Sample records for inhibitor normalizes tumor

  1. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. (United States)

    Falcón, Beverly L; Hashizume, Hiroya; Koumoutsakos, Petros; Chou, Jeyling; Bready, James V; Coxon, Angela; Oliner, Jonathan D; McDonald, Donald M


    Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have complex actions in angiogenesis and vascular remodeling due to their effects on Tie2 receptor signaling. Ang2 blocks Ang1-mediated activation of Tie2 in endothelial cells under certain conditions but is a Tie2 receptor agonist in others. We examined the effects of selective inhibitors of Ang1 (mL4-3) or Ang2 (L1-7[N]), alone or in combination, on the vasculature of human Colo205 tumors in mice. The Ang2 inhibitor decreased the overall abundance of tumor blood vessels by reducing tumor growth and keeping vascular density constant. After inhibition of Ang2, tumor vessels had many features of normal blood vessels (normalization), as evidenced by junctional accumulation of vascular endothelial-cadherin, junctional adhesion molecule-A, and platelet/endothelial cell adhesion molecule-1 in endothelial cells, increased pericyte coverage, reduced endothelial sprouting, and remodeling into smaller, more uniform vessels. The Ang1 inhibitor by itself had little noticeable effect on the tumor vasculature. However, when administered with the Ang2 inhibitor, the Ang1 inhibitor prevented tumor vessel normalization, but not the reduction in tumor vascularity produced by the Ang2 inhibitor. These findings are consistent with a model whereby inhibition of Ang2 leads to normalization of tumor blood vessels by permitting the unopposed action of Ang1, but decreases tumor vascularity primarily by blocking Ang2 actions.

  2. Hereditary angioedema with normal C1 inhibitor. (United States)

    Bork, Konrad


    Until recently it was assumed that hereditary angioedema was a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity, and protein in plasma were described. Since then, numerous patients and families with that condition have been reported. Most of the patients were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. In some families mutations in the coagulation factor XII (Hageman factor) gene were detected.

  3. Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. (United States)

    Mosoyan, G; Kraus, T; Ye, F; Eng, K; Crispino, J D; Hoffman, R; Iancu-Rubin, C


    Imetelstat (GRN163L) is a specific telomerase inhibitor which has demonstrated clinical activity in patients with myeloproliferative neoplasms (MPN) and in patients with solid tumors. The antitumor effects were associated with the development of thrombocytopenia, one of the common side effects observed in patients treated with imetelstat. The events underlying these adverse effects are not apparent. In this report we investigated the potential mechanisms that account for imetelstat's beneficial effects in MPN patients and the manner by which imetelstat treatment leads to a reduction in platelet numbers. Using a well-established system of ex vivo megakaryopoiesis, we demonstrated that imetelestat treatment affects normal megakaryocyte (MK) development by exclusively delaying maturation of MK precursor cells. By contrast, additional stages along MPN MK development were affected by imetelstat resulting in reduced numbers of assayable colony-forming unit (CFU)-MK and impaired MK maturation. In addition, treatment with imetelstat inhibited the secretion of fibrogenic growth factors by malignant but not by normal MK. Our results indicate that the delay observed in normal MK maturation may account for imetelstat-induced thrombocytopenia, while the more global effects of imetelstat on several stages along the hierarchy of MPN megakaryopoiesis may be responsible for the favorable clinical outcomes reported in MPN patients.Leukemia accepted article preview online, 08 March 2017. doi:10.1038/leu.2017.78.

  4. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. (United States)

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra


    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  5. Selective radioprotection of normal tissues by bowman-birk proteinase inhibitor (BBI) in mice

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, K.; Toulany, M.; Peter Rodemann, H. [Div. of Radiobiology and Environmental Research, Dept. of Radiation Oncology, Univ. of Tuebingen (Germany); Classen, J.; Heinrich, V. [Dept. of Radiation Oncology, Univ. of Tuebingen (Germany); Milas, L. [Dept. of Experimental Radiation Oncology, The Univ. of Texas, M.D. Anderson Cancer Center, Houston, TX (United States)


    Background and purpose: the efficacy of radiotherapy is limited by the response of normal tissues within the radiation field. The application of normal-tissue-specific radioprotectors may improve the therapeutic benefit of radiotherapy. The purpose of the present study was to explore the in vivo normal-tissue radioprotective potential of Bowman-Birk proteinase inhibitor (BBI), which acts as a normal-cell-specific radioprotector in vitro. Material and methods: the leg contracture assay in mice, a model system assessing radiation-induced fibrotic processes, was used. To determine whether BBI acts also as a radioprotector of tumors (i.e., FSA and FSAII), the tumor growth delay assay was used. Results: radiation induced leg contracture in mice with a maximum of about 8 mm at day 150 after irradiation. Treatment of mice with 100 mg/kg BBI before irradiation reduced leg contracture by > 4 mm, by about 50% (p < 0.05, t-test). Doses < 100 mg/kg were ineffective, and doses > 100 mg/kg did not further increase the degree of radioprotection. By contrast, BBI did not induce radioprotection of either TP53-mutated FSA or TP53-normal FSAII tumor xenografts in mice, which argues for normal-tissue-specific effect. Conclusion: BBI acts as a potent selective normal-tissue radioprotector in vitro and in vivo, apparently without protecting tumors, and thus has the potential to improve clinical radiotherapy. (orig.)

  6. Anti-tumor Action and Clinical Application of Proteasome Inhibitor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; YU Mei-xia; LONG Hui; HUANG Shi-ang


    Ubiquitin-proteasome pathway mediates the degradation of cell protein,and cell cycle,gene translation and expression,antigen presentation and inflammatory development.Proteasome inhibitor Call inhibit growth and proliferation of tumor cell,induce apoptosis and reverse multipledrug resistance of tumor cell,increase the sensitivity of other chemomerapeutic drugs and radiotherapy,and is a novel class of potent anti-tumor agents.

  7. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J


    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  8. EGFR-inhibitors, radiotherapy and normal tissue toxicity

    DEFF Research Database (Denmark)

    Eriksen, J. G.


    will be explained with references to the current knowledge of the biology of skin toxicity. Treatment options for acute side-effects in skin and mucosa after bio-radiotherapy is rarely causal. A few attempts have been done; some of them aiming to rephosphorylate the EGFreceptor in the skin with vitamin K3. The talk......EGFR-inhibitors have been used in several clinical settings during the last decade and side-effects related to normal tissues like the skin, mucosa and kidney has been well described. However, when EGFR-inhibitors are combined with radiotherapy, then different skin and mucosa toxicity profiles can...... will discuss the available data from these studies. Across several tumour sites and for different EGFR-inhibitors, a correlation between skin toxicity and tumour response has also been documented. The reason for this correlation is not obvious but probably related to genetic alterations or certain genetic...

  9. Tumor suppressor identified as inhibitor of inflammation (United States)

    Scientists at NCI have found that a protein, FBXW7, which acts as a tumor suppressor, is also important for the reduction in strength of inflammatory pathways. It has long been recognized that a complex interaction exists between cancer causing mechanisms

  10. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin


    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative


    Institute of Scientific and Technical Information of China (English)

    苏影; 朱建思


    Canstatin is a novel inhibitor of angiogenesis and tumor growth, derived from the C-terminal globular non-collageneous (NCl) domain of the (2 chain of type IV collagen. It inhibits endothelial cell proliferation and migration in a dose-dependent manner, and induces endothelial cell apoptosis. In vivo experiments show that canstatin significantly inhibits solid tumor growth. The canstatin mediated inhibition of tumor is related to apoptosis. Canstatin- induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependend upon signaling events transduced trough membrane death receptor.

  12. Treatment with tumor necrosis factor inhibitors in axial spondyloarthritis

    DEFF Research Database (Denmark)

    Ciurea, A.; Weber, U.; Stekhoven, D.


    Objective. To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. The Journal of Rheumatology, Methods.We compared newly initiated TNF inhibition for axSpA in 363 patients...

  13. Differential actions of selenium on Tumor vs. Normal increase radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ji-Yeon; Song, Jie-Young; Yun, Yeon-Sook [Korea institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Young-Mee [Roswell Park Cancer Institute, Buffalo (United States)


    Selenium is an essential trace element required for normal health and is also a promising agent for preventing cancer. In clinical trials, selenium has significantly protective effects against lung, prostate, colon, and head and neck cancer. Solid tumors in hypoxic and hypoxic/reoxygenation condition have long been considered a problem in cancer therapy. Hypoxic tumor cells were shown to be more resistant to radiotherapy (RT) and many conventional chemotherapeutic agents than their normoxic counterparts. Lung cancer is the leading cause of cancer death in both men and women in the United States. Non-small cell lung cancer (NSCLC) accounts for more than 75% of all lung cancers. RT is the routine treatment modality for these lung cancer patients. The goal of RT is to deliver cytotoxicity to the tumor site, while minimizing cytotoxicity to the surrounding normal tissues. Peroxiredoxin I (Prx I) has been reported to be highly elevated in lung cancer compared to that in normal tissues. NF-E2-related factor 2 (Nrf2) assumed as one of the major transcription factors of Prx I. Nrf2 plays a critical role in regulating expression of antioxidant and phase II drug-metabolizing enzymes, thereby contributing to detoxification, elimination, and protection of tissues or cells against environmental oxidative stress or xenobiotics including medicine. In the present study, we demonstrate that pretreatment with selenium has differential effect on tumor and normal tissue that might be associated with different regulation of Nrf2 under the circumstances of surrounding microenvironment.

  14. Pharmacokinetic modeling of ascorbate diffusion through normal and tumor tissue. (United States)

    Kuiper, Caroline; Vissers, Margreet C M; Hicks, Kevin O


    Ascorbate is delivered to cells via the vasculature, but its ability to penetrate into tissues remote from blood vessels is unknown. This is particularly relevant to solid tumors, which often contain regions with dysfunctional vasculature, with impaired oxygen and nutrient delivery, resulting in upregulation of the hypoxic response and also the likely depletion of essential plasma-derived biomolecules, such as ascorbate. In this study, we have utilized a well-established multicell-layered, three-dimensional pharmacokinetic model to measure ascorbate diffusion and transport parameters through dense tissue in vitro. Ascorbate was found to penetrate the tissue at a slightly lower rate than mannitol and to travel via the paracellular route. Uptake parameters into the cells were also determined. These data were fitted to the diffusion model, and simulations of ascorbate pharmacokinetics in normal tissue and in hypoxic tumor tissue were performed with varying input concentrations, ranging from normal dietary plasma levels (10-100 μM) to pharmacological levels (>1 mM) as seen with intravenous infusion. The data and simulations demonstrate heterogeneous distribution of ascorbate in tumor tissue at physiological blood levels and provide insight into the range of plasma ascorbate concentrations and exposure times needed to saturate all regions of a tumor. The predictions suggest that supraphysiological plasma ascorbate concentrations (>100 μM) are required to achieve effective delivery of ascorbate to poorly vascularized tumor tissue.

  15. Photon emission from normal and tumor human tissues. (United States)

    Grasso, F; Grillo, C; Musumeci, F; Triglia, A; Rodolico, G; Cammisuli, F; Rinzivillo, C; Fragati, G; Santuccio, A; Rodolico, M


    Photon emission in the visible and near ultraviolet range by samples of human tissue removed during surgery has been measured by means of a low noise photomultiplier coupled to a data acquisition system. The results show that among the 25 analyzed samples the 9 from normal tissues had an emission rate of the order of some tens of photons/cm2 min, while most of the 16 tumor tissue samples had a very much higher rate.

  16. Normal Wound Healing and Tumor Angiogenesis as a Game of Competitive Inhibition. (United States)

    Kareva, Irina; Abou-Slaybi, Abdo; Dodd, Oliver; Dashevsky, Olga; Klement, Giannoula Lakka


    Both normal wound healing and tumor angiogenesis are mitigated by the sequential, carefully orchestrated release of growth stimulators and inhibitors. These regulators are released from platelet clots formed at the sites of activated endothelium in a temporally and spatially controlled manner, and the order of their release depends on their affinity to glycosaminoglycans (GAG) such as heparan sulfate (HS) within the extracellular matrix, and platelet open canallicular system. The formation of vessel sprouts, triggered by angiogenesis regulating factors with lowest affinities for heparan sulfate (e.g. VEGF), is followed by vessel-stabilizing PDGF-B or bFGF with medium affinity for HS, and by inhibitors such as PF-4 and TSP-1 with the highest affinities for HS. The invasive wound-like edge of growing tumors has an overabundance of angiogenesis stimulators, and we propose that their abundance out-competes angiogenesis inhibitors, effectively preventing inhibition of angiogenesis and vessel maturation. We evaluate this hypothesis using an experimentally motivated agent-based model, and propose a general theoretical framework for understanding mechanistic similarities and differences between the processes of normal wound healing and pathological angiogenesis from the point of view of competitive inhibition.

  17. MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Modzelewska


    Full Text Available Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2+/Sox10+ CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.

  18. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. (United States)

    Hall, Amy B; Newsome, Dave; Wang, Yuxin; Boucher, Diane M; Eustace, Brenda; Gu, Yong; Hare, Brian; Johnson, Mac A; Milton, Sean; Murphy, Cheryl E; Takemoto, Darin; Tolman, Crystal; Wood, Mark; Charlton, Peter; Charrier, Jean-Damien; Furey, Brinley; Golec, Julian; Reaper, Philip M; Pollard, John R


    Platinum-based DNA-damaging chemotherapy is standard-of-care for most patients with lung cancer but outcomes remain poor. This has been attributed, in part, to the highly effective repair network known as the DNA-damage response (DDR). ATR kinase is a critical regulator of this pathway, and its inhibition has been shown to sensitize some cancer, but not normal, cells in vitro to DNA damaging agents. However, there are limited in vivo proof-of-concept data for ATR inhibition. To address this we profiled VX-970, the first clinical ATR inhibitor, in a series of in vitro and in vivo lung cancer models and compared it with an inhibitor of the downstream kinase Chk1. VX-970 markedly sensitized a large proportion of a lung cancer cell line and primary tumor panel in vitro to multiple DNA damaging drugs with clear differences to Chk1 inhibition observed. In vivo VX-970 blocked ATR activity in tumors and dramatically enhanced the efficacy of cisplatin across a panel of patient derived primary lung xenografts. The combination led to complete tumor growth inhibition in three cisplatin-insensitive models and durable tumor regression in a cisplatin-sensitive model. These data provide a strong rationale for the clinical evaluation of VX-970 in lung cancer patients.

  19. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    Full Text Available Poly(ADP-ribose polymerases (PARPs are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR, a DNA double-strand break (DSB repair pathway, are hypersensitive to PARP inhibitors (PARPi. Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR, and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold and chromatid aberrations (2-6-fold. Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.

  20. Normalized fluorescence lifetime imaging for tumor identification and margin delineation (United States)

    Sherman, Adria J.; Papour, Asael; Bhargava, Siddharth; Taylor, Zach; Grundfest, Warren S.; Stafsudd, Oscar M.


    Fluorescence lifetime imaging microscopy (FLIM) is a technique that has been proven to produce quantitative and qualitative differentiation and identification of substances with good specificity and sensitivity based on lifetime extracted information. This technique has shown the ability to also differentiate between a wide range of tissue types to identify malignant from benign tissue in vivo and ex vivo. However, the complexity, long duration and effort required to generate this information has limited the adoption of these techniques in a clinical setting. Our group has developed a time-resolved imaging system (patent pending) that does not require the extraction of lifetimes or use of complex curve fitting algorithms to display the needed information. The technique, entitled Lifetime Fluorescence Imaging (LFI, or NoFYI), converts fluorescence lifetime decay information directly into visual contrast. Initial studies using Fluorescein and Rhodamine-B demonstrated the feasibility of this approach. Subsequent studies demonstrated the ability to separate collagen and elastin powders. The technique uses nanosecond pulsed UV LEDs at 375 nm for average illumination intensities of ~4.5 μW on the tissue surface with detection by a gated CCD camera. To date, we have imaged 11 surgical head and neck squamous cell carcinoma and brain cancer biopsy specimens including 5 normal and 6 malignant samples. Images at multiple wavelengths clearly demonstrate differentiation between benign and malignant tissue, which was later confirmed by histology. Contrast was obtained between fluorophores with 35 μm spatial resolution and an SNR of ~30 dB allowing us to clearly define tumor margins in these highly invasive cancers. This method is capable of providing both anatomical and chemical information for the pathologist and the surgeon. These results suggest that this technology has a possible role in identifying tumors in tissue specimens and detecting tumor margins during procedures.

  1. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Directory of Open Access Journals (Sweden)

    Melissa Dumble

    Full Text Available Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  2. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. (United States)

    Dumble, Melissa; Crouthamel, Ming-Chih; Zhang, Shu-Yun; Schaber, Michael; Levy, Dana; Robell, Kimberly; Liu, Qi; Figueroa, David J; Minthorn, Elisabeth A; Seefeld, Mark A; Rouse, Meagan B; Rabindran, Sridhar K; Heerding, Dirk A; Kumar, Rakesh


    Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  3. Study of the Glutaminase Inhibitor CB-839 in Solid Tumors (United States)


    Solid Tumors; Triple-Negative Breast Cancer; Non Small Cell Lung Cancer; Renal Cell Carcinoma; Mesothelioma; Fumarate Hydratase (FH)-Deficient Tumors; Succinate Dehydrogenase (SDH)-Deficient Gastrointestinal Stromal Tumors (GIST); Succinate Dehydrogenase (SDH)-Deficient Non-gastrointestinal Stromal Tumors; Tumors Harboring Isocitrate Dehydrogenase-1 (IDH1) and IDH2 Mutations; Tumors Harboring Amplifications in the cMyc Gene

  4. Differential responses of tumors and normal brain to the combined treatment of 2-DG and radiation in glioablastoma. (United States)

    Prasanna, Venkatesh K; Venkataramana, Neelam K; Dwarakanath, B S; Santhosh, Vani


    2-Deoxy-D-glucose (2-DG), an inhibitor of glucose transport and glycolysis, enhances radiation damage selectively in tumor cells by modulating damage response pathways resulting in cell death in vitro and local tumor control. Phase I and II clinical trials in patients with malignant glioma have shown excellent tolerance to a combined treatment of orally administered 2-DG and hypofractionated radiotherapy without any acute toxicity and late radiation damage. Phase III efficacy trials are currently at an advanced stage. Re-exploratory surgery performed in 13 patients due to persistent symptoms of elevated ICP and mass effect at different follow-up periods revealed extensive tumor necrosis with well-preserved normal brain tissue adjoining the tumor included in the treatment volume as revealed by a histological examination. These observations are perhaps the first clinical evidences for differential effects of 2-DG on tumors and normal tissues in conformity with earlier in vitro and in vivo studies in normal and tumor-bearing mice.

  5. Vasculitis Associated With Tumor Necrosis Factor-α Inhibitors (United States)

    Sokumbi, Olayemi; Wetter, David A.; Makol, Ashima; Warrington, Kenneth J.


    Objective To describe the clinical characteristics, histopathologic features, and outcomes of patients in whom vasculitis developed in association with use of tumor necrosis factor-α (TNF-α) inhibitors. Patients and Methods This is a retrospective review of patients evaluated at Mayo Clinic, Rochester, Minnesota, from January 1, 1998, through March 31, 2011, with a diagnosis of vasculitis induced by anti–TNF-α therapy. Results Of 8 patients with vasculitis associated with anti–TNF-α therapy (mean age, 48.5 years), 6 (75%) were female. Four (50%) had rheumatoid arthritis, 1 (13%) had Crohn disease, and 3 (38%) had ulcerative colitis. Five (63%) were treated with infliximab, 2 (25%) with etanercept, and 1 (13%) with adalimumab. The mean duration of treatment before development of vasculitis was 34.5 months. The skin was the predominant organ affected (5 patients [63%]), with the most common cutaneous lesion being palpable purpura (4 of 5 [80%]). Two organs involved in systemic vasculitis were the peripheral nervous system (4 patients [50%]) and kidney (1 patient [13%]). All cases of vasculitis were histopathologically confirmed. Seven of 8 patients improved with discontinuation of therapy (mean time to resolution, 6.9 months) and adjuvant treatment (all 8 received prednisone; another agent was also used in 7); rechallenge with anti–TNF-α therapy was not attempted in any patient. At last follow-up, no patients had experienced a recurrence of vasculitis after therapy discontinuation. Conclusion Cutaneous small-vessel vasculitis was the most common finding, but systemic vasculitis, including peripheral nerve and renal vasculitis, was also frequently observed. PMID:22795634

  6. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors. (United States)

    Vucic, Domagoj


    Apoptosis, or programmed cell death, is a cell suicide process with a major role in development and homeostasis in vertebrates and invertebrates. Dysregulation of apoptosis leading to early cell death or the absence of normal cell death contributes to a number of disease conditions including neurodegenerative diseases and cancer. Inhibition of apoptosis enhances the survival of cancer cells and facilitates their escape from immune surveillance and cytotoxic therapies. Inhibitor of apoptosis (IAP) proteins, a family of anti-apoptotic regulators that block cell death in response to diverse stimuli through interactions with inducers and effectors of apoptosis are among the principal molecules contributing to this phenomenon. IAP proteins are expressed in the majority of human malignancies at elevated levels and play an active role in promoting tumor maintenance through the inhibition of cellular death and participation in signaling pathways associated with malignancies. Herein, the role of IAP proteins in cancer and strategies toward targeting IAP proteins for therapeutic intervention will be discussed.


    Directory of Open Access Journals (Sweden)

    H. Soltanghoraiee


    Full Text Available Breast cancer is common and is considered second cause of cancer related mortality in females. Regarding importance of breast cancer, more investigation in this field is recommended. For many years investigators believed that neoplasms were not innervated but new findings have proved otherwise. This descriptive study was carried out to compare number of nerve fibers in benign, malignant and normal breast tissue. Of each group several slides were reviewed and 3608.50 mm2 of malignant tumors (ductal carcinoma, 3641 mm2 of benign tumors (fibroadenoma and 2331.25 mm2 of normal breast tissue (mammoplasty were assessed. Numbers of nerve fibers were compared and a significant increase in nerve fibers was found in malignant tumors compared with benign tumors and normal breast tissue. Accuracy of hematoxylin and eosin method were examined by immunohistochemistry staining (neurofilament method and affirmed. These results reveal that malignant tumors of breast have more nerve fibers than normal breast tissue or benign tumors.

  8. Involvement of ERK-Nrf-2 signaling in ionizing radiation induced cell death in normal and tumor cells.

    Directory of Open Access Journals (Sweden)

    Raghavendra S Patwardhan

    Full Text Available Prolonged oxidative stress favors tumorigenic environment and inflammation. Oxidative stress may trigger redox adaptation mechanism(s in tumor cells but not normal cells. This may increase levels of intracellular antioxidants and establish a new redox homeostasis. Nrf-2, a master regulator of battery of antioxidant genes is constitutively activated in many tumor cells. Here we show that, murine T cell lymphoma EL-4 cells show constitutive and inducible radioresistance via activation of Nrf-2/ERK pathway. EL-4 cells contained lower levels of ROS than their normal counterpart murine splenic lymphocytes. In response to radiation, the thiol redox circuits, GSH and thioredoxin were modified in EL-4 cells. Pharmacological inhibitors of ERK and Nrf-2 significantly enhanced radiosensitivity and reduced clonogenic potential of EL-4 cells. Unirradiated lymphoma cells showed nuclear accumulation of Nrf-2, upregulation of its dependent genes and protein levels. Interestingly, MEK inhibitor abrogated its nuclear translocation suggesting role of ERK in basal and radiation induced Nrf-2 activation in tumor cells. Double knockdown of ERK and Nrf-2 resulted in higher sensitivity to radiation induced cell death as compared to individual knockdown cells. Importantly, NF-kB which is reported to be constitutively active in many tumors was not present at basal levels in EL-4 cells and its inhibition did not influence radiosensitivity of EL-4 cells. Thus our results reveal that, tumor cells which are subjected to heightened oxidative stress employ master regulator cellular redox homeostasis Nrf-2 for prevention of radiation induced cell death. Our study reveals the molecular basis of tumor radioresistance and highlights role of Nrf-2 and ERK.

  9. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency. (United States)

    Zhou, You; Shan, Song; Li, Zhi-Bin; Xin, Li-Jun; Pan, De-Si; Yang, Qian-Jiao; Liu, Ying-Ping; Yue, Xu-Peng; Liu, Xiao-Rong; Gao, Ji-Zhou; Zhang, Jin-Wen; Ning, Zhi-Qiang; Lu, Xian-Ping


    Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R(+) cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice. (United States)

    Shi, Lei; Yu, Bin; Cai, Chun-Hui; Huang, Jian-Dong


    Despite of a growing number of bacterial species that apparently exhibit intrinsic tumor-targeting properties, no bacterium is able to inhibit tumor growth completely in the immunocompetent hosts, due to its poor dissemination inside the tumors. Oxygen and inflammatory reaction form two barriers and restrain the spread of the bacteria inside the tumors. Here, we engineered a Salmonella typhimurium strain named ST8 which is safe and has limited ability to spread beyond the anaerobic regions of tumors. When injected systemically to tumor-bearing immunocompetent mice, ST8 accumulated in tumors at levels at least 100-fold greater than parental obligate anaerobic strain ST4. ST8/pSEndo harboring therapeutic plasmids encoding Endostatin fused with a secreted protein SopA could target vasculature at the tumor periphery, can stably maintain and safely deliver a therapeutic vector, release angiogenic inhibitors through a type III secretion system (T3SS) to interfere with the pro-angiogenic action of growth factors in tumors. Mice with murine CT26 colon cancer that had been injected with ST8/pSEndo showed efficient tumor suppression by inducing more severe necrosis and inhibiting blooding vessel density within tumors. Our findings provide a therapeutic platform for indirectly acting therapeutic strategies such as anti-angiogenesis and immune therapy.

  11. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    Full Text Available BACKGROUND: Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05. CONCLUSIONS/SIGNIFICANCE: These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  12. PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells. (United States)

    Sponziello, Marialuisa; Verrienti, Antonella; Rosignolo, Francesca; De Rose, Roberta Francesca; Pecce, Valeria; Maggisano, Valentina; Durante, Cosimo; Bulotta, Stefania; Damante, Giuseppe; Giacomelli, Laura; Di Gioia, Cira Rosaria Tiziana; Filetti, Sebastiano; Russo, Diego; Celano, Marilena


    Recent studies have revealed in normal thyroid tissue the presence of the transcript of several phosphodiesterases (PDEs), enzymes responsible for the hydrolysis of cyclic nucleotides. In this work, we analyzed the expression of PDE5 in a series of human papillary thyroid carcinomas (PTCs) presenting or not BRAF V600E mutation and classified according to ATA risk criteria. Furthermore, we tested the effects of two PDE5 inhibitors (sildenafil, tadalafil) against human thyroid cancer cells. PDE5 gene and protein expression were analyzed in two different cohorts of PTCs by real-time PCR using a TaqMan micro-fluid card system and Western blot. MTT and migration assay were used to evaluate the effects of PDE5 inhibitors on proliferation and migration of TPC-1, BCPAP, and 8505C cells. In a first series of 36 PTCs, we found higher expression levels of PDE5A in tumors versus non-tumor (normal) tissues. PTCs with BRAF mutation showed higher levels of mRNA compared with those without mutation. No significant differences were detected between subgroups with low and intermediate ATA risk. Upregulation of PDE5 was also detected in tumor tissue proteins. Similar results were obtained analyzing the second cohort of 50 PTCs. Moreover, all tumor tissues with high PDE5 levels showed reduction of Thyroglobulin, TSH receptor, Thyroperoxidase, and NIS transcripts. In thyroid cancer cells in vitro, sildenafil and tadalafil determined a reduction of proliferation and cellular migration. Our findings demonstrate for the first time an overexpression of PDE5 in PTCs, and the ability of PDE5 inhibitors to block the proliferation of thyroid cancer cells in culture, therefore, suggesting that specific inhibition of PDE5 may be proposed for the treatment of these tumors.

  13. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy. (United States)

    Zhang, Li; Takara, Kazuhiro; Yamakawa, Daishi; Kidoya, Hiroyasu; Takakura, Nobuyuki


    Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well-described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post-treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy.

  14. Using the Neurofibromatosis Tumor Predisposition Syndromes to Understand Normal Nervous System Development

    Directory of Open Access Journals (Sweden)

    Cynthia Garcia


    Full Text Available Development is a tightly regulated process that involves stem cell self-renewal, differentiation, cell-to-cell communication, apoptosis, and blood vessel formation. These coordinated processes ensure that tissues maintain a size and architecture that is appropriate for normal tissue function. As such, tumors arise when cells acquire genetic mutations that allow them to escape the normal growth constraints. In this regard, the study of tumor predisposition syndromes affords a unique platform to better understand normal development and the process by which normal cells transform into cancers. Herein, we review the processes governing normal brain development, discuss how brain cancer represents a disruption of these normal processes, and highlight insights into both normal development and cancer made possible by the study of tumor predisposition syndromes.

  15. HDAC Inhibitors: A Potential New Category of Anti-Tumor Agents

    Institute of Scientific and Technical Information of China (English)

    Lina Pan; Jun Lu; Baiqu Huang


    Over the past years, it has been found that the epigenetic silence of tumor suppressor genes induced by overexpression of histone deacetylases (HDACs) plays an important role in carcinogenesis. Thus, HDAC inhibitors have emerged as the accessory therapeutic agents for multiple human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, growth arrest and apoptosis. To date, the precise mechanisms by which HDAC inhibitors induce cell death have not yet been fully elucidated and the roles of individual HDAC inhibitors have not been identified. Moreover, the practical uses of HDAC inhibitors in cancer therapy, as well as their synergistic effects with other therapeutic strategies are yet to be evaluated. In this review article, we discuss briefly the recent advances in studies of the developments of anti-cancer HDAC inhibitors and their potential clinical value.

  16. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain

    Directory of Open Access Journals (Sweden)

    Chiles Thomas C


    Full Text Available Abstract Background AMP-activated protein kinase (AMPK is a known physiological cellular energy sensor and becomes phosphorylated at Thr-172 in response to changes in cellular ATP levels. Activated AMPK acts as either an inducer or suppressor of apoptosis depending on the severity of energy stress and the presence or absence of certain functional tumor suppressor genes. Results Here we show that energy stress differentially affects AMPK phosphorylation and cell-death in brain tumor tissue and in tissue from contra-lateral normal brain. We compared TSC2 deficient CT-2A mouse astrocytoma cells with syngeneic normal astrocytes that were grown under identical condition in vitro. Energy stress induced by glucose withdrawal or addition of 2-deoxyglucose caused more ATP depletion, AMPK phosphorylation and apoptosis in CT-2A cells than in the normal astrocytes. Under normal energy conditions pharmacological stimulation of AMPK caused apoptosis in CT-2A cells but not in astrocytes. TSC2 siRNA treated astrocytes are hypersensitive to apoptosis induced by energy stress compared to control cells. AMPK phosphorylation and apoptosis were also greater in the CT-2A tumor tissue than in the normal brain tissue following implementation of dietary energy restriction. Inefficient mTOR and TSC2 signaling, downstream of AMPK, is responsible for CT-2A cell-death, while functional LKB1 may protect normal brain cells under energy stress. Conclusion Together these data demonstrates that AMPK phosphorylation induces apoptosis in mouse astrocytoma but may protect normal brain cells from apoptosis under similar energy stress condition. Therefore, using activator of AMPK along with glycolysis inhibitor could be a potential therapeutic approach for TSC2 deficient human malignant astrocytoma.

  17. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. (United States)

    Dong, Xiaoyun; Korch, Christopher; Meinkoth, Judy L


    Increases in Rap activity have been associated with tumor progression. Although activating mutations in Rap have not been described, downregulation of Rap1GAP is frequent in human tumors including thyroid carcinomas. In this study, we explored whether endogenous Rap1GAP expression could be restored to thyroid tumor cells. The effects of deacetylase inhibitors and a demethylating agent, individually and in combination, were examined in four differentiated and six anaplastic thyroid carcinoma (ATC) cell lines. Treatment with the structurally distinct histone deacetylase (HDAC) inhibitors, sodium butyrate and trichostatin A, increased Rap1GAP expression in all the differentiated thyroid carcinoma cell lines and in four of the six ATC cell lines. The demethylating agent, 5-aza-deoxycytidine, restored Rap1GAP expression in one anaplastic cell line and enhanced the effects of HDAC inhibitors in a second anaplastic cell line. Western blotting indicated that Rap2 was highly expressed in human thyroid cancer cells. Importantly, treatment with HDAC inhibitors impaired Rap2 activity in both differentiated and anaplastic tumor cell lines. The mechanism through which Rap activity is repressed appears to entail effects on the expression of multiple Rap regulators, including RapGEFs and RapGAPs. These results suggest that HDAC inhibitors may provide a tractable approach to impair Rap activity in human tumor cells.

  18. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue (United States)

    Quiroz-Zárate, Alejandro; Harshfield, Benjamin J.; Hu, Rong; Knoblauch, Nick; Beck, Andrew H.; Hankinson, Susan E.; Carey, Vincent; Tamimi, Rulla M.; Hunter, David J.; Quackenbush, John; Hazra, Aditi


    We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic studies of genome-wide association studies (GWAS) of breast cancer, the majority of which are located in intergenic or intronic regions. To explore regulatory impacts of these variants we conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive postmenopausal breast cancer cases in the Nurses’ Health Study (NHS) diagnosed from 1990–2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded (FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human Transcriptome Array. Significance and ranking of associations between tumor receptor status and expression variation was preserved between NHS FFPE and TCGA fresh-frozen sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signature genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with expression variation in 217 distinct genes. SNP-gene associations can be explored using an open-source interactive browser distributed in a Bioconductor package. Using a new a procedure for testing hypotheses relating SNP content to expression patterns in gene sets, defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpretation of the GWAS-identified variants remains to be uncovered, this study validates the utility of expression analysis of this FFPE expression set for more detailed integrative analyses. PMID:28152060

  19. Breast Field Cancerization: Isolation and Comparison of Telomerase-Expressing Cells in Tumor and Tumor Adjacent, Histologically Normal Breast Tissue (United States)

    Trujillo, Kristina A.; Hines, William C.; Vargas, Keith M.; Jones, Anna C.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K.


    Telomerase stabilizes chromosomes by maintaining telomere length, immortalizes mammalian cells, and is expressed in more than 90% of human tumors. However, the expression of human telomerase reverse transcriptase (hTERT) is not restricted to tumor cells. We have previously shown that a subpopulation of human mammary epithelial cells (HMEC) in tumor-adjacent, histologically normal (TAHN) breast tissues expresses hTERT mRNA at levels comparable with levels in breast tumors. In the current study, we first validated a reporter for measuring levels of hTERT promoter activity in early-passage HMECs and then used this reporter to compare hTERT promoter activity in HMECs derived from tumor and paired TAHN tissues 1, 3, and 5 cm from the tumor (TAHN-1, TAHN-3, and TAHN-5, respectively). Cell sorting, quantitative real-time PCR, and microarray analyses showed that the 10% of HMECs with the highest hTERT promoter activity in both tumor and TAHN-1 tissues contain more than 95% of hTERT mRNA and overexpress many genes involved in cell cycle and mitosis. The percentage of HMECs within this subpopulation showing high hTERT promoter activity was significantly reduced or absent in TAHN-3 and TAHN-5 tissues. We conclude that the field of normal tissue proximal to the breast tumors contains a population of HMECs similar in hTERT expression levels and in gene expression to the HMECs within the tumor mass and that this population is significantly reduced in tissues more distal to the tumor. PMID:21775421

  20. Tumor control and normal tissue toxicity: The two faces of radiotherapy

    NARCIS (Netherlands)

    van Oorschot, B.


    This thesis discusses the two contrasting sides of radiotherapy: tumor control and normal tissue toxicity. On one hand, radiation treatment aims to target the tumor with the highest possible radiation dose, inducing as much lethal DNA damage as possible. On the other hand however, escalation of the

  1. Diagnosis and treatment of hereditary angioedema with normal C1 inhibitor

    Directory of Open Access Journals (Sweden)

    Bork Konrad


    Full Text Available Abstract Until recently it was assumed that hereditary angioedema is a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity and protein in plasma were described. Since then numerous patients and families with that condition have been reported. Most of the patients by far were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. Recently, in some families mutations in the coagulation factor XII (Hageman factor gene were detected in the affected persons.


    Directory of Open Access Journals (Sweden)

    S. A. Lapshina


    Full Text Available The paper provides guidelines for the use of tumor necrosis factor-α  (TNF-α inhibitors in the treatment of patients with axial spondyloarthritis  (axSpA, including ankylosing spondylitis. It gives data on the efficacy of TNF-α inhibitors in patients with non-radiographic axSpA. By using international and Russian guidelines, the authors lay down indications for this therapy and criteria for evaluation of its efficiency and safety.

  3. Matrix Metalloproteinase and Their Inhibitors: Molecular Aspects of their Roles in the Tumor Metastasis

    Institute of Scientific and Technical Information of China (English)


    The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes, whose physiological functions include tissue remo-delling and embryogenesis. The importance of this group of proteins in the processes of tumor invasion and metastasis is now widely acknowledged, and has led to the search for MMP inhibitors for use as anticancer treatments in a clinical setting. The review aims to introduce current research relating to MMPs as well as their native and synthetic inhibitor, with particular emphasis on the molecular aspects of their roles in tumor metastasis.

  4. Cystein proteinase inhibitor stefin A as an indicator of efficiency of tumor treatment in mice. (United States)

    Korolenko, T A; Poteryaeva, O N; Falameeva, O V; Levina, O A


    The concentration of stefin A (cystatin A in mice) was measured in animals with experimental tumors (LS lymphosarcoma, HA-1-hepatoma, and Lewis lung carcinoma) during effective antitumor therapy. In mice with these tumors serum concentrations of stefin A increased, while the concentration of cystatin C (extracellular cystein proteinase inhibitor) decreased. The concentration of stefin A in tumor tissue in Lewis lung carcinoma was higher than in LS lymphosarcoma and HA-1-hepatoma ascitic cells, which can be explained by the degree of their malignancy. The content of stefin A in tumor tissue was similar to that in the liver and spleen of tumor-bearing animals, while its concentration in the liver and spleen of tumor-bearing animals was lower than in intact mice. The level of stefin A is an important marker of malignancy and an indicator of the efficiency of antitumor therapy.

  5. Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji


    The origin of the differences in the refractive index observed between normal and tumor tissues using terahertz spectroscopy has been described quantitatively. To estimate water content differences in tissues, we prepared fresh and paraffin-embedded samples from rats. An approximately 5% increase of water content in tumor tissues was calculated from terahertz time domain spectroscopy measurements compared to normal tissues. A greater than 15% increase in percentage of cell nuclei per unit area in tumor tissues was observed by hematoxylin and eosin stained samples, which generates a higher refractive index of biological components other than water. Both high water content and high cell density resulted in higher refractive index by approximately 0.05 in tumor tissues. It is predicted that terahertz spectroscopy can also be used to detect brain tumors in human tissue due to the same underlying mechanism as in rats.

  6. Impact of obesity on the response to tumor necrosis factor inhibitors in axial spondyloarthritis. (United States)

    Micheroli, Raphael; Hebeisen, Monika; Wildi, Lukas M; Exer, Pascale; Tamborrini, Giorgio; Bernhard, Jürg; Möller, Burkhard; Zufferey, Pascal; Nissen, Michael J; Scherer, Almut; Ciurea, Adrian


    Few studies have investigated the impact of obesity on the response to tumor necrosis factor inhibitors (TNFi) in patients with axial spondyloarthritis (axSpA). The aim of our study was to investigate the impact of different body mass index (BMI) categories on TNFi response in a large cohort of patients with axSpA. Patients with axSpA within the Swiss Clinical Quality Management (SCQM) program were included in the current study if they fulfilled the Assessment in Spondyloarthritis International Society (ASAS) criteria for axSpA, started a first TNFi after recruitment, and had available BMI data as well as a baseline and follow-up visit at 1 year (±6 months). Patients were categorized according to BMI: normal (BMI 18.5 to 30). We evaluated the proportion of patients achieving the 40% improvement in ASAS criteria (ASAS40), as well as Ankylosing Spondylitis Disease Activity Score (ASDAS) improvement and status scores at 1 year. Patients having discontinued the TNFi were considered nonresponders. We controlled for age, sex, HLA-B27, axSpA type, BASDAI, BASMI, elevated C-reactive protein (CRP), current smoking, enthesitis, physical exercise, and co-medication with disease-modifying antirheumatic drugs, as well as with nonsteroidal anti-inflammatory drugs in multiple adjusted logistic regression analyses. A total of 624 axSpA patients starting a first TNFi were considered in the current study (332 patients of normal weight, 204 patients with overweight, and 88 obese patients). Obese individuals were older, had higher BASDAI levels, and had a more important impairment of physical function in comparison to patients of normal weight, while ASDAS and CRP levels were comparable between the three BMI groups. An ASAS40 response was reached by 44%, 34%, and 29% of patients of normal weight, overweight, and obesity, respectively (overall p = 0.02). Significantly lower odds ratios (ORs) for achieving ASAS40 response were found in adjusted analyses in obese patients versus

  7. Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract

    Institute of Scientific and Technical Information of China (English)

    Lei Zeng; Jiang Cao; Xing Zhang


    AIM: To provide the expression profile of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 (HAI-1) in normal and malignant tissues of gastrointestinal tract at mRNA level for further study on their correlations with tumor progression and metastasis.METHODS: Total RNAs were prepared from 37 samples of colorectal cancer tissues, 40 samples of gastric cancer tissues, and their adjacent normal tissues. The expression of SNC19/matriptase and HAI-1 in these samples was detected by real-time fluorescent quantitative PCR using glyceraldehyde-3-phosphate dehydrogenase as internal standard, and the clinical significance for the correlation with clinicopathological parameters was evaluated.RESULTS: In gastric cancer tissues the expression of HAI-1and SNC19/matriptase was significantly lower than that in the corresponding adjacent normal tissues (Z= -3.280,P= 0.006; Z= -4.651, P= 0.000). HAI-1:SNC19/matriptase ratio showed no difference between normal and malignant tissues (P>0.05). Analysis of clinicopathological parameters showed decreased expression of HAI-1 and HAI-1 :SNC19/matriptase ratio associated with stage Ⅲ/Ⅳ gastric tumors as compared to stage Ⅰ/Ⅱ ones (Z= -2.140, P = 0.031;Z = -2.155, P = 0.031), and with lymph node-positive gastric cancer tissues as compared to lymph node-negative ones (Z= -2.081, P= 0.036; Z= -2.686, P = 0.006). The expression of SNC19/matriptase had no relationship with stages and lymph node metastasis (P>0.05). The expression of HAI-1 and HAI-1:SNC19/matriptase ratio increased in well-differentiated gastric cancer tissues, but there was no statistical significance (P>0.05). The difference of SNC19/matriptase expression was not significant in gastric cancer tissues of different histological differentiation status (P>0.05). In colorectal cancer tissues, the expression of HAI-1 and SNC19/matriptase was also markedly lower than that in their adjacent normal tissues (Z= -3.100, P

  8. Administration of IκB-kinase inhibitor PS1145 enhances apoptosis in DMBA-induced tumor in male Wistar rats. (United States)

    Rajmani, R S; Gandham, Ravi Kumar; Gupta, Shishir Kumar; Sahoo, Aditya P; Singh, Prafull Kumar; Saxena, Shikha; Kumar, Rajiv; Chaturvedi, Uttara; Tiwari, Ashok K


    Nuclear factor kappa-B (NF-κB), a key anti-apoptotic factor, plays a critical role in tumor cell growth, metastasis, and angiogenesis. The transcriptional activity of NF-κB is normally suppressed in the cytoplasm due to its association with a natural inhibitor molecule IκB. Phosphorylation of the IκB at Ser 32 and Ser 36 by the IκB kinase complex (IKK) marks the degradation of the molecule by 26S proteasome. As NF-κB is constitutively activated in most of the tumor cells, inhibition of the activities of IKK may significantly sensitize the tumor cells to apoptosis. In the present study, we investigated the effect of IκB kinase-specific blocker PS1145 on DMBA-induced skin tumor of male Wistar rats. We examined the apoptotic effect of PS1145 on DMBA-induced tumor by various histopathological and molecular techniques. Our results demonstrate the significant expression of major pro-apoptotic genes like caspases 2, 3, 8, 9, and p53 in PS1145-treated tumor bearing group at mRNA levels as well as significant (P tumor progression, mitotic, AgNOR, and PCNA indices were significantly reduced in PS1145 treatment groups as compared to PBS control on day 28 of post-treatment. Furthermore, significant increase in TUNEL positive nuclei and observation of peculiar apoptotic nuclei in transmission electron microscopy were seen in PS1145 treatment group. We conclude that intravenous application of PS1145 promotes direct apoptosis in DMBA-induced skin tumor in male Wistar rats by blocking NF-κB and VEGF activities.

  9. The Bruton's tyrosine kinase inhibitor ibrutinib exerts immunomodulatory effects through regulation of tumor-infiltrating macrophages. (United States)

    Ping, Lingyan; Ding, Ning; Shi, Yunfei; Feng, Lixia; Li, Jiao; Liu, Yalu; Lin, Yufu; Shi, Cunzhen; Wang, Xing; Pan, Zhengying; Song, Yuqin; Zhu, Jun


    The Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has demonstrated promising efficacy in a variety of hematologic malignancies. However, the precise mechanism of action of the drug remains to be fully elucidated. Tumor-infiltrating macrophages presented in the tumor microenvironment have been shown to promote development and progression of B-cell lymphomas through crosstalk mediated by secreted cytokines and chemokines. Because Btk has been implicated in Toll-like receptor (TLR) signaling pathways that regulate macrophage activation and production of proinflammatory cytokines, we investigated the immunomodulatory effects of Btk inhibitor on macrophages. Our results demonstrate that Btk inhibition efficiently suppresses production of CXCL12, CXCL13, CCL19, and VEGF by macrophages. Furthermore, attenuated secretion of homeostatic chemokines from Btk inhibitor-treated macrophages significantly compromise adhesion, invasion, and migration of lymphoid malignant cells and even those not driven by Btk expression. The supernatants from Btk inhibitor-treated macrophages also impair the ability of endothelial cells to undergo angiogenic tube formation. Mechanistic analysis revealed that Btk inhibitors treatment downregulates secretion of homeostatic chemokines and cytokines through inactivation of Btk signaling and the downstream transcription factors, NF-κB, STAT3, and AP-1. Taken together, these results suggest that the encouraging therapeutic efficacy of Btk inhibitor may be due to both direct cytotoxic effects on malignant B cells and immunomodulatory effects on macrophages present in the tumor microenvironment. This novel mechanism of action suggests that, in addition to B-cell lymphomas, Btk inhibitor may also have therapeutic value in lymphatic malignancies and solid tumors lacking Btk expression.

  10. [Neurological complications during treatment of the tumor necrosis alpha inhibitors]. (United States)

    Piusińska-Macoch, Renata


    Medications with TNF-alpha inhibitors family are successfully applicable in rheumatology, gastroenterology, dermatology and neurology. Still, the ongoing research on the safety assessment of their application, also due to neurological complications. The vast majority of these complications is associated with an increased risk of serious virus (Herpes simplex--JC) and bacterial (Listeria monocytogenes) neuroinfections. They can cause the occurrence of progressive multifocal leukoencephalopathy--PML with a severe clinical course and poor prognosis or herpes simplex encephalitis--HSE. Meta-analysis revealed a number of cases of PML and the HSE in the first 6 months of treatment with natalizumab, efalizumab, rituximab, abatacept and infliximab. Common complication occasionally turning on this biologics is chronic demyelinating polyneuropathy or Lewis-Sumner syndrome. Described are cases of central and peripheral demyelination typical of multiple sclerosis (MS). Are also reported cases of motor multifocal neuropathy with conduction block acute encephalithis with polyneuropathy or mononeuropathy in the form of anterior optic neuropathy Guillen-Barre' syndrome and its variant, Miller-Fisher syndrome have been confirmed as adverse events following treatment with infliximab. Also revealed several cases of myasthenia gravis after using etanercept. In the few cases of systemic lupus CNS involvement caused by treatment with TNF inhibitors, the mechanism of these disorders is still considered too vague. Due to the emerging reports on the number of neurological adverse events of TNF antagonists, significantly higher than those described in the literature, the safety of their use requires further monitoring and multicenter studies.

  11. Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts

    Institute of Scientific and Technical Information of China (English)

    Yuan James RAO; Lei XI


    Phosphodiesterases (PDEs) are enzymes that degrade cellular cAMP and cGMP and are thus essential for regulating the cyclic nucleotides. At least 11 families of PDEs have been identified, each with a distinctive structure, activity, expression, and tissue distribution. The PDE type-3, -4, and -5 (PDE3, PDE4, PDE5) are localized to specific regions of the cardiomyo-cyte, such as the sarcoplasmic reticulum and Z-disc, where they are likely to influence cAMP/cGMP signaling to the end effectors of contractility. Several PDE inhibitors exhibit remarkable hemodynamic and inotropic properties that may be valuable to clinical practice. In particular, PDE3 inhibitors have potent cardiotonic effects that can be used for short-term inotropic support, especially in situations where adrenergic stimulation is insufficient. Most relevant to this review, PDE in-hibitors have also been found to have cytoprotective effects in the heart. For example, PDE3 inhibitors have been shown to be cardioprotective when given before ischemic attack, whereas PDE5 inhibitors, which include three widely used erectile dysfunction drugs (sildenafil, vardenafil and tadalafil), can induce remarkable cardioprotection when administered either prior to ischemia or upon reperfusion. This article provides an overview of the current laboratory and clinical evidence, as well as the cellular mechanisms by which the inhibitors of PDE3, PDE4 and PDE5 exert their beneficial effects on normal and ischemic hearts. It seems that PDE inhibitors hold great promise as clinically applicable agents that can improve car-diac performance and cell survival under critical situations, such as ischemic heart attack, cardiopulmonary bypass surgery, and heart failure.

  12. GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. (United States)

    Raab, Marc S; Breitkreutz, Iris; Anderhub, Simon; Rønnest, Mads H; Leber, Blanka; Larsen, Thomas O; Weiz, Ludmila; Konotop, Gleb; Hayden, Patrick J; Podar, Klaus; Fruehauf, Johannes; Nissen, Felix; Mier, Walter; Haberkorn, Uwe; Ho, Anthony D; Goldschmidt, Hartmut; Anderson, Kenneth C; Clausen, Mads H; Krämer, Alwin


    In contrast to normal cells, malignant cells are frequently aneuploid and contain multiple centrosomes. To allow for bipolar mitotic division, supernumerary centrosomes are clustered into two functional spindle poles in many cancer cells. Recently, we have shown that griseofulvin forces tumor cells with supernumerary centrosomes to undergo multipolar mitoses resulting in apoptotic cell death. Here, we describe the characterization of the novel small molecule GF-15, a derivative of griseofulvin, as a potent inhibitor of centrosomal clustering in malignant cells. At concentrations where GF-15 had no significant impact on tubulin polymerization, spindle tension was markedly reduced in mitotic cells upon exposure to GF-15. Moreover, isogenic cells with conditional centrosome amplification were more sensitive to GF-15 than parental controls. In a wide array of tumor cell lines, mean inhibitory concentrations (IC(50)) for proliferation and survival were in the range of 1 to 5 μmol/L and were associated with apoptotic cell death. Importantly, treatment of mouse xenograft models of human colon cancer and multiple myeloma resulted in tumor growth inhibition and significantly prolonged survival. These results show the in vitro and in vivo antitumor efficacy of a prototype small molecule inhibitor of centrosomal clustering and strongly support the further evaluation of this new class of molecules.

  13. Anti-tumor properties of the cGMP/protein kinase G inhibitor DT3 in pancreatic adenocarcinoma. (United States)

    Soltek, Sabine; Karakhanova, Svetlana; Golovastova, Marina; D'Haese, Jan G; Serba, Susanne; Nachtigall, Ines; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V


    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Therefore, new therapeutic options are urgently needed to improve the survival of PDAC patients. Protein kinase G (PKG) conducts the interlude of cGMP signaling which is important for healthy as well as for cancer cells. DT3 is a specific inhibitor of PKG, and it has been shown to possess an anti-tumor cytotoxic activity in vitro. The main aim of this work was to investigate anti-tumor effects of DT3 upon PDAC in vivo.Expression of PKG was assessed with real-time PCR analysis in the normal and tumor pancreatic cells. In vitro cell viability, proliferation, apoptosis, necrosis, migration, and invasion of the murine PDAC cell line Panc02 were assessed after DT3 treatment. In vivo anti-tumor effects of DT3 were investigated in the murine Panc02 orthotopic model of PDAC. Western blot analysis was used to determine the phosphorylation state of the proteins of interest.Functional PKGI is preferentially expressed in PDAC cells. DT3 was capable to reduce viability, proliferation, and migration of murine PDAC cells in vitro. At the same time, DT3 treatment did not change the viability of normal epithelial cells of murine liver. In vivo, DT3 treatment reduced the tumor volume and metastases in PDAC-bearing mice, but it was ineffective to prolong the survival of the tumor-bearing animals. In addition, DT3 treatment decreased phosphorylation of GSK-3, P38, and CREB in murine PDAC.Inhibition of PKG could be a potential therapeutic strategy for PDAC treatment which should be carefully validated in future pre-clinical studies.

  14. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. (United States)

    Patel, Krupa J; Trédan, Olivier; Tannock, Ian F


    Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.

  15. Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)]. E-mail:; Staelens, Ludovicus [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Kersemans, Veerle [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Cornelissen, Bart [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Frankenne, Francis [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Foidart, Jean-Michel [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Wiele, Christophe van de [Division of Nuclear Medicine, Gent University Hospital, De Pintelaan 185, 9000 Gent (Belgium); Slegers, Guido [Faculty of Pharmaceutical Sciences, Department of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)


    Among matrix metalloproteinases (MMPs), the subfamily of gelatinases (MMP-2, MMP-9) is of particular interest due to their ability to degrade type IV collagen and other non-fibrillar collagen domains and proteins such as fibronectin and laminin. Whilst malignant cells often over-express various MMPs, the gelatinases have been most consistently detected in malignant tissues and associated with tumor growth, metastatic potential and angiogenesis. Radiosynthesis of carboxylic (1') and hydroxamic (2') MMPIs resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. Evaluation in A549-inoculated athymic mice showed a tumor uptake of 2.0+/-0.7%ID/g (3h p.i.), a tumor/blood ratio of 0.5 and a tumor/muscle ratio of 4.6 at 48hp.i. for 1'. For compound 2' a tumor uptake of 0.7+/-0.2%ID/g (3hp.i.), a tumor/blood ratio of 1.2 and a tumor/muscle ratio of 1.8 at 24hp.i. were observed. HPLC analysis of the blood (plasma) showed no dehalogenation or other metabolites of 1' 2hp.i. For compound 2', 65.4% of intact compound was found in the blood (plasma) and one polar metabolite (31%) was detected whereas in the tumor 91.8% of the accumulated activity was caused by intact compound and only 8.1% by the metabolite. Planar imaging, using a Toshiba GCA-9300A/hg SPECT camera, showed that tumor tissue could be visualized and that image quality improved by decreasing specific activity resulting in lower liver uptake, indicating some degree of saturable binding in the liver. In vivo evaluation of these radioiodinated carboxylic and hydroxamic MMP inhibitor tracers revealed that MMP inhibitors could have potential as tumor imaging agents, but that further research is necessary.

  16. Longitudinal imaging studies of tumor microenvironment in mice treated with the mTOR inhibitor rapamycin.

    Directory of Open Access Journals (Sweden)

    Keita Saito

    Full Text Available Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII by electron paramagnetic resonance imaging (EPRI and magnetic resonance imaging (MRI to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500-750 mm(3 and measurements of tumor pO(2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO(2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO(2<10 mm Hg in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.

  17. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli


    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  18. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis. (United States)

    Scheit, Katrin; Bauer, Georg


    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  19. Tumor necrosis factor-alpha inhibitor treatment for sarcoidosis

    Directory of Open Access Journals (Sweden)

    José Luis Callejas-Rubio


    Full Text Available José Luis Callejas-Rubio, Lourdes López-Pérez, Norberto Ortego-CentenoUnit of Autoimmune Systemic Diseases, Hospital Clinico San Cecilio, Granada, SpainAbstract: Sarcoidosis is a chronic multisystem disease of unknown etiology, characterized by noncaseating granulomatous infiltration of virtually any organ system. Treatment is often undertaken in an attempt to resolve symptoms or prevent progression to organ failure. Previous studies have suggested a prominent role for tumor necrosis factor-alpha (TNF-α in the inflammatory process seen in sarcoidosis. TNF-α and interleukin-1 are released by alveolar macrophages in patients with active lung disease. Corticosteroids have proved to be efficacious in the treatment of sarcoidosis, possibly by suppressing the production of TNF-α and other cytokines. Three agents are currently available as specific TNF antagonists: etanercept, infliximab, and adalimumab. Although data from noncomparative trials suggest that all three have comparable therapeutic effects in rheumatoid arthritis, their effects in a granulomatous disease such as sarcoidosis are less consistent. In this review, current data on the effectiveness are summarized.Keywords: sarcoidosis, infliximab, etanercept, adalimumab, anti-TNA alpha

  20. Effect of DAPT, a gamma secretase inhibitor, on tumor angiogenesis in control mice

    Directory of Open Access Journals (Sweden)

    Elmira Kalantari


    Full Text Available Background: Notch signaling is a key factor for angiogenesis in physiological and pathological condition and γ-secretase is the regulator of Notch signaling. The main goal of this study was to assess the effect of (N-[N-(3,5-Diflurophenaacetyl-L-alanyl]-S-phenylglycine t-Butyl Ester DAPT, a γ-secretase inhibitor, on serum angiogenic biomarkers, and tumor angiogenesis in control mice. Materials and Methods: Tumor was induced by inoculation of colon adenocarcinoma cells (CT26 in 12 male Balb/C mice. When tumors size is reached to a 350 ± 50 mm 3 , the animals were randomly divided into two groups: control and DAPT (n = 6/group. DAPT was injected subcutaneously 10 mg/kg/day. After 14 days, blood samples were taken and the tumors were harvested for immunohistochemical staining. Results: Administration of DAPT significantly increased serum nitric oxide concentration and reduced vascular endothelial growth factor receptors-1 (VEGFR1 concentration without changes on serum VEGF concentration. DAPT reduced tumor vascular density in control mice (280.6 ± 81 vs. 386 ± 59.9 CD31 positive cells/mm 2 , although, it was not statistically significant. Conclusion: It seems that γ-secretase inhibitors can be considered for treatment of disorders with abnormal angiogenesis such as tumor angiogenesis.

