low concentrations of bacteria (0.5-5 bacteria·ml(-1)). The delay in nodulation on Tsr roots appeared to be caused by the fact that nodule meristems did not develop on the primary root, but only on the emerging laterals. The relationship between Tsr, Hai, Had, and nodulation is discussed.

  2. Efficiency enhancement in dye sensitized solar cells using dual function mesoporous silica as scatterer and back recombination inhibitor

    Science.gov (United States)

    Tanvi; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

    2016-08-01

    In the present work, we report the usage of mesoporous silica for improving light harvesting as well as for suppression of back recombination without affecting the extent of dye loading on TiO2 films. Synthesized mesoporous SiO2 was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer Emmett and Teller measurement, Scanning electron microscopy and Transmission electron microscopy. DSSCs were fabricated by incorporating different wt% of mesoporous SiO2 in TiO2 paste. An improvement of 50% was observed for devices fabricated using 0.75 wt% of mesoporous SiO2. The mechanism behind the improvement was investigated using electrochemical impedance spectroscopy and UV-Vis spectroscopy.

  3. Treadmill exercise alleviates diabetic cardiomyopathy by suppressing plasminogen activator inhibitor expression and enhancing eNOS in streptozotocin-induced male diabetic rats.

    Science.gov (United States)

    Chengji, Wang; Xianjin, Fan

    2018-04-01

    To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy. 87 raise specific pathogen SPF healthy 6-week-old male Sprague-Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin - randomly selected 43 rats were divided into Diabetic control group (DCG, n  = 10), Diabetic exercise group 1 (DEG1, n  = 11), Diabetic exercise group 2 (DEG2, n  = 11) and Diabetic exercise group 3 (DEG3, n  = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured. Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant ( P  diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly ( P  diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity. © 2018 The authors.

  4. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Tanuja Rajah

    Full Text Available The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH with a concomitant increase in reactive oxygen species (ROS levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.

  5. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-01-01

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  6. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF.

    Science.gov (United States)

    Kaur, Jasmeet; Sanyal, S N

    2011-09-01

    Angiogenesis is a physiological process involving growth of new blood vessels from pre-existing ones; however, it also plays a critical role in tumor progression. It favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore targeting angiogenesis will be profitable as a mechanism to inhibit tumor's lifeline. Further, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF)-master switch in angiogenesis and other molecules in the neoplastic and pro-inflammatory milieu. We studied the role of two important chemokines [monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-lα] alongwith VEGF and matrix metalloproteinases (MMPs) in non-steroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effect in experimental colon cancer in rat. 1,2-Dimethylhydrazine (DMH, 30 mg/kg body weight, subcutaneously (s.c.) once-a-week) for 18 wk was used as pro-carcinogen and diclofenac (8 mg/kg body weight, orally daily) as the preferential cyclooxygenase-2 (COX-2) inhibitor. Expression of COX-2 and VEGF was found to be significantly elevated in the DMH-treated group as compared to the control, which was lowered notably by Diclofenac co-administration with DMH. Gelatin zymography showed prominent MMP-9 activity in the DMH-treated rats, while the activity was nearly absent in all the other groups. Expression of MCP-1 was found to be markedly increased whereas MIP-1α expression was found to be decreased in colonic mucosa from DMH-treated rats, which was reversed in the DMH + Diclofenac group. Our results indicate potential role of chemokines alongwith VEGF in angiogenesis in DMH-induced cancer and its chemoprevention with diclofenac. Copyright ©2011 Wiley-Liss, Inc.

  7. Nuclear factor κB inhibitor BAY 11-7082 suppresses oxidative stress induced by endothelin-1 (ET-1) in rat kidney.

    Science.gov (United States)

    Kowalczyk, Agata; Kołodziejczyk, Michał; Gorąca, Anna

    2015-12-31

    The aim of the study was to evaluate the effect of BAY 11-7082, an NF-κB inhibitor, on basal and ET-1-induced production of reactive oxygen species (ROS), TNF-α and p65 protein in rat kidney. The experimental animals were divided into five groups (n=7) receiving: 1) saline (control); 2 and 3) ET-1 in a dose of 3 μg/kg body weight (b.w.) or 12.5 μg/kg b.w.; 4) BAY 11-7082 (10 mg/kg b.w.); 5) BAY 11-7082 (10 mg/kg b.w.) and ET-1 (12.5 μg/kg b.w.), respectively. In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), H2O2, TNF-α, p65 protein and GSH/GSSG ratio were determined. ET-1 resulted in a dose-dependent increase in TBARS and hydrogen peroxide (H2O2) levels, and a decrease in GSH/GSSG ratio when compared to the controls. BAY 11-7082 administered 1 h before ET-1 administration at a dose of 12.5 μg/kg resulted in a decrease (PET-1 groups. The level of TNF-α was increased (PET-1, while BAY 11-7082 reduced the TNF-α level (PET-1 induced oxidative stress in kidney tissue. These actions of BAY 11-7082 may result from reduced activity of NF-κB signaling pathways. Inhibition of the NF-κB pathway may be a promising strategy for preventing the progression of kidney damage.

  8. The Daidzein Metabolite, 6,7,4'-Trihydroxyisoflavone, Is a Novel Inhibitor of PKCα in Suppressing Solar UV-Induced Matrix Metalloproteinase 1

    Directory of Open Access Journals (Sweden)

    Tae-Gyu Lim

    2014-11-01

    Full Text Available Soy isoflavone is an attractive source of functional cosmetic materials with anti-wrinkle, whitening and skin hydration effects. After consumption, the majority of soy isoflavones are converted to their metabolites in the human gastrointestinal tract. To understand the physiological impact of soy isoflavone on the human body, it is necessary to evaluate and address the biological function of its metabolites. In this study, we investigated the effect of 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF, a major metabolite of daidzein, against solar UV (sUV-induced matrix metalloproteinases (MMPs in normal human dermal fibroblasts. MMPs play a critical role in the degradation of collagen in skin, thereby accelerating the aging process of skin. The mitogen-activated protein/extracellular signal-regulated kinase (MEK/extracellular signal-regulated kinase (ERK, mitogen-activated protein kinase (MKK3/6/p38 and MKK4/c-Jun N-terminal kinases (JNK signaling pathways are known to modulate MMP-1 function, and their activation by sUV was significantly reduced by 6,7,4'-THIF pretreatment. Our results also indicated that the enzyme activity of protein kinase C (PKCα, an upstream regulator of MKKs signaling, is suppressed by 6,7,4'-THIF using the in vitro kinase assay. Furthermore, the direct interaction between 6,7,4'-THIF and endogenous PKCα was confirmed using the pull-down assay. Not only sUV-induced MMP-1 expression, but also sUV-induced signaling pathway activation were decreased in PKCα knockdown cells. Overall, we elucidated the inhibitory effect of 6,7,4'-THIF on sUV-induced MMPs and suggest PKCα as its direct molecular target.

  9. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    Science.gov (United States)

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  10. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  11. ATPase inhibitor based luciferase assay for prolonged and enhanced ATP pool measurement as an efficient fish freshness indicator.

    Science.gov (United States)

    Ranjan, Rajeev; Priyanka, B S; Thakur, M S

    2014-07-01

    The nucleotide degradation pathway in somatic cells leads to the accumulation of products such as hypoxanthine and inosine, which are commonly used as fish and meat freshness indicators. Assays based on these molecules cannot differentiate the postmortem time over a short period of time (5-10 h). Further, quantification of these degradation products is cumbersome, costly and time-consuming. For the proposed assay, optimal concentrations of 30 and 2 mM, respectively, for the ATPase inhibitors sodium orthovanadate and EDTA were found. Further, it was observed that a firefly luciferase based assay could enhance the sensitivity levels up to 165-fold at 30 °C. In addition, it was observed that the sensitivity for ATP assay was enhanced up to 60-fold even after 12 h. The limit of detection for the ATP assay was 1 pM, unlike other conventional methods, which are sensitive only up to micromolar levels. Moreover, as little as 0.044 g fish fillet was required for the assay, and no time-consuming sample preparation was necessary. Luminescence of prolonged duration was observed in harvested fish kept at -20 °C in comparison with fish kept at 4 and 30 °C, which reflects the shelf life of fish preserved at lower temperatures.

  12. Shikonin, a constituent of Lithospermum erythrorhizon exhibits anti-allergic effects by suppressing orphan nuclear receptor Nr4a family gene expression as a new prototype of calcineurin inhibitors in mast cells.

    Science.gov (United States)

    Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto

    2014-12-05

    Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-α mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-α mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-α and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the

  13. Seamless integration of dose-response screening and flow chemistry: efficient generation of structure-activity relationship data of β-secretase (BACE1) inhibitors.

    Science.gov (United States)

    Werner, Michael; Kuratli, Christoph; Martin, Rainer E; Hochstrasser, Remo; Wechsler, David; Enderle, Thilo; Alanine, Alexander I; Vogel, Horst

    2014-02-03

    Drug discovery is a multifaceted endeavor encompassing as its core element the generation of structure-activity relationship (SAR) data by repeated chemical synthesis and biological testing of tailored molecules. Herein, we report on the development of a flow-based biochemical assay and its seamless integration into a fully automated system comprising flow chemical synthesis, purification and in-line quantification of compound concentration. This novel synthesis-screening platform enables to obtain SAR data on b-secretase (BACE1) inhibitors at an unprecedented cycle time of only 1 h instead of several days. Full integration and automation of industrial processes have always led to productivity gains and cost reductions, and this work demonstrates how applying these concepts to SAR generation may lead to a more efficient drug discovery process. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.

    Science.gov (United States)

    Abdel Gaber, Sara A; Müller, Patricia; Zimmermann, Wolfgang; Hüttenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud H; Stepp, Herbert

    2018-01-01

    Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  16. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    Science.gov (United States)

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  17. Environmental life cycle analysis of potato sprout inhibitors

    NARCIS (Netherlands)

    Kerstholt, R.P.V.; Ree, C.M.; Moll, H.C.

    Potato sprout inhibitors are generally applied to suppress sprouting during winter storage. This study presents the compared environmental profiles of the two sprout inhibitors available on the Dutch market: A traditional chemical product with isopropyl-3-chlorophenylcarbamate (CIPC) and

  18. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  19. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells.

    Science.gov (United States)

    Mazzio, Elizabeth A; Soliman, Karam F A

    2017-01-02

    Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (HeLa cell lysates. Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC 50 under HeLa cells, where the data suggest predominant effects are anti-mitotic rather than cytotoxic. Lastly, differential effects of TSA vs. GSE at sub-lethal concentrations tested on HeLa cells show 6,631 miRNAs expressed in resting cells, 35 significantly up-regulated (TSA) and 81 up-regulated (GSE

  20. Suppression of soil nitrification by plants.

    Science.gov (United States)

    Subbarao, Guntur Venkata; Yoshihashi, Tadashi; Worthington, Margaret; Nakahara, Kazuhiko; Ando, Yasuo; Sahrawat, Kanwar Lal; Rao, Idupulapati Madhusudhana; Lata, Jean-Christophe; Kishii, Masahiro; Braun, Hans-Joachim

    2015-04-01

    Nitrification, the biological oxidation of ammonium to nitrate, weakens the soil's ability to retain N and facilitates N-losses from production agriculture through nitrate-leaching and denitrification. This process has a profound influence on what form of mineral-N is absorbed, used by plants, and retained in the soil, or lost to the environment, which in turn affects N-cycling, N-use efficiency (NUE) and ecosystem health and services. As reactive-N is often the most limiting in natural ecosystems, plants have acquired a range of mechanisms that suppress soil-nitrifier activity to limit N-losses via N-leaching and denitrification. Plants' ability to produce and release nitrification inhibitors from roots and suppress soil-nitrifier activity is termed 'biological nitrification inhibition' (BNI). With recent developments in methodology for in-situ measurement of nitrification inhibition, it is now possible to characterize BNI function in plants. This review assesses the current status of our understanding of the production and release of biological nitrification inhibitors (BNIs) and their potential in improving NUE in agriculture. A suite of genetic, soil and environmental factors regulate BNI activity in plants. BNI-function can be genetically exploited to improve the BNI-capacity of major food- and feed-crops to develop next-generation production systems with reduced nitrification and N2O emission rates to benefit both agriculture and the environment. The feasibility of such an approach is discussed based on the progresses made. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Simultaneous suppression of TGF-β and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains.

    Science.gov (United States)

    Hassani, Seyedeh-Nafiseh; Totonchi, Mehdi; Farrokhi, Ali; Taei, Adeleh; Larijani, Mehran Rezaei; Gourabi, Hamid; Baharvand, Hossein

    2012-06-01

    Mouse embryonic stem cells (ESCs) are pluripotent stem cell lines derived from pre-implantation embryos. The efficiency of mESC generation is affected by genetic variation in mice; that is, some mouse strains are refractory or non-permissive to ESC establishment. Developing an efficient method to derive mESCs from strains of various genetic backgrounds should be valuable for establishment of ESCs in various mammalian species. In the present study, we identified dual inhibition of TGF-β and ERK1/2, by SB431542 and PD0325901, respectively led to the highly efficient and reproducible generation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which previously considered refractory or non-permissive for ESC establishment. These mESCs expressed pluripotency markers and retained the capacity to differentiate into derivatives of all three germ layers. The evaluated lines exhibited high rates of chimerism when reintroduced into blastocysts. To our knowledge, this is the first report of efficient (100%) mESC lines generation from different genetic backgrounds. The application of these two inhibitors will not only solve the problems of mESC derivation but also clarifies new signaling pathways in pluripotent mESCs.

  2. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-02-01

    The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).

  3. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    International Nuclear Information System (INIS)

    Ozaki, Kei-ichi; Minoda, Ai; Kishikawa, Futaba; Kohno, Michiaki

    2006-01-01

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated

  4. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

    Directory of Open Access Journals (Sweden)

    Jayita Patwari

    2017-08-01

    Full Text Available In the present study, protoporphyrin IX (PPIX and squarine (SQ2 have been used in a co-sensitized dye-sensitized solar cell (DSSC to apply their high absorption coefficients in the visible and NIR region of the solar spectrum and to probe the possibility of Förster resonance energy transfer (FRET between the two dyes. FRET from the donor PPIX to acceptor SQ2 was observed from detailed investigation of the excited-state photophysics of the dye mixture, using time-resolved fluorescence decay measurements. The electron transfer time scales from the dyes to TiO2 have also been characterized for each dye. The current–voltage (I–V characteristics and the wavelength-dependent photocurrent measurements of the co-sensitized DSSCs reveal that FRET between the two dyes increase the photocurrent as well as the efficiency of the device. From the absorption spectra of the co-sensitized photoanodes, PPIX was observed to be efficiently acting as a co-adsorbent and to reduce the dye aggregation problem of SQ2. It has further been proven by a comparison of the device performance with a chenodeoxycholic acid (CDCA added to a SQ2-sensitized DSSC. Apart from increasing the absorption window, the FRET-induced enhanced photocurrent and the anti-aggregating behavior of PPIX towards SQ2 are crucial points that improve the performance of the co-sensitized DSSC.

  5. Dye-Sensitized Solar Cells Based on the Principles and Materials of Photosynthesis: Mechanisms of Suppression and Enhancement of Photocurrent and Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Nagae

    2009-10-01

    Full Text Available Attempts have been made to develop dye-sensitized solar cells based on the principles and materials of photosynthesis: We first tested photosynthetic pigments, carotenoids (Cars, chlorophylls (Chls and their derivatives, to find sensitizers showing reasonable performance (photocurrent and conversion efficiency. We then tried to introduce the principles of photosynthesis, including electron transfer and energy transfer from Car to Phe a. Also, we tried co-sensitization using the pheophorbide (Phe a and Chl c2 pair which further enhanced the performance of the component sensitizers as follows: Jsc = 9.0 + 13.8 → 14.0 mA cm–2 and η = 3.4 + 4.6 → 5.4%.

  6. Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency.

    Science.gov (United States)

    Koyama, Yasushi; Miki, Takeshi; Wang, Xiao-Feng; Nagae, Hiroyoshi

    2009-10-27

    Attempts have been made to develop dye-sensitized solar cells based on the principles and materials of photosynthesis: We first tested photosynthetic pigments, carotenoids (Cars), chlorophylls (Chls) and their derivatives, to find sensitizers showing reasonable performance (photocurrent and conversion efficiency). We then tried to introduce the principles of photosynthesis, including electron transfer and energy transfer from Car to Phe a. Also, we tried co-sensitization using the pheophorbide (Phe) a and Chl c(2) pair which further enhanced the performance of the component sensitizers as follows: J(sc) = 9.0 + 13.8 --> 14.0 mA cm(-2) and eta = 3.4 + 4.6 --> 5.4%.

  7. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  8. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  9. Synthesis and biological evaluation of glycogen synthase kinase 3 (GSK-3) inhibitors: an fast and atom efficient access to 1-aryl-3-benzylureas.