  1. Comparative VEGF receptor tyrosine kinase modeling for the development of highly specific inhibitors of tumor angiogenesis. (United States)

    Schmidt, Ulrike; Ahmed, Jessica; Michalsky, Elke; Hoepfner, Michael; Preissner, Robert


    The Vascular Endothelial Growth Factor receptors (VEGF-Rs) play a significant role in tumor development and tumor angiogenesis and are therefore interesting targets in cancer therapy. Targeting the VEGF-R is of special importance as the feed of the tumor has to be reduced. In general, this can be carried out by inhibiting the tyrosine kinase function of the VEGF-R. Nevertheless, there arise some problems with the specificity of known kinase inhibitors: they bind to the ATP-binding site and inhibit a number of kinases, moreover the so far most specific inhibitors act at least on these three major types of VEGF-Rs: Flt-1, Flk-1/KDR, Flt-4. The goal is a selective VEGF-R-2 (Flk-1/KDR) inhibitor, because this receptor triggers rather unspecific signals from VEGF-A, -C, -D and -E. Here, we describe a protocol starting from an established inhibitor (Vatalanib) with 2D-/3D-searching and property filtering of the in silico screening hits and the "negative docking approach". With this approach we were able to identify a compound, which shows a fourfold higher reduction of the proliferation rate of endothelial cells compared to the reduction effect of the lead structure.

  2. A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor (United States)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki


    This paper extends Jackson’s model describing the growth of a prostate tumor with hormone therapy to a new one with hypothetical mutation inhibitors. The new model not only considers the mutation by which androgen-dependent (AD) tumor cells mutate into androgen-independent (AI) ones but also introduces inhibition which is assumed to change the mutation rate. The tumor consists of two types of cells (AD and AI) whose proliferation and apoptosis rates are functions of androgen concentration. The mathematical model represents a free-boundary problem for a nonlinear system of parabolic equations, which describe the evolution of the populations of the above two types of tumor cells. The tumor surface is a free boundary, whose velocity is equal to the cell’s velocity there. Global existence and uniqueness of solutions of this model is proved. Furthermore, explicit formulae of tumor volume at any time t are found in androgen-deprived environment under the assumption of radial symmetry, and therefore the dynamics of tumor growth under androgen-deprived therapy could be predicted by these formulae. Qualitative analysis and numerical simulation show that controlling the mutation may improve the effect of hormone therapy or delay a tumor relapse.

  3. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth E-mail:; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido


    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% {+-} 5% (n = 3) and 70% {+-} 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents.

  4. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    Full Text Available BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  5. Imatinib enchances the sensitivity of gastrointestinal stromal tumors to topoisomerase II inhibitors

    Directory of Open Access Journals (Sweden)

    S. V. Boichuk


    Full Text Available Objective: to study the sensitivity of gastrointestinal stromal tumors (GISTs to the topoisomerases type II inhibitors and ability of imatinib to enhance GISTs sensitivity to the chemotherapeutic drugs indicated above.Subjects and Methods. We studied the sensitivity of gastrointestinal stromal tumors (GISTs to the topoisomerases II inhibitors and ability of imatinib to enhance GISTs sensitivity to these chemotherapeutic agents. The expression of DNA damage and repair (DDR markers was examined by western-blotting. Cleaved forms of poly (ADP-rybose polymerase and caspase-3 were served as an apoptotic markers measured by western blotting. Amount of apoptotic cells was counted by flow cytometry analysis by using a propidium iodide DNA staining procedure and counting the numbers of hypodiploid cells.Results. We observed the sensitivity of GISTs to topoisomerase II inhibitors – doxorubicine and etoposide inducing DNA double-strand breaks and apoptotic cell death. Imatinib enhances GISTs sensitivity to topoisomerase II inhibitors. This might be due to reduced ability of GISTs to repair DNA damage by homologous recombination. Imatinib-induced reduction of Rad51 recombinase might be due to increased proteasome-dependent degradation.Conclusion. GIST cells are sensitive to topoisomerase II inhibitors (etoposide and doxorubicin in vitro. Imatinib enhances GISTs sensitivity to the chemotherapeutic agents indicated above.

  6. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others


    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  7. Bilateral optic neuropathy associated with the tumor necrosis factor-alpha inhibitor golimumab. (United States)

    Chang, Jessica R; Miller, Neil R


    A 62-year-old man developed bilateral blurred vision associated with bilateral optic disc swelling shortly after receiving his third dose of the tumor necrosis factor-alpha (TNF-α) inhibitor golimumab, that he took for psoriatic arthritis. An extensive assessment including magnetic resonance imaging, lumbar puncture, and serologies was negative. He was treated with systemic corticosteroids and the golimumab was stopped, after which his vision improved and his disc swelling resolved. We postulate that the bilateral, simultaneous anterior optic neuropathies in this patient were due to golimumab, representing a rare but well-documented serious adverse event associated with TNF-α inhibitors.

  8. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells (United States)

    Baldassarre, Gustavo; Belletti, Barbara; Bruni, Paola; Boccia, Angelo; Trapasso, Francesco; Pentimalli, Francesca; Barone, Maria Vittoria; Chiappetta, Gennaro; Vento, Maria Teresa; Spiezia, Stefania; Fusco, Alfredo; Viglietto, Giuseppe


    The majority of thyroid carcinomas maintain the expression of the cell growth suppressor p27, an inhibitor of cyclin-dependent kinase-2 (Cdk2). However, we find that 80% of p27-expressing tumors show an uncommon cytoplasmic localization of p27 protein, associated with high Cdk2 activity. To reproduce such a situation, a mutant p27 devoid of its COOH-terminal nuclear-localization signal was generated (p27-NLS). p27-NLS accumulates in the cytoplasm and fails to induce growth arrest in 2 different cell lines, indicating that cytoplasm-residing p27 is inactive as a growth inhibitor, presumably because it does not interact with nuclear Cdk2. Overexpression of cyclin D3 may account in part for p27 cytoplasmic localization. In thyroid tumors and cell lines, cyclin D3 expression was associated with cytoplasmic localization of p27. Moreover, expression of cyclin D3 in thyroid carcinoma cells induced cytoplasmic retention of cotransfected p27 and rescued p27-imposed growth arrest. Endogenous p27 also localized prevalently to the cytoplasm in normal thyrocytes engineered to stably overexpress cyclin D3 (PC-D3 cells). In these cells, cyclin D3 induced the formation of cytoplasmic p27–cyclin D3–Cdk complexes, which titrated p27 away from intranuclear complexes that contain cyclins A–E and Cdk2. Our results demonstrate a novel mechanism that may contribute to overcoming the p27 inhibitory threshold in transformed thyroid cells. PMID:10510327

  9. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells. (United States)

    Hirakawa, Hirokazu; Fujisawa, Hiroshi; Masaoka, Aya; Noguchi, Miho; Hirayama, Ryoichi; Takahashi, Momoko; Fujimori, Akira; Okayasu, Ryuichi


    Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors.

  10. Toxic effect of C60 fullerene-doxorubicin complex towards tumor and normal cells in vitro

    Directory of Open Access Journals (Sweden)

    Prylutska S. V.


    Full Text Available Creation of new nanostructures possessing high antitumor activity is an important problem of modern biotechnology. Aim. To evaluate cytotoxicity of created complex of pristine C60 fullerene with the anthracycline antibiotic doxorubicin (Dox, as well as of free C60 fullerene and Dox, towards different cell types – tumor, normal immunocompetent and hepatocytes. Methods. Measurement of size distribution for particles in C60 + Dox mixture was performed by a dynamic light scattering (DLS technique. Toxic effect of C60 + Dox complex in vitro towards tumor and normal cells was studied using the MTT assay. Results. DLS experiment demonstrated that the main fraction of the particles in C60 + Dox mixture had a diameter in the range of about 132 nm. The toxic effect of C60 + Dox complex towards normal (lymphocytes, macrophages, hepatocytes and tumor (Ehrlich ascites carcinoma, leukemia L1210, Lewis lung carcinoma cells was decreased by ~10–16 % and ~7–9 %, accordingly, compared with the same effect of free Dox. Conclusions. The created C60 + Dox composite may be considered as a new pharmacological agent that kills effectively tumor cells in vitro and simultaneously prevents a toxic effect of the free form of Dox on normal cells.

  11. Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes.

    Directory of Open Access Journals (Sweden)

    Melissa A Merritt

    Full Text Available The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV and fallopian tube (FT epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.

  12. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes


    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  13. Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays.

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    Full Text Available Cyclin-dependent kinases (CDKs play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.

  14. Effect of tumor necrosis factor-α inhibitors on ambulatory 24-h blood pressure. (United States)

    Grossman, Chagai; Bornstein, Gil; Leibowitz, Avshalom; Ben-Zvi, Ilan; Grossman, Ehud


    Tumor necrosis factor alpha (TNF-α) inhibitors are increasingly being used in inflammatory rheumatic diseases (IRD). The risk of cardiovascular disease is elevated in patients with IRD and TNF-α inhibitors reduce this risk. We assessed whether the beneficial effect of TNF-α inhibitors on cardiovascular risk is mediated by blood pressure reduction. We measured blood pressure levels with 24-h ambulatory blood pressure measurements device in patients with IRD before and 3 months after treatment with TNF-α inhibitors. The study population consisted of 15 subjects (6 men; mean age 45.9 ± 14.1 years). Most patients had either rheumatoid arthritis or psoriatic arthritis and adalimumab was the most common TNF-α inhibitor used. Mean 24-h systolic and diastolic blood pressure levels remained the same after treatment (121 ± 12/66 ± 7 before and 123 ± 11/67 ± 10 mm Hg after; p = 0.88 and 0.66, respectively). The study demonstrates that TNF-α inhibitors have no effect on blood pressure levels.

  15. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Olesen, Caroline Meyer; Coskun, Mehmet; Peyrin-Biroulet, Laurent


    Biological treatment with tumor necrosis factor (TNF) inhibitors is successful in the management of inflammatory bowel disease (IBD). All TNF inhibitors antagonize the pro-inflammatory cytokine TNF-α but with varying efficacies in IBD. The variations in efficacy probably are caused by structural...... differences between the agents that affect their mechanisms of action and pharmacokinetic properties. Several mechanisms have been proposed, such as modulation of the expression of pro-inflammatory mediators and a reduction in the number of activated immune cells. However, it seems that clinical efficacy...... is the result of a number of different mechanisms and that binding of transmembrane TNF by TNF inhibitors. Knowledge of the mechanisms of action has been obtained mainly through the use of in vitro assays that may differ significantly from the situation in vivo. This review discusses the available data on TNF...

  16. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten


    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  17. [A novel HIF-1 inhibitor--manassantin A derivative LXY6099 inhibits tumor growth]. (United States)

    Lai, Fang-Fang; Liu, Xiao-Yu; Niu, Fei; Lang, Li-Wei; Xie, Ping; Chen, Xiao-Guang


    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor on hypoxia responses in mammalian tissues. HIF-1 plays as a positive factor in solid tumor and leads to hypoxia-driven responses that enhance its downstream gene expression for tumor growth and survival. LXY6099 was obtained by the structural modification and optimization of manassantin A (MA) as a high potent HIF-1 inhibitor. Antitumor activity of LXY6099 was observed in this study. LXY6099 with an IC50 value of 2.46 x 10(-10) mol x L(-1) showed more sensitive inhibition activity to HIF-1 than that of MA detected by reporter gene assay (> 100 folds). It showed strong inhibition on the growth of human solid tumor cell lines. Furthermore, LXY6099 exhibited significant antitumor activity against established human tumor xenografts in nu/nu mice with treatment of MX-1 breast cancer. Thus, LXY6099 as a novel HIF-1 inhibitor could be further developed into anti-cancer agents.

  18. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor (United States)

    Liu, Ning-Ai; Jiang, Hong; Ben-Shlomo, Anat; Wawrowsky, Kolja; Fan, Xue-Mo; Lin, Shuo; Melmed, Shlomo


    Cushing disease caused by adrenocorticotropin (ACTH)-secreting pituitary adenomas leads to hypercortisolemia predisposing to diabetes, hypertension, osteoporosis, central obesity, cardiovascular morbidity, and increased mortality. There is no effective pituitary targeted pharmacotherapy for Cushing disease. Here, we generated germline transgenic zebrafish with overexpression of pituitary tumor transforming gene (PTTG/securin) targeted to the adenohypophyseal proopiomelanocortin (POMC) lineage, which recapitulated early features pathognomonic of corticotroph adenomas, including corticotroph expansion and partial glucocorticoid resistance. Adult Tg:Pomc-Pttg fish develop neoplastic coticotrophs and pituitary cyclin E up-regulation, as well as metabolic disturbances mimicking hypercortisolism caused by Cushing disease. Early development of corticotroph pathologies in Tg:Pomc-Pttg embryos facilitated drug testing in vivo. We identified a pharmacologic CDK2/cyclin E inhibitor, R-roscovitine (seliciclib; CYC202), which specifically reversed corticotroph expansion in live Tg:Pomc-Pttg embryos. We further validated that orally administered R-roscovitine suppresses ACTH and corticosterone levels, and also restrained tumor growth in a mouse model of ACTH-secreting pituitary adenomas. Molecular analyses in vitro and in vivo showed that R-roscovitine suppresses ACTH expression, induces corticotroph tumor cell senescence and cell cycle exit by up-regulating p27, p21 and p57, and downregulates cyclin E expression. The results suggest that use of selective CDK inhibitors could effectively target corticotroph tumor growth and hormone secretion. PMID:21536883

  19. Suberoylanilide hydroxamic acid affects {gamma}H2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, C.; Oertel, S.; Thiemann, M.; Weber, K.J.; Schmezer, P.; Zelezny, O.; Lopez Perez, R.; Kulozik, A.E.; Debus, J.; Ehemann, V. [Univ. Children' s Hospital, Heidelberg (Germany). Dept. of Pediatric Oncology, Hematology, Immunology and Pulmology


    Osteosarcoma and atypical teratoid rhabdoid tumors are tumor entities with varying response to common standard therapy protocols. Histone acetylation affects chromatin structure and gene expression which are considered to influence radiation sensitivity. The aim of this study was to investigate the effect of the combination therapy with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and irradiation on atypical teratoid rhabdoid tumors and osteosarcoma compared to normal tissue cell lines. Clonogenic assay was used to determine cell survival. DNA double-strand breaks (DSB) were examined by pulsed-field electrophoresis (PFGE) as well as by {gamma}H2AX immunostaining involving flow cytometry, fluorescence microscopy, and immunoblot analysis. SAHA lead to an increased radiosensitivity in tumor but not in normal tissue cell lines. {gamma}H2AX expression as an indicator for DSB was significantly increased when SAHA was applied 24 h before irradiation to the sarcoma cell cultures. In contrast, {gamma}H2AX expression in the normal tissue cell lines was significantly reduced when irradiation was combined with SAHA. Analysis of initial DNA fragmentation and fragment rejoining by PFGE, however, did not reveal differences in response to the SAHA pretreatment for either cell type. SAHA increases radiosensitivity in tumor but not normal tissue cell lines. The increased H2AX phosphorylation status of the SAHA-treated tumor cells post irradiation likely reflects its delayed dephosphorylation within the DNA damage signal decay rather than chromatin acetylation-dependent differences in the overall efficacy of DSB induction and rejoining. The results support the hypothesis that combining SAHA with irradiation may provide a promising strategy in the treatment of solid tumors. (orig.)

  20. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats (United States)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.


    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time

  1. Expressions of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in malignant peripheral nerve sheath tumor

    Institute of Scientific and Technical Information of China (English)


    BACKGROUND: Matrix metalloproteinase-9 (MMP-9) can degrade collagen Ⅳ (the main structural ingredient of basilar membrane), and it also plays an important role in tumor vascularization, tumor cell progression, formation of metastatic focus, etc. Tissue inhibitor of metalloproteinase-1 (TIMP-1) can bind with MMP-9 to form 1∶1 compound and inhibit its activity, and can negatively regulate the tumor progression and metastasis.OBJECTIVE: To analyze the relationship of MMP-9 and TIMP-1 expressions with the pathological grade,metastasis and prognosis of malignant peripheral nerve sheath tumor (MPNST).DESIGN: An observational comparative experiment.SETTING: Heze Medical College.PARTICIPANTS: Fifty-eight surgical pathological samples, which were clearly diagnosed to be MPNST,were collected from the pathological laboratory archives in the Department of Pathology, Heze Municipal Hospital from January 1988 to December 2003. The MPNST pathological types were common tumor in 53 cases, malignant triton tumor in 2 cases, epithelial MPNST in 2 cases and MPNST with gland differentiation in 1 case. The pathological grade was grade 1 in 11 cases, grade 2 in 24 cases and grade 3 in 23 cases.Besides, the resected tumor samples of 20 patients with benign peripheral nerve tumor (10 cases of nerve sheath tumor and 10 cases of neurofibromatosis) and the normal peripheral nerves (by-products of some surgeries) of 5 patients were also collected. The samples were used with the approval of the patients.Rat-anti-human MMP-9, TIMP-1 monoclonal antibody and S-P kit were purchased from Fuzhou Maixin Biotechnology, Co.,Ltd.METHODS: The documented paraffin blocks were again prepared to sections of 5 μ m. The expressions of MMP-9 and TIMP-1 in the samples were detected with mmunohistochemical S-P method. The relationships of the MPNST severity, recurrence, metastasis and survival rate with the expressions of MMP-9 and TIMP-1 were analyzed.MAIN OUTCOME MEASURES: Relationships of MMP-9 and TIMP-1

  2. Combined thermal and elastic modeling of the normal and tumorous breast (United States)

    Jiang, Li; Zhan, Wang; Loew, Murray


    The abnormal thermogram has been shown to be a reliable indicator of a high risk of breast cancer, but an open question is how to quantify the complex relationships between the breast thermal behaviors and the underlying physiological/pathological conditions. Previous thermal modeling techniques generally did not utilize the breast geometry determined by the gravity-induced elastic deformations arising from various body postures. In this paper, a 3-D finite-element method is developed for combined modeling of the thermal and elastic properties of the breast, including the mechanical nonlinearity associated with large deformations. The effects of the thermal and elastic properties of the breast tissues are investigated quantitatively. For the normal breast in a standing/sitting up posture, the gravity-induced deformation alone is found to be able to cause an asymmetric temperature distribution even though all the thermal/elastic properties are symmetrical, and this temperature asymmetry increases for softer and more compressible breast tissues. For a tumorous breast, we found that the surface-temperature alterations generally can be recognizable for superficial tumors at depths less than 20 mm. Tumor size plays a less important role than the tumor depth in determining the tumor-induced temperature difference. This result may imply that a higher thermal sensitivity is critical for a breast thermogram system when deeper tumors are present, even if the tumor is relatively large. We expect this new method to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis and treatment of breast tumors.

  3. Safety and tolerability of tumor necrosis factor-α inhibitors in psoriasis: a narrative review. (United States)

    Semble, Ashley L; Davis, Scott A; Feldman, Steven R


    Tumor necrosis factor (TNF)-α inhibitors are an alternative to oral systemic therapies for psoriasis. Data regarding the safety of TNF-α inhibitors from randomized clinical trials may not fully reflect the effects on the clinic patient population receiving the therapy, but other sources of information are available. We performed a literature review to assess the safety and tolerability of the treatment of moderate-to-severe plaque psoriasis with TNF-α inhibitors. A literature search was conducted using PubMed for articles dating from January 2000 to October 2013. Randomized controlled, cohort, open-label, and observational studies were included, as well as case reports and letters to the editor. Articles found on PubMed describing the safety of anti-TNF-α therapy in psoriasis patients were included, while studies highlighting interleukin (IL)-12 and IL-23 inhibitors were excluded, as were non-English articles. In total, 58 articles were included in the review. TNF-α inhibitors exhibit both efficacy and tolerability in patients with moderate-to-severe plaque psoriasis. Adverse effects associated with these medications are not common and can be minimized with routine clinical monitoring and patient education. While the risk of severe adverse events is low, the lack of very large, long-term, randomized safety trials limits the ability to fully define the safety of these agents. TNF-α inhibitors have a good efficacy/safety ratio for use in patients with moderate-to-severe psoriasis. Serious adverse effects are not common, and common injection-site reactions are usually manageable. The benefits of TNF-α inhibitors outweigh the risks for moderate-to-severe psoriasis; however, there are potential adverse effects and the patient populations at highest risk include the elderly and those with a history of malignancy.

  4. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors. (United States)

    Yu, Man; Lee, Carol; Wang, Marina; Tannock, Ian F


    Cellular causes of resistance and limited drug distribution within solid tumors limit therapeutic efficacy of anticancer drugs. Acidic endosomes in cancer cells mediate autophagy, which facilitates survival of stressed cells, and may contribute to drug resistance. Basic drugs (e.g. doxorubicin) are sequestered in acidic endosomes, thereby diverting drugs from their target DNA and decreasing penetration to distal cells. Proton pump inhibitors (PPIs) may raise endosomal pH, with potential to improve drug efficacy and distribution in solid tumors. We determined the effects of the PPI lansoprazole to modify the activity of doxorubicin. To gain insight into its mechanisms, we studied the effects of lansoprazole on endosomal pH, and on the spatial distribution of doxorubicin, and of biomarkers reflecting its activity, using in vitro and murine models. Lansoprazole showed concentration-dependent effects to raise endosomal pH and to inhibit endosomal sequestration of doxorubicin in cultured tumor cells. Lansoprazole was not toxic to cancer cells but potentiated the cytotoxicity of doxorubicin and enhanced its penetration through multilayered cell cultures. In solid tumors, lansoprazole improved the distribution of doxorubicin but also increased expression of biomarkers of drug activity throughout the tumor. Combined treatment with lansoprazole and doxorubicin was more effective in delaying tumor growth as compared to either agent alone. Together, lansoprazole enhances the therapeutic effects of doxorubicin both by improving its distribution and increasing its activity in solid tumors. Use of PPIs to improve drug distribution and to inhibit autophagy represents a promising strategy to enhance the effectiveness of anticancer drugs in solid tumors.

  5. Sensitivity of MRI tumor biomarkers to VEGFR inhibitor therapy in an orthotopic mouse glioma model.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI and a slight decrease in the water apparent diffusion coefficient (ADC were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV, relative microvascular blood volume (rMBV, transverse relaxation time (T2, blood vessel permeability (K(trans, and extravascular-extracellular space (ν(e. The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology.

  6. Phthalocyanine photodynamic therapy: disparate effects of pharmacologic inhibitors on cutaneous photosensitivity and on tumor regression. (United States)

    Anderson, C; Hrabovsky, S; McKinley, Y; Tubesing, K; Tang, H P; Dunbar, R; Mukhtar, H; Elmets, C A


    The phthalocyanines are promising second-generation photosensitizers that are being evaluated for the photodynamic therapy (PDT) of malignant tumors. In vivo studies with the silicon phthalocyanine Pc 4 have shown that it is highly effective at causing regression of RIF-1 tumors in C3H/HeN mice in PDT protocols. Because cutaneous photosensitivity is the major complication of photosensitizers used for PDT, experiments were performed to evaluate the effect of inhibitors of the inflammatory response (cyproheptadine, dexamethasone, pentoxifylline, and tumor necrosis factor alpha [TNF-alpha] antibodies) on Pc 4-induced cutaneous photosensitivity and tumor regression. The C3H/HeN mice were injected with either Pc 4 or Photofrin and were exposed to 86 J/cm2 of filtered radiation emitted from a solar simulator. Animals were irradiated at 1, 3, 7, 10, 14 and 28 days postinjection. Cutaneous photosensitivity was assessed using the murine ear-swelling response. Cyproheptadine, dexamethasone, pentoxifylline and TNF-alpha antibodies were administered prior to illumination to assess their ability to block Pc 4-induced cutaneous photosensitivity and to evaluate whether such treatment adversely influenced Pc 4 PDT-induced tumor regression. Compared to Photofrin, Pc 4 produced cutaneous photosensitivity that was transient, resolving within 24 h, and that could be elicited for only 10 days after administration. In contrast, Photofrin caused photosensitivity that required 4 days to resolve and could be elicited for at least 1 month after it was administered. The Pc 4-induced cutaneous photosensitivity could be blocked by corticosteroids and an inhibitor of vasoactive amines (cyproheptadine). The TNF-alpha gene transcription was found to increase in keratinocytes following treatment with Pc 4 and light. The anti-TNF-alpha antibodies and pentoxifylline, an inhibitor of cytokine transcription, also prevented cutaneous photosensitivity, implicating TNF-alpha in the pathogenesis of Pc 4

  7. Laser Therapy Inhibits Tumor Growth in Mice by Promoting Immune Surveillance and Vessel Normalization

    Directory of Open Access Journals (Sweden)

    Giulia Ottaviani


    Full Text Available Laser therapy, recently renamed as photobiomodulation, stands as a promising supportive treatment for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. Here we explored the anti-cancer effect of 3 laser protocols, set at the most commonly used wavelengths, in B16F10 melanoma and oral carcinogenesis mouse models. While laser light increased cell metabolism in cultured cells, the in vivo outcome was reduced tumor progression. This striking, unexpected result, was paralleled by the recruitment of immune cells, in particular T lymphocytes and dendritic cells, which secreted type I interferons. Laser light also reduced the number of highly angiogenic macrophages within the tumor mass and promoted vessel normalization, an emerging strategy to control tumor progression. Collectively, these results set photobiomodulation as a safety procedure in oncological patients and open the way to its innovative use for cancer therapy.

  8. Isolation and partial identification of eight endogenous G1 inhibitors of JB-1 ascites tumor cell proliferation. (United States)

    Barfod, N M


    Eight endogenous G1 inhibitors of the proliferation of JB-1 ascites tumor cells have been isolated and characterized. The activity of the inhibitors has been analyzed on synchronized JB-1 (murine plasmacytoma) and L1A2 (murine sarcoma) cells in vitro using flow cytometry. The purified inhibitors have been tested for in vivo activity on partially synchronized JB-1 and L1A2 ascites tumors in situ. Four of the inhibitors exhibited a high degree of cell specificity (chalone-like inhibitors) and were chemically related, whereas the other four showed no cell specificity. In most extractions, the amount of cell-specific activity is more than 50% of the total G1-inhibitory activity. Most of the inhibitors are low-molecular-weight peptides and glycopeptides.

  9. Estimating developmental states of tumors and normal tissues using a linear time-ordered model

    Directory of Open Access Journals (Sweden)

    Xuan Zhenyu


    Full Text Available Abstract Background Tumor cells are considered to have an aberrant cell state, and some evidence indicates different development states appearing in the tumorigenesis. Embryonic development and stem cell differentiation are ordered processes in which the sequence of events over time is highly conserved. The "cancer attractor" concept integrates normal developmental processes and tumorigenesis into a high-dimensional "cell state space", and provides a reasonable explanation of the relationship between these two biological processes from theoretical viewpoint. However, it is hard to describe such relationship by using existed experimental data; moreover, the measurement of different development states is also difficult. Results Here, by applying a novel time-ordered linear model based on a co-bisector which represents the joint direction of a series of vectors, we described the trajectories of development process by a line and showed different developmental states of tumor cells from developmental timescale perspective in a cell state space. This model was used to transform time-course developmental expression profiles of human ESCs, normal mouse liver, ovary and lung tissue into "cell developmental state lines". Then these cell state lines were applied to observe the developmental states of different tumors and their corresponding normal samples. Mouse liver and ovarian tumors showed different similarity to early development stage. Similarly, human glioma cells and ovarian tumors became developmentally "younger". Conclusions The time-ordered linear model captured linear projected development trajectories in a cell state space. Meanwhile it also reflected the change tendency of gene expression over time from the developmental timescale perspective, and our finding indicated different development states during tumorigenesis processes in different tissues.

  10. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids

    NARCIS (Netherlands)

    Sinha, B; Semmler, J; Eisenhut, T; Eigler, A; Endres, S


    We investigated cooperative effects of phosphodiesterase (PDE) inhibitors and prostanoids on cyclic adenosine monophosphate (cAMP) accumulation and tumor necrosis factor (TNF)-alpha synthesis in human peripheral blood mononuclear cells (PBMC). PDE inhibitors alone induced only a small increase in cA

  11. Expression of TMEM166 protein in human normal and tumor tissues. (United States)

    Xu, Dong; Yang, Fan; He, Huiying; Hu, Jia; Lv, Xiaodong; Ma, Dalong; Chen, Ying Yu


    Transmembrane protein 166 (TMEM166) is a novel human regulator involved in both autophagy and apoptosis. In this study, we generated a specific rabbit polyclonal antibody against human TMEM166 and assessed the expression of this protein in various human normal and tumor tissue samples by tissue microarray-based immunohistochemical analysis. Varying TMEM166 protein levels were expressed in a cell-type and tissue-type-specific manner in detected tissues or organs. Strong TMEM166 expression was shown in the glomerular zona of the adrenal cortex, chromophil cells of the pituitary gland, islet cells, squamous epithelium of the esophagus mucosa, the fundic gland, and hepatocytes. Moderate or weak TMEM166 staining was identified in the parathyroid gland, the testis, vaginal stratified squamous cells, lung macrophages, hematopoietic cells, renal tubular epithelial cells, macrophages in the spleen red pulp, and neuronal cells in the cerebral cortex. Some tissues failed to stain for TMEM166, such as adipose tissue, colon, cerebellum, lymph node, mammary gland, ovary, prostate, rectum, skin, small intestine, thyroid gland, tonsil, and thymus. In comparing human normal and tumor tissues, TMEM166 expression was widely downregulated in the cancer tissues. Our studies provide the basis for future investigations into cell-type-specific functions of this protein in human normal and tumor tissues.

  12. Differentiating gastrointestinal stromal tumors from gastric adenocarcinomas and normal mucosae using confocal Raman microspectroscopy (United States)

    Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chen, Wenlung


    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, and gastric adenocarcinomas are a common cancer worldwide. To differentiate GISTs from adenocarcinomas is important because the surgical processes for both are different; the former excises the tumor with negative margins, while the latter requires radical gastrectomy with lymph node dissection. Endoscopy with biopsy is used to distinguish GISTs from adenocarcinomas; however, it may cause tumor bleeding in GISTs. We reported here the confocal Raman microspectroscopy as an effective tool to differentiate GISTs, adenocarcinomas, and normal mucosae. Of 119 patients enrolled in this study, 102 patients underwent gastrectomy (40 GISTs and 62 adenocarcinomas), and 17 patients with benign lesions were obtained as normal mucosae. Raman signals were integrated for 100 s for each spot on the specimen, and 5 to 10 spots, depending on the sample size, were chosen for each specimen. There were significant differences among those tissues as evidenced by different Raman signal responding to phospholipids and protein structures. The spectral data were further processed and analyzed by using principal component analysis. A two-dimensional plot demonstrated that GISTs, adenocarcinomas, and normal gastric mucosae could be effectively differentiated from each other.

  13. NS-398, a selective cyclooxygenase-2 inhibitor, reduces experimental bladder carcinoma outgrowth by inhibiting tumor cell proliferation.

    NARCIS (Netherlands)

    Smakman, N.; Schaap, N.P.M.; Snijckers, C.M.; Rinkes, M.J.; Kranenburg, O.


    OBJECTIVES: To evaluate the efficacy of the selective cyclooxygenase-2 (COX-2) inhibitor NS-398 in treating experimental T24 bladder carcinoma, and to assess its effect on tumor cell proliferation and survival and tumor vascularization. COX-2 overexpression is frequently observed in bladder carcinom

  14. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail:; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)


    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  15. 2-(ω-Carboxyethyl)pyrrole Antibody as a New Inhibitor of Tumor Angiogenesis and Growth. (United States)

    Wu, Chunying; Wang, Xizhen; Tomko, Nicholas; Zhu, Junqing; Wang, William R; Zhu, Jinle; Wang, Yanming; Salomon, Robert G


    Angiogenesis is a fundamental process in the progression, invasion, and metastasis of tumors. Therapeutic drugs such as bevacizumab and ranibuzumab have thus been developed to inhibit vascular endothelial growth factor (VEFG)-promoted angiogenesis. While these anti-angiogenic drugs have been commonly used in the treatment of cancer, patients often develop significant resistance that limits the efficacy of anti-VEGF therapies to a short period of time. This is in part due to the fact that an independent pathway of angiogenesis exists, which is mediated by 2-(ω-carboxyethyl)pyrrole (CEP) in a TLR2 receptor-dependent manner that can compensate for inhibition of the VEGF-mediated pathway. In this work, we evaluated a CEP antibody as a new tumor growth inhibitor that blocks CEP-induced angiogenesis. We first evaluated the effectiveness of a CEP antibody as a monotherapy to impede tumor growth in two human tumor xenograft models. We then determined the synergistic effects of bevacizumab and CEP antibody in a combination therapy, which demonstrated that blocking of the CEP-mediated pathway significantly enhanced the anti-angiogenic efficacy of bevacizumab in tumor growth inhibition indicating that CEP antibody is a promising chemotherapeutic drug. To facilitate potential translational studies of CEP-antibody, we also conducted longitudinal imaging studies and identified that FMISO-PET is a non-invasive imaging tool that can be used to quantitatively monitor the anti-angiogenic effects of CEP-antibody in the clinical setting. That treatment with CEP antibody induces hypoxia in tumor tissue was indicated by 43% higher uptake of [18F]FMISO in CEP antibody-treated tumor xenografs than in the control PBS-treated littermates.

  16. Enhancement of pomalidomide anti-tumor response with ACY-241, a selective HDAC6 inhibitor (United States)

    Tamang, David; Yang, Min; Jones, Simon S.; Quayle, Steven N.


    Thalidomide-based Immunomodulatory Drugs (IMiDs®), including lenalidomide and pomalidomide, are effective therapeutics for multiple myeloma. These agents have been approved with, or are under clinical development with, other targeted therapies including proteasome inhibitors, αCD38 monoclonal antibodies, as well as histone deacetylase (HDAC) inhibitors for combination therapy. HDAC inhibitors broadly targeting Class I and IIb HDACs have shown potent preclinical efficacy but have frequently demonstrated an undesirable safety profile in combination therapy approaches in clinical studies. Therefore, development of more selective HDAC inhibitors could provide enhanced efficacy with reduced side effects in combination with IMiDs® for the treatment of B-cell malignancies, including multiple myeloma. Here, the second generation selective HDAC6 inhibitor citarinostat (ACY-241), with a more favorable safety profile than non-selective pan-HDAC inhibitors, is shown to synergize with pomalidomide in in vitro assays through promoting greater apoptosis and cell cycle arrest. Furthermore, utilizing a multiple myeloma in vivo murine xenograft model, combination treatment with pomalidomide and ACY-241 leads to increased tumor growth inhibition. At the molecular level, combination treatment with ACY-241 and pomalidomide leads to greater suppression of the pro-survival factors survivin, Myc, and IRF4. The results presented here demonstrate synergy between pomalidomide and ACY-241 in both in vitro and in vivo preclinical models, providing further impetus for clinical development of ACY-241 for use in combination with IMiDs for patients with multiple myeloma and potentially other B-cell malignancies. PMID:28264055

  17. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). (United States)

    Katoh, Masaru


    Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling

  18. Development of Tethered Hsp90 Inhibitors Carrying Radioiodinated Probes to Specifically Discriminate and Kill Malignant Breast Tumor Cells (United States)


    Kill Malignant Breast Tumor Cells PRINCIPAL INVESTIGATOR: Timothy Haystead CONTRACTING ORGANIZATION: Duke University Durham, NC 27708 REPORT...Specifically Discriminate and Kill Malignant Breast Tumor Cells 5b. GRANT NUMBER W81XWH-15-1-0072 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) imaging agents in mouse models of breast cancer. 15. SUBJECT TERMS Radiodination, tethered Hsp90 inhibitor, malignant breast tumor , ectopic Hsp90

  19. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers. (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel


    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  20. [Endothelial genesis inhibitor-8t (EDI-8t) against tumor growth]. (United States)

    Zhou, Qingwei; Du, Peng; Qian, Yue; Zhang, Qian; Feng, Baoshan; Ding, Hongzhen; Gan, Renbao; Zhang, Hui


    On the basis of the origin comparison of known endothelial genesis inhibitors, a 417-bp cDNA fragment was amplified from umbilical cord by RT-PCR and cloned into the expression vector pPIC9, followed by transformation into Pichia pastoris GS115. The resulted yeast was induced with methanol to express recombinant protein. The resulted protein was purified from culture broth and designated as EDI-8t. The in vitro study showed that EDI-8t, originated from collagen VIII, could specifically inhibit the growth and migration of bovine aortic endothelial cells (BAEC) stimulated by basic fibroblast growth factor (bFGF). The protein also exhibited the activity to cause cell apoptosis. In vivo EDI-8t showed the identical activity comparing with endostatin to inhibit the growth of liver tumor transplanted into nude mice. Interestingly, EDI-8t showed higher activity than endostatin to inhibit tumor growth in metastatic model of melanoma mice.

  1. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan


    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  2. Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Klieser, W.; Walenta, S.; Paschen, W.; Kallinowski, F.; Vaupel, P.


    A method has been developed for metabolic imaging on a microscopic level in tumors, tumor spheroids, and normal tissues. The technique makes it possible to determine the spatial distribution of glucose, lactate, and ATP in absolute terms at similar locations within tissues or cell aggregates. The substrate distributions are registered in serial cryostat sections from tissue cryobiopsies or from frozen spheroids with the use of bioluminescence reactions. The light emission is measured directly by a special imaging photon counting system enabling on-line image analysis. The technique has been applied to human breast cancer xenografts, to spheroids originating from a human colon adenocarcinoma, and to skeletal rat muscle. Preliminary data obtained indicate that heterogeneities in the substrate distributions measured are much more pronounced in tumors than in normal tissue. There was no obvious correlation among the three quantities measured at similar locations within the tissues. The distribution of ATP corresponded well with the histological structure of larger spheroids; values were low in the necrotic center and high in the viable rim of these cell aggregates.

  3. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Huan; Zuo, Dai-Ying; Bai, Zhao-Shi; Xu, Jing-Wen; Li, Zeng-Qiang [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang (China); Shen, Qi-Rong; Wang, Zhi-Wei [Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang (China); Zhang, Wei-Ge, E-mail: [Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang (China); Wu, Ying-Liang, E-mail: [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang (China)


    Highlights: • COH-203 exhibits anti-hepatoma effects in vitro and in vivo with low toxicity. • COH-203 inhibits tubulin polymerization. • COH-203 induces mitotic arrest followed by mitotic slippage in BEL-7402 cells. • COH-203 induces p53-dependent senescence in BEL-7402 cells. - Abstract: 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1, 2-dithiol-3-one (COH-203) is a novel synthesized analogue of combretastatin A-4 that can be classified as a microtubule inhibitor. In this study, we evaluated the anti-hepatoma effect of COH-203 in vitro and in vivo and explored the underlying molecular mechanisms. COH-203 was shown to be more effective in inhibiting the proliferation of liver cancer cells compared with normal liver cells. COH-203 also displayed potent anti-tumor activity in a hepatocellular carcinoma xenograft model without significant toxicity. Mechanistic studies demonstrated that treatment with COH-203 induced mitotic arrest by inhibiting tubulin polymerization in BEL-7402 liver cancer cells. Long-term COH-203 treatment in BEL-7402 cells led to mitotic slippage followed by senescence via the p14{sup Arf}–p53–p21 and p16{sup INK4α}–Rb pathways. Furthermore, suppression of p53 via pifithrin-α (p53 inhibitor) and p53-siRNA attenuated COH-203-induced senescence in BEL-7402 cells, suggesting that COH-203 induced senescence p53-dependently. In conclusion, we report for the first time that COH-203, one compound in the combretastatin family, promotes anti-proliferative activity through the induction of p-53 dependent senescence. Our findings will provide a molecular rationale for the development of COH-203 as a promising anti-tumor agent.

  4. CD133 Expression in Normal Skin and in Epithelial Cutaneous Tumors

    Directory of Open Access Journals (Sweden)

    S. H. Nam-Cha


    Full Text Available Background. Expression of human CD133 (human prominin-1 in cancer cells has been postulated to be a marker of stemness and is considered as a putative marker of cancer stem cells (CSCs. We designed a study to describe the expression pattern of CD133 in normal skin and in epithelial cutaneous neoplasms. Methods. The CD133 immunohistochemical expression of forty-three eccrine and apocrine tumors was compared to that observed in other epithelial tumors of the skin. In addition, flow cytometry was used to detect the CD133 expression of four epithelial skin neoplasms, including one porocarcinoma. Results. CD133 immunoreactivity at the apical or at the apicolateral surface of cells forming glandular structures was observed. Cells from solid areas of benign or malignant tumors were not stained. The porocarcinoma derived culture cells showed a 22% of CD133 positive cells using flow cytometry, while squamous cell carcinoma cultures contained less than 0.1%. Conclusions. These observations indicate that CD133 is a specific marker of glandular differentiation that could be included in the diagnostic panel of cutaneous tumors with possible eccrine or apocrine differentiation. However, the use of CD133 expression as a marker of CSCs should be interpreted with caution in experiments of skin.

  5. Tumor suppressor gene E-cadherin and its role in normal and malignant cells

    Directory of Open Access Journals (Sweden)

    Pećina-Šlaus Nives


    Full Text Available Abstract E-cadherin tumor suppressor genes are particularly active area of research in development and tumorigenesis. The calcium-dependent interactions among E-cadherin molecules are critical for the formation and maintenance of adherent junctions in areas of epithelial cell-cell contact. Loss of E-cadherin-mediated-adhesion characterises the transition from benign lesions to invasive, metastatic cancer. Nevertheless, there is evidence that E-cadherins may also play a role in the wnt signal transduction pathway, together with other key molecules involved in it, such as beta-catenins and adenomatous poliposis coli gene products. The structure and function of E-cadherin, gene and protein, in normal as well as in tumor cells are reviewed in this paper.

  6. From homogeneous to fractal normal and tumorous microvascular networks in the brain. (United States)

    Risser, Laurent; Plouraboué, Franck; Steyer, Alexandre; Cloetens, Peter; Le Duc, Géraldine; Fonta, Caroline


    We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power-spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale-invariant fractal properties on a small scale from 1.4 mum up to 40 to 65 mum. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange.

  7. A study on thallium-201 SPECT in brain metastases of lung cancer. With special reference to tumor size and tumor to normal brain thallium uptake ratio

    Energy Technology Data Exchange (ETDEWEB)

    Togawa, Takashi; Yui, Nobuharu; Kinoshita, Fujimi; Yanagisawa, Masamichi; Namba, Hiroki [Chiba Cancer Center (Japan). Hospital


    Thallium-201 brain SPECT was performed on 20 patients with brain metastases of lung cancer using a three-head rotating gamma camera and the effect of tumor size on tumor detectability and tumor to normal brain thallium uptake ratio (T/N ratio) was studied. Among 71 metastatic lesions, only 9 (22.5%) of 40 lesions of 13 mm diameter or below and 31 (100%) of 31 lesions of 14 mm diameter or above could be detected in this study. There was significant correlation between T/N ratio and tumor size (r=0.75, p<0.001). The greater the metastatic lesion, the higher the T/N ratio. Even among the tumors in a single patient with multiple brain metastases, there was a significant linear correlation between tumor size and T/N ratio (r=0.96, p<0.01). In this patient, T/N ratio varied by the tumor size and these differences in T/N ratios were thought to be based on the partial volume effect. However, T/N{center_dot}d which was a parameter corrected by tumor diameter (d) showed a constant value regardless of tumor size. The present results showed that T/N ratio, which was usually believed to quantitate the malignancy grade of brain tumor, was affected by tumor size and that more accurate parameter could be obtained by the correction of T/N ratio by tumor size. (author).

  8. mTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis. (United States)

    Roy, Debasmita; Sin, Sang-Hoon; Lucas, Amy; Venkataramanan, Raman; Wang, Ling; Eason, Anthony; Chavakula, Veenadhari; Hilton, Isaac B; Tamburro, Kristen M; Damania, Blossom; Dittmer, Dirk P


    Kaposi sarcoma originates from endothelial cells and it is one of the most overt angiogenic tumors. In Sub-Saharan Africa, where HIV and the Kaposi sarcoma-associated herpesvirus (KSHV) are endemic, Kaposi sarcoma is the most common cancer overall, but model systems for disease study are insufficient. Here, we report the development of a novel mouse model of Kaposi sarcoma, where KSHV is retained stably and tumors are elicited rapidly. Tumor growth was sensitive to specific allosteric inhibitors (rapamycin, CCI-779, and RAD001) of the pivotal cell growth regulator mTOR. Inhibition of tumor growth was durable up to 130 days and reversible. mTOR blockade reduced VEGF secretion and formation of tumor vasculature. Together, the results show that mTOR inhibitors exert a direct anti-Kaposi sarcoma effect by inhibiting angiogenesis and paracrine effectors, suggesting their application as a new treatment modality for Kaposi sarcoma and other cancers of endothelial origin.

  9. Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. (United States)

    Li, Zibo; Guo, Xinwu; Wu, Yepeng; Li, Shengyun; Yan, Jinhua; Peng, Limin; Xiao, Zhi; Wang, Shouman; Deng, Zhongping; Dai, Lizhong; Yi, Wenjun; Xia, Kun; Tang, Lili; Wang, Jun


    Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer.

  10. Clinical development of VEGF signaling pathway inhibitors in childhood solid tumors. (United States)

    Glade Bender, Julia; Yamashiro, Darrell J; Fox, Elizabeth


    Angiogenesis is a target shared by both adult epithelial cancers and the mesenchymal or embryonal tumors of childhood. Development of antiangiogenic agents for the pediatric population has been complicated by largely theoretical concern for toxicities specific to the growing child and prioritization among the many antiangiogenic agents being developed for adults. This review summarizes the mechanism of action and preclinical data relevant to childhood cancers and early-phase clinical trials in childhood solid tumors. Single-agent adverse event profiles in adults and children are reviewed with emphasis on cardiovascular, bone health, and endocrine side effects. In addition, pharmacological factors that may be relevant for prioritizing clinical trials of these agents in children are reviewed. Considerations for further clinical evaluation should include preclinical data, relative potency, efficacy in adults, and the current U.S. Food and Drug Administration approval status. Toxicity profiles of vascular endothelial growth factor (VEGF) signaling pathway inhibitors may be age dependent and ultimately, their utility in the treatment of childhood cancer will require combination with standard cytotoxic drugs or other molecularly targeted agents. In combination studies, toxicity profiles, potential drug interactions, and late effects must be considered. Studies to assess the long-term impact of VEGF signaling pathway inhibitors on cardiovascular, endocrine, and bone health in children with cancer are imperative if these agents are to be administered to growing children and adolescents with newly diagnosed cancers.

  11. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors (United States)

    Zhang, Zhihua; Hao, Changlai; Wang, Lihong; Liu, Peng; Zhao, Lei; Zhu, Cuimin; Tian, Xia


    The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest. PMID:23836985

  12. SU-D-18A-04: Quantifying the Ability of Tumor Tracking to Spare Normal Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A; Buzurovic, I; Hurwitz, M; Williams, C; Lewis, J [Brigham and Women' s Hospital, Dana-Farber Cancer Center, Harvard Medical Sc, Boston, MA (United States); Mishra, P [Varian Medical Systems, Palo Alto, CA (United States); Seco, J [Mass General Hospital, Harvard Medical, Boston, MA (United States)


    Purpose: Tumor tracking allows for smaller tissue volumes to be treated, potentially reducing normal tissue damage. However, tumor tracking is a more complex treatment and has little benefit in some scenarios. Here we quantify the benefit of tumor tracking for a range of patients by estimating the dose of radiation to organs at risk and the normal tissue complication probability (NTCP) for both standard and tracking treatment plans. This comparison is performed using both patient 4DCT data and extended Cardiac-Torso (XCAT) digital phantoms. Methods: We use 4DCT data for 10 patients. Additionally, we generate digital phantoms with motion derived from measured patient long tumor trajectories to compare standard and tracking treatment plans. The standard treatment is based on the average intensity projection (AIP) of 4DCT images taken over a breath cycle. The tracking treatment is based on doses calculated on images representing the anatomy at each time point. It is assumed that there are no errors in tracking the target. The NTCP values are calculated based on RTOG guidelines. Results: The mean reduction in the mean dose delivered was 5.5% to the lungs (from 7.3 Gy to 6.9 Gy) and 4.0% to the heart (from 12.5 Gy to 12.0 Gy). The mean reduction in the max dose delivered was 13% to the spinal cord (from 27.6 Gy to 24.0 Gy), 2.5% to the carina (from 31.7 Gy to 30.9 Gy), and 15% to the esophagus (from 69.6 Gy to 58.9 Gy). The mean reduction in the probability of 2nd degree radiation pneumonitis (RP) was 8.7% (3.1% to 2.8%) and the mean reduction in the effective volume was 6.8% (10.8% to 10.2%). Conclusions: Tumor tracking has the potential to reduce irradiation of organs at risk, and consequentially reduce the normal tissue complication probability. The benefits vary based on the clinical scenario. This study is supported by Varian Medical Systems, Inc.

  13. Expression of parathyroid-specific genes in vascular endothelial progenitors of normal and tumoral parathyroid glands. (United States)

    Corbetta, Sabrina; Belicchi, Marzia; Pisati, Federica; Meregalli, Mirella; Eller-Vainicher, Cristina; Vicentini, Leonardo; Beck-Peccoz, Paolo; Spada, Anna; Torrente, Yvan


    Parathyroid tissue is able to spontaneously induce angiogenesis, proliferate, and secrete parathyroid hormone when autotransplanted in patients undergoing total parathyroidectomy. Angiogenesis is also involved in parathyroid tumorigenesis. Here we investigated the anatomical and molecular relationship between endothelial and parathyroid cells within human parathyroid glands. Immunohistochemistry for CD34 antigen identified two subpopulations in normal and tumoral parathyroid glands: one constituted by cells lining small vessels that displayed endothelial antigens (factor VIII, isolectin, laminin, CD146) and the other constituted of single cells scattered throughout the parenchyma that did not express endothelial markers. These parathyroid-derived CD34(+) cells were negative for the hematopoietic and mesenchymal markers CD45, Thy-1/CD90, CD105, and CD117/c-kit; however, a subset of CD34(+) cells co-expressed the parathyroid specific genes glial cell missing B, parathyroid hormone, and calcium sensing receptor. When cultured, these cells released significant amount of parathyroid hormone. Parathyroid-derived CD34(+) cells, but not CD34(-) cells, proliferated slowly and differentiated into mature endothelial cells. CD34(+) cells from parathyroid tumors differed from those derived from normal parathyroid glands as: 1) they were more abundant and mainly scattered throughout the parenchyma; 2) they rarely co-expressed CD146; and 3) a fraction co-expressed nestin. In conclusion, we identified cells expressing endothelial and parathyroid markers in human adult parathyroid glands. These parathyroid/endothelial cells were more abundant and less committed in parathyroid tumors compared with normal glands, showing features of endothelial progenitors, which suggests that they might be involved in parathyroid tumorigenesis.

  14. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko [Osaka City General Hospital (Japan)] (and others)


    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 {mu}g corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)


    Directory of Open Access Journals (Sweden)

    Sergey Valentinovich Moiseyev


    Full Text Available Uveitis frequently develops in patients with ankylosing spondylitis (AS and other autoimmune diseases. It is occasionally characterized by a severe recurrent course and untreatable with systemic glucocorticoids (GC and standard immunosuppressive agents. The results of (mainly small clinical trials, as well as some observations suggest that therapy with tumor necrosis factor-а (TNF-а inhibitors is effective in such patients. There is the strongest evidence that they are beneficial in treating recurrent uveitis in patients with AS, infliximab having some efficacy advantages over etanercept and adalimumab. Accordingly, chronic uveitis in AS can be considered as an additional argument in favor of the use of TNF-а inhibitors. Furthermore, treatment with drugs of this group is warranted in severe uveitis refractory to GC and immunosuppressants. It is conceivable that in some forms of uveitis, for example, in patients with Behcet's disease, treatment with TNF-а inhibitors should be initiated at an earlier stage as the efficacy of standard immunosuppressants is generally limited

  16. Impairing effects of angiotensin-converting enzyme inhibitor Captopril on bone of normal mice. (United States)

    Yang, Min; Xia, Chao; Song, Yan; Zhao, Xi; Wong, Man-Sau; Zhang, Yan


    There are contradicting results about the effects of angiotensin-converting enzyme inhibitors (ACEIs) on bones. This study was aimed to investigate the effect of ACEI, Captopril, on bone metabolism and histology as well as the action of Captopril on skeletal renin-angiotensin system (RAS) and bradykinin receptor pathway in normal male mice. The urine, serum, tibias and femurs from normal control mice and Captopril-treated (10mg/kg) mice were collected for biochemical, histological and molecular analyses after drug administration for eight weeks. The mice after the treatment with Captopril had a significant decrease of serum testosterone level. The histological measurements showed the loss of trabecular bone mass and trabecular bone number, and the breakage of trabecular bone network as well as the changes of chondrocyte zone at epiphyseal plate in Captopril-treated mice. The defect of Captopril on trabecular bone was reflected by the quantitative bio-parameters from micro-CT. The expression of renin receptor and bradykinin B2 receptor (B2R) was significantly up-regulated in tibia of mice upon to the Captopril treatment, which decreased the ratio of OPG/RANKL and the expression of osteoblastic factor RUNX2. Furthermore, Captopril treatment resulted in the increase of pAkt/Akt and pNFκB expression in tibia. The present study revealed the impairing effects of Captopril on bone via interfering with the circulating sex hormone level and B2R pathway, which suggests that the bone metabolism of patients need to be carefully monitored when being prescribed for ACEIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Pan-Bcl-2 inhibitor AT-101 enhances tumor cell killing by EGFR targeted T cells.

    Directory of Open Access Journals (Sweden)

    Archana Thakur

    Full Text Available Pancreatic cancer is a deadly disease and has the worst prognosis among almost all cancers and is in dire need of new and improved therapeutic strategies. Conditioning of tumor cells with chemotherapeutic drug has been shown to enhance the anti-tumor effects of cancer vaccines and adoptive cell therapy. In this study, we investigated the immunomodulatory effects of pan-Bcl-2 inhibitor AT-101 on pancreatic cancer (PC cell cytotoxicity by activated T cells (ATC. The effects of AT-101 on cytotoxicity, early apoptosis, and Granzyme B (GrzB and IFN-γ signaling pathways were evaluated during EGFR bispecific antibody armed ATC (aATC-mediated killing of L3.6pl and MiaPaCa-2 PC cells pre-sensitized with AT-101. We found that pretreatment of tumor cells with AT-101 enhanced susceptibility of L3.6pl and MiaPaCa-2 tumor cells to ATC and aATC-mediated cytotoxicity, which was in part mediated via enhanced release of cytolytic granule GrzB from ATC and aATC. AT-101-sensitized L3.6pl cells showed up-regulation of IFN-γ-mediated induction in the phosphorylation of Ser(727-Stat1 (pS(727-Stat1, and IFN-γ induced dephosphorylation of phospho-Tyr(705-Stat3 (pY(705-Stat3. Priming (conditioning of PC cells with AT-101 can significantly enhance the anti-tumor activity of EGFRBi armed ATC through increased IFN-γ induced activation of pS(727-Stat1 and inhibition of pY(705-Stat3 phosphorylation, and resulting in increased ratio of pro-apoptotic to anti-apoptotic proteins. Our results verify enhanced cytotoxicity after a novel chemotherapy conditioning strategy against PC that warrants further in vivo and clinical investigations.

  18. Concurrent Intervention With Exercises and Stabilized Tumor Necrosis Factor Inhibitor Therapy Reduced the Disease Activity in Patients With Ankylosing Spondylitis: A Meta-Analysis

    National Research Council Canada - National Science Library

    Liang, Hui; Li, Wen-Rong; Zhang, Hua; Tian, Xu; Wei, Wei; Wang, Chun-Mei


    Since the use of tumor necrosis factor (TNF) inhibitor therapy is becoming wider, the effects of concurrent intervention with exercises and stabilized TNF inhibitors therapy in patients with ankylosing spondylitis (AS) are different...

  19. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells. (United States)

    Sun, Rui; Luo, Jing; Li, Dong; Shu, Yu; Luo, Chao; Wang, Shan-Shan; Qin, Jian; Zhang, Gui-Mei; Feng, Zuo-Hua


    In tumor-bearing state, the function of neutrophils is converted from tumor-suppressing to tumor-promoting. Here we report that priming with IFN-γ and TNF-α could convert the potential of neutrophils from tumor-promoting to tumor-suppressing. The neutrophils with protumor potential have not lost their responsiveness to IFN-γ and TNF-α. After priming with IFN-γ and TNF-α, the potential of the neutrophils to express Bv8 and Mmp9 genes was reduced. Conversely, the tumor-promotional neutrophils recovered the expression of Rab27a and Trail, resumed the activation levels of PI3K and p38 MAPK pathways in response to stimuli, and expressed higher levels of IL-18 and NK-activating ligands such as RAE-1, MULT-1, and H60. Therefore, the anti-tumor function of the neutrophils was augmented, including the cytotoxicity to tumor cells, the capability of degranulation, and the capacity to activate NK cells. Since the function of NK cells is impaired in tumor-bearing state, the administration of normal NK cells could significantly augment the efficiency of tumor therapy based on neutrophil priming. These findings highlight the reversibility of neutrophil function in tumor-bearing state, and suggest that neutrophil priming by IFN-γ/TNF-α might be a potential approach to eliminate residual tumor cells in comprehensive strategy for tumor therapy.

  20. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas


    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  1. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells. (United States)

    Takasawa, Ryoko; Shimada, Nami; Uchiro, Hiromi; Takahashi, Satoshi; Yoshimori, Atsushi; Tanuma, Sei-Ichi


    Human glyoxalase I (hGLO I) is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), which is the side product of tumor-specific aerobic glycolysis. GLO I has been reported to be overexpressed in various types of cancer cells, and has been expected as an attractive target for the development of new anticancer drugs. We previously discovered a novel inhibitor of hGLO I, named TLSC702, by our in silico screening method. Here, we show that TLSC702 inhibits the proliferation of human leukemia HL-60 cells and induces apoptosis in a dose-dependent manner. In addition, TLSC702 more significantly inhibits the proliferation of human lung cancer NCI-H522 cells, which highly express GLO I, than that of GLO I lower-expressing human lung cancer NCI-H460 cells. Furthermore, this antiproliferative effect of TLSC702 on NCI-H522 cells is in a dose- and time-dependent manner. These results suggest that TLSC702 can induce apoptosis in tumor cells by GLO I inhibition, which lead to accumulation of MG. Taken together, TLSC702 could become a unique seed compound for the generation of novel chemotherapeutic drugs targeting GLO I-dependent human tumors.