    Science.gov (United States)

    Monte, Fabio Lo; Kramer, Thomas; Boländer, Alexander; Plotkin, Batya; Eldar-Finkelman, Hagit; Fuertes, Ana; Dominguez, Juan; Schmidt, Boris

    2011-09-15

    The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of Alzheimer's disease (AD). In the course of our research topic we synthesized a library of potent GSK-3 inhibitors. We utilized the urea scaffold present in the potent and highly selective GSK-3 inhibitor AR-A014418 (AstraZeneca). This moiety suits both (a) a convergent approach utilizing readily accessible building blocks and (b) a divergent approach based on a microwave heating assisted Suzuki coupling. We established a chromatography-free purification method to generate products with sufficient purity for the biological assays. The structure-activity relationship of the library provided the rationale for the synthesis of the benzothiazolylurea 66 (IC(50)=140 nM) and the pyridylurea 62 (IC(50)=98 nM), which displayed two to threefold enhanced activity versus the reference compound 18 (AR-A014418: IC(50)=330 nM) in our assays. Copyright © 2011. Published by Elsevier Ltd.

  10. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity.

    Science.gov (United States)

    Yokota, Asumi; Kimura, Shinya; Masuda, Satohiro; Ashihara, Eishi; Kuroda, Junya; Sato, Kiyoshi; Kamitsuji, Yuri; Kawata, Eri; Deguchi, Yasuyuki; Urasaki, Yoshimasa; Terui, Yasuhito; Ruthardt, Martin; Ueda, Takanori; Hatake, Kiyohiko; Inui, Ken-ichi; Maekawa, Taira

    2007-01-01

    Central nervous system (CNS) relapse accompanying the prolonged administration of imatinib mesylate has recently become apparent as an impediment to the therapy of Philadelphia chromosome-positive (Ph+) leukemia. CNS relapse may be explained by limited penetration of imatinib mesylate into the cerebrospinal fluid because of the presence of P-glycoprotein at the blood-brain barrier. To overcome imatinib mesylate-resistance mechanisms such as bcr-abl amplification, mutations within the ABL kinase domain, and activation of Lyn, we developed a dual BCR-ABL/Lyn inhibitor, INNO-406 (formerly NS-187), which is 25 to 55 times more potent than imatinib mesylate in vitro and at least 10 times more potent in vivo. The aim of this study was to investigate the efficacy of INNO-406 in treating CNS Ph+ leukemia. We found that INNO-406, like imatinib mesylate, is a substrate for P-glycoprotein. The concentrations of INNO-406 in the CNS were about 10% of those in the plasma. However, this residual concentration was enough to inhibit the growth of Ph+ leukemic cells which expressed not only wild-type but also mutated BCR-ABL in the murine CNS. Furthermore, cyclosporine A, a P-glycoprotein inhibitor, augmented the in vivo activity of INNO-406 against CNS Ph+ leukemia. These findings indicate that INNO-406 is a promising agent for the treatment of CNS Ph+ leukemia.

  11. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    Science.gov (United States)

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  12. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    cell lines. Gefitinib, erlotinib and NVP-AEE788 caused a significant growth inhibition in vitro; however, there was a significant difference in efficacy (NVP-AEE788>erlotinib>gefitinib). After 14 days of in-vivo treatment, using the chimeric mouse model, tumors had a significantly reduced volume and mass after NVP-AEE788, but not after erlotinib treatment, as compared with placebo. Reduction of proliferation (signalling via the mitogen-activated protein kinase pathway), induction of apoptosis and inhibition of angiogenesis were the main mechanisms of drug action. No significant reduction of anti-apoptotic AKT phosphorylation, however, occurred, which may be a possible counter mechanism of the tumor. Epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 expression was detectable in biliary tract cancer, and receptor inhibition exerts marked effects on tumor growth in vitro and in vivo, which was strongest for the dual EGFR/ErbB-2 inhibitor NVP-AEE788. Therefore, further clinical evaluation of this new drug for the treatment of biliary tract cancer is recommended.

  13. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  14. Suppression of STAT3 NH2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21.

    Science.gov (United States)

    Ray, Sutapa; Coulter, Don W; Gray, Shawn D; Sughroue, Jason A; Roychoudhury, Shrabasti; McIntyre, Erin M; Chaturvedi, Nagendra K; Bhakat, Kishor K; Joshi, Shantaram S; McGuire, Timothy R; Sharp, John G

    2018-04-01

    Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH 2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients. © 2017 Wiley Periodicals, Inc.

  15. Thyroid suppression test with dextrothyroxine

    International Nuclear Information System (INIS)

    Rosenthal, D.; Fridman, J.; Ribeiro, H.B.

    1978-01-01

    The classic thyroid suppression test with triiodothyronine (l-T 3 ) has been shown to be efficient as an auxiliary method in the diagnosis of thyroid diseases, but should not be performed on elderly patients or on those with heart disease or a tendency to tachycardia. Since these subjects seem able to support a short period of dextro-thyronine (d-T 4 ) feeding, we compared the effect of d-T 4 and l-T 3 on the 24 hours thyroid uptake in euthyroid and hyperthyroid subjects. After basal radio-iodine uptake determination, 99 patients without hyperthyroidism and 27 with Graves' disease were randomly divided in 2 groups; one received 100μg of l-T 3 per day and the other 4 mg of d-T 4 per day, both groups being treated for a period of 10 days. At the end of this suppression period the 24 hours radio-iodine uptake was measured again and the percentual suppression index (S.I.) calculated. Since the comparison of the two groups showed no difference between the suppressive effect of l-T 3 and d-T 4 in euthyroid subjects, while dextro-thyronine, as levo-triiodothyronine, did not suppress the 24 hours uptake of hyperthyroid patients, l-T 3 or d-T 4 can be used interchangeably to test thyroid suppressibility. In the euthyroid subjects the normal range for the post-suppression uptake was 0-17.1% and for the suppression index 54,7.100% [pt

  16. High throughput virtual screening and in silico ADMET analysis for rapid and efficient identification of potential PAP248-286 aggregation inhibitors as anti-HIV agents

    Science.gov (United States)

    Malik, Ruchi; Bunkar, Devendra; Choudhary, Bhanwar Singh; Srivastava, Shubham; Mehta, Pakhuri; Sharma, Manish

    2016-10-01

    Human semen is principal vehicle for transmission of HIV-1 and other enveloped viruses. Several endogenous peptides present in semen, including a 39-amino acid fragments of prostatic acid phosphatase (PAP248-286) assemble into amyloid fibrils named as semen-derived enhancer of viral infection (SEVI) that promote virion attachment to target cells which dramatically enhance HIV virus infection by up to 105-fold. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound, is the major catechin found in green tea which disaggregates existing SEVI fibers, and inhibits the formation of SEVI fibers. The aim of this study was to screen a number of relevant polyphenols to develop a rational approach for designing PAP248-286 aggregation inhibitors as potential anti-HIV agents. The molecular docking based virtual screening results showed that polyphenolic compounds 2-6 possessed good docking score and interacted well with the active site residues of PAP248-286. Amino acid residues of binding site namely; Lys255, Ser256, Leu258 and Asn265 are involved in binding of these compounds. In silico ADMET prediction studies on these hits were also found to be promising. Polyphenolic compounds 2-6 identified as hits may act as novel leads for inhibiting aggregation of PAP248-286 into SEVI.

  17. Inhibitor efficiency in long-time protection of steel tanks for the chemical surface preparation against local corrosion by process solutions containing hydrochloric acid; Inhibitorwirksamkeit beim Langzeitschutz von Stahlbehaeltern fuer die chemische Oberflaechenvorbereitung gegen oertliche Korrosion durch salzsaeurehaltige Prozessloesungen

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, U.; Schulz, W.D. [Institut fuer Korrosionsschutz Dresden GmbH, Gostritzer Str. 61-63, D-01217 Dresden (Germany)

    2004-02-01

    The efficiency of prevailing acid inhibitors is examined by age hardening heavy tank-steel plates in technically usual hot-galvanizing solutions for 1000 hours. With acid inhibitors local corrosion emerged as shallow pit formation first and foremost in hydrochlorid acid pickles (20 g/l HCl) at ambient temperature as well as in cleaners containing hydrochloric acid (10-30 g/l HCl) at 40 C when other conditions also applied. Above all, local corrosion was produced if the inhibitor concentration became too low (0.2 g/l) in connection with a minimum hydrochloric acid concentration (10-30 g/l). However, oxidizing agents like iron(III)-ions (5-10 g/l), atmospheric oxygen and free chlorine (100-1000 mg/l) lead to local corrosion, too. Local corrosion did not emerge in rinse baths (2-10 g/l HCl) and fluxing material solutions of zinc chloride and ammonium chloride (pH value: 2.0-5.5). Here uniform corrosion developed. Acid inhibitors turned out to be very effective against uniform corrosion in the examined long-time period (inhibiting values up to 99%). (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Die Wirksamkeit handelsueblicher Saeureinhibitoren wird durch eine Auslagerung von Grobblechen aus Behaelterstahl ueber 1000 Stunden in technisch gebraeuchlichen Loesungen der Feuerverzinkung untersucht. Oertliche Korrosion ist als Muldenkorrosion in Gegenwart von Saeureinhibitoren vor allem in Salzsaeurebeizen (20 g/l HCl) bei Raumtemperatur und in salzsaeurehaltigen Reinigern (10-30 g/l HCl) bei 40 C aufgetreten, wenn Zusatzbedingungen erfuellt sind. Oertliche Korrosion wird vorwiegend durch eine Unterschreitung der Inhibitorkonzentration (0,2 g/l) in Verbindung mit einer minimalen Salzsaeurekonzentration (10-30 g/l) ausgeloest. Aber auch Oxidationsmittel wie Eisen(III)-Ionen (5-10 g/l), Luftsauerstoff und freies Chlor (100-1000 mg/l) fuehren zu oertlicher Korrosion. In Spuelbaedern (2-10 g/l HCl) und Flussmittelloesungen aus Zinkchlorid und Ammoniumchlorid (p

  18. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  19. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride.

    Science.gov (United States)

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana

    2015-05-01

    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  20. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.

    Science.gov (United States)

    Wajih, Nadeem; Owen, John; Wallin, Reidar

    2008-01-01

    Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo gamma-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational gamma-carboxylation, the recovery of fully gamma-carboxylated and functional proteins is low. In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K gamma-carboxylase cofactor and in addition stably silenced the gamma-carboxylase inhibitory protein calumenin. Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C.

  1. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  2. Efficient hepatitis c virus genotype 1b core-NS5A recombinants permit efficacy testing of protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Pham, Long V.; Ramirez Almeida, Santseharay; Carlsen, Thomas H R

    2017-01-01

    Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants......, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5= untranslated region (5=UTR)-NS2, NS4A, or NS5A regions. Importantly...

  3. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core.

    Science.gov (United States)

    Dow, Robert L; Andrews, Melissa; Aspnes, Gary E; Balan, Gayatri; Michael Gibbs, E; Guzman-Perez, Angel; Karki, Kapil; Laperle, Jennifer L; Li, Jian-Cheng; Litchfield, John; Munchhof, Michael J; Perreault, Christian; Patel, Leena

    2011-10-15

    A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Syk inhibitors.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  5. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  6. The efficiency of tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia exposed to ionizing radiation due to the Chornobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Dmitrenko, Yi.V.; Fedorenko, V.G.; Shlyakhtichenko, T.Yu.; And Others

    2014-01-01

    Additional chromosomal abnormalities as well as special pattern of BCR/ABL transcripts were not revealed in CML patients exposed to ionizing radiation. Complete cytogenetic response (CCR) was shown in 50 and 48.5 % of patients from study and comparison group, respectively. Major molecular response (MMR) was achieved in 20 % of patients with radiation exposure in anamnesis and in 27.6 % of patients from comparison group. The vast majority of CCR and MMR was reached in patients with the pretreatment term up to 6 months, when imatinib was used as a first line therapy. There were less cases of primary imatinib resistance in the same group of patients. In CML patients who had a history of radiation exposure, secondary resistance developed more frequently than in the comparison group and was 25 %. Laboratory monitoring based on the registration of CCR and MMR demonstrated high efficiency of TKI in the CML treatment of patients, exposed due to Chornobyl accident. Extension of pretreatment term leads to the loss of TKI therapy efficiency and increases the likelihood of primary resistance. CML patients exposed to ionizing radiation develop secondary resistance more often than CML patients without radiation exposure in anamnesis

  7. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  8. Pathogenesis of Double-Dose Proton Pump Inhibitor-Resistant Non-Erosive Reflux Disease, and Mechanism of Reflux Symptoms and Gastric Acid Secretion-Suppressive Effect in the Presence or Absence of Helicobacter pylori Infection.

    Science.gov (United States)

    Kawami, Noriyuki; Takenouchi, Nana; Umezawa, Mariko; Hoshino, Shintaro; Hanada, Yuriko; Hoshikawa, Yoshimasa; Sano, Hirohito; Hoshihara, Yoshio; Nomura, Tsutomu; Uchida, Eiji; Iwakiri, Katsuhiko

    2017-01-01

    Various mechanisms have been suggested to be responsible for contributing to the occurrence of proton pump inhibitor (PPI)-resistant non-erosive reflux disease (NERD). The aims of this study were to clarify the pathogenesis of PPI-resistant NERD. Fifty-three patients with NERD, who had persistent reflux symptoms despite taking double-dose PPI, were included in this study. After excluding eosinophilic esophagitis (EoE) and primary esophageal motility disorder, esophageal impedance-pH monitoring was carried out. In symptom index (SI)-positive patients, the mechanism of SI positivity and the percent time with intragastric pH >4 were investigated according to the presence or absence of Helicobacter pylori infection. One of the 53 patients had EoE, and 4 had primary esophageal motility disorder. Twenty-three and 2 patients were SI-positive for liquid and gas-only reflux respectively. Of 17 SI-positive, H. pylori-negative patients, 5 were SI-positive for acid reflux, whereas all of the H. pylori-positive patients were SI-positive for non-acid reflux. The percent time with intragastric pH >4 was significantly lower in the H. pylori-negative patients than in the H. pylori-positive patients. The pathogenesis of double-dose PPI-resistant NERD was identified in 57%. In some of H. pylori-negative patients, acid-related symptoms were observed. However, in H. pylori-positive patients, these symptoms were excluded by taking double-dose PPI. © 2017 S. Karger AG, Basel.

  9. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  10. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  11. Nonnucleoside Reverse-transcriptase Inhibitor- vs Ritonavir-boosted Protease Inhibitor-based Regimens for Initial Treatment of HIV Infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Lundh, Andreas; Tendal, Britta

    2016-01-01

    BACKGROUND: Previous studies suggest that nonnucleoside reverse-transcriptase inhibitors (NNRTIs) cause faster virologic suppression, while ritonavir-boosted protease inhibitors (PI/r) recover more CD4 cells. However, individual trials have not been powered to compare clinical outcomes. METHODS: ...

  12. Cyclohexylmethyl Flavonoids Suppress Propagation of Breast Cancer Stem Cells via Downregulation of NANOG

    Directory of Open Access Journals (Sweden)

    Wen-Ying Liao

    2013-01-01

    Full Text Available Breast cancer stem cells (CSCs are highly tumorigenic and possess the capacity to self-renew. Recent studies indicated that pluripotent gene NANOG involves in regulating self-renewal of breast CSCs, and expression of NANOG is correlated with aggressiveness of poorly differentiated breast cancer. We initially confirmed that breast cancer MCF-7 cells expressed NANOG, and overexpression of NANOG enhanced the tumorigenicity of MCF-7 cells and promoted the self-renewal expansion of CD24−/lowCD44+ CSC subpopulation. In contrast, knockdown of NANOG significantly affected the growth of breast CSCs. Utilizing flow cytometry, we identified five cyclohexylmethyl flavonoids that can inhibit propagation of NANOG-positive cells in both breast cancer MCF-7 and MDA-MB231 cells. Among these flavonoids, ugonins J and K were found to be able to induce apoptosis in non-CSC populations and to reduce self-renewal growth of CD24−/lowCD44+ CSC population. Treatment with ugonin J significantly reduced the tumorigenicity of MCF-7 cells and efficiently suppressed formation of mammospheres. This suppression was possibly due to p53 activation and NANOG reduction as either addition of p53 inhibitor or overexpression of NANOG can counteract the suppressive effect of ugonin J. We therefore conclude that cyclohexylmethyl flavonoids can possibly be utilized to suppress the propagation of breast CSCs via reduction of NANOG.

  13. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  14. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer.

    Science.gov (United States)

    Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania

    2017-09-29

    With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4 + CD25 hi FOXP3 hi CD45RA - ). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs ( P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors.

  15. Parallel screening of drug-like natural compounds using Caco-2 cell permeability QSAR model with applicability domain, lipophilic ligand efficiency index and shape property: A case study of HIV-1 reverse transcriptase inhibitors

    Science.gov (United States)

    Patel, Rikin D.; Kumar, Sivakumar Prasanth; Patel, Chirag N.; Shankar, Shetty Shilpa; Pandya, Himanshu A.; Solanki, Hitesh A.

    2017-10-01

    The traditional drug design strategy centrally focuses on optimizing binding affinity with the receptor target and evaluates pharmacokinetic properties at a later stage which causes high rate of attrition in clinical trials. Alternatively, parallel screening allows evaluation of these properties and affinity simultaneously. In a case study to identify leads from natural compounds with experimental HIV-1 reverse transcriptase (RT) inhibition, we integrated various computational approaches including Caco-2 cell permeability QSAR model with applicability domain (AD) to recognize drug-like natural compounds, molecular docking to study HIV-1 RT interactions and shape similarity analysis with known crystal inhibitors having characteristic butterfly-like model. Further, the lipophilic properties of the compounds refined from the process with best scores were examined using lipophilic ligand efficiency (LLE) index. Seven natural compound hits viz. baicalien, (+)-calanolide A, mniopetal F, fagaronine chloride, 3,5,8-trihydroxy-4-quinolone methyl ether derivative, nitidine chloride and palmatine, were prioritized based on LLE score which demonstrated Caco-2 well absorption labeling, encompassment in AD structural coverage, better receptor affinity, shape adaptation and permissible AlogP value. We showed that this integrative approach is successful in lead exploration of natural compounds targeted against HIV-1 RT enzyme.

  16. Effects of protease inhibitors on radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.

    1981-01-01

    We have investigated the effects of three protease inhibitors, antipain, leupeptin, and soybean trypsin inhibitor, on the induction of oncogenic transformation in mouse C3H10T 1/2 cells by X-rays. The patterns of inhibition by the three protease inhibitors were different. Antipain was the most effective, having the ability to suppress completely radiation transformation as well as radiation transformation enhanced by the phorbol ester promoting agent 12-O-tetradecanoylphorbol-13-acetate. The fact that antipain could suppress transformation when present for only 1 day following irradiation suggests that an effect on a DNA repair process might be important in its action. Leupeptin was less effective than antipain in its inhibition of radiation transformation. Soybean trypsin inhibitor suppressed only the promotional effects of 12-O-tetradecanoylphorbol-13-acetate on transformation. Our results suggest that there may be more than one protease involved in carcinogenesis

  17. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  18. Apatinib Inhibits Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Zhijian Jin

    2017-12-01

    Full Text Available Background/Aims: Anaplastic thyroid carcinoma (ATC is one of the most lethal human malignancies, and there is no efficient method to slow its process. Apatinib, a novel tyrosine kinase inhibitor (TKI, has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma patients. However, the effects of Apatinib in ATC are still unknown. Methods: In this study, we explored the effects and mechanisms of Apatinib on tumor growth and angiogenesis in vitro and in vitro in ATC cells. Angiogenesis antibodies array was utilized to detect the expression of angiogenesis-related genes after Apatinib treatment in ATC cells. In addition, we used Akt activator, Akt inhibitor and GSK3β inhibitor to further study the mechanism for how Apatinib suppressed angiogenesis. Results: Apatinib treatment could suppress the growth of ATC cells in a dose- and time-dependent manner via inducing apoptosis and blocking cell cycle progression at G0/G1 phase. Moreover, Apatinib treatment decreased the expression of angiogenin (ANG and inhibited angiogenesis of ATC cells in vitro and in vitro. We further confirmed that recombinant human ANG (rhANG significantly abrogated Apatinib-mediated anti-angiogenic ability in ATC cells. Additionally, Apatinib treatment decreased the level of p-Akt and p-GSK3β. Moreover, the Apatinib-mediated decrease of ANG and anti-angiogenic ability were partly reversed when an Akt activator, SC79, was administered. Furthermore, the anti-angiogenic ability of Apatinib can be enhanced in the presence of Akt inhibitor, and the inhibition of GSK3β attenuated the anti-angiogenic ability of Apatinib. Conclusion: Our results demonstrated that Apatinib treatment inhibited tumor growth, and Apatinib-induced suppression of Akt/GSK3β/ANG signaling pathway may play an important role in the inhibition of angiogenesis in ATC, supporting a potential therapeutic approach for using Apatinib in the treatment of ATC.

  19. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  20. Efficacy and safety of switching from boosted protease inhibitors plus emtricitabine and tenofovir disoproxil fumarate regimens to single-tablet darunavir, cobicistat, emtricitabine, and tenofovir alafenamide at 48 weeks in adults with virologically suppressed HIV-1 (EMERALD): a phase 3, randomised, non-inferiority trial.

    Science.gov (United States)

    Orkin, Chloe; Molina, Jean-Michel; Negredo, Eugenia; Arribas, José R; Gathe, Joseph; Eron, Joseph J; Van Landuyt, Erika; Lathouwers, Erkki; Hufkens, Veerle; Petrovic, Romana; Vanveggel, Simon; Opsomer, Magda

    2018-01-01

    Simplified regimens with reduced pill burden and fewer side-effects are desirable for people living with HIV. We investigated the efficacy and safety of switching to a single-tablet regimen of darunavir, cobicistat, emtricitabine, and tenofovir alafenamide versus continuing a regimen of boosted protease inhibitor, emtricitabine, and tenofovir disoproxil fumarate. EMERALD was a phase-3, randomised, active-controlled, open-label, international, multicentre trial, done at 106 sites across nine countries in North America and Europe. HIV-1-infected adults were eligible to participate if they were treatment-experienced and virologically suppressed (viral load <50 copies per mL for ≥2 months; one viral load of 50-200 copies per mL was allowed within 12 months before screening), and patients with a history of virological failure on non-darunavir regimens were allowed. Randomisation was by computer-generated interactive web-response system and stratified by boosted protease inhibitor use at baseline. Patients were randomly assigned (2:1) to switch to the open-label study regimen or continue the control regimen. The study regimen consisted of a fixed-dose tablet containing darunavir 800 mg, cobicistat 150 mg, emtricitabine 200 mg, and tenofovir alafenamide 10 mg, which was taken once per day for 48 weeks. The primary outcome was the proportion of participants with virological rebound (confirmed viral load ≥50 copies per mL or premature discontinuations, with last viral load ≥50 copies per mL) cumulative through week 48; we tested non-inferiority (4% margin) of the study regimen versus the control regimen in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT02269917. The study began on April 1, 2015, and the cutoff date for the week 48 primary analysis was Feb 24, 2017. Of 1141 patients (763 in the study group and 378 in the control group), 664 (58%) had previously received five or more antiretrovirals, including screening

  1. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  2. Contribution of suppression difficulty and lessons learned in forecasting fire suppression operations productivity: A methodological approach

    Science.gov (United States)

    Francisco Rodríguez y Silva; Armando González-Cabán

    2016-01-01

    We propose an economic analysis using utility and productivity, and efficiency theories to provide fire managers a decision support tool to determine the most efficient fire management programs levels. By incorporating managers’ accumulated fire suppression experiences (capitalized experience) in the analysis we help fire managers...

  3. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    Science.gov (United States)

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  4. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  5. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  6. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  7. Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR

    DEFF Research Database (Denmark)

    Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard

    2009-01-01

    NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....

  8. 17-AAG enhances the cytotoxicity of flavopiridol in mantle cell lymphoma via autophagy suppression.

    Science.gov (United States)

    Xiao, Y; Guan, J

    2015-01-01

    Flavopiridol, a cyclin-dependent kinase inhibitor (CDKI), shows promising anti-tumor activity in hematologic malignancies. However, Flavopiridol-induced protective autophagy may lead to drug resistance. Here we found that Hsp90 inhibitor 17-AAG can sensitize mantle cell lymphoma (MCL) cells to flavopiridol by suppressing flavopiridol-triggered protective autophagy. The suppressing effect of 17-AAG on autophgy was mediated by Beclin1 degradation and ERK inactivation. Furthermore, 17-AAG enhanced flavopiridol-induced apoptosis and growth suppression in MCL cells. Our study may provide some insights into CDKI -targeted chemotherapies.

  9. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  10. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  11. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    Science.gov (United States)

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  12. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  13. Experimental and theoretical studies of benzoxazines corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    Full Text Available 2-Methyl-4H-benzo[d][1,3]oxazin-4-one (BZ1 and 3-amino-2-methylquinazolin-4(3H-one (BZ2 were evaluated for their corrosion inhibition properties on mild steel (MS in hydrochloric acid solution by weight loss technique and scanning electron microscopy. Results show the inhibition efficiency values depend on the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight with maximum inhibition efficiency of 89% and 65% for BZ2 and BZ1 at highest concentration of the compounds. Keywords: Methylquinazoline, Benzoxazines, Corrosion, Inhibitors

  14. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells.

    Science.gov (United States)

    Karakas, Bahriye; Ozmay, Yeliz; Basaga, Huveyda; Gul, Ozgur; Kutuk, Ozgur

    2018-05-04

    Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  16. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)

  17. Antitumorigenic effect of proteasome inhibitors on insulinoma cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Allaman-Pillet, Nathalie; Karlsen, Allan E

    2004-01-01

    inhibition of the proteasome has an antitumorigenic potential in insulinoma cells. Exposure of mouse betaTC3 insulinoma cells to the proteasome inhibitor N-Acetyl-Leu-Leu-Nle-CHO (ALLN) reduced cell viability, activated caspase-3, induced apoptosis, and suppressed insulin release. Treatment with ALLN also...

  18. microRNA-101 is a potent inhibitor of autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Wen, Jiayu; Lees, Michael

    2011-01-01

    performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we...

  19. J/Ψ suppression

    International Nuclear Information System (INIS)

    Giubellino, P.; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Boldea, V.; Bordalo, P.; Bussiere, A.; Capony, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constantinescu, S.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkaninan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Mac Cormick, M.; Macciotta, P.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Sartori, S.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Soave, C.; Sonderegger, P.; Tarrago, X.; Temnikov, P.; Topilskaya, N.S.; Usai, G.; Vale, C.; Vercellin, E.; Willis, N.

    1999-01-01

    The cross section for J/Ψ production in Pb-Pb interactions at 158 GeV per nucleon is measured at the CERN SPS by the NA50 experiment. The final results from the 1995 run are presented here together with preliminary ones from the high-statistics 1996 run. An anomalous J/Ψ suppression is observed in Pb-Pb collisions as compared to extrapolations of the previous results obtained by the NA38 experiment with proton and lighter ion beams. The results of the two runs are in good agreement. The results from the 1996 run allow the study of the onset of the anomalous suppression within the same set of data, showing evidence of a sharp change of behaviour around a value of neutral transverse energy, as measured by our electromagnetic calorimeter, of about 50 GeV

  20. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction.

    Science.gov (United States)

    Kremer, Lea; Schultz-Fademrecht, Carsten; Baumann, Matthias; Habenberger, Peter; Choidas, Axel; Klebl, Bert; Kordes, Susanne; Schöler, Hans R; Sterneckert, Jared; Ziegler, Slava; Schneider, Gisbert; Waldmann, Herbert

    2017-10-09

    Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch +/- medulloblastoma cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  2. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    2014-09-01

    Full Text Available KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.

  3. Effect of biocides and anionic homopolymeric inhibitors on the ...

    African Journals Online (AJOL)

    This paper describes the effect of biocides and of the anionic homopolymeric inhibitors on the precipitation behavior of calcium fluoride (CaF2).The efficiency of inhibitors in the presence and absence of biocides was calculated using the half-life (t1/2) approach, where 50% of the concentration has been precipitated.

  4. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  5. Investigation of the In Vitro and In Vivo efficiency of RM-532-105, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, in LAPC-4 prostate cancer cell and tumor models.

    Directory of Open Access Journals (Sweden)

    Lucie Carolle Kenmogne

    Full Text Available In the fight against androgen-sensitive prostate cancer, the enzyme 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3 is an attractive therapeutic target considering its key role in the formation of androgenic steroids. In this study, we attempted to assess the in vivo efficacy of the compound RM-532-105, an androsterone derivative developed as an inhibitor of 17β-HSD3, in the prostate cancer model of androgen-sensitive LAPC-4 cells xenografted in nude mice. RM-532-105 did not inhibit the tumor growth induced by 4-androstene-3,17-dione (4-dione; rather, the levels of the androgens testosterone (T and dihydrotestosterone (DHT increased within the tumors. In plasma, however, DHT levels increased but T levels did not. In troubleshooting experiments, the non-androgenic potential of RM-532-105 was confirmed by two different assays (LAPC-4 proliferation and androgen receptor transcriptional activity assays. The enzyme 5α-reductase was also revealed to be the predominant enzyme metabolizing 4-dione in LAPC-4 cells, yielding 5α-androstane-3,17-dione and not T. Other 17β-HSDs than 17β-HSD3 seem responsible in the androgen synthesis. From experiments with LAPC-4 cells, we fortuitously came across the interesting finding that 17β-HSD3 inhibitor RM-532-105 is concentrated inside tumors.

  6. The pressure suppression system

    International Nuclear Information System (INIS)

    Aust, E.

    1985-01-01

    Nuclear plants with boiling water reactors have a safety containment with a pressure suppression system (PSS). Proceeding on significant self-developments, today the three PSS-lines of General Electric Co. (GE), Kraftwerk Union AG (KWU) and ASEA-ATOM are predominant, which are currently represented by the MARK III type, the KWU type 72 and the BWR 75 containment. In addition, there are special developments for the nuclear ship propulsion and for the pressurized water reactors in the Soviet Union. Key design values of the PSS allow a first valuation of its loads during a hypothetical loss-of-coolant accident. (orig.) [de

  7. Radiation effluent suppression system

    International Nuclear Information System (INIS)

    Watanabe, Atsushi.

    1992-01-01

    In a radiation release suppression system upon accident, an electromotive valve, a pneumatic operation valve or a manual operation valve is disposed to gas ventilation pipelines which are extended from both of a dry well and a wet well of a reactor container to a stuck. In addition, a combination filter of a metal fiber filter made of stainless steel etc. and an activated carbon fiber filter is disposed in the midway of pipelines in a reactor building. With such a constitution, the inside of the container can be depressurized (prevention of ruptures) and the amount of radioactive substances released to circumstances is remarkably suppressed by the effect of radioactive substance capturing effect of the metal fiber filter made of stainless steel etc. disposed in the vent pipe in the container and a radioactive substance capturing effect by the combination filter of the metal fiber filter made of stainless steel, etc. and the activated carbon fiber filter disposed in the gas ventilation pipelines even upon occurrence of an accident exceeding design basis. Systems can be simplified and minimized, and cost down can also be attained. (N.H.)

  8. Planck-suppressed operators

    International Nuclear Information System (INIS)

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; McAllister, Liam

    2014-01-01

    We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale Λ. We study a simple effective field theory in which a hidden sector field is coupled to a shift-symmetric inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must be suppressed by a very high scale Λ > 10 5 H. Even if the hidden sector has Gaussian correlations, nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations. In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data requires Λ > 10 2 H

  9. Telomerase Inhibitors from Natural Products and Their Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-12-01

    Full Text Available Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.

  10. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil.

    Science.gov (United States)

    Bryant, Victoria L; Elias, Roy M; McCarthy, Susan M; Yeatman, Timothy J; Alexandrow, Mark G

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is very difficult to treat with conventional chemotherapeutic regimens. Gemcitabine and 5-fluorouracil are used in the management of PDAC and act by indirectly blocking replicative forks. However, these drugs are not highly effective at suppressing disease progression, indicating a need for the development of innovative therapeutic approaches. Recent studies indicate that suppression of the MCM helicase may provide a novel means to sensitize cancer cells to chemotherapeutic agents that inhibit replicative fork progression. Mammalian cells assemble more MCM complexes on DNA than are required to start S-phase. The excess MCM complexes function as backup initiation sites under conditions of replicative stress. The current study provides definitive evidence that cosuppression of the excess/backup MCM complexes sensitizes PDAC tumor lines to both gemcitabine and 5-FU, leading to increased loss of proliferative capacity compared with drugs alone. This occurs because reduced MCM levels prevent efficient recovery of DNA replication in tumor cells exposed to drug. PDAC tumor cells are more sensitive to MCM loss in the presence of gemcitabine than are nontumor, immortalized epithelial cells. Similarly, colon tumor cells are rendered less viable when cosuppression of MCM complexes occurs during exposure to the crosslinking agent oxaliplatin or topoisomerase inhibitor etoposide. These studies demonstrate that suppressing the backup complement of MCM complexes provides an effective sensitizing approach with the potential to increase the therapeutic index of drugs used in the clinical management of PDAC and other cancers. ©2015 American Association for Cancer Research.

  11. Real-life prevalence of resistance-associated variants against non-structural protein 5A inhibitors and efficiency of Daclatasvir + Asunaprevir therapy in Korean patients with genotype 1b hepatitis C.

    Science.gov (United States)

    Yu, Jung Hwan; Lee, Jung Il; Lee, Kwan Sik; Kim, Ja Kyung

    2017-08-24

    Direct-acting antivirals (DAAs) for chronic hepatitis C (CHC) treatment are tolerable and highly effective in a shorter period of time than before. However, resistance-associated variants (RAVs) can affect the efficacy of DAAs. The aim of this study was to investigate the real-life prevalence of RAVs against non-structural protein 5A (NS5A) inhibitors in Korean patients with genotype 1b chronic hepatitis C. All consecutive patients with CHC genotype 1b who underwent a RAV test at a single referral hospital were enrolled. A total of 142 patients (male 53, female 89) were tested for RAVs. The average age of the patients was 58 years. Liver cirrhosis was found in 34.5% (49/142) of patients, and 19.0% (29/142) of patients had previously undergone interferon-based treatment. Twenty-nine patients (20.4%) had RAVs (Y93 or L31). Y93H, L31, or Y93H with L31 were detected in 22 (15.5%), 8 (5.6%), and 1 (0.7%) patients, respectively. The presence of RAV was not affected by previous interferon-based treatment or by the existence of liver cirrhosis. Among 113 patients without baseline NS5A RAVs, 72 patients started daclatasvir (DCV) + asunaprevir (ASV) treatment and 95% (68/72) patients achieved virologic response at week 4. Virologic response at end of treatment and sustained virologic response at 12 weeks after treatment were achieved by 94% (68/72) and 94% (68/72), respectively. In Korean patients with genotype 1b CHC, 20.4% (29 of 142) of patients showed RAVs against NS5A inhibitors. Patient without RAVs who received treatment with DCV + ASV showed high virologic response rates in Korea.