  2. Identification and Biological Characterization of Angiogenic and Tumor Growth Inhibitors derived from Sinica cetorhinus maximum Cartilage

    Directory of Open Access Journals (Sweden)

    Binghua Jiao


    Full Text Available Abstract: Shark (Sinica cetorhinus maximum cartilage was extracted in 1 mol/L Gu-HCl guanidine. Two purified active proteins with apparent molecular weights of 15.2x103 Da and 8.0×103 Da (designated as Sp15 and Sp8, respectively were obtained through ultrafiltration and Superdex 75 chromatography. The activities of the samples were studied in terms of their potential inhibition of vascular endothelial cell growth in vitro, of angiogenesis both in rabbit cornea and chick embryo chorioallantoic membrane (CAM assay models in vivo, and of growth of transplanted S180 sarcoma in mice in vivo. The results showed that Sp15 expressed a typical lysozymatic activity up to 223,000 U/mg and its N-terminus was highly homologous to lysozymes of various mammalian origins. Sp15 exhibited a strong anti-angiogenic activity only in vitro, whereas Sp8 shared this effect both in vitro and in vivo. Both Sp15 and Sp8 provided an effective anti-tumor activity in mice bearing transplanted S180 sarcoma. These results suggest that Sp15 is a shark cartilage-derived lysozyme that participates in the defense to bacterial invasion to the body, while Sp8 is an angiogenic inhibitor that mediates at least part of the anti-tumor activity associated with shark cartilage probably through the inhibition of tumor-induced angiogenesis.

  3. Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors. (United States)

    Huang, Xiumei; Motea, Edward A; Moore, Zachary R; Yao, Jun; Dong, Ying; Chakrabarti, Gaurab; Kilgore, Jessica A; Silvers, Molly A; Patidar, Praveen L; Cholka, Agnieszka; Fattah, Farjana; Cha, Yoonjeong; Anderson, Glenda G; Kusko, Rebecca; Peyton, Michael; Yan, Jingsheng; Xie, Xian-Jin; Sarode, Venetia; Williams, Noelle S; Minna, John D; Beg, Muhammad; Gerber, David E; Bey, Erik A; Boothman, David A


    Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition. In NQO1(+) cancers, such as non-small-cell lung, pancreatic, and breast cancers, cell death mechanism switches from PARP1 hyperactivation-mediated programmed necrosis with β-lapachone monotherapy to synergistic tumor-selective, caspase-dependent apoptosis with PARP inhibitors and β-lapachone. Synergistic antitumor efficacy and prolonged survival were noted in human orthotopic pancreatic and non-small-cell lung xenograft models, expanding use and efficacy of PARP inhibitors for human cancer therapy. Published by Elsevier Inc.

  4. Activity of lipoplatin in tumor and in normal cells in vitro. (United States)

    Arienti, Chiara; Tesei, Anna; Ravaioli, Alberto; Ratta, Marina; Carloni, Silvia; Mangianti, Serena; Ulivi, Paola; Nicoletti, Stefania; Amadori, Dino; Zoli, Wainer


    Lipoplatin is a novel liposomal cisplatin formulation with reduced adverse side effects compared with its parental compound, cisplatin. The aims of this preclinical study were to compare lipoplatin and cisplatin cytotoxicity in vitro in established cell lines derived from non-small cell lung cancer, renal cell carcinoma, and in normal hematopoietic cell precursors, and to identify biological markers associated with sensitivity and resistance. Our results showed a superior cytotoxicity in all tumor cell models and a much lower toxicity in normal cells for lipoplatin compared with cisplatin, suggesting a higher therapeutic index for the liposomal compound. Moreover, RT-PCR analysis of molecular markers known to be related to cisplatin resistance showed a direct correlation between cisplatin and lipoplatin resistance and ERCC1 and LRP expression. In conclusion, lipoplatin showed a higher antitumor activity in both tumor histotypes investigated and was found to be safer than the parent compound, cisplatin. Moreover, ERCC1 and LRP expression levels would seem to be valid predictors of sensitivity or resistance to these drugs.

  5. Chemical design of a radiolabeled gelatinase inhibitor peptide for the imaging of gelatinase activity in tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Hirofumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Mukai, Takahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Habashita, Sayo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Asano, Daigo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Ogawa, Kazuma [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Kuroda, Yoshihiro [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan); Akizawa, Hiromichi [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Iida, Yasuhiko [Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Endo, Keigo [Graduate School of Medicine, Gunma University, Maebashi 371-8511 (Japan); Saga, Tsuneo [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Saji, Hideo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Kyoto 606-8501 (Japan)]. E-mail:


    Since elevated levels of gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] are associated with a poor prognosis in cancer patients, these enzymes are potential targets for tumor imaging. In the present study, a cyclic decapeptide, cCTTHWGFTLC (CTT), was selected as a mother compound because of its selective inhibitory activity toward gelatinases. For imaging gelatinase activity in tumors, we designed a CTT-based radiopharmaceutical taking into consideration that (1) the HWGF motif of the peptide is important for the activity (2) hydrophilic radiolabeled peptides show low-level accumulation in the liver and (3) an increase in the negative charge of radiolabeled peptides is effective in reducing renal accumulation. Thus, a highly hydrophilic and negatively charged radiolabel, indiun-111-diethylenetriaminepentaacetic acid ({sup 111}In-DTPA), was attached to an N-terminal residue distant from the HWGF motif ({sup 111}In-DTPA-CTT). In MMP-2 inhibition assays, In-DTPA-CTT significantly inhibited the proteolytic activity in a concentration-dependent fashion. When injected into normal mice, {sup 111}In-DTPA-CTT showed low levels of radioactivity in the liver and kidney. A comparison of the pharmacokinetic characteristics of {sup 111}In-DTPA-CTT with those of other CTT derivatives having different physicochemical properties revealed that the increase in hydrophilicity and negative charge caused by the conjugation of {sup 111}In-DTPA reduced levels of radioactivity in the liver and kidney. In tumor-bearing mice, a significant correlation was observed between the accumulation in the tumor as well as tumor-to-blood ratio of {sup 111}In-DTPA-CTT and gelatinase activity. These findings support the validity of the chemical design of {sup 111}In-DTPA-CTT for reducing accumulation in nontarget tissues and maintaining the inhibitory activity of the mother compound. Furthermore, {sup 111}In-DTPA-CTT derivatives would be potential radiopharmaceuticals for the imaging of

  6. Effect of three fluoride compounds on the growth of oral normal and tumor cells. (United States)

    Acra, Alejandro Mena; Sakagami, Hiroshi; Matsuta, Tomohiko; Adachi, Kazunori; Otsuki, Sumiko; Nakajima, Hiroshi; Koh, Teho; Machino, Mamoru; Ogihara, Takashi; Watanabe, Koji; Watanabe, Shigeru; Salgado, Angel Visoso; Bastida, Norma M Montiel


    Comparative study of the growth inhibition by different types of fluoride compounds used in dentistry has been limited. We investigated the effects of sodium fluoride (NaF), diammine silver fluoride [Ag(NH3)2F] and 5-fluorouracil (5-FU) on the growth of eleven human normal and tumor cells in total. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induction was evaluated by caspase-3 activation and DNA fragmentation. Fluoride was determined using a fluoride-specific electrode. All compounds had little or no growth stimulating effect (hormesis) on all cells. Ag(NH3)2F exhibited the highest cytotoxicity towards both normal and tumor cells. 5-FU had the selective cytostatic activity towards oral squamous cell carcinoma cell lines, whereas NaF was selectively cytotoxic towards glioblastoma cell lines. None of the compounds induced internucleosomal DNA fragmentation and only 5-FU induced slight activation of caspase-3 in an oral squamous cell carcinoma cell line (HSC-2). Cytotoxicity of fluoride compounds was not reduced by superoxide dismutase and catalase, reducing the possibility of the involvement of reactive oxygen species in the mechanism of action. Approximately 0.01-0.09% initially added NaF was recovered from the cells, whereas the cellular uptake of Ag(NH3)2F and 5-FU was below the detection limit. Cytotoxicity of fluoride compounds may not be directly linked to their tumor specificity nor to their apoptosis-inducing activity.

  7. Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors. (United States)

    Yamashita, A S; Baia, G S; Ho, J S Y; Velarde, E; Wong, J; Gallia, G L; Belzberg, A J; Kimura, E T; Riggins, G J


    About one half of malignant peripheral nerve sheath tumors (MPNST) have Neurofibromin 1 (NF1) mutations. NF1 is a tumor suppressor gene essential for negative regulation of RAS signaling. Survival for MPNST patients is poor and we sought to identify an effective combination therapy. Starting with the mTOR inhibitors rapamycin and everolimus, we screened for synergy in 542 FDA approved compounds using MPNST cells with a native NF1 loss in both alleles. We further analyzed the cell cycle and signal transduction. In vivo growth effects of the drug combination with local radiation therapy (RT) were assessed in MPNST xenografts. The synergistic combination of mTOR inhibitors with bortezomib yielded a reduction in MPNST cell proliferation. The combination of mTOR inhibitors and bortezomib also enhanced the anti-proliferative effect of radiation in vitro. In vivo, the combination of mTOR inhibitor (everolimus) and bortezomib with RT decreased tumor growth and proliferation, and augmented apoptosis. The combination of approved mTOR and proteasome inhibitors with radiation showed a significant reduction of tumor growth in an animal model and should be investigated and optimized further for MPNST therapy.

  8. Expression of betaglycan, an inhibin coreceptor, in normal human ovaries and ovarian sex cord-stromal tumors and its regulation in cultured human granulosa-luteal cells. (United States)

    Liu, Jianqi; Kuulasmaa, Tiina; Kosma, Veli-Matti; Bützow, Ralf; Vänttinen, Teemu; Hydén-Granskog, Christel; Voutilainen, Raimo


    Activins and inhibins are often antagonistic in the regulation of ovarian function. TGFbeta type III receptor, betaglycan, has been identified as a coreceptor to enhance the binding of inhibins to activin type II receptor and thus to prevent the binding of activins to their receptor. In this study we characterized the expression and regulation pattern of betaglycan gene in normal ovaries and sex cord-stromal tumors and in cultured human granulosa-luteal cells from women undergoing in vitro fertilization. Expression of betaglycan mRNA was detected by RT-PCR or Northern blotting in normal ovarian granulosa, thecal, and stroma cells as well as in granulosa-luteal cells. Immunohistochemical analysis revealed positive staining for betaglycan in antral and preovulatory follicular granulosa and thecal cells and in corpora lutea of normal ovaries. Furthermore, betaglycan expression was detected in the vast majority of granulosa cell tumors, thecomas, and fibromas, with weaker staining in granulosa cell tumors compared with fibrothecomas. In cultured granulosa-luteal cells, FSH and LH treatment increased dose-dependently the accumulation of betaglycan mRNA, as did the protein kinase A activator dibutyryl cAMP and the protein kinase C inhibitor staurosporine. In contrast, the protein kinase C activator 12-O-tetradecanoyl phorbol 13-acetate had no significant effect on betaglycan mRNA levels. Treatment with prostaglandin E(2) and with its receptor EP2 subtype agonist butaprost increased betaglycan mRNA accumulation and progesterone secretion dose- and time-dependently. In summary, betaglycan gene is expressed in normal human ovarian steroidogenic cells and sex cord-stromal ovarian tumors. The accumulation of its mRNA in cultured granulosa-luteal cells is up-regulated by gonadotropins and prostaglandin E(2), probably via the protein kinase A pathway. The specific expression and regulation pattern of betaglycan gene may be related to the functional antagonism of inhibins to

  9. Inhibitor of differentiation 4 (Id4 is a potential tumor suppressor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Carey Jason PW


    Full Text Available Abstract Background Inhibitor of differentiation 4 (Id4, a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS, expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR, p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously

  10. Unusual location of tuberculosis in the course of tumor necrosis factor α inhibitor therapy. (United States)

    Bielewicz-Zielińska, Agnieszka; Brzezicki, Jan; Rymko, Marcin; Jeka, Sławomir


    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis complex mycobacteria. Extrapulmonary tuberculosis usually develops more than two years after infection or many years later. Factors favoring onset of the disease are malnutrition, older age, renal failure, diabetes, cancer, immunosuppression and biological treatment, e.g. tumor necrosis factor α (TNF-α) inhibitors. The paper presents a case of a 56-year-old patient with ankylosing spondylitis treated with infliximab, diagnosed with tuberculosis of the spleen. The unusual location and uncharacteristic symptoms created a lot of diagnostic difficulties, particularly as during qualification for biological treatment tests are performed to exclude infection with Mycobacterium tuberculosis. Pharmacological treatment of tuberculosis is typical, but in the case of tuberculosis of the spleen, splenectomy also is a method of treatment. The decision was made to implement pharmacological treatment, which proved to be effective, so the patient avoided surgery.

  11. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor (United States)

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung


    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  12. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    Directory of Open Access Journals (Sweden)

    Zhang Z


    Full Text Available Zhihua Zhang,1 Changlai Hao,1 Lihong Wang,1 Peng Liu,2 Lei Zhao,1 Cuimin Zhu,1 Xia Tian31Hematology Department, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, 2Department of Medical Oncology, Shijiazhuang Municipal No 1 Hospital, Hebei Province, 3Department of Medical Oncology, Rizhao Municipal People’s Hospital, Shandong Province, People's Republic of ChinaAbstract: The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21, abnormally recruits histone deacetylase (HDAC to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21 acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21 acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.Keywords: valproic acid, acute myeloid leukemia, AML1-ETO, p21, E2F

  13. Normalization of hypothalamic serotonin (5-HT 1B) receptor and NPY in cancer anorexia after tumor resection: an immunocytochemical study. (United States)

    Makarenko, Irina G; Meguid, Michael M; Gatto, Louis; Chen, Chung; Ramos, Eduardo J B; Goncalves, Carolina G; Ugrumov, Michael V


    Tumor growth leads to anorexia and decreased food intake, the regulation of which is via the integrated hypothalamic peptidergic and monoaminergic system. Serotonin (5-HT), an anorectic monoamine acts primarily via 5-HT 1B-receptors in hypothalamic nuclei while neuropeptide Y (NPY) acts an orexigenic peptide. We previously reported that 5-HT 1B-receptors are up regulated while NPY is down regulated in tumor-bearing (TB)-related anorexia, contributing to food intake reduction. In anorectic TB rats we hypothesize that after tumor resection when food intake has reverted to normal, normalization of 5-HT 1B-receptor and NPY will occur. The aim of this study was to demonstrate normalization of these hypothalamic changes compared to Controls. In anorectic tumor-bearing rats after tumor resection (TB-R) and in sham-operated (Control) rats, distribution of 5-HT 1B-receptors and NPY in hypothalamic nuclei was analyzed using peroxidase antiperoxidase immunocytochemical methods. Image analysis of immunostaining was performed and the data were statistically analyzed. Immunostaining specificity was controlled by omission of primary or secondary antibodies and pre-absorption test. Our results show that after TB-R versus Controls a normalization of food intake, 5-H-1B-receptor and NPY expression in the hypothalamus occurs. These data, discussed in context with our previous studies, support the hypothesis that tumor resection results not only in normalization of food intake but also in reversible changes of anorectic and orexigenic hypothalamic modulators.

  14. Proteomic analysis of pancreatic endocrine tumor cell lines treated with the histone deacetylase inhibitor trichostatin A. (United States)

    Cecconi, Daniela; Donadelli, Massimo; Rinalducci, Sara; Zolla, Lello; Scupoli, Maria Teresa; Scarpa, Aldo; Palmieri, Marta; Righetti, Pier Giorgio


    Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.

  15. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model

    Institute of Scientific and Technical Information of China (English)

    Sung Yi Hong; Myun Hee Lee; Kyung Sup Kim; Hyun Cheol Jung; Jae Kyung Roh; Woo Jin Hyung; Sung Hoon Noh; Seung Ho Choi


    AIM: rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer. However,a sustained and high protein delivery is required to achieve the desired therapeutic effects. We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model.METHODS: rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines. To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin, Western blotting and ELISA were performed. The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays.The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor, etoposide, were evaluated in a mouse liver tumor model.RESULTS: Topoisomerase inhibitors, including camptothecin and etoposide, were found to increase the endostatin expression level in vitro. The over-expressed endostatin,as a result of pretreatment with a topoisomerase inhibitor,was also biologically active. In animal experiments, the combined therapy of topoisomerase inhibitor, etoposide with the rAAV-endostatin vector had the best tumorsuppressive effect and tumor foci were barely observed in livers of the treated mice. Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice. Finally, the mice treated with rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models.CONCLUSION: rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.

  16. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis. (United States)

    Braumann, Chris; Henke, Wolfgang; Jacobi, Christoph A; Dubiel, Wolfgang


    Taurolidine has been successfully used as a disinfectant and to prevent the spreading and growth of tumor cells after surgical excision. However, the underlying mechanisms regarding its effects remain obscure. Here, we show that taurolidine treatment reduces endogenous levels of IkappaBalpha, p105, c-Jun, p53 and p27 in a dose-dependent manner in colon adenocarcinoma cells, which can be in part due to massive cell death. Because expression of tested proteins was affected by taurolidine, its influence on protein expression was studied. In the coupled transcription/translation system, taurolidine inhibited c-Jun expression with an IC50 value of 1.4 mM. There was no or little effect on transcription. In contrast, translation of c-Jun or p53 mRNA was completely inhibited by taurolidine. To determine which step of translation was affected, prominent complexes occurring in the course of translation were analyzed by density gradient centrifugation. In the presence of taurolidine, no preinitiation translation complex was assembled. Taurolidine also suppressed protein expression in bacteria. Based on our data, we conclude that taurolidine blocks a fundamental early phase of translation, which might explain its effects as a disinfectant and inhibitor of tumor growth.

  17. Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat (United States)

    Rivera, Sofia; Leteur, Céline; Mégnin, Frédérique; Law, Frédéric; Martins, Isabelle; Kloos, Ioana; Depil, Stéphane; Modjtahedi, Nazanine; Perfettini, Jean Luc; Hennequin, Christophe; Deutsch, Eric


    Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin. Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC. PMID:28915585

  18. Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat. (United States)

    Rivera, Sofia; Leteur, Céline; Mégnin, Frédérique; Law, Frédéric; Martins, Isabelle; Kloos, Ioana; Depil, Stéphane; Modjtahedi, Nazanine; Perfettini, Jean Luc; Hennequin, Christophe; Deutsch, Eric


    Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi).Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin.Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC.

  19. The JNK inhibitor SP600129 enhances apoptosis of HCC cells induced by the tumor suppressor WWOX (United States)

    Aderca, Ileana; Moser, Catherine D.; Veerasamy, Manivannan; Bani-Hani, Ahmad H.; Bonilla-Guerrero, Ruben; Ahmed, Kadra; Shire, Abdirashid; Cazanave, Sophie C.; Montoya, Damian P.; Mettler, Teresa A.; Burgart, Lawrence J.; Nagorney, David M.; Thibodeau, Stephen N.; Cunningham, Julie M.; Lai, Jin-Ping; Roberts, Lewis R.


    Background/Aims The FRA16D fragile site gene WWOX is a tumor suppressor that participates in p53-mediated apoptosis. The c-jun N-terminal kinase JNK1 interacts with WWOX and inhibits apoptosis. We investigated the function of WWOX in human hepatocellular carcinoma (HCC) and the effect of JNK inhibition on WWOX-mediated apoptosis. Methods Allelic imbalance on chromosome 16 was analyzed in 73 HCCs using 53 microsatellite markers. WWOX mRNA in HCC cell lines and primary HCCs was measured by real-time RT-PCR. Effects of WWOX on proliferation and apoptosis and the interaction between WWOX and JNK inhibition were examined. Results Loss on chromosome 16 occurred in 34 of 73 HCCs. Of 11 HCC cell lines, 2 had low, 7 intermediate, and 2 had high WWOX mRNA. Of 51 primary tumors, 23 had low WWOX mRNA. Forced expression of WWOX in SNU387 cells decreased FGF2-mediated proliferation and enhanced apoptosis induced by staurosporine and the JNK inhibitor SP600129. Conversely, knockdown of WWOX in SNU449 cells using shRNA targeting WWOX increased proliferation and resistance to SP600129 induced apoptosis. Conclusions WWOX induces apoptosis and inhibits human HCC cell growth through a mechanism enhanced by JNK inhibition. PMID:18620777

  20. The response to epidermal growth factor of human maxillary tumor cells in terms of tumor growth, invasion and expression of proteinase inhibitors. (United States)

    Mizoguchi, H; Komiyama, S; Matsui, K; Hamanaka, R; Ono, M; Kiue, A; Kobayashi, M; Shimizu, N; Welgus, H G; Kuwano, M


    Three cancer cell lines, IMC-2, IMC-3 and IMC-4, were established from a single tumor of a patient with maxillary cancer. We examined responses to epidermal growth factor (EGF) of these 3 cell lines with regard to cell growth and tumor invasion. The growth rate of IMC-2 in nude mice was markedly faster than that of the IMC-3 and IMC-4 cell lines. Assay for invasion through fibrin gels showed significantly enhanced invasive capacity of IMC-2 cells in response to EGF, but no change for IMC-3 and IMC-4 cells. We examined response to EGF of IMC-2 cells with regard to expression of a growth-related oncogene (c-fos), proteinases and their inhibitors. Expression of c-fos was transiently increased in IMC-2 cells at rates comparable to those seen in the 2 other lines in the presence of EGF. There was no apparent effect of EGF on the expression of urokinase-type plasminogen activator and 72-kDa type-IV collagenase in IMC-2 cells. In contrast, EGF specifically enhanced the expression of plasminogen activator inhibitor-I (PAI-I) and tissue inhibitor of metalloproteinases-I (TIMP-I) in IMC-2 cells. Our data suggest that proteinase inhibitors or other related factors may play an important role in tumor growth and invasion in response to EGF.

  1. Survival of tumor and normal cells upon targeting with electron-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Rajon, Didier; Bolch, Wesley E.; Howell, Roger W. [Department of Neurosurgery, University of Florida, Gainesville, Florida 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Radiology, Division of Radiation Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07103 (United States)


    Purpose: Previous studies have shown that the mean absorbed dose to a tissue element may not be a suitable quantity for correlating with the biological response of cells in that tissue element. Cell survival can depend strongly on the distribution of radioactivity at the cellular and multicellular levels. Furthermore, when cellular absorbed doses are examined, the cross-dose from neighbor cells can be less radiotoxic than the self-dose component. To better understand how the nonuniformity of activity among cells can affect the dose response, a computer model of a 3D tissue culture was previously constructed and showed that activity distribution among cells is significantly more relevant than the mean absorbed dose for low-energy-electron emitters. The present work greatly expands upon those findings. Methods: In the present study, we used this same computer model but restricted the number of labeled cells to a fraction of the whole cell population (50%, 10%, and 1%, respectively). The labeled cells were randomly distributed among the whole cell population. Results: While the activity distribution is an important factor in determining the tissue response for low-energy-electron emitters, the fraction of labeled cells has an even more pronounced effect on survival response. For all electron energies studied, reducing the percentage of cells labeled significantly increases the surviving fraction of the whole population. Conclusions: This study provides abundant information on killing tumor and normal cells under some conditions relevant to targeted radionuclide therapy of isolated tumor cells and micrometastases. The percentage of cells labeled, activity distribution among the labeled cells, and electron energy play key roles in determining their response. Most importantly, and not previously demonstrated, lognormal activity distributions can have a profound impact on the response of the tumor cells even when the radionuclide emits high-energy electrons.

  2. Paired tumor and normal whole genome sequencing of metastatic olfactory neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Glen J Weiss

    Full Text Available BACKGROUND: Olfactory neuroblastoma (ONB is a rare cancer of the sinonasal tract with little molecular characterization. We performed whole genome sequencing (WGS on paired normal and tumor DNA from a patient with metastatic-ONB to identify the somatic alterations that might be drivers of tumorigenesis and/or metastatic progression. METHODOLOGY/PRINCIPAL FINDINGS: Genomic DNA was isolated from fresh frozen tissue from a metastatic lesion and whole blood, followed by WGS at >30X depth, alignment and mapping, and mutation analyses. Sanger sequencing was used to confirm selected mutations. Sixty-two somatic short nucleotide variants (SNVs and five deletions were identified inside coding regions, each causing a non-synonymous DNA sequence change. We selected seven SNVs and validated them by Sanger sequencing. In the metastatic ONB samples collected several months prior to WGS, all seven mutations were present. However, in the original surgical resection specimen (prior to evidence of metastatic disease, mutations in KDR, MYC, SIN3B, and NLRC4 genes were not present, suggesting that these were acquired with disease progression and/or as a result of post-treatment effects. CONCLUSIONS/SIGNIFICANCE: This work provides insight into the evolution of ONB cancer cells and provides a window into the more complex factors, including tumor clonality and multiple driver mutations.

  3. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells

    Directory of Open Access Journals (Sweden)



    Full Text Available Eleven phthalimide derivatives were evaluated with regards to their antiproliferative activity on tumor and normal cells and possible toxic effects. Cytotoxic analyses were performed against murine tumors (Sarcoma 180 and B-16/F-10 cells and peripheral blood mononuclear cells (PBMC using MTT and Alamar Blue assays. Following, the investigation of cytotoxicity was executed by flow cytometry analysis and antitumoral and toxicological potential by in vivo techniques. The molecules 3b, 3c, 4 and 5 revealed in vitro cytotoxicity against Sarcoma 180, B-16/F-10 and PBMC. Since compound 4 was the most effective derivative, it was chosen to detail the mechanism of action after 24, 48 and 72 h exposure (22.5 and 45 µM. Sarcoma 180 cells treated with compound 4 showed membrane disruption, DNA fragmentation and mitochondrial depolarization in a time- and dose-dependent way. Compounds 3c, 4 and 5 (50 mg/kg/day did not inhibit in vivotumor growth. Compound 4-treated animals exhibited an increase in total leukocytes, lymphocytes and spleen relative weight, a decreasing in neutrophils and hyperplasia of spleen white pulp. Treated animals presented reversible histological changes. Molecule 4 had in vitro antiproliferative action possibly triggered by apoptosis, reversible toxic effects on kidneys, spleen and livers and exhibited immunostimulant properties that can be explored to attack neoplasic cells.

  4. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples. (United States)

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun


    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis.

  5. Interaction between omega 3 PUFA and UVB radiation: Photoprotective effect in normal and tumoral murine melanocytes? (United States)

    Vasconcelos, Renata Ottes; Bustos, Silvina Odete; Gonzalez, Juliana Ramos; Soares, Camila Wink; Barbosa, Makely Daiane; Chammas, Roger; Votto, Ana Paula de Souza; Trindade, Gilma Santos


    Omega 3 polyunsaturated fatty acids (omega 3 PUFA) are attracting a growing interest as potential adjuvants for cancer prevention and treatment. There is evidence about photoprotection in normal cells, but few previous studies have evaluated it in tumoral cells. Therefore, this study investigated the effect of α-linolenic acid (ALA) in normal murine melanocytic cells (Melan-a) and in tumoral murine melanocytic cells (B16F10) exposed to UVB radiation. Our results showed that ALA exhibited an antiproliferative effect in B16F10 cells, and had minimal effect in Melan-a cells, as demonstrated by MTT assay. On the other hand, the combination of ALA (7.5μM) and UVB (0.01J/cm(2)) showed a protective effect for both cell lines, Melan-a and B16F10. ALA and UVB combined or UVB alone induced an accumulation of cell lines at the S/G2/M phase. In addition, the combination of ALA and UVB, and UVB alone, both induced cell death in 24h; and in 48h, ALA attenuated this effect in both cells. Further to these findings, it was demonstrated that ALA did not alter ROS levels in both cells exposed to UVB radiation. The effect of an omega 6 PUFA, linoleic acid, under the same conditions of ALA were tested. It was not protective in either cell line. Therefore, our results can be very important since it was shown another role to an omega 3 PUFA as a photoprotective agent in a melanoma cell.

  6. Aging and insulin signaling differentially control normal and tumorous germline stem cells. (United States)

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan


    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.

  7. Tumor Necrosis Factor-alpha Inhibitor Etanercept Does Not Alter Methotrexate-induced Gastrointestinal Mucositis in Rats

    NARCIS (Netherlands)

    Kuiken, Nicoline S S; Rings, Edmond H H M; Alffenaar, Jan-Willem C; Havinga, Rick; Jurdzinski, Angelika; Groen, Albert K; Tissing, Wim J E


    OBJECTIVES: Gastrointestinal (GI) mucositis is a severe side effect of chemotherapy and radiotherapy. Pro-inflammatory cytokines are thought to play an important role in the pathophysiology of GI mucositis. We aimed to determine the effect of the Tumor Necrosis Factor-alpha (TNF-α) inhibitor Etanerc

  8. Clinical Response, Drug Survival, and Predictors Thereof Among 548 Patients With Psoriatic Arthritis Who Switched Tumor Necrosis Factor α Inhibitor Therapy

    DEFF Research Database (Denmark)

    Glintborg, Bente; Ostergaard, Mikkel; Krogh, Niels Steen;


    To describe the frequency of treatment switching and outcomes among patients with psoriatic arthritis (PsA) who switched tumor necrosis factor α inhibitor (TNFi) agents in routine care.......To describe the frequency of treatment switching and outcomes among patients with psoriatic arthritis (PsA) who switched tumor necrosis factor α inhibitor (TNFi) agents in routine care....

  9. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost


    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  10. Analysis of spatial heterogeneity in normal epithelium and preneoplastic alterations in mouse prostate tumor models (United States)

    Valkonen, Mira; Ruusuvuori, Pekka; Kartasalo, Kimmo; Nykter, Matti; Visakorpi, Tapio; Latonen, Leena


    Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity. PMID:28317907

  11. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors. (United States)

    Smart, Chanel E; Askarian Amiri, Marjan E; Wronski, Ania; Dinger, Marcel E; Crawford, Joanna; Ovchinnikov, Dmitry A; Vargas, Ana Cristina; Reid, Lynne; Simpson, Peter T; Song, Sarah; Wiesner, Christiane; French, Juliet D; Dave, Richa K; da Silva, Leonard; Purdon, Amy; Andrew, Megan; Mattick, John S; Lakhani, Sunil R; Brown, Melissa A; Kellie, Stuart


    The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

  12. PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. (United States)

    Peng, Maoyu; Emmadi, Rajyasree; Wang, Zebin; Wiley, Elizabeth L; Gann, Peter H; Khan, Seema A; Banerji, Nilanjana; McDonald, William; Asztalos, Szilard; Pham, Thao N D; Tonetti, Debra A; Tyner, Angela L


    Protein Tyrosine kinase 6 (PTK6/BRK) is overexpressed in the majority of human breast tumors and breast tumor cell lines. It is also expressed in normal epithelial linings of the gastrointestinal tract, skin, and prostate. To date, expression of PTK6 has not been extensively examined in the normal human mammary gland. We detected PTK6 mRNA and protein expression in the immortalized normal MCF-10A human mammary gland epithelial cell line, and examined PTK6 expression and activation in a normal human breast tissue microarray, as well as in human breast tumors. Phosphorylation of tyrosine residue 342 in the PTK6 activation loop corresponds with its activation. Similar to findings in the prostate, we detect nuclear and cytoplasmic PTK6 in normal mammary gland epithelial cells, but no phosphorylation of tyrosine residue 342. However, in human breast tumors, striking PTK6 expression and phosphorylation of tyrosine 342 is observed at the plasma membrane. PTK6 is expressed in the normal human mammary gland, but does not appear to be active and may have kinase-independent functions that are distinct from its cancer promoting activities at the membrane. Understanding consequences of PTK6 activation at the plasma membrane may have implications for developing novel targeted therapies against this kinase.

  13. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.


    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  14. Utility of Normal Tissue-to-Tumor {alpha}/{beta} Ratio When Evaluating Isodoses of Isoeffective Radiation Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Jin Jianyue [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Chang, Albert J. [Department of Radiation Oncology, University of California, San Francisco, California (United States); Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)


    Purpose: To achieve a better understanding of the effect of the number of fractions on normal tissue sparing for equivalent tumor control in radiation therapy plans by using equivalent biologically effective dose (BED) isoeffect calculations. Methods and Materials: The simple linear quadratic (LQ) model was assumed to be valid up to 10 Gy per fraction. Using the model, we formulated a well-known mathematical equality for the tumor prescription dose and probed and solved a second mathematical problem for normal tissue isoeffect. That is, for a given arbitrary relative isodose distribution (treatment plan in percentages), 2 isoeffective tumor treatment regimens (N fractions of the dose D and n fractions of the dose d) were denoted, which resulted in the same BED (corresponding to 100% prescription isodose). Given these situations, the LQ model was further exploited to mathematically establish a unique relative isodose level, z (%), for the same arbitrary treatment plan, where the BED to normal tissues was also isoeffective for both fractionation regimens. Results: For the previously stated problem, the relative isodose level z (%), where the BEDs to the normal tissue were also equal, was defined by the normal tissue {alpha}/{beta} ratio divided by the tumor {alpha}/{beta} times 100%. Fewer fractions offers a therapeutic advantage for those portions of the normal tissue located outside the isodose surface, z, whereas more fractions offer a therapeutic advantage for those portions of the normal tissue within the isodose surface, z. Conclusions: Relative isodose-based treatment plan evaluations may be useful for comparing isoeffective tumor regimens in terms of normal tissue effects. Regions of tissues that would benefit from hypofractionation or standard fractionation can be identified.

  15. Interstitial fluid pressure: A novel biomarker to monitor photo-induced drug uptake in tumor and normal tissues. (United States)

    Cavin, Sabrina; Wang, Xingyu; Zellweger, Matthieu; Gonzalez, Michel; Bensimon, Michaël; Wagnières, Georges; Krueger, Thorsten; Ris, Hans-Beat; Gronchi, Fabrizio; Perentes, Jean Y


    Low-dose photodynamic therapy PDT (photoinduction) can modulate tumor vessels and enhance the uptake of liposomal cisplatin (Lipoplatin®) in pleural malignancies. However, the photo-induction conditions must be tightly controlled as overtreatment shuts down tumor vessels and enhances normal tissue drug uptake. In a pleural sarcoma and adenocarcinoma rat model (n = 12/group), we applied photoinduction (0.0625 mg/kg Visudyne®, 10 J/cm(2) ) followed by intravenous Lipoplatin® (5 mg/kg) administration. Tumor and normal tissue IFP were assessed before and up to 1 hour following photoinduction. Lipoplatin® uptake was determined 60 minutes following photoinduction. We then treated the pleura of tumor-free minipigs with high dose photodynamic therapy (PDT) (0.0625 mg/kg Visudyne®, 30 J/cm(2) , n = 5) followed by Lipoplatin (5 mg/kg) administration. In rodents, photoinduction resulted in a significant decrease of IFP (P parabola. In minipigs, high dose photodynamic treatment resulted in pleural IFP increase of some animals which predicted higher Lipoplatin® uptake levels. Normal and tumor vasculatures react differently to PDT. Continuous IFP monitoring in normal and tumor tissues is a promising biomarker of vessel photoinduction. Moderate drop in tumor with no change in normal tissue IFP are predictive of specific Lipoplatin® uptake by cancer following PDT. Lasers Surg. Med. 49:773-780, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. A Novel Ras Inhibitor (MDC-1016 Reduces Human Pancreatic Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie


    Full Text Available Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016 and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control. Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK kinase (MEK/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3 inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation.

  17. BRAF mutation analysis in circulating free tumor DNA of melanoma patients treated with BRAF inhibitors. (United States)

    Gonzalez-Cao, Maria; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; De Mattos-Arruda, Leticia; Muñoz-Couselo, Eva; Manzano, Jose L; Cortes, Javier; Berros, Jose P; Drozdowskyj, Ana; Sanmamed, Miguel; Gonzalez, Alvaro; Alvarez, Carlos; Viteri, Santiago; Karachaliou, Niki; Martin Algarra, Salvador; Bertran-Alamillo, Jordi; Jordana-Ariza, Nuria; Rosell, Rafael


    BRAFV600E is a unique molecular marker for metastatic melanoma, being the most frequent somatic point mutation in this malignancy. Detection of BRAFV600E in blood could have prognostic and predictive value and could be useful for monitoring response to BRAF-targeted therapy. We developed a rapid, sensitive method for the detection and quantification of BRAFV600E in circulating free DNA (cfDNA) isolated from plasma and serum on the basis of a quantitative 5'-nuclease PCR (Taqman) in the presence of a peptide-nucleic acid. We validated the assay in 92 lung, colon, and melanoma archival serum and plasma samples with paired tumor tissue (40 wild-type and 52 BRAFV600E). The correlation of cfDNA BRAFV600E with clinical parameters was further explored in 22 metastatic melanoma patients treated with BRAF inhibitors. Our assay could detect and quantify BRAFV600E in mixed samples with as little as 0.005% mutant DNA (copy number ratio 1 : 20 000), with a specificity of 100% and a sensitivity of 57.7% in archival serum and plasma samples. In 22 melanoma patients treated with BRAF inhibitors, the median progression-free survival was 3.6 months for those showing BRAFV600E in pretreatment cfDNA compared with 13.4 months for those in whom the mutation was not detected (P=0.021). Moreover, the median overall survival for positive versus negative BRAFV600E tests in pretreatment cfDNA differed significantly (7 vs. 21.8 months, P=0.017). This finding indicates that the sensitive detection and accurate quantification of low-abundance BRAFV600E alleles in cfDNA using our assay can be useful for predicting treatment outcome.

  18. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. (United States)

    Brauner, Eran; Gunda, Viswanath; Vanden Borre, Pierre; Zurakowski, David; Kim, Yon Seon; Dennett, Kate Virginia; Amin, Salma; Freeman, Gordon James; Parangi, Sareh


    The interaction of programmed cell death-1 and its ligand is widely studied in cancer. Monoclonal antibodies blocking these molecules have had great success but little is known about them in thyroid cancer. We investigated the role of PD-L1 in thyroid cancer with respect to BRAF mutation and MAP kinase pathway activity and the effect of anti PD-L1 antibody therapy on tumor regression and intra-tumoral immune response alone or in combination with BRAF inhibitor (BRAFi). BRAFV600E cells showed significantly higher baseline expression of PD-L1 at mRNA and protein levels compared to BRAFWT cells. MEK inhibitor treatment resulted in a decrease of PD-L1 expression across all cell lines. BRAFi treatment decreased PD-L1 expression in BRAFV600E cells, but paradoxically increased its expression in BRAFWT cells. BRAFV600E mutated patients samples had a higher level of PD-L1 mRNA compared to BRAFWT (p=0.015). Immunocompetent mice (B6129SF1/J) implanted with syngeneic 3747 BRAFV600E/WT P53-/- murine tumor cells were randomized to control, PLX4720, anti PD-L1 antibody and their combination. In this model of aggressive thyroid cancer, control tumor volume reached 782.3±174.6mm3 at two weeks. The combination dramatically reduced tumor volume to 147.3±60.8, compared to PLX4720 (439.3±188.4 mm3, P=0.023) or PD-L1 antibody (716.7±62.1, Panti PD-L1 treatment potentiates the effect of BRAFi on tumor regression and intensifies anti tumor immune response in an immunocompetent model of ATC. Clinical trials of this therapeutic combination may be of benefit in patients with ATC.

  19. An MMP13-selective inhibitor delays primary tumor growth and the onset of tumor-associated osteolytic lesions in experimental models of breast cancer.

    Directory of Open Access Journals (Sweden)

    Manisha Shah

    Full Text Available We investigated the effects of the matrix metalloproteinase 13 (MMP13-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl-1,3-oxazol-2-yl]phenoxy}phenoxy-5-(2-methoxyethyl pyrimidine-2,4,6(1H,3H,5H-trione (Cmpd-1, on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.

  20. Pigment epithelium-derived factor enhances tumor response to radiation through vasculature normalization in allografted lung cancer in mice. (United States)

    Xu, Z; Dong, Y; Peng, F; Yu, Z; Zuo, Y; Dai, Z; Chen, Y; Wang, J; Hu, X; Zhou, Q; Ma, H; Bao, Y; Gao, G; Chen, M


    This study aimed to explore the potential therapeutic effects of the combination of pigment epithelium-derived factor (PEDF) and radiation on lung cancer. The Lewis lung cancer (LLC) allografts in nude mice were treated with radiation, PEDF and PEDF combined with radiation. The morphologic changes of tumor vasculature and the hypoxic fraction of tumor tissues were evaluated. Significant inhibition of tumor growth was observed when radiation was applied between the 3rd and 7th day (the vasculature normalization window) after the initiation of PEDF treatment. During the vasculature normalization window, the tumor blood vessels in PEDF-treated mice were less tortuous and more uniform than those in the LLC allograft tumor treated with phosphate-buffered saline. Meanwhile, the thickness of the basement membrane was remarkably reduced and pericyte coverage was significantly increased with the PEDF treatment. We also found that tumor hypoxic fraction decreased during the 3rd to the 7th day after PEDF treatment, suggesting improved intratumoral oxygenation. Taken together, our results show that PEDF improved the effects of radiation therapy on LLC allografts by inducing a vascular normalization window from the 3rd to the 7th day after PEDF treatment. Our findings provide a basis for treating lung cancer with the combination of PEDF and radiation.

  1. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy. (United States)

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun


    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  2. Differential expression of ghrelin and its receptor (GHS-R1a) in various adrenal tumors and normal adrenal gland. (United States)

    Ueberberg, B; Unger, N; Sheu, S Y; Walz, M K; Schmid, K W; Saeger, W; Mann, K; Petersenn, S


    Ghrelin is a newly characterized, widely distributed peptide thought to be involved in the regulation of appetite. Significant effects on the release of growth hormone (GH) and ACTH have been demonstrated. This study compares the expression of ghrelin and its receptor (GHS-R) in various adrenal tumors and normal adrenal gland. Normal adrenal tissue was obtained after autopsy. Tissue was obtained from 13 pheochromocytomas (PHEOs), 15 cortisol-secreting adenomas (CPAs), 12 aldosterone-secreting adenomas (APAs), and 16 nonfunctional adenomas (NFAs) following laparoscopic surgery. Expression of ghrelin and GHS-R1a was investigated on RNA levels by using real-time reverse transcription polymerase chain reaction (RT-PCR) and on protein levels by using immunohistochemistry. In the seven normal adrenal glands analyzed, ghrelin mRNA levels were 12-fold lower than in stomach. Ghrelin protein expression was confirmed by immunohistochemistry. In all adrenal tumors, relevant levels of ghrelin mRNA were observed, with significantly lower expression in PHEOs and APAs than in normal adrenal gland. Ghrelin protein was detected in 0% of PHEOs, 55% of APAs, 87% of CPAs, and 54% of NFAs. GHS-R1a mRNA expression was detectable in normal adrenal gland, but the receptor protein was absent. In adrenal tumors, detectable levels of receptor mRNA were found in 38% of PHEOs, 13% of CPAs, and 25% of NFAs. GHS-R1a protein was absent in the majority of adrenal tumors. Expression of ghrelin in normal adrenal gland and adrenal tumors may indicate some unknown physiological function. The pathophysiological relevance of ghrelin expression in adrenal tumors remains to be investigated.

  3. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells. (United States)

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S


    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture

  4. H+ stoichiometry of sites 1 + 2 of the respiratory chain of normal and tumor mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Villalobo, A.; Alexandre, A.; Lehninger, A.L.


    The mechanistic stoichiometry for vectorial H+ ejection coupled to electron transport through energy-conserving segments 1 + 2 was determined on cyanide-inhibited mitochondria from rat liver, rat heart, and Ehrlich ascites tumor cells, and on rat liver mitoplasts with ferricyanide or ferricytochrome c as electron acceptors. K+ (+ valinomycin) and Ca2+ were employed as permeant cations. Three different methods were employed. In the first, known pulses of ferricyanide were added, and the total H+ ejected was determined with a glass electrode. Such measurements gave H+/2e-values exceeding 7.0 for both normal and tumor mitochondria with beta-hydroxybutyrate and other NAD-linked substrates; uptake of Ca2+ was also measured and gave the expected q+/2e-ratios. The second type of measurement was initiated by addition of ferricytochrome c to rat liver mitoplasts, with H+ ejection monitored with the glass electrode and ferricytochrome c reduction by dual-wavelength spectrophotometry; the H+/2e-ratios generally exceeded 7.0. In the third type of measurement, mixing and dilution artifacts were eliminated by oxidizing ferrocytochrome c in situ with a small amount of ferricyanide. H+/2e-ratios for rat liver mitoplasts oxidizing beta-hydroxybutyrate consistently approached or exceeded 7.5. Over 150 measurements made under a variety of conditions gave observed H+/2e-ejection ratios significantly exceeding 7.0, which correlated closely with H+/2e-measurements on sites 1 + 2 + 3, sites 2 + 3, and site 2. Factors leading to the deficit of the observed ratios from the integral value 8 for sites 1 + 2 were discussed.

  5. H+ stoichiometry of sites 1 + 2 of the respiratory chain of normal and tumor mitochondria. (United States)

    Villalobo, A; Alexandre, A; Lehninger, A L


    The mechanistic stoichiometry for vectorial H+ ejection coupled to electron transport through energy-conserving segments 1 + 2 was determined on cyanide-inhibited mitochondria from rat liver, rat heart, and Ehrlich ascites tumor cells, and on rat liver mitoplasts with ferricyanide or ferricytochrome c as electron acceptors. K+ (+ valinomycin) and Ca2+ were employed as permeant cations. Three different methods were employed. In the first, known pulses of ferricyanide were added, and the total H+ ejected was determined with a glass electrode. Such measurements gave H+/2e-values exceeding 7.0 for both normal and tumor mitochondria with beta-hydroxybutyrate and other NAD-linked substrates; uptake of Ca2+ was also measured and gave the expected q+/2e-ratios. The second type of measurement was initiated by addition of ferricytochrome c to rat liver mitoplasts, with H+ ejection monitored with the glass electrode and ferricytochrome c reduction by dual-wavelength spectrophotometry; the H+/2e-ratios generally exceeded 7.0. In the third type of measurement, mixing and dilution artifacts were eliminated by oxidizing ferrocytochrome c in situ with a small amount of ferricyanide. H+/2e-ratios for rat liver mitoplasts oxidizing beta-hydroxybutyrate consistently approached or exceeded 7.5. Over 150 measurements made under a variety of conditions gave observed H+/2e-ejection ratios significantly exceeding 7.0, which correlated closely with H+/2e-measurements on sites 1 + 2 + 3, sites 2 + 3, and site 2. Factors leading to the deficit of the observed ratios from the integral value 8 for sites 1 + 2 were discussed.

  6. Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells (United States)

    Otsubo, Tsuguteru; Hida, Yasuhiro; Ohga, Noritaka; Sato, Hideshi; Kai, Toshihiro; Matsuki, Yasushi; Takasu, Hideo; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Nonomura, Katsuya; Hida, Kyoko


    Targeting tumor angiogenesis is an established strategy for cancer therapy. Because angiogenesis is not limited to pathological conditions such as cancer, molecular markers that can distinguish between physiological and pathological angiogenesis are required to develop more effective and safer approaches for cancer treatment. To identify such molecules, we determined the gene expression profiles of murine tumor endothelial cells (mTEC) and murine normal endothelial cells using DNA microarray analysis followed by quantitative reverse transcription–polymerase chain reaction analysis. We identified 131 genes that were differentially upregulated in mTEC. Functional analysis using siRNA-mediated gene silencing revealed five novel tumor endothelial cell markers that were involved in the proliferation or migration of mTEC. The expression of DEF6 and TMEM176B was upregulated in tumor vessels of human renal cell carcinoma specimens, suggesting that they are potential targets for antiangiogenic intervention for renal cell carcinoma. Comparative gene expression analysis revealed molecular differences between tumor endothelial cells and normal endothelial cells and identified novel tumor endothelial cell markers that may be exploited to target tumor angiogenesis for cancer treatment. PMID:24602018

  7. Cytotoxic effect of a non-peptidic small molecular inhibitor of the p53-HDM2 interaction on tumor cells

    Institute of Scientific and Technical Information of China (English)

    Wen-Dong Li; Mi-Juan Wang; Fang Ding; Da-Li Yin; Zhi-Hua Liu


    AIM: To investigate if non-peptidic small molecular inhibitors of the p53-HDM2 interaction could restore p53 function and kill tumor cells.METHODS: A series of non-peptidic small HDM2 inhibitors were designed by computer-aided model and synthesized by chemical method. Syl-155 was one of these inhibitors. Cytotoxic effect of syl-155 on three tumor cell lines with various states of p53, HT1080 (wild-type p53), KYSE510 (mutant p53), MG63 (p53 deficiency) was evaluated by MTT assay, Western blot and flow cytometry.RESULTS: Syl-155 stimulated the accumulation of p53 and p21 protein in HT1080 cells expressing wild-type p53, but not in KYSE510 and MG63 cells. Consequently, syl-155 induced cell cycle arrest and apoptosis in HT1080 cells.CONCLUSION: Non-peptidic small molecular inhibitors of the p53-HDM2 interaction show promise in treatment of tumors expressing wild-type p53.

  8. The effects of cyclo-oxygenase inhibitors on bile-injured and normal equine colon. (United States)

    Campbell, N B; Jones, S L; Blikslager, A T


    A potential adverse effect of cyclo-oxygenase (COX) inhibitors (nonsteroidal anti-inflammatory drugs [NSAIDs]) in horses is colitis. In addition, we have previously shown an important role for COX-produced prostanoids in recovery of ischaemic-injured equine jejunum. It was hypothesised that the nonselective COX inhibitor flunixin would retard repair of bile-injured colon by preventing production of reparative prostaglandins, whereas the selective COX-2 inhibitor, etodolac would not inhibit repair as a result of continued COX-1 activity. Segments of the pelvic flexure were exposed to 1.5 mmol/l deoxycholate for 30 min, after which they were recovered for 4 h in Ussing chambers. Contrary to the proposed hypothesis, recovery of bile-injured colonic mucosa was not affected by flunixin or etodolac, despite significantly depressed prostanoid production. However, treatment of control tissue with flunixin led to increases in mucosal permeability, whereas treatment with etodolac had no significant effect. Therefore, although recovery from bile-induced colonic injury maybe independent of COX-elaborated prostanoids, treatment of control tissues with nonselective COX inhibitors may lead to marked increases in permeability. Alternatively, selective inhibition of COX-2 may reduce the incidence of adverse effects in horses requiring NSAID therapy.

  9. The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. (United States)

    Robertson, Fredika M; Chu, Khoi; Boley, Kimberly M; Ye, Zaiming; Liu, Hui; Wright, Moishia C; Moraes, Ricardo; Zhang, Xuejun; Green, Tessa L; Barsky, Sanford H; Heise, Carla; Cristofanilli, Massimo


    Inflammatory breast cancer (IBC) is the most metastatic variant of locally advanced breast cancer. IBC has distinctive characteristics including invasion of tumor emboli into the skin and rapid disease progression. Given our previous studies suggesting that HDAC inhibitors have promise in targeting IBC, the present study revealed that the class I HDAC inhibitor Romidepsin (FK-288, Istodax; Celgene Corporation, Summit, NJ) potently induced destruction of IBC tumor emboli and lymphatic vascular architecture. associated with inhibition of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1alpha, (HIF1alpha) proteins in the Mary-X pre-clinical model of IBC. Romidepsin treatment induced clinically relevant biomarkers in including induction of acetylated Histone 3 (Ac-H3) proteins, apoptosis, and increased p21WAF1/CIP1. Romidepsin, alone and synergistically when combined with Paclitaxel, effectively eliminated both primary tumors and metastatic lesions at multiple sites formed by the SUM149 IBC cell line. This is the first report of the ability of an HDAC inhibitor to eradicate IBC tumor emboli, to destroy the integrity of lymphatic vessel architecture and to target metastasis. Furthermore, Romidepsin, in combination with a taxane, warrants evaluation as a therapeutic strategy that may effectively target the skin involvement and rapid metastasis that are hallmarks of IBC.

  10. Lack of anti-tumor activity with the β-catenin expression inhibitor EZN-3892 in the C57BL/6J Min/+ model of intestinal carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, Rian M.; Briggs, Alexandra; Rizvi, Hira; Carothers, Adelaide M.; Davids, Jennifer S.; Bertagnolli, Monica M.; Cho, Nancy L., E-mail:


    Highlights: • Wnt/β-catenin signaling is aberrantly activated in most colorectal cancers. • Locked nucleic acid (LNA)-based antisense is a novel tool for cancer therapy. • β-Catenin inhibition was observed in mature intestinal tissue of LNA-treated mice. • Further investigation of Wnt/β-catenin targeted therapies is warranted. - Abstract: Background: Previously, we showed that short-term inhibition of β-catenin expression and reversal of aberrant β-catenin subcellular localization by the selective COX-2 inhibitor celecoxib is associated with adenoma regression in the C57BL/6J Min/+ mouse. Conversly, long-term administration resulted in tumor resistance, leading us to investigate alternative methods for selective β-catenin chemoprevention. In this study, we hypothesized that disruption of β-catenin expression by EZN-3892, a selective locked nucleic acid (LNA)-based β-catenin inhibitor, would counteract the tumorigenic effect of Apc loss in Min/+ adenomas while preserving normal intestinal function. Materials and methods: C57BL/6J Apc{sup +/+} wild-type (WT) and Min/+ mice were treated with the maximum tolerated dose (MTD) of EZN-3892 (30 mg/kg). Drug effect on tumor numbers, β-catenin protein expression, and nuclear β-catenin localization were determined. Results: Although the tumor phenotype and β-catenin nuclear localization in Min/+ mice did not change following drug administration, we observed a decrease in β-catenin expression levels in the mature intestinal tissue of treated Min/+ and WT mice, providing proof of principle regarding successful delivery of the LNA-based antisense vehicle. Higher doses of EZN-3892 resulted in fatal outcomes in Min/+ mice, likely due to β-catenin ablation in the intestinal tissue and loss of function. Conclusions: Our data support the critical role of Wnt/β-catenin signaling in maintaining intestinal homeostasis and highlight the challenges of effective drug delivery to target disease without permanent

  11. Characterization of a G1 inhibitor from old JB-1 ascites tumor fluid. Interaction with polyions and ion exchangers. (United States)

    Barfod, N M; Bichel, P


    In most experimental ascites tumors the growth rate decreases with increasing age and cell number. This decrease is caused by a prolongation of the cell cycle and an increasing accumulation of noncycling cells in resting (or quiescent) G1 and G2 compartments. In cell-free ascitic fluid from the JB-1 ascites tumor in the plateau phase of growth, low molecular weight substances have been found which reversibly and specifically arrest JB-1 cells in G1 and G2. In order to characterize the JB-1 G1 inhibitor we have investigated the effect of ion exchangers and polyions on the activity of this inhibitor assayed in vitro by means of a partially synchronized JB-1 cell population analyzed by flow microfluorometry. The results indicate that polyanions and cation exchangers (immobilized polyanions) bind and abolish the G1-inhibitory activity. From this it is suggested that the G1 inhibitor is of a basic or polycationic nature. Since anion exchangers (immobilized polycations) are without effect on this activity it was surprising to find that polycations also neutralize the activity. The results indicate that this occurs by blocking an anionic G2-inhibitor receptor on the cell, thus preventing the polycationic G1 inhibitor from being bound to this receptor.

  12. A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells. (United States)

    Saito, Norihiko; Fu, Jun; Zheng, Siyuan; Yao, Jun; Wang, Shuzhen; Liu, Diane D; Yuan, Ying; Sulman, Erik P; Lang, Frederick F; Colman, Howard; Verhaak, Roel G; Yung, W K Alfred; Koul, Dimpy


    Genomic, transcriptional, and proteomic analyses of brain tumors reveal subtypes that differ in pathway activity, progression, and response to therapy. However, a number of small molecule inhibitors under development vary in strength of subset and pathway-specificity, with molecularly targeted experimental agents tending toward stronger specificity. The Notch signaling pathway is an evolutionarily conserved pathway that plays an important role in multiple cellular and developmental processes. We investigated the effects of Notch pathway inhibition in glioma tumor-initiating cell (GIC, hereafter GIC) populations using γ secretase inhibitors. Drug cytotoxicity testing of 16 GICs showed differential growth responses to the inhibitors, stratifying GICs into responders and nonresponders. Responder GICs had an enriched proneural gene signature in comparison to nonresponders. Also gene set enrichment analysis revealed 17 genes set representing active Notch signaling components NOTCH1, NOTCH3, HES1, MAML1, DLL-3, JAG2, and so on, enriched in responder group. Analysis of The Cancer Genome Atlas expression dataset identified a group (43.9%) of tumors with proneural signature showing high Notch pathway activation suggesting γ secretase inhibitors might be of potential value to treat that particular group of proneural glioblastoma (GBM). Inhibition of Notch pathway by γ secretase inhibitor treatment attenuated proliferation and self-renewal of responder GICs and induces both neuronal and astrocytic differentiation. In vivo evaluation demonstrated prolongation of median survival in an intracranial mouse model. Our results suggest that proneural GBM characterized by high Notch pathway activation may exhibit greater sensitivity to γ secretase inhibitor treatment, holding a promise to improve the efficiency of current glioma therapy.

  13. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    Directory of Open Access Journals (Sweden)

    Tao Yan-Fang


    Full Text Available Abstract Background Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. Methods SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3 compared to DMSO group (DMSO: 3.70 ± 2.4 cm3 or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P Conclusions The present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexamethasone may be new target of YM155. And our results may provide new clues of molecular mechanism of apoptosis induced by YM155.

  14. Carbohydrate malabsorption mechanism for tumor formation in rats treated with the SGLT2 inhibitor canagliflozin. (United States)

    Mamidi, Rao N V S; Proctor, Jim; De Jonghe, Sandra; Feyen, Bianca; Moesen, Esther; Vinken, Petra; Ma, Jing Ying; Bryant, Stewart; Snook, Sandra; Louden, Calvert; Lammens, Godelieve; Ways, Kirk; Kelley, Michael F; Johnson, Mark D


    Canagliflozin is an SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Studies were conducted to investigate the mechanism responsible for renal tubular tumors and pheochromocytomas observed at the high dose in a 2-year carcinogenicity study in rats. At the high dose (100mg/kg) in rats, canagliflozin caused carbohydrate malabsorption evidenced by inhibition of intestinal glucose uptake, decreased intestinal pH and increased urinary calcium excretion. In a 6-month mechanistic study utilization of a glucose-free diet prevented carbohydrate malabsorption and its sequelae, including increased calcium absorption and urinary calcium excretion, and hyperostosis. Cell proliferation in the kidney and adrenal medulla was increased in rats maintained on standard diet and administered canagliflozin (100mg/kg), and in addition an increase in the renal injury biomarker KIM-1 was observed. Increased cell proliferation is considered as a proximal event in carcinogenesis. Effects on cell proliferation, KIM-1 and calcium excretion were inhibited in rats maintained on the glucose-free diet, indicating they are secondary to carbohydrate malabsorption and are not direct effects of canagliflozin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Local Tumor Control and Normal Tissue Toxicity of Pulsed Low-Dose Rate Radiotherapy for Recurrent Lung Cancer

    Directory of Open Access Journals (Sweden)

    Peng Zhang


    Full Text Available Objectives: This study investigates (1 local tumor control and (2 normal tissue toxicity of pulsed low-dose rate radiotherapy (PLDR for recurrent lung cancer. Methods: For study 1, nude mice were implanted with A549 tumors and divided into the following 3 groups: (1 control (n = 10, (2 conventional radiotherapy (RT; n = 10, and (3 PLDR (n = 10. Tumor-bearing mice received 2 Gy daily dose for 2 consecutive days. Weekly magnetic resonance imaging was used for tumor growth monitoring. For study 2, 20 mice received 8 Gy total body irradiation either continuously (n = 10 or 40 × 0.2 Gy pulses with 3-minute intervals (n = 10. Results: For study 1, both conventional RT and PLDR significantly inhibited the growth of A549 xenografts compared with the control group (>35% difference in the mean tumor volume; P .05. For study 2, the average weight was 20.94 ± 1.68 g and 25.69 ± 1.27 g and the survival time was 8 days and 12 days for mice treated with conventional RT and PLDR (P < .05, respectively. Conclusion: This study showed that PLDR could control A549 tumors as effectively as conventional RT, and PLDR induced much less normal tissue toxicity than conventional RT. Thus, PLDR would be a good modality for recurrent lung cancers. Advances in Knowledge: This article reports our results of an in vivo animal investigation of PLDR for the treatment of recurrent cancers, which may not be eligible for treatment because of the dose limitations on nearby healthy organs that have been irradiated in previous treatments. This was the first in vivo study to quantify the tumor control and normal tissue toxicities of PLDR using mice with implanted tumors, and our findings provided evidence to support the clinical trials that employ PLDR treatment techniques.

  16. Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells. (United States)

    Subbarayan, V; Sabichi, A L; Llansa, N; Lippman, S M; Menter, D G


    Cyclooxygenase (COX)-2 expression is elevated in some malignancies; however, information is scarce regarding COX-2 contributions to the development of prostate cancer and its regulation by inflammatory cytokines. The present study compared and contrasted the expression levels and subcellular distribution patterns of COX-1 and COX-2 in normal prostate [prostate epithelial cell (PrEC), prostate smooth muscle (PrSM), and prostate stromal (PrSt)] primary cell cultures and prostatic carcinoma cell lines (PC-3, LNCaP, and DU145). The basal COX-2 mRNA and protein levels were high in normal PrEC and low in tumor cells, unlike many other normal cells and tumor cells. Because COX-2 levels were low in prostate smooth muscle cells, prostate stromal cells, and tumor cells, we also examined whether COX-1 and COX-2 gene expression was elevated in response to tumor necrosis factor-alpha (TNF-alpha), a strong inducer of COX-2 expression. Northern blot analysis and reverse transcription-PCR demonstrated different patterns and kinetics of expression for COX-1 and COX-2 among normal cells and tumor cells in response to TNF-alpha. In particular, COX-2 protein levels increased, and the subcellular distribution formed a distinct perinuclear ring in the normal cells at 4 h after TNF-alpha exposure. The COX-2 protein levels also increased in cancer cells, but the subcellular distribution was less organized; COX-2 protein appeared diffuse in some cells and accumulated as focal deposits in the cytoplasm of other cells. TNF-alpha induction of COX-2 and prostaglandin E2 correlated inversely with induction of apoptosis. We conclude that COX-2 expression may be important to PrEC cell function. Although it is low in stromal and tumor cells, COX-2 expression is induced by TNF-alpha in these cells, and this responsiveness may play an important role in prostate cancer progression.

  17. Bevacizumab-Induced Normalization of Blood Vessels in Tumors Hampers Antibody Uptake

    NARCIS (Netherlands)

    Arjaans, Marlous; Munnink, Thijs H. Oude; Oosting, Sjoukje F.; Terwisscha Van Scheltinga, Anton; Gietema, Jourik A.; Garbacik, Erik T.; Timmer-Bosscha, Hetty; Lub-de Hooge, Marjolijn N.; Schroder, Carolina P.; de Vries, Elisabeth G. E.


    In solid tumors, angiogenesis occurs in the setting of a defective vasculature and impaired lymphatic drainage that is associated with increased vascular permeability and enhanced tumor permeability. These universal aspects of the tumor microenvironment can have a marked influence on intratumoral dr

  18. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake

    NARCIS (Netherlands)

    Arjaans, M.; Oude Munnink, T.H.; Oosting, S.F.; Terwisscha van Scheltinga, A.G.T.; Gietema, J.A.; Garbacik, E.T.; Timmer-Bosscha, H.; Lub-de Hooge, M.; Schroder, C.P.; de Vries, E.G.E.


    In solid tumors, angiogenesis occurs in the setting of a defective vasculature and impaired lymphatic drainage that is associated with increased vascular permeability and enhanced tumor permeability. These universal aspects of the tumor microenvironment can have a marked influence on intratumoral

  19. Uptake of 153Sm-EDTMP in normal, benign and malignant tumor tissue

    CERN Document Server

    Riegel, A


    The present study was designed to investigate and compare the uptake of 153Sm-EDTMP (153Samarium-ethylenediaminetetramethylene phosphonate)and 99mTc-DPD (99mTechnetium-dicarboxypropane diphosphonate) into different soft tissue sarcoma cell lines and various tissue specimen in vitro. After 10-120 minutes of incubation at 22 sup o C and 37 sup o C with 153Sm-EDTMP, the uptake kinetics of this tracer in human soft tissue sarcoma cells SW 684 (fibrosarcoma) and SW 1353 (chondrosarcoma) were assessed. The uptake was temperature-dependent and higher into fibrosarcoma than in chondrosarconma. Normal bone tissue samples of rat and human were incubated with 153Sm-EDTMP and 99mTc-DPD. The uptake of 99mTc-DPD was higher than that of 153Sm-EDTMP. Various benign and malignant bone and soft tissue tumors and metastases of different primaries were treated in the same way. The uptake was generally very low, in the metastatic tissue specimen in part possibly due to their osteolytic character.

  20. Wilms Tumor 1 Gene Mutations in Patients with Cytogenetically Normal Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Salah Aref


    Full Text Available OBJECTIVE: This study aimed to assess the prognostic impact of Wilms tumor 1 (WT1 mutations in cytogenetically normal acute myeloid leukemia (CN-AML among Egyptian patients. METHODS: Exons 1, 2, 3, 7, 8, and 9 of WT1 were screened for mutations in samples from 82 CNAML patients out of 203 newly diagnosed AML patients, of age ranging from 21 to 74 years, using high-resolution capillary electrophoresis. RESULTS: Eleven patients out of 82 (13.41% harbored WT1 mutations. Mutations were detected in exon 7 (n=7, exon 9 (n=2, exon 8 (n=1, and exon 3 (n=1, but not in exons 1 or 2. There was no statistically significant difference between the WT1 mutants and wild types as regards age, sex, French-American-British subtypes, and the prevalence of success of induction remission therapy (p=0.966; 28.6% vs. 29.3%. Patients with WT1 mutations had overall survival lower than patients with the wild type (HR=1.38; 95% CI 4.79-6.86; p=0.004. CONCLUSION: CN-AML patients with WT1 mutations have poor clinical outcome. We recommend molecular testing for WT1 mutations in patients with CN-AML at diagnosis in order to improve risk stratification of those patients.

  1. The Wilms' tumor gene Wt1 is required for normal development of the retina. (United States)

    Wagner, Kay-Dietrich; Wagner, Nicole; Vidal, Valerie P I; Schley, Gunnar; Wilhelm, Dagmar; Schedl, Andreas; Englert, Christoph; Scholz, Holger


    The Wilms' tumor gene Wt1 is known for its important functions during genitourinary and mesothelial formation. Here we show that Wt1 is necessary for neuronal development in the vertebrate retina. Mouse embryos with targeted disruption of Wt1 exhibit remarkably thinner retinas than age-matched wild-type animals. A large fraction of retinal ganglion cells is lost by apoptosis, and the growth of optic nerve fibers is severely disturbed. Strikingly, expression of the class IV POU-domain transcription factor Pou4f2 (formerly Brn-3b), which is critical for the survival of most retinal ganglion cells, is lost in Wt1(-/-) retinas. Forced expression of Wt1 in cultured cells causes an up-regulation of Pou4f2 mRNA. Moreover, the Wt1(-KTS) splice variant can activate a reporter construct carrying 5'-regulatory sequences of the human POU4F2. The lack of Pou4f2 and the ocular defects in Wt1(-/-) embryos are rescued by transgenic expression of a 280 kb yeast artificial chromosome carrying the human WT1 gene. Taken together, our findings demonstrate a continuous requirement for Wt1 in normal retina formation with a critical role in Pou4f2-dependent ganglion cell differentiation.

  2. Comparing the level of bystander effect in a couple of tumor and normal cell lines. (United States)

    Soleymanifard, Shokouhozaman; Bahreyni, Mohammad T Toossi


    Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of (60)Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and 0.5 Gy irradiated cells. Frequencies of cells containing micronuclei in QU-DB bystander subgroups were higher than in bystander subgroups of MRC5 cells (P bystander cells, a dose-dependent increase in the number of micronucleated cells was observed as the dose increased, but at all doses the number of micronucleated cells in MRC5 bystander cells was constant. It is concluded that QU-DB cells are more susceptible than MRC5 cells to be affected by bystander effect, and in the two cell lines there is a positive correlation between DNA damages induced directly and those induced due to bystander effect.

  3. Tissue Inhibitor of Metalloproteinase-1 Is Confined to Tumor-Associated Myofibroblasts and Is Increased With Progression in Gastric Adenocarcinoma

    DEFF Research Database (Denmark)

    Alpízar-Alpízar, Warner; Lærum, Ole Didrik; Christensen, Ib J


    The tissue inhibitor of metalloproteinase-1 (TIMP-1) inhibits the extracellular matrix-degrading activity of several matrix metalloproteinases, thereby regulating cancer cell invasion and metastasis. Studies describing the expression pattern and cellular localization of TIMP-1 in gastric cancer a...... to a higher number of cases showing TIMP-1 staining in myofibroblasts with increasing tumor, node, metastasis (TNM) stage was also revealed (p=0.041). In conclusion, tumor-associated myofibroblasts are the main source of increased TIMP-1 expression in gastric cancer....

  4. Cytotoxicity of Portuguese Propolis: The Proximity of the In Vitro Doses for Tumor and Normal Cell Lines

    Directory of Open Access Journals (Sweden)

    Ricardo C. Calhelha


    Full Text Available With a complex chemical composition rich in phenolic compounds, propolis (resinous substance collected by Apis mellifera from various tree buds exhibits a broad spectrum of biological activities. Recently, in vitro and in vivo data suggest that propolis has anticancer properties, but is the cytoxicity of propolis specific for tumor cells? To answer this question, the cytotoxicity of phenolic extracts from Portuguese propolis of different origins was evaluated using human tumor cell lines (MCF7—breast adenocarcinoma, NCI-H460—non-small cell lung carcinoma, HCT15—colon carcinoma, HeLa—cervical carcinoma, and HepG2—hepatocellular carcinoma, and non-tumor primary cells (PLP2. The studied propolis presented high cytotoxic potential for human tumor cell lines, mostly for HCT15. Nevertheless, excluding HCT15 cell line, the extracts at the GI50 obtained for tumor cell lines showed, in general, cytotoxicity for normal cells (PLP2. Propolis phenolic extracts comprise phytochemicals that should be further studied for their bioactive properties against human colon carcinoma. In the other cases, the proximity of the in vitro cytotoxic doses for tumor and normal cell lines should be confirmed by in vivo tests and may highlight the need for selection of specific compounds within the propolis extract.

  5. Comparative proteomic analysis of normal and tumor stromal cells by tissue on chip based mass spectrometry (toc-MS

    Directory of Open Access Journals (Sweden)

    Friedrich Karlheinz


    Full Text Available Abstract In carcinoma tissues, genetic and metabolic changes not only occur at the tumor cell level, but also in the surrounding stroma. This carcinoma-reactive stromal tissue is heterogeneous and consists e.g. of non-epithelial cells such as fibroblasts or fibrocytes, inflammatory cells and vasculature-related cells, which promote carcinoma growth and progression of carcinomas. Nevertheless, there is just little knowledge about the proteomic changes from normal connective tissue to tumor stroma. In the present study, we acquired and analysed specific protein patterns of small stromal sections surrounding head and neck cell complexes in comparison to normal subepithelial connective tissue. To gain defined stromal areas we used laser-based tissue microdissection. Because these stromal areas are limited in size we established the highly sensitive 'tissue on chip based mass spectrometry' (toc-MS. Therefore, the dissected areas were directly transferred to chromatographic arrays and the proteomic profiles were subsequently analysed with mass spectrometry. At least 100 cells were needed for an adequate spectrum. The locating of differentially expressed proteins enables a precise separation of normal and tumor stroma. The newly described toc-MS technology allows an initial insight into proteomic differences between small numbers of exactly defined cells from normal and tumor stroma.

  6. Fatty acid and lipidomic data in normal and tumor colon tissues of rats fed diets with and without fish oil

    Directory of Open Access Journals (Sweden)

    Zora Djuric


    Full Text Available Data is provided to show the detailed fatty acid and lipidomic composition of normal and tumor rat colon tissues. Rats were fed either a Western fat diet or a fish oil diet, and half the rats from each diet group were treated with chemical carcinogens that induce colon cancer (azoxymethane and dextran sodium sulfate. The data show total fatty acid profiles of sera and of all the colon tissues, namely normal tissue from control rats and both normal and tumor tissues from carcinogen-treated rats, as obtained by gas chromatography with mass spectral detection. Data from lipidomic analyses of a representative subset of the colon tissue samples is also shown in heat maps generated from hierarchical cluster analysis. These data display the utility lipidomic analyses to enhance the interpretation of dietary feeding studies aimed at cancer prevention and support the findings published in the companion paper (Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors, Djuric et al., 2017 [1].

  7. In vitro assessment of antiproliferative action selectivity of dietary isothiocyanates for tumor versus normal human cells

    Directory of Open Access Journals (Sweden)

    Konić-Ristić Aleksandra


    Full Text Available Background/Aim. Numerous epidemiological studies have shown beneficial effects of cruciferous vegetables consumption in cancer chemoprevention. Biologically active compounds of different Brassicaceae species with antitumor potential are isothiocyanates, present in the form of their precursors - glucosinolates. The aim of this study was to determine the selectivity of antiproliferative action of dietary isothiocyanates for malignant versus normal cells. Methods. Antiproliferative activity of three isothiocyanates abundant in human diet: sulforaphane, benzyl isothiocyanate (BITC and phenylethyl isothiocyanate, on human cervix carcinoma cell line - HeLa, melanoma cell line - Fem-x, and colon cancer cell line - LS 174, and on peripheral blood mononuclear cells (PBMC, with or without mitogen, were determined by MTT colorimetric assay 72 h after their continuous action. Results. All investigated isothiocyanates inhibited the proliferation of HeLa, Fem-x and LS 174 cells. On all cell lines treated, BITC was the most potent inhibitor of cell proliferation with half-maximum inhibitory concentration (IC50 values of 5.04 mmoL m-3 on HeLa cells, 2.76 mmol m-3 on Fem-x, and 14.30 mmol m-3 on LS 174 cells. Antiproliferative effects on human PBMC were with higher IC50 than on malignant cells. Indexes of selectivity, calculated as a ratio between IC50 values obtained on PBMC and malignant cells, were between 1.12 and 16.57, with the highest values obtained for the action of BITC on melanoma Fem-x cells. Conclusion. Based on its antiproliferative effects on malignant cells, as well as the selectivity of the action to malignant vs normal cells, benzyl isothiocyanate can be considered as a promising candidate in cancer chemoprevention. In general, the safety of investigated compounds, in addition to their antitumor potential, should be considered as an important criterion in cancer chemoprevention. Screening of selectivity is a plausible approach to the evaluation

  8. Classification between normal and tumor tissues based on the pair-wise gene expression ratio

    Directory of Open Access Journals (Sweden)

    Wong YC


    Full Text Available Abstract Background Precise classification of cancer types is critically important for early cancer diagnosis and treatment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. However, reliable cancer-related signals are generally lacking. Method Using recent datasets on colon and prostate cancer, a data transformation procedure from single gene expression to pair-wise gene expression ratio is proposed. Making use of the internal consistency of each expression profiling dataset this transformation improves the signal to noise ratio of the dataset and uncovers new relevant cancer-related signals (features. The efficiency in using the transformed dataset to perform normal/tumor classification was investigated using feature partitioning with informative features (gene annotation as discriminating axes (single gene expression or pair-wise gene expression ratio. Classification results were compared to the original datasets for up to 10-feature model classifiers. Results 82 and 262 genes that have high correlation to tissue phenotype were selected from the colon and prostate datasets respectively. Remarkably, data transformation of the highly noisy expression data successfully led to lower the coefficient of variation (CV for the within-class samples as well as improved the correlation with tissue phenotypes. The transformed dataset exhibited lower CV when compared to that of single gene expression. In the colon cancer set, the minimum CV decreased from 45.3% to 16.5%. In prostate cancer, comparable CV was achieved with and without transformation. This improvement in CV, coupled with the improved correlation between the pair-wise gene expression ratio and tissue phenotypes, yielded higher classification efficiency, especially with the colon dataset – from 87.1% to 93.5%. Over 90% of the top ten discriminating axes in both datasets showed significant improvement after data transformation. The

  9. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. (United States)

    Wu, Qi; Inman, Robert D; Davis, Karen D


    Ankylosing spondylitis is associated with back pain and fatigue and impacts mobility but can be treated with tumor necrosis factor inhibitors (TNFi). The differential effects of TNFi treatment on multiple symptoms and the brain is not well delineated. Thus, we conducted a 2-part study. In study 1, we conducted a retrospective chart review in 129 ankylosing spondylitis patients to assess TNFi effects on pain, fatigue, motor function, mobility, and quality of life (QoL). After at least 10 weeks of TNFi treatment, patients had clinically significant improvements (>30%) in pain (including neuropathic pain), most disease and QoL factors, and normalized sensory detection thresholds. However, residual fatigue (mean = 5.3) was prominent. Although 60% of patients had significant relief of pain, only 22% of patients had significant relief of both pain and fatigue. Therefore, the preferential TNFi treatment effect on pain compared with fatigue could contribute to suboptimal effects on QoL. Part 2 was a prospective study in 14 patients to identify TNFi treatment effects on pain, fatigue, sensory and psychological factors, and brain cortical thickness based on 3T magnetic resonance imaging. Centrally, TNFi was associated with statistically significant cortical thinning of motor, premotor, and posterior parietal regions. Pain intensity reduction was associated with cortical thinning of the secondary somatosensory cortex, and pain unpleasantness reduction was associated with the cortical thinning of motor areas. In contrast, fatigue reduction correlated with cortical thinning of the insula, primary sensory cortex/inferior parietal sulcus, and superior temporal polysensory areas. This indicates that TNFi treatment produces changes in brain areas implicated in sensory, motor, affective, and cognitive functions.

  10. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. (United States)

    Cantrell, Michael A; Ebelt, Nancy D; Pfefferle, Adam D; Perou, Charles M; Van Den Berg, Carla Lynn


    Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.

  11. Role of the tumor-associated trypsin inhibitor SPINK1 in cancer development%Role of the tumor-associated trypsin inhibitor SPINK1in cancer development

    Institute of Scientific and Technical Information of China (English)

    Ulf-H(a)kan Stenman


    @@ In most industrialized countries, prostate cancer is the most common non-skin cancer of men.When detected early, most cases are curable, but for tumors that have metastasized, there is no curative therapy.Pharmaceutical androgen ablation or castration induces remission in most patients with metastatic disease, but if the patient lives long enough, the tumor becomes androgen-independent.In some patients, chemotherapy induces remission, which mostly is of short duration.Therefore, new treatment modalities are needed for androgen-independent prostate cancer.

  12. Enhancing tissue permeability with MRI guided preclinical focused ultrasound system in rabbit muscle: From normal tissue to VX2 tumor. (United States)

    Sun, Yao; Xiong, Xiaobing; Pandya, Darpan; Jung, Youngkyoo; Mintz, Akiva; Hayasaka, Satoru; Wadas, Thaddeus J; Li, King C P


    High Intensity Focused Ultrasound (HIFU) is an emerging noninvasive, nonionizing physical energy based modality to ablate solid tumors with high power, or increase local permeability in tissues/tumors in pulsed mode with relatively low power. Compared with traditional ablative HIFU, nondestructive pulsed HIFU (pHIFU) is present in the majority of novel applications recently developed for enhancing the delivery of drugs and genes. Previous studies have demonstrated the capability of pHIFU to change tissue local permeability for enhanced drug delivery in both mouse tumors and mouse muscle. Further study based on bulk tissues in large animals and clinical HIFU system revealed correlation between therapeutic effect and thermal parameters, which was absent in the previous mouse studies. In this study, we further investigated the relation between the therapeutic effect of pHIFU and thermal parameters in bulky normal muscle tissues based on a rabbit model and a preclinical HIFU system. Correlation between therapeutic effect and thermal parameters was confirmed in our study on the same bulk tissues although different HIFU systems were used. Following the study in bulky normal muscle tissues, we further created bulky tumor model with VX2 tumors implanted on both hind limbs of rabbits and investigated the feasibility to enhance tumor permeability in bulky VX2 tumors in a rabbit model using pHIFU technique. A radiolabeled peptidomimetic integrin antagonist, (111)In-DOTA-IA, was used following pHIFU treatment in our study to target VX2 tumor and serve as the radiotracer for follow-up single-photon emission computed tomography (SPECT) scanning. The results have shown significantly elevated uptake of (111)In-DOTA-IA in the area of VX2 tumors pretreated by pHIFU compared with the control VX2 tumors not being pretreated by pHIFU, and statistical analysis revealed averaged 34.5% enhancement 24h after systematic delivery of (111)In-DOTA-IA in VX2 tumors pretreated by pHIFU compared

  13. Comparison of human tenascin expression in normal, simian-virus-40-transformed and tumor-derived cell lines. (United States)

    Carnemolla, B; Borsi, L; Bannikov, G; Troyanovsky, S; Zardi, L


    Tenascin is a polymorphic high-molecular-mass extracellular-matrix glycoprotein composed of six similar subunits. Using two-domain-specific anti-tenascin monoclonal antibodies, we have studied the expression and distribution of tenascin in four cultured normal human fibroblasts, two simian-virus-40-(SV40)-transformed and three tumor-derived (melanoma, rhabdomyosarcoma and fibrosarcoma) cell lines. We found that (a) cultured normal human fibroblasts accumulate considerable amounts of tenascin and retain 60-90% in the extracellular matrix, while they release the remainder into the tissue-culture medium; (b) of the two SV40-transformed counterparts we have tested, the AG-280 cell line accumulates no detectable amounts of tenascin and the WI-38-VA cell line accumulates about 10-times less tenascin than its normal counterpart and releases about 90% of it into the culture medium; (c) some tumor-derived cell lines accumulate considerable amounts of tenascin, but in these cases, more than 90% is released into the culture media; (d) in normal human fibroblasts, two major tenascin isoforms, generated by alternative splicing of the mRNA precursor, are detectable (280 kDa and 190 kDa, respectively) and the lower-molecular-mass tenascin isoform is accumulated preferentially in the extracellular matrix; (e) in SV40-transformed or tumor-derived cell lines, only the higher-molecular-mass isoform is detectable and it is more sialylated than the tenascin produced by the normal human fibroblast cell lines.

  14. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells. (United States)

    Janneau, Jean-Louis; Maldonado-Estrada, Juan; Tachdjian, Gérard; Miran, Isabelle; Motté, Nelly; Saulnier, Patrick; Sabourin, Jean-Christophe; Coté, Jean-François; Simon, Bénédicte; Frydman, René; Chaouat, Gérard; Bellet, Dominique


    Once initiated, invasion of trophoblast cells must be tightly regulated, particularly in early pregnancy. The mechanisms necessary for the invasion and migration of trophoblast cells are thought to be related to those involved in the invasive and metastatic properties of cancer cells. Quantitative PCR was used to measure, in trophoblast cells, the transcriptional expression profiles of four genes, INSL4, BRMS1, KiSS-1 and KiSS-1R, reported to be implicated in tumor invasion and metastasis. Laser capture microdissection and purification of trophoblast cells demonstrate that, as already known for INSL4, BRMS1, KiSS-1 and KiSS-1R are expressed by the trophoblast subset of placental tissues. Expression profiles of these genes studied in early placentas (7-9 weeks, n=55) and term placentas (n=11) showed that expression levels of BRMS1 are higher in term than in early placentas, while expression levels of KiSS-1R are higher in early than in term placentas. Low levels of expression of BRMS1 were observed in normal pregnancies, in molar pregnancies and in choriocarcinoma cell lines BeWo, JAR and JEG3 while, in striking contrast, the expression levels of INSL4, KiSS-1 and Kiss-1R were increased in both early placentas and molar pregnancies and were reduced in choriocarcinoma cells. These transcriptional expression profiles are in favor of a predominant role of INSL4, KiSS-1 and KiSS-1R in the control of the invasive and migratory properties of trophoblast cells.

  15. Monoclonal antibodies in rheumatoid arthritis: comparative effectiveness of tocilizumab with tumor necrosis factor inhibitors

    Directory of Open Access Journals (Sweden)

    Tanaka T


    Full Text Available Toshio Tanaka,1,2 Yoshihiro Hishitani,3 Atsushi Ogata2,3 1Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan; 2Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; 3Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan Abstract: Rheumatoid arthritis (RA is a chronic inflammatory disease characterized by persistent joint inflammation, systemic inflammation, and immunological abnormalities. Because cytokines such as tumor necrosis factor (TNF-α and interleukin (IL-6 play a major role in the development of RA, their targeting could constitute a reasonable novel therapeutic strategy for treating RA. Indeed, worldwide clinical trials of TNF inhibiting biologic disease modifying antirheumatic drugs (bDMARDs including infliximab, adalimumab, golimumab, certolizumab pegol, and etanercept as well as the humanized anti-human IL-6 receptor antibody, tocilizumab, have demonstrated outstanding clinical efficacy and tolerable safety profiles, resulting in worldwide approval for using these bDMARDs to treat moderate to severe active RA in patients with an inadequate response to synthetic disease modifying antirheumatic drugs (sDMARDs. Although bDMARDs have elicited to a paradigm shift in the treatment of RA due to the prominent efficacy that had not been previously achieved by sDMARDs, a substantial percentage of patients failed primary or secondary responses to bDMARD therapy. Because RA is a heterogeneous disease in which TNF-α and IL-6 play overlapping but distinct pathological roles, further studies are required to determine the best use of TNF inhibitors and tocilizumab in individual RA patients. Keywords: interleukin-6, rheumatoid arthritis, adalimumab, biologic

  16. Complicated Whipple’s disease and endocarditis following tumor necrosis factor inhibitors

    Institute of Scientific and Technical Information of China (English)

    Thomas; Marth


    AIM: To test whether treatment with tumor necrosis factor inhibitors(TNFI) is associated with complications of Tropheryma whipplei(T. whipplei) infection. METHODS: Because unexplained arthritis is often the first Whipple’s disease(WD) symptom, patients may undergo treatment with TNFI before diagnosis. This may influence the course of infection with T. whipplei, which causes WD, because host immune defects contribute to the pathogenesis of WD. A literature search and cross referencing identified 19 reports of TNFI treatment prior to WD diagnosis. This case-control study compared clinical data in patients receiving TNFI therapy(group Ⅰ, n = 41) with patients not receiving TNFI therapy(group Ⅱ, n = 61). Patients from large reviews served as controls(group Ⅲ, n = 1059).RESULTS: The rate of endocarditis in patient group Ⅰ was significantly higher than in patient group Ⅱ(12.2% in group Ⅰ vs 1.6% in group Ⅱ, P < 0.05), and group Ⅲ(12.2% in group Ⅰ vs 0.16% in group Ⅲ, P < 0.01). Other, severe systemic or local WD complications such as pericarditis, fever or specific organ manifestations were increased also in group Ⅰ as compared to the other patient groups. However, diarrhea and weight loss were somewhat less frequent in patient group Ⅰ. WD istypically diagnosed with duodenal biopsy and periodic acid Schiff(PAS) staining. PAS-stain as standard diagnostic test had a very high percentage of false negative results(diagnostic failure in 63.6% of cases) in group I. Polymerase chain reaction(PCR) for T. whipplei was more accurate than PAS-stainings(diagnostic accuracy, rate of true positive tests 90.9% for PCR vs 36.4% for PAS, P < 0.01).CONCLUSION: TNFI trigger severe WD complications, particularly endocarditis, and lead to false-negative PAS-tests. In case of TNFI treatment failure, infection with T. whipplei should be considered.

  17. Parents' information needs in tumor necrosis factor-α inhibitor treatment decisions. (United States)

    Lipstein, Ellen A; Lovell, Daniel J; Denson, Lee A; Moser, David W; Saeed, Shehzad A; Dodds, Cassandra M; Britto, Maria T


    The aim of the study was to describe parents' experiences and the information used when making decisions about tumor necrosis factor-α inhibitor (TNFαi) treatment. We interviewed parents of children with Crohn disease (CD) or juvenile idiopathic arthritis who had experience deciding about TNFαi treatment. Interview questions focused on information used to make decisions and factors that influenced decision making. We used thematic analysis for all coding and analysis. Coding structure was developed by a multidisciplinary team review of the initial interviews. Two coders then coded the remaining interviews, compared coding, and resolved disagreements through discussion. Data were analyzed by thematic grouping and then compared between diseases. We interviewed 35 parents. For nearly all parents the decision about TNFαi treatment was the most challenging medical decision they had made; however, parents of children with CD experienced more stress and anxiety than did other parents. Both groups of parents sought information from multiple sources including health care providers, the Internet, and social contacts. They looked for information related to treatment effectiveness, adverse effects, and other individuals' treatment experiences. In CD, information was used to help make the decision, whereas in juvenile idiopathic arthritis it was used to confirm the decision. The decision-making experience, and associated information seeking, leaves some parents with long-lasting concerns and worry about TNFαi treatment. Providing parents with structured decision-making support may lead to more effective and efficient decision making, decreased psychosocial distress, and, ultimately, improved outcomes for their children.

  18. Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Ankylosing Spondylitis.

    Directory of Open Access Journals (Sweden)

    Inês P Perpétuo

    Full Text Available Ankylosing Spondylitis (AS is characterized by excessive local bone formation and concomitant systemic bone loss. Tumor necrosis factor (TNF plays a central role in the inflammation of axial skeleton and enthesis of AS patients. Despite reduction of inflammation and systemic bone loss, AS patients treated with TNF inhibitors (TNFi have ongoing local bone formation. The aim of this study was to assess the effect of TNFi in the differentiation and activity of osteoclasts (OC in AS patients.13 AS patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. 25 healthy donors were recruited as controls. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers and cytokines, in vitro OC differentiation assay and qRT-PCR for OC specific genes were performed.RANKL+ circulating lymphocytes (B and T cells and IL-17A, IL-23 and TGF-β levels were decreased after TNFi treatment. We found no differences in the frequency of the different monocyte subpopulations, however, we found decreased expression of CCR2 and increased expression of CD62L after TNFi treatment. OC number was reduced in patients at baseline when compared to controls. OC specific gene expression was reduced in circulating OC precursors after TNFi treatment. However, when cultured in OC differentiating conditions, OC precursors from AS TNFi-treated patients showed increased activity as compared to baseline.In AS patients, TNFi treatment reduces systemic pro osteoclastogenic stimuli. However, OC precursors from AS patients exposed to TNFi therapy have increased in vitro activity in response to osteoclastogenic stimuli.

  19. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    Full Text Available ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  20. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization. (United States)

    Schiller, J H; Bittner, G


    Squalamine is a novel anti-angiogenic aminosterol that is postulated to inhibit neovascularization by selectively inhibiting the sodium-hydrogen antiporter exchanger. To determine how to most effectively use this agent in patients with cancer, we examined the antitumor effects of squalamine with or without cytotoxic agents in human lung cancer xenografts and correlated these observations with the degree of tumor neovascularization. No direct cytotoxic effects of squalamine against tumor cells were observed in vitro with or without cisplatin. Squalamine was effective in inhibiting the establishment of H460 human tumors in BALBc nude mice but was ineffective in inhibiting the growth of H460, CALU-6, or NL20T-A human tumor xenografts when administered i.p. to mice bearing established tumors. However, when combined with cisplatin or carboplatin, squalamine increased tumor growth delay by > or =1.5-fold in the three human lung carcinoma cell lines compared with cisplatin or carboplatin alone. No enhancement of antitumor activity was observed when squalamine was combined with paclitaxel, vinorelbine, gemcitabine, or docetaxel. Repeated cycles of squalamine plus cisplatin administration delayed H460 tumor growth >8.6-fold. Squalamine plus cisplatin reduced CD31 vessel formation by 25% compared with controls, squalamine alone, or cisplatin alone; however, no inhibition in CD31 vessel formation was observed when squalamine was combined with vinorelbine. These data demonstrate that the combination of squalamine and a platinum analog has significant preclinical antitumor activity against human lung cancer that is related to the anti-angiogenic effects of squalamine.

  1. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein (United States)

    Sanclemente, Manuel; Iturralde, María; Naval, Javier; Alava, María Angeles; Martínez-Lostao, Luis; Thierse, Hermann-Josef; Anel, Alberto


    We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. PMID:27086912

  2. Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM. (United States)

    McCabe, Nuala; Hanna, Conor; Walker, Steven M; Gonda, David; Li, Jie; Wikstrom, Katarina; Savage, Kienan I; Butterworth, Karl T; Chen, Clark; Harkin, D Paul; Prise, Kevin M; Kennedy, Richard D


    Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response (DDR). ATM loss of function can produce a synthetic lethal phenotype in combination with tumor-associated mutations in FA/BRCA pathway components. In this study, we took an siRNA screening strategy to identify other tumor suppressors that, when inhibited, similarly sensitized cells to ATM inhibition. In this manner, we determined that PTEN and ATM were synthetically lethal when jointly inhibited. PTEN-deficient cells exhibited elevated levels of reactive oxygen species, increased endogenous DNA damage, and constitutive ATM activation. ATM inhibition caused catastrophic DNA damage, mitotic cell cycle arrest, and apoptosis specifically in PTEN-deficient cells in comparison with wild-type cells. Antioxidants abrogated the increase in DNA damage and ATM activation in PTEN-deficient cells, suggesting a requirement for oxidative DNA damage in the mechanism of cell death. Lastly, the ATM inhibitor KU-60019 was specifically toxic to PTEN mutant cancer cells in tumor xenografts and reversible by reintroduction of wild-type PTEN. Together, our results offer a mechanistic rationale for clinical evaluation of ATM inhibitors in PTEN-deficient tumors.

  3. Serum levels of matrix metalloproteinases MMP-2 and MMP-9 and their tissue natural inhibitors in breast tumors. (United States)

    Jinga, D; Stefanescu, Maria; Blidaru, A; Condrea, Ileana; Pistol, Gina; Matache, Cristiana


    In this study, the levels of matrix metalloproteinases MMP-2 and MMP-9 were simultaneously analyzed with the levels of their tissue natural inhibitors TIMP-1 and TIMP-2 in sera of patients with breast tumors. At the same time, the activity of these two matrix metalloproteinases was evaluated. The decrease of TIMP-2 level in sera from patients with breast cancer as well as an imbalance between MMP-2 and TIMP-2 in neoplasic processes were found. The serum levels of MMP-2, MMP-9 and TIMP-1 were comparable between the patients with breast cancer and benign tumors. These experimental studied parameters were found to correlate with some of clinicopathological disease variables (TNM or pTNM staging system, tumor size and node invasion) suggesting their potential value for diagnosis and prognosis of breast cancer. Matrix metalloproteinases or their natural inhibitors and tumor markers (CA15.3 and CEA) not correlated between but, each of them correlated with another clinicopathological disease variable, suggesting their usefulness in the evaluation.

  4. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration.

    Directory of Open Access Journals (Sweden)

    Andrew Crowe

    Full Text Available Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF. Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4(+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes.

  5. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong


    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  6. Discrimination between normal breast tissue and tumor tissue using CdTe series detector developed for photon-counting mammography (United States)

    Okamoto, Chizuru; Ihori, Akiko; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kato, Misa; Nakajima, Ai; Kodera, Yoshie


    We propose a new mammography system using a cadmium telluride (CdTe) series photon-counting detector, having high absorption efficiency over a wide energy range. In a previous study, we showed that the use of high X-ray energy in digital mammography is useful from the viewpoint of exposure dose and image quality. In addition, the CdTe series detector can acquire X-ray spectrum information following transmission through a subject. This study focused on the tissue composition identified using spectral information obtained by a new photon-counting detector. Normal breast tissue consists entirely of adipose and glandular tissues. However, it is very difficult to find tumor tissue in the region of glandular tissue via a conventional mammogram, especially in dense breast because the attenuation coefficients of glandular tissue and tumor tissue are very close. As a fundamental examination, we considered a simulation phantom and showed the difference between normal breast tissue and tumor tissue of various thicknesses in a three-dimensional (3D) scatter plot. We were able to discriminate between both types of tissues. In addition, there was a tendency for the distribution to depend on the thickness of the tumor tissue. Thinner tumor tissues were shown to be closer in appearance to normal breast tissue. This study also demonstrated that the difference between these tissues could be made obvious by using a CdTe series detector. We believe that this differentiation is important, and therefore, expect this technology to be applied to new tumor detection systems in the future.

  7. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. (United States)

    Darsalia, Vladimer; Ortsäter, Henrik; Olverling, Anna; Darlöf, Emilia; Wolbert, Petra; Nyström, Thomas; Klein, Thomas; Sjöholm, Åke; Patrone, Cesare


    Type 2 diabetes is a strong risk factor for stroke. Linagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor in clinical use against type 2 diabetes. The aim of this study was to determine the potential antistroke efficacy of linagliptin in type 2 diabetic mice. To understand whether efficacy was mediated by glycemia regulation, a comparison with the sulfonylurea glimepiride was done. To determine whether linagliptin-mediated efficacy was dependent on a diabetic background, experiments in nondiabetic mice were performed. Type 2 diabetes was induced by feeding the mice a high-fat diet for 32 weeks. Mice were treated with linagliptin/glimepiride for 7 weeks. Stroke was induced at 4 weeks into the treatment by transient middle cerebral artery occlusion. Blood DPP-4 activity, glucagon-like peptide-1 (GLP-1) levels, glucose, body weight, and food intake were assessed throughout the experiments. Ischemic brain damage was measured by determining stroke volume and by stereologic quantifications of surviving neurons in the striatum/cortex. We show pronounced antistroke efficacy of linagliptin in type 2 diabetic and normal mice, whereas glimepiride proved efficacious against stroke in normal mice only. These results indicate a linagliptin-mediated neuroprotection that is glucose-independent and likely involves GLP-1. The findings may provide an impetus for the development of DPP-4 inhibitors for the prevention and treatment of stroke in diabetic patients.

  8. Virus expression in different tissues of normal and tumor-bearing mice inoculated with a murine leukemia virus. (United States)

    Youn, J K; Santillana, M; Hue, G; Barski, G


    Evolution of virus expression in different lymphoid organs as well as in solid syngeneic tumors of mice inoculated with an MuLV was studied with the aid of in vitro XC co-culture technique. When normal adult mice of strain XLII were inoculated intraperitoneally with a cultured Rauscher virus (RC), the virus could be detected, 10 days after inoculation, only in bone marrow in small amounts and thereafter no virus could be found in any of the organs tested, including bone marrow, spleen, thymus, lymph node and kidney. However, when age- and sex-matched parallel mice bearing syngeneic subcutaneous non-viral tumors were inoculated similarly with the RC virus, the virus could be detected abundantly not only in bone marrow and spleen but also in tumors during the first 3 weeks and even 6 weeks after virus inoculation. Transitional decrease or disappearance of the virus was observed around the 25th-31st day in organs and tumors of the inoculated mice. When the tumor mass was removed from these mice by surgery, the virus disappeared rapidly and definitely from all the organs tested. The virus recovered from in vitro explanted and cultured tumors, taken from mice inoculated with the virus, induced typical lymphoid leukemia in BALB/c mice inoculated as newborns. However, from certain aspects (hypertrophy of the thymus and lymph nodes), this virus was different from the original RC virus.

  9. Dual effects of indoleamine 2,3-dioxygenase inhibitors on the therapeutic effects of cyclophosphamide and cycloplatam on Ehrlich ascites tumor in mice. (United States)

    Bogdanova, L A; Morozkova, T S; Amitina, S A; Mazhukin, D G; Nikolin, V P; Popova, N A; Kaledin, V I


    Ethyl pyruvate, an inhibitor of indoleamine 2,3-dioxygenase, slightly suppressed the growth of transplantable Ehrlich tumor in mice and significantly potentiated the therapeutic effect of cyclophosphamide. Another inhibitor amidoxime produced a similar effect. However, both ethyl pyruvate and amidoxime significantly reduced the effect of cycloplatam therapy. The observed changes can be stipulated by different effects of cyclophosphamide and cycloplatam on the subpopulations of lymphoid cells taking part in the formation of antitumor immunity and resistance to tumors.

  10. Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Stephan E. E-mail:; Mamata, Hatsuho; Mulkern, Robert V


    Objective: To characterize normal and pathologic brain tissue by quantifying the deviation of diffusion-related signal from a simple monoexponential decay, when measured over a wider than usual range of b-factors. Methods and materials: Line scan diffusion imaging (LSDI), with diffusion weighting at multiple b-factors between 100 and 5000 s/mm{sup 2}, was performed on 1.5 T clinical scanners. Diffusion data of single slice sections were acquired in five healthy subjects and 19 brain tumor patients. In-patients, conventional T2-weighted and contrast-enhanced T1-weighted images were obtained for reference purposes. The chisquare ({chi}{sup 2}) error parameter associated with the monoexponential fits of the measured tissue water signals was then used to quantify the departure from a simple monoexponential signal decay on a pixel-by-pixel basis. Results: Diffusion-weighted images over a wider b-factor range than typically used were successfully obtained in all healthy subjects and patients. Normal and pathologic tissues demonstrated signal decays, which clearly deviate from a simple monoexponential behavior. The {chi}{sup 2} of cortical and deep grey matter was considerably lower than in white matter. In peritumoral edema, however, {chi}{sup 2} was 68% higher than in normal white matter. In highly malignant brain tumors, such as glioblastoma multiforme (GBM) or anaplastic astrocytoma, {chi}{sup 2} values were on average almost 400% higher than in normal white matter, while for one low grade astrocytoma and two cases of metastasis, {chi}{sup 2} was not profoundly different from the {chi}{sup 2} value of white matter. Maps of the {chi}{sup 2} values provide good visualization of spatial details. However, the tumor tissue contrast generated appeared in many cases to be different from the enhancement produced by paramagnetic contrast agents. For example, in cases where the contrast agent only highlighted the rim of the tumor, {chi}{sup 2} enhancement was present within the

  11. The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton's tyrosine kinase (BTK) inhibitor PLS-123 on Mantle cell lymphoma. (United States)

    Li, Jiao; Wang, Xiaogan; Xie, Yan; Ying, Zhitao; Liu, Weiping; Ping, Lingyan; Zhang, Chen; Pan, Zhengying; Ding, Ning; Song, Yuqin; Zhu, Jun


    Mantle cell lymphoma (MCL) is an aggressive and incurable malignant disease. Despite of general chemotherapy, relapse and mortality are common, highlighting the need for the development of novel targeted drugs or combination of therapeutic regimens. Recently, several drugs that target the B-cell receptor (BCR) signaling pathway, especially the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicate that pharmacological inhibition of BCR pathway holds promise in MCL treatment. Here, we have developed a novel irreversible BTK inhibitor, PLS-123, that has more potent and selective anti-tumor activity than ibrutinib in vitro and in vivo. Using in vitro screening, we discovered that the combination of PLS-123 and the mammalian target of rapamycin (mTOR) inhibitor, everolimus exert synergistic activity in attenuating proliferation and motility of MCL cell lines. Simultaneous inhibition of BTK and mTOR resulted in marked induction of apoptosis and cell cycle arrest in the G1 phase, which were accompanied by upregulation of pro-apoptotic proteins (cleaved Caspase-3, cleaved PARP and Bax), repression of anti-apoptotic proteins (Mcl-1, Bcl-xl and XIAP), and downregulation of regulators of the G1/S phase transition (CDK2, CDK4, CDK6 and Cyclin D1). Gene expression profile analysis revealed simultaneous treatment with these agents led to inhibition of the JAK2/STAT3, AKT/mTOR signaling pathways and SGK1 expression. Finally, the anti-tumor and pro-apoptotic activities of combination strategy have also been demonstrated using xenograft mice models. Taken together, simultaneous suppression of BTK and mTOR may be indicated as a potential therapeutic modality for the treatment of MCL. This article is protected by copyright. All rights reserved. © 2017 UICC.

  12. Normalization of gene expression measurement of tissue samples obtained by transurethral resection of bladder tumors

    Directory of Open Access Journals (Sweden)

    Pop LA


    Full Text Available Laura A Pop,1,* Valentina Pileczki,1,2,* Roxana M Cojocneanu-Petric,1 Bogdan Petrut,3,4 Cornelia Braicu,1 Ancuta M Jurj,1 Rares Buiga,5 Patriciu Achimas-Cadariu,6,7 Ioana Berindan-Neagoe1,8 1The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania; 2Department of Analytical Chemistry, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania; 3Department of Surgery II – Urology, The Oncology Institute “Prof Dr Ion Chiricuţă”, Cluj-Napoca, Cluj, Romania; 4Department of Urology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania; 5Department of Pathology, The Oncology Institute “Prof. Dr Ion Chiricuţă”, Cluj-Napoca, Cluj, Romania; 6Department of Surgery, The Oncology Institute “Prof Dr Ion Chiricuţă”, Cluj-Napoca, Cluj, Romania; 7Department of Surgical Oncology and Gynecological Oncology, Iuliu Haţieganu University of Medicine and Pharmacy, 8Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuţă”, Cluj-Napoca, Cluj, Romania *These authors contributed equally to this work Background: Sample processing is a crucial step for all types of genomic studies. A major challenge for researchers is to understand and predict how RNA quality affects the identification of transcriptional differences (by introducing either false-positive or false-negative errors. Nanotechnologies help improve the quality and quantity control for gene expression studies. Patients and methods: The study was performed on 14 tumor and matched normal pairs of tissue from patients with bladder urothelial carcinomas. We assessed the RNA quantity by using the NanoDrop spectrophotometer and the quality by nano-microfluidic capillary electrophoresis technology provided by Agilent 2100 Bioanalyzer. We evaluated the amplification status of three

  13. Metabolic ketoacidosis with normal blood glucose: A rare complication of sodium–glucose cotransporter 2 inhibitors


    Saad Ullah; Noman Khan; Hassan Zeb; Hassan Tahir


    Ketoacidosis is a significant and often a life-threatening complication of diabetes mellitus seen mostly in type 1 diabetes mellitus as well as occasionally in type 2 diabetes mellitus. Diabetic ketoacidosis usually manifests with high blood glucose more than 250 mg/dL, but euglycemic diabetic ketoacidosis is defined as ketoacidosis associated with blood glucose level less than 250 mg/dL. Normal blood glucose in such patients results in significant delay in diagnosis and management of diabeti...

  14. Inhibition of the NOTCH pathway using γ-secretase inhibitor RO4929097 has limited antitumor activity in established glial tumors. (United States)

    Dantas-Barbosa, Carmela; Bergthold, Guillaume; Daudigeos-Dubus, Estelle; Blockus, Heike; Boylan, John F; Ferreira, Celine; Puget, Stephanie; Abely, Michel; Vassal, Gilles; Grill, Jacques; Geoerger, Birgit


    Notch signaling is altered in many cancers. Our previous findings in primary pediatric ependymoma support a role for NOTCH in glial oncogenesis. The present study evaluates the γ-secretase inhibitor RO4929097 in glial tumor models. The expression of Notch pathway genes was evaluated using real-time RT-PCR in 21 ependymoma and glioma models. NOTCH1 mutations were analyzed by DNA sequencing. RO4929097 activity was evaluated in vitro and in vivo, as a single agent and in combination, in glioma and ependymoma models. Notch pathway genes are overexpressed in ependymomas and gliomas along with FBXW7 downregulation. NOTCH1 mutations in the TAD domain were observed in 20% (2/10) of ependymoma primary cultures. Blocking the Notch pathway with the γ-secretase inhibitor RO4929097 reduced cell density and viability in ependymoma short-term cultures. When combined with chemotherapeutic agents, RO4929097 enhanced temozolomide effects in ependymoma short-term cultures and potentiated the cytotoxicity of etoposide, cisplatinum, and temozolomide in glioma cells. RO4929097, in combined treatment with mTOR inhibition, potentiated cytotoxicity in vitro, but did not enhance antitumor effects in vivo. In contrast, RO4929097 enhanced irradiation effects in glioma and ependymoma xenografts and showed tumor growth inhibition in advanced-stage IGRG121 glioblastoma xenografts. RO4929097-mediated effects were independent of NOTCH1 mutation status or expression levels, but associated with low IL-6 levels. In established glial tumor models, NOTCH inhibition had limited effects as a single agent, but enhanced efficacy when combined with DNA-interfering agents. These preclinical data need to be considered for further clinical development of NOTCH inhibitors in glial tumors.

  15. Effect of vitamin E and human placenta cysteine peptidase inhibitor on expression of cathepsins B and L in implanted hepatoma Morris 5123 tumor model in Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Tadeusz Sebzda; Piotr Hanczyc; Yousif Saleh; Bernice F Akinpelumi; Maciej Siewinski; Jerzy Rudnicki


    AIM: To examine the effectiveness of human placental inhibitors, by injecting vitamin E to rats with transplanted Norris-5123 hepatoma, on the expression of cathepsins B and L in tumor, liver, lung and blood sera after transplantation of Norris 5123 hepatoma.METHODS: Animals were divided into 10 groups receiving three different concentrations of vitamin E and inhibitors along or in combination and compared with negative control (healthy rats) and positive control (tumor rats). Effectiveness of treatment was evaluated with regard to survival time,tumor response and determination of the activities of proteolytic enzymes and their inhibitors using flurogenic substrates.RESULTS: Cathepsins B and L activities were elevated by 16-fold in comparison with negative control tissues, and their endogenous inhibitor activity decreased by 1.2-fold before treatment. In several cases, tumors completely disappeared following vitamin E plus human placental cyteine protease inhibitor (CPI) compared with controls.The number of complete tumor responses was higher when 20 m/kg vitamin E plus 400 μg of CPI was used, i.e.7/10 rats survived more than two mo. Cathepsins B and L were expressed significantly in tumor, liver, lung tissues and sera in parallel to the increasing of the endogenous inhibitor activity compared with the controls after treatment (P<0.0001).CONCLUSION: The data indicate formation of metastasis significantly reduced in treated rats, which might provide a therapeutic basis for anti-cancer therapy.

  16. Inhibiting interleukin-1 and tumor necrosis factor-α does not reduce induction of plasminogen activator inhibitor type-1 by endotoxin in rats in vivo

    NARCIS (Netherlands)

    Emeis, J.E.; Hoekzema, R.; Vos, A.F. de


    In experimental animals and humans, intravenous (IV) injection of endotoxin induces large increases in circulating plasminogen activator inhibitor type-1 (PAI-1), a major inhibitor of blood fibrinolysis. A similar increase is seen after the injection of interleukin-1 (IL-1) or of tumor necrosis

  17. Inhibiting interleukin-1 and tumor necrosis factor-α does not reduce induction of plasminogen activator inhibitor type-1 by endotoxin in rats in vivo

    NARCIS (Netherlands)

    Emeis, J.E.; Hoekzema, R.; Vos, A.F. de


    In experimental animals and humans, intravenous (IV) injection of endotoxin induces large increases in circulating plasminogen activator inhibitor type-1 (PAI-1), a major inhibitor of blood fibrinolysis. A similar increase is seen after the injection of interleukin-1 (IL-1) or of tumor necrosis fact

  18. Neutrophil biomarkers predict response to therapy with tumor necrosis factor inhibitors in rheumatoid arthritis. (United States)

    Wright, Helen L; Cox, Trevor; Moots, Robert J; Edwards, Steven W


    Neutrophils are implicated in the pathology of rheumatoid arthritis (RA), but the mechanisms regulating their activation are largely unknown. RA is a heterogeneous disease, and whereas many patients show clinical improvement during TNF inhibitor (TNFi) therapy, a significant proportion fails to respond. In vitro activation of neutrophils with agents, including TNF, results in rapid and selective changes in gene expression, but how neutrophils contribute to TNF signaling in RA and whether TNFi sensitivity involves differential neutrophil responses are unknown. With the use of RNA sequencing (RNA-Seq), we analyzed blood neutrophils from 20 RA patients, pre-TNFi therapy, to identify biomarkers of response, measured by a decrease in disease activity score based on 28 joint count (DAS28), 12 wk post-therapy. Biomarkers were validated by quantitative PCR (qPCR) of blood neutrophils from 2 further independent cohorts of RA patients: 16 pre-TNFi and 16 predisease-modifying anti-rheumatic drugs (DMARDs). Twenty-three neutrophil transcripts predicted a 12-wk response to TNFi: 10 (IFN-regulated) genes predicting a European League against Rheumatism (EULAR) good response and 13 different genes [neutrophil granule protein (NGP) genes] predicting a nonresponse. Statistical analysis indicated a predictive sensitivity and specificity of each gene in the panel of >80%, with some 100% specific. A combination of 3 genes [cytidine monophosphate kinase 2 (CMPK2), IFN-induced protein with tetratricopeptide repeats 1B (IFIT1B), and RNASE3] had the greatest predictive power [area under the curve (AUC) 0.94]. No correlation was found for a response to DMARDs. We conclude that this panel of genes is selective for predicting a response to TNFi and is not a surrogate marker for disease improvement. We also show that in RA, there is great plasticity in neutrophil phenotype, with circulating cells expressing genes normally only expressed in more immature cells.

  19. Metabolic ketoacidosis with normal blood glucose: A rare complication of sodium–glucose cotransporter 2 inhibitors

    Directory of Open Access Journals (Sweden)

    Saad Ullah


    Full Text Available Ketoacidosis is a significant and often a life-threatening complication of diabetes mellitus seen mostly in type 1 diabetes mellitus as well as occasionally in type 2 diabetes mellitus. Diabetic ketoacidosis usually manifests with high blood glucose more than 250 mg/dL, but euglycemic diabetic ketoacidosis is defined as ketoacidosis associated with blood glucose level less than 250 mg/dL. Normal blood glucose in such patients results in significant delay in diagnosis and management of diabetic ketoacidosis, thus increasing mortality and morbidity. We present a case of euglycemic diabetic ketoacidosis secondary to canagliflozin in a type 2 diabetic patient.

  20. Metabolic ketoacidosis with normal blood glucose: A rare complication of sodium–glucose cotransporter 2 inhibitors (United States)

    Ullah, Saad; Khan, Noman; Zeb, Hassan; Tahir, Hassan


    Ketoacidosis is a significant and often a life-threatening complication of diabetes mellitus seen mostly in type 1 diabetes mellitus as well as occasionally in type 2 diabetes mellitus. Diabetic ketoacidosis usually manifests with high blood glucose more than 250 mg/dL, but euglycemic diabetic ketoacidosis is defined as ketoacidosis associated with blood glucose level less than 250 mg/dL. Normal blood glucose in such patients results in significant delay in diagnosis and management of diabetic ketoacidosis, thus increasing mortality and morbidity. We present a case of euglycemic diabetic ketoacidosis secondary to canagliflozin in a type 2 diabetic patient. PMID:27928503

  1. Detection of γH2AX foci in mouse normal brain and brain tumor after boron neutron capture therapy. (United States)

    Kondo, Natsuko; Michiue, Hiroyuki; Sakurai, Yoshinori; Tanaka, Hiroki; Nakagawa, Yosuke; Watanabe, Tsubasa; Narabayashi, Masaru; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji


    In this study, we investigated γH2AX foci as markers of DSBs in normal brain and brain tumor tissue in mouse after BNCT. Boron neutron capture therapy (BNCT) is a particle radiation therapy in combination of thermal neutron irradiation and boron compound that specifically accumulates in the tumor. (10)B captures neutrons and produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of extremely high linear energy transfer (LET) radiation and therefore have marked biological effects. High LET radiation causes severe DNA damage, DNA DSBs. As the high LET radiation induces complex DNA double strand breaks (DSBs), large proportions of DSBs are considered to remain unrepaired in comparison with exposure to sparsely ionizing radiation. We analyzed the number of γH2AX foci by immunohistochemistry 30 min or 24 h after neutron irradiation. In both normal brain and brain tumor, γH2AX foci induced by (10)B(n,α)(7)Li reaction remained 24 h after neutron beam irradiation. In contrast, γH2AX foci produced by γ-ray irradiation at contaminated dose in BNCT disappeared 24 h after irradiation in these tissues. DSBs produced by (10)B(n,α)(7)Li reaction are supposed to be too complex to repair for cells in normal brain and brain tumor tissue within 24 h. These DSBs would be more difficult to repair than those by γ-ray. Excellent anti-tumor effect of BNCT may result from these unrepaired DSBs induced by (10)B(n,α)(7)Li reaction.

  2. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. (United States)

    Neumann, Julia E; Wefers, Annika K; Lambo, Sander; Bianchi, Edoardo; Bockstaller, Marie; Dorostkar, Mario M; Meister, Valerie; Schindler, Pia; Korshunov, Andrey; von Hoff, Katja; Nowak, Johannes; Warmuth-Metz, Monika; Schneider, Marlon R; Renner-Müller, Ingrid; Merk, Daniel J; Shakarami, Mehdi; Sharma, Tanvi; Chavez, Lukas; Glass, Rainer; Chan, Jennifer A; Taketo, M Mark; Neumann, Philipp; Kool, Marcel; Schüller, Ulrich


    Embryonal tumors with multilayered rosettes (ETMRs) have recently been described as a new entity of rare pediatric brain tumors with a fatal outcome. We show here that ETMRs are characterized by a parallel activation of Shh and Wnt signaling. Co-activation of these pathways in mouse neural precursors is sufficient to induce ETMR-like tumors in vivo that resemble their human counterparts on the basis of histology and global gene-expression analyses, and that point to apical radial glia cells as the possible tumor cell of origin. Overexpression of LIN28A, which is a hallmark of human ETMRs, augments Sonic-hedgehog (Shh) and Wnt signaling in these precursor cells through the downregulation of let7-miRNA, and LIN28A/let7a interaction with the Shh pathway was detected at the level of Gli mRNA. Finally, human ETMR cells that were transplanted into immunocompromised host mice were responsive to the SHH inhibitor arsenic trioxide (ATO). Our work provides a novel mouse model in which to study this tumor type, demonstrates the driving role of Wnt and Shh activation in the growth of ETMRs and proposes downstream inhibition of Shh signaling as a therapeutic option for patients with ETMRs.