  12. Polyaspartic acid as a green corrosion inhibitor for carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Cui, R. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China); Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500 (China); Gu, N.; Li, C. [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China)

    2011-04-15

    The inhibitor effect of the environmentally friendly corrosion inhibitor polyaspartic acid (PASP) on the corrosion of carbon steel in 0.5 M H{sub 2}SO{sub 4} was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). Polarization curve results clearly reveal the fact that PASP is a good anode-type inhibitor. EIS results confirm its corrosion inhibition ability. The inhibition efficiency increases with increasing PASP concentration, and the maximum inhibition efficiency was 80.33% at 10 C. SEM reveals that a protective film forms on the surface of the inhibited sample. The adsorption of this inhibitor is found to follow the Freundlich adsorption isotherm. A mechanism is proposed to explain the inhibitory action of the corrosion inhibitor. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Suppressive mechanisms in visual motion processing: From perception to intelligence.

    Science.gov (United States)

    Tadin, Duje

    2015-10-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  15. Prevention and suppression of metal packing fires.

    Science.gov (United States)

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  16. Evaluation of the efficiency of silicone polyether additives as foam inhibitor in crude oil; Avaliacao da eficiencia de aditivos a base de silicone polieter como inibidores de espuma em petroleo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This work evaluates the chemical and physico-chemical properties of commercial anti-foam products based on silicone polyethers along with their efficiency in inhibiting foaming. The commercial surfactants were characterized by nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), determination of solubility in different solvents and measurement of the surface and interfacial tensions. A method to test the formation of foam in oil was used to mimic the operating conditions in gas-oil separators. The results show that the most polar additive was the most efficient in breaking up the foam. (author)

  17. Glechoma hederacea Suppresses RANKL-mediated Osteoclastogenesis.

    Science.gov (United States)

    Hwang, J K; Erkhembaatar, M; Gu, D R; Lee, S H; Lee, C H; Shin, D M; Lee, Y R; Kim, M S

    2014-07-01

    Glechoma hederacea (GH), commonly known as ground-ivy or gill-over-the-ground, has been extensively used in folk remedies for relieving symptoms of inflammatory disorders. However, the molecular mechanisms underlying the therapeutic action of GH are poorly understood. Here, we demonstrate that GH constituents inhibit osteoclastogenesis by abrogating receptor activator of nuclear κ-B ligand (RANKL)-induced free cytosolic Ca(2+) ([Ca(2+)]i) oscillations. To evaluate the effect of GH on osteoclastogenesis, we assessed the formation of multi-nucleated cells (MNCs), enzymatic activity of tartrate-resistant acidic phosphatase (TRAP), expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and [Ca(2+)]i alterations in response to treatment with GH ethanol extract (GHE) in primarily cultured bone marrow-derived macrophages (BMMs). Treatment of RANKL-stimulated or non-stimulated BMMs with GHE markedly suppressed MNC formation, TRAP activity, and NFATc1 expression in a dose-dependent manner. Additionally, GHE treatment induced a large transient elevation in [Ca(2+)]i while suppressing RANKL-induced [Ca(2+)]i oscillations, which are essential for NFATc1 activation. GHE-evoked increase in [Ca(2+)]i was dependent on extracellular Ca(2+) and was inhibited by 1,4-dihydropyridine (DHP), inhibitor of voltage-gated Ca(2+) channels (VGCCs), but was independent of store-operated Ca(2+) channels. Notably, after transient [Ca(2+)] elevation, treatment with GHE desensitized the VGCCs, resulting in an abrogation of RANKL-induced [Ca(2+)]i oscillations and MNC formation. These findings demonstrate that treatment of BMMs with GHE suppresses RANKL-mediated osteoclastogenesis by activating and then desensitizing DHP-sensitive VGCCs, suggesting potential applications of GH in the treatment of bone disorders, such as periodontitis, osteoporosis, and rheumatoid arthritis. © International & American Associations for Dental Research.

  18. Screening for suppression in young children: the Polaroid Suppression test

    NARCIS (Netherlands)

    Pott, J.W.R.; Oosterveen, DK; Van Hof-van Duin, J

    1998-01-01

    Background: Assessment of monocular visual impairment during screening of young children is often hampered by lack of cooperation. Because strabismus, amblyopia, or anisometropia may lead to monocular suppression during binocular viewing conditions, a test was developed to screen far suppression in

  19. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  20. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum.

    Science.gov (United States)

    Matsuoka, Masaki; Kumar, Ashutosh; Muddassar, Muhammad; Matsuyama, Akihisa; Yoshida, Minoru; Zhang, Kam Y J

    2017-02-27

    The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N 2 O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N 2 O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.

  1. Pressure suppression device

    International Nuclear Information System (INIS)

    Yoshida, Toyokazu.

    1976-01-01

    Purpose: To provide a pressure suppression device for a gas cooled reactor wherein the coolant is discharged in a reactor building by a loss-of-coolant accident or the like, the increase in the pressure and temperature is controlled and thermal energy of the discharged coolant of high temperature and high pressure can be absorbed. Constitution: A low heat source unit is provided at the upper part in an inner space of a reactor building provided around the reactor, and at the upper part of the low heat source unit a stirring fan for mixing gas within the building, and a low heat source circulating the low heat source through a pipe is connected to the low heat source unit. The low heat source unit is provided with the pipe arranged in a spiral shape at the upper part of the space of the unit, and a large number of fins are provided at the outer surface of the pipe for increasing the transmission area and improve the heat exchange. When the coolant of high temperature and high pressure has been lost in the building, the thermal energy of the coolant is absorbed by the low heat source unit. (Aizawa, K.)

  2. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Aromatase inhibitors in pediatrics.

    Science.gov (United States)

    Wit, Jan M; Hero, Matti; Nunez, Susan B

    2011-10-25

    Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole--currently approved as adjuvant therapy for breast cancer--have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz-Jeghers syndrome, McCune-Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz-Jeghers and McCune-Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

  4. Improved attractants for enhancing tsetse fly suppression

    International Nuclear Information System (INIS)

    2003-09-01

    At the initiation of this co-ordinated research project (CRP), the available visually attractant devices and odours for entomological monitoring and for suppression of tsetse fly populations were not equally effective against all economically important tsetse fly species. For species like G. austeni, G. brevipalpis, G. swynnertoni and some species of the PALPALIS-group of tsetse flies no sufficiently effective combinations of visual or odour attractants were available for efficient suppression and standardized monitoring as part of an operational integrated intervention campaign against the tsetse and trypanosomosis (T and T) problem. The Co-ordinated Research Project on Improved Attractants for Enhancing the Efficiency of Tsetse Fly Suppression Operations and Barrier Systems used in Tsetse Control/Eradication Campaigns involved (a) the identification, synthesis and provision of candidate kairomones, their analogues and of dispensers; (b) laboratory screening of synthesised candidate kairomones through electrophysiological studies and wind tunnel experiments; (c) field tests of candidate kairomones alone or as part of odour blends, in combination with available and or new trap designs; and (d) analysis of hydrocarbons that influence tsetse sexual behaviour. The CRP accomplished several main objectives, namely: - The screening of new structurally related compounds, including specific stereoisomers, of known tsetse attractants resulted in the identification of several new candidate odour attractants with promising potential. - An efficient two-step synthetic method was developed for the pilot plant scale production of 3-n-propyphenol, synergistic tsetse kairomone component. - Electrophysiological experiments complemented with wind tunnel studies provided an efficient basis for the laboratory screening of candidate attractants prior to the initiation of laborious field tests. - New traps were identified and modifications of existing traps were tested for some species

  5. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysatembt

    NARCIS (Netherlands)

    Wierckx, N.; Koopman, F.; Bandounas, L.; Winde, J.H.de; Ruijssenaars, H.J.

    2010-01-01

    The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that

  6. The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415

    International Nuclear Information System (INIS)

    Zhang, Wei; Chen, Bingyu; Zhang, Yu; Li, Kaiqiang; Hao, Ke; Jiang, Luxi; Wang, Ying; Mou, Xiaozhou; Xu, Xiaodong; Wang, Zhen

    2017-01-01

    Dysregulation of mammalian target of rapamycin (mTOR) in hepatocellular carcinoma (HCC) represents a valuable treatment target. Recent studies have developed a highly-selective and potent mTOR kinase inhibitor, CZ415. Here, we showed that nM concentrations of CZ415 efficiently inhibited survival and induced apoptosis in HCC cell lines (HepG2 and Huh-7) and primary-cultured human HCC cells. Meanwhile, CZ415 inhibited proliferation of HCC cells, more potently than mTORC1 inhibitors (rapamycin and RAD001). CZ415 was yet non-cytotoxic to the L02 human hepatocytes. Mechanistic studies showed that CZ415 disrupted assembly of mTOR complex 1 (mTORC1) and mTORC2 in HepG2 cells. Meanwhile, activation of mTORC1 (p-S6K1) and mTORC2 (p-AKT, Ser-473) was almost blocked by CZ415. In vivo studies revealed that oral administration of CZ415 significantly suppressed HepG2 xenograft tumor growth in severe combined immuno-deficient (SCID) mice. Activation of mTORC1/2 was also largely inhibited in CZ415-treated HepG2 tumor tissue. Together, these results show that CZ415 blocks mTORC1/2 activation and efficiently inhibits HCC cell growth in vitro and in vivo. - Highlights: • CZ415 is anti-survival and pro-apoptotic to hepatocellular carcinoma (HCC) cells. • CZ415 inhibits HCC cell proliferation, more efficiently than mTORC1 inhibitors. • CZ415 blocks assembly and activation of both mTORC1 and mTORC2 in HCC cells. • CZ415 oral administration inhibits HepG2 tumor growth in SCID mice. • mTORC1/2 activation in HepG2 tumor is inhibited with CZ415 administration.

  7. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  8. Subjective duration distortions mirror neural repetition suppression.

    Science.gov (United States)

    Pariyadath, Vani; Eagleman, David M

    2012-01-01

    Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  9. Inhibition of p70S6K1 Activation by Pdcd4 Overcomes the Resistance to an IGF-1R/IR Inhibitor in Colon Carcinoma Cells.

    Science.gov (United States)

    Zhang, Yan; Wang, Qing; Chen, Li; Yang, Hsin-Sheng

    2015-03-01

    Agents targeting insulin-like growth factor 1 receptor (IGF-1R) are being actively examined in clinical trials. Although there has been some initial success of single-agent targeting IGF-1R, attempts in later studies failed because of resistance. This study aimed to understand the effects of programmed cell death 4 (Pdcd4) on the chemosensitivity of the IGF-1R inhibitor OSI-906 in colorectal cancer cells and the mechanism underlying this impact. Using OSI-906-resistant and -sensitive colorectal cancer cells, we found that the Pdcd4 level directly correlates with cell chemosensitivity to OSI-906. In addition, tumors derived from Pdcd4 knockdown cells resist the growth inhibitory effect of OSI-906 in a colorectal cancer xenograft mouse model. Moreover, Pdcd4 enhances the antiproliferative effect of OSI-906 in resistant cells through suppression of p70S6K1 activation. Knockdown of p70S6K1, but not p70S6K2, significantly increases the chemosensitivity of OSI-906 in cultured colorectal cancer cells. Furthermore, the combination of OSI-906 and PF-4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906-resistant colon tumor cells in vitro and in vivo. Taken together, activation of p70S6K1 that is inhibited by Pdcd4 is essential for resistance to the IGF-1R inhibitor in colon tumor cells, and the combinational treatment of OSI-906 and PF-4708671 results in enhanced antiproliferation effects in colorectal cancer cells in vitro and in vivo, providing a novel venue to overcome the resistance to the IGF-1R inhibitor in treating colorectal cancer. ©2015 American Association for Cancer Research.

  10. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  11. JAK inhibitors in autoinflammation.

    Science.gov (United States)

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  12. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  13. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation

    NARCIS (Netherlands)

    Waghmode, Tatoba R.; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied.

  14. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  15. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor.

    Science.gov (United States)

    Honma, Daisuke; Kanno, Osamu; Watanabe, Jun; Kinoshita, Junzo; Hirasawa, Makoto; Nosaka, Emi; Shiroishi, Machiko; Takizawa, Takeshi; Yasumatsu, Isao; Horiuchi, Takao; Nakao, Akira; Suzuki, Keisuke; Yamasaki, Tomonori; Nakajima, Katsuyoshi; Hayakawa, Miho; Yamazaki, Takanori; Yadav, Ajay Singh; Adachi, Nobuaki

    2017-10-01

    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 and represses gene expression to regulate cell proliferation and differentiation. Enhancer of zeste homolog 2 (EZH2) or its close homolog EZH1 functions as a catalytic subunit of PRC2, so there are two PRC2 complexes containing either EZH2 or EZH1. Tumorigenic functions of EZH2 and its synthetic lethality with some subunits of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes have been observed. However, little is known about the function of EZH1 in tumorigenesis. Herein, we developed novel, orally bioavailable EZH1/2 dual inhibitors that strongly and selectively inhibited methyltransferase activity of both EZH2 and EZH1. EZH1/2 dual inhibitors suppressed trimethylation of histone H3 lysine 27 in cells more than EZH2 selective inhibitors. They also showed greater antitumor efficacy than EZH2 selective inhibitor in vitro and in vivo against diffuse large B-cell lymphoma cells harboring gain-of-function mutation in EZH2. A hematological cancer panel assay indicated that EZH1/2 dual inhibitor has efficacy against some lymphomas, multiple myeloma, and leukemia with fusion genes such as MLL-AF9, MLL-AF4, and AML1-ETO. A solid cancer panel assay demonstrated that some cancer cell lines are sensitive to EZH1/2 dual inhibitor in vitro and in vivo. No clear correlation was detected between sensitivity to EZH1/2 dual inhibitor and SWI/SNF mutations, with a few exceptions. Severe toxicity was not seen in rats treated with EZH1/2 dual inhibitor for 14 days at drug levels higher than those used in the antitumor study. Our results indicate the possibility of EZH1/2 dual inhibitors for clinical applications. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of

  17. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  18. Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms.

    Science.gov (United States)

    Achterberg, E J Marijke; Trezza, Viviana; Siviy, Stephen M; Schrama, Laurens; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J

    2014-04-01

    Social play behavior is a characteristic form of social behavior displayed by juvenile and adolescent mammals. This social play behavior is highly rewarding and of major importance for social and cognitive development. Social play is known to be modulated by neurotransmitter systems involved in reward and motivation. Interestingly, psychostimulant drugs, such as amphetamine and cocaine, profoundly suppress social play, but the neural mechanisms underlying these effects remain to be elucidated. In this study, we investigated the pharmacological underpinnings of amphetamine- and cocaine-induced suppression of social play behavior in rats. The play-suppressant effects of amphetamine were antagonized by the alpha-2 adrenoreceptor antagonist RX821002 but not by the dopamine receptor antagonist alpha-flupenthixol. Remarkably, the effects of cocaine on social play were not antagonized by alpha-2 noradrenergic, dopaminergic, or serotonergic receptor antagonists, administered either alone or in combination. The effects of a subeffective dose of cocaine were enhanced by a combination of subeffective doses of the serotonin reuptake inhibitor fluoxetine, the dopamine reuptake inhibitor GBR12909, and the noradrenaline reuptake inhibitor atomoxetine. Amphetamine, like methylphenidate, exerts its play-suppressant effect through alpha-2 noradrenergic receptors. On the other hand, cocaine reduces social play by simultaneous increases in dopamine, noradrenaline, and serotonin neurotransmission. In conclusion, psychostimulant drugs with different pharmacological profiles suppress social play behavior through distinct mechanisms. These data contribute to our understanding of the neural mechanisms of social behavior during an important developmental period, and of the deleterious effects of psychostimulant exposure thereon.

  19. Tagging and suppression of pileup jets

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total mo- mentum of tracks in the jet which is associated to the primary vertex. Imposing a minimum on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event ($N_{Vtx}$). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of $N_{Vtx}$. A multivariate combina- tion of two such variables called the jet-vertex-tagger is constructed. In addition, it is shown that jet-vertex association can be applied to large-R jets, providing a track-based grooming technique that is as powerful as calorimeter-based trimming but based on complementary trackin...

  20. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  1. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  2. Regorafenib suppresses sinusoidal obstruction syndrome in rats.