  3. Suppression of Tumor Growth in Mice by Rationally Designed Pseudopeptide Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase

    Directory of Open Access Journals (Sweden)

    Kenneth W. Jackson


    Full Text Available Tumor microenvironments (TMEs are composed of cancer cells, fibroblasts, extracellular matrix, microvessels, and endothelial cells. Two prolyl endopeptidases, fibroblast activation protein (FAP and prolyl oligopeptidase (POP, are commonly overexpressed by epithelial-derived malignancies, with the specificity of FAP expression by cancer stromal fibroblasts suggesting FAP as a possible therapeutic target. Despite overexpression in most cancers and having a role in angiogenesis, inhibition of POP activity has received little attention as an approach to quench tumor growth. We developed two specific and highly effective pseudopeptide inhibitors, M83, which inhibits FAP and POP proteinase activities, and J94, which inhibits only POP. Both suppressed human colon cancer xenograft growth >90% in mice. By immunohistochemical stains, M83- and J94-treated tumors had fewer microvessels, and apoptotic areas were apparent in both. In response to M83, but not J94, disordered collagen accumulations were observed. Neither M83- nor J94-treated mice manifested changes in behavior, weight, or gastrointestinal function. Tumor growth suppression was more extensive than noted with recently reported efforts by others to inhibit FAP proteinase function or reduce FAP expression. Diminished angiogenesis and the accompanying profound reduction in tumor growth suggest that inhibition of either FAP or POP may offer new therapeutic approaches that directly target TMEs.

  4. A novel anti-tumor inhibitor identified by virtual screen with PLK1 structure and zebrafish assay.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Polo-like kinase 1 (PLK1, one of the key regulators of mitosis, is a target for cancer therapy due to its abnormally high activity in several tumors. Plk1 is highly conserved and shares a nearly identical 3-D structure between zebrafish and humans. The initial 10 mitoses of zebrafish embryonic cleavages occur every∼30 minutes, and therefore provide a rapid assay to evaluate mitosis inhibitors including those targeting Plk1. To increase efficiency and specificity, we first performed a computational virtual screen of∼60000 compounds against the human Plk1 3-D structure docked to both its kinase and Polo box domain. 370 candidates with the top free-energy scores were subjected to zebrafish assay and 3 were shown to inhibit cell division. Compared to general screen for compounds inhibiting zebrafish embryonic cleavage, computation increased the efficiency by 11 folds. One of the 3 compounds, named I2, was further demonstrated to effectively inhibit multiple tumor cell proliferation in vitro and PC3 prostate cancer growth in Xenograft mouse model in vivo. Furthermore, I2 inhibited Plk1 enzyme activity in a dose dependent manner. The IC50 values of I2 in these assays are compatible to those of ON-01910, a Plk1 inhibitor currently in Phase III clinic trials. Our studies demonstrate that zebrafish assays coupled with computational screening significantly improves the efficiency of identifying specific regulators of biological targets. The PLK1 inhibitor I2, and its analogs, may have potential in cancer therapeutics.

  5. Trabectedin Overrides Osteosarcoma Differentiative Block and Reprograms the Tumor Immune Environment Enabling Effective Combination with Immune Checkpoint Inhibitors. (United States)

    Ratti, Chiara; Botti, Laura; Cancila, Valeria; Galvan, Silvia; Torselli, Ilaria; Garofalo, Cecilia; Manara, Maria Cristina; Bongiovanni, Lucia; Valenti, Cesare F; Burocchi, Alessia; Parenza, Mariella; Cappetti, Barbara; Sangaletti, Sabina; Tripodo, Claudio; Scotlandi, Katia; Colombo, Mario P; Chiodoni, Claudia


    Purpose: Osteosarcoma, the most common primary bone tumor, is characterized by an aggressive behavior with high tendency to develop lung metastases as well as by multiple genetic aberrations that have hindered the development of targeted therapies. New therapeutic approaches are urgently needed; however, novel combinations with immunotherapies and checkpoint inhibitors require suitable preclinical models with intact immune systems to be properly tested.Experimental Design: We have developed immunocompetent osteosarcoma models that grow orthotopically in the bone and spontaneously metastasize to the lungs, mimicking human osteosarcoma. These models have been used to test the efficacy of trabectedin, a chemotherapeutic drug utilized clinically for sarcomas and ovarian cancer.Results: Trabectedin, as monotherapy, significantly inhibited osteosarcoma primary tumor growth and lung metastases by both targeting neoplastic cells and reprogramming the tumor immune microenvironment. Specifically, trabectedin induced a striking differentiation of tumor cells by favoring the recruitment of Runx2, the master genetic regulator of osteoblastogenesis, on the promoter of genes involved in the physiologic process of terminal osteoblast differentiation. Differentiated neoplastic cells, as expected, showed reduced proliferation rate. Concomitantly, trabectedin enhanced the number of tumor-infiltrating T lymphocytes, with local CD8 T cells, however, likely post-activated or exhausted, as suggested by their high expression of the inhibitory checkpoint molecule PD-1. Accordingly, the combination with a PD-1-blocking antibody significantly increased trabectedin efficacy in controlling osteosarcoma progression.Conclusions: These results demonstrate the therapeutic efficacy of trabectedin in osteosarcoma treatment, unveiling its multiple activities and providing a solid rationale for its combination with immune checkpoint inhibitors. Clin Cancer Res; 23(17); 5149-61. ©2017 AACR. ©2017

  6. Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells. (United States)

    Gouyer, V; Fontaine, D; Dumont, P; de Wever, O; Fontayne-Devaud, H; Leteurtre, E; Truant, S; Delacour, D; Drobecq, H; Kerckaert, J-P; de Launoit, Y; Bracke, M; Gespach, C; Desseyn, J-L; Huet, G


    From the conditioned medium of the human colon carcinoma cells, HT-29 5M21 (CM-5M21), expressing a spontaneous invasive phenotype, tumor-associated trypsin inhibitor (TATI) was identified and characterized by proteomics, cDNA microarray approaches and functional analyses. Both CM-5M21 and recombinant TATI, but not the K18Y-TATI mutant at the protease inhibitor site, trigger collagen type I invasion by several human adenoma and carcinoma cells of the colon and breast, through phosphoinositide-3-kinase, protein kinase C and Rho-GTPases/Rho kinase-dependent pathways. Conversely, the proinvasive action of TATI in parental HT29 cells was alleviated by the TATI antibody PSKAN2 and the K18Y-TATI mutant. Stable expression of K18Y-TATI in HT-29 5M21 cells downregulated tumor growth, angiogenesis and the expression of several metastasis-related genes, including CSPG4 (13.8-fold), BMP-7 (9.7-fold), the BMP antagonist CHORDIN (5.2-fold), IGFBP-2 and IGF2 (9.6- and 4.6-fold). Accordingly, ectopic expression of KY-TATI inhibited the development of lung metastases from HT-29 5M21 tumor xenografts in immunodeficient mice. These findings identify TATI as an autocrine transforming factor potentially involved in early and late events of colon cancer progression, including local invasion of the primary tumor and its metastatic spread. Targeting TATI, its molecular partners and effectors may bring novel therapeutic applications for high-grade human solid tumors in the digestive and urogenital systems.

  7. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors (United States)

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K


    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  8. Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors (United States)

    Sweeney, Elizabeth E.; Burga, Rachel A.; Li, Chaoyang; Zhu, Yuan; Fernandes, Rohan


    Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination “nanochemotherapy” for treating patients with MPNSTs.

  9. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. (United States)

    Podar, Klaus; Tonon, Giovanni; Sattler, Martin; Tai, Yu-Tzu; Legouill, Steven; Yasui, Hiroshi; Ishitsuka, Kenji; Kumar, Shaji; Kumar, Rakesh; Pandite, Lini N; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C


    A critical role for vascular endothelial factor (VEGF) has been demonstrated in multiple myeloma (MM) pathogenesis. Here, we characterized the effect of the small-molecule VEGF receptor inhibitor pazopanib on MM cells in the bone marrow milieu. Pazopanib inhibits VEGF-triggered signaling pathways in both tumor and endothelial cells, thereby blocking in vitro MM cell growth, survival, and migration, and inhibits VEGF-induced up-regulation of adhesion molecules on both endothelial and tumor cells, thereby abrogating endothelial cell-MM cell binding and associated cell proliferation. We show that pazopanib is the first-in-class VEGF receptor inhibitor to inhibit in vivo tumor cell growth associated with increased MM cell apoptosis, decreased angiogenesis, and prolonged survival in a mouse xenograft model of human MM. Low-dose pazopanib demonstrates synergistic cytotoxicity with conventional (melphalan) and novel (bortezomib and immunomodulatory drugs) therapies. Finally, gene expression and signaling network analysis show transcriptional changes of several cancer-related genes, in particular c-Myc. Using siRNA, we confirm the role of c-Myc in VEGF production and secretion, as well as angiogenesis. These preclinical studies provide the rationale for clinical evaluation of pazopanib, alone and in combination with conventional and novel therapies, to increase efficacy, overcome drug resistance, reduce toxicity, and improve patient outcome in MM.

  10. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Lucia Regales

    Full Text Available BACKGROUND: The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M-expressing animals develop tumors with longer latency than EGFR(L858R+T790M-bearing mice and in the absence of additional kinase domain mutations. CONCLUSIONS/SIGNIFICANCE: These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  11. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. (United States)

    Saitoh, Yasukazu; Okayasu, Hajime; Xiao, Li; Harata, Yoshikazu; Miwa, Nobuhiko


    The properties and effects of neutral pH hydrogen-enriched electrolyzed water (NHE water) on tumor cells were examined. NHE water diminished hydroxyl radicals as demonstrated by ESR in a cell-free system. Human tongue carcinoma cells HSC-4 were inhibited for either colony formation efficiencies or colony sizes by NHE water without significant inhibition to normal human tongue epithelial-like cells DOK. Furthermore, NHE water caused growth inhibition, cell degeneration, and inhibition of invasion through the reconstituted basement membrane to human fibrosarcoma cells HT-1080. Intracellular oxidants such as hydroperoxides and hydrogen peroxides were scavenged in HSC-4 or HT-1080 cells by NHE water. In the human oral cavity, a dissolved hydrogen concentrations (DH) of NHE water was drastically declined from 1.1 to 0.5 ppm, but settled to 0.3-0.4 ppm until 180 s, upon static holding without gargling. Thus, NHE water was shown to achieve tumor-preferential growth inhibition and tumor invasion together with scavenging of intracellular oxidants, and is expected as a preventive material against tumor progression and invasion.

  12. A phase I study assessing the safety and pharmacokinetics of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with gemcitabine and cisplatin in patients with solid tumors

    NARCIS (Netherlands)

    Gietema, J. A.; Hoekstra, R.; de Vos, F. Y. F. L.; Uges, D. R. A.; van der Gaast, A.; Groen, H. J. M.; Loos, W. J.; Knight, R. A.; Carr, R. A.; Humerickhouse, R. A.; Eskens, F. A. L. M.


    Background: The aim of the study was to determine the safety profile, pharmacokinetics and potential drug interactions of the angiogenesis inhibitor ABT-510 combined with gemcitabine-cisplatin chemotherapy in patients with solid tumors. Patients and methods: Patients with advanced solid tumors recei

  13. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Glantz-Gashai Y


    Full Text Available Yitav Glantz-Gashai,* Tomer Meirson,* Eli Reuveni, Abraham O Samson Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel *These authors contributed equally to this work Abstract: Myeloid cell leukemia-1 (Mcl-1 is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA, molecular dynamics (MD, and nuclear magnetic resonance (NMR, respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors. Keywords: virtual screening, Mcl-1, molecular dynamics, NMR, normal modes

  14. Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. (United States)

    Cífková, Eva; Holčapek, Michal; Lísa, Miroslav; Vrána, David; Melichar, Bohuslav; Študent, Vladimír


    The characterization of differences among polar lipid classes in tumors and surrounding normal tissues of 20 kidney cancer patients is performed by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). The detailed analysis of identified lipid classes using relative abundances of characteristic ions in negative- and positive-ion modes is used for the determination of more than 120 individual lipid species containing attached fatty acyls of different chain length and double bond number. Lipid species are described using relative abundances, providing a better visualization of lipidomic differences between tumor and normal tissues. The multivariate data analysis methods using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS) are used for the characterization of statistically significant differences in identified lipid species. Ten most significant up- and down-regulated lipids in OPLS score plots are also displayed by box plots. A notable increase of relative abundances of lipids containing four and more double bonds is detected in tumor compared to normal tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells (United States)


    We tested whether the 5 min-adherent primary PCa cells are more tumorigenic. Cells were injected SC in the abdominal flanks of nude mice. Tumors...histological analyses on localized and metastatic tumor sections of zebrafish xenografts. Primary xenograft masses , identified through the specific cell...H.D., et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100, 15178-15183 (2003). 36. Singh, S.K., et

  16. Tumor necrosis factor-α inhibitor-induced psoriasis: Systematic review of clinical features, histopathological findings, and management experience. (United States)

    Brown, Gabrielle; Wang, Eva; Leon, Argentina; Huynh, Monica; Wehner, Mackenzie; Matro, Rebecca; Linos, Eleni; Liao, Wilson; Haemel, Anna


    Tumor necrosis factor-α (TNF-α) inhibitors have been reported to induce new-onset psoriasis. To better define the demographic, clinical features, and treatment approach of TNF-α inhibitor-induced psoriasis. Systematic review of published cases of TNF-α inhibitor-induced psoriasis. We identified 88 articles with 216 cases of new-onset TNF-α inhibitor-induced psoriasis. The mean age at psoriasis onset was 38.5 years. The most common underlying diseases were Crohn disease (40.7%) and rheumatoid arthritis (37.0%). Patients underwent TNF-α therapy for an average of 14.0 months before psoriasis onset with 69.9% of patients experiencing onset within the first year. The majority of patients received skin-directed therapy, though patients who discontinued TNF therapy had the greatest resolution of symptoms (47.7%) compared with those who switched to a different TNF agent (36.7%) or continued therapy (32.9%). Retrospective review that relies on case reports and series. While TNF-α inhibitor cessation may result in resolution of induced psoriasis, lesions may persist. Decisions regarding treatment should be weighed against the treatability of TNF-α inhibitor-induced psoriasis, the severity of the background rheumatologic or gastrointestinal disease, and possible loss of efficacy with cessation followed by retreatment. Skin-directed therapy is a reasonable initial strategy except in severe cases. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors

    NARCIS (Netherlands)

    Vermeulen, Jeroen F; van Hecke, Wim; Spliet, Wim G M; Villacorta Hidalgo, José; Fisch, Paul; Broekhuizen, Roel; Bovenschen, Niels


    BACKGROUND: Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall surviv

  18. GF-15, a Novel Inhibitor of Centrosomal Clustering, Suppresses Tumor Cell Growth In Vitro and In Vivo

    DEFF Research Database (Denmark)

    Raab, Marc S.; Breitkreutz, Iris; Anderhub, Simon


    with supernumerary centrosomes to undergo multipolar mitoses resulting in apoptotic cell death. Here, we describe the characterization of the novel small molecule GF-15, a derivative of griseofulvin, as a potent inhibitor of centrosomal clustering in malignant cells. At concentrations where GF-15 had no significant...... impact on tubulin polymerization, spindle tension was markedly reduced in mitotic cells upon exposure to GF-15. Moreover, isogenic cells with conditional centrosome amplification were more sensitive to GF-15 than parental controls. In a wide array of tumor cell lines, mean inhibitory concentrations (IC50...

  19. Expression of von Hippel-Lindau tumor suppressor and tumor-associated carbonic anhydrases Ⅸ and Ⅻ in normal and neoplastic colorectal mucosa

    Institute of Scientific and Technical Information of China (English)

    Antti J. Kivela; Abdul Waheed; William S. Sly; Hannu Rajaniemi; Silvia Pastorekova; Jaromir Pastorek; Seppo Parkkila; Juha Saarnio; Tuomo J. Karttunen; Jyrki Kivela; Anna-Kaisa Parkkila; Maria Bartosova; Vojtech Mucha; Michal Novak


    AIM: To analyze possible relationships between CA Ⅸ/ CA Ⅻ and pVHL expression in normal and neoplastic colorectal mucosa.METHODS: Immunohistochemical staining of 42 tissue specimens obtained from 17 cancer patients was performed to evaluate the distribution and semi-quantitatively assess the levels of CA Ⅸ, CA Ⅻ and pVHL. VHL mRNAs from 14fresh-frozen tumors was amplified by RT-PCR and subjected to sequencing. CA9 and CA12 mRNA levels were analyzed by semi-quantitative RT-PCR in comparison with VEGF as an indicator of hypoxia that uncouples the pVHL control.RESULTS: Tumor tissues were associated with a borderline increase of CA Ⅸ staining signal and slight but significant decrease of CA Ⅻ immunoreactivity, whereas no association was found for pVHL. Sequence analysis of RT-PCR-amplified VHL mRNAs revealed no deletions/ mutations, suggesting that they were VHL-competent. We did not observe any correlation between pVHL andCA Ⅸ/CA Ⅻ proteins as well as between VEGF and CA9mRNAs, but the tumor-associated changes in mRNA levels of VEGF and CA12showed a significant inverse relationship. CONCLUSION: Our results indicate that CA9 and CA12 are regulated by different intratumoral factors and that lack of apparent relationship between the levels of CA Ⅸ/CA Ⅻ and pVHL cannot be fully assigned to uncoupling of negative regulatory function of pVHL by tumor hypoxia signified by induced VEGF transcription. The interplay between the functional pVHL and CA Ⅸ/CA Ⅻ in colorectal tumors seems rather complex and is not evident merely at the expression levels.

  20. The effect of customized beam shaping on normal tissue complications in radiation therapy of parotid gland tumors

    Energy Technology Data Exchange (ETDEWEB)

    Keus, R.; Boer, R. de; Lebesque, J. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands)); Noach, P. (Medisch Spectrum Twente, Enschede (Netherlands). Department of Radiotherapy)


    The impact of customized beam shaping was studied for 5 patients with parotid tumors treated with a paired wedged field technique. For each patient 2 plans were generated. The standard plan had unblocked portals with field sizes defined by the largest target contour found in any CT slice. In the 2nd plan customized beam's view (BEV) designed blocks were added to both beams. The differences in those distributions between the 2 types of plans were evaluated using dose-volume histograms (DVH). As expected, the dose distribution within the target volume showed no difference. However, a considerable sparing of normal tissue was observed for the plans with customized blocks. The volume of un-necessary exposed normal tissue that received more than 90 percent of the prescribed dose, was reduced by a factor of about 4: from 165 to 44 percent on an average, if the volume is expressed as a percentage of the target volume in each patient. In particular, the homolateral mandible showed a mean decrease of 21 percent of integral dose when blocks were used. Normal tissue complication probabilities (NTCP) were calculated. For a tumor dose of 70 Gy, the average bone necrosis probability was reduced from 8.4 percent (no blocks) to 4.1. percent (blocks). For other normal tissues such as nervous tissue, other soft tissues and bones a substantial reduction of integral dose was found for al patients when individual blocks were used. (author). 10 refs.; 4 figs.; 2 tabs.

  1. Genetic diversity in normal cell populations is the earliest stage of oncogenesis leading to intra-tumor heterogeneity

    Directory of Open Access Journals (Sweden)

    Cory L Howk


    Full Text Available Random mutations and epigenetic alterations provide a rich substrate for microevolutionary phenomena to occur in proliferating epithelial tissues. Genetic diversity resulting from random mutations in normal cells is critically important for understanding the genetic basis of oncogenesis. However, evaluation of the cell-specific role of individual (epi-genetic alterations in living tissues is extremely difficult from a direct experimental perspective. We have developed a theoretical model for uterine epithelial cell proliferation. Computational simulations have shown that a base-line mutation rate of two mutations per cell division is sufficient to explain sporadic endometrial cancer as a rare evolutionary consequence with an incidence similar to that reported in SEER data. Simulation of the entire oncogenic process has allowed us to analyze the features of the tumor initiating cells and their clonal expansion. Analysis of the malignant features of individual cancer cells, such as de-differentiation status, proliferation potential, and immortalization status, permits a mathematical characterization of malignancy and a comparison of intra-tumor heterogeneity between individual tumors. We found, under the conditions specified, that cancer stem cells account for approximately 7% of the total cancer cell population. Taken together, our mathematical modeling describes the genetic diversity and evolution in a normal cell population at the early stages of oncogenesis and characterizes intra-tumor heterogeneity. This model has explored the role of accumulation of a large number of genetic alterations in oncogenesis as an alternative to traditional biological approaches emphasizing the driving role of a small number of genetic mutations, and this accumulation, along with environmental factors, has a significant impact on the growth advantage of and selection pressure on individual cancer cells and the resulting tumor composition and progression.

  2. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors. (United States)

    Sonkin, Dmitriy


    A number of TP53-MDM2 inhibitors are currently under investigation as therapeutic agents in a variety of clinical trials in patients with TP53 wild type tumors. Not all wild type TP53 tumors are sensitive to such inhibitors. In an attempt to improve selection of patients with TP53 wild type tumors, an mRNA expression signature based on 13 TP53 transcriptional target genes was recently developed (Jeay et al. 2015). Careful reanalysis of TP53 status in the study validation data set of cancer cell lines considered to be TP53 wild type detected TP53 inactivating alterations in 23% of cell lines. The subsequent reanalysis of the remaining TP53 wild type cell lines clearly demonstrated that unfortunately the 13-gene signature cannot predict response to TP53-MDM2 inhibitor in TP53 wild type tumors.

  3. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    National Research Council Canada - National Science Library

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J


    ...) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high...

  4. High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile. (United States)

    Mukthavaram, Rajesh; Jiang, Pengfei; Saklecha, Rohit; Simberg, Dmitri; Bharati, Ila Sri; Nomura, Natsuko; Chao, Ying; Pastorino, Sandra; Pingle, Sandeep C; Fogal, Valentina; Wrasidlo, Wolf; Makale, Milan; Kesari, Santosh


    Staurosporine (STS) is a potent pan-kinase inhibitor with marked activity against several chemotherapy-resistant tumor types in vitro. The translational progress of this compound has been hindered by poor pharmacokinetics and toxicity. We sought to determine whether liposomal encapsulation of STS would enhance antitumor efficacy and reduce toxicity, thereby supporting the feasibility of further preclinical development. We developed a novel reverse pH gradient liposomal loading method for STS, with an optimal buffer type and drug-to-lipid ratio. Our approach produced 70% loading efficiency with good retention, and we provide, for the first time, an assessment of the in vivo antitumor activity of STS. A low intravenous dose (0.8 mg/kg) inhibited U87 tumors in a murine flank model. Biodistribution showed preferential tumor accumulation, and body weight data, a sensitive index of STS toxicity, was unaffected by liposomal STS, but did decline with the free compound. In vitro experiments revealed that liposomal STS blocked Akt phosphorylation, induced poly(ADP-ribose) polymerase cleavage, and produced cell death via apoptosis. This study provides a basis to explore further the feasibility of liposomally encapsulated STS, and potentially related compounds for the management of resistant solid tumors.

  5. Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors

    Directory of Open Access Journals (Sweden)

    Ciara C. O'Sullivan


    Full Text Available Poly(ADP-ribose polymerase inhibitors (PARPi have shown clinical activity in patients with germline BRCA1/2 mutation (gBRCAm-associated breast and ovarian cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of cancers defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancreatic cancers. Several PARPi are currently in phase I/II clinical investigation, as single agents and/or in combination therapy in these solid tumors. Understanding more about the molecular abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian cancers, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers, are critical to expanding the field of PARPi therapy. This will improve clinical outcome in advanced solid tumors. Here we briefly review the preclinical data and clinical development of PARPi, and discuss its future of development in solid tumors beyond gBRCAm associated breast and ovarian cancers.

  6. Characterization of a small molecule inhibitor of tumor necrosis factor-alpha production

    Institute of Scientific and Technical Information of China (English)

    YANG Gao-yun; XIE Zhi-qiang; QIAN Ge; CUI Wen-ying; ZHAO Jun-yin; ZHANG Jian-zhong; LIAN Shi


    Background Numerous studies have shown that reducing the level of tumor necrosis factor-alpha (TNFα) through the use of anti-TNF antibodies or soluble TNF receptor is a safe and efficacious treatment to inflammatory diseases such as rheumatoid arthritis. Therefore, novel approaches to achieve this outcome are desired. The aim of this study was to investigate the characterization of a small molecule inhibitor, Y316, which blocks TNF mRNA upregulation and TNF production by lipopolysaccharides (LPS) stimulated monocytes.Methods Peripheral blood mononuclear cells (PBMC) from healthy volunteers were plated in 24-well plates and stimulated with LPS (1 μg/ml), phorbol-12-myristate-13-acetate (PMA) (100 ng/ml), zymosan (10 μg/ml) and Tsst (100 ng/ml). Supernatants were collected after 4-hour culture at 37C, and quantitative determination of TNFα, interleukin-1β(IL-1β), IL-6, IL-8, IL-10 and IL-2 production in the supernatants was performed by colorimetric enzyme-linked immunosorbent assay (ELISA). Total RNA of PBMC was isolated and cytokine mRNA quantitation was performed by using a RNA level measuring kit (R & D Systems). PBMC were pretreated with Y316 (10 μmol/L, 1 μmol/L, 0.1 μmol/L,0.01 μmol/L and 0.001 μmol/L) or dimethyl sulfoxide at 37C for 10 minutes, and then stimulated with LPS or PMA,protein concentrations of p44.42, IKBα, P38 and Jun NH2-terminal kinase were determined by Western blotting. Cyclic adenosine-3',5'-monophosphate (cAMP) of PBMC was measured by enzyme immunoassay kit (Amersham Pharmacia Biotech).Results Y316 blocked TNF production and inhibited the upregulation of TNF mRNA levels in response to LPS, and also prevented the production of IL-1 and IL-6. In contrast, Y316 augmented the production of IL-10 in LPS-stimulated monocytes. Y316 failed to prevent the production of IL-2 and TNF in antigen-stimulated T cells, suggesting that its effects may be cell-type specific. Y316 prevented the phosphorylation and activation of the MAPK, ERK, and

  7. Inhibitor of growth 4 suppresses colorectal cancer growth and invasion by inducing G1 arrest, inhibiting tumor angiogenesis and reversing epithelial-mesenchymal transition. (United States)

    Qu, Hui; Yin, Hong; Yan, Su; Tao, Min; Xie, Yufeng; Chen, Weichang


    Previous studies have found that inhibitor of growth 4 (ING4), a tumor suppressor, is reduced in human colorectal cancer (CRC), and is inversely correlated with clinical Dukes' stage, histological grade, lymph node metastasis and microvessel density (MVD). However, its underlying mechanism remains undetermined. In the present study, we analyzed ING4 expression in a panel of human CRC cells using low (LS174T and SW480) and high (LoVo and SW620) metastatic cell lines. We demonstrated that both the low and high metastatic CRC cells exhibited a lower level of ING4 compared to the level in normal human colorectal mucous epithelial FHC cells. Furthermore, ING4 expression in high metastatic CRC cells was less than that in low metastatic CRC cells. We then generated a lentivirus construct expressing ING4 and green fluorescent protein (GFP), established a ING4-stably transgenic LoVo CRC cell line, and investigated the effect of lentiviral-mediated ING4 expression on high metastatic LoVo CRC cells. Gain-of-function studies revealed that ING4 significantly inhibited LoVo CRC cell growth and invasion in vitro and induced cell cycle G1 phase arrest. Moreover, ING4 obviously suppressed LoVo CRC subcutaneously xenografted tumor growth and reduced tumor MVD in vivo in athymic BALB/c nude mice. Mechanistically, ING4 markedly upregulated P21 and E-cadherin but downregulated cyclin E, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), Snail1, N-cadherin and vimentin in the LoVo CRC cells. Our data provide compelling evidence that i) ING4 suppresses CRC growth possibly via induction of G1 phase arrest through upregulation of P21 cyclin-dependent kinase (CDK) inhibitor and downregulation of cyclin E as well as inhibition of tumor angiogenesis through reduction of IL-6, IL-8 and VEGF proangiogenic factors; ii) ING4 inhibits CRC invasion and metastasis probably via a switch from mesenchymal marker N-cadherin to epithelial marker E-cadherin through downregulation of

  8. Involvement of Renin-Angiotensin System in Damage of Angiotensin-Converting Enzyme Inhibitor Captopril on Bone of Normal Mice. (United States)

    Liu, Jin-Xin; Wang, Liang; Zhang, Yan


    This study was performed to investigate the effect of angiotensin-converting enzyme inhibitor, captopril, on bone metabolism and histology, and the action of captopril on the components of the skeletal renin-angiotensin system (RAS) and bradykinin receptor in normal male mice. The mice were orally administered captopril (10 mg/kg) for 4 weeks with vehicle-treated mice as normal control. The histology of trabecular bone at the distal femoral end was determined by hematoxylin & eosin, Safranin O and Masson-Trichrome staining. The captopril-treated mice showed a decreased level of testosterone (pCaptopril has detrimental effects on trabecular bone as demonstrated by the loss of cancellous bone mass and network connections as well as changes to the chondrocytes zone. The expression of angiotensin-converting enzyme (pcaptopril treatment. Thus, the potential underlying mechanism of the damage of captopril on bone can be attributed the increased activity of local bone RAS and the activation of bradykinin receptor.

  9. Biodistribution properties of cleistanthin A and cleistanthin B using magnetic resonance imaging in a normal and tumoric animal model

    Directory of Open Access Journals (Sweden)

    Subramani Parasuraman


    Full Text Available Aim: To determine the biodistribution properties of cleistanthin A and cleistanthin B in rodents using magnetic resonance imaging (MRI. Materials and Methods: Cleistanthins A and B, constituents of Cleistanthus collinus Roxb., were labelled with gadolinium (Gd 3+ directly and injected into normal and tumoric nude mice. The tissue signal intensity was measured using MRI to perform a noninvasive kinetic assay. Wistar rats were used for determination of the grayscale intensity to observe the distribution patterns of of cleistanthins A and B. Results: Cleistanthin A is kinetically more attractive to the gastrointestinal tract than is cleistanthin B, which gets accumulated in muscular tissues of mice in greater concentrations compared with cleistanthin A. Cleistanthin B but not cleistanthin A showed tumoric affinity and exhibited a tumor kinetic attraction in tumoric mice. In rats, cleistanthin A showed greater grayscale intensities in the brain, liver, and skeletal muscles in immediate post contrast MRI images, whereas the gadolinium tagged cleistanthin B showed higher grayscale intensities in the cardiac muscle and skeletal muscles in delayed post contrast MRI images. Conclusions: Cleistanthin A is more pharmacokinetically attractive to the gastrointestinal tract than cleistanthin B.

  10. Significance of differential expression of thymidylate synthase in normal and primary tumor tissues from patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Hua Yawei


    Full Text Available Abstract The role of thymidylate synthase (TS is essential as a key rate-limiting enzyme in DNA synthesis. It is the primary target of fluorouracil and its derivates in colorectal cancer. In this study, TS mRNA expression was examined in primary tumor and normal tissues from 76 patients with high- risk stage II/III colorectal cancer by laser capture microdissection and polymerase chain reaction. Thirty (39.47% patients were found to have higher TS expression in primary tumors with earlier stage (P = 0.018, lower histological grades (P = 0.001 and high frequency microsatellite instability (P = 0.000. Multivariate analysis showed that microsatellite instability, histological grade and number of lymph nodes examined are independent prognostic markers.

  11. Tumor-related markers in histologically normal margins correlate with locally recurrent oral squamous cell carcinoma: a retrospective study. (United States)

    Wang, Xinhong; Chen, Si; Chen, Xinming; Zhang, Cuicui; Liang, Xueyi


    Oral squamous cell carcinoma (OSCC) is characterized by a high rate of local recurrence (LR) even when the surgical margins are considered histopathologically 'normal'. The aim of our study was to determine the relationship between early tumor-related markers detected in histologically normal margins (HNM) and LR as well as disease-free survival in OSCC. The loss of heterozygosity (LOH) of markers on 9p21 (D9s1747, RPS6, D9s162) and 17p13 (TP53) and the immunostaining results of the corresponding mutant P53, P14, P15, and P16 proteins were assessed and correlated with LR and disease-free survival in 71 OSCC patients who had HNM. Fifteen of 71 patients with HNM developed LR. The presence of the following molecular markers in surgical margins was significantly correlated with the development of LR: LOH on chromosome 9p21 (D9s1747 + RPS6 + D9s162), any LOH, P16, and P53 (chi-square test, P tumor-related markers in histologically 'normal' resection margins may be a useful method for assessing LR in OSCC patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    Energy Technology Data Exchange (ETDEWEB)

    Abourbeh, Galith [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Unit of Cellular Signaling, Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904 (Israel); Dissoki, Samar [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Jacobson, Orit [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Litchi, Amir [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Daniel, Revital Ben [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Laki, Desirediu [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Levitzki, Alexander [Unit of Cellular Signaling, Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904 (Israel); Mishani, Eyal [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel)]. E-mail:


    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors.

  13. Concurrent Intervention With Exercises and Stabilized Tumor Necrosis Factor Inhibitor Therapy Reduced the Disease Activity in Patients With Ankylosing Spondylitis (United States)

    Liang, Hui; Li, Wen-Rong; Zhang, Hua; Tian, Xu; Wei, Wei; Wang, Chun-Mei


    Abstract Since the use of tumor necrosis factor (TNF) inhibitor therapy is becoming wider, the effects of concurrent intervention with exercises and stabilized TNF inhibitors therapy in patients with ankylosing spondylitis (AS) are different. The study aimed to objectively evaluate whether concurrent intervention with exercises and stabilized TNF inhibitors can reduce the disease activity in patients with AS. A search from PubMed, Web of Science, EMBASE, and the Cochrane Library was electronically performed to collect studies which compared concurrent intervention with exercise and TNF inhibitor to conventional approach in terms of disease activity in patients with AS published from their inception to June 2015. Studies that measured the Bath Ankylosing Spondylitis Functional Index (BASFI), the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the Bath Ankylosing Spondylitis Metrology Index (BASMI), and chest expansion as outcomes were included. Two independent investigators screened the identified articles, extracted the data, and assessed the methodological quality of the included studies. Quantitative analysis was performed with Review Manager (RevMan) software (version 5.3.0). A total of 5 studies comprising 221 participants were included in the study. Meta-analyses showed that concurrent intervention with exercises and stabilized TNF inhibitors therapy significantly reduced the BASMI scores (MD, −0.99; 95% CI, −1.61 to −0.38) and BASDAI scores (MD, −0.58; 95% CI, −1.10 to −0.06), but the BASFI scores (MD, −0.31; 95% CI, −0.76 to 0.15) was not reduced, and chest expansion (MD, 0.80; 95% CI, −0.18 to 1.78) was not increased. Concurrent intervention with exercises and stabilized TNF inhibitors therapy can reduce the disease activity in patients with AS. More randomized controlled trials (RCTs) with high-quality, large-scale, and appropriate follow-up are warranted to further establish the benefit of concurrent intervention with

  14. CD5-Positive Primary Intraocular B-Cell Lymphoma Arising during Methotrexate and Tumor Necrosis Factor Inhibitor Treatment

    Directory of Open Access Journals (Sweden)

    Kenji Nagata


    Full Text Available Purpose: To report a case of CD5+ primary intraocular B-cell lymphoma arising during methotrexate (MTX and tumor necrosis factor (TNF inhibitor treatment in a young patient with rheumatoid arthritis and uveitis. Case Presentation: A 39-year-old woman treated with MTX and a TNF inhibitor for rheumatoid arthritis and uveitis had steroid-resistant vitreous opacity. A vitreous sample was obtained by using diagnostic vitrectomy and was categorized as class V based on cytologic examination. Flow cytometric analysis of the vitreous sample revealed that abnormal cells were CD5+, CD10-, CD19+, CD20+ and immunoglobulin light-chain kappa+, suggesting the diagnosis of CD5+ primary intraocular B-cell lymphoma. Polymerase chain reaction (PCR detected immunoglobulin heavy-chain gene rearrangement. Epstein-Barr virus (EBV DNA was detected in the vitreous sample by using PCR, and immunohistochemistry revealed EBV latent membrane protein-1 expression in the abnormal cells infiltrating the vitreous. Optic nerve invasion was observed on magnetic resonance imaging. Conclusion: Primary intraocular lymphoma (PIOL may develop in patients receiving MTX and TNF inhibitor treatment. EBV infection may play an important role in the pathogenesis of PIOL arising during immunosuppressive therapy.

  15. High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile

    Directory of Open Access Journals (Sweden)

    Mukthavaram R


    Full Text Available Rajesh Mukthavaram,1 Pengfei Jiang,1 Rohit Saklecha,1 Dmitri Simberg,3,4 Ila Sri Bharati,1 Natsuko Nomura,1 Ying Chao,1 Sandra Pastorino,1 Sandeep C Pingle,1 Valentina Fogal,1 Wolf Wrasidlo,1,2 Milan Makale,1,2 Santosh Kesari1,21Translational Neuro-Oncology Laboratories, 2Department of Neurosciences, 3Solid Tumor Therapeutics Program, Moores Cancer Center, UC San Diego, La Jolla, CA, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, CO, USAAbstract: Staurosporine (STS is a potent pan-kinase inhibitor with marked activity against several chemotherapy-resistant tumor types in vitro. The translational progress of this compound has been hindered by poor pharmacokinetics and toxicity. We sought to determine whether liposomal encapsulation of STS would enhance antitumor efficacy and reduce toxicity, thereby supporting the feasibility of further preclinical development. We developed a novel reverse pH gradient liposomal loading method for STS, with an optimal buffer type and drug-to-lipid ratio. Our approach produced 70% loading efficiency with good retention, and we provide, for the first time, an assessment of the in vivo antitumor activity of STS. A low intravenous dose (0.8 mg/kg inhibited U87 tumors in a murine flank model. Biodistribution showed preferential tumor accumulation, and body weight data, a sensitive index of STS toxicity, was unaffected by liposomal STS, but did decline with the free compound. In vitro experiments revealed that liposomal STS blocked Akt phosphorylation, induced poly(ADP-ribose polymerase cleavage, and produced cell death via apoptosis. This study provides a basis to explore further the feasibility of liposomally encapsulated STS, and potentially related compounds for the management of resistant solid tumors.Keywords: liposomes, staurosporine, glioblastoma, biodistribution, efficacy

  16. Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    Directory of Open Access Journals (Sweden)

    Buchanan Fritz G


    Full Text Available Abstract Background The insulin-like growth factor (IGF axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. Methods We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. Results A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. Conclusion These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation.

  17. The dual RAF/MEK inhibitor CH5126766/RO5126766 may be a potential therapy for RAS-mutated tumor cells.

    Directory of Open Access Journals (Sweden)

    Makoto Wada

    Full Text Available Although melanoma is the most aggressive skin cancer, recent advances in BRAF and/or MEK inhibitors against BRAF-mutated melanoma have improved survival rates. Despite these advances, a treatment strategy targeting NRAS-mutated melanoma has not yet been elucidated. We discovered CH5126766/RO5126766 as a potent and selective dual RAF/MEK inhibitor currently under early clinical trials. We examined the activity of CH5126766/RO5126766 in a panel of malignant tumor cell lines including melanoma with a BRAF or NRAS mutation. Eight cell lines including melanoma were assessed for their sensitivity to the BRAF, MEK, or RAF/MEK inhibitor using in vitro growth assays. CH5126766/RO5126766 induced G1 cell cycle arrest in two melanoma cell lines with the BRAF V600E or NRAS mutation. In these cells, the G1 cell cycle arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitor p27 and down-regulation of cyclinD1. CH5126766/RO5126766 was more effective at reducing colony formation than a MEK inhibitor in NRAS- or KRAS-mutated cells. In the RAS-mutated cells, CH5126766/RO5126766 suppressed the MEK reactivation caused by a MEK inhibitor. In addition, CH5126766/RO5126766 suppressed the tumor growth in SK-MEL-2 xenograft model. The present study indicates that CH5126766/RO5126766 is an attractive RAF/MEK inhibitor in RAS-mutated malignant tumor cells including melanoma.

  18. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Gajjar, Amar; Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Li Yimei [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, TN (United States); Glenn, George R.; Kun, Larry E.; Ogg, Robert J. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States)


    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4-39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54-59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6-5.0 years). The median mean dose to the pons was 56 Gy (range, 7-59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response in

  19. Anti-tumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding (United States)

    Dings, Ruud P.M.; Miller, Michelle C.; Nesmelova, Irina; Astorgues-Xerri, Lucile; Kumar, Nigam; Serova, Maria; Chen, Xuimei; Raymond, Eric; Hoye, Thomas R.; Mayo, Kevin H.


    Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, 15N-1H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin’s carbohydrate binding site, and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of anti-tumor calixarene compound 0118. PMID:22575017

  20. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2. (United States)

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li


    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis.

  1. Tumor selective cytotoxic action of a thiomorpholin hydroxamate inhibitor (TMI-1 in breast cancer.

    Directory of Open Access Journals (Sweden)

    Lynda Mezil

    Full Text Available BACKGROUND: Targeted therapies, associated with standard chemotherapies, have improved breast cancer care. However, primary and acquired resistances are frequently observed and the development of new concepts is needed. High-throughput approaches to identify new active and safe molecules with or without an "a priori" are currently developed. Also, repositioning already-approved drugs in cancer therapy is of growing interest. The thiomorpholine hydroxamate compound TMI-1 has been previously designed to inhibit metalloproteinase activity for the treatment of rheumatoid arthritis. We present here the repositioning of TMI-1 drug in breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: We tested the effect of TMI-1 on luminal, basal and ERBB2-overexpressing breast tumor cell lines and on MMTV-ERBB2/neu tumor evolution. We measured the effects on i cell survival, ii cell cycle, iii extrinsic and intrinsic apoptotic pathways, iv association with doxorubicin, docetaxel and lapatinib, v cancer stem cells compartment. In contrast with conventional cytotoxic drugs, TMI-1 was highly selective for tumor cells and cancer stem cells at submicromolar range. All non-malignant cells tested were resistant even at high concentration. TMI-1 was active on triple negative (TN and ERBB2-overexpressing breast tumor cell lines, and was also highly efficient on human and murine "primary" ERBB2-overexpressing cells. Treatment of transgenic MMTV-ERBB2/neu mice with 100 mg/kg/day TMI-1 alone induced tumor apoptosis, inhibiting mammary gland tumor occurrence and development. No adverse effects were noticed during the treatment. This compound had a strong synergistic effect in association with docetaxel, doxorubicin and lapatinib. We showed that TMI-1 mediates its selective effects by caspase-dependent apoptosis. TMI-1 was efficient in 34/40 tumor cell lines of various origins (ED50: 0.6 µM to 12.5 µM. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of the tumor selective

  2. Comparative studies in Rous sarcoma with virus, tumor cells, and chick embryo cells transformed in vitro by virus. II. Response of normal and immunized chicks. (United States)



    Chick embryo fibroblasts infected in vitro with Rous sarcoma virus have properties similar to tumor cells when injected into virus-immune chickens. When such virus-transformed fibroblasts are injected into normal chickens, they apparently participate in the production of tumors independent of their release of virus and are thus apparently malignant in vivo.

  3. Prognostic impact of normalization of serum tumor markers following neoadjuvant chemotherapy in patients with borderline resectable pancreatic carcinoma with arterial contact. (United States)

    Murakami, Yoshiaki; Uemura, Kenichiro; Sudo, Takeshi; Hashimoto, Yasushi; Kondo, Naru; Nakagawa, Naoya; Okada, Kenjiro; Takahashi, Shinya; Sueda, Taijiro


    The survival benefit of neoadjuvant therapy for patients with borderline resectable pancreatic carcinoma has been reported recently. However, prognostic factors for this strategy have not been clearly elucidated. The aim of this study was to clarify prognostic factors for patients with borderline resectable pancreatic carcinoma who received neoadjuvant chemotherapy. Medical records of 66 patients with pancreatic carcinoma with arterial contact who intended to undergo tumor resection following neoadjuvant chemotherapy were analyzed retrospectively. Prognostic factors were investigated by analyzing the clinicopathological factors with univariate and multivariate survival analyses. Gemcitabine plus S-1 was generally used as neoadjuvant chemotherapy. The objective response rate was 24%, and normalization of serum tumor markers following neoadjuvant chemotherapy was achieved in 29 patients (44%). Of the 66 patients, 60 patients underwent tumor resection and the remaining six patients did not due to distant metastases following neoadjuvant chemotherapy. For all 66 patients, overall 1-, 2-, and 5-year survival rates were 87.8, 54.5, and 20.5%, respectively (median survival time, 27.1 months) and multivariate analysis revealed that normalization of serum tumor markers was found to be an independent prognostic factor of better overall survival (P = 0.023). Moreover, for 60 patients who undergo tumor resection, normalization of serum tumor markers (P = 0.005) was independently associated with better overall survival by multivariate analysis. Patients with pancreatic carcinoma with arterial contact who undergo neoadjuvant chemotherapy and experience normalization of serum tumor markers thereafter may be good candidates for tumor resection.

  4. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain (United States)

    Rendon, Cesar A.; Lilge, Lothar


    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  5. Rituximab efficiently depletes B cells in lung tumors and normal lung tissue [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Albane Joly-Battaglini


    Full Text Available Rituximab is a monoclonal antibody that targets the CD20 B-cell-specific antigen and is widely used as therapy for B-cell lymphoma. Since rituximab depletes both malignant and normal B cells, it is increasingly being used to treat various conditions in which normal B cells have a pathogenic role, such as rheumatoid arthritis and multiple sclerosis. It is well-established that rituximab efficiently eliminates B cells in blood, lymph nodes, and spleen. In contrast, the effect of rituximab in non-lymphoid tissues remains poorly documented and is debated. Here, we report a rheumatoid arthritis patient who was treated with rituximab before receiving thoracic surgery for non-small cell lung cancer. Using flow cytometry and immunohistochemistry, we show that rituximab efficiently depleted CD20-positive B cells in a primary lung tumor, in lung-associated lymph nodes, and in normal lung tissue. We conclude that rituximab may be very efficient at depleting normal B cells in the lungs. This property of rituximab may potentially be exploited for the treatment of conditions in which pathogenic B cells reside in the lungs. On the other hand, the clearance of lung B cells may provide an explanation for the rare cases of severe non-infectious pulmonary toxicity of rituximab.

  6. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  7. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells (United States)


    inhibitors in prostate cancer. 15. SUBJECT TERMS NOTHING LISTED 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...docetaxel and cabazitaxel are mainline treatments that are FDA -approved for use in castration resistant prostate cancer. Task #5. We selected C-209 as...H.E. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set

  8. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Thougaard, Annemette V; Jensen, Peter Buhl;


    Inhibitor of nicotinamide phosphoribosyltransferase APO866 is a promising cancer drug currently in phase II clinical trials in oncology. Here, we present a strategy for increasing the therapeutic potential of APO866 through the rescue of normal tissues by coadministration of nicotinic acid (Vitamin...

  9. Retinoblastoma treatment: impact of the glycolytic inhibitor 2-deoxy-d-glucose on molecular genomics expression in LHBETATAG retinal tumors

    Directory of Open Access Journals (Sweden)

    Piña Y


    involved in its in vitro and in vivo activity in inhibiting tumor cell growth.Keywords: retinoblastoma, hypoxia, genetic expression, glycolytic inhibitor, 2-DG

  10. Abnormal production of tumor necrosis factor (TNF) -- alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome [corrected]. (United States)

    Cortis, Elisabetta; De Benedetti, Fabrizio; Insalaco, Antonella; Cioschi, Stefania; Muratori, Flaminia; D'Urbano, Leila E; Ugazio, Alberto G


    We report a family with pyogenic sterile arthritis, pyoderna and acne syndrome (PAPA). The proband presented several episodes of sterile pyogenic arthritis and became unresponsive to glucocorticoids. After treatment with the tumor necrosis factor inhibitor etanercept, the disease underwent rapid and sustained clinical remission. Production of tumor necrosis factor-alpha by mononuclear cells of the proband and of the affected relatives was abnormally elevated.

  11. ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC. (United States)

    Griffin, Nicolas I; Sharma, Gayatri; Zhao, Xiangshan; Mirza, Sameer; Srivastava, Shashank; Dave, Bhavana J; Aleskandarany, Mohammed; Rakha, Emad; Mohibi, Shakur; Band, Hamid; Band, Vimla


    We have established the critical role of ADA3 as a coactivator of estrogen receptor (ER), as well as its role in cell cycle progression. Furthermore, we showed that ADA3 is predominantly nuclear in mammary epithelium, and in ER+, but is cytoplasmic in ER- breast cancers, the latter correlating with poor survival. However, the role of nuclear ADA3 in human mammary epithelial cells (hMECs), and in ER+ breast cancer cells, as well as the importance of ADA3 expression in relation to patient prognosis and survival in ER+ breast cancer have remained uncharacterized. We overexpressed ADA3 in hMECs or in ER+ breast cancer cells and assessed the effect on cell proliferation. The expression of ADA3 was analyzed then correlated with the expression of various prognostic markers, as well as survival of breast cancer patients. Overexpression of ADA3 in ER- hMECs as well as in ER+ breast cancer cell lines enhanced cell proliferation. These cells showed increased cyclin B and c-MYC, decreased p27 and increased SKP2 levels. This was accompanied by increased mRNA levels of early response genes c-FOS, EGR1, and c-MYC. Analysis of breast cancer tissue specimens showed a significant correlation of ADA3 nuclear expression with c-MYC expression. Furthermore, nuclear ADA3 and c-MYC expression together showed significant correlation with tumor grade, mitosis, pleomorphism, NPI, ER/PR status, Ki67 and p27 expression. Importantly, within ER+ cases, expression of nuclear ADA3 and c-MYC also significantly correlated with Ki67 and p27 expression. Univariate Kaplan Meier analysis of four groups in the whole, as well as the ER+ patients showed that c-MYC and ADA3 combinatorial phenotypes showed significantly different breast cancer specific survival with c-MYC-high and ADA3-Low subgroup had the worst outcome. Using multivariate analyses within the whole cohort and the ER+ subgroups, the significant association of ADA3 and c-MYC expression with patients' outcome was independent of tumor grade

  12. Treatment of gastrointestinal neuroendocrine tumors with inhibitors of growth factor receptors and their signaling pathways: Recent advances and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Michael H(o)pfner; Detlef Schuppan; Hans Scherübl


    The limited efficacy of conventional cytotoxic treatment regimes for advanced gastrointestinal neuroendocrine cancers emphasizes the need for novel and more effective medical treatment options.Recent findings on the specific biological features of this family of neoplasms has led to the development of new targeted therapies,which take into account the high vascularization and abundant expression of specific growth factors and cognate tyrosine kinase receptors.This review will briefly summarize the status and future perspectives of antiangiogenic, mTOR- or growth factor receptor-based pharmacological approaches for the innovative treatment of gastrointestinal neuroendocrine tumors.In view of the multitude of novel targeted approaches, the rationale for innovative combination therapies, i.e.combining growth factor (receptor)-targeting agents with chemoor biotherapeutics or with other novel anticancer drugs such as HDAC or proteasome inhibitors will be taken into account.

  13. Application of a stochastic modeling to evaluate tuberculosis onset in patients treated with tumor necrosis factor inhibitors

    CERN Document Server

    Agliari, Elena; Barra, Adriano; Scrivo, Rossana; Valesini, Guido


    This manuscript deals with the application of a stochastic model to face the risk of reactivation of latent tuberculosis infection in patients undergoing treatment with tumor necrosis factor inhibitors. Firstly, the paper reviews the approach proposed by R. S. Wallis, which consists in predicting the extent of side effects of a given drug through extremizing procedures on a simple set of parameters (such as the monthly rate of reactivation of a latent infection). Sec- ondly, the paper develops an analytical analysis of this approach by stochastic modeling. The rate for emergence of reactivation of latent tuberculosis in- fection is investigated by means of Markov chains and an exact solution for its temporal evolution is obtained. The analytical solution is compared with Monte Carlo simulations and with experimental data, showing overall excel- lent agreement. The framework outlined in this paper is quite general and could be extremely promising in contributing further to detecting drug ther- apies side effec...

  14. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells (United States)


    6]. 9 Following initial imaging, transplanted embryos were maintained at 33°C for up to 12 days. 10 Juvenile zebrafish at 6-8 weeks of age were...staining. (C) Representative embryos transplanted with quantum-dot (QD) labeled primary PCa cells showing tumor formation as measured by red...fluorescence at the 605 QD filter. (D) Histological sections from a representative zebrafish embryo at 8 days post- transplantation (dpt). (E) IHC demonstrating

  15. Vascular Basement Membrane-derived Multifunctional Peptide, a Novel Inhibitor of Angiogenesis and Tumor Growth

    Institute of Scientific and Technical Information of China (English)

    Jian-Guo CAO; Shu-Ping PENG; Li SUN; Hui LI; Li WANG; Han-Wu DENG


    Vascular basement membrane-derived multifunctional peptide (VBMDMP) gene (fusion gene of the human immunoglobulin G3 upper hinge region and two tumstatin-derived fragments) obtained by chemical synthesis was cloned into vector pUC 19, and introduced into the expression vector pGEX-4T-1 to construct a prokaryotic expression vector pGEX-4T-1-VBMDMP. Recombinant VBMDMP produced in Escherichia coli has been shown to have significant activity of antitumor growth and antimetastasis in Lewis lung carcinoma transplanted into mouse C57B1/6. In the present study, we have studied the ability of rVBMDMP to inhibit endothelial cell tube formation and proliferation, to induce apoptosis in vitro, and to suppress tumor growth in vivo. The experimental results showed that rVBMDMP potently inhibited proliferation of human endothelial (HUVEC-12) cells and human colon cancer (SW480) cells in vitro, with no inhibition of proliferation in Chinese hamster ovary (CHO-K1) cells. rVBMDMP also significantly inhibited human endothelial cell tube formation and suppressed tumor growth of SW480 cells in a mouse xenograft model. These results suggest that rVBMDMP is a powerful therapeutic agent for suppressing angiogenesis and tumor growth.

  16. Studies on superoxide dismutase activities in virulent and avirulent strains of Agrobacterium tumefaciens and also in normal and crown gall tumor cells of Bryophyllum calycinum. (United States)

    Banerjee, D; Basu, M; Choudhury, I; Chatterjee, G C


    Superoxide dismutase activity in virulent strains of Agrobacterium tumefaciens was found to be higher than that in avirulent strains. Polyacrylamide gel electrophoresis revealed two isoenzymes in both these strains. These isoenzymes are suggested to be iron and manganese containing superoxide dismutases. Crown gall tumor cells of the plant Bryophyllum calycinum were found to have higher superoxide dismutase activity than the normal plant cells. Polyacrylamide gel electrophoresis revealed two isoenzymes in both normal and crown gall tumor cells. Advantages of the higher superoxide dismutase activities in respect of the survival of virulent strains of A. tumefaciens and crown gall tumor growth have been discussed.

  17. Regulatory roles of tumor-suppressor proteins and noncoding RNA in cancer and normal cell functions. (United States)

    Garen, Alan; Song, Xu


    We describe a mechanism for reversible regulation of gene transcription, mediated by a family of tumor-suppressor proteins (TSP) containing a DNA-binding domain (DBD) that binds to a gene and represses transcription, and RNA-binding domains (RBDs) that bind RNA, usually a noncoding RNA (ncRNA), forming a TSP/RNA complex that releases the TSP from a gene and reverses repression. This mechanism appears to be involved in the regulation of embryogenesis, oncogenesis, and steroidogenesis. Embryonic cells express high levels of RNA that bind to a TSP and prevent repression of proto-oncogenes that drive cell proliferation. The level of the RNA subsequently decreases in most differentiating cells, enabling a TSP to repress proto-oncogenes and stop cell proliferation. Oncogenesis can result when the level of the RNA fails to decrease in a proliferating cell or increases in a differentiated cell. This mechanism also regulates transcription of P450scc, the first gene in the steroidogenic pathway.

  18. How real is the long-lasting effect of tumor necrosis factor α inhibitors? Focus on immunogenicity

    Directory of Open Access Journals (Sweden)

    D.E. Karateev


    Full Text Available Tumor necrosis factor (TNF α inhibitors are the most commonly used agents to treat rheumatoid arthritis (RA and other inflammatory arthropathies. Five drugs belonging to the family of TNFα inhibitors have been certified in Russia for treating RA: infliximab (INF, adali- mumab (ADA, golimumab, certolizumab pegol, and etanercept (ETN. These drugs have different compositions. ETN does not belong to the family of monoclonal antibodies (mAbs and has a different mechanism of action. It is a dimeric molecule of synthetic fusion protein contain- ing TNF receptor and bound to the Fc-fragment of human Ig1. ETN can inhibit both TNFα and lymphotoxin α. ETN contains only the pro- tein identical to human protein. All TNFα inhibitors exhibit a virtually identical anti-inflammatory activity. The data from the registries show that the risk of discontinuation of therapy with TNFα during the first 2–3 years is appreciably high; there is a trend toward increased frequency of therapy discontinuation because of loss of effectiveness. It was found that the risk of therapy discontinuation because of insufficient effectiveness and adverse events (AEs is minimal for ETN and maximal for INF. The structure of biological drugs (which also affects their immunogenicity has the key neg- ative effect on maintaining the response to therapy and frequency of AEs. However, since ETN is a fusion molecule and contains less poten- tially immunogenic epitopes compared to mAbs, the frequency of detecting anti-drug antibodies (ADAbs is appreciably lower. The fact that ETN has a lower immunogenicity can be used to explain the significantly lower probability of discontinuing therapy using this drug as compared to INF and ADA. The risk that the need to increase the dose because of gradual loss of effectiveness of therapy with ADA and INF, was 4.9- and 28-fold higher, respectively, as compared to ETN. Therapeutic algorithms make it possible to control therapy with TGFα inhibitors

  19. How real is the long-lasting effect of tumor necrosis factor α inhibitors? Focus on immunogenicity

    Directory of Open Access Journals (Sweden)

    D.E. Karateev


    Full Text Available Tumor necrosis factor (TNF α inhibitors are the most commonly used agents to treat rheumatoid arthritis (RA and other inflammatory arthropathies. Five drugs belonging to the family of TNFα inhibitors have been certified in Russia for treating RA: infliximab (INF, adali- mumab (ADA, golimumab, certolizumab pegol, and etanercept (ETN. These drugs have different compositions. ETN does not belong to the family of monoclonal antibodies (mAbs and has a different mechanism of action. It is a dimeric molecule of synthetic fusion protein contain- ing TNF receptor and bound to the Fc-fragment of human Ig1. ETN can inhibit both TNFα and lymphotoxin α. ETN contains only the pro- tein identical to human protein. All TNFα inhibitors exhibit a virtually identical anti-inflammatory activity. The data from the registries show that the risk of discontinuation of therapy with TNFα during the first 2–3 years is appreciably high; there is a trend toward increased frequency of therapy discontinuation because of loss of effectiveness. It was found that the risk of therapy discontinuation because of insufficient effectiveness and adverse events (AEs is minimal for ETN and maximal for INF. The structure of biological drugs (which also affects their immunogenicity has the key neg- ative effect on maintaining the response to therapy and frequency of AEs. However, since ETN is a fusion molecule and contains less poten- tially immunogenic epitopes compared to mAbs, the frequency of detecting anti-drug antibodies (ADAbs is appreciably lower. The fact that ETN has a lower immunogenicity can be used to explain the significantly lower probability of discontinuing therapy using this drug as compared to INF and ADA. The risk that the need to increase the dose because of gradual loss of effectiveness of therapy with ADA and INF, was 4.9- and 28-fold higher, respectively, as compared to ETN. Therapeutic algorithms make it possible to control therapy with TGFα inhibitors

  20. Stathmin/oncoprotein 18, a microtubule regulatory protein, is required for survival of both normal and cancer cell lines lacking the tumor suppressor, p53. (United States)

    Carney, Bruce K; Cassimeris, Lynne


    Stathmin, a microtubule regulatory protein, is overexpressed in many cancers and required for survival of several cancer lines. In a study of breast cancer cell lines(1) proposed that stathmin is required for survival of cells lacking p53, but this hypothesis was not tested directly. Here we tested their hypothesis by examining cell survival in cells depleted of stathmin, p53 or both proteins. Comparing HCT116 colon cancer cell lines differing in TP53 genotype, stathmin depletion resulted in significant death only in cells lacking p53. As a second experimental system, we compared the effects of stathmin depletion from HeLa cells, which normally lack detectable levels of p53 due to expression of the HPV E6 protein. Stathmin depletion caused a large percentage of HeLa cells to die. Restoring p53, by depletion of HPV E6, rescued HeLa cells from stathmin-depletion induced death. Cleaved PARP was detected in HCT116(p53-/-) cells depleted of stathmin and cell death in stathmin-depleted HeLa cells was blocked by the caspase inhibitor Z-VAD-FMK, consistent with apoptotic death. The stathmin-dependent survival of cells lacking p53 was not confined to cancerous cells because both proteins were required for survival of normal human fibroblasts. In HCT116 and HeLa cells, depletion of both stathmin and p53 leads to a cell cycle delay through G(2). Our results demonstrate that stathmin is required for cell survival in cells lacking p53, suggesting that stathmin depletion could be used therapeutically to induce apoptosis in tumors without functional p53.

  1. [Possibility of overcoming ACNU resistance in ACNU-resistant sublines of rat brain tumors in vitro by a calmodulin inhibitor]. (United States)

    Yoshida, T; Shimizu, K; Mogami, H; Sakamoto, Y; Egawa, T


    A calmodulin inhibitor, trifluoperazine, was found to enhance the cytotoxicity of ACNU in vitro in rat C6 glioma, 9L gliosarcoma and their ACNU-resistant sublines (C6/ACNU and 9L/ACNU). Uptake and retention of ACNU in these cells were studied with [14C]ACNU in the absence or presence of trifluoperazine. The results indicated that intracellular uptake and retention of ACNU in C6 and 9L cells were larger than those in C6/ACNU and 9L/ACNU cells, and that trifluoperazine increased the cellular uptake and retention of ACNU in C6 and 9L, especially in C6/ACNU and 9L/ACNU cells. The amounts of ACNU in C6/ACNU and 9L/ACNU cells reached almost the same level as those detected in C6 and 9L cells. When trifluoperazine were added along with ACNU to the culture in vitro at a concentration of 10 and 20 microM, ACNU resistance was completely overcome. Furthermore, treatment of C6 and C6/ACNU cells with 20 microM trifluoperazine did not change the cellular uptake rate of [14C]AIB (alpha-aminoisobutyric acid), which might indicate that the membrane permeability of the cells was kept intact during the drug treatment. The same phenomenon was observed in 9L and 9L/ACNU cells. It might be concluded that the enhanced effect of cytotoxicity of ACNU in ACNU-resistant rat brain tumor cells presented in this study is presumably due to the increase of intracellular concentration of ACNU resulting from the inhibition of the efflux of ACNU by trifluoperazine from the resistant cells. It was also suggested that ACNU resistance in malignant brain tumors could be overcome by combination chemotherapy with ACNU and calmodulin inhibitors.

  2. Invention of a novel photodynamic therapy for tumors using a photosensitizing PI3K inhibitor. (United States)

    Hayashida, Yushi; Ikeda, Yuka; Sawada, Koichi; Kawai, Katsuhisa; Kato, Takuma; Kakehi, Yoshiyuki; Araki, Nobukazu


    XL147 (SAR245408, pilaralisib), an ATP-competitive pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, is a promising new anticancer drug. We examined the effect of the PI3K inhibitor on PC3 prostate cancer cells under a fluorescence microscope and found that XL147-treated cancer cells are rapidly injured by blue wavelength (430 nm) light irradiation. During the irradiation, the cancer cells treated with 0.2-2 μM XL147 showed cell surface blebbing and cytoplasmic vacuolation and died within 15 min. The extent of cell injury/death was dependent on the dose of XL147 and the light power of the irradiation. These findings suggest that XL147 might act as a photosensitizing reagent in photodynamic therapy (PDT) for cancer. Moreover, the cytotoxic effect of photosensitized XL147 was reduced by pretreatment with other ATP-competitive PI3K inhibitors such as LY294002, suggesting that the cytotoxic effect of photosensitized XL147 is facilitated by binding to PI3K in cells. In a single-cell illumination analysis using a fluorescent probe to identify reactive oxygen species (ROS), significantly increased ROS production was observed in the XL147-treated cells when the cell was illuminated with blue light. Taken together, it is conceivable that XL147, which is preferentially accumulated in cancer cells, could be photosensitized by blue light to produce ROS to kill cancer cells. This study will open up new possibilities for PDT using anticancer drugs. © 2016 UICC.

  3. Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts.

    Directory of Open Access Journals (Sweden)

    Ana de la Cueva

    Full Text Available BACKGROUND: Colorectal cancer (CRC is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα, an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy. METHODOLOGY/PRINCIPAL FINDINGS: ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS and thymidine kinase (TK1 levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action. CONCLUSION/SIGNIFICANCE: Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors.

  4. Efficacy of incentive spirometer exercise on pulmonary functions of patients with ankylosing spondylitis stabilized by tumor necrosis factor inhibitor therapy. (United States)

    So, Min Wook; Heo, Hyun Mi; Koo, Bon San; Kim, Yong-Gil; Lee, Chang-Keun; Yoo, Bin


    To evaluate the effect of combining incentive spirometer exercise (ISE) with a conventional exercise (CE) on patients with ankylosing spondylitis (AS) stabilized by tumor necrosis factor (TNF) inhibitor therapy by comparing a combination group with a CE-alone group. Forty-six patients (44 men, 2 women) were randomized to the combination group (ISE plus CE; n=23) or the CE group (n=23). The CE regimen of both groups consisted of 20 exercises performed for 30 min once a day. The ISE was performed once a day for 30 min. The trial duration was 16 weeks. Patients were assessed before and at the end of treatment by measuring the Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index (BASFI), chest expansion, finger to floor distance, pulmonary function measures, and 6-min walk distance. Both groups improved significantly in terms of chest expansion (pexercise program. However, only the combination group showed significant improvements in the forced vital capacity (p<0.05), total lung capacity (p<0.01), and vital capacity (p<0.05). Although this did not achieve statistical significance, the combination group was mildly superior to the CE-alone group in functional disability and pulmonary function measures. Combining ISE with a CE can provide positive results in patients whose AS has been clinically stabilized by TNF inhibitor therapy.

  5. Tumor endothelium marker-8 based decoys exhibit superiority over capillary morphogenesis protein-2 based decoys as anthrax toxin inhibitors.

    Directory of Open Access Journals (Sweden)

    Chenguang Cai

    Full Text Available Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA, lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8 and capillary morphogenesis protein-2 (CMG2 can effectively block anthrax intoxication, which is particularly valuable when the toxin has already been overproduced at the late stage of anthrax infection, thus rendering antibiotics ineffectual. Receptor-like agonists, such as the mammalian cell-expressed von Willebrand factor type A (vWA domain of CMG2 (sCMG2, have demonstrated potency against the anthrax toxin. However, the soluble vWA domain of TEM8 (sTEM8 was ruled out as an anthrax toxin inhibitor candidate due to its inferior affinity to PA. In the present study, we report that L56A, a PA-binding-affinity-elevated mutant of sTEM8, could inhibit anthrax intoxication as effectively as sCMG2 in Fisher 344 rats. Additionally, pharmacokinetics showed that L56A and sTEM8 exhibit advantages over sCMG2 with better lung-targeting and longer plasma retention time, which may contribute to their enhanced protective ability in vivo. Our results suggest that receptor decoys based on TEM8 are promising anthrax toxin inhibitors and, together with the pharmacokinetic studies in this report, may contribute to the development of novel anthrax drugs.

  6. Tumor

    Institute of Scientific and Technical Information of China (English)


    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  7. Reduced expression of the ROCK inhibitor Rnd3 is associated with increased invasiveness and metastatic potential in mesenchymal tumor cells.

    Directory of Open Access Journals (Sweden)

    Cristina Belgiovine

    Full Text Available BACKGROUND: Mesenchymal and amoeboid movements are two important mechanisms adopted by cancer cells to invade the surrounding environment. Mesenchymal movement depends on extracellular matrix protease activity, amoeboid movement on the RhoA-dependent kinase ROCK. Cancer cells can switch from one mechanism to the other in response to different stimuli, limiting the efficacy of antimetastatic therapies. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the acquisition and molecular regulation of the invasion capacity of neoplastically transformed human fibroblasts, which were able to induce sarcomas and metastases when injected into immunocompromised mice. We found that neoplastic transformation was associated with a change in cell morphology (from fibroblastic to polygonal, a reorganization of the actin cytoskeleton, a decrease in the expression of several matrix metalloproteases and increases in cell motility and invasiveness. In a three-dimensional environment, sarcomagenic cells showed a spherical morphology with cortical actin rings, suggesting a switch from mesenchymal to amoeboid movement. Accordingly, cell invasion decreased after treatment with the ROCK inhibitor Y27632, but not with the matrix protease inhibitor Ro 28-2653. The increased invasiveness of tumorigenic cells was associated with reduced expression of Rnd3 (also known as RhoE, a cellular inhibitor of ROCK. Indeed, ectopic Rnd3 expression reduced their invasive ability in vitro and their metastatic potential in vivo. CONCLUSIONS: These results indicate that, during neoplastic transformation, cells of mesenchymal origin can switch from a mesenchymal mode of movement to an amoeboid one. In addition, they point to Rnd3 as a possible regulator of mesenchymal tumor cell invasion and to ROCK as a potential therapeutic target for sarcomas.

  8. Reduced Expression of the ROCK Inhibitor Rnd3 Is Associated with Increased Invasiveness and Metastatic Potential in Mesenchymal Tumor Cells (United States)

    Belgiovine, Cristina; Frapolli, Roberta; Bonezzi, Katiuscia; Chiodi, Ilaria; Favero, Francesco; Mello-Grand, Maurizia; Dei Tos, Angelo P.; Giulotto, Elena; Taraboletti, Giulia; D'Incalci, Maurizio; Mondello, Chiara


    Background Mesenchymal and amoeboid movements are two important mechanisms adopted by cancer cells to invade the surrounding environment. Mesenchymal movement depends on extracellular matrix protease activity, amoeboid movement on the RhoA-dependent kinase ROCK. Cancer cells can switch from one mechanism to the other in response to different stimuli, limiting the efficacy of antimetastatic therapies. Methodology and Principal Findings We investigated the acquisition and molecular regulation of the invasion capacity of neoplastically transformed human fibroblasts, which were able to induce sarcomas and metastases when injected into immunocompromised mice. We found that neoplastic transformation was associated with a change in cell morphology (from fibroblastic to polygonal), a reorganization of the actin cytoskeleton, a decrease in the expression of several matrix metalloproteases and increases in cell motility and invasiveness. In a three-dimensional environment, sarcomagenic cells showed a spherical morphology with cortical actin rings, suggesting a switch from mesenchymal to amoeboid movement. Accordingly, cell invasion decreased after treatment with the ROCK inhibitor Y27632, but not with the matrix protease inhibitor Ro 28-2653. The increased invasiveness of tumorigenic cells was associated with reduced expression of Rnd3 (also known as RhoE), a cellular inhibitor of ROCK. Indeed, ectopic Rnd3 expression reduced their invasive ability in vitro and their metastatic potential in vivo. Conclusions These results indicate that, during neoplastic transformation, cells of mesenchymal origin can switch from a mesenchymal mode of movement to an amoeboid one. In addition, they point to Rnd3 as a possible regulator of mesenchymal tumor cell invasion and to ROCK as a potential therapeutic target for sarcomas. PMID:21209796

  9. Tumor necrosis factor-alpha inhibitor combined with methotrexate for ankylosing spondylitis: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Shaopeng Lin


    Full Text Available To evaluate the benefits and harms of combination of tumor necrosis factor-alpha (TNF-α inhibitor and methotrexate (MTX compared with TNF-α inhibitor monotherapy in the treatment of ankylosing spondylitis (AS. Randomized controlled trials were identified from Medline, Embase, Cinahl, Central and Clinical Trials Registry Platform, as well as from the reference sections of retrieved articles. The risk of bias was evaluated in all included trials. Data were extracted by two reviewers independently using a specially designed extraction form. The Cochrane Collaboration’s Review Manager 5.2 software was used for data analysis. The search retrieved 852 titles, of which 3 original trials were included, involving 187 participants. The overall risk of bias is low in all three trials. Only one study was placebo controlled, and all of them examined small samples. The analysis showed no significant advantage of the MTX combination versus monotherapy. Two trials assessed Assessment of Ankylosing Spondylitis (ASAS 40 and the pooled risk ratio (RR was 1.37 and 95% confidence interval 0.84 to 2.23. The RR for ASAS20 was 1.16 (0.88 to 1.52. Likewise, there were no significant difference between two groups in partial remission, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, Magnetic resonance imaging activity score and other secondary outcomes. Withdrawals for side effects and for any reason were similar in two groups, RR were 1.89 (0.71 to 5.02 and 1.11 (0.67 to 1.84, respectively. The evidence available did not support any benefit of adding MTX to TNF-α inhibitor for the treatment of AS.

  10. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock. (United States)

    Du, Shi-lin; Yuan, Xue; Zhan, Sun; Tang, Luo-jia; Tong, Chao-yang


    Lipopolysaccharide (LPS), one of the most prominent pathogen-associated molecular patterns (PAMPs), activates macrophages, causing release of toxic cytokines (i.e. tumor necrosis factor (TNF)-α) that may provoke inflammation and endotoxin shock. Here, we tested the potential role of trametinib, a novel and highly potent MAPK/ERK kinase (MEK) inhibitor, against LPS-induced TNF-α response in monocytes, and analyzed the underlying mechanisms. We showed that trametinib, at nM concentrations, dramatically inhibited LPS-induced TNF-α mRNA expression and protein secretion in transformed (RAW 264.7 cells) and primary murine macrophages. In ex-vivo cultured human peripheral blood mononuclear cells (PBMCs), this MEK inhibitor similarly suppressed TNF-α production by LPS. For the mechanism study, we found that trametinib blocked LPS-induced MEK-ERK activation in above monocytes, which accounted for the defective TNF-α response. Macrophages or PBMCs treated with a traditional MEK inhibitor PD98059 or infected with MEK1/2-shRNA lentivirus exhibited a similar defect as trametinib, and nullified the activity of trametinib. On the other hand, introducing a constitutively-active (CA) ERK1 restored TNF-α production by LPS in the presence of trametinib. In vivo, mice administrated with trametinib produced low levels of TNF-α after LPS stimulation, and these mice were protected from LPS-induced endotoxin shock. Together, these results show that trametinib inhibits LPS-induced TNF-α expression and endotoxin shock probably through blocking MEK-ERK signaling.

  11. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli


    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  12. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta's actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. (United States)

    Arikawa, Emi; Ma, Ronald C W; Isshiki, Keiji; Luptak, Ivan; He, Zhiheng; Yasuda, Yutaka; Maeno, Yasuhiro; Patti, Mary Elizabeth; Weir, Gordon C; Harris, Robert A; Zammit, Victor A; Tian, Rong; King, George L


    High-density oligonucleotide arrays were used to compare gene expression of rat hearts from control, untreated diabetic, and diabetic groups treated with islet cell transplantation (ICT), protein kinase C (PKC)beta inhibitor ruboxistaurin, or ACE inhibitor captopril. Among the 376 genes that were differentially expressed between untreated diabetic and control hearts included key metabolic enzymes that account for the decreased glucose and increased free fatty acid utilization in the diabetic heart. ICT or insulin replacements reversed these gene changes with normalization of hyperglycemia, dyslipidemia, and cardiac PKC activation in diabetic rats. Surprisingly, both ruboxistaurin and ACE inhibitors improved the metabolic gene profile (confirmed by real-time RT-PCR and protein analysis) and ameliorated PKC activity in diabetic hearts without altering circulating metabolites. Functional assessments using Langendorff preparations and (13)C nuclear magnetic resonance spectroscopy showed a 36% decrease in glucose utilization and an impairment in diastolic function in diabetic rat hearts, which were normalized by all three treatments. In cardiomyocytes, PKC inhibition attenuated fatty acid-induced increases in the metabolic genes PDK4 and UCP3 and also prevented fatty acid-mediated inhibition of basal and insulin-stimulated glucose oxidation. Thus, PKCbeta or ACE inhibitors may ameliorate cardiac metabolism and function in diabetes partly by normalization of fuel metabolic gene expression directly in the myocardium.

  13. Evaluating Dual Activity LPA Receptor Pan-Antagonist/Autotaxin Inhibitors as Anti-Cancer Agents in vivo using Engineered Human Tumors


    Xu, Xiaoyu; Yang, Guanghui; Zhang, Honglu; Glenn D Prestwich


    Using an in situ crosslinkable hydrogel that mimics the extracellular matrix (ECM), cancer cells were encapsulated and injected in vivo following a “tumor engineering” strategy for orthotopic xenografts. Specifically, we created several three-dimensional (3-D) human tumor xenografts and evaluated the tumor response to BrP-LPA, a novel dual function LPA antagonist/ATX inhibitor (LPAa/ATXi). First, we describe the model system and the optimization of semi-synthetic ECM (sECM) compositions and i...

  14. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas. (United States)

    Anderson, Ryan T; Keysar, Stephen B; Bowles, Daniel W; Glogowska, Magdalena J; Astling, David P; Morton, J Jason; Le, Phuong; Umpierrez, Adrian; Eagles-Soukup, Justin; Gan, Gregory N; Vogler, Brian W; Sehrt, Daniel; Takimoto, Sarah M; Aisner, Dara L; Wilhelm, Francois; Frederick, Barbara A; Varella-Garcia, Marileila; Tan, Aik-Choon; Jimeno, Antonio


    The dual pathway inhibitor rigosertib inhibits phosphoinositide 3-kinase (PI3K) pathway activation as well as polo-like kinase 1 (PLK1) activity across a broad spectrum of cancer cell lines. The importance of PIK3CA alterations in squamous cell carcinoma of the head and neck (HNSCC) has raised interest in exploring agents targeting PI3K, the product of PIK3CA. The genetic and molecular basis of rigosertib treatment response was investigated in a panel of 16 HNSCC cell lines, and direct patient tumor xenografts from eight patients with HNSCC [four HPV-serotype16 (HPV16)-positive]. HNSCC cell lines and xenografts were characterized by pathway enrichment gene expression analysis, exon sequencing, gene copy number, Western blotting, and immunohistochemistry (IHC). Rigosertib had potent antiproliferative effects on 11 of 16 HPV(-) HNSCC cell lines. Treatment sensitivity was confirmed in two cell lines using an orthotopic in vivo xenograft model. Growth reduction after rigosertib treatment was observed in three of eight HNSCC direct patient tumor lines. The responsive tumor lines carried a combination of a PI3KCA-activating event (amplification or mutation) and a p53-inactivating event (either HPV16- or mutation-mediated TP53 inactivation). In this study, we evaluated the in vitro and in vivo efficacy of rigosertib in both HPV(+) and HPV(-) HNSCCs, focusing on inhibition of the PI3K pathway. Although consistent inhibition of the PI3K pathway was not evident in HNSCC, we identified a combination of PI3K/TP53 events necessary, but not sufficient, for rigosertib sensitivity.

  15. Three dimensional analysis of histone methylation patterns in normal and tumor cell nuclei

    Directory of Open Access Journals (Sweden)

    M Cremer


    Full Text Available Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has been linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly causally involved in the formation of cell type specific heterochromatin compartments, composed of (pericentromeric regions and chromosomal subregions from neighboring chromosome territories, which contain silent genes.

  16. ONO 3403, a synthetic serine protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production and protects mice from lethal endotoxic shock

    NARCIS (Netherlands)

    Tumurkhuu, Gantsetseg; Koide, Naoki; Hiwasa, Takaki; Ookoshi, Motohiro; Dagvadorj, Jargalsaikhan; Noman, Abu Shadat Mohammod; Iftakhar-E-Khuda, Imtiaz; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi


    ONO 3403, a new synthetic serine protease inhibitor, is a derivative of camostat mesilate and has a higher protease-inhibitory activity. The effect of ONO 3403 on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha and nitric oxide (NO) production in RAW 264.7 macrophage-like cells wa

  17. A phase i study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas

    NARCIS (Netherlands)

    Infante, Jeffrey R.; Cassier, Philippe A.; Gerecitano, John F.; Witteveen, Petronella O.; Chugh, Rashmi; Ribrag, Vincent; Chakraborty, Abhijit; Matano, Alessandro; Dobson, Jason R.; Crystal, Adam S.; Parasuraman, Sudha; Shapiro, Geoffrey I.


    Purpose: Ribociclib (an oral, highly specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb+). This first-in-human study investigated the MTD, recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinet

  18. First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients With Advanced Solid Tumors

    DEFF Research Database (Denmark)

    Abdul Razak, Albiruni R; Mau-Sørensen, Morten; Gabrail, Nashat Y


    PURPOSE: This trial evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of selinexor (KPT-330), a novel, oral small-molecule inhibitor of exportin 1 (XPO1/CRM1), and determined the recommended phase II dose. PATIENTS AND METHODS: In total, 189 patients with advanced solid tumors...

  19. Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. (United States)

    Guelstein, V I; Tchypysheva, T A; Ermilova, V D; Litvinova, L V; Troyanovsky, S M; Bannikov, G A


    The distribution of keratins 8 and 17 and of vimentin in 28 normal human mammary tissue samples, 16 benign tumors, 26 fibrocytic diseases and 52 malignant breast tumors have been studied using monoclonal antibodies HI, E3 and NT30, respectively. Three cell populations in normal mammary epithelium have been identified: luminal epithelium containing keratin 8, myoepithelium of the lobular structures positive for vimentin, and myoepithelium of extralobular ducts positive for keratin 17. In different kinds of benign tumor and dysplastic proliferation a mosaic of cells with all normal phenotypes has been observed. The majority of cells co-expressed keratins 8 and 17 or vimentin. In the overwhelming majority of carcinomas, cells did not contain myoepithelial markers (keratin 17 and vimentin) but expressed only keratin 8 specific to normal luminal epithelium.

  20. Co-crystal structures of inhibitors with MRCKβ, a key regulator of tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Timo Heikkila

    Full Text Available MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 µM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC(50 values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts.

  1. cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue.

    Directory of Open Access Journals (Sweden)

    Lenora W M Loo

    Full Text Available Genome-wide association studies (GWAS have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent normal colon tissues were used for genome-wide SNP and gene expression profiling. We found that three risk variants (rs10795668, rs4444235 and rs9929218, using near perfect proxies rs706771, rs11623717 and rs2059252, respectively were significantly associated (FDR q-value ≤0.05 with expression levels of nearby genes (<2 Mb up- or down-stream. We observed an association between the low colorectal cancer risk allele (A for rs10795668 at 10p14 and increased expression of ATP5C1 (q = 0.024 and between the colorectal cancer high risk allele (C for rs4444235 at 14q22.2 and increased expression of DLGAP5 (q = 0.041, both in tumor samples. The colorectal cancer low risk allele (A for rs9929218 at 16q22.1 was associated with a significant decrease in expression of both NOL3 (q = 0.017 and DDX28 (q = 0.046 in the adjacent normal colon tissue samples. Of the four genes, DLGAP5 and NOL3 have been previously reported to play a role in colon carcinogenesis and ATP5C1 and DDX28 are mitochondrial proteins involved in cellular metabolism and division, respectively. The combination of GWAS findings, prior functional studies, and the cis-eQTL analyses described here suggest putative functional activities for three of the colorectal cancer GWAS identified risk loci as regulating the expression of neighboring genes.

  2. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. (United States)

    Shu, Yi; Haque, Farzin; Shu, Dan; Li, Wei; Zhu, Zhenqi; Kotb, Malak; Lyubchenko, Yuri; Guo, Peixuan


    Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed "toolkits" utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field.

  3. FGF2 and EGF Are Required for Self-Renewal and Organoid Formation of Canine Normal and Tumor Breast Stem Cells. (United States)

    Cocola, Cinzia; Molgora, Stefano; Piscitelli, Eleonora; Veronesi, Maria Cristina; Greco, Marianna; Bragato, Cinzia; Moro, Monica; Crosti, Mariacristina; Gray, Brian; Milanesi, Luciano; Grieco, Valeria; Luvoni, Gaia Cecilia; Kehler, James; Bellipanni, Gianfranco; Reinbold, Rolland; Zucchi, Ileana; Giordano, Antonio


    Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.

  4. Characterization of a Gene Expression Signature in Normal Rat Prostate Tissue Induced by the Presence of a Tumor Elsewhere in the Organ.

    Directory of Open Access Journals (Sweden)

    Hanibal Hani Adamo

    Full Text Available Implantation of rat prostate cancer cells into the normal rat prostate results in tumor-stimulating changes in the tumor-bearing organ, for example growth of the vasculature, an altered extracellular matrix, and influx of inflammatory cells. To investigate this response further, we compared prostate morphology and the gene expression profile of tumor-bearing normal rat prostate tissue (termed tumor-instructed/indicating normal tissue (TINT with that of prostate tissue from controls. Dunning rat AT-1 prostate cancer cells were injected into rat prostate and tumors were established after 10 days. As controls we used intact animals, animals injected with heat-killed AT-1 cells or cell culture medium. None of the controls showed morphological TINT-changes. A rat Illumina whole-genome expression array was used to analyze gene expression in AT-1 tumors, TINT, and in medium injected prostate tissue. We identified 423 upregulated genes and 38 downregulated genes (p<0.05, ≥2-fold change in TINT relative to controls. Quantitative RT-PCR analysis verified key TINT-changes, and they were not detected in controls. Expression of some genes was changed in a manner similar to that in the tumor, whereas other changes were exclusive to TINT. Ontological analysis using GeneGo software showed that the TINT gene expression profile was coupled to processes such as inflammation, immune response, and wounding. Many of the genes whose expression is altered in TINT have well-established roles in tumor biology, and the present findings indicate that they may also function by adapting the surrounding tumor-bearing organ to the needs of the tumor. Even though a minor tumor cell contamination in TINT samples cannot be ruled out, our data suggest that there are tumor-induced changes in gene expression in the normal tumor-bearing organ which can probably not be explained by tumor cell contamination. It is important to validate these changes further, as they could

  5. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of Her2 (United States)

    Patel, Pallav D.; Yan, Pengrong; Seidler, Paul M.; Patel, Hardik J.; Sun, Weilin; Yang, Chenghua; Que, Nanette S.; Taldone, Tony; Finotti, Paola; Stephani, Ralph A.; Gewirth, Daniel T.; Chiosis, Gabriela


    Although the Hsp90 chaperone family, comprised in humans of four paralogs, Hsp90α, Hsp90β, Grp94 and Trap-1, has important roles in malignancy, the contribution of each paralog to the cancer phenotype is poorly understood. This is in large part because reagents to study paralog-specific functions in cancer cells have been unavailable. Here we combine compound library screening with structural and computational analyses to identify purine-based chemical tools that are specific for Hsp90 paralogs. We show that Grp94 selectivity is due to the insertion of these compounds into a new allosteric pocket. We use these tools to demonstrate that cancer cells use individual Hsp90 paralogs to regulate a client protein in a tumor-specific manner and in response to proteome alterations. Finally, we provide new mechanistic evidence explaining why selective Grp94 inhibition is particularly efficacious in certain breast cancers. PMID:23995768


    Institute of Scientific and Technical Information of China (English)

    宋文哲; 宋燕; 叶剑桥; 邱东涛


    As a new member of IAP (inhibitors of apoptosis protein) family, survivin has potent anti-apoptotic activities, and involves in the mitosis and angiogenesis. Researches have demonstrated that surviving is a tumor-specific anti-apoptotic factor, expressed in fetal tissues, and common human cancers, while not in normal, terminally differentiated adult tissues. The overexpression of survivin in tumor tissues is correlated with poor prognosis of the patients. Survivin can be used as a prognostic factor and a new target in tumor targeting therapy.

  7. Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. (United States)

    Troilo, Albino; Benson, Erica K; Esposito, Davide; Garibsingh, Rachel-Ann A; Reddy, E Premkumar; Mungamuri, Sathish Kumar; Aaronson, Stuart A


    The evolutionarily conserved Hippo inhibitory pathway plays critical roles in tissue homeostasis and organ size control, while mutations affecting certain core components contribute to tumorigenesis. Here we demonstrate that proliferation of Hippo pathway mutant human tumor cells exhibiting high constitutive TEAD transcriptional activity was markedly inhibited by dominant negative TEAD4, which did not inhibit the growth of Hippo wild-type cells with low levels of regulatable TEAD-mediated transcription. The tankyrase inhibitor, XAV939, identified in a screen for inhibitors of TEAD transcriptional activity, phenocopied these effects independently of its other known functions by stabilizing angiomotin and sequestering YAP in the cytosol. We also identified one intrinsically XAV939 resistant Hippo mutant tumor line exhibiting lower and less durable angiomotin stabilization. Thus, angiomotin stabilization provides a new mechanism for targeting tumors with mutations in Hippo pathway core components as well as a biomarker for sensitivity to such therapy.

  8. Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LHBETATAG retinoblastoma tumors

    Directory of Open Access Journals (Sweden)

    Samuel K Houston


    Full Text Available Samuel K Houston1, Yolanda Piña1, Timothy G Murray1, Hinda Boutrid1, Colleen Cebulla2, Amy C Schefler1, Wei Shi1, Magda Celdran1, William Feuer1, Jaime Merchan3, Ted J Lampidis41Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; 2Department of Ophthalmology, The Ohio State University, Columbus, OH, USA; 3Division of Hematology/Oncology, Department of Medicine, 4Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USAPurpose: The purpose of this study was to evaluate the effect of optimally timed combination treatment with angiogenic and glycolytic inhibitors on tumor burden, hypoxia, and angiogenesis in advanced retinoblastoma tumors.Methods: LHBETATAG mice (n = 30 were evaluated. Mice were divided into 5 groups (n = 6 and received injections at 16 weeks of age (advanced tumors with a saline, b anecortave acetate (AA, c 2-deoxyglucose (2-DG, d AA + 2-DG (1 day post-AA treatment, or e AA + 2-DG (1 week post-AA treatment. Eyes were enucleated at 21 weeks and tumor sections were analyzed for hypoxia, angiogenesis, and tumor burden.Results: Eyes treated with 2-DG 1 day post-AA injection showed a 23% (P = 0.03 reduction in tumor burden compared with 2-DG alone and a 61% (P < 0.001 reduction compared with saline-treated eyes. Eyes treated with 2-DG 1 week post-AA injection showed no significant decrease in tumor burden compared with 2-DG alone (P = 0.21 and a 56% (P < 0.001 decrease in comparison with saline-treated eyes. 2-DG significantly reduced the total density of new blood vessels in tumors by 44% compared to saline controls (P < 0.001, but did not affect the density of mature vasculature.Conclusions: Combination therapy with angiogenic and glycolytic inhibitors significantly enhanced tumor control. Synergistic effects were shown to be dependent on the temporal course of treatment

  9. Differentiation, early response gene expression, and apoptosis induction in human breast tumor cells by Okadaic Acid and related inhibitors of protein phosphatases 1 and 2A. Okadaic acid effects on human breast tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiguchi, K.; Giometti, C.; Chubb, C.H.; Huberman, E. [Argonne National Lab., IL (United States); Fujiki, H. [National Cancer Center Research Institute, Tokyo (Japan)


    Okadaic acid (OA), a tumor promoter and an inhibitor of protein phosphatases (PPH) 1 and 2A, was tested for its ability to induce events associated with differentiation and apoptosis induction in the human MCF-7, AU-565, and MB-231 breast tumor cells. Differentiation in these cells was characterized by inhibition of cell multiplication, reactivity with monoclonal antibodies to {alpha}-lactalbumin and {beta}-casein, and the appearance of large lipid droplets; apoptosis was characterized by the appearance of cells with segmented and fragmented nuclei. In the MCF-7 cell line, OA at nanomolar concentrations elicited within 5 min an increase in the phosphorylation of a set of cellular proteins, within hours expression of the early response genes, junB, c-jun, and c-fos and within days manifestation of differentiation and apoptosis markers. Differentiation and apoptosis were also induced by dinophysistoxin-1 and calyculin A, two other tumor promoters and inhibitors of PPH 1 and 2A, but not by OA tetramethyl ether, an inactive OA derivative, or microcystin LR, a PPH 1 and 2A inhibitor that penetrates epithelial cells poorly. OA induced both differentiation and apoptosis in MB-231 cells and MCF-7, but only differentiation in AU-565 cells. Phorbol 12-myristate 13-acetate (PMA), a tumor promoter that is not an inhibitor of PPH 1 and 2A but rather an activator of protein kinase C, also induced within minutes the phosphorylation of proteins, within hours the expression of early response genes, and within days differentiation, but not apoptosis; yet PMA was able to attenuate apoptosis induced by the okadaic acid class of tumor promoters. These results indicate that OA and related agents can induce processes that result in tumor breast cell differentiation and apoptosis, and this induction is associated with their ability to inhibit PPH 1 and 2A. Yet apoptosis is not necessarily required for differentiation induction by these agents.

  10. Cysteine peptidase and its inhibitor activity levels and vitamin E concentration in normal human serum and colorectal carcinomas

    Institute of Scientific and Technical Information of China (English)

    Robert Szwed; Zygmunt Grzebieniak; Yousif Saleh; Godwin Bwire Ekonjo; Maciej Siewinski


    AIM: Cysteine peptidase (CP) and its inhibitor (CPI) are a matrix protease that may be associated with colorectal carcinoma invasion and progression, and vitamin E is also a stimulator of the immunological system. Our purpose was to determine the correlation between the expression of cysteine peptidases and their endogenous inhibitors,and the level of vitamin E in sera of patients with colorectal cancer in comparison with healthy individuals.METHODS: The levels of cysteine peptidases and their inhibitors were determined in the sera of patients with primary and metastatic colorectal carcinoma and healthy individuals using fluorogenic substrate, and the level of vitamin E was determined by HPLC.RESULTS: The levels of cysteine peptidases and their inhibitors were significantly higher in the metastatic colorectal cancer patients than that in the healthy controls (P<0.05).The activity of CP increased 2.2-fold, CPI 2.8-fold and vitamin E decreased 3.4-fold in sera of patients with metastasis in comparison with controls. The level of vitamin E in healthy individuals was higher, whereas the activity of cysteine peptidases and their inhibitors associated with complexes was lower than that in patients with cancer of the digestive tract.CONCLUSION: These results suggest that the serum levels of CP and their inhibitors could be an indicator of the prognosis for patients with metastatic colorectal cancer. Vitamin E can be administered prophylactically to prevent digestive tract neoplasmas.

  11. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels.

    Directory of Open Access Journals (Sweden)

    Bostjan Markelc

    Full Text Available Electropermeabilization/electroporation (EP provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT, cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels.

  12. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels. (United States)

    Markelc, Bostjan; Sersa, Gregor; Cemazar, Maja


    Electropermeabilization/electroporation (EP) provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT), cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD) and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels.

  13. The tumor necrosis factor-α inhibitor golimumab in the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Natalia Vladimirovna Chichasova


    Full Text Available The tumor necrosis factor-α (TNF-α golimumab (GLM, that is a fully human monoclonal anti-body, was registered in Russia in 2012 to treat rheumatic diseases, such as rheumatoid arthritis (RA, ankylosing spondylitis, and psoriatic arthritis. Its distinguishing characteristics are a high affinity for TNF-α and easiness-to-use: the drug as a 0.5-ml solution is injected subcutaneously once monthly. The registration of the medication was followed by the implementation of a massive program of clinical trials. The randomized placebo-controlled GO-FORWARD, GO-BEFORE, and GO-AFTER studies have indicated that GLM is effective in patients with RA from different subgroups and has a favorable safety profile as compared to that of the entire class of biological agents. According to the data of these studies, GLM had a positive effect on the functional status and quality of life in patients with RA: there was a significantly greater decrease in HAQ scores in both the early and long open treatment phases (to 5 years and in fatigability than in the control group (p=0.032, physical and mental health improvements, as shown by the SF-36 questionnaire, and a significant reduction in disability.

  14. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.


    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  15. Effect of cholinesterase inhibitor galanthamine on circulating tumor necrosis factor alpha in rats with lipopolysaccharide induced peritonitis

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hai; MA Yue-feng; WU Jun-song; GAN Jian-xin; XU Shao-wen; JIANG Guan-yu


    Background The nervous system, through the vagus nerve and its neurotransmitter acetylcholine, can down-regulate the systemic inflammation in vivo, and recently, a role of brain cholinergic mechanisms in activating this cholinergic anti-inflammatory pathway has been indicated. Galanthamine is a cholinesterase inhibitor and one of the centrally acting cholinergic agents available in clinic. This study aimed to evaluate the effect of galanthamine on circulating tumor necrosis factor alpha (TNF-α) in rats with lipopolysaccharide-induced peritonitis and the possible role of the vagus nerve in the action of galanthamine.Methods Rat models of lipopolysaccharide-induced peritonitis and bilateral cervical vagotomy were produced. In the experiment 1, the rats were randomly divided into control group, peritonitis group, and peritonitis groups treated with three dosages of galanthamine. In the experiment 2, the rats were randomly divided into sham group, sham plus peritonitis group, sham plus peritonitis group treated with galanthamine, vagotomy plus peritonitis group, and vagotomy plus peritonitis group treated with galanthamine. The levels of plasma TNF-α were determined in every group. Results The level of circulating TNF-α was significantly increased in rats after intraperitoneal injection of endotoxin. Galanthamine treatment decreased the level of circulating TNF-α in rats with lipopolysaccharide-induced peritonitis, and there was significant difference compared with rats with lipopolysaccharide-induced peritonitis without treatment. The 3 mg/kg dosage of galanthamine had the most significant inhibition on circulating TNF-α level at all the three tested doses. Galanthamine obviously decreased the TNF-α level in rats with lipopolysaccharide-induced peritonitis with sham operation, but could not decrease the TNF-α level in rats with lipopolysaccharide-induced peritonitis with vagotomy. Conclusion Cholinesterase inhibitor galanthamine has an inhibitory effect on TNF

  16. Radiosensitivity of tumor cell lines after pretreatment with the EGFR tyrosine kinase inhibitor ZD1839 (Iressa {sup registered})

    Energy Technology Data Exchange (ETDEWEB)

    Burdak-Rothkamm, S. [Dept. of Radiotherapy, Saarland Univ. Hospital, Homburg/Saar (Germany); Gray Cancer Inst., Northwood, Middlesex (United Kingdom); Ruebe, C.E.; Nguyen, T.P.; Ludwig, D.; Ruebe, C. [Dept. of Radiotherapy, Saarland Univ. Hospital, Homburg/Saar (Germany); Feldmann, K. [AstraZeneca GmbH, Wedel (Germany); Wiegel, T. [Dept. of Radiotherapy, Univ. Hospital Benjamin Franklin, Berlin (Germany)


    Background and purpose: the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (Iressa registered) reduces survival and augments radiation response of certain tumor cells. The aim of this study was to identify cellular events that are associated with the modulation of radiosensitivity by ZD1839. Material and methods: three tumor cell lines (A549, H596, FaDu) were exposed to ionizing radiation, treatment with ZD1839, and combined treatment. Clonogenic cell survival was determined by colony assays, EGFR and transforming growth factor-(TGF-){alpha} expression by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), cell cycle distribution and apoptosis by flow cytometry. Results: in A549 and H596 cells ZD1839 had little effect on clonogenic growth, but survival curves revealed a radiosensitizing effect of 5 {mu}M ZD1839 on A549 cells. Both cell lines expressed moderate amounts of EGFR mRNA and very low levels of TGF-{alpha} mRNA. FaDu cells expressed relatively high amounts of EGFR and TGF-{alpha} transcripts and showed marked inhibition of clonogenic growth, reduction of S-phase cells, and induction of apoptosis after treatment with 1 {mu}M ZD1839 and combined treatment. Surprisingly, the subpopulation of FaDu cells surviving ZD1839 pretreatment was more radioresistant. Exposure to ZD1839 caused a decrease in EGFR mRNA expression in A549 cells, no change in H596, and even an increase in FaDu cells. Conclusion: the sensitivity to ZD1839 correlated with the EGFR expression level, an inhibition of cell proliferation, and induction of apoptosis in the cell lines analyzed. A radiosensitizing effect of ZD1839 was associated with downregulation of EGFR mRNA expression. (orig.)

  17. Tumor necrosis factor inhibitors block apoptosis of human epithelial cells of the salivary glands. (United States)

    Sisto, Margherita; D'Amore, Massimo; Caprio, Simone; Mitolo, Vincenzo; Scagliusi, Pasquale; Lisi, Sabrina


    Inhibition of tumor necrosis factor-alpha (TNF-alpha) in organ-specific autoimmune disease is proving efficacious for a large number of patients. A wide array of biological agents has been designed to inhibit TNF-alpha, such as adalimumab (fully humanized) and etanercept (soluble TNF-alpha receptor fusion constructs p75 subunit). Recently, we suggested that anti-Ro and anti-La autoantibodies (Abs) isolated from patients with Sjögren's syndrome, an autoimmune rheumatic disease, are able to trigger cell death through extrinsic apoptotic mechanisms in human salivary gland epithelial cells (SGEC). We analyzed if primary human SGEC cultures, established from biopsy of labial minor salivary glands, are able to produce TNF-alpha, an inductor of the extrinsic apoptotic pathway, when treated with anti-Ro autoantibodies. A comparative study was performed to test the efficacy of adalimumab and etanercept to block TNF-alpha-mediated apoptosis. ELISA assay and RT-PCR were employed to visualize TNF-alpha production, and apoptosis was evaluated by DNA ladder and flow cytometry. We found that cell treatment with anti-Ro autoantibodies determines TNF-alpha production that reaches a maximum at 16 h and is decreased (P < 0.05) at 24 and 48 h. Adalimumab seems to be more efficacious than etanercept in blocking TNF-alpha-mediated apoptosis. The YOPRO-1 (+) and propidium iodide (-) method revealed 60% of apoptotic cells after 24 h of incubation with anti-Ro compared with 15% of apoptotic cells treated with anti-Ro plus adalimumab and 25% of apoptotic cells treated with anti-Ro plus etanercept. The antiapoptotic effect of adalimumab and etanercept was supported by inhibition of DNA laddering induced by anti-Ro Abs. These data validate the therapeutic efficacy of the anti-TNF reagents in the treatment of autoimmune disorders.

  18. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ze-xin; Li, Jian; Li, Yan; You, Kun; Xu, Hongwei; Wang, Jianguo, E-mail:


    The inhibitory effect of DNA topoisomerase (Top I) by isoliquiritigenin(ISO) were investigated and their interaction mechanism was evaluated using methods including UV–vis absorption, fluorescence, coupled with molecular simulation, and using the MTT method of inhibition rate of HCC tumor cell SNU475 proliferation assay, finally, the interaction of ISO with calf thymus DNA was investigated by melting measurements and molecular docking studies. It was found that isoliquiritigenin reversibly inhibited DNA Top I in a competitive manner with the concentrations of ISO resulting in 50% activity lost (IC{sub 50}) were estimated to be 0.178 ± 0.12 mM. Isoliquiritigenin exhibited a strong ability to quench the intrinsic fluorescence of Top I through a static quenching procedure. The positive values of enthalpy change and entropy change suggested that the binding of isoliquiritigenin to Top I was driven mainly by hydrophobic interactions. The molecular docking results revealed isoliquiritigenin actually interacted with the primary amino acid residues on the active site of Top I, and the detection results of fluorescence staining and the inhibitory effect on the growth of HCC SUN475 showed that isoliquiritigenin induced the apoptosis cells increased gradually. The interaction of ISO with DNA can cause the denaturation temperature to be increased, which indicated that the stabilization of the DNA helix was increased in the presence of ISO, which indicated that the results provide strong evidence for intercalative binding of ISO with DNA. - Highlights: • ISO reversibly inhibits TOP I activity in an A dose dependent manner. • Hydrophobic interactions play a major role in ISO–TOP I interaction. • ISO has a high affinity close to the active site pocket of TOP I. • The binding of ISO to DNA induces the stability of the structure of DNA.

  19. Non-length-dependent and length-dependent small-fiber neuropathies associated with tumor necrosis factor (TNF)-inhibitor therapy in patients with rheumatoid arthritis: expanding the spectrum of neurological disease associated with TNF-inhibitors. (United States)

    Birnbaum, Julius; Bingham, Clifton O


    Small-fiber neuropathy causes severe burning pain, requires diagnostic approaches such as skin biopsy, and encompasses two subtypes based on distribution of neuropathic pain. Such biopsy-proven subtypes of small-fiber neuropathies have not been previously described as complications of tumor necrosis factor (TNF)-inhibitor therapy. We therefore characterized clinical and skin biopsy findings in three rheumatoid arthritis (RA) patients who developed small-fiber neuropathies associated with TNF-inhibitors. We also conducted a systematic review of the literature to characterize subtypes of neuropathies previously reported in association with TNF-inhibitor therapy. Two patients presented with a "non-length-dependent" small-fiber neuropathy, experiencing unorthodox patterns of burning pain affecting the face, torso, and proximal extremities. Abnormal skin biopsy findings were limited to the proximal thigh, which is a marker of proximal-most dorsal root ganglia degeneration. In contrast, one patient presented with a "length-dependent" small-fiber neuropathy, experiencing burning pain only in the feet. Abnormal skin biopsy findings were limited to the distal feet, which is a marker of distal-most axonal degeneration. One patient developed a small-fiber neuropathy in the context of TNF-inhibitor-induced lupus. In all patients, neuropathies occurred during TNF-inhibitor-induced remission of RA disease activity and improved on withdrawal of TNF-inhibitors. We describe a spectrum of small-fiber neuropathies not previously reported in association with TNF-inhibitor therapy, with clinical and skin biopsy findings suggestive of dorsal root ganglia as well as axonal degeneration. The development of small-fiber neuropathies during inactive joint disease and improvement of neuropathic pain upon withdrawal of TNF-inhibitor suggest a causative role of TNF-inhibitors. © 2013 Published by Elsevier Inc.

  20. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)


    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  1. Tumor growth-inhibitory effect of an angiotensin-converting enzyme inhibitor (captopril) in a lung cancer xenograft model analyzed using 18F-FDG-PET/CT. (United States)

    Nakaya, Koji; Otsuka, Hideki; Kondo, Kazuya; Otani, Tamaki; Nagata, Motoi


    We administered an angiotensin-converting enzyme inhibitor (captopril) to mice implanted with a human lung adenocarcinoma epithelial cell line (A549 cells) and investigated the tumor growth-inhibitory effect of captopril from the viewpoint of glucose metabolism using (18)F-fluorodeoxyglucose ((18)F-FDG)-PET/CT. Subcutaneous implantation of A549 cells (1.9×10(6) cells) was carried out in the lower right flank of mice. Fifteen days after the transplantation of A549 cells, mice (six in each group) were treated with captopril (3.0 mg/mouse) or saline (1000 μl/mouse) for 5 days. We performed (18)F-FDG-PET/CT imaging of the mice before and after the treatment and evaluated the degree of (18)F-FDG accumulation in tumors. In both groups (the captopril-administrated and control groups), values for the metabolic tumor volume (MTV), maximum standardized uptake value, total lesion glycolysis, and tumor volume after treatment had a tendency to increase. However, tumor growth was suppressed in the captopril-administrated group compared with the control group. In terms of the growth rate, the MTV and tumor volume were significantly different (Pcaptopril exerted a potential tumor growth-inhibitory effect; this was because the captopril-administrated group showed low values of MTV, maximum standardized uptake value, total lesion glycolysis, and tumor volume in comparison with the control group.

  2. Soluble tumor necrosis factor receptor 1 and tissue inhibitor of metalloproteinase-1 in hemolytic uremic syndrome with encephalopathy. (United States)

    Shiraishi, Masahiro; Ichiyama, Takashi; Matsushige, Takeshi; Iwaki, Takuma; Iyoda, Kuniaki; Fukuda, Ken; Makata, Haruyuki; Matsubara, Tomoyo; Furukawa, Susumu


    Enterohemorrhagic Escherichia coli (EHEC) induces hemorrhagic colitis and hemolytic uremic syndrome (HUS). Morbidity and mortality are increased in HUS patients with neurologic complications. To determine the pathogenesis of the central nervous system (CNS) involvement in HUS by EHEC, we determined the serum concentrations of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), soluble TNF receptor 1 (sTNFR1), IL-10, interferon-gamma (IFN-gamma), IL-2, IL-4, soluble E-selectin (sE-selectin), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) during the acute stage in children with HUS with or without CNS involvement. Serum concentrations of IL-6, IL-10, sTNFR1, sE-selectin, MMP-9, and TIMP-1, but not TNF-alpha, IFN-gamma, IL-2, or IL-4, were significantly higher in patients with HUS with encephalopathy compared with controls. Serum IL-6, sTNFR1 and TIMP-1 concentrations were significantly higher in patients with HUS with encephalopathy compared with those with HUS without encephalopathy (P=0.031, P=0.005, and P=0.007, respectively) and those with acute colitis without HUS (P=0.011, Pencephalopathy. Our preliminary study suggests that serum IL-6, sTNFR1 and TIMP-1 levels, particularly sTNFR1 and TIMP-1, are important for predicting neurological complications in patients with HUS.

  3. Cardiovascular event risk assessment in psoriasis patients treated with tumor necrosis factor-α inhibitors versus methotrexate. (United States)

    Wu, Jashin J; Guérin, Annie; Sundaram, Murali; Dea, Katherine; Cloutier, Martin; Mulani, Parvez


    Psoriasis is associated with increased risk for cardiovascular disease. To compare major cardiovascular event risk in psoriasis patients receiving methotrexate or tumor necrosis factor-α inhibitor (TNFi) and to assess TNFi treatment duration impact on major cardiovascular event risk. Adult psoriasis patients with ≥2 TNFi or methotrexate prescriptions in the Truven MarketScan Databases (Q1 2000-Q3 2011) were classified as TNFi or methotrexate users. The index date for each of these drugs was the TNFi initiation date or a randomly selected methotrexate dispensing date, respectively. Cardiovascular event risks and cumulative TNFi effect were analyzed by using multivariate Cox proportional-hazards models. By 12 months, TNFi users (N = 9148) had fewer cardiovascular events than methotrexate users (N = 8581) (Kaplan-Meier rates: 1.45% vs 4.09%: P event hazards than methotrexate users (hazard ratio = 0.55; P event risk reduction (P = .02). Lack of clinical assessment measures. Psoriasis patients receiving TNFis had a lower major cardiovascular event risk compared to those receiving methotrexate. Cumulative exposure to TNFis was associated with a reduced risk for major cardiovascular events. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Periodontal and serum protein profiles in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitor adalimumab. (United States)

    Kobayashi, Tetsuo; Yokoyama, Tomoko; Ito, Satoshi; Kobayashi, Daisuke; Yamagata, Akira; Okada, Moe; Oofusa, Ken; Narita, Ichiei; Murasawa, Akira; Nakazono, Kiyoshi; Yoshie, Hiromasa


    Tumor necrosis factor (TNF)-α inhibitor has been shown to affect the periodontal condition of patients with rheumatoid arthritis (RA). The aim of the present study is to assess the effect of a fully humanized anti-TNF-α monoclonal antibody, adalimumab (ADA), on the periodontal condition of patients with RA and to compare serum protein profiles before and after ADA therapy. The study participants consisted of 20 patients with RA treated with ADA. Clinical periodontal and rheumatologic parameters and serum cytokine levels were evaluated at baseline and 3 months later. Serum protein spot volume was examined with two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins with significant difference in abundance before and after ADA therapy were found and identified using mass spectrometry and protein databases. The patients showed a significant decrease in gingival index (P = 0.002), bleeding on probing (P = 0.003), probing depth (P = 0.002), disease activity score including 28 joints using C-reactive protein (P periodontal condition of patients with RA, which might be related to differences in serum protein profiles before and after ADA therapy.

  5. Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model. (United States)

    Gao, Yong-Jing; Cheng, Jen-Kun; Zeng, Qing; Xu, Zhen-Zhong; Decosterd, Isabelle; Xu, Xiaoyin; Ji, Ru-Rong


    Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.

  6. Prognostic impact of Wilms tumor gene mutations in Egyptian patients with acute myeloid leukemia with normal karyotype. (United States)

    Zidan, Magda Abdel Aziz; Kamal Shaaban, Howyda M; Elghannam, Doaa M


    The Wilms' tumor (WT1) gene mutations were detected in patients with most forms of acute leukemia. However, the biological significance and the prognostic impact of WT1 mutation in Egyptian patients with acute myeloid leukemia with normal karyotype (AML-NK) are still uncertain. We aimed to evaluate the incidence and clinical relevance of WT1 gene mutations in acute myeloid leukemia with normal karyotype (AML-NK). Exons 7 and 9 of WT1 were screened in samples from 216 adult NK-AML using polymerase chain reaction single-strand conformation polymorphism techniques. Twenty-three patients (10.6%) harbored WT1 mutations. Younger ages and higher marrow blasts were significantly associated with WT1 mutations (P = 0.006 and 0.003 respectively). Complete remission rates were significantly lower in patients with WT1 mutations than those with WT1 wild-type (P = 0.015). Resistance, relapse, and mortality rates were significantly higher in patients with WT1 mutations than those without (P = 0.041, 0.016, and 0.008 respectively). WT1 mutations were inversely associated with NPM1 mutations (P = 0.007). Patients with WT1 mutations had worse disease-free survival (P mutations independently predicted worse DFS (P mutational status. In conclusion, WT1 mutations are a negative prognostic indicator in intensively treated patients with AML-NK, may be a part of molecularly based risk assessment and risk-adapted treatment stratification of patients with AML-NK.

  7. Reactivating p53 functions by suppressing its novel inhibitor iASPP: a potential therapeutic opportunity in p53 wild-type tumors (United States)

    Dong, Peixin; Ihira, Kei; Hamada, Junichi; Watari, Hidemichi; Yamada, Takahiro; Hosaka, Masayoshi; Hanley, Sharon J.B.; Kudo, Masataka; Sakuragi, Noriaki


    Although mutational inactivation of p53 is found in 50% of all human tumors, a subset of tumors display defective p53 function, but retain wild-type (WT) p53. Here, direct and indirect mechanisms leading to the loss of WT p53 activities are discussed. We summarize the oncogenic roles of iASPP, an inhibitor of WT p53, in promoting proliferation, invasion, drug or radiation-resistance and metastasis. From the therapeutic view, we highlight promising perspectives of microRNA-124, peptide and small molecules that reduce or block iASPP for the treatment of cancer. High iASPP expression enhances proliferation, aggressive behavior, the resistance to radiation/chemotherapy and correlates with poor prognosis in a range of human tumors. Overexpression of iASPP accelerates tumorigenesis and invasion through p53-dependent and p53-independent mechanisms. MicroRNA-124 directly targets iASPP and represses the growth and invasiveness of cancer cells. The disruption of iASPP-p53 interaction by a p53-derived peptide A34 restores p53 function in cancer cells. The inhibition of iASPP phosphorylation with small molecules induces p53-dependent apoptosis and growth suppression. The mechanisms underlying aberrant expression of iASPP in human tumors should be further investigated. Reactivating WT p53 functions by targeting its novel inhibitor iASPP holds promise for potential therapeutic interventions in the treatment of WT p53-containing tumors. PMID:26343523

  8. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK


    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  9. Expression of serine/threonine protein-kinases and related factors in normal monkey and human retinas: the mechanistic understanding of a CDK2 inhibitor induced retinal toxicity. (United States)

    Saturno, Grazia; Pesenti, Manuela; Cavazzoli, Cristiano; Rossi, Anna; Giusti, Anna M; Gierke, Berthold; Pawlak, Michael; Venturi, Miro


    Protein-kinase inhibitors are among the most advanced compounds in development using the new drug discovery paradigm of developing small-molecule drugs against specific molecular targets in cancer. After treatment with a cyclin dependent kinase CDK2 inhibitor in monkey, histopathological analysis of the eye showed specific cellular damage in the photoreceptor layer. Since this CDK2 inhibitor showed activity also on other CDKs, in order to investigate the mechanism of toxicity of this compound, we isolated cones and rods from the retina of normal monkey and humans by Laser Capture Microdissection. Using Real-Time PCR we first measured the expression of cyclin dependent protein-kinases (CDK)1, 2, 4, 5, Glycogen synthase kinase 3beta (GSK3beta) and microtubule associated protein TAU. We additionally verified the presence of these proteins in monkey eye sections by immuno-histochemistry and immunofluorescence analysis and afterwards quantified GSK3beta, phospho-GSK3beta and TAU by Reverse Phase Protein Microarrays. With this work we demonstrate how complementary gene expression and protein-based technologies constitute a powerful tool for the understanding of the molecular mechanism of a CDK2 inhibitor induced toxicity. Moreover, this investigative approach is helpful to better understand and characterize the mechanism of species-specific toxicities and further support a rational, molecular mechanism-based safety assessment in humans.