    Science.gov (United States)

    Okuno, Masayuki; Hatano, Etsuro; Nakamura, Kojiro; Miyagawa-Hayashino, Aya; Kasai, Yosuke; Nishio, Takahiro; Seo, Satoru; Taura, Kojiro; Uemoto, Shinji

    2015-02-01

    Sinusoidal obstruction syndrome (SOS), a form of drug-induced liver injury related to oxaliplatin treatment, is associated with postoperative morbidity after hepatectomy. This study aimed to examine the impact of regorafenib, the first small-molecule kinase inhibitor to show efficacy against metastatic colorectal cancer, on a rat model of SOS. Rats with monocrotaline (MCT)-induced SOS were divided into two groups according to treatment with either regorafenib (6 mg/kg) or vehicle alone, which were administered at 12 and 36 h, respectively, before MCT administration. Histopathologic examination and serum biochemistry tests were performed 48 h after MCT administration. Sinusoidal endothelial cells were evaluated by immunohistochemistry and electron microscopy. To examine whether regorafenib preserved remnant liver function, a 30% hepatectomy was performed in each group. The rats in the vehicle group displayed typical SOS features, whereas these features were suppressed in the regorafenib group. The total SOS scores were significantly lower in the regorafenib group than in the vehicle group. Immunohistochemistry and electron microscopy showed that regorafenib had a protective effect on sinusoidal endothelial cells. The postoperative survival rate after 7 d was significantly better in the regorafenib group than that in the vehicle group (26.7% versus 6.7%, P Regorafenib reduced the phosphorylation of extracellular signal-regulated kinase, which induced matrix metalloproteinase-9 (MMP-9) activation and decreased the activity of MMP-9, one of the crucial mediators of SOS development. Regorafenib suppressed MCT-induced SOS, concomitant with attenuating extracellular signal-regulated kinase phosphorylation, and MMP-9 activation, suggesting that regorafenib may be a favorable agent for use in combination with oxaliplatin-based chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  4. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  5. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  6. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2016-11-01

    Full Text Available The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl-2-oleylimidazoline (AEOI and 1-(2-oleylamidoethyl-2-oleylimidazoline (OAEOI as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl and the corrosion inhibition of N80 steel in hydrochloric acid medium containing inhibitors was tested by weight loss, potentiodynamic polarization and AC impedance measurements. Influence of temperature (298–323 K on the inhibition behavior was studied. Surface studies were performed by using FTIR spectra and SEM. Both the inhibitors, AEOI and OAEOI at 150 ppm concentration show maximum efficiency 90.26% and 96.23%, respectively at 298 K in 15% HCl solution. Both the inhibitors act as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of N80 steel is the root cause of corrosion inhibition.

  7. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure

  9. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  10. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  11. Myeloma cells suppress osteoblasts through sclerostin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, S; Brunetti, G; Oranger, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Mori, G [Department of Biomedical Science, University of Foggia, Foggia (Italy); Sardone, F [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Specchia, G; Rinaldi, E; Curci, P; Liso, V [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Passeri, G [Department of Internal Medicine and Biomedical Sciences, Center for Metabolic Bone Diseases, University of Parma, Parma (Italy); Zallone, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Rizzi, R [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Grano, M [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy)

    2011-06-01

    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM.

  12. High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis

    CSIR Research Space (South Africa)

    Van den Berg, N

    2004-11-01

    Full Text Available Efficient construction of cDNA libraries enriched for differentially expressed transcripts is an important first step in many biological investigations. We present a quantitative procedure for screening cDNA libraries constructed by suppression...

  13. Pilot-Induced Oscillation Suppression by Using 1 Adaptive Control

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2012-01-01

    research activities that aim to alleviate this problem. In this paper, the L1 adaptive controller has been introduced to suppress the PIO, which is caused by rate limiting and pure time delay. Due to its architecture, the L1 adaptive controller will achieve a desired response with fast adaptation. The analysis of PIO and its suppression by L1 adaptive controller are presented in detail in the paper. The simulation results indicate that the L1 adaptive control is efficient in solving this kind of problem.

  14. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  15. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  16. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  17. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  18. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Streptomyces spp.), and the other part was not inoculated. Both parts were composted under equivalent conditions. Inoculation led to a slightly shorter period of increasing DOC and respiration activity. It did not influence the temperature profile and phytotoxicity of the mixtures. In contrast, the suppressiveness of the composts towards Fusarium oxysporum increased by 1.2-fold after 60 days, although the inoculated compost mixtures became suppressive 30-58 days earlier. The compost mixture prepared from CM, ChM and CW was the most suppressive one, both in its inoculated and non-inoculated variants. It was therefore used in further experiments. Further, we were searching for the optimal doses of CM+ChM+CW compost's amendments. Amoung several does checked (1%, 5%, 10%, 15%, 20% and 25%), a dose of 20% was demonstrated to be the most effective and resulted in disease suppression of 84% after 21 day of plant incubation. From the three amendment schemes investigated (1 - once before vegetation season, 2 - twice before vegetation season with one month break between amendments, half of the dose each time, 3 - twice, once before winter frost simulation, once before vegetation season, half of the dose each time), the first scheme was the most efficient one. After a single amendment with 20% of compost, soils were suppressive during two consecutive vegetation periods.

  19. Subjective duration distortions mirror neural repetition suppression.

    Directory of Open Access Journals (Sweden)

    Vani Pariyadath

    Full Text Available Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli followed by a line presented at a different orientation (oddball stimulus. We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  20. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  1. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  2. Accentuation-suppression and scaling

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Bundesen, Claus

    2012-01-01

    The limitations of the visual short-term memory (VSTM) system have become an increasingly popular field of study. One line of inquiry has focused on the way attention selects objects for encoding into VSTM. Using the framework of the Theory of Visual Attention (TVA; Bundesen, 1990 Psychological...... a scaling mechanism modulating the decision bias of the observer and also through an accentuation-suppression mechanism that modulates the degree of subjective relevance of objects, contracting attention around fewer, highly relevant objects while suppressing less relevant objects. These mechanisms may...

  3. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Pantouris, Georgios; Mowat, Christopher G., E-mail: C.G.Mowat@ed.ac.uk

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  4. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  5. Antioxidant action of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1'-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to tert-butyl hydroperoxide.

    Science.gov (United States)

    Prnova, Marta Soltesova; Ballekova, Jana; Majekova, Magdalena; Stefek, Milan

    2015-01-01

    The subject of this study was 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (compound 1), an efficient aldose reductase inhibitor of high selectivity. The antioxidant action of 1 was investigated in greater detail by employing a 1,1'-diphenyl-2-picrylhydrazyl (DPPH) test and in the system of isolated rat erythrocytes. First, the compound was subjected to the DPPH test. Second, the overall antioxidant action of the compound was studied in the cellular system of isolated rat erythrocytes oxidatively stressed by free radicals derived from the lipophilic tert-butyl hydroperoxide. The uptake kinetics of 1 was studied and osmotic fragility of the erythrocytes was evaluated. The DPPH test revealed significant antiradical activity of 1. One molecule of 1 was found to quench 1.48 ± 0.06 DPPH radicals. In the system of isolated erythrocytes, the compound was readily taken up by the cells followed by their protection against free radical-initiated hemolysis. Osmotic fragility of the erythrocytes was not affected by 1. The results demonstrated the ability of 1 to scavenge DPPH and to protect intact erythrocytes against oxidative damage induced by peroxyl radicals. By affecting both the polyol pathway and oxidative stress, the compound represents an example of a promising agent for multi-target pharmacology of diabetic complications.

  6. Optimal digital filtering for tremor suppression.

    Science.gov (United States)

    Gonzalez, J G; Heredia, E A; Rahman, T; Barner, K E; Arce, G R

    2000-05-01

    Remote manually operated tasks such as those found in teleoperation, virtual reality, or joystick-based computer access, require the generation of an intermediate electrical signal which is transmitted to the controlled subsystem (robot arm, virtual environment, or a cursor in a computer screen). When human movements are distorted, for instance, by tremor, performance can be improved by digitally filtering the intermediate signal before it reaches the controlled device. This paper introduces a novel tremor filtering framework in which digital equalizers are optimally designed through pursuit tracking task experiments. Due to inherent properties of the man-machine system, the design of tremor suppression equalizers presents two serious problems: 1) performance criteria leading to optimizations that minimize mean-squared error are not efficient for tremor elimination and 2) movement signals show ill-conditioned autocorrelation matrices, which often result in useless or unstable solutions. To address these problems, a new performance indicator in the context of tremor is introduced, and the optimal equalizer according to this new criterion is developed. Ill-conditioning of the autocorrelation matrix is overcome using a novel method which we call pulled-optimization. Experiments performed with artificially induced vibrations and a subject with Parkinson's disease show significant improvement in performance. Additional results, along with MATLAB source code of the algorithms, and a customizable demo for PC joysticks, are available on the Internet at http:¿tremor-suppression.com.

  7. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    International Nuclear Information System (INIS)

    Li, Hua; Lee, Hwa Jin; Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young; Ryu, Jae-Ha

    2014-01-01

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer

  8. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Lee, Hwa Jin [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of); Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Ryu, Jae-Ha, E-mail: ryuha@sookmyung.ac.kr [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)

    2014-01-03

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

  9. DGAT inhibitors for obesity.

    Science.gov (United States)

    Matsuda, Daisuke; Tomoda, Hiroshi

    2007-10-01

    Obesity is characterized by the accumulation of triacylglycerol in adipocytes. Diacylglycerol acyltransferase (DGAT) catalyzes the final reaction of triacylgycerol synthesis. Two isozymes of DGAT, DGAT1 and DGAT2, have been reported. Increased DGAT2 activity has a role in steatosis, while DGAT1 plays a role in very (V)LDL synthesis; increased plasma VLDL concentrations may promote obesity and thus DGAT1 is considered a potential therapeutic target of inhibition for obesity control. Several DGAT inhibitors of natural and synthetic origin have been reported, and their future prospect as anti-obesity drugs is discussed in this review.

  10. Prodrugs of herpes simplex thymidine kinase inhibitors.

    Science.gov (United States)

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  11. Suppression of phase synchronisation in network based on cat's brain.

    Science.gov (United States)

    Lameu, Ewandson L; Borges, Fernando S; Borges, Rafael R; Iarosz, Kelly C; Caldas, Iberê L; Batista, Antonio M; Viana, Ricardo L; Kurths, Jürgen

    2016-04-01

    We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.

  12. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  13. Suppression of fertility in adult cats

    DEFF Research Database (Denmark)

    Goericke-Pesch, Sandra Kathrin; Wehrend, A.; Georgiev, P.

    2014-01-01

    /needed? (iii) sex of the animal? New effective and available methods for hormonal contraception include melatonin implants for short-term post ponement of oestrus in adult queens and slow-release GnRH-agonist implants containing deslorelin (Suprelorin®) for short- and long-term contraception in male and female......Contents: Cats are animals with highly efficient reproduction, clearly pointing to a need for suppression of fertility. Although surgical contraception is highly effective, it is not always the method of choice. This is predominantly because it is cost-intensive, time-consuming and irreversible......, with the latter being of major importance for cat breeders. This article reviews the use of progestins, scleroting agents, immunocontraception, melatonin, GnRH antagonists and finally, GnRH agonists, in adult male and female cats in detail, according to the present state of the art. By now, various scientific...

  14. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  15. A novel method for screening the glutathione transferase inhibitors

    Directory of Open Access Journals (Sweden)

    Węgrzyn Grzegorz

    2009-03-01

    Full Text Available Abstract Background Glutathione transferases (GSTs belong to the family of Phase II detoxification enzymes. GSTs catalyze the conjugation of glutathione to different endogenous and exogenous electrophilic compounds. Over-expression of GSTs was demonstrated in a number of different human cancer cells. It has been found that the resistance to many anticancer chemotherapeutics is directly correlated with the over-expression of GSTs. Therefore, it appears to be important to find new GST inhibitors to prevent the resistance of cells to anticancer drugs. In order to search for glutathione transferase (GST inhibitors, a novel method was designed. Results Our results showed that two fragments of GST, named F1 peptide (GYWKIKGLV and F2 peptide (KWRNKKFELGLEFPNL, can significantly inhibit the GST activity. When these two fragments were compared with several known potent GST inhibitors, the order of inhibition efficiency (measured in reactions with 2,4-dinitrochlorobenzene (CDNB and glutathione as substrates was determined as follows: tannic acid > cibacron blue > F2 peptide > hematin > F1 peptide > ethacrynic acid. Moreover, the F1 peptide appeared to be a noncompetitive inhibitor of the GST-catalyzed reaction, while the F2 peptide was determined as a competitive inhibitor of this reaction. Conclusion It appears that the F2 peptide can be used as a new potent specific GST inhibitor. It is proposed that the novel method, described in this report, might be useful for screening the inhibitors of not only GST but also other enzymes.

  16. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2014-06-01

    Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SAH derived potent and selective EZH2 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Pei-Pei; Huang, Buwen; Zehnder, Luke; Tatlock, John; Bingham, Patrick; Krivacic, Cody; Gajiwala, Ketan; Diehl, Wade; Yu, Xiu; Maegley, Karen A.

    2015-04-01

    A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50’s against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.

  18. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    Science.gov (United States)

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights

  19. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    Science.gov (United States)

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  20. Distinguishing among potential mechanisms of singleton suppression.

    Science.gov (United States)

    Gaspelin, Nicholas; Luck, Steven J

    2018-04-01

    Previous research has revealed that people can suppress salient stimuli that might otherwise capture visual attention. The present study tests between 3 possible mechanisms of visual suppression. According to first-order feature suppression models , items are suppressed on the basis of simple feature values. According to second-order feature suppression models , items are suppressed on the basis of local discontinuities within a given feature dimension. According to global-salience suppression models , items are suppressed on the basis of their dimension-independent salience levels. The current study distinguished among these models by varying the predictability of the singleton color value. If items are suppressed by virtue of salience alone, then it should not matter whether the singleton color is predictable. However, evidence from probe processing and eye movements indicated that suppression is possible only when the color values are predictable. Moreover, the ability to suppress salient items developed gradually as participants gained experience with the feature that defined the salient distractor. These results are consistent with first-order feature suppression models, and are inconsistent with the other models of suppression. In other words, people primarily suppress salient distractors on the basis of their simple features and not on the basis of salience per se. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    Science.gov (United States)

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of selective phosphodiesterase inhibitors on the rat eosinophil chemotactic response in vitro

    Directory of Open Access Journals (Sweden)

    Alves Alessandra C

    1997-01-01

    Full Text Available In the present study, we have performed a comparative analysis of the effect of selective inhibitors of phosphodiesterase (PDE type III, IV and V on eosinophil chemotaxis triggered by platelet activating factor (PAF and leukotriene B4 (LTB4 in vitro. The effect of the analogues N6-2'-O-dibutyryladenosine 3':5' cyclic monophosphate (Bt2 cyclic AMP and N2-2'-O- dibutyrylguanosine 3':5' cyclic monophosphate (Bt2 cyclic GMP has also been determined. The eosinophils were obtained from the peritoneal cavity of naive Wistar rats and purified in discontinuous Percoll gradients to 85-95% purity. We observed that pre-incubation of eosinophils with the PDE type IV inhibitor rolipram suppressed the chemotactic response triggered by PAF and LTB4, in association with an increase in the intracellular levels of cyclic AMP. In contrast, neither zaprinast (type V inhibitor nor type III inhibitors milrinone and SK&F 94836 affected the eosinophil migration. Only at the highest concentration tested did the analogue Bt2 cyclic AMP suppress the eosinophil chemotaxis, under conditions where Bt2 cyclic GMP was ineffective. We have concluded that inhibition of PDE IV, but not PDE III or V, was able to block the eosinophil chemotaxis in vitro, suggesting that the suppressive activity of selective PDE IV inhibitors on tissue eosinophil accumulation may, at least, be partially dependent on their ability to directly inhibit the eosinophil migration.

  3. Pulmonary Toxicity of Cholinesterase Inhibitors

    National Research Council Canada - National Science Library

    Hilmas, Corey; Adler, Michael; Baskin, Steven I; Gupta, Ramesh C

    2006-01-01

    .... Whereas nerve agents were produced primarily for military deployment, other cholinesterase inhibitors were used for treating conditions such as myasthenia gravis and as pretreaunents for nerve agent exposure...

  4. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  5. Effect of nitrification inhibitors on efficiency of nitrogen fertilizers

    International Nuclear Information System (INIS)

    El-Akel, E.A.H.

    1997-01-01

    Nitrogen is generally considered to be the most limiting nutrient in modern agriculture systems, because of the relatively high requirements of nitrogen for growing plants, simultaneously with the so many factors and mechanisms responsible for loss from soil. Nitrogen is extensively used as a basic mineral fertilizer on all non leguminous crops. Soil N retained in the exchangeable a monium forms, mainly on clays could be considered as immobile but under most conditions, the mineral fertilizer N is converted to the nitrate form which readily moves with water probably out of soil profile. Accordingly, N in the form of nitrate can be transported from the soil into surface and ground waters, where it may lead to pollution and be health hazardous. Also, nitrate denitrification as well as the ammonium volatilization represent other two mechanisms responsible for N losses. The immobilization process of added mineral N may influence its utilization by plants. 18 figs., 13 tabs., 151 refs

  6. Consequences of stereotype suppression and internal suppression motivation : A self-regulation approach

    NARCIS (Netherlands)

    Gordijn, Ernestine H; Hindriks, Inge; Koomen, W; Dijksterhuis, Ap; van Knipppenberg, A.

    The present research studied the effects of suppression of stereotypes on subsequent stereotyping. Moreover, the moderating influence of motivation to suppress stereotypes was examined. The first three experiments showed that suppression of stereotypes leads to the experience of engaging in

  7. BMP suppresses PTEN expression via RAS/ERK signaling.

    Science.gov (United States)

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  8. Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution

    Science.gov (United States)

    Fidrusli, A.; Suryanto; Mahmood, M.

    2018-01-01

    Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

  9. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  10. The mechanism of suppression: a component of general comprehension skill.

    Science.gov (United States)

    Gernsbacher, M A; Faust, M E

    1991-03-01

    We investigated whether the cognitive mechanism of suppression underlies differences in adult comprehension skill. Less skilled comprehenders reject less efficiently the inappropriate meanings of ambiguous words (e.g., the playing card vs. garden tool meaning of spade), the incorrect forms of homophones (e.g., patients vs. patience), the highly typical but absent members of scenes (e.g., a tractor in a farm scene), and words superimposed on pictures or pictures surrounding words. However, less skilled comprehenders are not less cognizant of what is contextually appropriate; in fact, they benefit from a biasing context just as much (and perhaps more) as more skilled comprehenders do. Thus, less skilled comprehenders do not have difficulty enhancing contextually appropriate information. Instead, we suggest that less skilled comprehenders suffer from a less efficient suppression mechanism, which we conclude is an important component of general comprehension skill.

  11. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  12. Vasohibin-1 suppresses colon cancer

    OpenAIRE

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-01-01

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and co...

  13. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  14. Strangeness Suppression and Color Deconfinement

    Science.gov (United States)

    Satz, Helmut

    2018-02-01

    The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.

  15. Chk1 suppressed cell death

    Directory of Open Access Journals (Sweden)

    Meuth Mark

    2010-09-01

    Full Text Available Abstract The role of Chk1 in the cellular response to DNA replication stress is well established. However recent work indicates a novel role for Chk1 in the suppression of apoptosis following the disruption of DNA replication or DNA damage. This review will consider these findings in the context of known pathways of Chk1 signalling and potential applications of therapies that target Chk1.

  16. Biological abatement of cellulase inhibitors

    Science.gov (United States)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  17. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    -amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha...

  18. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  19. The Mechanism of Suppression: A Component of General Comprehension Skill

    OpenAIRE

    Gernsbacher, Morton Ann; Faust, Mark E.

    1991-01-01

    We investigated whether the cognitive mechanism of suppression underlies differences in adult comprehension skill. Less skilled comprehenders reject less efficiently the inappropriate meanings of ambiguous words (e.g., the playing card vs. garden tool meaning of spade), the incorrect forms of homophones (e.g., patients vs. patience), the highly typical but absent members of scenes (e.g., a tractor in a farm scene), and words superimposed on pictures or pictures surrounding words. However, les...

  20. Effect of curd suppression in a milk replacer on physiological ...

    African Journals Online (AJOL)

    Effect of curd suppression in a milk replacer on physiological parameters in calves. I. Digestibility of ... Body mass-gain (kg) and efficiency of feed conversion (kg dry matter intake/kg gain) over the 28-day experimental period were respectively 7,3 and 1,8 (WM); 7,3 and 1,8 (NWM); 4,3 and 3,9 (CM) and 4,9 and 2,9 (NCM).

  1. In-Flight Suppressant Deployment Temperatures

    National Research Council Canada - National Science Library

    Bein, Donald

    2006-01-01

    .... An assessment is made of the model output versus some aircraft measurement data, fire suppressant boiling point criterion, as well as the history of altitude/temperature at which fire suppressants have been deployed...

  2. MELATONIN-INDUCED SUPPRESSION OF PC12 CELL GROWTH IS MEDIATED BY ITS GI COUPLED TRANSMEMBRANE RECEPTORS. (R826248)

    Science.gov (United States)

    The effects of pertussis toxin, an uncoupler of Gi protein from adenylate cyclase, and luzindole, a competitive inhibitor of melatonin receptor binding, were examined for their ability to inhibit melatonin-induced suppression of PC12 cell growth. Both agents inhibited the mela...

  3. Continued indinavir versus switching to indinavir/ritonavir in HIV-infected patients with suppressed viral load.

    NARCIS (Netherlands)

    Arnaiz, J.A.; Mallolas, J.; Podzamczer, D.; Gerstoft, J.; Lundgren, J.D.; Cahn, P.; Fatkenheuer, G.; D'Arminio-Monforte, A.; Casiro, A.; Reiss, P.; Burger, D.M.; Stek Jr, M.; Gatell, J.M.

    2003-01-01

    OBJECTIVE: To compare continued indinavir (IDV) 8-hourly (q8h) with switching to indinavir/ritonavir (IDV/RTV) 12-hourly (q12h) in HIV-positive patients having suppressed viral load with IDV q8h plus two nucleoside reverse transcriptase inhibitors (NRTI). DESIGN: Multicentre, international,

  4. Continued indinavir versus switching to indinavir/ritonavir in HIV-infected patients with suppressed viral load

    NARCIS (Netherlands)

    Arnaiz, Juan A.; Mallolas, Josep; Podzamczer, Daniel; Gerstoft, Jan; Lundgren, Jens D.; Cahn, Pedro; Fätkenheuer, Gerd; D'Arminio-Monforte, Antonella; Casiró, Arnaldo; Reiss, Peter; Burger, David M.; Stek, Michael; Gatell, José M.

    2003-01-01

    Objective: To compare continued indinavir (IDV) 8-hourly (q8h) with switching to indinavir/ritonavir (IDV/RTV) 12-hourly (q12h) in HIV-positive patients having suppressed viral load with IDV q8h plus two nucleoside reverse transcriptase inhibitors (NRTI). Design: Multicentre, international,

  5. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  6. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Mihail V. Pokrovskiy

    2011-01-01

    Full Text Available This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction.

  7. In the suppression of regge cut contributions

    International Nuclear Information System (INIS)

    Chia, S.P.

    1975-07-01

    It is shown that contributions of reggeon-pomeron cuts are suppressed in amplitudes with opposite natural to the reggeon. This suppression grows logarithmically with energy. The suppression in the πP cut is, however, found to be weak. Consequence on conspiracy is discussed

  8. p97 Composition Changes Caused by Allosteric Inhibition Are Suppressed by an On-Target Mechanism that Increases the Enzyme's ATPase Activity.

    Science.gov (United States)

    Her, Nam-Gu; Toth, Julia I; Ma, Chen-Ting; Wei, Yang; Motamedchaboki, Khatereh; Sergienko, Eduard; Petroski, Matthew D

    2016-04-21

    The AAA ATPase p97/VCP regulates protein homeostasis using a diverse repertoire of cofactors to fulfill its biological functions. Here we use the allosteric p97 inhibitor NMS-873 to analyze its effects on enzyme composition and the ability of cells to adapt to its cytotoxicity. We found that p97 inhibition changes steady state cofactor-p97 composition, leading to the enrichment of a subset of its cofactors and polyubiquitin bound to p97. We isolated cells specifically insensitive to NMS-873 and identified a new mutation (A530T) in p97. A530T is sufficient to overcome the cytotoxicity of NMS-873 and alleviates p97 composition changes caused by the molecule but not other p97 inhibitors. This mutation does not affect NMS-873 binding but increases p97 catalytic efficiency through altered ATP and ADP binding. Collectively, these findings identify cofactor-p97 interactions sensitive to p97 inhibition and reveal a new on-target mechanism to suppress the cytotoxicity of NMS-873. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Application of Molecular Modeling to Urokinase Inhibitors Development

    Directory of Open Access Journals (Sweden)

    V. B. Sulimov

    2014-01-01

    Full Text Available Urokinase-type plasminogen activator (uPA plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program, postprocessing (DISCORE program, direct generalized docking (FLM program, and the application of the quantum chemical calculations (MOPAC package, search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM.

  10. FAITH – Fast Assembly Inhibitor Test for HIV

    Energy Technology Data Exchange (ETDEWEB)

    Hadravová, Romana [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague (Czech Republic)

    2015-12-15

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  11. FAITH – Fast Assembly Inhibitor Test for HIV

    International Nuclear Information System (INIS)

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-01-01

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  12. The application of neutron reflectometry and atomic force microscopy in the study of corrosion inhibitor films

    International Nuclear Information System (INIS)

    John, Douglas; Blom, Annabelle; Bailey, Stuart; Nelson, Andrew; Schulz, Jamie; De Marco, Roland; Kinsella, Brian

    2006-01-01

    Corrosion inhibitor molecules function by adsorbing to a steel surface and thus prevent oxidation of the metal. The interfacial structures formed by a range of corrosion inhibitor molecules have been investigated by in situ measurements based on atomic force microscopy and neutron reflectometry. Inhibitors investigated include molecules cetyl pyridinium chloride (CPC), dodecyl pyridinium chloride (DPC), 1-hydroxyethyl-2-oleic imidazoline (OHEI) and cetyl dimethyl benzyl ammonium chloride (CDMBAC). This has shown that the inhibitor molecules adsorb onto a surface in micellar structures. Corrosion measurements confirmed that maximum inhibition efficiency coincides with the solution critical micelle concentration

  13. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  14. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A

    International Nuclear Information System (INIS)

    Zhang Qunwei; Salnikow, Konstantin; Kluz, Thomas; Chen, L.C.; Su, W.C.; Costa, Max

    2003-01-01

    The carcinogenic process initiated by nongenotoxic carcinogens involves modulation of gene expression. Nickel compounds have low mutagenic activity, but are highly carcinogenic. In vitro both mouse and human cells can be efficiently transformed by soluble and insoluble nickel compounds to anchorage-independent growth. Because previous studies have shown that carcinogenic nickel compounds silence genes by inhibiting histone acetylation and enhancing DNA methylation, we investigated the effect of enhancing histone acetylation on cell transformation. The exposure of nickel-transformed cells to the histone deacetylase inhibitor trichostatin A (TSA) resulted in the appearance of significant number of revertants measured by their inability to grow in soft agar. Using the Affymetrix GeneChip we found that the level of expression of a significant number of genes was changed (suppressed or upregulated) in nickel-transformed clones but returned to a normal level in revertants obtained following TSA treatment. Moreover, we found that treatment of cells with TSA inhibited the ability of nickel to transform mouse PW cells to anchorage-independent growth. Treatment with TSA also inhibited the ability of nickel to transform human HOS cells, although to a lesser extent. In contrast, treatment with TSA was not able to revert established cancer cell lines as readily as the nickel-transformed cells. These data indicated that modulation of gene expression is important for nickel-induced transformation

  15. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Mei; Lu, Jia; Li, Lianbo; Feru, Frederic; Quan, Chunshan; Gero, Thomas W.; Ficarro, Scott B.; Xiong, Yuan; Ambrogio, Chiara; Paranal, Raymond M.; Catalano, Marco; Shao, Jay; Wong, Kwok-Kin; Marto, Jarrod A.; Fischer, Eric S.; Jänne, Pasi A.; Scott, David A.; Westover, Kenneth D.; Gray, Nathanael S. (DFCI); (UTSMC); (Harvard-Med); (NYUSM)

    2017-08-01

    Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.

  16. Vasohibin-1 suppresses colon cancer

    Science.gov (United States)

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-01-01

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor. However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo. PMID:25797264

  17. Vasohibin-1 suppresses colon cancer.

    Science.gov (United States)

    Liu, Shuai; Han, Bing; Zhang, Qunyuan; Dou, Jie; Wang, Fang; Lin, Wenli; Sun, Yuping; Peng, Guangyong

    2015-04-10

    Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor.However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo.

  18. Corrosion control of carbon steel using inhibitor of banana peel extract in acid diluted solutions

    Science.gov (United States)

    Komalasari; Utami, S. P.; Fermi, M. I.; Aziz, Y.; Irianti, R. S.

    2018-04-01

    Issues of corrosion happened in pipes, it was used as fluid transportation in the chemical industry. Corrosion cannot be preventing, however it could be controlled or blocked. Inhibitor addition is one of the method to control the corrosion inside the pipe. Corrosion inhibitors consisted of inorganic and organic compound inhibitors. Organic inhibitor is composed from synthetic and natural material. This study focused to evaluate the inhibition’s efficiency from banana peel to carbon steel in different concentration of inhibitor and immersing time in acid solution variation. The research employed inhibitor concentration of 0 gram/liter, 2 gram/liter, 4 gram/liter and 6 gram/liter, immersed time of carbon steel for 2, 4, 6, 8 and 10 hours. It was immersed in chloride acid solution of 0.5 M and 1.5 M. Carbon Steel AISI 4041 was used as specimen steel. Results were analyzed using corrosion rate evaluation for each specimens and inhibitor efficiencies determination. It was found that the specimen without inhibitor yielded fast corrosion rate in long immersing time and high concentration of HCl. However, the specimens with inhibitor gave lowest corrosion rate which was 78.59% for 6 gram/litre and 10 hours in 0.5 M HCl.

  19. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  20. Suppression effects on musical and verbal memory.

    Science.gov (United States)

    Schendel, Zachary A; Palmer, Caroline

    2007-06-01

    Three experiments contrasted the effects of articulatory suppression on recognition memory for musical and verbal sequences. In Experiment 1, a standard/comparison task was employed, with digit or note sequences presented visually or auditorily while participants remained silent or produced intermittent verbal suppression (saying "the") or musical suppression (singing "la"). Both suppression types decreased performance by equivalent amounts, as compared with no suppression. Recognition accuracy was lower during suppression for visually presented digits than during that for auditorily presented digits (consistent with phonological loop predictions), whereas accuracy was equivalent for visually presented notes and auditory tones. When visual interference filled the retention interval in Experiment 2, performance with visually presented notes but not digits was impaired. Experiment 3 forced participants to translate visually presented music sequences by presenting comparison sequences auditorily. Suppression effects for visually presented music resembled those for digits only when the recognition task required sensory translation of cues.

  1. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2018-04-05

    Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.

  2. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Chiaki [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Higashi, Chizuka; Niinaka, Yasufumi [Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Yamada, Koji [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Noguchi, Kohji [Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome

  3. Optimization of Compton-suppression and summing schemes for the TIGRESS HPGe detector array

    Science.gov (United States)

    Schumaker, M. A.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2007-04-01

    Methods of optimizing the performance of an array of Compton-suppressed, segmented HPGe clover detectors have been developed which rely on the physical position sensitivity of both the HPGe crystals and the Compton-suppression shields. These relatively simple analysis procedures promise to improve the precision of experiments with the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). Suppression schemes will improve the efficiency and peak-to-total ratio of TIGRESS for high γ-ray multiplicity events by taking advantage of the 20-fold segmentation of the Compton-suppression shields, while the use of different summing schemes will improve results for a wide range of experimental conditions. The benefits of these methods are compared for many γ-ray energies and multiplicities using a GEANT4 simulation, and the optimal physical configuration of the TIGRESS array under each set of conditions is determined.

  4. Quantum chemical studies on the some inorganic corrosion inhibitors

    International Nuclear Information System (INIS)

    Sayin, Koray; Karakaş, Duran

    2013-01-01

    Highlights: •Some quantum chemical parameters are important to determine inhibition efficiency. •Quantum chemical calculations were performed on six inorganic inhibitors. •Five experimental reports were used to explain the theoretical results. •Atomic charges and %contributions were used to determine the atom at protonation process. •For inorganic inhibitors, the best method and basis set were investigated. -- Abstract: Some quantum chemical parameters were calculated by using Hartree–Fock (HF) approximation, Density Functional Theory (DFT/B3LYP) and Møller Plesset perturbation theory (MP3) methods at LANL2DZ, LANL2MB and SDD levels in gas phase and water for dichromate (Cr 2 O 7 2- ), chromate (CrO 4 2- ), tungstate (WO 4 2- ), molybdate (MoO 4 2- ), nitrite (NO 2 - ) and nitrate (NO 3 - ) which are used as inorganic corrosion inhibitors. All theoretical results and experimental inhibition efficiencies of inhibitors were subjected to correlation analyses. In a summary, MP3/SDD level in water was found as the best level. In this level, the inhibition efficiency ranking was found as CrO 4 2- >WO 4 2- >MoO 4 2- >Cr 2 O 7 2- >NO 2 - ≈NO 3 -

  5. Marjoram Extract as Corrosion Inhibitor for Dissolution of Zinc in 1.0 M HCl

    Directory of Open Access Journals (Sweden)

    M. Sobhi

    2013-01-01

    Full Text Available In this study, water marjoram (Origanum marjorana L. extract was evaluated as corrosion inhibitor for zinc in 1.0 M HCl solution. The polarization measurements showed that this inhibitor is acting as mixed inhibitors for both anodic and cathodic reactions. The results showed that the inhibition efficiency was increased by increasing the inhibitor doses and reached the maximum at 500 ppm. The adsorption of marjoram extract on zinc surface was found to obey Langmuir type isotherm. The efficiency obtained from the impedance measurements was in good agreement with those obtained from the gravimetrical, thermometric, and polarization techniques which prove the validity of these tolls in the measurements of the tested inhibitor.

  6. Genetic blockade of insulin-like growth factor-1 receptor via recombinant adenovirus in lung cancer can be enhanced by the histone deacetylase inhibitor, vorinostat.

    Science.gov (United States)

    Park, Mi-Young; Kim, Dal Rae; Eo, Eun Young; Lim, Hyo Jeong; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho-Il; Lee, Jae Ho; Lee, Choon-Taek

    2013-01-01

    Many approaches have been suggested as anti-tumor therapy for targeting insulin-like growth factor 1 receptor (IGF-1R), such as monoclonal antibodies and tyrosine kinase inhibitor. We introduced recombinant adenoviruses expressing antisense, dominant negative or short hairpin RNA to IGF-1R. Moreover, we demonstrated that histone deacetylase inhibitor (vorinostat) can increase the transduction efficiency of adenoviruses by increasing CAR-induced transduction and by enhancing the transcription of the adenoviral transgene. In the present study, we showed that the combination of ad-sh (short hairpin) IGF-1R with vorinostat leads to a synergistic enhancement of IGF-1R blockade. We measured the change in IGF-1R upon cotreatment with vorinostat and ad-shIGF-1R. Changes in transduction efficiency of ad-shIGF-1R were measured by fluorescent microscopy. Changes in apoptotic proportion and cell survival after the cotreatment were measured by the sub-G1 assay and cell counts. The effect of nuclear factor (NF)-κB activation was also measured by NF-κB p65 activation enzyme-linked immunosorbent assay. Drug interactions were analyzed upon cotreatment with ad-shIGF-1R, vorinostat and cisplatin. Combined treatment of ad-shIGF-1R and vorinostat synergistically suppressed the IGF-1R expression in lung cancer cell lines and also increased the transduction efficiency of ad-shIGF-1R. Ad-shIGF-1R and vorinostat cotreatment increased apoptotic cell death and synergistically suppressed cell growth compared to ad-shIGF-1R or vorinostat treatment alone. Vorinostat suppressed NF-κB activation, which was activated by ad-shIGF-1R. Moreover, triple combination of ad-shIGF-1R, vorinostat and cisplatin demonstrated synergistic cytotoxicity on lung cancer cells. Vorinostat enhanced the blocking capability of ad-shIGF-1R. The combined treatment of vorinostat and ad-sh-IGF-1R appears to have promising potential as a new therapeutic approach for lung cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    David H. Keating

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  8. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  9. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  10. Use of acid-suppressive therapy before anti-reflux surgery in 2922 patients

    DEFF Research Database (Denmark)

    Lødrup, A; Pottegård, A; Hallas, J

    2015-01-01

    BACKGROUND: Guidelines recommend that patients with gastro-oesophageal reflux disease are adequately treated with acid-suppressive therapy before undergoing anti-reflux surgery. Little is known of the use of acid-suppressive drugs before anti-reflux surgery. AIM: To determine the use of proton pump...... inhibitors and H2 -receptor antagonists in the year before anti-reflux surgery. METHODS: A nationwide retrospective study of all patients aged ≥18 undergoing first-time anti-reflux surgery in Denmark during 2000-2012 using data from three different sources: the Danish National Register of Patients......, the Danish National Prescription Register, and the Danish Person Register. RESULTS: The study population thus included 2922 patients (median age: 48 years, 55.7% male). The annual proportion of patients redeeming ≥180 DDD of acid-suppressive therapy increased from 17.0% 5 years before anti-reflux surgery...

  11. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    International Nuclear Information System (INIS)

    Calderón, J.A.; Vásquez, F.A.; Carreño, J.A.

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm"−"2. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  12. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  13. Pressure suppression pool thermal mixing

    International Nuclear Information System (INIS)

    Cook, D.H.

    1984-01-01

    A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing model is verified by comparing the model predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point

  14. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  15. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  16. Suppression of spatio-temporal chaos in simple models of re-entrant fibrillations

    Energy Technology Data Exchange (ETDEWEB)

    Vysotsky, Semion A [Student, Faculty of Physics, M.V.Lomonosov Moscow State Universitry, Leninskie Gory, 119992 Moscow (Russian Federation); Cheremin, Ruslan V [Research Scientist, Faculty of Physics, M.V.Lomonosov Moscow State Universitry, Leninskie Gory, 119992 Moscow (Russian Federation); Loskutov, Alexander [Professor, Faculty of Physics, M.V.Lomonosov Moscow State Universitry, Leninskie Gory, 119992 Moscow (Russian Federation)

    2005-01-01

    On the basis of the FitzHugh-Nagumo-type model we investigate the possibility of suppression of the spiral wave turbulence by weak pacemaker excitations. We consider different ways of media stabilization and study the dependence of the suppression efficiency on the excitation shape and the media parameters. Also, we analyze the frequency of target waves in the unperturbed media as a function of the external force frequency. Applications of the obtained results to cardiac rhythm pathologies are considered.

  17. The role of suppression in amblyopia.

    Science.gov (United States)

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  18. Changes in glucose-induced plasma active glucagon-like peptide-1 levels by co-administration of sodium–glucose cotransporter inhibitors with dipeptidyl peptidase-4 inhibitors in rodents

    Directory of Open Access Journals (Sweden)

    Takahiro Oguma

    2016-12-01

    Full Text Available We investigated whether structurally different sodium–glucose cotransporter (SGLT 2 inhibitors, when co-administered with dipeptidyl peptidase-4 (DPP4 inhibitors, could enhance glucagon-like peptide-1 (GLP-1 secretion during oral glucose tolerance tests (OGTTs in rodents. Three different SGLT inhibitors—1-(β-d-Glucopyranosyl-4-chloro-3-[5-(6-fluoro-2-pyridyl-2-thienylmethyl]benzene (GTB, TA-1887, and canagliflozin—were examined to assess the effect of chemical structure. Oral treatment with GTB plus a DPP4 inhibitor enhanced glucose-induced plasma active GLP-1 (aGLP-1 elevation and suppressed glucose excursions in both normal and diabetic rodents. In DPP4-deficient rats, GTB enhanced glucose-induced aGLP-1 elevation without affecting the basal level, whereas metformin, previously reported to enhance GLP-1 secretion, increased both the basal level and glucose-induced elevation. Oral treatment with canagliflozin and TA-1887 also enhanced glucose-induced aGLP-1 elevation when co-administered with either teneligliptin or sitagliptin. These data suggest that structurally different SGLT2 inhibitors enhance plasma aGLP-1 elevation and suppress glucose excursions during OGTT when co-administered with DPP4 inhibitors, regardless of the difference in chemical structure. Combination treatment with DPP4 inhibitors and SGLT2 inhibitors having moderate SGLT1 inhibitory activity may be a promising therapeutic option for improving glycemic control in patients with type 2 diabetes mellitus.

  19. Juggling Efficiency

    DEFF Research Database (Denmark)

    Andersen, Rikke Sand; Vedsted, Peter

    2015-01-01

    on institutional logics, we illustrate how a logic of efficiency organise and give shape to healthcare seeking practices as they manifest in local clinical settings. Overall, patient concerns are reconfigured to fit the local clinical setting and healthcare professionals and patients are required to juggle...... efficiency in order to deal with uncertainties and meet more complex or unpredictable needs. Lastly, building on the empirical case of cancer diagnostics, we discuss the implications of the pervasiveness of the logic of efficiency in the clinical setting and argue that provision of medical care in today......'s primary care settings requires careful balancing of increasing demands of efficiency, greater complexity of biomedical knowledge and consideration for individual patient needs....

  20. [Suppression of tinnitus by band noise masker--a study of 600 cases].

    Science.gov (United States)

    Watanabe, K; Kamio, T; Ohkawara, D; Aoki, H; Baba, S; Yagi, T

    1997-09-01

    We performed Band Noise Masker (BNM) therapy for the suppression of tinnitus in 600 patients and measured the pitch, loudness and masking level of tinnitus and residual inhibition (RI). We examined the efficiency of BNM therapy. The purpose of this study was to investigate the mechanism of suppression of tinnitus by BNM. Tinnitus was suppressed in 394 patients (66%) after BNM therapy. In the group of patients in whom we suppressed tinnitus, the loudness of tinnitus was reduced from 7.7 +/- 5.7dBSL to 7.5 +/- 5.5dBSL (p pitch of tinnitus did not exhibit a marked change. In the group of patients in whom we did not suppress tinnitus, the loudness and pitch of tinnitus did not exhibit a marked change. The efficiency of BNM therapy was high in the cases of presbyacusis and low in the cases of sudden deafness. There was no significant relationship between RI and the efficiency of BNM therapy. We examined these data and discussed the mechanism of suppression of tinnitus by BNM therapy. In all cases, after BNM therapy, the auditory threshold did not become worse. In 4 cases tinnitus became worse temporarily. In conclusion, BNM therapy is an effective mode for tinnitus control, is easily performed in our outpatient clinic or at home, and has no serious complications.

  1. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire

  2. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Science.gov (United States)

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be

  3. A New Immunosuppressive Molecule Emodin Induces both CD4+FoxP3+ and CD8+CD122+ Regulatory T Cells and Suppresses Murine Allograft Rejection

    Directory of Open Access Journals (Sweden)

    Feifei Qiu

    2017-11-01

    Full Text Available Due to vigorous alloimmunity, an allograft is usually rejected without any conventional immunosuppressive treatment. However, continuous global immunosuppression may cause severe side effects, including tumors and infections. Mounting evidence has shown that cyclosporine (CsA, a common immunosuppressant used in clinic, impedes allograft tolerance by dampening regulatory T cells (Tregs, although it inhibits allograft rejection at the same time. Therefore, it is necessary to seek an alternative immunosuppressive drug that spares Tregs with high efficiency in suppression but low toxicity. In this study, we investigated the capacity of emodin, an anthraquinone molecule originally extracted from certain natural plants, to prolong transplant survival in a mouse model and explored the cellular and molecular mechanisms underlying its action. We found that emodin significantly extended skin allograft survival and hindered CD3+ T cell infiltration in the allograft, accompanied by an increase in CD4+Foxp3+ and CD8+CD122+ Treg frequencies and numbers but a reduction in effector CD8+CD44highCD62Llow T cells in recipient mice. Emodin also inhibited effector CD8+ T cells proliferation in vivo. However, CD4+CD25+, but not CD8+CD122+, Tregs derived from emodin-treated recipients were more potent in suppression of allograft rejection than those isolated from control recipients, suggesting that emodin also enhances the suppressive function of CD4+CD25+ Tregs. Interestingly, depleting CD25+ Tregs largely reversed skin allograft survival prolonged by emodin while depleting CD122+ Tregs only partially abrogated the same allograft survival. Furthermore, we found that emodin hindered dendritic cell (DC maturation and reduced alloantibody production posttransplantation. Finally, we demonstrated that emodin inhibited in vitro proliferation of T cells and blocked their mTOR signaling as well. Therefore, emodin may be a novel mTOR inhibitor that suppresses alloimmunity by

  4. Safety system for pressure suppression

    International Nuclear Information System (INIS)

    Wood, L.E.; Ludwig, G.J.; Tulsa, O.

    1975-01-01

    The rupture disk with rated breaking points is constrained by two supporting elements and has a convex-concave shape. For pressure suppression, it is reversable inversely to its bulging. Its surface has notches which are the rated breaking points and respond to higher pressures. The centre of the rupture disk contains an area of relatively smaller thickness that will burst at lower pressure and thus makes it applicable for lower pressures. For the response of the rupture disk centre, a thrust ring with a central opening may also be used. Its edge is formed into a convex-concave section supported on the edge of the rupture disk on the exit side. The free centre of the rupture disk is then the area of relative weakness. (RW/AK) [de

  5. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  6. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis.

    Science.gov (United States)

    Fang, Sijie; Meng, Xiangda; Zhang, Zhuhong; Wang, Yang; Liu, Yuanyuan; You, Caiyun; Yan, Hua

    2016-03-01

    The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.

  7. Steam CFD simulation of injection in suppression pool

    International Nuclear Information System (INIS)

    Naveen Samad, A.M.; Ghosh, Sumana

    2015-01-01

    Boiling water reactor (BWR) is one of the common types of electricity generating nuclear reactor. Suppression pool system is a major component of the BWR which has to be designed efficiently for the safe operations. During some accidents like Loss of Coolant Accident (LOCA) large amount of steam are injected to the pressure suppression system resulting in increase in temperature of the pool and thereby increasing the pressure. The present work discuss about the Computational Fluid Dynamics (CFD) simulation of steam injected to the wet well of BWR through the blow down pipes and there by investigating the hydrodynamic and thermal characteristics of the system. The simulations were carried out for three different steam injection velocities. The numerical simulations were performed with ANSYS FLUENT using multiphase 3D Volume of Fluid (VOF) model and k-ε model was adopted for modelling turbulence flow. (author)

  8. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ajit G.; Rojas, Camilo [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S. [National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850 (United States); Ferraris, Dana V. [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tsukamoto, Takashi [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Slusher, Barbara S., E-mail: bslusher@jhmi.edu [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2013-08-23

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC{sup 1280})) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.

  9. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    International Nuclear Information System (INIS)

    Thomas, Ajit G.; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S.; Ferraris, Dana V.; Tsukamoto, Takashi; Slusher, Barbara S.

    2013-01-01

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC 1280 )) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease

  10. Suppression of autoimmune retinal inflammation by an antiangiogenic drug.

    Directory of Open Access Journals (Sweden)

    Takeru Yoshimura

    Full Text Available Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4(+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17 which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2 inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4(+ T cells, and a general normalization of the systemic immune reaction.

  11. Suppression of Autoimmune Retinal Inflammation by an Antiangiogenic Drug

    Science.gov (United States)

    Bazinet, Lauren; D’Amato, Robert J.

    2013-01-01

    Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17) which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2) inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR) mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU) by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4+ T cells, and a general normalization of the systemic immune reaction. PMID:23785488

  12. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  13. Poppers: more evidence of suppressed immunity.

    Science.gov (United States)

    James, J S

    1999-08-20

    Evidence from studies in mice shows that exposure to isobutyl nitrite suppresses the immune system. This immune suppression allows for bacterial growth in the lungs and livers of infected mice and can inhibit the ability of mediastinal lymph nodes to respond to antigen-specific stimulation. The mechanism for immune suppression may be a reduction in CD4+ and CD8+ T cell populations in the mediastinal lymph nodes following pulmonary infection with Listeria monocytogenes.

  14. Checkpoint inhibitors in cancer immunotherapy: Cross reactivity of a CTLA-4 antibody and IDO-inhibitor L-1MT in pigs

    DEFF Research Database (Denmark)

    Al-Shatrawi, Zina Adil; Frøsig, Thomas Mørch; Jungersen, Gregers

    a non-specific activation of porcine T cells. This will be further investigated to provide the basis for in vivo studies investigating checkpoint inhibitor blockade in combination with other cancer immunotherapies. Eventually our goal is to establish pigs as an alternative large animal model......Blockade of checkpoint inhibitors has recently shown very convincing results in the treatment of cancer. One key target is CTLA-4, which has been demonstrated to be a potent negative regulator of lymphocyte activation. The treatment with the FDA-approved fully human CTLA-4 monoclonal antibody...... Ipilimumab increases anticancer T-cell reactivity and overall survival of metastatic cancer patients. Indole-amine 2,3-dioxygenase (IDO) is another checkpoint inhibitor which suppresses T-cell immunity by the depletion of tryptophan in the T-cell microenvironment, and also inhibition of IDO by L-1...

  15. Corrosion Inhibitor of Carbon Steel from Onion Peel Extract

    Directory of Open Access Journals (Sweden)

    Muhammad Samsudin Asep

    2018-01-01

    Full Text Available Carbon steels composed by two main elements, they are iron (Fe and carbon (C elements which widely used in industrial because of its resistance and more affordable than stainless steel, but their weakness is they have low corrosion resistance. One way to modify carbon steel is by coating them with antioxidant compounds that can delay, slow down, and prevent lipid oxidation process, which obtained from onion peel extract. Several studies on corrosion inhibitors have been performed. However, the efficiency was not reach the optimum. This study aims to examine the effect of onion peel extract concentration on the efficiency of corrosion inhibitor and characterization of the green corrosion inhibitor from onion peel extract. This research method begins by extracting onion peel to 200 ml solvent which we use aquadest and methanol and mixed with 5 grams of crushed onion peel, then let them be extracted for 60 minutes with room temperature. Once it was filtered and the solution obtained, followed by evaporating process with rotary evaporator to decrease the content of solvent. The product is ready to be used as a green corrosion inhibitor of carbon steel in 1 mol/L HCl. While the analysis used is HPLC qualitative analysis, and electroplatting process. The impedance is measured at a frequency of 100 kHz to 4 mHz with an AC current of 10mV. Inhibitor concentrations are vary between 2 ml and 4 ml of onion peel extract. Electroplatting is done within 30 minutes with 10 minutes each checking time. Furthermore, quantitative analysis was done for the analysis of corrosion rate and weight loss. Based on HPLC analysis, it is known that the extract of onion peel contains 1mg/L of quercetin, which is belong to flavonoid group as green inhibitor. While electroplatting process, aquadest solvent having average efficiency of 99,57% for 2 ml of extract, and 99,60% for 4 ml of extract. Methanol solvent having average efficiency of 99,52% for 2 ml of extract and 99

  16. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Li

    2015-10-01

    Full Text Available In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression, the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature and divisive normalization contribute to interocular suppression.

  17. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    Science.gov (United States)

    Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J

    2015-10-01

    In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression.

  18. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies

    Directory of Open Access Journals (Sweden)

    Anees A. Khadom

    2018-06-01

    Full Text Available Corrosion inhibition of low carbon steel in 1 M HCl was investigated in absence and presence of Xanthium strumarium leaves (XSL extracts as a friendly corrosion inhibitor. The effect of temperature and inhibitor concentration was studied using weight loss method. The result obtained shown that Xanthium strumarium leaves extracts act as an inhibitor for low carbon steel in HCl and reduces the corrosion rate. The inhibition efficiency was found to increases with increase in inhibitor concentration and temperature. Higher inhibition efficiency was 94.82% at higher level of inhibitor concentration and temperature. The adsorption of Xanthium strumarium leaves extracts was found to obey Langmuir adsorption isotherm model. The values of the free energy of adsorption was more than −20 kJ/mol, which is indicative of mixed mode of physical and chemical adsorption. Keywords: Corrosion, Green inhibitor, Natural extracts, Low carbon steel, Acid, Adsorption

  19. Risk of fracture and pneumonia from acid suppressive drugs.

    Science.gov (United States)

    Eom, Chun-Sick; Lee, Sang-Soo

    2011-09-26

    A recently published systematic review and meta-analysis, incorporating all relevant studies on the association of acid suppressive medications and pneumonia identified up to August 2009, revealed that for every 200 patients, treated with acid suppressive medication, one will develop pneumonia. They showed the overall risk of pneumonia was higher among people using proton pump inhibitors (PPIs) [adjusted odds ratio (OR) = 1.27, 95% CI: 1.11-1.46, I(2) = 90.5%] and Histamine-2 receptor antagonists (H2RAs) (adjusted OR = 1.22, 95% CI: 1.09-1.36, I(2) = 0.0%). In the randomized controlled trials, use of H2RAs was associated with an elevated risk of hospital-acquired pneumonia (relative risk 1.22, 95% CI: 1.01-1.48, I(2) = 30.6%). Another meta-analysis of 11 studies published between 1997 and 2011 found that PPIs, which reduce stomach acid production, were associated with increased risk of fracture. The pooled OR for fracture was 1.29 (95% CI: 1.18-1.41) with use of PPIs and 1.10 (95% CI: 0.99-1.23) with use of H2RAs, when compared with non-use of the respective medications. Long-term use of PPIs increased the risk of any fracture (adjusted OR = 1.30, 95% CI: 1.15-1.48) and of hip fracture risk (adjusted OR = 1.34, 95% CI: 1.09-1.66), whereas long-term H2RA use was not significantly associated with fracture risk. Clinicians should carefully consider when deciding to prescribe acid-suppressive drugs, especially for patients who are already at risk for pneumonia and fracture. Since it is unnecessary to achieve an achlorhydric state in order to resolve symptoms, we recommend using the only minimum effective dose of drug required to achieve the desired therapeutic goals.

  20. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... *Corresponding author. E-mail: liminl-kt@hotmail.com. Tel: ... photographed at the indicated times with an inverted microscopy equipped with a digital ... density with Image J Analyst software (NIH). ChIP assay. PC3 and ...

  1. Coumestrol Epigenetically Suppresses Cancer Cell Proliferation: Coumestrol Is a Natural Haspin Kinase Inhibitor

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2017-10-01

    Full Text Available Targeting epigenetic changes in gene expression in cancer cells may offer new strategies for the development of selective cancer therapies. In the present study, we investigated coumestrol, a natural compound exhibiting broad anti-cancer effects against skin melanoma, lung cancer and colon cancer cell growth. Haspin kinase was identified as a direct target protein of coumestrol using kinase profiling analysis. Histone H3 is a direct substrate of haspin kinase. We observed haspin kinase overexpression as well as greater phosphorylation of histone H3 at threonine 3 (Thr-3 in the cancer cells compared to normal cells. Computer modeling using the Schrödinger Suite program identified the binding interface within the ATP binding site. These findings suggest that the anti-cancer effect of coumestrol is due to the direct targeting of haspin kinase. Coumestrol has considerable potential for further development as a novel anti-cancer agent.

  2. Histone deacetylase inhibitors suppress IFN(alpha)-induced up-regulation of promyelocytic leukemia protein

    Czech Academy of Sciences Publication Activity Database

    Vlasáková, Jana; Nováková, Zora; Rossmeislová, Lenka; Kahle, Michal; Hozák, Pavel; Hodný, Zdeněk

    2007-01-01

    Roč. 109, č. 4 (2007), s. 1373-1380 ISSN 0006-4971 R&D Projects: GA ČR GA304/03/1210; GA AV ČR IAA500390501; GA ČR GEDYN/04/E002 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50520514 Keywords : Acute promyelocytic leukemia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.896, year: 2007

  3. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Notch-1 signaling is crucial for stem cell maintenance and in a variety of tissues. Previous ... family of transcription factors (CBF-1/RBP-Jk, Su (h) and. LAG-1) .... prostate stem cell renew and cell differentiation (Chhipa,. 2011).

  4. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth

    Czech Academy of Sciences Publication Activity Database

    Lau, T.; Chan, E. Y.; Callow, M.; Waaler, J.; Boggs, J.; Blake, R.A.; Magnuson, S.; Sambrone, A.; Schutten, M.; Firestein, R.; Machoň, Ondřej; Kořínek, Vladimír; Choo, E.; Diaz, D.; Merchant, M.; Polakis, P.; Holsworth, D.D.; Krauss, S.; Costal, M.

    2013-01-01

    Roč. 73, č. 10 (2013), s. 3132-3144 ISSN 0008-5472 R&D Projects: GA ČR GAP305/12/2042; GA ČR GAP305/11/1780; GA MŠk(CZ) LK11214 Institutional support: RVO:68378050 Keywords : beta-catenin signaling * colorectal cancer * Wnt pathway Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.284, year: 2013

  5. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoun [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2012-04-15

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry.

  6. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    International Nuclear Information System (INIS)

    Lee, Jiyoun

    2012-01-01

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry

  7. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors.

    Science.gov (United States)

    Thomas, Ajit G; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B; Auld, Douglas S; Ferraris, Dana V; Tsukamoto, Takashi; Slusher, Barbara S

    2013-08-23

    Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  9. Studies on the mechanism of fibrate-inhibited expression of plasminogen activator inhibitor-1 in cultured hepatocytes from cynomolgus monkey

    NARCIS (Netherlands)

    Arts, J.; Kooistra, T.

    1997-01-01

    Fibrates are widely used drugs in hyperlipidemic disorders. In addition to lowering serum triglyceride levels, fibrates have also been shown to reduce elevated plasma plasminogen activator inhibitor-1 (PAI-1) levels in vivo. We demonstrate that fibrates suppress PAI-1 synthesis in cultured

  10. Metal corrosion inhibitors and ecology

    International Nuclear Information System (INIS)

    Krasts, H.; Svarce, J.; Berge, B.

    1999-01-01

    The use of metal corrosion inhibitors in water is one of the cheapest method to protect metals against corrosion. However, the used inhibitors can come to surface water in the course of time and can become as source of environmental pollution. It is important to co-ordinate amount of substances in the elaborated inhibitors not only with demands for metal protection, but also with demands for quality of surface water and drinking water according to normative statements: 3.5 mg/l (as PO 4 ) for hexametaphosphate, tripolyphosphate and phosphonate; 40 mg/l (as SiO 2 for silicate, up to 1 mg/l for CU 2+ ; up to 5 mg/l for Zn 2+ ; up to 1 mg/l for B; up to 0.5 mg/l for Mo 2+ . The examples of the elaborated inhibitors are given. Many organic substances can be used as corrosion inhibitors, but there is shortage of standard methods for their analysis in water in Latvia. Removing of salt's deposits from boilers needs elaboration of a separate normative statement for dispersing waste water which content chloride at high concentration and heavy metals. (authors)

  11. Batch efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Schwickerath, Ulrich; Silva, Ricardo; Uria, Christian, E-mail: Ulrich.Schwickerath@cern.c, E-mail: Ricardo.Silva@cern.c [CERN IT, 1211 Geneve 23 (Switzerland)

    2010-04-01

    A frequent source of concern for resource providers is the efficient use of computing resources in their centers. This has a direct impact on requests for new resources. There are two different but strongly correlated aspects to be considered: while users are mostly interested in a good turn-around time for their jobs, resource providers are mostly interested in a high and efficient usage of their available resources. Both things, the box usage and the efficiency of individual user jobs, need to be closely monitored so that the sources of the inefficiencies can be identified. At CERN, the Lemon monitoring system is used for both purposes. Examples of such sources are poorly written user code, inefficient access to mass storage systems, and dedication of resources to specific user groups. As a first step for improvements CERN has launched a project to develop a scheduler add-on that allows careful overloading of worker nodes that run idle jobs.

  12. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Science.gov (United States)

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  13. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  14. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  15. Suppression of the cutaneous immune response following topical application of the prostaglandin PGE2

    International Nuclear Information System (INIS)

    Rheins, L.A.; Barnes, L.; Amornsiripanitch, S.; Collins, C.E.; Nordlund, J.J.

    1987-01-01

    UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified

  16. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic Acid.

    Science.gov (United States)

    Leon-Reyes, Antonio; Du, Yujuan; Koornneef, Annemart; Proietti, Silvia; Körbes, Ana P; Memelink, Johan; Pieterse, Corné M J; Ritsema, Tita

    2010-02-01

    Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.

  17. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  18. Tagging and suppression of pileup jets with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    The suppression of pileup jets has been a crucial component of many physics analyses using 2012 LHC proton-proton collisions. In ATLAS, tracking information has been used to calculate a variable called the jet-vertex-fraction, which is the fraction of the total momentum of tracks in the jet which is associated with the primary vertex. Imposing a lower limit on this variable rejects the majority of pileup jets, but leads to hard-scatter jet efficiencies that depend on the number of reconstructed primary vertices in the event (NVtx). In this note, new track-based variables to suppress pileup jets are developed in such a way that the resulting hard-scatter jet efficiency is stable as a function of NVtx. A multivariate combination of two such variables called the jet-vertex-tagger (JVT) is constructed. The modeling of JVT is tested in Z(→ μμ)+jets as well as in semileptonic ttbar events. The efficiencies of different JVT criteria are measured in data and compared to simulation. In addition, it is shown that j...

  19. Effect of Inhibitors on Atom Transfer Radical Polymerization of MMA

    Institute of Scientific and Technical Information of China (English)

    张鸿; 徐冬梅; 张可达

    2005-01-01

    Effect of a series of inhibitors as additives on atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with FeCl2/PPh3 as catalyst system was studied, including 2,4,6-trinitrophenol (TNP), 4-methoxyphenol (4-MP), hydroquinone (HQ) and nitrobenzene (NB). It was found that TNP was the only. efficient additive for ATRP among these inhibitors. In the presence of small amounts of TNP, the polymerization proceeded rapidly after induction period to yield the polymers with controlled molecular weights and narrow molecular weight distributions (MWD). The initiating efficiency of the modified catalyst system with TNP was increased. The mechanism was proposed and confirmed by the end group analysis of the polymer.

  20. Solid Obtained by Electrocoagulation of Vinasse, new Inhibitor for Acid Corrosion of Brass

    Directory of Open Access Journals (Sweden)

    Elaine Ojeda-Armaignac

    2016-07-01

    Full Text Available This work is part of research related to obtaining a corrosion inhibitor from vinasse, whose basic advantages is the possibility of using an industrial waste from distilleries ethyl alcohol as raw material in the production of a solid corrosion inhibitor of national production by electrocoagulation, which implies import substitution and cost reductions. The inhibitory action of the solids obtained by electrocoagulation of vinasse was investigated by potentiodynamic polarization techniques and electrochemical impedance spectroscopy. It was found that the efficiencies of inhibition against the brass into the electrolyte solution were very good, behaving as an efficient inhibitor in acid medium. Inhibition efficiency increases with increasing concentration. The maximum inhibition efficiency was of 93,43 % for the concentration of 2 mg / L of vinasse. Thermodynamic parameters were obtained at the study temperature. It was found that the adsorption of inhibitor molecules on the surface of brass obey the Langmuir isotherm, and the values of adsorción free energy of - 23.06 kJ mol-1 show the spontaneity of adsorption and indicate that the inhibitor is strongly adsorbed on the surface of brass, study of potentiodynamic polarization curves confirmed that it is a mixed type inhibitor, with an anode predominance and there is a predominant mechanism of physical adsorption combined with a chemisorption.

  1. Synthesis and characterization of a novel organic corrosion inhibitor for mild steel in 1 M hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Mohammed H. Othman Ahmed

    2018-03-01

    Full Text Available The synthesis and characterization of a novel organic corrosion inhibitor (4-(3-mercapto-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazin-6-ylphenol, for mild steel in 1 M hydrochloric acid (HCl has been successfully reported for the first time. The inhibitor evaluated as corrosion inhibitor for mild steel in 1 M of Hydrochloric acid solution using electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurement techniques. Changes in the impedance parameters suggested an adsorption of the inhibitor onto the mild steel surface, leading to the formation of protective films. The results show that the inhibition efficiencies increased with increasing the concentrations of the inhibitors and decreased with increasing temperature. The maximum inhibition efficiency up to 67% at the maximum concentration 0.5 mM. This shows that those inhibitors are effective in helping to reduce and slowing down the corrosion process that occurs to mild steel with a hydrochloric acid solution by providing an organic inhibitor for the mild steel that can be weakened by increasing the temperature. The adsorption process of the synthesized organic inhibitor depends on its electronic characteristics in addition to steric effects and the nature of metal surface, temperature degree and the varying degrees of surface-site activity. The synthesized inhibitor molecules were absorbed by metal surface and follow Langmuir isotherms. Keywords: Corrosion, Inhibitor, Mild steel, EIS spectroscopy

  2. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  3. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    OpenAIRE

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlyso...

  4. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    OpenAIRE

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-indu...

  5. CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment.

    Science.gov (United States)

    Han, Yan; Wu, Chunlei; Wang, Jing; Liu, Na

    2017-05-01

    The major cause of death in osteosarcoma is the invasion and metastasis. Better understanding of the molecular mechanism of osteosarcoma invasion is essential in developing effective tumor-suppressive therapies. Interaction between chemokine receptors plays a crucial role in regulating osteosarcoma invasion. Here, we investigated the relationship between CXCR7 and CXCR4 in osteosarcoma invasion induced by bone marrow microenvironment. Human bone marrow mesenchymal stem cells were co-cultured with osteosarcoma cells to mimic actual bone marrow microenvironment. Osteosarcoma cell invasion and CXCL12/CXCR4 activation were observed within this co-culture model. Interestingly, in this co-culture model, osteosarcoma cell invasion was not inhibited by suppressing CXCR4 expression with neutralizing antibody or specific inhibitor AMD3100. Downstream signaling extracellular signal-regulated kinase and signal transducer and activator of transcription 3 were not significantly affected by CXCR4 inhibition. However, suppressing CXCR4 led to CXCR7 upregulation. Constitutive expression of CXCR7 could maintain osteosarcoma cell invasion when CXCR4 was suppressed. Simultaneously, inhibiting CXCR4 and CXCR7 compromised osteosarcoma invasion in co-culture system and suppressed extracellular signal-regulated kinase and signal transducer and activator of transcription 3 signals. Moreover, bone marrow microenvironment, not CXCL12 alone, is required for CXCR7 activation after CXCR4 suppression. Taken together, suppressing CXCR4 is not enough to impede osteosarcoma invasion in bone marrow microenvironment since CXCR7 is activated to sustain invasion. Therefore, inhibiting both CXCR4 and CXCR7 could be a promising strategy in controlling osteosarcoma invasion.

  6. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  7. Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis.

    Science.gov (United States)

    Choi, Sung Hee; Kim, Byung-Gyu; Robinson, Janet; Fink, Steve; Yan, Min; Sporn, Michael B; Markowitz, Sanford D; Letterio, John J

    2014-06-01

    Colitis-associated colon cancer (CAC) develops as a result of inflammation-induced epithelial transformation, which occurs in response to inflammatory cytokine-dependent downregulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and subsequent suppression of prostaglandin metabolism. Agents that both enhance 15-PGDH expression and suppress cyclooxygenase-2 (COX-2) production may more effectively prevent CAC. Synthetic triterpenoids are a class of small molecules that suppress COX-2 as well as inflammatory cytokine signaling. Here, we found that administration of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-C28-methyl ester (CDDO-Me) suppresses CAC in mice. In a spontaneous, inflammation-driven intestinal neoplasia model, deletion of Smad4 specifically in T cells led to progressive production of inflammatory cytokines, including TNF-α, IFN-γ, iNOS, IL-6, IL-1β; as well as activation of STAT1 and STAT3; along with suppression of 15-PGDH expression. Oral administration of CDDO-Me to mice with SMAD4-deficient T cells increased survival and suppressed intestinal epithelial neoplasia by decreasing production of inflammatory mediators and increasing expression of 15-PGDH. Induction of 15-PGDH by CDDO-Me was dose dependent in epithelial cells and was abrogated following treatment with TGF-β signaling inhibitors in vitro. Furthermore, CDDO-Me-dependent 15-PGDH induction was not observed in Smad3-/- mice. Similarly, CDDO-Me suppressed azoxymethane plus dextran sodium sulfate-induced carcinogenesis in wild-type animals, highlighting the potential of small molecules of the triterpenoid family as effective agents for the chemoprevention of CAC in humans.

  8. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    International Nuclear Information System (INIS)

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-01-01

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory subst