  10. Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma. (United States)

    Chua, Kian Ngiap; Kong, Li Ren; Sim, Wen Jing; Ng, Hsien Chun; Ong, Weijie Richard; Thiery, Jean Paul; Huynh, Hung; Goh, Boon Cher


    Oncogenesis in non-small cell lung cancer (NSCLC) is regulated by a complex signal transduction network. Single-agent targeted therapy fails frequently due to treatment insensitivity and acquired resistance. In this study, we demonstrate that co-inhibition of the MAPK and SRC pathways using a PD0325901 and Saracatinib kinase inhibitor combination can abrogate tumor growth in NSCLC. PD0325901/Saracatinib at 0.25:1 combination was screened against a panel of 28 NSCLC cell lines and 68% of cell lines were found to be sensitive (IC50 cell migration and matrigel invasion. The co-inhibition of MAPK and SRC induced strong G1/G0 cell cycle arrest in the NSCLC lines, inhibited anchorage independent growth and delayed tumor growth in H460 and H358 mouse xenografts. These data provide rationale for further investigating the combination of MAPK and SRC pathway inhibitors in advanced stage NSCLC.

  11. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth.

    Directory of Open Access Journals (Sweden)

    Wendy M McKimpson

    Full Text Available Multiple endocrine neoplasia type 1 (MEN1 is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.

  12. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth. (United States)

    McKimpson, Wendy M; Yuan, Ziqiang; Zheng, Min; Crabtree, Judy S; Libutti, Steven K; Kitsis, Richard N


    Multiple endocrine neoplasia type 1 (MEN1) is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.

  13. Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor.

    NARCIS (Netherlands)

    Hoebers, F.J.; Pluim, D.; Hart, A.A.M.; Verheij, M.; Balm, A.J.M.; Fons, G.; Rasch, C.R.; Schellens, J.H.M.; Stalpers, L.J.A.; Bartelink, H.; Begg, A.C.


    PURPOSE: In this study, the formation of cisplatin-DNA adducts after concurrent cisplatin-radiation and the relationship between adduct-formation in primary tumor tissue and normal tissue were investigated. METHODS: Three intravenous cisplatin-regimens, given concurrently with radiation, were studie

  14. Cisplatin-DNA adduct formation in patients treated with cisplatin-based chemoradiation: lack of correlation between normal tissues and primary tumor

    NARCIS (Netherlands)

    Hoebers, F.J.P.; Pluim, D.; Hart, A.A.M.; Verheij, M.; Balm, A.J.M.; Fons, G.; Rasch, C.R.N.; Schellens, J.H.M.; Stalpers, L.J.A.; Bartelink, H.; Begg, A.C.


    Purpose: In this study, the formation of cisplatin-DNA adducts after concurrent cisplatin-radiation and the relationship between adduct-formation in primary tumor tissue and normal tissue were investigated. Methods: Three intravenous cisplatin-regimens, given concurrently with radiation, were stu

  15. Design, Synthesis and Biological Evaluation of Novel Pyrimido[4,5-d]pyrimidine CDK2 Inhibitors as Anti-Tumor Agents (United States)

    El-Moghazy, Samir M.; Ibrahim, Diaa A.; Abdelgawad, Nagwa M.; Farag, Nahla A. H.; El-Khouly, Ahmad S.


    A series of 2,5,7-trisubstituted pyrimido[4,5-d]pyrimidine cyclin-dependent kinase (CDK2) inhibitors is designed and synthesized. 6-Amino-2-thiouracil is reacted with an aldehyde and thiourea to prepare the pyrimido[4,5-d]-pyrimidines. Alkylation and amination of the latter ones give different amino derivatives. These compounds show potent and selective CDK inhibitory activities and inhibit in vitro cellular proliferation in cultured human tumor cells. PMID:21886895

  16. EBI-907, a novel BRAF(V600E) inhibitor, has potent oral anti-tumor activity and a broad kinase selectivity profile. (United States)

    Zhang, Jiayin; Lu, Biao; Liu, Dong; Shen, Ru; Yan, Yinfa; Yang, Liuqing; Zhang, Minsheng; Zhang, Lei; Cao, Guoqing; Cao, Hu; Fu, Beibei; Gong, Aishen; Sun, Qiming; Wan, Hong; Zhang, Lianshan; Tao, Weikang; Cao, Jingsong


    The oncogenic mutation of BRAF(V600E) has been found in approximately 8% of all human cancers, including more than 60% of melanoma and 10% of colorectal cancers. The clinical proof of concept in treating BRAF(V600E)-driving melanoma patients with the BRAF inhibitors has been well established. We have sought to identify and develop novel BRAF(V600E) inhibitors with more favorable profiles. Our chemistry effort has led to the discovery of EBI-907 as a novel BRAF(V600E) inhibitor with potent anti-tumor activity in vitro and in vivo. In a LanthaScreen BRAF(V600E) kinase assay, EBI-907 showed an IC50 of 4.8 nM, which is >10 -fold more potent than Vemurafenib (IC50 = 58.5 nM). In addition, EBI-907 showed a broader kinase selectivity profile, with potent activity against a number of important oncogenic kinases including FGFR1-3, RET, c-Kit, and PDGFRb. Concomitant with such properties, EBI-907 exhibits potent and selective cytotoxicity against a broader range of BRAF(V600E)-dependent cell lines including certain colorectal cancer cell lines with innate resistance to Vemurafenib. In BRAF(V600E)-dependent human Colo-205 and A375 tumor xenograft mouse models, EBI-907 caused a marked tumor regression in a dose-dependent manner, with superior efficacy to Vemurafenib. Our results also showed that combination with EGFR or MEK inhibitor enhanced the potency of EBI-907 in cell lines with innate or acquired resistance to BRAF inhibition alone. Our findings present EBI-907 as a potent and promising BRAF inhibitor, which might be useful in broader indications.

  17. Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Sabo Edmond


    Full Text Available Abstract Background We have reported arginine-sensitive regulation of LAT1 amino acid transporter (SLC 7A5 in normal rodent hepatic cells with loss of arginine sensitivity and high level constitutive expression in tumor cells. We hypothesized that liver cell gene expression is highly sensitive to alterations in the amino acid microenvironment and that tumor cells may differ substantially in gene sets sensitive to amino acid availability. To assess the potential number and classes of hepatic genes sensitive to arginine availability at the RNA level and compare these between normal and tumor cells, we used an Affymetrix microarray approach, a paired in vitro model of normal rat hepatic cells and a tumorigenic derivative with triplicate independent replicates. Cells were exposed to arginine-deficient or control conditions for 18 hours in medium formulated to maintain differentiated function. Results Initial two-way analysis with a p-value of 0.05 identified 1419 genes in normal cells versus 2175 in tumor cells whose expression was altered in arginine-deficient conditions relative to controls, representing 9–14% of the rat genome. More stringent bioinformatic analysis with 9-way comparisons and a minimum of 2-fold variation narrowed this set to 56 arginine-responsive genes in normal liver cells and 162 in tumor cells. Approximately half the arginine-responsive genes in normal cells overlap with those in tumor cells. Of these, the majority was increased in expression and included multiple growth, survival, and stress-related genes. GADD45, TA1/LAT1, and caspases 11 and 12 were among this group. Previously known amino acid regulated genes were among the pool in both cell types. Available cDNA probes allowed independent validation of microarray data for multiple genes. Among genes downregulated under arginine-deficient conditions were multiple genes involved in cholesterol and fatty acid metabolism. Expression of low-density lipoprotein receptor was

  18. Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Sriram [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Kuan, C.-T. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States) and Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States) and Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States)]. E-mail:


    Introduction: MR1-1 is a single-chain Fv (scFv) fragment that binds with high affinity to epidermal growth factor receptor variant III, which is overexpressed on gliomas and other tumors but is not present on normal tissues. The objective of this study was to evaluate four different methods for labeling MR1-1 scFv that had been previously investigated for the radioiodinating of an intact anti-epidermal growth factor receptor variant III (anti-EGFRvIII) monoclonal antibody (mAb) L8A4. Methods: The MR1-1 scFv was labeled with {sup 125}I/{sup 131}I using the Iodogen method, and was also radiohalogenated with acylation agents bearing substituents that were positively charged-N-succinimidyl-3-[*I]iodo-5-pyridine carboxylate and N-succinimidyl-4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB)-and negatively charged-N-succinimidyl-3-[*I]iodo-4-phosphonomethylbenzoate ([*I]SIPMB). In vitro internalization assays were performed with the U87MG{delta}EGFR cell line, and the tissue distribution of the radioiodinated scFv fragments was evaluated in athymic mice bearing subcutaneous U87MG{delta}EGFR xenografts. Results and Conclusion: As seen previously with the anti-EGFRvIII IgG mAb, retention of radioiodine activity in U87MG{delta}EGFR cells in the internalization assay was labeling method dependent, with SGMIB and SIPMB yielding the most prolonged retention. However, unlike the case with the intact mAb, the results of the internalization assays were not predictive of in vivo tumor localization capacity of the labeled scFv. Renal activity was dependent on the nature of the labeling method. With MR1-1 labeled using SIPMB, kidney uptake was highest and most prolonged; catabolism studies indicated that this uptake primarily was in the form of {epsilon}-N-3-[*I]iodo-4-phosphonomethylbenzoyl lysine.

  19. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. (United States)

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K


    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  20. Protective Effect of Infliximab, a Tumor Necrosis Factor-Alfa Inhibitor, on Bleomycin-Induced Lung Fibrosis in Rats. (United States)

    Altintas, Nejat; Erboga, Mustafa; Aktas, Cevat; Bilir, Bulent; Aydin, Murat; Sengul, Aysun; Ates, Zehra; Topcu, Birol; Gurel, Ahmet


    We aimed to investigate the preventive effect of Infliximab (IFX), a tumor necrosis factor (TNF)-α inhibitor, on bleomycin (BLC)-induced lung fibrosis in rats. Rats were assigned into four groups as follows: I-BLC group, a single intra-tracheal BLC (2.5 mg/kg) was installed; II-control group, a single intra-tracheal saline was installed; III-IFX + BLC group, a single-dose IFX (7 mg/kg) was administered intraperitoneally (i.p.), 72 h before the intra-tracheal BLC installation; IV-IFX group, IFX (7 mg/kg) was administered alone i.p. on the same day with IFX + BLC group. All animals were sacrificed on the 14th day of BLC installation. Levels of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, interleukin (IL)-6, periostin, YKL-40, nitric oxide (NO) in rat serum were measured, as well as, myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activity, and reduced glutathione (GSH), hydroxyproline, malondialdehyde (MDA) content in lung homogenates. Lung tissues were stained with hematoxylin and eosin (H&E) for quantitative histological evaluation. The inducible nitric oxide synthase (iNOS) expression and cell apoptosis in the lung tissues were determined quantitatively by immunohistochemical staining (INOS) and by TUNNEL staining, respectively. BLC installation worsened antioxidant status (such as SOD, CAT, GPx, GSH, MPO), while it increased the serum TNF-α, TGF-β, IL-6, periostin, YKL-40, and lipid peroxidation, and collagen deposition, measured by MDA and hydroxyproline, respectively. IFX pretreatment improved antioxidant status as well as BLC-induced lung pathological changes, while it decreased the TNF-α, TGF-β, IL-6, periostin, YKL-40, lipid peroxidation and collagen deposition. Finally, histological, immunohistochemical, and TUNNEL evidence also supported the ability of IFX to prevent BLC-induced lung fibrosis. The results of the present study indicate that IFX pretreatment can attenuate

  1. Fas ligand based immunotherapy: A potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth? (United States)

    Modiano, Jaime F; Bellgrau, Donald


    Fas ligand (FasL, CD95L) is a 40-kDa type II transmembrane protein that binds to Fas (CD95) receptors and promotes programmed cell death. Fas receptors are expressed at higher levels in many tumors than in normal cells; however, systemic administration of FasL or agonistic anti-Fas antibodies to mice with tumors caused lethal hepatitis. Somewhat paradoxically, elimination of Fas or FasL from tumors also leads to death induced by CD95 receptor/ligand elimination (DICE). At face value, this suggests that Fas signaling not only kills normal cells, but that it also is essential for tumor cell survival. Targeting this pathway may not only fail to kill tumors, but instead may even enhance their growth, leading some to report the demise of Fas ligand in cancer immunotherapy. But, to paraphrase Mark Twain, is this death an exaggeration? Here, we provide a careful examination of the literature exploring the merits of FasL as a novel form of cancer immunotherapy. With local administration using delivery vectors that achieve high levels of expression in the tumor environment, our results indicate that the potential for systemic toxicity is eliminated in higher mammals, and that a systemic anti-tumor response ensues, which delays or prevents progression and simultaneously attacks distant metastases.

  2. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors. (United States)

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M


    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically

  3. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors. (United States)

    El Meskini, Rajaa; Iacovelli, Anthony J; Kulaga, Alan; Gumprecht, Michelle; Martin, Philip L; Baran, Maureen; Householder, Deborah B; Van Dyke, Terry; Weaver Ohler, Zoë


    Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.

  4. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism.

    Directory of Open Access Journals (Sweden)

    Nibedita Chattopadhyay

    Full Text Available In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition.

  5. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism. (United States)

    Chattopadhyay, Nibedita; Berger, Allison J; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben


    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition.

  6. HEXIM1 as a Robust Pharmacodynamic Marker for Monitoring Target Engagement of BET Family Bromodomain Inhibitors in Tumors and Surrogate Tissues. (United States)

    Lin, Xiaoyu; Huang, Xiaoli; Uziel, Tamar; Hessler, Paul; Albert, Daniel H; Roberts-Rapp, Lisa A; McDaniel, Keith F; Kati, Warren M; Shen, Yu


    An increasing number of BET family protein inhibitors have recently entered clinical trials. It has been reported that attempts of monitoring target engagement of the BET bromodomain inhibitor OTX015 using literature-described putative pharmacodynamic markers, such as c-Myc, BRD2, etc., failed to detect pharmacodynamic marker responses in AML patients treated at active dose and those with clinical responses. Here, we report the identification and characterization of HEXIM1 and other genes as robust pharmacodynamic markers for BET inhibitors. Global gene expression profiling studies were carried out using cancer cells and surrogate tissues, such as whole blood and skin, to identify genes that are modulated by BET family proteins. Candidate markers were further characterized for concentration- and time-dependent responses to the BET inhibitor ABBV-075 in vitro and in vivo HEXIM1 was found to be the only gene that exhibited robust and consistent modulation by BET inhibitors across multiple cancer indications and surrogate tissues. Markers such as SERPINI1, ZCCHC24, and ZMYND8 were modulated by ABBV-075 and other BET inhibitors across cancer cell lines and xenograft tumors but not in blood and skin. Significant downregulation of c-Myc, a well-publicized target of BET inhibitors, was largely restricted to hematologic cancer cell lines. Incorporating well-characterized pharmacodynamic markers, such as HEXIM1 and other genes described here, can provide a better understanding of potential efficacy and toxicity associated with inhibiting BET family proteins and informs early clinical decisions on BET inhibitor development programs. Mol Cancer Ther; 16(2); 388-96. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Continuous Improvement of Physical Functioning in Ankylosing Spondylitis Patients by Tumor Necrosis Factor Inhibitors: Three-Year Followup and Predictors. (United States)

    van Weely, Salima F E; Kneepkens, Eva L; Nurmohamed, Mike T; Dekker, Joost; van der Horst-Bruinsma, Irene E


    To establish the 3-year outcome and course of physical functioning and spinal mobility impairments in patients routinely treated with tumor necrosis factor inhibitors (TNFi) and to find predictors of physical functioning and spinal mobility impairments. Ankylosing spondylitis (AS) patients eligible for TNFi were followed in a 3-year prospective observational study. Prediction models were developed with linear mixed modeling. Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI) were used as outcome measures for physical functioning and spinal mobility. A total of 257 patients were included and treated with etanercept (n = 174) or adalimumab (n = 83). Physical functioning improved significantly during the first 6 months after the start of TNFi. The BASFI score decreased from mean ± SD 5.4 ± 2.4 to 3.3 ± 2.6 at 6 months, and stabilized thereafter (BASFI third year score mean ± SD 3.6 ± 2.5). The BASMI showed no significant changes over time. Lower baseline BASFI and BASMI scores predicted a better level of physical functioning and spinal mobility after 3 years of TNFi therapy. Other predictors for a better 3-year outcome and course of physical functioning included absence of comorbidity, physical activity, younger age, and lower body mass index at baseline. Physical functioning in routinely TNFi-treated AS patients improved up to 6 months and stabilized thereafter. Therefore, it would be better to extend the period of evaluation of TNFi treatment to 6 months rather than the 3 months currently used. The risk factors of long-term physical functioning found in this study might help to identify patients at risk at an earlier stage and improve treatment strategy. © 2016, American College of Rheumatology.

  8. The effect of circadian rhythm on pharmacokinetics and metabolism of the Cdk inhibitor, roscovitine, in tumor mice model. (United States)

    Sallam, Hatem; El-Serafi, Ahmed T; Filipski, Elisabeth; Terelius, Ylva; Lévi, Francis; Hassan, Moustapha


    Roscovitine is a selective Cdk-inhibitor that is under investigation in phase II clinical trials under several conditions, including chemotherapy. Tumor growth inhibition has been previously shown to be affected by the dosing time of roscovitine in a Glasgow osteosarcoma xenograft mouse model. In the current study, we examined the effect of dose timing on the pharmacokinetics, biodistribution and metabolism of this drug in different organs in B6D2F1 mice. The drug was orally administered at resting (ZT3) or activity time of the mice (ZT19) at a dose of 300 mg/kg. Plasma and organs were removed at serial time points (10, 20 and 30 min; 1, 2, 4, 6, 8, 12 and 24 h) after the administration. Roscovitine and its carboxylic metabolite concentrations were analyzed using HPLC-UV, and pharmacokinetic parameters were calculated in different organs. We found that systemic exposure to roscovitine was 38% higher when dosing at ZT3, and elimination half-life was double compared to when dosing at ZT19. Higher organ concentrations expressed as (organ/plasma) ratio were observed when dosing at ZT3 in the kidney (180%), adipose tissue (188%), testis (132%) and lungs (112%), while the liver exposure to roscovitine was 120% higher after dosing at ZT19. The metabolic ratio was approximately 23% higher at ZT19, while the intrinsic clearance (CLint) was approximately 67% higher at ZT19, indicating faster and more efficient metabolism. These differences may be caused by circadian differences in the absorption, distribution, metabolism and excretion processes governing roscovitine disposition in the mice. In this article, we describe for the first time the chronobiodistribution of roscovitine in the mouse and the contribution of the dosing time to the variability of its metabolism. Our results may help in designing better dosing schedules of roscovitine in clinical trials.

  9. Increased Tumor Response to Neoadjuvant Therapy Among Rectal Cancer Patients Taking Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers (United States)

    Morris, Zachary S.; Saha, Sandeep; Magnuson, William J.; Morris, Brett A.; Borkenhagen, Jenna F.; Ching, Alisa; Hirose, Gayle; McMurry, Vanesa; Francis, David M.; Harari, Paul M.; Chappell, Rick; Tsuji, Stuart; Ritter, Mark A.


    BACKGROUND Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are commonly used antihypertensive medications that have been reported to affect aberrant angiogenesis and the dysregulated inflammatory response. Because of such mechanisms, it was hypothesized that these medications might affect the tumor response to neoadjuvant radiation in patients with rectal cancer. METHODS One hundred fifteen patients who were treated with neoadjuvant radiation at the University of Wisconsin (UW) between 1999 and 2012 were identified. Univariate analyses were performed with anonymized patient data. In a second independent data set, 186 patients with rectal cancer who were treated with neoadjuvant radiation at the Queen’s Medical Center of the University of Hawaii (UH) between 1995 and 2010 were identified. These data were independently analyzed as before. Multivariate analyses were performed with aggregate data. RESULTS Among patients taking ACEIs/ARBs in the UW data set, a significant 3-fold increase in the rate of pathologic complete response (pCR) to neoadjuvant therapy (52% vs 17%, P = .001) was observed. This finding was confirmed in the UH data set, in which a significant 2-fold–increased pCR rate (24% vs 12%, P = .03) was observed. Identified patient and treatment characteristics were otherwise balanced between patients taking and not taking ACEIs/ARBs. No significant effect was observed on pCR rates with other medications, including statins, metformin, and aspirin. Multivariate analyses of aggregate data identified ACEI/ARB use as a strong predictor of pCR (odds ratio, 4.02; 95% confidence interval, 2.06–7.82; P ACEIs/ARBs among patients with rectal cancer is associated with a significantly increased rate of pCR after neoadjuvant treatment. PMID:27203227

  10. The histone deacetylase inhibitor romidepsin synergizes with lenalidomide and enhances tumor cell death in T-cell lymphoma cell lines (United States)

    Cosenza, Maria; Civallero, Monica; Fiorcari, Stefania; Pozzi, Samantha; Marcheselli, Luigi; Bari, Alessia; Ferri, Paola; Sacchi, Stefano


    ABSTRACT We investigated the cytotoxic interactions of romidepsin, a histone deacetylase inhibitor, and lenalidomide, an immunomodulatory agent, in a T-cell lymphoma preclinical model. Hut-78 and Karpas-299 cells were treated with romidepsin and lenalidomide alone and in combination. The interaction between romidepsin and lenalidomide was evaluated by the Chou–Talalay method, and cell viability and clonogenicity were also evaluated. Apoptosis, reactive oxygen species (ROS) levels, and cell cycle distribution were determined by flow cytometry. ER stress, caspase activation, and the AKT, MAPK/ERK, and STAT-3 pathways were analyzed by Western blot. Combination treatment with romidepsin and lenalidomide had a synergistic effect in Hut-78 cells and an additive effect in Karpas-299 cells at 24 hours and did not decrease the viability of normal peripheral blood mononuclear cells. This drug combination induced apoptosis, increased ROS production, and activated caspase-8, −9, −3 and PARP. Apoptosis was associated with increased hallmarks of ER stress and activation of UPR sensors and was mediated by dephosphorylation of the AKT, MAPK/ERK, and STAT3 pathways.The combination of romidepsin and lenalidomide shows promise as a possible treatment for T-cell lymphoma. This work provides a basis for further studies. PMID:27657380

  11. SKLB-287, a novel oral multikinase inhibitor of EGFR and VEGFR2, exhibits potent antitumor activity in LoVo colorectal tumor model. (United States)

    Chen, X; Liu, Y; Yang, H-W; Zhou, S; Cheng, C; Zheng, M-W; Zhong, L; Fu, X-Y; Pan, Y-L; Ma, S; Tang, Y; Chen, Y-Z; Li, L-L; Yang, S-Y


    Colorectal cancer (CRC) is the third common cancer and most of the chemotherapies of CRC currently used often suffer limited efficacy and large side effects. Targeted small-molecule by anti-tumor drugs are thought a promising strategy for improving the efficacy and reducing the side effects. In this investigation, we report a novel multikinase inhibitor, termed SKLB-287, which was discovered by us recently. SKLB-287 could efficiently inhibit the activation of endothelial growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2). It displayed very good anti-proliferative activity against LoVo CRC cells and considerable antiangiogenic potency in transgenic zebrafish embryos. Oral administration of SKLB-287 resulted in dose-dependent suppression of tumor growth in LoVo xenograft mouse model. Immunohistochemistry was adopted to examine the in vivo anti-tumor mechanism of action of SKLB-287.

  12. A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Thougaard, Annemette V; Jensen, Peter Buhl


    Inhibitor of nicotinamide phosphoribosyltransferase APO866 is a promising cancer drug currently in phase II clinical trials in oncology. Here, we present a strategy for increasing the therapeutic potential of APO866 through the rescue of normal tissues by coadministration of nicotinic acid (Vitamin...... B(3)). We examined the toxicity profile of APO866 in B6D2F1 mice and the effect of oral administration of nicotinic acid on tissue toxicity. Nicotinic acid (50 mg/kg) protects mice from death and severe toxicity from an APO866 dose (60 mg/kg) four times the monotherapy maximum tolerated dose (15 mg...

  13. Development of a Serum Biomarker Assay That Differentiates Tumor-Associated MUC5AC (NPC-1C ANTIGEN from Normal MUC5AC

    Directory of Open Access Journals (Sweden)

    Janos Luka


    Full Text Available A serum ELISA using a monoclonal antibody that detects a MUC5AC-related antigen (NPC-1C antigen expressed by pancreatic and colorectal cancer was developed. The NPC-1C antibody reacts with specific epitopes expressed by tumor-associated MUC5AC that does not appear on MUC5AC from normal tissues. Based on observations of a highly specific antibody, we tested the ELISA to differentiate serum from healthy blood donors compared to serum from patients with colorectal or pancreatic cancer. Additionally, patient tumor tissue was stained to examine the expression pattern of MUC5AC-related antigen in pancreatic and colorectal cancers. The results indicate the NPC-1C antibody ELISA distinguished serum of cancer patients from normal donors with very good sensitivity and specificity. Most patient's tumor biopsy exhibited NPC-1C antibody reactivity, indicating that tumor-associated MUC5AC antigen from tumor is shed into blood, where it can be detected by the NPC-1C antibody ELISA. This serum test provides a new tool to aid in the diagnosis of these cancers and immune monitoring of cancer treatment regimens.

  14. Glucose transporter Glut-1 is detectable in peri-necrotic regions in many human tumor types but not normal tissues: Study using tissue microarrays. (United States)

    Airley, Rachel; Evans, Andrew; Mobasheri, Ali; Hewitt, Stephen M


    The hypoxic tumor microenvironment is associated with malignant progression and poor treatment response. The glucose transporter Glut-1 is a prognostic factor and putative hypoxia marker. So far, studies of Glut-1 in cancer have utilized conventional immunohistochemical analysis in a series of individual biopsy or surgical specimens. Tissue microarrays, however, provide a rapid, inexpensive means of profiling biomarker expression. To evaluate hypoxia markers, tissue cores must show the architectural features of hypoxia; i.e. viable tissue surrounding necrotic regions. Glut-1 may be a useful biomarker to validate tissue microarrays for use in studies of hypoxia-regulated genes in cancer. In this study, we carried out immunohistochemical detection of Glut-1 protein in many tumor and normal tissue types in a range of tissue microarrays. Glut-1 was frequently found in peri-necrotic regions, occurring in 9/34 lymphomas, 6/12 melanomas, and 5/16 glioblastomas; and in 43/54 lung, 22/84 colon, and 23/60 ovarian tumors. Expression was rare in breast (6/40) and prostate (1/57) tumors, and in normal tissue, was restricted to spleen, tongue, and CNS endothelium. In conclusion, tissue microarrays enable the observation of Glut-1 expression in peri-necrotic regions, which may be linked to hypoxia, and reflect previous studies showing differential Glut-1 expression across tumor types and non-malignant tissue.

  15. The Rates of Serious Infections in HIV-infected Patients Who Received Tumor Necrosis Factor (TNF)-α Inhibitor Therapy for Concomitant Autoimmune Diseases (United States)

    Wangsiricharoen, Sintawat; Ligon, Colin; Gedmintas, Lydia; Dehrab, Admad; Tungsiripat, Marisa; Bingham, Clifton; Lozada, Carlos; Calabrese, Leonard


    Objectives To estimate the incidence of serious infections in patients with HIV infection and autoimmune disease who were treated with tumor necrosis factor (TNF) -α inhibitor therapy, and to compare these rates among stratified viral load levels. Methods Using a unified search strategy, four centers identified HIV-infected patients exposed to TNF-α inhibitors. Patient characteristics and infection data were assessed via chart review in all patients who were ≥18 years old and received TNF-α inhibitor therapy after HIV diagnosis between January 1999 and March 2015. Results Twenty-three patients with 26 uses of TNF-α inhibitor therapy provided 86.7 person-years of follow-up. Two (8.7%) experienced at least 1 serious infection episode, an overall incidence rate of 2.55 per 100 patient-years (95% CI 0.28–9.23). The incidence rate per 100 patient-years was 3.28 (95% CI 0.04–18.26) among patients with viral load > 500 copies/mL at therapy initiation and 2.09 (0.03–11.65) among patients with viral load ≤ 500 copies/mL. Conclusion This study suggests that TNF-α inhibitors may have a comparable rate of serious infections to the range of those observed in registry databases when used in patients with HIV infection under active care. PMID:27332039

  16. Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia (United States)


    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific

  17. Tumor control and normal tissue complications in BNCT treatment of nodular melanoma: A search for predictive quantities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, S.J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina)], E-mail:; Casal, M. [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Pereira, M.D. [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Agencia Nacional de Promocion Cientifica y Tecnologica, PAV 22393 (Argentina); Santa Cruz, G.A. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Carando, D.G. [CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina); Dpto. de Matematica, Pab. I Ciudad Universitaria, UBA, (1428) Cdad. de Buenos Aires (Argentina); Blaumann, H. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Bonomi, M. [CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina); Calzetta Larrieu, O.; Feld, D.; Fernandez, C. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Gossio, S. [FCEyN, Pab. II Ciudad Universitaria, UBA, (1428) Cdad. de Buenos Aires (Argentina); Jimenez Rebagliatti, R.; Kessler, J.; Longhino, J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Menendez, P. [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Nievas, S. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Roth, B.M.C [Instituto de Oncologia Angel H. Roffo, Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Liberman, S.J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina)


    A previous work concerning tumor control and skin damage in cutaneous melanoma treatments with BNCT has been extended to include doses, volumes and responses of 104 subcutaneous lesions from all patients treated in Argentina. Acute skin reactions were also scored for these patients, and cumulative dose-area histograms and dose-based figures of merit for skin were calculated. Broadening the tumor response analysis with the latest data showed that the (minimum or mean) tumor dose is not a good predictor of the observed clinical outcome by itself. However, when the tumor volume was included in the model as second explicative variable, the dose increases its significance and becomes a critical variable jointly with the volume (p-values<0.05). A preliminary analysis to estimate control doses for two groups of tumor sizes revealed that for small tumor volumes (< 0.1 cm{sup 3}) doses greater than 20 Gy-Eq produce a high tumor control (> 80%). However, when tumor volumes are larger than 0.1 cm{sup 3}, control is moderate (< 40%) even for minimum doses up to 40 Gy-Eq. Some quantities based on skin doses, areas and complication probabilities were proposed as candidates for predicting the severity of the early skin reactions. With the current data, all the evaluated figures of merit derived similar results: ulceration is present among the cases for which these quantities take the highest values.

  18. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo


    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma.

  19. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. (Fox Chase Cancer Center, Philadelphia, PA (United States))


    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  20. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion. (United States)

    Sokolova, Maria; Turunen, Mikko; Mortusewicz, Oliver; Kivioja, Teemu; Herr, Patrick; Vähärautio, Anna; Björklund, Mikael; Taipale, Minna; Helleday, Thomas; Taipale, Jussi


    To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells. In contrast, depletion of CASP8AP2 in normal cells triggers a response that arrests viable cells in S-phase. The arrest is dependent on p53, and preceded by accumulation of markers of DNA damage, indicating that nucleosome depletion is sensed in normal cells via a DNA-damage -like response that is defective in tumor cells.

  1. Characterization and application of two novel monoclonal antibodies against human OX40: costimulation of T cells and expression on tumor as well as normal gland tissues. (United States)

    Xie, F; Wang, Q; Chen, Y; Gu, Y; Shi, Q; Ge, Y; Yu, G; Wu, H; Mao, Y; Wang, X; Zhou, Y; Zhang, X


    OX40, a membrane-bound molecule of the tumor-necrosis-factor-receptor superfamily, is a critical costimulatory receptor during the immune response. Here, we newly generated two specific mouse antihuman OX40 monoclonal antibodies (mAbs) (2G2 and 1F7), whose specificities are quite different from the available OX40 mAb (ACT35) by competition assay. It was also found that both mAbs could enhance the proliferation, activation and differentiation of T lymphocytes primed by anti-CD3 mAb. These results evidenced that both were functional antihuman OX40 mAbs. Furthermore, stained by 2G2 and 1F7, FCM and immunohistochemistry detected the constitutive expression of OX40 on tumor cell lines from epithelium, breast cancer and glioma tissues. Meanwhile, the non-tumor tissues (thyroid gland, stomach gland) were also found OX40 expression. These results suggested that OX40 is not only expressed in activated T cells, but also in some tumors as well as normal gland tissues. Such expression pattern indicated that OX40 may be a valuable surface antigen in unveiling its expression and function outside the immune system. Briefly, these novel antibodies may contribute to the evaluation of the mechanism of tumor metastasis and eventually shed light on further study of tumor immunotherapy and autoimmune diseases.

  2. Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts1 (United States)

    Yamashita, Yoji; Krauze, Michal T.; Kawaguchi, Tomohiro; Noble, Charles O.; Drummond, Daryl C.; Park, John W.; Bankiewicz, Krystof S.


    Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in single-agent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas. PMID:17018695

  3. Analyzing Ph value, energy and phospholipid metabolism of various cerebral tumors and normal brain tissue with 31P magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wei Tan; Guangyao Wu; Junmo Sun


    BACKGROUND: 31P magnetic resonance spectroscopy (31P MRS) can be used to non-injuredly and dynamicly detect various metabolites including phosphorus in organis and reflect changes of phospholipid metabolism and energy metabolism in tissue and pH value in cells.OBJECTIVE: To observe changes of pH value, phospholipid metabolism and energy metabolism of various cerebral tumors and normal brain tissue with 31P MRS.DESIGN: Semi-quantitative contrast observation.PARTICIPANTS: A total of 44 patients with cerebral tumor diagnosed with surgery operation were selected from the Department of Magnetic Resonance, Central South Hospital, Wuhan University from September 2004 to June 2006. All the subjects had complete 31P MRS data before steroid and operation. Among them,16 patients had glioma of grade Ⅱ-Ⅲ, 12 spongioblastoma and 16 meningioma. The mean age was (45±6)years. Another 36 subjects without focus on cerebral MRI were regarded as normal group, including 19 males and 18 females, and the mean age was (41±4) years. Included subjects were consent.METHODS: Eclipse1.5T MRS (Philips Company) was used to collect wave spectrum; jMRUI(1.3) was used to analyze experimental data and calculate pH value in voxel and ratios of phosphocreatine (PCr)/inorganic phosphate (Pi), PCr/phosphodiesterase (PDE) and phosphomonoesterase (PME)/β-adenosine triphosphate (β-ATP) of various metabolites. 31P MRS results were compared with t test between tumor patients and normal subjects.MAIN OUTCOME MEASURES: Changes of phospholipid metabolism (PME/PDE), energy metabolism (PCr/ATP) and pH value of various cerebral tumors and normal brain tissues.RESULTS: A total of 44 cases with cerebral tumor and 36 normal subjects were involved in the final analysis. pH value and semi-quantitative measurements of normal brain tissues and various cerebral tumors: ① pH value at top occipital region and temple occipital region of normal brain tissue was 7.04±0.02;PCt/β-ATP was 1.51 ±0.03; PCt/Pi was 2.85

  4. Quantitative RT-PCR assays for the determination of urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 mRNA in primary tumor tissue of breast cancer patients: comparison to antigen quantification by ELISA.

    NARCIS (Netherlands)

    Biermann, J.C.; Holzscheiter, L.; Kotzsch, M.; Luther, T.; Kiechle-Bahat, M.; Sweep, F.C.; Span, P.N.; Schmitt, M.; Magdolen, V.


    Urokinase-type plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor type 1 (PAI-1) play a key role in tumor-associated processes such as the degradation of extracellular matrix proteins, tissue remodeling, cell adhesion, migration, and invasion. High antigen levels of uPA an

  5. Effect of MK-906, a specific 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates in normal men. (United States)

    Rittmaster, R S; Stoner, E; Thompson, D L; Nance, D; Lasseter, K C


    To determine the hormonal effects of MK-906, an orally active 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates, 12 healthy men were given 10, 20, 50, and 100 mg MK-906 2 weeks apart in randomized order in a 4-period crossover design. Serum testosterone (T), dihydrotestosterone (DHT), androstanediol glucuronide, and androsterone glucuronide were measured before and 24 hours after each dose. The effect of MK-906 on glucuronyl transferase activity, the enzyme responsible for androstanediol glucuronide and androsterone glucuronide formation, was assessed in vitro using rat prostate tissue. Serum T levels were unchanged after all doses. Serum DHT, androstanediol glucuronide, and androsterone glucuronide were suppressed by 70, 40, and 56%, respectively, after the 10-mg dose, and by 82, 52, and 66% after the 100-mg dose (P less than 0.02 for the comparison between the 10 and 100-mg doses for all three steroids), respectively. Baseline serum T and DHT levels were strongly correlated (R = 0.89, P = 0.0002), as were androstanediol glucuronide and androsterone glucuronide levels (R = 0.78, P = 0.003), but there was no correlation between DHT levels and the levels of either conjugated steroid. MK-906 had no effect on glucuronyl transferase activity in vitro. It was concluded that single doses of MK-906 suppress both conjugated and unconjugated 5 alpha-reduced androgens. While all three steroids appeared to be good markers of systemic 5 alpha-reductase inhibition, further research will be needed to determine which steroid best reflects tissue DHT levels in patients receiving these inhibitors.

  6. Influence of fatty acid synthase inhibitor orlistat on the DNA repair enzyme O6-methylguanine-DNA methyltransferase in human normal or malignant cells in vitro. (United States)

    Cioccoloni, Giorgia; Bonmassar, Laura; Pagani, Elena; Caporali, Simona; Fuggetta, Maria Pia; Bonmassar, Enzo; D'Atri, Stefania; Aquino, Angelo


    Tetrahydrolipstatin (orlistat), an inhibitor of lipases and fatty acid synthase, is used orally for long-term treatment of obesity. Although the drug possesses striking antitumor activities in vitro against human cancer cells and in vitro and in vivo against animal tumors, it also induces precancerous lesions in rat colon. Therefore, we tested the in vitro effect of orlistat on the expression of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that plays an essential role in the control of mutagenesis and carcinogenesis. Western blot analysis demonstrated that 2-day continuous exposure to 40 µM orlistat did not affect MGMT levels in a human melanoma cell line, but downregulated the repair protein by 30-70% in human peripheral blood mononuclear cells, in two leukemia and two colon cancer cell lines. On the other hand, orlistat did not alter noticeably MGMT mRNA expression. Differently from lomeguatrib (a false substrate, strong inhibitor of MGMT) orlistat did not reduce substantially MGMT function after 2-h exposure of target cells to the agent, suggesting that this drug is not a competitive inhibitor of the repair protein. Combined treatment with orlistat and lomeguatrib showed additive reduction of MGMT levels. More importantly, orlistat-mediated downregulation of MGMT protein expression was markedly amplified when the drug was combined with a DNA methylating agent endowed with carcinogenic properties such as temozolomide. In conclusion, even if orlistat is scarcely absorbed by oral route, it is possible that this drug could reduce local MGMT-mediated protection against DNA damage provoked by DNA methylating compounds on gastrointestinal tract epithelial cells, thus favoring chemical carcinogenesis.

  7. Normal Coagulation (United States)


    clotting or inflam - mation. These include thrombin, histamine, acetylcholine, bradykinin, epinephrine, interleukins, shear stress, and vaso...humans include the liver, spleen, adipose tissue, and cells of the vasculature, including endothelial cells, smooth muscle cells, macrophages , and...1999. 225. Quax PH, et al: Protein and messenger RNA levels of plasminogen activators and inhibitors analyzed in 22 human tumor cell lines. Cancer

  8. Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. (United States)

    Gremonprez, Félix; Descamps, Benedicte; Izmer, Andrei; Vanhove, Christian; Vanhaecke, Frank; De Wever, Olivier; Ceelen, Wim


    Cytoreductive surgery combined with intraperitoneal chemotherapy (IPC) is currently the standard treatment for selected patients with peritoneal carcinomatosis of colorectal cancer. However, especially after incomplete cytoreduction, disease progression is common and this is likely due to limited tissue penetration and efficacy of intraperitoneal cytotoxic drugs. Tumor microenvironment-targeting drugs, such as VEGF(R) and PDGFR inhibitors, can lower the heightened interstitial fluid pressure in tumors, a barrier to drug delivery. Here, we investigated whether tumor microenvironment-targeting drugs enhance the effectiveness of intraperitoneal chemotherapy. A mouse xenograft model with two large peritoneal implants of colorectal cancer cells was developed to study drug distribution and tumor physiology during intraperitoneal Oxaliplatin perfusion. Mice were treated for six days with either Placebo, Imatinib (anti-PDGFR, daily), Bevacizumab (anti-VEGF, twice) or Pazopanib (anti-PDGFR, -VEGFR; daily) followed by intraperitoneal oxaliplatin chemotherapy. Bevacizumab and Pazopanib significantly lowered interstitial fluid pressure, increased Oxaliplatin penetration (assessed by laser ablation inductively coupled plasma mass spectrometry) and delayed tumor growth of peritoneal implants (assessed by MRI). Our findings suggest that VEGF(R)-inhibition may improve the efficacy of IPC, particularly for patients for whom a complete cytoreduction might not be feasible.

  9. Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Toshihisa Ishikawa


    Full Text Available Photodynamic diagnosis (PDD is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP-binding cassette (ABC transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD. Protein kinase inhibitors are suggested to potentially enhance the PDD efficacy by blocking ABCG2-mediated porphyrin efflux from cancer cells. It is of great interest to develop potent ABCG2-inhibitors that can be applied to PDD for brain tumor therapy. This review article addresses a pivotal role of human ABC transporter ABCG2 in PDD as well as a new approach of quantitative structure-activity relationship (QSAR analysis to design potent ABCG2-inhibitors.

  10. Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT phosphorylation, in adult subjects with solid tumors containing activated AKT. (United States)

    Garrett, Christopher R; Coppola, Domenico; Wenham, Robert M; Cubitt, Christopher L; Neuger, Anthony M; Frost, Timothy J; Lush, Richard M; Sullivan, Daniel M; Cheng, Jin Q; Sebti, Saïd M


    Triciribine phosphate is a potent, small-molecule inhibitor of activation of all three isoforms of AKT in vitro. AKT is an intracellular protein that, when activated, leads to cellular division; it is dysregulated in a large number of malignancies, and constitutively activating AKT mutations are present in a minority of cancers. In this phase I study triciribine phosphate monohydrate (TCN-PM) was administered to subjects whose tumors displayed evidence of increased AKT phosphorylation (p-AKT) as measured by immunohistochemical analysis (IHC). TCN-PM was administered over 30 min on days 1, 8 and 15 of a 28-day cycle. Tumor biopsy specimens, collected before treatment and on day +15, were assessed for p-AKT by IHC and western blot analyses. Nineteen subjects were enrolled; 13 received at least one cycle of therapy, and a total of 34 complete cycles were delivered. One subject was treated at the 45 mg/m(2) dose before the study was closed due to its primary objective having been met. No dose-limiting toxic effects were observed. Modest decreases in tumor p-AKT following therapy with TCN-PM were observed at the 35 mg/m(2) and 45 mg/m(2) dose levels, although definitive conclusions were limited by the small sample size. These preliminary data suggest that treatment with TCN-PM inhibits tumor p-AKT at doses that were tolerable. Although single agent activity was not observed in this enriched population, further combination studies of TCN-PM with other signal transduction pathway inhibitors in solid tumors is warranted.

  11. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. (United States)

    Zhao, Genshi; Li, Wei-Ying; Chen, Daohong; Henry, James R; Li, Hong-Yu; Chen, Zhaogen; Zia-Ebrahimi, Mohammad; Bloem, Laura; Zhai, Yan; Huss, Karen; Peng, Sheng-Bin; McCann, Denis J


    The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2-mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic.

  12. SU-E-J-190: Characterization of Radiation Induced CT Number Changes in Tumor and Normal Lung During Radiation Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C; Liu, F; Tai, A; Gore, E; Johnstone, C; Li, X [Medical College of Wisconsin Milwaukee WI (United States)


    Purpose: To measure CT number (CTN) changes in tumor and normal lung as a function of radiation therapy (RT) dose during the course of RT delivery for lung cancer using daily IGRT CT images and single respiration phase CT images. Methods: 4D CT acquired during planning simulation and daily 3D CT acquired during daily IGRT for 10 lung cancer cases randomly selected in terms of age, caner type and stage, were analyzed using an in-house developed software tool. All patients were treated in 2 Gy fractions to primary tumors and involved nodal regions. Regions enclosed by a series of isodose surfaces in normal lung were delineated. The obtained contours along with target contours (GTVs) were populated to each singlephase planning CT and daily CT. CTN in term of Hounsfield Unit (HU) of each voxel in these delineated regions were collectively analyzed using histogram, mean, mode and linear correlation. Results: Respiration induced normal lung CTN change, as analyzed from single-phase planning CTs, ranged from 9 to 23 (±2) HU for the patients studied. Normal lung CTN change was as large as 50 (±12) HU over the entire treatment course, was dose and patient dependent and was measurable with dose changes as low as 1.5 Gy. For patients with obvious tumor volume regression, CTN within the GTV drops monotonically as much as 10 (±1) HU during the early fractions with a total dose of 20 Gy delivered. The GTV and CTN reductions are significantly correlated with correlation coefficient >0.95. Conclusion: Significant RT dose induced CTN changes in lung tissue and tumor region can be observed during even the early phase of RT delivery, and may potentially be used for early prediction of radiation response. Single respiration phase CT images have dramatically reduced statistical noise in ROIs, making daily dose response evaluation possible.

  13. Identification, characterization, and cloning of TIP-B1, a novel protein inhibitor of tumor necrosis factor-induced lysis. (United States)

    Berleth, E S; Nadadur, S; Henn, A D; Eppolito, C; Shiojiri, S; Gurtoo, H L; Ehrke, M J; Mihich, E


    Some cancer cells evade elimination by virtue of their insensitivity to agents that induce apoptosis. Conversely, the side effects of anticancer agents could be diminished if normal cells were more resistant. To further elucidate the factors that contribute to the susceptibility of a cell to apoptosis, these investigations were designed to identify proteins isolated from cells exposed to low concentrations of tumor necrosis factor (TNF) that, when incubated with normally TNF-sensitive cells, protect these cells from TNF-induced cytotoxicity. TIP-B1, a novel protein, has been identified, purified, and characterized from cytosolic extracts of TNF-treated human fibroblasts. The approximately 27 kDa pI-4.5 TIP-B1 protein is unique based on both the sequence of three internal peptides (comprising 51 amino acids) and the nucleotide sequence of the corresponding 783-bp cDNA partial clone. Western blot analyses using polyclonal antisera raised against both the purified native TIP-B1 and the approximately 14 kDa product of the cDNA partial TIP-B1 clone, as well as Northern blot analyses using the cDNA insert as a probe, indicate that TIP-B1 may belong to a family of proteins that are expressed in a number of cell lines from diverse tissues. TNF-sensitive cells, when exposed to 4-10 microg/ml concentrations of TIP-B1 prior to the addition of TNF, are completely protected from TNF-induced lysis. Furthermore, TIP-B1 protects cells from apoptotic lysis induced by TNF. Preincubation of TIP-B1 with TNF does not affect the ability of TNF to induce lysis. Moreover, TIP-B1 does not seem to interfere with the interactions between TNF and the TNF receptors, based on a preliminary flow cytometric analysis of the cellular binding of biotinylated TNF. On the basis of these characteristics, TIP-B1 is not a soluble TNF receptor, an anti-TNF antibody, nor a protease that degrades TNF; yet TIP-B1 functions when added exogenously to cells. These characteristics, its novel sequence, and its

  14. Toxicological evaluation of the topoisomerase inhibitor, etoposide, in the model animal Caenorhabditis elegans and 3T3-L1 normal murine cells. (United States)

    Lee, So Young; Kim, Joo Yeon; Jung, Yu-Jin; Kang, Kyungsu


    Etoposide, a topoisomerase II inhibitor, has been widely used as a clinical anticancer drug to treat diverse cancer patients. Since not only rapidly dividing cancer cells but also the cells of normal human tissues and every living organism in environmental ecosystems have topoisomerases, it is crucial to study the toxicity of etoposide in other organisms in addition to cancer cells. In this study, we evaluated the toxicity of etoposide in both a soil nematode, Caenorhabditis elegans, and 3T3-L1 normal murine cells. Etoposide significantly retarded the growth, egg laying, and hatching in C. elegans. Etoposide also affected the reproductive gonad tissue, decreased the number of germ cells and induced abnormally enlarged nuclei in C. elegans. In addition, etoposide inhibited 3T3-L1 cell proliferation, with IC50 values of 37.8 ± 7.3 and 9.8 ± 1.8 μM after 24 and 48 hours of treatment, respectively, via the induction of cell cycle arrest at the G2/M phase and apoptotic cell death. Etoposide also induced nuclear enlargement in 3T3-L1 normal murine cells. The reproductive toxicity and abnormal nuclear morphological changes seemed to correlate with the adverse effects of etoposide. We suggest that these experimental platforms, i.e., the toxicological evaluation of both nematodes and 3T3-L1 cells, may be useful to study the mechanisms underlying the side effects of chemicals, including topoisomerase inhibitors. © 2017 Wiley Periodicals, Inc.


    Directory of Open Access Journals (Sweden)

    Alla A Godzenko


    Full Text Available The course of uveitis in patients with ankylosing spondylitis (AS does not always correlate with inflammation in the axial skeleton and peripheral joints. Effect of tumor necrosis factor α (TNFα inhibitors on uveitis has been insufficiently studied yet, unlike their effect on the peripheral joints and spine.Objective. To compare the frequency of uveitis attacks in patients with AS during treatment with TNFα inhibitors and the conventional anti-inflammatory therapy.Materials and Methods. The study included 48 patients with AS and recurrent uveitis treated with TNFα inhibitors: 25 – infliximab, 15 – adalimumab, 9 – etanercept; 7 patients received two or more drugs sequentially. Median [25th, 75th percentiles] of the treatment duration was 3 [3.5; 5] years. The duration of treatment since the first attack of uveitis until administration of TNFα inhibitors was 5 [5; 9.7] years. Eighteen patients received only nonsteroidal anti-inflammatory drugs (NSAIDs, 30 patients received NSAIDs and basic anti-inflammatory drugs (DMARDs, including sulfasalazine (n = 23, methotrexate (n = 4, and cyclosporine (n = 4.Results. The median number of uveitis exacerbations during the standard anti-inflammatory therapy was 1 [0.4; 3] per year; during treatment with TNFα inhibitors – 0 [0; 0.5] per year (p = 0.0007. In 19 of 48 patients (40%, no exacerbations of uveitis were registered during therapy with these drugs. The frequency of uveitis attacks in patients treated with infliximab decreased from 1 [0.2; 2.75] to 0.1 [0; 0.8] episodes per year (p = 0.002, adalimumab – from 1.75 [1; 4.5] to 0 [0; 0.07] (p = 0.04, etanercept – from 0.95 [0.5; 1.75] to 0 [0; 0.07] (p = 0.001.Conclusion. Administration of TNFα inhibitors significantly reduces the frequency of uveitis attacks in patients with AS.

  16. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage (United States)

    Srivenugopal, Kalkunte S.


    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O6-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O6-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF. PMID:24193513

  17. Annual costs of tumor necrosis factor inhibitors using real-world data in a commercially insured population in the United States. (United States)

    Schabert, Vernon F; Watson, Crystal; Gandra, Shravanthi R; Goodman, Seth; Fox, Kathleen M; Harrison, David J


    To calculate annual cost per treated patient of tumor necrosis factor (TNF) inhibitors etanercept, adalimumab, and infliximab for common approved indications, based on actual TNF-inhibitor use in clinical practice. Adults with ≥1 claim for etanercept, adalimumab, or infliximab between January 2005 and March 2009 were identified from the IMS LifeLink™ Health Plan Claims Database. Patients new to therapy or continuing therapy (i.e., a prior claim for a TNF-inhibitor) were analyzed separately. Included patients had been enrolled from 180 days before the first TNF-inhibitor claim (index date) through 360 days after the index date and had a diagnosis during the pre-index period for rheumatoid arthritis, psoriasis, psoriatic arthritis, or ankylosing spondylitis. Patients with Crohn's disease, ulcerative colitis, or juvenile idiopathic arthritis were excluded. Annual costs were calculated using wholesale acquisition costs for the TNF-inhibitor and Medicare Physician Fee Schedule for drug administration. Costs from restarting or switching TNF-inhibitor therapy during the first year were included. A total of 27,704 patients (11,528 new, 16,176 continuing) had claims for etanercept, adalimumab, or infliximab, most commonly (65%) for treatment of rheumatoid arthritis. The most commonly used agent was etanercept (14,777 patients; 53%), followed by adalimumab (6862 patients; 25%) and infliximab (6065 patients; 22%). Annual cost per treated patient was etanercept $14,873, adalimumab $17,766, and infliximab $21,256 across all indications. Annual cost per treated patient by disease was (etanercept/adalimumab/infliximab): rheumatoid arthritis ($14,314/$17,700/$20,390), psoriasis ($17,182/$17,682/$23,935), psoriatic arthritis ($15,030/$18,483/$24,974), and ankylosing spondylitis ($14,254/$16,925/$23,056). New and continuing patients showed similar results, with etanercept having the lowest costs. This analysis is limited to three TNF-inhibitors and a US managed-care population

  18. Effect of a protease inhibitor on the stability of catalase in liver and blood from acatalasemic and normal mice.

    Directory of Open Access Journals (Sweden)



    Full Text Available Effects of Gabexate mesilate (GM (([ethyl-4-(6-guanidino hexanoyloxy benzoate] methane sulfonate, a protease inhibitor, on the activities of catalase in liver, erythrocytes and reticulocytes from acatalasemic mice were examined. Preincubation without GM at 37 degrees C for 160 min lowered the catalase activities of liver, erythrocytes and reticulocytes from acatalasemic mice, to 24%, 40% and 10% of the initial levels, respectively. But, preincubation with GM at 37 degrees C for 160 min delayed the rapid decrease in activities of residual catalases in the liver, erythrocytes and reticulocytes of acatalasemic mice to 65%, 93% and 85% of the initial values, respectively. At 20 degrees C or below, no reduction in catalase activity of reticulocytes from acatalasemic mice occurred with or even without GM. At pH 5.0, the decrease in catalase activity of acatalasemic mice was small both in the presence and the absence of GM. In the alkaline range, the reduction in the enzyme activity of the mutant mice without GM was enhanced with increase in pH values up to 8.5. But the presence of GM during preincubation at pH 7.5, retained the catalase activity of acatalasemic mice, to 64% of the activity at pH 6.5. These data suggest that some factors affected by GM, might be responsible for the low stability and activity of catalase in the acatalasemic mice.

  19. Ultra-fast local-haplotype variant calling using paired-end DNA-sequencing data reveals somatic mosaicism in tumor and normal blood samples. (United States)

    Sengupta, Subhajit; Gulukota, Kamalakar; Zhu, Yitan; Ober, Carole; Naughton, Katherine; Wentworth-Sheilds, William; Ji, Yuan


    Somatic mosaicism refers to the existence of somatic mutations in a fraction of somatic cells in a single biological sample. Its importance has mainly been discussed in theory although experimental work has started to emerge linking somatic mosaicism to disease diagnosis. Through novel statistical modeling of paired-end DNA-sequencing data using blood-derived DNA from healthy donors as well as DNA from tumor samples, we present an ultra-fast computational pipeline, LocHap that searches for multiple single nucleotide variants (SNVs) that are scaffolded by the same reads. We refer to scaffolded SNVs as local haplotypes (LH). When an LH exhibits more than two genotypes, we call it a local haplotype variant (LHV). The presence of LHVs is considered evidence of somatic mosaicism because a genetically homogeneous cell population will not harbor LHVs. Applying LocHap to whole-genome and whole-exome sequence data in DNA from normal blood and tumor samples, we find wide-spread LHVs across the genome. Importantly, we find more LHVs in tumor samples than in normal samples, and more in older adults than in younger ones. We confirm the existence of LHVs and somatic mosaicism by validation studies in normal blood samples. LocHap is publicly available at

  20. Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma. (United States)

    Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R


    Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Case Report of Lichen Planopilaris Occurring in a Pediatric Patient Receiving a Tumor Necrosis Factor α Inhibitor and a Review of the Literature. (United States)

    Jayasekera, Prativa S A; Walsh, Maeve L; Hurrell, Daniel; Parslew, Richard A G


    A 12-year-old girl with extended oligoarthritis treated with adalimumab presented with a short history of a progressive cutaneous eruption involving the legs and scalp. Physical examination and histologic results were consistent with lichen planopilaris. The adalimumab was discontinued. She received treatment with topical clobetasol propionate and the majority of the lesions resolved. Residual lesions and the extended oligoarthritis were then treated with sulfasalazine. Adalimumab is a tumor necrosis factor α (TNF-α) inhibitor used for the treatment of a variety of immunologically mediated conditions, including lichen planus and lichen planopilaris. TNF-α antagonists have been associated with paradoxical psoriasiform, lichenoid, eczematous, granulomatous, and acneiform eruptions. We detail this case and review the literature of lichenoid reactions secondary to TNF-α inhibitors.

  2. Enhanced antitumor immunity contributes to the radio-sensitization of ehrlich ascites tumor by the glycolytic inhibitor 2-deoxy-D-glucose in mice.

    Directory of Open Access Journals (Sweden)

    Abdullah Farooque

    Full Text Available Two-deoxy-D-glucose (2-DG, an inhibitor of glycolysis differentially enhances the radiation and chemotherapeutic drug induced cell death in cancer cells in vitro, while the local tumor control (tumor regression following systemic administration of 2-DG and focal irradiation of the tumor results in both complete (cure and partial response in a fraction of the tumor bearing mice. In the present studies, we investigated the effects of systemically administered 2-DG and focal irradiation of the tumor on the immune system in Ehrlich ascites tumor (EAT bearing Strain "A" mice. Markers of different immune cells were analyzed by immune-flow cytometry and secretary cytokines by ELISA, besides monitoring tumor growth. Increase in the expression of innate (NK and monocytes and adaptive CD4+cells, and a decrease in B cells (CD19 have been observed after the combined treatment, suggestive of activation of anti-tumor immune response. Interestingly, immature dendritic cells were found to be down regulated, while their functional markers CD86 and MHC II were up regulated in the remaining dendritic cells following the combination treatment. Similarly, decrease in the CD4(+ naïve cells with concomitant increase in activated CD4+ cells corroborated the immune activation. Further, a shift from Th2 and Th17 to Th1 besides a decrease in inflammatory cytokines was also observed in the animals showing complete response (cure; tumor free survival. This shift was also complimented by respective antibody class switching followed by the combined treatment. The immune activation or alteration in the homeostasis favoring antitumor immune response may be due to depletion in T regulatory cells (CD4(+CD25(+FoxP3(+. Altogether, these results suggest that early differential immune activation is responsible for the heterogenous response to the combined treatment. Taken together, these studies for the first time provided insight into the additional mechanisms underlying radio

  3. Overexpression of cyclooxygenase-2 in malignant peripheral nerve sheath tumor and selective cyclooxygenase-2 inhibitor-induced apoptosis by activating caspases in human malignant peripheral nerve sheath tumor cells.

    Directory of Open Access Journals (Sweden)

    Michiyuki Hakozaki

    Full Text Available BACKGROUND: Cyclooxygenase-2 (COX-2 is a key enzyme in the conversion of arachidonic acid to prostanoids, and its activation is associated with carcinogenesis as well as inflammation. The antitumor effect of selective COX-2 inhibitors has been noted in various malignancies. Malignant peripheral nerve sheath tumor (MPNST is a rare and aggressive soft tissue sarcoma for which effective treatments have not yet been established. The purpose of this study was to investigate a potential therapeutic role of COX-2 in MPNST. METHODS: We evaluated the expression of COX-2 in 44 cases of high-grade MPNST using immunohistochemical staining and compared the staining results with the characteristics and outcome of the patients. We also investigated the antitumor effect of etodolac, a selective COX-2 inhibitor, on MPNST cells in vitro using the MPNST cell line, FMS-1. RESULTS: Overexpression of COX-2 (≥50% positive cells was observed in 29 cases (65.9%, was significantly associated with a poor overall survival (P = 0.0495, and was considered an independent risk factor for a poor outcome by the results of both univariate and multivariate analysis. Etodolac induced apoptosis of FMS-1 cells through the activation of caspase-8, -9, and -3. Moreover, several caspase inhibitors significantly inhibited etodolac-induced apoptosis. CONCLUSIONS: Selective COX-2 inhibitors including etodolac had an antitumor effect on MPNST cells, and their use holds promise as a novel therapeutic strategy for patients with MPNST to improve their prognoses.

  4. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Lotte M E Berghauser Pont

    Full Text Available A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC, and we determined the most effective HDACi.SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness.Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes.LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti-tumor

  5. Effects of glucocorticoids and tumor necrosis factor-alpha inhibitors on both clinical and molecular parameters in patients with Takayasu arteritis

    Directory of Open Access Journals (Sweden)

    Raffaele Serra


    Full Text Available Objective: To explore the effect of sequential treatment with glucocorticoid and tumor necrosis factor-alpha inhibitors in patients with Takayasu arteritis (TA. Materials and Methods: In five patients with TA, the effects of the sequential treatment with prednisone for 5-7 months and then with adalimumab (ADA + methotrexate (MTX or infliximab + MTX, or with ADA only, for 12 months on both clinical and laboratory findings were evaluated. Results: All treatments improved both symptoms and laboratory parameters without the development of side-effects. Conclusions: It was hypothesized that MMP-9 and neutrophil gelatinase-associated lipocalin could be markers of the response to the treatments.

  6. The p53 Tumor Suppressor Protein Does Not Regulate Expression of Its Own Inhibitor, MDM2, Except under Conditions of Stress



    MDM2 is an important regulator of the p53 tumor suppressor protein. MDM2 inhibits p53 by binding to it, physically blocking its ability to transactivate gene expression, and stimulating its degradation. In cultured cells, mdm2 expression can be regulated by p53. Hence, mdm2 and p53 can interact to form an autoregulatory loop in which p53 activates expression of its own inhibitor. The p53/MDM2 autoregulatory loop has been elucidated within cultured cells; however, regulation of mdm2 expression...

  7. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17. cap alpha. -methylestradiol in normal and tumor-bearing rats

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.


    Tritiated 17..cap alpha..-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17..cap alpha..-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10/sup -10/M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17..cap alpha..-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 ..cap alpha..-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical.

  8. Regorafenib: A novel tyrosine kinase inhibitor: A brief review of its therapeutic potential in the treatment of metastatic colorectal carcinoma and advanced gastrointestinal stromal tumors

    Directory of Open Access Journals (Sweden)

    P Thangaraju


    Full Text Available Regorafenib is a novel oral multitargeted tyrosine kinase inhibitor having both antitumor and anti-angiogenic activities. Regorafenib was recently approved by US Food and Drug Administration in February 25, 2013 in the treatment for patients with advanced gastrointestinal stromal tumor and for the treatment of patients with metastatic colorectal carcinoma after disease progression or intolerance to imatinib mesylate and sunitinib therapy. Oral regorafenib demonstrates a high level of efficacy with acceptable tolerability with the 160 mg daily for 3 weeks followed by 1 week off schedule; a continuous schedule could be of interest. Hypertension, mucositis, hand foot skin reaction, diarrhea and asthenia are the most common side-effects. Regardless of these encouraging results, studies investigating, adjuvant and neoadjuvant settings are awaited, as well as trials using regorafenib in combination with chemotherapy or other targeted therapies. Clinical trials investigating regorafenib in other tumor types are ongoing.

  9. A fully automated two-step synthesis of an {sup 18}F-labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobus, D.; Giesen, Y.; Ullrich, R.; Backes, H. [Max Planck Institute for Neurological Research with Klaus-Joachim-Zuelch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne (Germany); Neumaier, B. [Max Planck Institute for Neurological Research with Klaus-Joachim-Zuelch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne (Germany)], E-mail:


    Radiolabelled epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors potentially facilitate the assessment of EGFR overexpression in tumors. Since elaborate multi-step radiosyntheses are required for {sup 18}F-labelling of EGFR-specific anilinoquinazolines we report on the development of a two-step click labelling approach that was adapted to a fully automated synthesis module. 6-(4-N,N-Dimethylaminocrotonyl)amido-4-(3-chloro-4-fluoro)phenylamino-7-{l_brace}3- [4-(2-[{sup 18}F]fluoroethyl)-2,3,4-triazol-1-yl]propoxy{r_brace}quinazoline ([{sup 18}F]6) was synthesized via Huisgen 1,3-dipolar cycloaddition between 2-[{sup 18}F]fluoroethylazide ([{sup 18}F]4) and the alkyne modified anilinoquinazoline precursor 5. PET images of PC9 tumor xenograft using the novel biomarker showed promising results to visualize EGFR overexpression.

  10. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. (United States)

    Bardeesy, Nabeel; Cheng, Kuang-Hung; Berger, Justin H; Chu, Gerald C; Pahler, Jessica; Olson, Peter; Hezel, Aram F; Horner, James; Lauwers, Gregory Y; Hanahan, Douglas; DePinho, Ronald A


    SMAD4 is inactivated in the majority of pancreatic ductal adenocarcinomas (PDAC) with concurrent mutational inactivation of the INK4A/ARF tumor suppressor locus and activation of the KRAS oncogene. Here, using genetically engineered mice, we determined the impact of SMAD4 deficiency on the development of the pancreas and on the initiation and/or progression of PDAC-alone or in combination with PDAC--relevant mutations. Selective SMAD4 deletion in the pancreatic epithelium had no discernable impact on pancreatic development or physiology. However, when combined with the activated KRAS(G12D) allele, SMAD4 deficiency enabled rapid progression of KRAS(G12D)-initiated neoplasms. While KRAS(G12D) alone elicited premalignant pancreatic intraepithelial neoplasia (PanIN) that progressed slowly to carcinoma, the combination of KRAS(G12D) and SMAD4 deficiency resulted in the rapid development of tumors resembling intraductal papillary mucinous neoplasia (IPMN), a precursor to PDAC in humans. SMAD4 deficiency also accelerated PDAC development of KRAS(G12D) INK4A/ARF heterozygous mice and altered the tumor phenotype; while tumors with intact SMAD4 frequently exhibited epithelial-to-mesenchymal transition (EMT), PDAC null for SMAD4 retained a differentiated histopathology with increased expression of epithelial markers. SMAD4 status in PDAC cell lines was associated with differential responses to transforming growth factor-beta (TGF-beta) in vitro with a subset of SMAD4 wild-type lines showing prominent TGF-beta-induced proliferation and migration. These results provide genetic confirmation that SMAD4 is a PDAC tumor suppressor, functioning to block the progression of KRAS(G12D)-initiated neoplasms, whereas in a subset of advanced tumors, intact SMAD4 facilitates EMT and TGF-beta-dependent growth.

  11. Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors

    Directory of Open Access Journals (Sweden)

    Zhou Wei


    Full Text Available Abstract Background Targeting the ubiquitin-proteasome pathway is a promising approach for anticancer strategies. Recently, we found Bik accumulation in cancer cell lines after they were treated with bortezomib. However, recent evidence indicates that proteasome inhibitors may also induce the accumulation of anti-apoptotic Bcl-2 family members. The current study was designed to analyze the levels of several anti-apoptotic members of Bcl-2 family in different human cancer cell lines after they were treated with proteasome inhibitors. Methods Different human cancer cell lines were treated with proteasome inhibitors. Western blot were used to investigate the expression of Mcl-1 and activation of mitochondrial apoptotic signaling. Cell viability was investigated using SRB assay, and induction of apoptosis was measured using flow cytometry. Results We found elevated Mcl-1 level in human colon cancer cell lines DLD1, LOVO, SW620, and HCT116; human ovarian cancer cell line SKOV3; and human lung cancer cell line H1299, but not in human breast cancer cell line MCF7 after they were treated with bortezomib. This dramatic Mcl-1 accumulation was also observed when cells were treated with other two proteasome inhibitors, MG132 and calpain inhibitor I (ALLN. Moreover, our results showed Mcl-1 accumulation was caused by stabilization of the protein against degradation. Reducing Mcl-1 accumulation by Mcl-1 siRNA reduced Mcl-1 accumulation and enhanced proteasome inhibitor-induced cell death and apoptosis, as evidenced by the increased cleavage of caspase-9, caspase-3, and poly (ADP-ribose polymerase. Conclusions Our results showed that it was not only Bik but also Mcl-1 accumulation during the treatment of proteasome inhibitors, and combining proteasome inhibitors with Mcl-1 siRNA would enhance the ultimate anticancer effect suggesting this combination might be a more effective strategy for cancer therapy.

  12. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. (United States)

    Goodall, Megan L; Wang, Tong; Martin, Katie R; Kortus, Matthew G; Kauffman, Audra L; Trent, Jeffrey M; Gately, Stephen; MacKeigan, Jeffrey P


    Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies.

  13. New pyrazolo-[3,4-d]-pyrimidine derivative Src kinase inhibitors lead to cell cycle arrest and tumor growth reduction of human medulloblastoma cells (United States)

    Rossi, Alessandra; Schenone, Silvia; Angelucci, Adriano; Cozzi, Martina; Caracciolo, Valentina; Pentimalli, Francesca; Puca, Andrew; Pucci, Biagio; La Montagna, Raffaele; Bologna, Mauro; Botta, Maurizio; Giordano, Antonio


    Medulloblastoma is the most common malignant brain tumor in children, and despite improvements in the overall survival rate, it still lacks an effective treatment. Src plays an important role in cancer, and recently high Src activity was documented in medulloblastoma. In this report, we examined the effects of novel pyrazolo-[3,4-d]-pyrimidine derivative Src inhibitors in medulloblastoma. By MTS assay, we showed that the pyrimidine derivatives indicated as S7, S29, and SI163 greatly reduce the growth rate of medulloblastoma cells by inhibiting Src phosphorylation, compared with HT22 non-neoplastic nerve cells. These compounds also halt cells in the G2/M phase, and this effect likely occurs through the regulation of cdc2 and CDC25C phosphorylation, as shown by Western blot. Moreover, the exposure to pyrimidine derivatives induces apoptosis, assayed by the supravital propidium iodide assay, through modulation of the apoptotic proteins Bax and Bcl2, and inhibits tumor growth in vivo in a mouse model. Notably, S7, S29, and SI163 show major inhibitory effects on medulloblastoma cell growth compared with the chemotherapeutic agents cisplatin and etoposide. In conclusion, our results suggest that S7, S29, and SI163 could be novel attractive candidates for the treatment of medulloblastoma or tumors characterized by high Src activity.—Rossi, A., Schenone, S., Angelucci, A., Cozzi, M., Caracciolo, V., Pentimalli, F., Puca, A., Pucci, B., La Montagna, R., Bologna, M., Botta, M., Giordano, A. New pyrazolo-[3,4-d]-pyrimidine derivative Src kinase inhibitors lead to cell cycle arrest and tumor growth reduction of human medulloblastoma cells. PMID:20354138

  14. Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila. (United States)

    Song, Yan; Lu, Bingwei


    Cancer stem cells (CSCs) are postulated to be a small subset of tumor cells with tumor-initiating ability that shares features with normal tissue-specific stem cells. The origin of CSCs and the mechanisms underlying their genesis are poorly understood, and it is uncertain whether it is possible to obliterate CSCs without inadvertently damaging normal stem cells. Here we show that a functional reduction of eukaryotic translation initiation factor 4E (eIF4E) in Drosophila specifically eliminates CSC-like cells in the brain and ovary without having discernable effects on normal stem cells. Brain CSC-like cells can arise from dedifferentiation of transit-amplifying progenitors upon Notch hyperactivation. eIF4E is up-regulated in these dedifferentiating progenitors, where it forms a feedback regulatory loop with the growth regulator dMyc to promote cell growth, particularly nucleolar growth, and subsequent ectopic neural stem cell (NSC) formation. Cell growth regulation is also a critical component of the mechanism by which Notch signaling regulates the self-renewal of normal NSCs. Our findings highlight the importance of Notch-regulated cell growth in stem cell maintenance and reveal a stronger dependence on eIF4E function and cell growth by CSCs, which might be exploited therapeutically.

  15. Synthesis, radiosynthesis, in vitro and preliminary in vivo evaluation of biphenyl carboxylic and hydroxamic matrix metalloproteinase (MMP) inhibitors as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth [Laboratory of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)]. E-mail:; Staelens, Ludovicus [Laboratory of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Hillaert, Ulrik [Laboratory for Medicinal Chemistry, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Heremans, An; Noel, Agnes [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Frankenne, Francis [Laboratory of Tumor and Developmental Biology, University of Liege, Sart-Tilman, Liege (Belgium); Slegers, Guido [Laboratory of Radiopharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)


    Excess matrix degradation is one of the hallmarks of cancer and is an important factor in the process of tumor progression. It is implicated in invasion, metastasis, growth, angiogenesis and migration. Many characteristics of matrix metalloproteinases (MMPs) make them attractive therapeutic and diagnostic targets. MMP expression is upregulated at the tumor site, with localization of activity in the tumor or the surrounding stroma, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I] iodo-biphenyl-4-sulfonylamino)-3-methyl-butyric acid (9) and 2-(4'-[{sup 123}I] iodo-biphenyl-4-sulfonylamino)-3-methyl-butyramide (11), their unlabelled standards and precursors were synthesized. Radioiodination was conducted by electrophilic aromatic substitution of the tributylstannyl precursors and resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. In vitro zymography and enzyme assays showed for both hydroxamic acid and carboxylic acid compounds a good inhibition activity and a high selectivity for MMP-2. In vivo biodistribution in NMRI mice showed no long-term accumulation in organs and the possibility to accumulate in the tumor in a later phase of this study.

  16. An opposite effect of the CDK inhibitor, p18(INK4c on embryonic stem cells compared with tumor and adult stem cells.

    Directory of Open Access Journals (Sweden)

    Yanxin Li

    Full Text Available Self-renewal is a feature common to both adult and embryonic stem (ES cells, as well as tumor stem cells (TSCs. The cyclin-dependent kinase inhibitor, p18(INK4c, is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB; on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1 were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells.

  17. Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by γ-secretase inhibitor IX.

    Directory of Open Access Journals (Sweden)

    Vindhya Palagani

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is an aggressive disease with a high rate of metastasis. Recent studies have indicated that the Notch signalling pathway is important in PDAC initiation and maintenance, although the specific cell biological roles of the pathway remain to be established. Here we sought to examine this question in established pancreatic cancer cell lines using the γ-secretase inhibitor IX (GSI IX to inactivate Notch. Based on the known roles of Notch in development and stem cell biology, we focused on effects on epithelial mesenchymal transition (EMT and on pancreatic tumor initiating CD44+/EpCAM+ cells. We analyzed the effect of the GSI IX on growth and epithelial plasticity of human pancreatic cancer cell lines, and on the tumorigenicity of pancreatic tumor initiating CD44+/EpCAM+ cells. Notably, apoptosis was induced after GSI IX treatment and EMT markers were selectively targeted. Furthermore, under GSI IX treatment, decline in the growth of pancreatic tumor initiating CD44+/EpCAM+ cells was observed in vitro and in a xenograft mouse model. This study demonstrates a central role of Notch signalling pathway in pancreatic cancer pathogenesis and identifies an effective approach to inhibit selectively EMT and suppress tumorigenesis by eliminating pancreatic tumor initiating CD44+/EpCAM+ cells.

  18. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells. (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura


    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.


    NARCIS (Netherlands)

    van der Laan, B.F.A.M.; FREEMAN, JL; ASA, SL


    A number of growth factors have been implicated as stimuli of thyroid cell proliferation; overexpression of these growth factors and/or their receptors may play a role in the growth of thyroid tumors. To determine if immunohistochemical detection of growth factors and/or their receptors correlates w

  20. A Phase II, Multicenter Study of the EZH2 Inhibitor Tazemetostat in Adult Subjects With INI1-Negative Tumors or Relapsed/Refractory Synovial Sarcoma (United States)


    Malignant Rhabdoid Tumors (MRT); Rhabdoid Tumors of the Kidney (RTK); Atypical Teratoid Rhabdoid Tumors (ATRT); Selected Tumors With Rhabdoid Features; Synovial Sarcoma; INI1-negative Tumors; Malignant Rhabdoid Tumor of Ovary; Renal Medullary Carcinoma; Epithelioid Sarcoma

  1. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma

    Directory of Open Access Journals (Sweden)

    Shankar A


    Full Text Available Adarsh Shankar,1 Thaiz F Borin,2 Asm Iskander,1 Nadimpalli RS Varma,3 Bhagelu R Achyut,1 Meenu Jain,1 Tom Mikkelsen,4 Austin M Guo,5 Wilson B Chwang,3 James R Ewing,6 Hassan Bagher-Ebadian,6 Ali S Arbab11Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA; 2Laboratory of Molecular Investigation of Cancer (LIMC, Faculty of Medicine of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil; 3Department of Radiology, Cellular and Molecular Imaging Laboratory, 4Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 5Department of Pharmacology, New York Medical College, Valhalla, NY, 6Department of Neurology and Radiology, Henry Ford Health System, Detroit, MI, USA Background: Due to the hypervascular nature of glioblastoma (GBM, antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N'-(4-butyl-2 methylphenylformamidine (HET0016, which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE synthesis. The aims of the studies were to determine 1 whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2 whether the treatment schedule would have a crucial impact on controlling GBM.Methods: U251 human glioma cells (4×105 were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment was to mimic cases following radiation therapy or surgery. There were four

  2. Early intervention with a small molecule inhibitor for tumor nefosis factor-α prevents cognitive deficits in a triple transgenic mouse model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Gabbita S


    Full Text Available Abstract Background Chronic neuroinflammation is an important component of Alzheimer’s disease and could contribute to neuronal dysfunction, injury and loss that lead to disease progression. Multiple clinical studies implicate tumor necrosis factor-α as an inflammatory mediator of neurodegeneration in patients with Alzheimer’s because of elevated levels of this cytokine in the cerebrospinal fluid, hippocampus and cortex. Current Alzheimer’s disease interventions are symptomatic treatments with limited efficacy that do not address etiology. Thus, a critical need exists for novel treatments directed towards modifying the pathophysiology and progression. Methods To investigate the effect of early immune modulation on neuroinflammation and cognitive outcome, we treated triple transgenic Alzheimer’s disease mice (harboring PS1M146V, APPSwe, and tauP301L transgenes with the small molecule tumor necrosis factor-α inhibitors, 3,6′-dithiothalidomide and thalidomide, beginning at four months of age. At this young age, mice do not exhibit plaque or tau pathology but do show mild intraneuronal amyloid beta protein staining and a robust increase in tumor necrosis factor-α. After 10 weeks of treatment, cognitive performance was assessed using radial arm maze and neuroinflammation was assessed using biochemical, stereological and flow cytometric endpoints. Results 3,6′-dithiothalidomide reduced tumor necrosis factor-α mRNA and protein levels in the brain and improved working memory performance and the ratio of resting to reactive microglia in the hippocampus of triple transgenic mice. In comparison to non-transgenic controls, triple transgenic Alzheimer’s disease mice had increased total numbers of infiltrating peripheral monomyelocytic/granulocytic leukocytes with enhanced intracytoplasmic tumor necrosis factor-α, which was reduced after treatment with 3,6′-dithiothalidomide. Conclusions These results suggest that modulation of tumor

  3. Transcriptome profiling of the cancer, adjacent non-tumor and distant normal tissues from a colorectal cancer patient by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Yan'an Wu

    Full Text Available Colorectal cancer (CRC is one of the most commonly diagnosed cancers in the world. A genome-wide screening of transcriptome dysregulation between cancer and normal tissue would provide insight into the molecular basis of CRC initiation and progression. Compared with microarray technology, which is commonly used to identify transcriptional changes, the recently developed RNA-seq technique has the ability to detect other abnormal regulations in the cancer transcriptome, such as alternative splicing, novel transcripts or gene fusion. In this study, we performed high-throughput transcriptome sequencing at ~50× coverage on CRC, adjacent non-tumor and distant normal tissue. The results revealed cancer-specific, differentially expressed genes and differential alternative splicing, suggesting that the extracellular matrix and metabolic pathways are activated and the genes related to cell homeostasis are suppressed in CRC. In addition, one tumor-restricted gene fusion, PRTEN-NOTCH2, was also detected and experimentally confirmed. This study reveals some common features in tumor invasion and provides a comprehensive survey of the CRC transcriptome, which provides better insight into the complexity of regulatory changes during tumorigenesis.

  4. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Geborek, Pierre; Svenson, Morten


    Infliximab, an anti-tumor necrosis factor alpha (anti-TNFalpha) antibody, is effective in the treatment of several immunoinflammatory diseases. However, many patients experience primary or secondary response failure, suggesting that individualization of treatment regimens may be beneficial...

  5. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 and Temsirolimus in Treating Patients With Advanced Solid Tumors (United States)


    Endometrial Papillary Serous Carcinoma; Recurrent Endometrial Carcinoma; Recurrent Renal Cell Cancer; Stage III Endometrial Carcinoma; Stage III Renal Cell Cancer; Stage IV Endometrial Carcinoma; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  6. Concurrent Intervention With Exercises and Stabilized Tumor Necrosis Factor Inhibitor Therapy Reduced the Disease Activity in Patients With Ankylosing Spondylitis: A Meta-Analysis. (United States)

    Liang, Hui; Li, Wen-Rong; Zhang, Hua; Tian, Xu; Wei, Wei; Wang, Chun-Mei


    Since the use of tumor necrosis factor (TNF) inhibitor therapy is becoming wider, the effects of concurrent intervention with exercises and stabilized TNF inhibitors therapy in patients with ankylosing spondylitis (AS) are different. The study aimed to objectively evaluate whether concurrent intervention with exercises and stabilized TNF inhibitors can reduce the disease activity in patients with AS. A search from PubMed, Web of Science, EMBASE, and the Cochrane Library was electronically performed to collect studies which compared concurrent intervention with exercise and TNF inhibitor to conventional approach in terms of disease activity in patients with AS published from their inception to June 2015. Studies that measured the Bath Ankylosing Spondylitis Functional Index (BASFI), the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the Bath Ankylosing Spondylitis Metrology Index (BASMI), and chest expansion as outcomes were included. Two independent investigators screened the identified articles, extracted the data, and assessed the methodological quality of the included studies. Quantitative analysis was performed with Review Manager (RevMan) software (version 5.3.0). A total of 5 studies comprising 221 participants were included in the study. Meta-analyses showed that concurrent intervention with exercises and stabilized TNF inhibitors therapy significantly reduced the BASMI scores (MD, -0.99; 95% CI, -1.61 to -0.38) and BASDAI scores (MD, -0.58; 95% CI, -1.10 to -0.06), but the BASFI scores (MD, -0.31; 95% CI, -0.76 to 0.15) was not reduced, and chest expansion (MD, 0.80; 95% CI, -0.18 to 1.78) was not increased. Concurrent intervention with exercises and stabilized TNF inhibitors therapy can reduce the disease activity in patients with AS. More randomized controlled trials (RCTs) with high-quality, large-scale, and appropriate follow-up are warranted to further establish the benefit of concurrent intervention with exercises and TNF inhibitors for

  7. Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells and protects them from TNF-α-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    María Florencia Gottardo

    Full Text Available Humanin (HN is a 24-amino acid peptide with cytoprotective action in several cell types such as neurons and testicular germ cells. Rattin (HNr, a homologous peptide of HN expressed in several adult rat tissues, also has antiapoptotic action. In the present work, we demonstrated by immunocytochemical analysis and flow cytometry the expression of HNr in the anterior pituitary of female and male adult rats as well as in pituitary tumor GH3 cells. HNr was localized in lactotropes and somatotropes. The expression of HNr was lower in females than in males, and was inhibited by estrogens in pituitary cells from both ovariectomized female and orquidectomized male rats. However, the expression of HNr in pituitary tumor cells was not regulated by estrogens. We also evaluated HN action on the proapoptotic effect of TNF-α in anterior pituitary cells assessed by the TUNEL method. HN (0.5 µM per se did not modify basal apoptosis of anterior pituitary cells but completely blocked the proapoptotic effect of TNF-α in total anterior pituitary cells, lactotropes and somatotropes from both female and male rats [corrected]. Also, HN inhibited the apoptotic effect of TNF-α on pituitary tumor cells. In summary, our results demonstrate that HNr is present in the anterior pituitary gland, its expression showing sexual dimorphism, which suggests that gonadal steroids may be involved in the regulation of HNr expression in this gland. Antiapoptotic action of HN in anterior pituitary cells suggests that this peptide could be involved in the homeostasis of this gland. HNr is present and functional in GH3 cells, but it lacks regulation by estrogens, suggesting that HN could participate in the pathogenesis of pituitary tumors.

  8. Analysis of tumor marker CA 125 in saliva of normal and oral squamous cell carcinoma patients: a comparative study. (United States)

    Balan, Jude J; Rao, Roopa S; Premalatha, B R; Patil, Shankargouda


    The mortality and morbidity associated with oral squamous cell carcinoma (OSCC) can be greatly reduced if tumor markers which can detect OSCC at an early stage are available. The use of saliva as an alternative to blood could provide a substantial advantage in sampling convenience. Cancer antigen 125 (CA 125) is a tumor-associated antigen found to be increased in epithelial tumors like oral, breast and ovarian cancers. To determine whether salivary CA 125 levels are increased significantly in OSCC patients than the control group. Sixty OSCC patients and 60 healthy controls were taken for the study. Saliva samples from both the groups were collected, centrifuged and supernatant fluid were subjected to ELISA for assessment of CA 125. The mean salivary CA 125 values of OSCC patients and control group were statistically analyzed using Mann-Whitney U-test. The mean salivary CA 125 concentration of OSCC group was 320.25 and that of control group was 33.14. Thus, CA 125 was found to be significantly increased in the saliva of OSCC patients than the control group (p convenience, reliability and noninvasive nature of salivary CA 125 testing makes it a feasible adjunctive diagnostic tool for detection of OSCC.

  9. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. (United States)

    Jeong, Woondong; Rapisarda, Annamaria; Park, Sook Ryun; Kinders, Robert J; Chen, Alice; Melillo, Giovanni; Turkbey, Baris; Steinberg, Seth M; Choyke, Peter; Doroshow, James H; Kummar, Shivaani


    Hypoxia-inducible factor-1 (HIF-1) facilitates the adaptation of normal and tumor tissues to oxygen deprivation. HIF-1 is frequently overexpressed in cancer cells, where it is involved in the upregulation of many genes necessary for survival. EZN-2968 is an antisense oligodeoxynucleotide that specifically targets HIF-1α, one of the subunits of HIF-1. We conducted a trial of EZN-2968 in patients with refractory solid tumors to evaluate antitumor response and to measure modulation of HIF-1α mRNA and protein levels as well as HIF-1 target genes. Adult patients with refractory advanced solid tumors were administered EZN-2968 as a 2-h IV infusion at a dose of 18 mg/kg once a week for three consecutive weeks followed by 3-week off; in a 6-week cycle. Tumor biopsies and dynamic contrast enhanced MRI (DCE-MRI) were performed at baseline and after the third dose. Ten patients were enrolled, of whom all were evaluable for response; one patient with a duodenal neuroendocrine tumor had prolonged stabilization of disease (24 weeks). Reduction in HIF-1α mRNA levels compared to baseline was demonstrated in 4 of 6 patients with paired tumor biopsies. Reductions in levels of HIF-1α protein and mRNA levels of some target genes were observed in two patients. Quantitative analysis of DCE-MRI from two patients revealed changes in K (trans) and k ep. The trial was closed prematurely when the sponsor suspended development of this agent. This trial provides preliminary proof of concept for modulation of HIF-1α mRNA and protein expression and target genes in tumor biopsies following the administration of EZN-2968.

  10. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with novel Schiff bases: identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones. (United States)

    Sarikaya, Busra; Ceruso, Mariangela; Carta, Fabrizio; Supuran, Claudiu T


    A series of new Schiff bases was obtained from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide and aromatic/heterocyclic aldehydes incorporating both hydrophobic and hydrophilic moieties. The obtained sulfonamides were investigated as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC isoforms, the cytosolic CA I and II, as well as the transmembrane, tumor-associated CA IX and XII. Most derivatives were medium potency or weak hCA I/II inhibitors, but several of them showed nanomolar affinity for CA IX and/or XII, making them an interesting example of isoform-selective compounds. The nature of the aryl/hetaryl moiety present in the initial aldehyde was the main factor influencing potency and isoform selectivity. The best and most CA IX-selective compounds incorporated moieties such as 4-methylthiophenyl, 4-cyanophenyl-, 4-(2-pyridyl)-phenyl and the 4-aminoethylbenzenesulfonamide scaffold. The best hCA XII inhibitors, also showing selectivity for this isoform, incorporated 2-methoxy-4-nitrophenyl-, 2,3,5,6-tetrafluorophenyl and 4-(2-pyridyl)-phenyl functionalities and were also derivatives of 4-aminoethylbenzenesulfonamide. The sulfanilamide and 3-fluorosulfanilamide derived Schiff bases were less active compared to the corresponding 4-aminoethyl-benzenesulfonamide derivatives. As hCA IX/XII selective inhibition is attractive for obtaining antitumor agents/diagnostic tools with a new mechanism of action, compounds of the type described here may be considered interesting preclinical candidates.

  11. The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination. (United States)

    Marusak, Charles; Bayles, Ian; Ma, Jun; Gooyit, Major; Gao, Ming; Chang, Mayland; Bedogni, Barbara


    MT1-MMP and MMP2 have been implicated as pro-tumorigenic and pro-metastatic factors in a wide variety of cancers including melanoma. We have previously demonstrated that MT1-MMP is highly expressed in melanoma where it promotes melanoma cell invasion and metastasis in part through the activation of its target MMP2. Given the accessibility of MMPs, as they are either secreted (e.g. MMP2) or membrane-tethered (e.g. MT1-MMP), they represent ideal targets for specific inhibition via small molecules. Here we show that the novel small-molecule inhibitor ND-322 with high selectivity for MT1-MMP and MMP2, effectively inhibits MT1-MMP and MMP2 activity resulting in reduced in vitro melanoma cell growth, migration and invasion. Importantly, these inhibitory effects lead to significant reduction of melanoma tumor growth and metastasis. We further show that while cell migration and invasion could be similarly hampered by specific inhibition of either MT1-MMP or MMP2 via shRNAs, the growth inhibitory activity of ND-322 could only be mirrored by specific inhibition of MT1-MMP. These data support ND-322 as a novel effective inhibitor capable of counteracting both MT1-MMP and MMP2, two key proteases involved in melanoma growth and metastasis. ND-322 may therefore represent a new inhibitor in the repertoire of treatments against melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Grant A Howe

    Full Text Available Blockade of epidermal growth factor receptor (EGFR activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC. As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs, there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975 were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271 both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be

  13. Ribociclib (LEE011): Mechanism of Action and Clinical Impact of This Selective Cyclin-Dependent Kinase 4/6 Inhibitor in Various Solid Tumors. (United States)

    Tripathy, Debu; Bardia, Aditya; Sellers, William R


    The cyclin D-cyclin-dependent kinase (CDK) 4/6-p16-retinoblastoma (Rb) pathway is commonly disrupted in cancer, leading to abnormal cell proliferation. Therapeutics targeting this pathway have demonstrated antitumor effects in preclinical and clinical studies. Ribociclib is a selective, orally bioavailable inhibitor of CDK4 and CDK6, which received FDA approval in March 2017 and is set to enter the treatment landscape alongside other CDK4/6 inhibitors, including palbociclib and abemaciclib. Here, we describe the mechanism of action of ribociclib and review preclinical and clinical data from phase I, II, and III trials of ribociclib across different tumor types, within the context of other selective CDK4/6 inhibitors. The pharmacokinetics, pharmacodynamics, safety, tolerability, and clinical responses with ribociclib as a single agent or in combination with other therapies are discussed, and an overview of the broad portfolio of ongoing clinical trials with ribociclib across a wide range of indications is presented. On the basis of the available data, ribociclib has a manageable tolerability profile and therapeutic potential for a variety of cancer types. Its high selectivity makes it an important partner drug for other targeted therapies, and it has been shown to enhance the clinical activity of existing anticancer therapies and delay the development of treatment resistance, without markedly increasing toxicity. Ongoing trials of doublet and triplet targeted therapies containing ribociclib seek to identify optimal CDK4/6-based targeted combination regimens for various tumor types and advance the field of precision therapeutics in oncology. Clin Cancer Res; 23(13); 3251-62. ©2017 AACR. ©2017 American Association for Cancer Research.

  14. Comparison of angiogenesis-related factor expression in primary tumor cultures under normal and hypoxic growth conditions

    Directory of Open Access Journals (Sweden)

    Brower Stacey L


    Full Text Available Abstract Background A localized hypoxic environment occurs during tumor growth necessitating an angiogenic response or tumor necrosis results. Novel cancer treatment strategies take advantage of tumor-induced vascularisation by combining standard chemotherapeutic agents with angiogenesis-inhibiting agents. This has extended the progression-free interval and prolonged survival in patients with various types of cancer. We postulated that the expression levels of angiogenesis-related proteins from various primary tumor cultures would be greater under hypoxic conditions than under normoxia. Methods Fifty cell sources, including both immortalized cell lines and primary carcinoma cells, were incubated under normoxic conditions for 48 hours. Then, cells were either transferred to a hypoxic environment (1% O2 or maintained at normoxic conditions for an additional 48 hours. Cell culture media from both conditions was collected and analyzed via an ELISA-based assay to determine expression levels of 11 angiogenesis-related factors: VEGF, PDGF-AA, PDGF-AA/BB, IL-8, bFGF/FGF-2, EGF, IP-10/CXCL10, Flt-3 ligand, TGF-β1, TGF-β2, and TGF-β3. Results A linear correlation between normoxic and hypoxic growth conditions exists for expression levels of eight of eleven angiogenesis-related proteins tested including: VEGF, IL-8, PDGF-AA, PDGF-AA/BB, TGF-β1, TGF-β2, EGF, and IP-10. For VEGF, the target of current therapies, this correlation between hypoxia and higher cytokine levels was greater in primary breast and lung carcinoma cells than in ovarian carcinoma cells or tumor cell lines. Of interest, patient cell isolates differed in the precise pattern of elevated cytokines. Conclusion As linear correlations exist between expression levels of angiogenic factors under normoxic and hypoxic conditions in vitro, we propose that explanted primary cells may be used to probe the in vivo hypoxic environment. Furthermore, differential expression levels for each sample

  15. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    Directory of Open Access Journals (Sweden)

    Tadashi Watabe

    Full Text Available PURPOSE: Acetylcholinesterase (AChE inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11C-Donepezil (DNP and the AChE activity in the normal rat, with special focus on the adrenal glands. METHODS: The distribution of (11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g. A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11C-DNP (45.0 ± 10.7 MBq. The whole-body distribution of the (11C-DNP PET was evaluated based on the Vt (total distribution volume by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. RESULTS: The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11C-DNP in the body (following the liver (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3, respectively, indicating that the distribution of (11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively, indicating high activity of AChE in the adrenal glands. CONCLUSIONS: We demonstrated the whole-body distribution of (11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  16. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat. (United States)

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun


    Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  17. [Study on the Relationship Between Normalization of Tumor Microvessels and CA9 for Rh-Endostatin to Inhibit Lewis Lung Cancer]. (United States)

    He, Lang; Sun, Yong-Hong; Liu, Kang; Xu, Xing-Xing; Yang, Mi; Wu, Xun; Jiang, Li


    To explore the relationship between normalization of tumor microvessels and CA9 for rh-Endostatin to inhibit Lewis lung cancer (LLC) and the expression level of CA9 in LLC. Lewis cells of logarithmic growth phase were collected and made into 1×10(6) mL(-1) cell suspensions were prepared. The transplanted tumor model of LLC was established on C57/BL6 mice by injected 0.2 mL cell suspensions/mice into 40 C57/BL6 mice. 40 LLC mice were randomly divided into control group and rh-ES group (20 mice per group). Control group experienced treatment of intraperitoneal injection (ip) for 0.2 mL NS/d, while rh-ES group was treated for 5 mg rh-ES/(kg·d) from the first to the ninth day. The samples of 5 mice were obtained from day 2, day 4, day 6 and day 9 after treatment in control group or rh-ES group, respectively. CA9 was tested by IHC in LLC and paracancerous tissues and estimated by RT-PCR and ELISA in the each time point of both rh-ES group and control group,respectively. The transplanted tumor model of LLC on C57/BL6 mice was established successfully. The expression of CA9 decreased on day 4 and day 6 in rh-ES group estimated by RT-PCR and ELISA, which indicated some great significance when compared with day 2, day 9 in rh-ES group and day 4, day 6 in control group (PRh-ES could have positive effect on LLC model of C57/BL6 mice, in day 4-6 (a brief normalized time course) decreased the expression of CA9 and reversed the tumor hypoxia.

  18. The MEK-Inhibitor Selumetinib Attenuates Tumor Growth and Reduces IL-6 Expression but Does Not Protect against Muscle Wasting in Lewis Lung Cancer Cachexia (United States)

    Au, Ernie D.; Desai, Aditya P.; Koniaris, Leonidas G.; Zimmers, Teresa A.


    Cachexia, or wasting of skeletal muscle and fat, afflicts many patients with chronic diseases including cancer, organ failure, and AIDS. Muscle wasting reduces quality of life and decreases response to therapy. Cachexia is caused partly by elevated inflammatory cytokines, including interleukin-6 (IL-6). Others and we have shown that IL-6 alone is sufficient to induce cachexia both in vitro and in vivo. The mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor Selumetinib has been tested in clinical trials for various cancers. Moreover, Selumetinib has also been shown to inhibit the production of IL-6. In a retrospective analysis of a phase II clinical trial in advanced cholangiocarcinoma, patients treated with Selumetinib experienced significant gains in skeletal muscle vs. patients receiving standard therapy. However, the use of Selumetinib as a treatment for cachexia has yet to be investigated mechanistically. We sought to determine whether MEK inhibition could protect against cancer-induced cachexia in mice. In vitro, Selumetinib induced C2C12 myotube hypertrophy and nuclear accretion. Next we tested Selumetinib in the Lewis lung carcinoma (LLC) model of cancer cachexia. Treatment with Selumetinib reduced tumor mass and reduced circulating and tumor IL-6; however MEK inhibition did not preserve muscle mass. Similar wasting was seen in limb muscles of Selumetinib and vehicle-treated LLC mice, while greater fat and carcass weight loss was observed with Selumetinib treatment. As well, Selumetinib did not block wasting in C2C12 myotubes treated with LLC serum. Taken together, out results suggest that this MEK inhibitor is not protective in LLC cancer cachexia despite lowering IL-6 levels, and further that it might exacerbate tumor-induced weight loss. Differences from other studies might be disease, species or model-specific. PMID:28149280

  19. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH genes in multiple human solid tumors: A systematic expression analysis

    Directory of Open Access Journals (Sweden)

    Werbowetski-Ogilvie Tamra


    Full Text Available Abstract Background The inter-alpha-trypsin inhibitors (ITI are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5, contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. Methods We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas using cDNA dot blot analysis (Cancer Profiling Array, CPA, semiquantitative RT-PCR and immunohistochemistry. Results We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA could be confirmed by real-time PCR in an additional set of breast cancers (n = 36. Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p Conclusion Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.

  20. (Secondary) solid tumors in thyroid cancer patients treated with the multi-kinase inhibitor sorafenib may present diagnostic challenges

    NARCIS (Netherlands)

    Schneider, T.C.; Kapiteijn, E.; Wezel, T. van; Smit, J.W.A.; Hoeven, J.J.M. van der; Morreau, H.


    BACKGROUND: Sorafenib is an orally active multikinase tyrosine kinase inhibitor (TKI) that targets B-type Raf kinase (BRAF), vascular endothelial growth factor receptors (VEGFR) 1 and 2, and rearranged during transfection (RET), inducing anti-angiogenic and pro-apoptotic actions in a wide range of s

  1. (Secondary) solid tumors in thyroid cancer patients treated with the multi-kinase inhibitor sorafenib may present diagnostic challenges

    NARCIS (Netherlands)

    Schneider, T.C.; Kapiteijn, E.; Wezel, T. van; Smit, J.W.A.; Hoeven, J.J.M. van der; Morreau, H.


    BACKGROUND: Sorafenib is an orally active multikinase tyrosine kinase inhibitor (TKI) that targets B-type Raf kinase (BRAF), vascular endothelial growth factor receptors (VEGFR) 1 and 2, and rearranged during transfection (RET), inducing anti-angiogenic and pro-apoptotic actions in a wide range of

  2. Closing escape routes: inhibition of IL-8 signaling enhances the anti-tumor efficacy of PI3K inhibitors. (United States)

    Juvekar, Ashish; Wulf, Gerburg M


    The phosphoinositide 3-kinase (PI3K) pathway serves as a relay where signals that emanate from the cell membrane are received and converted into intracellular signals that promote proliferation and survival. Inhibitors of PI3K hold promise for the treatment of breast cancer because activation of this pathway is highly prevalent. However, as is increasingly observed with inhibitors of cell signaling, there appear to be mechanisms of primary and secondary resistance. Britschgi and colleagues report that compensatory activation of the IL-8 signaling axis is a mechanism of primary resistance to PI3K inhibitors in some triple-negative breast cancers. In a set of experiments that carefully emulate the clinical scenario in a mouse model, they show that simultaneous inhibition of Janus kinase 2 enhances the efficacy of PI3K/mammalian target of rapamycin inhibition. Their paper lends further support to the concept that successful design of treatments with signal transduction inhibitors must anticipate potential escape routes - and include agents to simultaneously block them.

  3. Evaluation of the angiogenesis inhibitor KR-31831 in SKOV-3 tumor-bearing mice using (64)Cu-DOTA-VEGF(121) and microPET. (United States)

    Lee, Iljung; Yoon, Kwang Yup; Kang, Choong Mo; Lin, Xin; Chen, Xiaoyuan; Kim, Jung Young; Kim, Sung-Min; Ryu, Eun Kyoung; Choe, Yearn Seong


    KR-31831 ((2R,3R,4S)-6-amino-4-[N-(4-chloropheyl)-N-(1H-imidazol-2ylmethyl)amino]-3-hydroxyl-2-methyl-2-dimethoxymethyl-3,4-dihydro-2H-1-benzopyran), an angiogenesis inhibitor, was evaluated in tumor-bearing mice using molecular imaging technology. Pre-treatment microPET images were acquired on SKOV-3 cell-implanted nude mice after injection with (64)Cu-DOTA-VEGF(121). KR-31831 (50 mg/kg) was then injected intraperitoneally into the treatment group (n=3), while injection vehicle was injected into the control (n=4) and blocking (n=3) groups. After injections occurred daily for 28 days, all groups of mice underwent post-treatment microPET imaging after injection with (64)Cu-DOTA-VEGF(121). The post-treatment images showed high tumor uptake in the control group and reduced tumor uptake in both the blocking and treatment groups. ROI analysis of the tumor images revealed 6.25%±1.18% ID/g at 1 h, 6.55%±0.69% ID/g at 2 h, and 4.68%±0.63% ID/g at 16 h in the control group; 3.87%±0.45% ID/g at 1 h, 4.50%±0.44% ID/g at 2 h, and 3.63%±0.25% ID/g at 16 h in the blocking group; and 4.03%±0.74% ID/g at 1 h, 4.37%±0.67% ID/g at 2 h, and 3.83%±0.90% ID/g at 16 h in the treatment group. Biodistribution obtained after the post-treatment microPET imaging also demonstrated high tumor uptake (3.74%±0.27% ID/g) in the control group and reduced uptakes in both the blocking group (2.69%±0.73% ID/g, PKR-31831 is mediated through VEGFR2 and microPET serves as a useful molecular imaging tool for evaluation of a newly developed angiogenesis inhibitor, KR-31831.

  4. Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kurio, Naito [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan); Shimo, Tsuyoshi, E-mail: [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan); Fukazawa, Takuya; Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, Okayama, 700-0821 (Japan); Okui, Tatsuo; Hassan, Nur Mohammad Monsur; Honami, Tatsuki [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan); Hatakeyama, Shinji [Novartis Institutes for BioMedical Research, Basel (Switzerland); Ikeda, Masahiko [Department of Surgery, Fukuyama City Hospital, Fukuyama, 720-8511 (Japan); Naomoto, Yoshio [Department of General Surgery, Kawasaki Medical School, Okayama, 700-0821 (Japan); Sasaki, Akira [Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525 (Japan)


    Focal adhesion kinase (FAK) is a 125-kDa non-receptor type tyrosine kinase that localizes to focal adhesions. FAK overexpression is frequently found in invasive and metastatic cancers of the breast, colon, thyroid, and prostate, but its role in osteolytic metastasis is not well understood. In this study, we have analyzed anti-tumor effects of the novel FAK Tyr{sup 397} inhibitor TAE226 against bone metastasis in breast cancer by using TAE226. Oral administration of TAE226 in mice significantly decreased bone metastasis and osteoclasts involved which were induced by MDA-MB-231 breast cancer cells and increased the survival rate of the mouse models of bone metastasis. TAE226 also suppressed the growth of subcutaneous tumors in vivo and the proliferation and migration of MDA-MB-231 cells in vitro. Significantly, TAE226 inhibited the osteoclast formation in murine pre-osteoclastic RAW264.7 cells, and actin ring and pit formation in mature osteoclasts. Moreover, TAE226 inhibited the receptor activator for nuclear factor {kappa} B Ligand (RANKL) gene expression induced by parathyroid hormone-related protein (PTHrP) in bone stromal ST2 cells and blood free calcium concentration induced by PTHrP administration in vivo. These findings suggest that FAK was critically involved in osteolytic metastasis and activated in tumors, pre-osteoclasts, mature osteoclasts, and bone stromal cells and TAE226 can be effectively used for the treatment of cancer induced bone metastasis and other bone diseases.

  5. Home-based exercise therapy in ankylosing spondylitis: short-term prospective study in patients receiving tumor necrosis factor alpha inhibitors. (United States)

    Yigit, Semra; Sahin, Zerrin; Demir, Saliha Eroglu; Aytac, Deniz Hatun


    The importance of exercise and regular physiotherapy in patients with ankylosing spondylitis (AS) under treatment with tumor necrosis factor alpha inhibitors (TNFα inhibitors) was reported in some studies, but the literature on this topic is still scarce. The aim of this study was to assess the effects of home-based exercise therapy on functional capacity, disease activity, spinal mobility, quality of life, emotional state and fatigue in patients with AS receiving TNFα inhibitors. Forty-two AS patients were trained on the disease, and home-based exercise program was demonstrated to all the patients. At baseline and at the end of 10 week, we evaluated Bath AS Disease Activity Index, Bath AS Functional Index, Bath AS Metrology Index, Multidimensional Assessment of Fatigue Scale, Beck Depression Inventory and Short-Form 36. Patients following home-based exercise program five times a week at least 30 min per session (exercise group) were compared with those exercising less than five times a week (control group). At baseline, exercise and control group had similar demographic features. After 10 weeks, all outcome parameters showed statistically significant improvements in exercise group. There were significant differences in all the parameters except social functioning subscale of Short-Form 36 between groups in favor of exercise group at 10th week (P exercise program is an effective therapy in increasing functional capacity and joint mobility, decreasing disease activity, improving emotional state, fatigue and quality of life for AS patient receiving TNFα inhibitors. We need to find out new ways to provide continuity of AS patients with it.

  6. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis. (United States)

    Wu, Dan; Gu, Qiuhong; Zhao, Ning; Xia, Fei; Li, Zhiwei


    The human tumor necrosis factor-α converting enzyme (TACE) has recently been raised as a new and promising therapeutic target of hepatitis and other inflammatory diseases. Here, we reported a successful application of the solved crystal structure of TACE complex with a peptide-like ligand INN for rational design of novel peptide hydroxamic acid inhibitors with high potency and selectivity to target and inhibit TACE. First, the intermolecular interactions between TACE catalytic domain and INN were characterized through an integrated bioinformatics approach, with which the key substructures of INN that dominate ligand binding were identified. Subsequently, the INN molecular structure was simplified to a chemical sketch of peptide hydroxamic acid compound, which can be regarded as a linear tripeptide capped by a N-terminal carboxybenzyl group (chemically protective group) and a C-terminal hydroxamate moiety (coordinated to the Zn(2+) at TACE active site). Based on the sketch, a virtual combinatorial library containing 180 peptide hydroxamic acids was generated, from which seven samples were identified as promising candidates by using a knowledge-based protein-peptide affinity predictor and were then tested in vitro with a standard TACE activity assay protocol. Consequently, three designed peptide hydroxamic acids, i.e. Cbz-Pro-Ile-Gln-hydroxamic acid, Cbz-Leu-Ile-Val-hydroxamic acid and Cbz-Phe-Val-Met-hydroxamic acid, exhibited moderate or high inhibitory activity against TACE, with inhibition constants Ki of 36 ± 5, 510 ± 46 and 320 ± 26 nM, respectively. We also examined the structural basis and non-bonded profile of TACE interaction with a designed peptide hydroxamic acid inhibitor, and found that the inhibitor ligand is tightly buried in the active pocket of TACE, forming a number of hydrogen bonds, hydrophobic forces and van der Waals contacts at the interaction interface, conferring both stability and specificity for TACE-inhibitor complex

  7. Assessing the likelihood of new-onset inflammatory bowel disease following tumor necrosis factor-alpha inhibitor therapy for rheumatoid arthritis and juvenile rheumatoid arthritis. (United States)

    Krishnan, Asha; Stobaugh, Derrick J; Deepak, Parakkal


    The association between inhibition of tumor necrosis factor-alpha (TNF-α) in patients with rheumatoid arthritis (RA) and juvenile rheumatoid arthritis (JRA) and the onset of inflammatory bowel disease (IBD) is unclear. We sought to evaluate this association by analyzing adverse events (AEs) reported to the Food and Drug Administration Adverse Event Reporting System (FAERS) with a standardized scoring tool for drug-induced AEs. A search of the FAERS for RA or JRA (January 2003-December 2011) reported with adalimumab, certolizumab pegol, etanercept, golimumab, or infliximab was performed. This dataset was then queried for cases indicating IBD. Full-length reports were accessed using the Freedom of Information Act and organized by age, sex, concomitant medications, co-morbidities, type of TNF-α inhibitor used, and diagnosis/treatment details. The Naranjo score was used to determine whether the drug-induced AEs were definite, probable, possible, or doubtful. There were 158 cases of IBD after TNF-α inhibitor exposure in RA or JRA patients. Use of the Naranjo score revealed that, in a majority of the cases (71.5 %), TNF-α inhibitor exposure was considered a 'possible' cause. A majority of the 'probable cases' in JRA were reported with etanercept (40 patients, 90.91 %). There were no 'definite' cases of anti-TNF-induced IBD. After applying the Naranjo scale, a weak association between new-onset IBD and TNF-α inhibitor therapy in RA patients and a moderately strong association especially with etanercept exposure in JRA patients was observed. However, causality cannot be determined due to limitations of the FAERS and the Naranjo score.

  8. Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isoforms I and II and transmembrane, tumor-associated isoforms IX and XII with boronic acids. (United States)

    Winum, Jean-Yves; Innocenti, Alessio; Scozzafava, Andrea; Montero, Jean-Louis; Supuran, Claudiu T


    A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a K(I) of 3.7-4.5 microM, whereas the remaining derivatives showed inhibition constants in the range of 6.0-1560 microM for hCA I and of 6.0-1050 microM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (K(I)s of 7.6-12.3 microM) whereas the arylalkenyl and aryl-alkyl derivatives generally showed weaker inhibitory properties (K(I)s of 34-531 microM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)(2) moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.

  9. Anti-tumor activity of selective inhibitor of nuclear export (SINE) compounds, is enhanced in non-Hodgkin lymphoma through combination with mTOR inhibitor and dexamethasone. (United States)

    Muqbil, Irfana; Aboukameel, Amro; Elloul, Sivan; Carlson, Robert; Senapedis, William; Baloglu, Erkan; Kauffman, Michael; Shacham, Sharon; Bhutani, Divaya; Zonder, Jeffrey; Azmi, Asfar S; Mohammad, Ramzi M


    In previous studies we demonstrated that targeting the nuclear exporter protein exportin-1 (CRM1/XPO1) by a selective inhibitor of nuclear export (SINE) compound is a viable therapeutic strategy against Non-Hodgkin Lymphoma (NHL). Our studies along with pre-clinical work from others led to the evaluation of the lead SINE compound, selinexor, in a phase 1 trial in patients with CLL or NHL (NCT02303392). Continuing our previous work, we studied combinations of selinexor-dexamethasone (DEX) and selinexor-everolimus (EVER) in NHL. Combination of selinexor with DEX or EVER resulted in enhanced cytotoxicity in WSU-DLCL2 and WSU-FSCCL cells which was consistent with enhanced apoptosis. Molecular analysis showed enhancement in the activation of apoptotic signaling and down-regulation of XPO1. This enhancement is consistent with the mechanism of action of these drugs in that both selinexor and DEX antagonize NF-κB (p65) and mTOR (EVER target) is an XPO1 cargo protein. SINE compounds, KPT-251 and KPT-276, showed activities similar to CHOP (cyclophosphamide-hydroxydaunorubicin-oncovin-prednisone) regimen in subcutaneous and disseminated NHL xenograft models in vivo. In both animal models the anti-lymphoma activity of selinexor is enhanced through combination with DEX or EVER. The in vivo activity of selinexor and related SINE compounds relative to 'standard of care' treatment is consistent with the objective responses observed in Phase I NHL patients treated with selinexor. Our pre-clinical data provide a rational basis for testing these combinations in Phase II NHL trials.

  10. Antiproliferative activity of extracts prepared from three species of Reishi on cultured human normal and tumor cell lines. (United States)

    Katagata, Yohtaro; Sasaki, Fumiyuki


    The present study investigated the growth of human fibrosarcoma (HT-1080) and fibroblast (SF-TY) cells in combination with water-soluble (WS) and high molecular component (HMC) fractions prepared from Reishi (R), Rokkaku-Reishi (2R) and Apple Rokkaku-Reishi (A2R). Each WS fraction exhibited dose-and time-dependent inhibition of the growth of the HT-1080 and SF-TY cells. The extracts exhibited marked antiproliferative activity against the HT-1080 cells. The HMC fractions inhibited cell growth dose-and time-dependently in the HT-1080 cells only, and not in the SF-TY cells, suggesting that HMC fractions selectively inhibit HT-1080 cells. Among the HMC fractions, A2R is a strong candidate for anti-tumor targeting since its fraction exhibited better inhibition than the R and 2R fractions. Furthermore, the volume of the A2R fraction was approximately five times greater than that of the others, and included four proteins (molecular mass 9, 13, 22 and 40 kDa) detected by SDS-PAGE. Three of these (13, 22 and 40 kDa) were confirmed to be glycosylated with the Periodic Acid-Schiff Stain kit. These results suggest that A2R may possess anti-tumor activity and, in particular, that the protein components of A2R may act to selectively inhibit the growth of HT-1080 cells.

  11. Comparisons of the Efficacy of a Jak1/2 Inhibitor (AZD1480 with a VEGF Signaling Inhibitor (Cediranib and Sham Treatments in Mouse Tumors Using DCE-MRI, DW-MRI, and Histology

    Directory of Open Access Journals (Sweden)

    Mary E. Loveless


    Full Text Available Jak1/2 inhibition suppresses STAT3 phosphorylation that is characteristic of many cancers. Activated STAT3 promotes the transcription of factors that enhance tumor growth, survival, and angiogenesis. AZD1480 is a novel small molecule inhibitor of Jak1/2, which is a key mediator of STAT3 activation. This study examined the use of diffusion-weighted (DW and dynamic contrast-enhanced (DCE magnetic resonance imaging (MRI biomarkers in assessing early tumor response to AZD1480. Cediranib (AZD2171, a vascular endothelial growth factor signaling inhibitor, was used as a comparator. Thirty mice were injected with Calu-6 lung cancer cells and randomized into the three treatment groups: AZD1480, cediranib, and sham. DW-MRI and DCE-MRI protocols were performed at baseline and at days 3 and 5 after treatment. The percent change from baseline measurements for Ktrans, ADC, and ve were calculated and compared with hematoxylin and eosin (H&E, CD31, cParp, and Ki-67 histology data. Decreases in Ktrans of 29% (P < .05 and 53% (P < .05 were observed at days 3 and 5, respectively, for the cediranib group. No significant changes in Ktrans occurred for the AZD1480 group, but a significant increase in ADC was demonstrated at days 3 (63%, P < .05 and 5 (49%, P < .05. CD31 staining indicated diminished vasculature in the cediranib group, whereas significantly increased cParp staining for apoptotic activity and extracellular space by image analysis of H&E were present in the AZD1480 group. These imaging biomarker changes, and corresponding histopathology, support the use of ADC, but not Ktrans, as a pharmacodynamic biomarker of response to AZD1480 at these time points.

  12. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors.