WorldWideScience

Sample records for inhibition prevents progressive

  1. Brain-derived neurotrophic factor-dependent cdk1 inhibition prevents G2/M progression in differentiating tetraploid neurons.

    Science.gov (United States)

    Ovejero-Benito, María C; Frade, José M

    2013-01-01

    Neurodegeneration is often associated with DNA synthesis in neurons, the latter usually remaining for a long time as tetraploid cells before dying by apoptosis. The molecular mechanism preventing G2/M transition in these neurons remains unknown, but it may be reminiscent of the mechanism that maintains tetraploid retinal ganglion cells (RGCs) in a G2-like state during normal development, thus preventing their death. Here we show that this latter process, known to depend on brain-derived neurotrophic factor (BDNF), requires the inhibition of cdk1 by TrkB. We demonstrate that a subpopulation of chick RGCs previously shown to become tetraploid co-expresses TrkB and cdk1 in vivo. By using an in vitro system that recapitulates differentiation and cell cycle re-entry of chick retinal neurons we show that BDNF, employed at concentrations specific for the TrkB receptor, reduces the expression of cdk1 in TrkB-positive, differentiating neurons. In this system, BDNF also inhibits the activity of both endogenous cdk1 and exogenously-expressed cdk1/cyclin B1 complex. This inhibition correlates with the phosphorylation of cdk1 at Tyr15, an effect that can be prevented with K252a, a tyrosine kinase inhibitor commonly used to prevent the activity of neurotrophins through their Trk receptors. The effect of BDNF on cdk1 activity is Tyr15-specific since BDNF cannot prevent the activity of a constitutively active form of cdk1 (Tyr15Phe) when expressed in differentiating retinal neurons. We also show that BDNF-dependent phosphorylation of cdk1 at Tyr15 could not be blocked with MK-1775, a Wee1-selective inhibitor, indicating that Tyr15 phosphorylation in cdk1 does not seem to occur through the canonical mechanism observed in proliferating cells. We conclude that the inhibition of both expression and activity of cdk1 through a BDNF-dependent mechanism contributes to the maintenance of tetraploid RGCs in a G2-like state.

  2. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... 000 women will have been diagnosed with invasive breast cancer, and nearly 41,000 women will die from ...

  3. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    Science.gov (United States)

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline

  4. FTY720 prevents progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease.

    Science.gov (United States)

    Ni, Haifeng; Chen, Junfeng; Pan, Mingming; Zhang, Minghui; Zhang, Jiandong; Chen, Pingsheng; Liu, Bicheng

    2013-12-01

    Recent studies have shown that chronic endothelial dysfunction can impair multiple aspects of renal physiology and, in turn, contribute to renal fibrosis. Sphingosine 1-phosphate (S1P) has been highlighted as an endothelial barrier-stabilizing mediator. The aim of our study was to investigate the effect of FTY720, an S1P analog, on the progression of renal fibrosis by inhibiting renal microvasculature endothelial dysfunction in a rat model of chronic kidney disease. Thirty male Sprague-Dawley rats were used in this study. Seven days after surgery, we placed the animals into three groups: sham surgery; 5/6 nephrectomized (Nx) rats; and 5/6Nx + FTY720 (1 mg/kg/day). All of the animals were sacrificed 12 weeks after surgery. We obtained and analyzed blood and kidney tissue samples from all of the groups. Glomerular capillary density and peritubular capillary (PTC) density were determined by CD31 immunostaining. The expression of transforming growth factor beta 1 (TGF-β1), collagen IV, fibronectin, endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were analyzed by immunohistochemistry, reverse transcription-polymerase chain reaction and western blotting. The 5/6Nx group exhibited increased blood urea nitrogen and serum creatinine, visible renal histological changes, pro-fibrotic molecule (TGF-β1) and production of extracellular matrix proteins such as collagen IV and fibronectin and decreased glomerular and PTC density, compared to the sham controls (P kidney disease.

  5. Progressive collapse and methods of prevention

    OpenAIRE

    Vasilieva, Anastasia

    2013-01-01

    The purpose of the study was to describe the process of progressive collapse and to find more methods and approaches to design the structure for preventing from this kind of failure. And the last aim was to find Russian norms and standards and make calculations on progressive collapse of the trade center, according to them. In this way the work was commissioned by Finnmap Consulting Oy. The thesis should be interesting to design engineers working with designing the large-span structures o...

  6. Inhibiting Glycogen Synthesis Prevents Lafora Disease in a Mouse Model

    Science.gov (United States)

    Pederson, Bartholomew A.; Turnbull, Julie; Epp, Jonathan R.; Weaver, Staci A.; Zhao, Xiaochu; Pencea, Nela; Roach, Peter J.; Frankland, Paul; Ackerley, Cameron A.; Minassian, Berge A.

    2013-01-01

    Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies, LB), and neurodegeneration. Whether LB could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LB are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis. PMID:23913475

  7. Inhibition of Complement Retards Ankylosing Spondylitis Progression

    Science.gov (United States)

    Yang, Chaoqun; Ding, Peipei; Wang, Qingkai; Zhang, Long; Zhang, Xin; Zhao, Jianquan; Xu, Enjie; Wang, Na; Chen, Jianfeng; Yang, Guang; Hu, Weiguo; Zhou, Xuhui

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy. PMID:27698377

  8. Hanford Site pollution prevention progress report

    Energy Technology Data Exchange (ETDEWEB)

    BETSCH, M.D.

    1999-10-05

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its

  9. Wogonoside prevents colitis-associated colorectal carcinogenesis and colon cancer progression in inflammation-related microenvironment via inhibiting NF-κB activation through PI3K/Akt pathway

    Science.gov (United States)

    Wang, Xiaoping; Zhao, Li; Li, Wenjun; Ding, Youxiang; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2016-01-01

    The inflammatory microenvironment has been reported to be correlated with tumor initiation and malignant development. In the previous studies we have found that wogonoside exerts anti-neoplastic and anti-inflammatory activities. In this study, we aimed to further investigate the chemopreventive effects of wogonoside on colitis-associated cancer and delineated the potential mechanisms. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, wogonoside significantly reduced the disease severity, lowered tumor incidence and inhibited the development of colorectal adenomas. Moreover, wogonoside inhibited inflammatory cells infiltration and cancer cell proliferation at tumor site. Furthermore, wogonoside dramatically decreased the secretion and expression of IL-1β, IL-6 and TNF-α as well as the nuclear expression of NF-κB in adenomas and surrounding tissues. In vitro results showed that wogonoside suppressed the proliferation of human colon cancer cells in the inflammatory microenvironment. Mechanistically, we found that wogonoside inhibited NF-κB activation via PI3K/Akt pathway. In conclusion, our results demonstrated that wogonoside attenuated colitis-associated tumorigenesis in mice and inhibited the progression of human colon cancer in inflammation-related microenvironment via suppressing NF-κB activation by PI3K/Akt pathway, indicating that wogonoside could be a promising therapeutic agent for colorectal cancer. PMID:27102438

  10. E-101 Preventative HIV Vaccine Progress

    National Research Council Canada - National Science Library

    John Mascola

    2014-01-01

    .... The analysis of bNAb structural mode of recognition and genetic pathways of antigen recognition and affinity maturation can impact HIV vaccine design and prevention efforts in several ways, including (1...

  11. Prevention of progression in monoclonal gammopathy of undetermined significance.

    Science.gov (United States)

    Rajkumar, S Vincent

    2009-09-15

    Monoclonal gammopathy of undetermined significance (MGUS) is a common premalignant plasma cell proliferative disorder with a lifelong risk of progression to multiple myeloma. Because myeloma is an incurable malignancy, strategies to delay or prevent progression in high-risk patients are of considerable importance.

  12. Prevention of Progression in Monoclonal Gammopathy of Undetermined Significance

    Science.gov (United States)

    Rajkumar, S. Vincent

    2009-01-01

    Summary Monoclonal gammopathy of undetermined significance (MGUS) is a common premalignant plasma cell proliferative disorder with a lifelong risk of progression to multiple myeloma. Since myeloma is an incurable malignancy, strategies to delay or prevent progression in high-risk patients are of considerable importance. PMID:19737944

  13. ROCK inhibition prevents early mouse embryo development.

    Science.gov (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  14. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation.

    Science.gov (United States)

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2015-12-01

    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis.

  15. Smart Coating for Corrosion Indication and Prevention: Recent Progress

    Science.gov (United States)

    Li, Wenyan; Hintze, Paul; Calle, Luz M.; Buhrow, Jerry; Curran, Jerry; Muehlberg, A. J.; Gelling, V. J.; Webster, D. C.; Croll, S. G.; Contu, F.; Taylor, S. R.

    2009-01-01

    The authors are developing a smart coating system based on pH-triggered release microcapsules. These microcapsules can be incorporated into various coating systems for corrosion detection, protection and self-repair of mechanical coating damage. This paper will present the results from progress made to date in the controlled release properties of these microcapsules as well as in their corrosion indication and corrosion inhibition function.

  16. Tumour necrosis factor-α inhibition can stabilize disease in progressive vitiligo.

    Science.gov (United States)

    Webb, K C; Tung, R; Winterfield, L S; Gottlieb, A B; Eby, J M; Henning, S W; Le Poole, I C

    2015-09-01

    Tumour necrosis factor (TNF)-α, a proinflammatory cytokine central to many autoimmune diseases, has been implicated in the depigmentation process in vitiligo. We review its role in vitiligo by exploring its pro- and anti-inflammatory properties and examine the effects of blocking its actions with TNF-α antagonist therapeutics in reports available in the literature. We found that TNF-α inhibition halts disease progression in patients with progressive vitiligo but that, paradoxically, treatment can be associated with de novo vitiligo development in some patients when used for other autoimmune conditions, particularly when using adalimumab and infliximab. These studies reinforce the importance of stating appropriate outcomes measures, as most pilot trials propose to measure repigmentation, whereas halting depigmentation is commonly overlooked as a measure of success. We conclude that TNF-α inhibition has proven useful for patients with progressive vitiligo, where TNF-α inhibition is able to quash cytotoxic T-cell-mediated melanocyte destruction. However, a lingering concern for initiating de novo disease will likely prevent more widespread application of TNF inhibitors to treat vitiligo.

  17. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  18. Prevention of dipyrone (metamizole) induced inhibition of aspirin antiplatelet effects.

    Science.gov (United States)

    Polzin, Amin; Richter, Stefan; Schrör, Karsten; Rassaf, Tienush; Merx, Marc W; Kelm, Malte; Hohlfeld, Thomas; Zeus, Tobias

    2015-07-01

    We have recently shown that dipyrone (metamizole), a non-opioid analgesic, can nullify aspirin (acetylsalicylic acid; ASA) antiplatelet effects in patients with coronary artery disease (CAD). In this study, we analysed the aspirin and dipyrone drug-drug interaction in order to identify strategies to prevent the dipyrone induced inhibition of asprin antiplatelet effects. Platelet function was measured by arachidonic acid-induced light-transmission aggregometry, thromboxane (TX) B2- formation by immunoassay. Dipyrone metabolite plasma levels were determined by high-performance-liquid-chromatography (HPLC). In seven healthy individuals, in vitro ASA (30 µM/ 100 µM/ 300 µM/ 1,000 µM) and dipyrone (10 µM) coincubation revealed, that the aspirin and dipyrone interaction can be overcome by increasing doses of aspirin. In 36 aspirin and dipyrone comedicated CAD patients, addition of ASA (30 µM/ 100 µM) in vitro inhibited, but did not completely overcome the dipyrone induced reduction of aspirin antiplatelet effects. Notably, the inhibition of thromboxane formation in aspirin and dipyrone comedicated CAD patients coincided with dipyrone plasma levels. In a cross-over designed study in four healthy individuals, we were able to prove that inhibition of aspirin (100 mg/ day) effects by dipyrone (750 mg/ day) was reversible. Furthermore, aspirin (100 mg/ day) medication prior to dipyrone (750 mg/ day) intake prevented the inhibition of antiplatelet effects by dipyrone in 12 healthy individuals. In conclusion, aspirin medication prior to dipyrone intake preserves antiplatelet effects, circumventing the pharmacodynamic drug-drug interaction at the level of cyclooxygenase-1.

  19. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    Science.gov (United States)

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  20. PARP inhibition delays progression of mitochondrial encephalopathy in mice.

    Science.gov (United States)

    Felici, Roberta; Cavone, Leonardo; Lapucci, Andrea; Guasti, Daniele; Bani, Daniele; Chiarugi, Alberto

    2014-07-01

    Mitochondrial disorders are deadly childhood diseases for which therapeutic remedies are an unmet need. Given that genetic suppression of the nuclear enzyme poly (adenine diphosphate-ribose) polymerase(PARP)-1 improves mitochondrial functioning, we investigated whether pharmacological inhibition of the enzyme affords protection in a mouse model of a mitochondrial disorder. We used mice lacking the Ndufs4 subunit of the respiratory complex I (Ndufs4 knockout [ KO] mice); these mice undergo progressive encephalopathy and die around postnatal day 50. Mice were treated daily with the potent PARP inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride (PJ34); neurological parameters, PARP activity, and mitochondrial homeostasis were evaluated. We found that mice receiving N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride from postnatal day 30 to postnatal day 50 show reduced neurological impairment, and increased exploratory activity and motor skills compared with vehicle-treated animals. However, drug treatment did not delay or reduce death. We found no evidence of increased PARP activity within the brain of KO mice compared with heterozygous, healthy controls. Conversely, a 10-day treatment with the PARP inhibitor significantly reduced basal poly(ADP-ribosyl)ation in different organs of the KO mice, including brain, skeletal muscle, liver, pancreas, and spleen. In keeping with the epigenetic role of PARP-1, its inhibition correlated with increased expression of mitochondrial respiratory complex subunits and organelle number. Remarkably, pharmacological targeting of PARP reduced astrogliosis in olfactory bulb and motor cortex, but did not affect neuronal loss of KO mice. In light of the advanced clinical development of PARP inhibitors, these data emphasize their relevance to treatment of mitochondrial respiratory defects.

  1. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway.

    Directory of Open Access Journals (Sweden)

    Itay Israel Shemesh

    Full Text Available Diabetic nephropathy (DN is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn't decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rpS6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.

  2. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression.

    Directory of Open Access Journals (Sweden)

    Matthew E Hardee

    Full Text Available BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an

  3. The UVB1 Vitamin D analogue inhibits colorectal carcinoma progression.

    Science.gov (United States)

    Ferronato, María Julia; Alonso, Eliana Noelia; Gandini, Norberto Ariel; Fermento, María Eugenia; Villegas, María Emilia; Quevedo, Mario Alfredo; Arévalo, Julián; López Romero, Alejandro; Rivadulla, Marcos Lois; Gómez, Generosa; Fall, Yagamare; Facchinetti, María Marta; Curino, Alejandro Carlos

    2016-10-01

    Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression. We demonstrated that UVB1 induces apoptotic cell death and retards cellular migration and invasion of HCT116 colorectal carcinoma cells. Moreover, the analogue reduced the tumour volume in vivo, and modulated the expression of Bax, E-cadherin and nuclear β-catenin in tumour animal tissues without producing toxic effects. In silico analysis showed that UVB1 exhibits greater affinity for the ligand binding domain of vitamin D receptor than calcitriol, and that several characteristics in the three-dimensional conformation of VDR may influence the biological effects. These results demonstrate that the Gemini vitamin D analogue affects the growth of the colorectal cancer and suggest that UVB1 is a potential chemotherapeutic agent for treatment of this disease.

  4. Inhibition of plasmin-mediated TAFI activation may affect development but not progression of abdominal aortic aneurysms.

    Science.gov (United States)

    Bridge, Katherine; Revill, Charlotte; Macrae, Fraser; Bailey, Marc; Yuldasheva, Nadira; Wheatcroft, Stephen; Butlin, Roger; Foster, Richard; Scott, D Julian; Gils, Ann; Ariens, Robert

    2017-01-01

    Thrombin-activatable fibrinolysis inhibitor (TAFI) reduces the breakdown of fibrin clots through its action as an indirect inhibitor of plasmin. Studies in TAFI-deficient mice have implicated a potential role for TAFI in Abdominal Aortic Aneurysm (AAA) disease. The role of TAFI inhibition on AAA formation in adult ApoE-/- mice is unknown. The aim of this paper was to investigate the effects of TAFI inhibition on AAA development and progression. Using the Angiotensin II model of AAA, male ApoE-/- mice were infused with Angiotensin II 750ng/kg/min with or without a monoclonal antibody inhibitor of plasmin-mediated activation of TAFI, MA-TCK26D6, or a competitive small molecule inhibitor of TAFI, UK-396082. Inhibition of TAFI in the Angiotensin II model resulted in a decrease in the mortality associated with AAA rupture (from 40.0% to 16.6% with MA-TCK26D6 (log-rank Mantel Cox test p = 0.16), and 8.3% with UK-396082 (log-rank Mantel Cox test p = 0.05)). Inhibition of plasmin-mediated TAFI activation reduced the incidence of AAA from 52.4% to 30.0%. However, late treatment with MA-TCK26D6 once AAA were already established had no effect on the progression of AAA in this model. The formation of intra-mural thrombus is responsible for the dissection and early rupture in the angiotensin II model of AAA, and this process can be prevented through inhibition of TAFI. Late treatment with a TAFI inhibitor does not prevent AAA progression. These data may indicate a role for inhibition of plasmin-mediated TAFI activation in the early stages of AAA development, but not in its progression.

  5. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis.

    Science.gov (United States)

    Hannan, Thomas J; Roberts, Pacita L; Riehl, Terrence E; van der Post, Sjoerd; Binkley, Jana M; Schwartz, Drew J; Miyoshi, Hiroyuki; Mack, Matthias; Schwendener, Reto A; Hooton, Thomas M; Stappenbeck, Thaddeus S; Hansson, Gunnar C; Stenson, William F; Colonna, Marco; Stapleton, Ann E; Hultgren, Scott J

    2014-11-01

    The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs). Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  6. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Directory of Open Access Journals (Sweden)

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  7. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia

    Science.gov (United States)

    Longchamp, Alban; Allagnat, Florent; Alonso, Florian; Kuppler, Christopher; Dubuis, Céline; Ozaki, Charles-Keith; Mitchell, James R.; Berceli, Scott; Corpataux, Jean-Marc

    2015-01-01

    Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment. PMID:26398895

  8. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hui-fang [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Bao, Xiao-hong [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Wang, Zhi-gang [College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021 (China); Tomono, Yasuko [Division of Molecular and Cell Biology, Shigei Medical Research Institute, 2117 Yamada, Okayama 700-0202 (Japan); Sakurama, Kazufumi; Ohara, Toshiaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Fukazawa, Takuya; Yamatsuji, Tomoki [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Fujiwara, Toshiyoshi [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Naomoto, Yoshio, E-mail: ynaomoto@med.kawasaki-m.ac.jp [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  9. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis

    DEFF Research Database (Denmark)

    Schneider, Markus; Hua, Tsushung A; Böhm, Michael;

    2010-01-01

    The authors reviewed published clinical trial data on the effects of renin-angiotensin system (RAS) inhibition for the prevention of atrial fibrillation (AF), aiming to define when RAS inhibition is most effective.......The authors reviewed published clinical trial data on the effects of renin-angiotensin system (RAS) inhibition for the prevention of atrial fibrillation (AF), aiming to define when RAS inhibition is most effective....

  10. The role of cyclooxygenase-2 inhibition for the prevention and treatment of prostate carcinoma.

    Science.gov (United States)

    Lin, Daniel W; Nelson, Peter S

    2003-09-01

    Experimental and epidemiologic studies have demonstrated that nonsteroidal antiinflammatory drugs (NSAIDs) are effective in the prevention of human cancers. Nonsteroidal antiinflammatory drugs inhibit the cyclooxygenase (COX) enzyme that functions to convert arachidonic acid to prostaglandins (PGs). Cyclooxygenase-2, a key COX isoenzyme, is rapidly induced in response to inflammatory stimuli, growth factors, cytokines, and promoters of neoplastic growth. Cyclooxygenase-2-catalyzed reactions may be involved in carcinogenesis via 2 distinct mechanisms: (1). DNA damage and (2). PG-mediated effects. Reactions mediated by COX-2 form reactive oxygen species that can directly induce the oxidation of DNA or instigate the bioactivation of carcinogens. Prostaglandin E2, a byproduct of COX-2-mediated arachidonic acid metabolism, exhibits several biologic actions that have been shown to promote tumorigenesis and tumor progression. These actions include increased cell proliferation, promotion of angiogenesis, and the elevated expression of the antiapoptotic protein Bcl-2. In addition, PGE2 decreases natural killer cell activity and alters immune surveillance. In vitro experimental studies find that COX-2 inhibitors decrease cellular proliferation, increase apoptosis, and modulate genes involved in cell cycle regulation. Evidence from animal studies supports a role for NSAIDs in prostate cancer (CaP) prevention. Population-based studies have observed a reduced incidence of CaP among men using NSAIDs. Because CaP evolves slowly and rarely strikes men before the sixth or seventh decade of life, any strategy to delay or lengthen the time to development of clinically evident CaP, such as chemoprevention strategies, would greatly impact the natural history of this disease. Recent progress and critical analyses in the roles of COX-2 inhibition on prostate carcinogenesis and CaP prevention will be presented.

  11. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis.

    Science.gov (United States)

    Pollock, Emily; Everest, Michelle; Brown, Arthur; Poulter, Michael O

    2014-10-01

    The integrity and stability of interneurons in a cortical network are essential for proper network function. Loss of interneuron synaptic stability and precise organization can lead to disruptions in the excitation/inhibition balance, a characteristic of epilepsy. This study aimed to identify alterations to the GABAergic interneuron network in the piriform cortex (PC: a cortical area believed to be involved in the development of seizures) after kindling-induced seizures. Immunohistochemistry was used to mark perineuronal nets (PNNs: structures in the extracellular matrix that provide synaptic stability and restrict reorganization of inhibitory interneurons) and interneuron nerve terminals in control and kindled tissues. We found that PNNs were significantly decreased around parvalbumin-positive interneurons after the induction of experimental epilepsy. Additionally, we found layer-specific increases in GABA release sites originating from calbindin, calretinin, and parvalbumin interneurons, implying that there is a re-wiring of the interneuronal network. This increase in release sites was matched by an increase in GABAergic post-synaptic densities. We hypothesized that the breakdown of the PNN could be due to the activity of matrix metalloproteinases (MMP) and that the prevention of PNN breakdown may reduce the rewiring of interneuronal circuits and suppress seizures. To test this hypothesis we employed doxycycline, a broad spectrum MMP inhibitor, to stabilize PNNs in kindled rats. We found that doxycycline prevented PNN breakdown, re-organization of the inhibitory innervation, and seizure genesis. Our observations indicate that PNN degradation may be necessary for the development of seizures by facilitating interneuron plasticity and increased GABAergic activity.

  12. Inhibition of rho-kinase by fasudil suppresses formation and progression of experimental abdominal aortic aneurysms.

    Directory of Open Access Journals (Sweden)

    Chen Peng

    Full Text Available OBJECTIVE: Accumulating evidence suggests that inflammatory cell infiltration is crucial pathogenesis during the initiation and progression of abdominal aortic aneurysm (AAA. Given Rho-kinase (ROCK, an important kinase control the actin cytoskeleton, regulates the inflammatory cell infiltration, thus, we investigate the possibility and mechanism of preventing experimental AAA progression via targeting ROCK in mice porcine pancreatic elastase (PPE model. METHODS AND RESULTS: AAA was created in 10-week-old male C57BL/6 mice by transient intraluminal porcine pancreatic elastase infusion into the infrarenal aorta. The mRNA level of RhoA, RhoC, ROCK1 and ROCK2 were elevated in aneurismal aorta. Next, PPE infusion mice were orally administrated with vehicle or ROCK inhibitor (Fasudil at dose of 200 mg/kg/day during the period of day 1 prior to PPE infusion to day 14 after PPE infusion. PPE infusion mice treated with Fasudil produced significantly smaller aneurysms as compare to PPE infusion mice treated with vehicle. AAAs developed in all vehicle-treated groups within 14 days, whereas AAAs developed in six mice (66%, 6/9 treated with Fasudil within 14 days. Furthermore, our semi-quantitative histological analysis revealed that blood vessels and macrophages were significantly reduced in Fasudil treated mice during the AAA progression. Finally, when mice with existing AAAs were treated with Fasudil, the enlargement was nearly completely suppressed. CONCLUSION: Fasudil inhibits experimental AAA progression and stabilize existing aneurysms, through mechanisms likely related to impaired mural macrophage infiltration and angiogenesis. These findings suggest that ROCK inhibitor may hold substantial translational value for AAA diseases.

  13. [Mechanisms of inhibition of viral replication in plants]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Progress is described concerning genetic mapping CMV movement genes for CMV coat protein in squash and ToMV gene in tomato. These gene products appear to be involved in resistance to squash and tomato mosaic viruses respectively.

  14. Fucoidan Prevents the Progression of Osteoarthritis in Rats.

    Science.gov (United States)

    Lee, Don-Gil; Park, Sang-Yong; Chung, Won-Seok; Park, Jae-Hee; Hwang, Eunson; Mavlonov, Gafurjon Tom; Kim, In-Ho; Kim, Ki-Young; Yi, Tae-Hoo

    2015-09-01

    This study investigated the effects of fucoidan (extract from Hizikia fusiforme) on symptoms and inflammatory cytokine activation in rats with monosodium iodoacetate (MIA)-induced osteoarthritis (OA). Forty male SD rats were divided into five groups, including normal, negative control (MIA), positive control (Lyprinol), and two experimental groups treated with 50 or 100 mg/kg fucoidan. Weight-bearing assessments were done after MIA injection into the right knee to induce OA. After 14 days of treatment, microcomputed tomographic (micro-CT) images were made of rat knee joints, and then animals were sacrificed for joint histology and inflammatory cytokine level assessments. MIA injection successfully induced OA by causing 40% weight-bearing imbalance, severe bone loss and cartilage degeneration, and markedly increased cytokine levels. However, fucoidan groups showed over 45% of imbalance and no articular cartilage surface lesions or change in subchondral trabecular bones in Micro-CT images. Histological analysis revealed that cartilage morphology and cell counts were also normal in the 100 mg/kg fucoidan group. In addition, the 100 mg/kg fucoidan groups exhibited lower serum tumor necrosis factor alpha (TNF-α) (30%), interleukin 1 beta (IL-1β) (48%), and matrix metalloproteinase-1 (MMP-1) (65%) compared to the MIA groups. These results suggest that administration of fucoidan prevents the progression of OA in a MIA-induced OA rat model.

  15. Complement Inhibition for Prevention and Treatment of Antibody-Mediated Rejection in Renal Allograft Recipients.

    Science.gov (United States)

    Jordan, S C; Choi, J; Kahwaji, J; Vo, A

    2016-04-01

    Therapeutic interventions aimed at the human complement system are recognized as potentially important strategies for the treatment of inflammatory and autoimmune diseases because there is often evidence of complement-mediated injury according to pathologic assessments. In addition, there are a large number of potential targets, both soluble and cell bound, that might offer potential for new drug development, but progress in this area has met with significant challenges. Currently, 2 drugs are approved aimed at inhibition of complement activation. The first option is eculizumab (anti-C5), which is approved for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Eculizumab has also been studied in human transplantation for the treatment and prevention of antibody-mediated rejection (ABMR). Initial data from uncontrolled studies suggested a significant benefit of eculizumab for the prevention of ABMR in highly HLA-sensitized patients, but a subsequent randomized, placebo-controlled trial failed to meet its primary endpoint. Anecdotal data, primarily from case studies, showed benefits in treating complement-mediated ABMR. A second approved complement-inhibiting therapy is C1 esterase inhibitor (C1-INH), which is approved for use in patients with hereditary angioedema, a condition caused by mutations in the gene that codes for C1-INH. A recent placebo-controlled trial of C1-INH for prevention of ABMR in HLA-sensitized patients found that the drug was safe, with evidence for inhibition of systemic complement activation and complement-activating donor-specific antibodies. Other drugs are now under development.

  16. Inhibition of monoacylglycerol lipase mediates a cannabinoid 1-receptor dependent delay of kindling progression in mice.

    Science.gov (United States)

    von Rüden, E L; Bogdanovic, R M; Wotjak, C T; Potschka, H

    2015-05-01

    Endocannabinoids, including 2-arachidonoylglycerol (2-AG), activate presynaptic cannabinoid type 1 receptors (CB1R) on inhibitory and excitatory neurons, resulting in a decreased release of neurotransmitters. The event-specific activation of the endocannabinoid system by inhibition of the endocannabinoid degrading enzymes may offer a promising strategy to selectively activate CB1Rs at the site of excessive neuronal activation with the overall goal to prevent the development epilepsy. The aim of this study was to investigate the impact of monoacylglycerol lipase (MAGL) inhibition on the development and progression of epileptic seizures in the kindling model of temporal lobe epilepsy. Therefore, we selectively blocked MAGL by JZL184 (8mg/kg, i.p.) in mice to analyze the effects of increased 2-AG levels on kindling acquisition and to exclude an anticonvulsive potential. Our results showed that JZL184 treatment significantly delayed the development of generalized seizures (p=0.0066) and decreased seizure (pkindling model of temporal lobe epilepsy, but caused only modest effects in fully kindled mice. Moreover, we proved that JZL184 treatment had no effects in conditional CB1R knockout mice lacking expression of the receptor in principle neurons of the forebrain. In conclusion, the data demonstrate that indirect CB1R agonism delays the development of generalized epileptic seizures but has no relevant acute anticonvulsive effects. Furthermore, we confirmed that the effects of JZL184 on kindling progression are CB1R mediated. Thus, the data indicate that the endocannabinoid 2-AG might be a promising target for an anti-epileptogenic approach.

  17. Sodium Intake, ACE Inhibition, and Progression to ESRD

    NARCIS (Netherlands)

    Vegter, Stefan; Perna, Annalisa; Postma, Maarten J.; Navis, Gerjan; Remuzzi, Giuseppe; Ruggenenti, Piero

    2012-01-01

    High sodium intake limits the antihypertensive and antiproteinuric effects of angiotensin-converting enzyme (ACE) inhibitors in patients with CKD; however, whether dietary sodium also associates with progression to ESRD is unknown. We conducted a post hoc analysis of the first and second Ramipril Ef

  18. Sodium Intake, ACE Inhibition, and Progression to ESRD

    NARCIS (Netherlands)

    Vegter, Stefan; Perna, Annalisa; Postma, Maarten J.; Navis, Gerjan; Remuzzi, Giuseppe; Ruggenenti, Piero

    2012-01-01

    High sodium intake limits the antihypertensive and antiproteinuric effects of angiotensin-converting enzyme (ACE) inhibitors in patients with CKD; however, whether dietary sodium also associates with progression to ESRD is unknown. We conducted a post hoc analysis of the first and second Ramipril Ef

  19. Eicosanoid signalling pathways in the development and progression of colorectal cancer: novel approaches for prevention/intervention.

    Science.gov (United States)

    Cathcart, Mary-Clare; Lysaght, Joanne; Pidgeon, Graham P

    2011-12-01

    Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways leads to the generation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Eicosanoid expression levels vary during tumor development and progression of a range of malignancies, including colorectal cancer. The actions of these autocoids are also directly influenced by diet, as demonstrated by recent evidence for omega-3 fatty acids in colorectal cancer (CRC) prevention and/or treatment. Eicosanoids regulate CRC development and progression, while inhibition of these pathways has generally been shown to inhibit tumor growth/progression. A progressive sequence of colorectal cancer development has been identified, ranging from normal colon, to colitis, dysplasia, and carcinoma. While both COX and LOX inhibition are both promising candidates for colorectal cancer prevention and/or treatment, there is an urgent need to understand the mechanisms through which these signalling pathways mediate their effects on tumorigenesis. This will allow identification of safer, more effective strategies for colorectal cancer prevention and/or treatment. In particular, binding to/signalling through prostanoid receptors have recently been the subject of considerable interest in this area. In this review, we discuss the role of the eicosanoid signalling pathways in the development and progression of colorectal cancer. We discuss the effects of the eicosanoids on tumor cell proliferation, their roles in cell death induction, effects on angiogenesis, migration, invasion and their regulation of the immune response. Signal transduction pathways involved in these processes are also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of

  20. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  1. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei

    2016-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  2. From inhibition of radiographic progression to maintaining structural integrity: a methodological framework for radiographic progression in rheumatoid arthritis and psoriatic arthritis clinical trials.

    Science.gov (United States)

    Landewé, Robert; Strand, Vibeke; van der Heijde, Désirée

    2013-07-01

    Usually, a clinical trial in rheumatoid arthritis and psoriatic arthritis aiming to demonstrate that a new antirheumatic drug treatment can inhibit progression of structural damage has a 'superiority design': The new treatment is compared to placebo or to another active treatment. Currently, many new drug treatments have shown to be able to completely suppress progression (progression rates close to zero). For largely unknown reasons, during the last 10 years, radiographic progression rates in clinical trials have gradually decreased, so that progression rates in the comparator groups are often too low to demonstrate meaningful inhibition, and thus superiority of the new treatment. We here propose an alternative framework to demonstrate that new treatments have the ability to 'preserve structural integrity' rather than to 'inhibit radiographic progression'. Anno 2013, preserving structural integrity is conceptually more realistic than inhibiting radiographic progression.

  3. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide.

    Science.gov (United States)

    Shi, Ming-Der; Lin, Hui-Hsuan; Lee, Yi-Che; Chao, Jian-Kang; Lin, Rong-An; Chen, Jing-Hsien

    2008-08-11

    In recent years, attention has been focused on the anti-cancer properties of pure components, an important role in the prevention of disease. Andrographolide (Andro), the major constituent of Andrographis paniculata (Burm. F.) Nees plant, is implicated towards its pharmacological activity. To investigate the mechanism basis for the anti-tumor properties of Andro, Andro was used to examine its effect on cell-cycle progression in human colorectal carcinoma Lovo cells. The data from cell growth experiment showed that Andro exhibited the anti-proliferation effect on Lovo cells in a time- and dose-dependent manner. This event was accompanied the arrest of the cells at the G1-S phase by Andro at the tested concentrations of 0-30 microM. Cellular uptake of Andro and Andro was confirmed by capillary electrophoresis analysis and the intracellular accumulation of Andro (0.61+/-0.07 microM/mg protein) was observed when treatment of Lovo cells with Andro for 12h. In addition, an accumulation of the cells in G1 phase (15% increase for 10 microM of Andro) was observed as well as by the association with a marked decrease in the protein expression of Cyclin A, Cyclin D1, Cdk2 and Cdk4. Andro also inducted the content of Cdk inhibitor p21 and p16, and the phosphorylation of p53. Further immunoprecipitation studies found that, in response to the treatment, the formation of Cyclin D1/Cdk4 and Cyclin A/Cdk2 complexes had declined, preventing the phosphorylation of Rb and the subsequent dissociation of Rb/E2F complex. These results suggested Andro can inhibit Lovo cell growth by G1-S phase arrest, and was exerted by inducing the expression of p53, p21 and p16 that, in turn, repressed the activity of Cyclin D1/Cdk4 and/or Cyclin A/Cdk2, as well as Rb phosphorylation.

  4. Huang Qi Decoction Prevents BDL-Induced Liver Fibrosis Through Inhibition of Notch Signaling Activation.

    Science.gov (United States)

    Zhang, Xiao; Xu, Ying; Chen, Jia-Mei; Liu, Cheng; Du, Guang-Li; Zhang, Hua; Chen, Gao-Feng; Jiang, Shi-Li; Liu, Cheng-Hai; Mu, Yong-Ping; Liu, Ping

    2017-01-01

    Notch signaling has been demonstrated to be involved in ductular reactions and fibrosis. Previous studies have shown that Huang Qi Decoction (HQD) can prevent the progression of cholestatic liver fibrosis (CLF). However, whether HQD affects the Notch signaling pathway is unclear. In this study, CLF was established by common bile duct ligation (BDL) in rats. At the end of the first week, the rats were randomly divided into a model group (i.e., BDL), an HQD group, and a sorafenib positive control group (SORA) and were treated for 3 weeks. Bile duct proliferation and liver fibrosis were determined by tissue staining. Activation of the Notch signaling pathway was evaluated by analyzing expressions of Notch-1, -2, -3, and -4, Jagged (JAG) 1, and Delta like (DLL)-1, -3, and -4. The results showed that HQD significantly reduced the deposition of collagen and the Hyp content of liver tissue and inhibited the activation of HSCs compared with the BDL group. In addition, HQD significantly decreased the protein and mRNA expressions of TGF-[Formula: see text]1 and [Formula: see text]-SMA. In contrast, HQD significantly enhanced expression of the Smad 7 protein. HQD also reduced biliary epithelial cell proliferation, and reduced the mRNA levels of CK7, CK8, CK18, SRY-related high mobility group-box gene (SOX) 9, epithelial cell adhesion molecule (EpCAM) and the positive areas of CK19 and OV6. In addition, the mRNA and protein expressions of Notch-3, -4, JAG1, and DLL-1, -3 were significantly reduced in the HQD compared to the BDL group. These results demonstrated that HQD may prevent biliary liver fibrosis through inhibition of the Notch signaling pathway, and it may be a potential treatment for cholestatic liver disease.

  5. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports.

  6. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  7. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  8. Research progress of primary prevention for stroke: reports from China

    Directory of Open Access Journals (Sweden)

    Liang-dan TU

    2015-01-01

    Full Text Available Chinese researchers have published some studies in English journals in the past 2 years. These studies focused on status and costs of primary prevention for stroke, warfarin for atrial fibrillation (AF, angiotensin converting enzyme inhibitor (ACEI and angiotensin Ⅱ receptor blocker (ARB for diabetes mellitus, vitamin B supplementation for reducing plasm homocysteine level and the risk of cerebrovascular disease, non-high-density lipoprotein cholesterol (non-HDL-C levels and asymptomatic intracranial arterial stenosis, and Qigong exercises for the prevention of stroke. In this review, we outline the data on primary prevention for stroke and review the risk factors and their management. DOI: 10.3969/j.issn.1672-6731.2015.01.004

  9. Research progress of secondary prevention for stroke: reports from China

    Directory of Open Access Journals (Sweden)

    Lu LU

    2015-03-01

    Full Text Available Chinese researchers have published some studies in English journals since 2013 on the secondary prevention of stroke. These studies focused on implementation of a structured guideline-based program for the secondary prevention of ischemic stroke in China, clopidogrel with aspirin in acute minor stroke or transient ischemic attack (TIA, higher risk of recurrent ischemic events in patients with intracranial in-stent restenosis, association of hypertension with stroke recurrence depends on ischemic stroke subtype, impact of quality of anticoagulation control, and so on. In this review, we outline the data of these high-qualitied studies on secondary prevention of stroke. DOI: 10.3969/j.issn.1672-6731.2015.03.004

  10. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  11. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Science.gov (United States)

    Litviakov, N. V.; Tverdokhlebov, S. I.; Perelmuter, V. M.; Kulbakin, D. E.; Bolbasov, E. N.; Tsyganov, M. M.; Zheravin, A. A.; Svetlichnyi, V. A.; Cherdyntseva, N. V.

    2016-08-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats' iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant's influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  12. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice.

    Science.gov (United States)

    de Zoeten, Edwin F; Wang, Liqing; Sai, Hong; Dillmann, Wolfgang H; Hancock, Wayne W

    2010-02-01

    Foxp3+ T regulatory cells (Tregs) help prevent autoimmunity, and increases in their numbers of functions could decrease the development of inflammatory bowel disease. Like other cells, Foxp3+ Tregs express histone/protein deacetylases (HDACs), which regulate chromatin remodeling and gene expression. We investigated whether disruption of a specific class IIa HDAC, HDAC9, activity in Tregs affects the pathogenesis of colitis in mice. We tested the effects of various HDAC inhibitors (HDACi) in models of colitis using wild-type mice. We also transferred Tregs and non-Treg cells from HDAC9-/- or wild-type mice to immunodeficient mice. HDAC9 contributions to the functions of Tregs were determined during development and progression of colitis. Pan-HDACi, but not class I-specific HDACi, increased the functions of Foxp3+ Tregs, prevented colitis, and reduced established colitis in mice, indicating the role of class II HDACs in controlling Treg function. The abilities of pan-HDACi to prevent/reduce colitis were associated with increased numbers of Foxp3+ Tregs and their suppressive functions. Colitis was associated with increased local expression of HDAC9; HDAC9-/- mice resistant to development of colitis. HDAC9-/- Tregs expressed increased levels of the heat shock protein (HSP) 70, compared with controls. Immunoprecipitation experiments indicated an interaction between HSP70 and Foxp3. Inhibition of HSP70 reduced the suppressive functions of HDAC9-/- Tregs; Tregs that overexpressed HSP70 had increased suppressive functions. Strategies to decrease HDAC9 expression or function in Tregs or to increase expression of HSP70 might be used to treat colitis and other autoimmune disorders.

  13. [Prognosis and progression of cognitive impairment. Preventive measures].

    Science.gov (United States)

    López Mongil, Rosa; López Trigo, José Antonio

    2016-06-01

    Because of the substantial increase in population ageing, age-related processes, such as dementia and Alzheimer disease (AD), are becoming highly prevalent. The course of this disease, including preprodromic phases, lasts at least 20 years. The presence of comorbidities, especially those of vascular origin, can trigger and aggravate disease progression. On the other hand, cognitive reserve, the absence or control of comorbid factors and healthy lifestyles can protect or modify -in the sense of slow down- disease progression. Knowledge of the phases of AD and their functional impact on affected individuals helps to identify the average prognosis and, in particular, to establish and predict care plans based on the individual's needs. Copyright © 2016 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Prostate cancer progression attributed to autonomic nerve development: potential for therapeutic prevention of localized and metastatic disease.

    Science.gov (United States)

    Fernández, Elena V; Price, Douglas K; Figg, William D

    2013-11-01

    In a study recently published in Science, Magnon et al. show that both the sympathetic and parasympathetic components of the autonomic nervous system play an integral part in the development and dissemination of prostate cancer (PCa). Inhibition of the sympathetic nervous system (SNS) and disruption of the adrenergic receptors, specifically Ardβ 2, resulted in the prevention of primary PCa tumor development in mice. The authors found that inhibition of the SNS is only successful in preventing murine tumor development if completed early enough, and the parasympathetic nervous system (PNS) predominates in later stages of PCa. Inhibition of the PNS by way of the cholinergic receptor, muscarinic 1 (Chrm1), caused mice to develop less metastases to the pelvic lymph nodes, intestines, and bones. A PCa progression scheme has been outlined where initial tumor engraftment is controlled by the SNS but then becomes less prominent than the PNS, which promotes metastasis. The investigators showed the dependence of the autonomic nervous system on development of PCa and present opportunities for prevention; further studies are needed to confirm these results in humans.

  15. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection.

    Science.gov (United States)

    Li, Hongen; Chen, Yutao; Zhang, Bing; Niu, Xiaodi; Song, Meng; Luo, Zhaoqing; Lu, Gejin; Liu, Bowen; Zhao, Xiaoran; Wang, Jianfeng; Deng, Xuming

    2016-04-15

    The critical role of sortase A in gram-positive bacterial pathogenicity makes this protein a good potential target for antimicrobial therapy. In this study, we report for the first time the crystal structure of Listeria monocytogenes sortase A and identify the active sites that mediate its transpeptidase activity. We also used a sortase A (SrtA) enzyme activity inhibition assay, simulation, and isothermal titration calorimetry analysis to discover that chalcone, an agent with little anti-L. monocytogenes activity, could significantly inhibit sortase A activity with an IC50 of 28.41 ± 5.34 μM by occupying the active site of SrtA. The addition of chalcone to a co-culture of L. monocytogenes and Caco-2 cells significantly inhibited bacterial entry into the cells and L. monocytogenes-mediated cytotoxicity. Additionally, chalcone treatment decreased the mortality of infected mice, the bacterial burden in target organs, and the pathological damage to L. monocytogenes-infected mice. In conclusion, these findings suggest that chalcone is a promising candidate for the development of treatment against L. monocytogenes infection.

  16. Annual report of waste generation and pollution prevention progress 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  17. Caries-inhibiting effect of preventive measures during orthodontic treatment with fixed appliances. A systematic review.

    NARCIS (Netherlands)

    Derks, A.; Katsaros, C.; Frencken, J.E.F.M.; Hof, M.A. van 't; Kuijpers-Jagtman, A.M.

    2004-01-01

    A systematic review was performed of published data on the caries-inhibiting effect of preventive measures during orthodontic treatment with fixed appliances. The purpose was to develop evidence-based recommendations about the most effective means of preventing white spot lesions in orthodontic pati

  18. Carotid Artery Stenting Successfully Prevents Progressive Stroke Due to Mobile Plaque

    Directory of Open Access Journals (Sweden)

    Masahiro Oomura

    2015-05-01

    Full Text Available We report a case of progressive ischemic stroke due to a mobile plaque, in which carotid artery stenting successfully prevented further infarctions. A 78-year-old man developed acute multiple infarcts in the right hemisphere, and a duplex ultrasound showed a mobile plaque involving the bifurcation of the left common carotid artery. Maximal medical therapy failed to prevent further infarcts, and the number of infarcts increased with his neurological deterioration. Our present case suggests that the deployment of a closed-cell stent is effective to prevent the progression of the ischemic stroke due to the mobile plaque.

  19. Recent Progress in Cancer-Related Lymphedema Treatment and Prevention

    Science.gov (United States)

    Shaitelman, Simona F.; Cromwell, Kate D.; Rasmussen, John C.; Stout, Nicole L.; Armer, Jane M.; Lasinski, Bonnie B.; Cormier, Janice N.

    2016-01-01

    This article provides an overview of the recent developments in the diagnosis, treatment, and prevention of cancer-related lymphedema. Lymphedema incidence by tumor site is evaluated. Measurement techniques and trends in patient education and treatment are also summarized to include current trends in therapeutic and surgical treatment options as well as longer-term management. Finally, an overview of the policies related to insurance coverage and reimbursement will give the clinician an overview of important trends in the diagnosis, treatment, and management of cancer-related lymphedema. PMID:25410402

  20. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  1. Physical Activity Prevents Progression for Cognitive Impairment and Vascular Dementia

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Ferro, José M

    2012-01-01

    BACKGROUND AND PURPOSE: We aimed to study if physical activity could interfere with progression for cognitive impairment and dementia in older people with white matter changes living independently. METHODS: The LADIS (Leukoaraiosis and Disability) prospective multinational European study evaluates...... the impact of white matter changes on the transition of independent elderly subjects into disability. Subjects were evaluated yearly during 3 years with a comprehensive clinical protocol and cognitive assessment with classification of cognitive impairment and dementia according to usual clinical criteria....... Physical activity was recorded during the clinical interview. MRI was performed at entry and at the end of the study. RESULTS: Six hundred thirty-nine subjects were included (74.1±5 years old, 55% women, 9.6±3.8 years of schooling, 64% physically active). At the end of follow-up, 90 patients had dementia...

  2. Suppressing progress of pancreatitis through selective inhibition of NF-κB activation by using NAC

    Institute of Scientific and Technical Information of China (English)

    赵志成; 郑树森; 陈文亮; 王选; 齐莹

    2004-01-01

    Objective: To explore the characteristics of NF-κB activation in the progress of pancreatitis, the relationship with expression of TNF-α in the inflammatory reaction, and prevent the exacerbation of pancreatitis by using NAC. Method: Forty-eight rats were divided into three groups: therapy (group C), pancreatitis (group B) and control (group A). NAC served as the inhibitor of NF-κB activation. In the time intervals of 1.5, 3.0, 6.0, 12.0 hour, NF-κB activation was detected with flow cytometry (FCM) and the expression of TNF-α mRNA and protein with in situ hybridization (ISH) and enzyme-linked immuno-sorbent assay (ELISA) respectively. Meanwhile, the level of lipase and amylase in the serum was assayed and the pathological change was evaluated. Result: NF-κB activation in the pancreatitis group was higher than that in the control group (P<0.01), peaked at 3 hours, and was depressed by the inhibitor of NF-κB, NAC. The expression of TNF-α as well as the level of lipase and amylase in the serum also rose synchronously with activation of NF-κB. In contrast to group A, it was significantly different (P<0.01) in group B. After using NAC in group C, all of these values were decreased and the inflammatory reaction in the pancreas abated evidently. The pathology changes of the pancreas were shown to be alleviated in group C. Conclusion: First, NF-κB activity is intensively initiated in the course of pancreatitis and shown to have closely relationship with the release of cytokines. Second, use of NAC markedly depressed NF-κB activation. TNF-α expression is down regulated by cytokines. It is suggested that NAC probably acts as a useful agent for treatment of pancreatitis by indirectly inhibiting activation of NF-κB.

  3. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention

    Science.gov (United States)

    Ye, Boping; Pelling, Jill C.; Volpert, Olga V.; Tong, Xin

    2016-01-01

    Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by a berrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer. PMID:26876613

  4. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention.

    Science.gov (United States)

    Bridgeman, Bryan B; Wang, Pu; Ye, Boping; Pelling, Jill C; Volpert, Olga V; Tong, Xin

    2016-05-01

    Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer.

  5. Research Progress in Sports Fatigue Prevented and Treated by Acupuncture

    Institute of Scientific and Technical Information of China (English)

    孙德利; 张琰; 陈大隆; 黄国琪

    2009-01-01

    目的:分析针灸防治运动性疲劳的临床和实验研究文献,了解针灸消除运动性疲劳的研究现状.方法:利用文献分析法,整理了的20年来治疗为主治疗运动性疲劳的文献,进行了归纳分析.结果与结论:针灸可能通过清除自由基、抗脂质过氧化,防止运动性下丘脑-垂体-性腺轴功能紊乱,降低肌酸激酶(CK)含量,降低乳酸浓度等作用,对消除运动性疲劳、改善机体运动能力有重要作用.但因传统的针灸疗法会对机体产生微小损伤,故今后应注重推广无创痛穴位疗法,并从多途径多环节探索针灸防治运动性疲劳的作用机制.%Objective:To analyze the literature on clinical and experimental studies of sports fatigues treated and prevented by acupuncture therapy and understand the current statuS about acupuncture therapy for eliminating sports fatigue.Method:By the method to analyze the literature,the literature on treatment of sports fatigue in the recent 20 years was summarized and analyzed.Results and Conclusion:Acupuncture therapy is able to eliminate free radicals,resist lipid peroxidation,prevent dysfunction of the motor hypothalamus-pituitary-gonadal axis,reduce the creatine kinase content,and lower lactic acid concentration,so as to play an important role in the elimination of sports fatigue and improvement of athletic ability of the body.But,traditional acupuncture therapy will cause minor injury to the human body,it is necessary to popularize the painless acupuncture therapy,and explore the functional mechanism of acupuncture therapy in the treatment and prevention of sport fatigue by multiple channels in the future.

  6. Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway.

    Science.gov (United States)

    Chen, Cheng-Hsien; Sue, Yuh-Mou; Cheng, Chung-Yi; Chen, Yen-Cheng; Liu, Chung-Te; Hsu, Yung-Ho; Hwang, Pai-An; Huang, Nai-Jen; Chen, Tso-Hsiao

    2017-01-18

    Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.

  7. DNA copy-number control through inhibition of replication fork progression

    NARCIS (Netherlands)

    J.T. Nordman (Jared T.); E. Kozhevnikova (Elena); C.P. Verrijzer (Peter); A.V. Pindyurin (Alexey); E.N. Andreyeva (Evgeniya); V.V. Shloma (Victor); I.F. Zhimulev (Igor); T. Orr-Weaver (T.)

    2014-01-01

    textabstractProper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict

  8. DNA copy-number control through inhibition of replication fork progression

    NARCIS (Netherlands)

    J.T. Nordman (Jared T.); E. Kozhevnikova (Elena); C.P. Verrijzer (Peter); A.V. Pindyurin (Alexey); E.N. Andreyeva (Evgeniya); V.V. Shloma (Victor); I.F. Zhimulev (Igor); T. Orr-Weaver (T.)

    2014-01-01

    textabstractProper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell

  9. DNA copy-number control through inhibition of replication fork progression

    NARCIS (Netherlands)

    J.T. Nordman (Jared T.); E. Kozhevnikova (Elena); C.P. Verrijzer (Peter); A.V. Pindyurin (Alexey); E.N. Andreyeva (Evgeniya); V.V. Shloma (Victor); I.F. Zhimulev (Igor); T. Orr-Weaver (T.)

    2014-01-01

    textabstractProper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell

  10. Safety and chemopreventive effect of Polyphenon E in preventing early and metastatic progression of prostate cancer in TRAMP mice.

    Science.gov (United States)

    Kim, Seung Joon; Amankwah, Ernest; Connors, Shahnjayla; Park, Hyun Y; Rincon, Maria; Cornnell, Heather; Chornokur, Ganna; Hashim, Arig Ibrahim; Choi, Junsung; Tsai, Ya-Yu; Engelman, Robert W; Kumar, Nagi; Park, Jong Y

    2014-04-01

    Prostate cancer treatment is often accompanied by untoward side effects. Therefore, chemoprevention to reduce the risk and inhibit the progression of prostate cancer may be an effective approach to reducing disease burden. We investigated the safety and efficacy of Polyphenon E, a green tea extract, in reducing the progression of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. A total of 119 male TRAMP and 119 C57BL/6J mice were treated orally with one of 3 doses of Polyphenon E (200, 500, and 1,000 mg/kg/day) in drinking water ad libitum replicating human achievable doses. Baseline assessments were performed before treatments. Safety and efficacy assessments during treatments were performed when mice were 12, 22, and 32 weeks old. The number and size of tumors in treated TRAMP mice were significantly decreased compared with untreated animals. In untreated 32 weeks old TRAMP mice, prostate carcinoma metastasis to distant sites was observed in 100% of mice (8/8), compared with 13% of mice (2/16) treated with high-dose Polyphenon E during the same period. Furthermore, Polyphenon E treatment significantly inhibited metastasis in TRAMP mice in a dose-dependent manner (P = 0.0003). Long-term (32 weeks) treatment with Polyphenon E was safe and well tolerated with no evidence of toxicity in C57BL/6J mice. Polyphenon E is an effective chemopreventive agent in preventing the progression of prostate cancer to metastasis in TRAMP mice. Polyphenon E showed no toxicity in these mouse models. Our findings provide additional evidence for the safety and chemopreventive effect of Polyphenon E in preventing metastatic progression of prostate cancer.

  11. Inhibition of the renin-angiotensin system for prevention of atrial fibrillation.

    Science.gov (United States)

    Zografos, Theodoros; Katritsis, Demosthenes G

    2010-10-01

    Atrial fibrillation (AF) is a source of considerable morbidity and mortality. There has been compelling evidence supporting the role of renin-angiotensin system (RAS) in the genesis and perpetuation of AF through atrial remodeling, and experimental studies have validated the utilization of RAS inhibition for AF prevention. This article reviews clinical trials on the use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) for the prevention of AF. Results have been variable, depending on the clinical background of treated patients. ACEIs and ARBs appear beneficial for primary prevention of AF in patients with heart failure, whereas they are not equally effective in hypertensive patients with normal left ventricular function. Furthermore, the use of ACEIs or ARBs for secondary prevention of AF has been found beneficial only after electrical cardioversion. Additional data are needed to establish the potential clinical role of renin-angiotensin inhibition for prevention of AF.

  12. Annual report of waste generation and pollution prevention progress 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE`s Complex-Wide Waste Reduction Goals are achieved by December 31, 1999.

  13. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway.

    Directory of Open Access Journals (Sweden)

    Kuo-Feng Hua

    Full Text Available Renal reactive oxygen species (ROS and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation of IgA nephropathy (IgAN, which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L. Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1 reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2 inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3 decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4 inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5 inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder.

  14. The influence of angiotensin-converting enzyme inhibition on renal tubular function in progressive chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1996-01-01

    The influence of angiotensin-converting enzyme (ACE) inhibition on renal tubular function in progressive chronic nephropathy was investigated in 69 patients by the lithium clearance (C(Li)) method. Studies were done repeatedly for up to 2 years during a controlled trial on the effect of enalapril....... In the conventional group, the fractional clearances of these three plasma proteins all increased. It is concluded that in progressive chronic nephropathy ACE-inhibitor treatment was associated with different adaptive tubular changes in the handling of sodium, water, and protein compared with conventional...

  15. A Systematic Process to Prioritize Prevention Activities: Sustaining Progress Toward the Reduction of Military Injuries

    Science.gov (United States)

    2010-01-01

    avoids overtraining and utilizes agility- ike training has been found to reduce physical training– elated injuries while meeting desired physical fıtness...M F A P ( S v d v C t 2 P A Systematic Process to Prioritize Prevention Activities Sustaining Progress Toward the Reduction of Military Injuries ...Schaefer, MD, MPH, Galen Barbour, MD, Kenneth S. Yew, MD, Bruce H. Jones, MD, MPH Background: To sustain progress toward injury reduction and other

  16. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation

    Science.gov (United States)

    Zasadil, Lauren M.; Britigan, Eric M. C.; Ryan, Sean D.; Kaur, Charanjeet; Guckenberger, David J.; Beebe, David J.; Moser, Amy R.; Weaver, Beth A.

    2016-01-01

    Aneuploidy, an abnormal chromosome number that deviates from a multiple of the haploid, has been recognized as a common feature of cancers for >100 yr. Previously, we showed that the rate of chromosome missegregation/chromosomal instability (CIN) determines the effect of aneuploidy on tumors; whereas low rates of CIN are weakly tumor promoting, higher rates of CIN cause cell death and tumor suppression. However, whether high CIN inhibits tumor initiation or suppresses the growth and progression of already initiated tumors remained unclear. We tested this using the ApcMin/+ mouse intestinal tumor model, in which effects on tumor initiation versus progression can be discriminated. ApcMin/+ cells exhibit low CIN, and we generated high CIN by reducing expression of the kinesin-like mitotic motor protein CENP-E. CENP-E+/−;ApcMin/+ doubly heterozygous cells had higher rates of chromosome missegregation than singly heterozygous cells, resulting in increased cell death and a substantial reduction in tumor progression compared with ApcMin/+ animals. Intestinal organoid studies confirmed that high CIN does not inhibit tumor cell initiation but does inhibit subsequent cell growth. These findings support the conclusion that increasing the rate of chromosome missegregation could serve as a successful chemotherapeutic strategy. PMID:27146113

  17. Ketogenic Diet Prevents Epileptogenesis and Disease Progression in Adult Mice and Rats

    Science.gov (United States)

    Lusardi, Theresa A.; Akula, Kiran K.; Coffman, Shayla Q.; Ruskin, David; Masino, Susan A.; Boison, Detlev

    2015-01-01

    Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects. PMID:26256422

  18. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats.

    Science.gov (United States)

    Lusardi, Theresa A; Akula, Kiran K; Coffman, Shayla Q; Ruskin, David N; Masino, Susan A; Boison, Detlev

    2015-12-01

    Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects.

  19. The protective effects of ivabradine in preventing progression from viral myocarditis to dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Li Yue-Chun

    2016-11-01

    Full Text Available To study the beneficial effects of ivabradine in dilated cardiomyopathy mice, which evolved from coxsackievirus B3-induced chronic viral myocarditis. Four-to-five-week-old male balb/c mice were inoculated intraperitoneally with coxsackievirus B3 (Strain Nancy on day 1, day 14 and day 28. The day of the first virus inoculation was defined as day 1. Thirty-five days later, the surviving chronic viral myocarditis mice were divided randomly into two groups, a treatment group and an untreated group. Ivabradine was administered by gavage for 30 consecutive days in the treatment group, and the untreated group was administered normal saline. Masson’s trichrome stain was used to evaluate the fibrosis degree in myocardial tissue. The expression levels of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, Collagen I, Collagen III and p38-MAPK signaling pathway proteins were detected by western blot. Electrocardiogram was used to investigate the heart rate and rhythm. The thickness of the ventricular septum and left ventricular posterior wall, left ventricular end diastolic dimension, left ventricular end systolic dimension, left ventricular ejection fractions and fractional shortening were studied by echocardiography. Compared with the untreated chronic viral myocarditis mice, ivabradine significantly increased the survival rate, attenuated the myocardial lesions and fibrosis, improved the impairment of the left ventricular function, diminished the heart dimension, decreased the production of collagen I and collagen III, reduced the expression of the proinflammatory cytokines TNF-α, IL-1β, and IL-6, and lowered the production of phospho-p38MAPK. The findings indicate the therapeutic effect of ivabradine in preventing the progression from viral myocarditis to dilated cardiomyopathy in mice with chronic viral myocarditis induced by coxsackievirus B3, is associated with inhibition of the p38MAPK pathway, downregulated

  20. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma

    Science.gov (United States)

    Coulson, Rhiannon; Liew, Seng H.; Connelly, Angela A.; Yee, Nicholas S.; Deb, Siddhartha; Kumar, Beena; Vargas, Ana C.; O’Toole, Sandra A.; Parslow, Adam C.; Poh, Ashleigh; Putoczki, Tracy; Morrow, Riley J.; Alorro, Mariah; Lazarus, Kyren A.; Yeap, Evie F.W.; Walton, Kelly L.; Harrison, Craig A.; Hannan, Natalie J.; George, Amee J.; Clyne, Colin D.; Ernst, Matthias; Allen, Andrew M.; Chand, Ashwini L.

    2017-01-01

    Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour

  1. Suppressing progress of pancreatitis through selective inhibition of NF-κB activation by using NAC

    Institute of Scientific and Technical Information of China (English)

    赵志成; 郑树森; 陈文亮; 王选; 齐莹

    2004-01-01

    Objective:To explore the characteristics of NF-κB activation in the progress of pancreatitis,the relationship with expression of TNF-α in the inflammatory reaction, and prevent the exacerbation of pancreatitis by using NAC.Method:Forty-eight rats were divided into three groups: therapy (group C), pancreatitis (group B) and control (group A).NAC served as the inhibitor of NF-κB activation.In the time intervals of 1.5, 3.0, 6.0, 12.0 hour, NF-κB activation was detected with flow cytometry (FCM) and the expression of TNF-α mRNA and protein with in situ hybridization (ISH) and enzyme-linked immuno-sorbent assay (ELISA) respectively. Meanwhile, the level of lipase and amylase in the serum was assayed and the pathological change was evaluated. Result:NF-κB activation in the pancreatitis group was higher than that in the control group (P<0.01),peaked at 3 hours,and was depressed by the inhibitor of NF-κB, NAC.The expression of TNF-α as well as the level of lipase and amylase in the serum also rose synchronously with activation of NF-κB.In contrast to group A, it was significantly different (P<0.01) in group B.After using NAC in group C,all of these values were decreased and the inflammatory reaction in the pancreas abated evidently. The pathology changes of the pancreas were shown to be alleviated in group C. Conclusion: First,NF-κB activity is intensively initiated in the course of pancreatitis and shown to have closely relationship with the release of cytokines. Second, use of NAC markedly depressed NF-κB activation. TNF-α expression is down regulated by cytokines. It is suggested that NAC probably acts as a useful agent for treatment of pancreatitis by indirectly inhibiting activation of NF-κB.

  2. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents excitotoxi

  3. Calpain I Inhibition prevents atrial structural remodeling in a canine model with atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    XUE Hong-jie; SHAN Hong-bo; LIU Jie; LI Wei-min; LI Yue; GONG Yong-tai; YANG Bao-feng; JIN Cheng-luo; SHENG Li; CHU Shan; ZHANG Li

    2008-01-01

    Background Atrial fibrillation (AF) is accompanied by atrial structural remodeling. Calpain activity is induced during AR To lest a causal relationship between calpain activation and atrial structural changes, N-acetyl-Leu-Leu-Met (ALLM), a calpain inhibitor, was utilized in a canine AF model.Methods Fifteen dogs were randomly divided into 3 groups: sham-operated group, control group and calpain inhibitor group; each with 5 dogs. Sustained AF was induced by rapid right atrium pacing at 600 beats per minute for 3 weeks. ALLM was administered at a dosage of 1.0 mg-kg-1·d-1 in the calpain inhibitor group. Three weeks later, the proteolysis, protein expression of TnT and myosin, calpain l localization and expression and structural changes were examined in left atrial free walls, right atrial free walls and the interatrial septum respectively. Atrial size and contractile function were also measured by echocardiography.Results Long-term rapid atrial pacing induced marked structural changes such as enlarged atrial volume, myolysis, degradation of TnT and myosin, accumulation of glycogen and changes in mitochondrial shape and size, which were paralleled by an increase in calpain activity. The positive correlation between calpain activity and the degree of myolysis (rs=0.90 961, P<0.0001) was demonstrated. In addition to structural abnormalities, pacing-induced atrial contractile dysfunction was observed in this study. The pacing-induced atrial structural alterations and loss of contractility were partially prevented by the calpain inhibitor ALLM.Conclusions Activation of calpain represents key features in the progression towards overt structural remodeling. Calpain inhibitor, ALLM, suppressed the increased calpain activity and reversed structural remodeling caused by sustained atrial fibrillation in the present model. Calpain Inhibition may therefore provide a possibility for therapeutic Intervention in AF.

  4. Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer.

    Science.gov (United States)

    Kim-Schulze, Seunghee; Kim, Hong Sung; Wainstein, Alberto; Kim, Dae Won; Yang, Wein Cui; Moroziewicz, Dorota; Mong, Phyllus Y; Bereta, Michal; Taback, Bret; Wang, Qin; Kaufman, Howard L

    2008-12-01

    The gastrointestinal mucosa contains an intact immune system that protects the host from pathogens and communicates with the systemic immune system. Absorptive epithelial cells in the mucosa give rise to malignant tumors although the interaction between tumor cells and the mucosal immune system is not well defined. The pathophysiology of colorectal cancer has been elucidated through studies of hereditary syndromes, such as familial adenomatous polyposis, a cancer predisposition syndrome caused by germline mutations in the adenomatous polyposis coli tumor suppressor gene. Patients with FAP develop adenomas and inevitably progress to invasive carcinomas by the age of 40. To better delineate the role of mucosal immunity in colorectal cancer, we evaluated the efficacy of intrarectal recombinant vaccinia virus expressing the human carcinoembryonic Ag (CEA) in a murine FAP model in which mice are predisposed to colorectal cancer and also express human CEA in the gut. Mucosal vaccination reduced the incidence of spontaneous adenomas and completely prevented progression to invasive carcinoma. The therapeutic effects were associated with induction of mucosal CEA-specific IgA Ab titers and CD8(+) CTLs. Mucosal vaccination was also associated with an increase in systemic CEA-specific IgG Ab titers, CD4(+) and CD8(+) T cell responses and resulted in growth inhibition of s.c. implanted CEA-expressing tumors suggesting communication between mucosal and systemic immune compartments. Thus, intrarectal vaccination induces mucosal and systemic antitumor immunity and prevents progression of spontaneous colorectal cancer. These results have implications for the prevention of colorectal cancer in high-risk individuals.

  5. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression

    Science.gov (United States)

    Walworth, Kyla; Bodas, Manish; Campbell, Ryan John; Swanson, Doug; Sharma, Ajit; Vij, Neeraj

    2016-01-01

    Elevated valosin containing protein (VCP/p97) levels promote the progression of non-small cell lung carcinoma (NSCLC). Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC) progression. The VCP inhibitor(s) (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface) were tested for their in vitro efficacy in modulating H1299 (NSCLC cells) proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay) and migration (p<0.05; scratch-assay), and increased apoptosis (p<0.05; caspase-3/7-assay) as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ) treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting) of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion) as compared to the control-DDN treatment (p<0.05). Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay) and increased caspase-3/7 mediated apoptotic cell death (p<0.05) as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining) that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001) by DDNDBeQ treatment as compared to control-DDN. Moreover

  6. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression.

    Directory of Open Access Journals (Sweden)

    Kyla Walworth

    Full Text Available Elevated valosin containing protein (VCP/p97 levels promote the progression of non-small cell lung carcinoma (NSCLC. Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC progression. The VCP inhibitor(s (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface were tested for their in vitro efficacy in modulating H1299 (NSCLC cells proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay and migration (p<0.05; scratch-assay, and increased apoptosis (p<0.05; caspase-3/7-assay as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion as compared to the control-DDN treatment (p<0.05. Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay and increased caspase-3/7 mediated apoptotic cell death (p<0.05 as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001 by DDNDBeQ treatment as compared to control

  7. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Xiang-Rong Zuo

    Full Text Available BACKGROUND: Most of the deaths among patients with severe pulmonary arterial hypertension (PAH are caused by progressive right ventricular (RV pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT. RV systolic pressure (RVSP was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD reversed these beneficial effects of nicorandil in MCT-injected rats. CONCLUSIONS/SIGNIFICANCE: Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K(+ (mitoK(ATP channels. The use of a mitoK(ATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV

  8. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  9. Atheroprotection through SYK inhibition fails in established disease when local macrophage proliferation dominates lesion progression.

    Science.gov (United States)

    Lindau, Alexandra; Härdtner, Carmen; Hergeth, Sonja P; Blanz, Kelly Daryll; Dufner, Bianca; Hoppe, Natalie; Anto-Michel, Nathaly; Kornemann, Jan; Zou, Jiadai; Gerhardt, Louisa M S; Heidt, Timo; Willecke, Florian; Geis, Serjosha; Stachon, Peter; Wolf, Dennis; Libby, Peter; Swirski, Filip K; Robbins, Clinton S; McPheat, William; Hawley, Shaun; Braddock, Martin; Gilsbach, Ralf; Hein, Lutz; von zur Mühlen, Constantin; Bode, Christoph; Zirlik, Andreas; Hilgendorf, Ingo

    2016-03-01

    Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6C(high) monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe(-/-) mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6C(high) monocytes and macrophages. SYK inhibition limited Ly6C(high) monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe(-/-) mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression.

  10. Accelerating Progress in Eating Disorders Prevention: A Call for Policy Translation Research and Training.

    Science.gov (United States)

    Austin, S Bryn

    2016-01-01

    The public health burden of eating disorders is well documented, and over the past several decades, researchers have made important advances in the prevention of eating disorders and related problems with body image. Despite these advances, however, several critical limitations to the approaches developed to date leave the field far from achieving the large-scale impact that is needed. This commentary provides a brief review of what achievements in prevention have been made and identifies the gaps that limit the potential for greater impact on population health. A plan is then offered with specific action steps to accelerate progress in high-impact prevention, most compellingly by promoting a shift in priorities to policy translation research and training for scholars through the adoption of a triggers-to-action framework. Finally, the commentary provides an example of the application of the triggers-to-action framework as practiced at the Strategic Training Initiative for the Prevention of Eating Disorders, a program based at the Harvard T. H. Chan School of Public Health and Boston Children's Hospital. Much has been achieved in the nearly 30 years of research carried out for the prevention of eating disorders and body image problems, but several critical limitations undermine the field's potential for meaningful impact. Through a shift in the field's priorities to policy translation research and training with an emphasis on macro-environmental influences, the pace of progress in prevention can be accelerated and the potential for large-scale impact substantially improved.

  11. What is the new target inhibiting the progression of Alzheimer’s disease?

    Institute of Scientific and Technical Information of China (English)

    Lin Zhang; Jing Yang; Yunpeng Cao

    2013-01-01

    To stop the progression of Alzheimer’s disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that al-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocam-pus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cel model of Alzheimer’s disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloid-beta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phos-phorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Col ectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer’s disease. Thus, al-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer’s disease.

  12. Arginase inhibition slows the progression of renal failure in rats with renal ablation.

    Science.gov (United States)

    Sabbatini, Massimo; Pisani, Antonio; Uccello, Francesco; Fuiano, Giorgio; Alfieri, Raffaele; Cesaro, Antonio; Cianciaruso, Bruno; Andreucci, Vittorio E

    2003-04-01

    Exogenous arginine slows the progression of chronic renal failure (CRF) in remnant rats through a nitric oxide (NO)-dependent mechanism. We tested whether the inhibition of arginase could induce similar results through the increased availability of endogenous arginine. Three groups of remnant rats were studied for 8 wk: 1) untreated rats (REM); 2) remnant rats treated with 1% l-arginine (ARG); and 3) remnant rats administered a Mn(2+)-free diet to inhibit arginase (MNF). Normal rats (NOR) were used as controls. Liver arginase activity was depressed in MNF rats (-35% vs. REM, P renal hemodynamics. Despite the better GFR, proteinuria was decreased in both ARG and MNF rats (-42%, P renal level, arginase activity was only slightly depressed in MNF rats (-18% vs. REM), but intrarenal concentrations of arginine were lower in this latter group (P factors are involved in these modifications.

  13. Immunization with cationized BSA inhibits progression of disease in ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis.

    Science.gov (United States)

    Kolbus, Daniel; Wigren, Maria; Ljungcrantz, Irena; Söderberg, Ingrid; Alm, Ragnar; Björkbacka, Harry; Nilsson, Jan; Fredrikson, Gunilla N

    2011-06-01

    Immune responses against modified self-antigens generated by hypercholesterolemia play an important role in atherosclerosis identifying the immune system as a possible novel target for prevention and treatment of cardiovascular disease. It has recently been shown that these immune responses can be modulated by subcutaneous injection of adjuvant. In the present study we immunized 25-week old ApoBec-1/LDL receptor deficient mice with manifest atherosclerosis with adjuvant and two different concentrations of the carrier molecule cationized BSA (cBSA). Plasma levels of Th2-induced apolipoprotein B (apoB)/IgG1 immune complexes were increased in the cBSA immunized groups verifying induction of immunity against a self-antigen. Mice were sacrificed at 36 weeks of age and atherosclerosis was monitored by en face Oil red O staining of the aorta. Immunization with 100 μg cBSA inhibited plaque progression, whereas the lower dose (50 μg) did not. In addition, the higher dose induced a more stable plaque phenotype, indicated by a higher content of collagen and less macrophages and T cells in the plaques. Moreover, there was an increased ratio of Foxp3+/Foxp3⁻ T cells in the circulation suggesting activation of a regulatory T cell response. In conclusion, we show that immunization with cBSA induces an immune response against apoB as well as an activation of Treg cells. This was associated with development of a more stable plaque phenotype and reduced atherosclerosis progression.

  14. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  15. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling.

    Science.gov (United States)

    Choi, Youn Kyung; Kim, Junseong; Lee, Kang Min; Choi, Yu-Jeong; Ye, Bo-Ram; Kim, Min-Sun; Ko, Seong-Gyu; Lee, Seung-Hong; Kang, Do-Hyung; Heo, Soo-Jin

    2017-02-25

    Tuberatolide B (TTB, C27H34O₄) is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer.

  16. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2017-02-01

    Full Text Available Tuberatolide B (TTB, C27H34O4 is a diastereomeric meroterpenoid isolated from the Korean marine algae Sargassum macrocarpum. However, the anticancer effects of TTB remain unknown. In this study, we demonstrate that TTB inhibits tumor growth in breast, lung, colon, prostate, and cervical cancer cells. To examine the mechanism by which TTB suppresses cell growth, we determined the effect of TTB on apoptosis, ROS generation, DNA damage, and signal transduction. TTB induced ROS production in MDA-MB-231, A549, and HCT116 cells. Moreover, TTB enhanced DNA damage by inducing γH2AX foci formation and the phosphorylation of DNA damage-related proteins such as Chk2 and H2AX. Furthermore, TTB selectively inhibited STAT3 activation, which resulted in a reduction in cyclin D1, MMP-9, survivin, VEGF, and IL-6. In addition, TTB-induced ROS generation caused STAT3 inhibition, DNA damage, and apoptotic cell death. Therefore, TTB suppresses cancer progression by promoting ROS-mediated inhibition of STAT3 signaling, suggesting that TTB is useful for the treatment of cancer.

  17. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice

    Science.gov (United States)

    Bogorad, Roman L; Yin, Hao; Zeigerer, Anja; Nonaka, Hidenori; Ruda, Vera; Zerial, Marino; Anderson, Daniel G; Koteliansky, Victor

    2014-01-01

    Integrins play an important role during development, regulating cell differentiation, proliferation and survival. Here we show that knockdown of integrin subunits slows down the progression of hepatocellular carcinoma (HCC). Using nanoparticulate delivery of short interfering RNAs targeting β1 and αv integrin subunits we downregulate all integrin receptors in hepatocytes. Short-term integrin knockdown (two weeks) does not cause apparent structural or functional perturbations of normal liver tissue. Alterations in liver morphology accumulate upon sustained integrin downregulation (seven weeks). The integrin knockdown leads to significant retardation of HCC progression, reducing proliferation and increasing tumour cell death. This tumour retardation is accompanied by reduced activation of MET oncogene as well as expression of its mature form on the cell surface. Our data suggest that transformed proliferating cells from HCC are more sensitive to knockdown of integrins than normal quiescent hepatocytes, highlighting the potential of siRNA-mediated inhibition of integrins as an anti-cancer therapeutic approach. PMID:24844798

  18. Inhibition of Oesophageal Squamous Cell Carcinoma Progression by in vivo Targeting of Hyaluronan Synthesis

    Directory of Open Access Journals (Sweden)

    Savani Rashmin C

    2011-03-01

    Full Text Available Abstract Background Oesophageal cancer is a highly aggressive tumour entity with at present poor prognosis. Therefore, novel treatment options are urgently needed. Hyaluronan (HA is a polysaccharide present in the matrix of human oesophageal squamous cell carcinoma (ESCC. Importantly, in vitro ESCC cells critically depend on HA synthesis to maintain the proliferative phenotype. The aim of the present study is (1 to study HA-synthase (HAS expression and regulation in human ESCC, and (2 to translate the in vitro results into a mouse xenograft model of human ESCC to study the effects of systemic versus tumour targeted HAS inhibition on proliferation and distribution of tumour-bound and stromal hyaluronan. Methods mRNA expression was investigated in human ESCC biopsies by semiquantitative real-time RT PCR. Furthermore, human ESCC were xenografted into NMRI nu/nu mice. The effects on tumour progression and morphology of 4-methylumbelliferone (4-MU, an inhibitor of HA-synthesis, and of lentiviral knock down of HA-synthase 3 (HAS3, the main HAS isoform in the human ESCC tissues and the human ESCC cell line used in this study, were determined. Tumour progression was monitored by calliper measurements and by flat-panel detector volume computed tomography (fpVCT. HA content, cellular composition and proliferation (Ki67 were determined histologically. Results mRNA of HAS isoform 3 (HAS3 was upregulated in human ESCC biopsies and HAS3 mRNA was positively correlated to expression of the epidermal growth factor (EGF receptor. EGF was also proven to be a strong inductor of HAS3 mRNA expression in vitro. During the course of seven weeks, 4-MU inhibited progression of xenograft tumours. Interestingly, remodelling of the tumour into a more differentiated phenotype and inhibition of cell proliferation were observed. Lentiviral knockdown of HAS3 in human ESCC cells prior to xenografting mimicked all effects of 4-MU treatment suggesting that hyaluronan produced by

  19. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    Science.gov (United States)

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  20. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  1. Selective Activation of At2 Receptor Attenuates Progression of Pulmonary Hypertension and Inhibits Cardiopulmonary Fibrosis

    DEFF Research Database (Denmark)

    Bruce, E; Shenoy, V; Rathinasabapathy, A;

    2015-01-01

    -ventricular hemodynamic parameters were measured and tissues collected for gene expression and histological analyses. KEY RESULTS: Initiation of C21 treatment significantly attenuated much of the pathophysiology associated with MCT-induced PH. Most notably, C21 reversed pulmonary fibrosis and prevented right ventricular...... fibrosis. These beneficial effects were associated with improvement in right heart function, decreased pulmonary vessel wall thickness, reduced pro-inflammatory cytokines, and favorable modulation of the lung RAS. Conversely, co-administration of the AT2 receptor antagonist, PD-123319, or the Mas......BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) is a devastating disease characterized by increased pulmonary arterial pressure, which progressively leads to right heart failure and death. A dysregulated renin angiotensin system (RAS) has been implicated in the development and progression of PH...

  2. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: xiangruimengzz@163.com [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China); Chen, Xiaoqi [Department of Digestion and Oncology, The First Affiliated Hospital of Henan Uninversity of TCM, 19 Renmin Road, Zhengzhou 450000, Henan Province (China); Lu, Peng [Department of Gastrointestinal Surgery, The People' s Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou 450000, Henan Province (China); Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China)

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. - Highlights: • Expression of miR-202 was decreased in ESCC tissues and cell lines. • MiR-202 overexpression inhibited ESCC cell growth and induced apoptosis. • MiR-202 directly targeted LAMA1 in ESCC. • The LAMA1-FAK-PI3K signaling mediated the suppressive role of miR-202.

  3. Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells.

    Science.gov (United States)

    Yu, Bin; Wang, Ye; Yu, Xinlu; Zhang, Hongxia; Zhu, Ji; Wang, Chen; Chen, Fei; Liu, Changcheng; Wang, Jingqiang; Zhu, Haiying

    2017-01-01

    Recent studies have shown that metal and metal oxide have a potential function in antitumor therapy. Our previous studies demonstrated that cuprous oxide nanoparticles (CONPs) not only selectively induce apoptosis of tumor cells in vitro but also inhibit the growth and metastasis of melanoma by targeting mitochondria with little hepatic and renal toxicities in mice. As a further study, our current research revealed that CONPs induced apoptosis of human melanoma stem cells (CD271(+/high) cells) in A375 and WM266-4 melanoma cell lines and could significantly suppress the expression of MITF, SOX10 and CD271 involved in the stemness maintenance and tumorigenesis of melanoma stem cells. CD271(+/high) cells could accumulate more CONPs than CD271(-/low) through clathrin-mediated endocytosis. In addition, lower dosage of CONPs exhibited good anti-melanoma effect by decreasing the cell viability, stemness and tumorigenesis of A375 and WM266-4 cells through reducing the expression of SOX10, MITF, CD271 and genes in MAPK pathway involved in tumor progression. Finally, CONPs obviously suppressed the growth of human melanoma in tumor-bearing nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice, accompanied with tumors structural necrosis and fibrosis remarkably and decreased expression of CD271, SOX10 and MITF. These results above proved the effectiveness of CONPs in inhibiting melanoma progress through multiple pathways, especially through targeting melanoma stem cells.

  4. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Meliana Riwanto

    Full Text Available Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD. Here we tested whether metabolic reprogramming towards aerobic glycolysis ("Warburg effect" plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+, a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1 in cystic kidneys of Cy/+ rats compared with wild-type (+/+ rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day for 5 weeks resulted in significantly lower kidney weights (-27% and 2-kidney/total-body-weight ratios (-20% and decreased renal cyst index (-48% compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min, BUN (0.69±0.26 vs 0.40±0.10 ml/min and uric acid (0.38±0.20 vs 0.21±0.10 ml/min, and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD.

  5. Niacin Suppresses Progression of Atherosclerosis by Inhibiting Vascular Inflammation and Apoptosis of Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Su, Gang; Sun, Guangli; Liu, Hai; Shu, Liliang; Zhang, Jingchao; Guo, Longhui; Huang, Chen; Xu, Jing

    2015-12-29

    BACKGROUND Niacin is a broad-spectrum lipid-regulating drug used for the clinical therapy of atherosclerosis; however, the mechanisms by which niacin ameliorates atherosclerosis are not clear. MATERIAL AND METHODS The effect of niacin on atherosclerosis was assessed by detection of atherosclerotic lesion area. Adhesion molecules in arterial endothelial cells were determined by using qRT-PCR and Western blot analysis. The levels of serum inflammatory cytokines in ApoE-/- mice were detected by using ELISA. We detected the expression levels of phosphorylated nuclear factors-kB (NF-κB) p65 in aortic endothelial cells of mice using Western blot analysis. Furthermore, we investigated the anti-inflammation effect and endothelium-protecting function of niacin and their regulatory mechanisms in vitro. RESULTS Niacin inhibited the progress of atherosclerosis and decreased the levels of serum inflammatory cytokines and adhesion molecules in ApoE-/- mice. Niacin suppressed the activity of NF-κB and apoptosis of vascular smooth muscle cells (VSMCs). Furthermore, niacin induced phosphorylated focal adhesion kinase (FAK) and FAK inhibitor PF-573228 reduced the level of Bcl-2 and elevated the level of cleaved caspase-3 in VSMCs. CONCLUSIONS Niacin inhibits vascular inflammation and apoptosis of VSMCs via inhibiting the NF-κB signaling and the FAK signaling pathway, respectively, thus protecting ApoE-/- mice against atherosclerosis.

  6. Inhibition of renin activity slows down the progression of HIV-associated nephropathy.

    Science.gov (United States)

    Kumar, Dileep; Plagov, Andrei; Yadav, Iti; Torri, Deepti D; Sayeneni, Swapna; Sagar, Ankita; Rai, Partab; Adabala, Madhuri; Lederman, Rivka; Chandel, Nirupama; Ding, Guohua; Malhotra, Ashwani; Singhal, Pravin C

    2012-09-01

    In the present study, we evaluated the effect of inhibition of renin activity (aliskiren) on the progression of renal lesions in two different mouse models (Vpr and Tg26) of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN). In protocol A, Vpr mice were fed either water (C-VprA) or doxycycline [Doxy (D-VprA)] in their drinking water for 6 wk. In protocols B and C, Vpr mice received either normal saline (C-VprB/C), Doxy + normal saline (D-VprB/C), or Doxy + aliskiren (AD-VprB/C) for 6 wk (protocol B) or 12 wk (protocol C). In protocols D and E, Vpr mice were fed Doxy for 6 wk followed by kidney biopsy. Subsequently, half of the mice were administered either normal saline (D-VprD/E) or aliskiren (AD-VprD/E) for 4 wk (protocol D) or 8 (protocol E) wk. All D-VprA mice showed renal lesions in the form of focal segmental glomerular sclerosis and dilatation of tubules. In protocols B and C, aliskiren diminished both progression of renal lesions and proteinuria. In protocol C, aliskiren also diminished (P Doxy-treated mice displayed increased serum ANG I levels (the product of plasma renin activity); on the other hand, all aliskiren-treated mice displayed diminished serum ANG I levels. Renal tissues of D-VprC displayed increased ANG II content; however, aliskiren attenuated renal tissue ANG II production in AD-VprC. In protocol D, AD-VprD showed a 24.2% increase in the number of sclerosed glomeruli compared with 139.2% increase in sclerosed glomeruli in D-VprD (P < 0.01) from their baseline. The attenuating effect of aliskiren on the progression of renal lesions continued in AD-VprE. Aliskiren also diminished blood pressure, proteinuria, and progression of renal lesions in Tg26 mice. These findings indicate that inhibition of renin activity has a potential to slow down the progression of HIVAN.

  7. Heart failure-inducible gene therapy targeting protein phosphatase 1 prevents progressive left ventricular remodeling.

    Directory of Open Access Journals (Sweden)

    Yosuke Miyazaki

    Full Text Available BACKGROUND: The targeting of Ca(2+ cycling has emerged as a potential therapy for the treatment of severe heart failure. These approaches include gene therapy directed at overexpressing sarcoplasmic reticulum (SR Ca(2+ ATPase, or ablation of phospholamban (PLN and associated protein phosphatase 1 (PP1 protein complexes. We previously reported that PP1β, one of the PP1 catalytic subunits, predominantly suppresses Ca(2+ uptake in the SR among the three PP1 isoforms, thereby contributing to Ca(2+ downregulation in failing hearts. In the present study, we investigated whether heart-failure-inducible PP1β-inhibition by adeno-associated viral-9 (AAV9 vector mediated gene therapy is beneficial for preventing disease progression in genetic cardiomyopathic mice. METHODS: We created an adeno-associated virus 9 (AAV9 vector encoding PP1β short-hairpin RNA (shRNA or negative control (NC shRNA. A heart failure inducible gene expression system was employed using the B-type natriuretic protein (BNP promoter conjugated to emerald-green fluorescence protein (EmGFP and the shRNA sequence. AAV9 vectors (AAV9-BNP-EmGFP-PP1βshRNA and AAV9-BNP-EmGFP-NCshRNA were injected into the tail vein (2×10(11 GC/mouse of muscle LIM protein deficient mice (MLPKO, followed by serial analysis of echocardiography, hemodynamic measurement, biochemical and histological analysis at 3 months. RESULTS: In the MLPKO mice, BNP promoter activity was shown to be increased by detecting both EmGFP expression and the induced reduction of PP1β by 25% in the myocardium. Inducible PP1βshRNA delivery preferentially ameliorated left ventricular diastolic function and mitigated adverse ventricular remodeling. PLN phosphorylation was significantly augmented in the AAV9-BNP-EmGFP-PP1βshRNA injected hearts compared with the AAV9-BNP-EmGFP-NCshRNA group. Furthermore, BNP production was reduced, and cardiac interstitial fibrosis was abrogated at 3 months. CONCLUSION: Heart failure

  8. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    Science.gov (United States)

    2014-09-01

    reduce development of post-traumatic epilepsy, and did not significantly improve memory function, but did enhance the motor recovery. These findings...determine whether this treatment prevents or delays epilepsy development and/or progression and also examined motor and memory recovery. Results...for electrophysiological analyses. 3. Completed analysis of histopathological features (i.e., MFS and hilar GABA neuron loss) in the dentate gyrus

  9. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    Science.gov (United States)

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  10. Candidiasis: a fungal infection--current challenges and progress in prevention and treatment.

    Science.gov (United States)

    Hani, Umme; Shivakumar, Hosakote G; Vaghela, Rudra; Osmani, Riyaz Ali M; Shrivastava, Atul

    2015-01-01

    Despite therapeutic advances candidiasis remains a common fungal infection most frequently caused by C. albicans and may occur as vulvovaginal candidiasis or thrush, a mucocutaneous candidiasis. Candidiasis frequently occurs in newborns, in immune-deficient people like AIDS patients, and in people being treated with broad spectrum antibiotics. It is mainly due to C. albicans while other species such as C. tropicalis, C. glabrata, C. parapsilosis and C. krusei are increasingly isolated. OTC antifungal dosage forms such as creams and gels can be used for effective treatment of local candidiasis. Whereas, for preventing spread of the disease to deeper vital organs, candidiasis antifungal chemotherapy is preferred. Use of probiotics and development of novel vaccines is an advanced approach for the prevention of candidiasis. Present review summarizes the diagnosis, current status and challenges in the treatment and prevention of candidiasis with prime focus on host defense against candidiasis, advancements in diagnosis, probiotics role and recent progress in the development of vaccines against candidiasis.

  11. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma. METHODS AND FINDINGS: Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and

  12. Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis

    Science.gov (United States)

    Domiciano, Talita P.; Wakita, Daiko; Jones, Heather D.; Crother, Timothy R.; Verri, Waldiceu A.; Arditi, Moshe; Shimada, Kenichi

    2017-01-01

    Interleukin-1β (IL-1β) is a highly inflammatory cytokine that significantly contributes to both acute and chronic inflammatory diseases. The secretion of IL-1β requires a unique protease, caspase-1, which is activated by various protein platforms called inflammasomes. Data suggests a key role for mitochondrial reactive oxygen species for inflammasome activation. Flavonoids constitute a group of naturally occurring polyphenolic molecules with many biological activities, including antioxidant effects. In this study, we investigated the effect of three flavonoids, quercetin (QUC), naringenin, and silymarim on inflammasome activation. We found that QUC inhibits IL-1β secretion by both the NLRP3 and AIM2 inflammasome in a dose dependent manner, but not the NLRC4 inflammasome. QUC inhibition of the inflammasome was still observed in Atg16l1 knockout macrophages, indicating that QUC’s effect was autophagy independent. Since QUC inhibited both NLRP3 and AIM2 inflammasomes but not NLRC4, we assessed ASC speck formation. QUC reduced ASC speck formation and ASC oligomerization compared with controls. Additionally, QUC inhibited IL-1β in Cryopyrin-Associated Periodic Syndromes (CAPS) macrophages, where NLRP3 inflammasome is constitutively activated. In conclusion, QUC inhibits both the NLRP3 and AIM2 inflammasome by preventing ASC oligomerization and may be a potential therapeutic candidate for Kawasaki disease vasculitis and other IL-1 mediated inflammatory diseases. PMID:28148962

  13. Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis.

    Science.gov (United States)

    Domiciano, Talita P; Wakita, Daiko; Jones, Heather D; Crother, Timothy R; Verri, Waldiceu A; Arditi, Moshe; Shimada, Kenichi

    2017-02-02

    Interleukin-1β (IL-1β) is a highly inflammatory cytokine that significantly contributes to both acute and chronic inflammatory diseases. The secretion of IL-1β requires a unique protease, caspase-1, which is activated by various protein platforms called inflammasomes. Data suggests a key role for mitochondrial reactive oxygen species for inflammasome activation. Flavonoids constitute a group of naturally occurring polyphenolic molecules with many biological activities, including antioxidant effects. In this study, we investigated the effect of three flavonoids, quercetin (QUC), naringenin, and silymarim on inflammasome activation. We found that QUC inhibits IL-1β secretion by both the NLRP3 and AIM2 inflammasome in a dose dependent manner, but not the NLRC4 inflammasome. QUC inhibition of the inflammasome was still observed in Atg16l1 knockout macrophages, indicating that QUC's effect was autophagy independent. Since QUC inhibited both NLRP3 and AIM2 inflammasomes but not NLRC4, we assessed ASC speck formation. QUC reduced ASC speck formation and ASC oligomerization compared with controls. Additionally, QUC inhibited IL-1β in Cryopyrin-Associated Periodic Syndromes (CAPS) macrophages, where NLRP3 inflammasome is constitutively activated. In conclusion, QUC inhibits both the NLRP3 and AIM2 inflammasome by preventing ASC oligomerization and may be a potential therapeutic candidate for Kawasaki disease vasculitis and other IL-1 mediated inflammatory diseases.

  14. Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

    Science.gov (United States)

    Wang, Meirong; Zhang, Jinjin; Song, Xiaodong; Liu, Wenbo; Zhang, Lixia; Wang, Xiuwen; Lv, Changjun

    2013-06-01

    Astaxanthin, a member of the carotenoid family, is the only known ketocarotenoid transported into the brain by transcytosis through the blood-brain barrier. However, whether astaxanthin has antifibrotic functions is unknown. In this study, we investigated the effects of astaxanthin on transforming growth factor β1-mediated and bleomycin-induced pulmonary fibrosis in vitro and in vivo. The results showed that astaxanthin significantly improved the structure of the alveoli and alleviated collagen deposition in vivo. Compared with the control group, the astaxanthin-treated groups exhibited downregulated protein expressions of α-smooth muscle actin, vimentin, hydroxyproline, and B cell lymphoma/leukemia-2 as well as upregulated protein expressions of E-cadherin and p53 in vitro and in vivo. Astaxanthin also inhibited the proliferation of activated A549 and MRC-5 cells at median inhibitory concentrations of 40 and 30 μM, respectively. In conclusion, astaxanthin could relieve the symptoms and halt the progression of pulmonary fibrosis, partly by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

  15. NOP14 suppresses breast cancer progression by inhibiting NRIP1/Wnt/β-catenin pathway.

    Science.gov (United States)

    Lei, Jin-Ju; Peng, Rou-Jun; Kuang, Bo-Hua; Yuan, Zhong-Yu; Qin, Tao; Liu, Wen-Sheng; Guo, Yun-Miao; Han, Hui-Qiong; Lian, Yi-Fan; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Chen, Li-Zhen; Feng, Qi-Sheng; Xu, Miao; Feng, Lin; Bei, Jin-Xin; Zeng, Yi-Xin

    2015-09-22

    NOP14, which is functionally conserved among eukaryotes, has been implicated in cancer development. Here, we show that NOP14 is poorly expressed in breast cancer cells and invasive breast cancer tissues. In vivo and in vitro studies indicated that NOP14 suppressed the tumorigenesis and metastasis of breast cancer cells. Further investigations revealed that NOP14 enhanced ERα expression and inhibited the Wnt/β-catenin pathway by up-regulating NRIP1 expression. Survival analysis indicated that low NOP14 expression was significantly associated with poor overall survival (P = 0.0006) and disease-free survival (P = 0.0007), suggesting that NOP14 is a potential prognostic factor in breast cancer. Taken together, our findings reveal that NOP14 may suppress breast cancer progression and provide new insights into the development of targeted therapeutic agents for breast cancer.

  16. Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice.

    Science.gov (United States)

    Miyazaki, Tsuneyuki; Shirakami, Yohei; Kubota, Masaya; Ideta, Takayasu; Kochi, Takahiro; Sakai, Hiroyasu; Tanaka, Takuji; Moriwaki, Hisataka; Shimizu, Masahito

    2016-03-01

    Obesity and related metabolic abnormalities play a key role in liver carcinogenesis. Non-alcoholic steatohepatitis (NASH), which is often complicated with obesity and diabetes mellitus, is associated with the development of hepatocellular carcinoma (HCC). Sodium alginate (SA), which is extracted from brown seaweeds, is marketed as a weight loss supplement because of its high viscosity and gelling properties. In the present study, we examined the effects of SA on the progression of NASH and related liver carcinogenesis in monosodium glutamate (MSG)-treated mice, which show obesity, diabetes mellitus, and NASH-like histopathological changes. Male MSG-mice were intraperitoneally injected with diethylnitrosamine at 2 weeks of age, and, thereafter, they received a basal diet containing high- or low-molecular-weight SA throughout the experiment (16 weeks). At sacrifice, control MSG-treated mice fed the basal-diet showed significant obesity, hyperinsulinemia, steatosis and hepatic tumor development. SA administration suppressed body weight gain; improved insulin sensitivity, hyperinsulinemia, and hyperleptinemia; attenuated inflammation in the liver and white adipose tissue; and inhibited hepatic lipogenesis and progression of NASH. SA also reduced oxidative stress and increased anti-oxidant enzyme levels in the liver. Development of hepatic tumors, including liver cell adenoma and HCC, and hepatic pre-neoplastic lesions was significantly inhibited by SA supplementation. In conclusion, oral SA supplementation improves liver steatosis, insulin resistance, chronic inflammation, and oxidative stress, preventing the development of liver tumorigenesis in obese and diabetic mice. SA may have ability to suppress steatosis-related liver carcinogenesis in obese and diabetic subjects.

  17. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis

    Science.gov (United States)

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-01-01

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases. PMID:28404939

  18. MicroRNA-208b inhibits human osteosarcoma progression by targeting ROR2.

    Science.gov (United States)

    Jiang, Zhe; Jiang, Chunshan; Yu, Chonglong; Fang, Jinnv

    2017-06-01

    MicroRNAs are widely involved in cancer progression by inhibiting the expression levels of oncogenes or tumor suppressor genes, and dysregulation of microRNAs may contribute to tumorigenesis. Here, we found that overexpressed miR-208b can reduce the proliferation of human osteosarcoma cell lines U-2OS and Saos-2 by arresting cell cycle progression. The in vivo xenograft tumors induced by Saos-2 cells overexpressing miR-208b had smaller size and grew more slowly than those induced by the control cells. The mobility of U-2OS or Saos-2 cells was also downregulated by miR-208b. MiR-208b targeted a site in the 3' untranslated region of receptor tyrosine kinase-like orphan receptor 2. Inhibition of receptor tyrosine kinase-like orphan receptor 2 suppresses osteosarcoma metastasis in vitro. Recovering the expression levels of receptor tyrosine kinase-like orphan receptor 2 in miR-208b-overexpressed U-2OS or Saos-2 cells attenuated the inhibitory effects of miR-208b. In addition, the expression levels of miR-208b are significantly reduced in human osteosarcoma tissue samples compared to normal tissue samples, and miR-208b levels correlated inversely with receptor tyrosine kinase-like orphan receptor 2 levels. On these bases, we identified that miR-208b targets receptor tyrosine kinase-like orphan receptor 2 gene by which miR-208b can regulate the development of osteosarcoma.

  19. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  20. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry.

    Directory of Open Access Journals (Sweden)

    Eric M Feeley

    2011-10-01

    Full Text Available To replicate, viruses must gain access to the host cell's resources. Interferon (IFN regulates the actions of a large complement of interferon effector genes (IEGs that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats.

  1. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts.

    Science.gov (United States)

    Feng, Ming-Xuan; Hong, Jian-Xin; Wang, Qiang; Fan, Yong-Yong; Yuan, Chi-Ting; Lei, Xin-Huan; Zhu, Min; Qin, An; Chen, Hai-Xiao; Hong, Dun

    2016-01-08

    Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.

  2. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2015-01-01

    Osteosarcoma is the most common bone tumors in children and adolescents. Despite intensive chemotherapy, patients with advanced disease still have a poor prognosis, illustrating the need for alternative therapies. In this study, we explored the use of antibodies that block CD47 with a tumor growth suppressive effect on osteosarcoma. We first found that up-regulation of CD47 mRNA levels in the tumorous tissues from eight patients with osteosarcoma when compared with that in adjacent non-tumorous tissues. Further western-blot (WB) and immunohistochemistry (IHC) demonstrated that CD47 protein level was highly expressed in osteosarcoma compared to normal osteoblastic cells and adjacent non-tumorous tissues. Osteosarcoma cancer stem cell markers staining shown that the majority of CD44+ cells expressed CD47 albeit with different percentages (ranging from 80% to 99%). Furthermore, high CD47 mRNA expression levels were associated with a decreased probability of progression-free and overall survival. In addition, blockade of CD47 by specific Abs suppresses the invasive ability of osteosarcoma tumor cells and further inhibits spontaneous pulmonary metastasis of KRIB osteosarcoma cells in vivo. Finally, CD47 blockade increases macrophage phagocytosis of osteosarcoma tumor cells. In conclusion, our findings demonstrate that CD47 is a critical regulator in the metastasis of osteosarcoma and suggest that targeted inhibition of this antigen by anti-CD47 may be a novel immunotherapeutic approach in the management of this tumor. PMID:26093091

  3. Cyclooxygenase-2 inhibition attenuates abdominal aortic aneurysm progression in hyperlipidemic mice.

    Directory of Open Access Journals (Sweden)

    Sarbani Ghoshal

    Full Text Available Abdominal aortic aneurysms (AAAs are a chronic inflammatory disease that increase the risk of life-threatening aortic rupture. In humans, AAAs have been characterized by increased expression of cyclooxygenase-2 and the inactivation of COX-2 prior to disease initiation reduces AAA incidence in a mouse model of the disease. The current study examined the effectiveness of selective cyclooxygenase-2 (COX-2 inhibition on reducing AAA progression when administered after the initiation of AAA formation. AAAs were induced in hyperlipidemic apolipoprotein E-deficient mice by chronic angiotensin II (AngII infusion and the effect of treatment with the COX-2 inhibitor celecoxib was examined when initiated at different stages of the disease. Celecoxib treatment that was started 1 week after initiating AngII infusion reduced AAA incidence by 61% and significantly decreased AAA severity. Mice treated with celecoxib also showed significantly reduced aortic rupture and mortality. Treatment with celecoxib that was started at a late stage of AAA development also significantly reduced AAA incidence and severity. Celecoxib treatment significantly increased smooth muscle alpha-actin expression in the abdominal aorta and did not reduce expression of markers of macrophage-dependent inflammation. These findings indicate that COX-2 inhibitor treatment initiated after formation of AngII-induced AAAs effectively reduces progression of the disease in hyperlipidemic mice.

  4. Low Concentration of Caffeine Inhibits the Progression of the Hepatocellular Carcinoma via Akt Signaling Pathway.

    Science.gov (United States)

    Dong, Shuying; Kong, Jian; Kong, Jinge; Shen, Qiang; Kong, Fandong; Sun, Wenbing; Zheng, Lemin

    2015-01-01

    Accumulating evidences have reported that caffeine has anticancer effects at high blood concentrations. However, whether caffeine has anticancer effects on human hepatocellular carcinoma (HCC) cells at low concentration, especially at physiologically applicable concentration (concentrations of caffeine (0, 50, 100, 200, 400 or 600 μM). MTT assay was used to investigate the proliferation ability in vitro. Migration and invasion abilities were determined by wound healing assay and transwell assay. The molecular changes were detected by western blot. An ectopic nude mice model which the mice were gavaged with caffeine was used to reveal the anticancer effects of caffeine on HepG2 cells in vivo. Results showed that caffeine could inhibit the proliferation, migration and invasion significantly at physiologically applicable concentration in vitro. Also the associated molecular changes of cancer progression were observed. In animal experiment, the mice gavaged with caffeine also performanced reduced tumor burden in vivo. Moreover, the interrelated protein expression was also observed in vivo which was coincident with the results in vitro. All in all, this observation indicated that caffeine may suppress the progression of HCC through Akt signaling pathway. This makes caffeine a potential candidate for treating HCC which will be a safer and more effective treatment by giving for a long time at physiologically applicable concentration.

  5. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease.

    Directory of Open Access Journals (Sweden)

    Oliver Jung

    Full Text Available Epoxyeicotrienoic acids (EETs are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH and sEH inhibitors are considered treatment for chronic renal failure (CRF. We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg, the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway.

  6. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced β-cell damage by inhibiting NF-κB

    Institute of Scientific and Technical Information of China (English)

    Kang-Beom Kwon; Eun-Kyung Kim; Eun-Sil Jeong; Young-Hoon Lee; Young-Rae Lee; Jin-Woo Park; Do-Gon Ryu; Byung-Hyun Park

    2006-01-01

    AIM: To clarify the mechanism underlying the antidiabetic activities of cortex cinnamomi extract (CCE).METHODS: To induce in vivo diabetes, mice were injected with streptozotocin (STZ) via a tail vein (100 mg STZ/kg body weight). To determine the effects of CCE,mice were administered CCE twice daily for 7 d by oral gavage starting 1 wk before the STZ injection. Blood glucose and plasma insulin concentration were measured as an index of diabetes. Also, to induce cytotoxicity of RINm5F cells, we treated with cytokines (IL-1β (2.0 ng/mL) and IFN-γ (100 U/mL)). Cell viability and nitric oxide production were measured colorimetrically.Inducible nitric oxide synthase (iNOS) mRNA and protein expression were determined by RT-PCR and Western blotting, respectively. The activation of NF-KB was assayed by using gel mobility shift assays of nuclear extracts.RESULTS: Treatment of mice with STZ resulted in hyperglycemia and hypoinsulinemia, which was further evidenced by immunohistochemical staining of islets. However, the diabetogenic effects of STZ were completely prevented when mice were pretreated with CCE. The inhibitory effect of CCE on STZ-induced hyperglycemia was mediated through the suppression of iNOS expression. In rat insulinoma RINm5F cells,CCE completely protected against interleukin-1β and interferon-y-mediated cytotoxicity. Moreover, RINm5F cells incubated with CCE showed significant reductions in interleukin-1β and interferon-y-induced nitric oxide production and in iNOS mRNA and protein expression,and these findings correlated well with in vivo observations.CONCLUSION: The molecular mechanism by which CCE inhibits iNOS gene expression appears to involve the inhibition of NF-κB activation. These results reveal the possible therapeutic value of CCE for the prevention of diabetes mellitus progression.

  7. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants

    Science.gov (United States)

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions. PMID:27861632

  8. Gyramides prevent bacterial growth by inhibiting DNA gyrase and altering chromosome topology.

    Science.gov (United States)

    Rajendram, Manohary; Hurley, Katherine A; Foss, Marie H; Thornton, Kelsey M; Moore, Jared T; Shaw, Jared T; Weibel, Douglas B

    2014-06-20

    Antibiotics targeting DNA gyrase have been a clinical success story for the past half-century, and the emergence of bacterial resistance has fueled the search for new gyrase inhibitors. In this paper we demonstrate that a new class of gyrase inhibitors, the gyramides, are bacteriostatic agents that competitively inhibit the ATPase activity of Escherichia coli gyrase and produce supercoiled DNA in vivo. E. coli cells treated with gyramide A have abnormally localized, condensed chromosomes that blocks DNA replication and interrupts chromosome segregation. The resulting alterations in DNA topology inhibit cell division through a mechanism that involves the SOS pathway. Importantly, gyramide A is a specific inhibitor of gyrase and does not inhibit the closely related E. coli enzyme topoisomerase IV. E. coli mutants with reduced susceptibility to gyramide A do not display cross-resistance to ciprofloxacin and novobiocin. The results demonstrate that the gyramides prevent bacterial growth by a mechanism in which the topological state of chromosomes is altered and halts DNA replication and segregation. The specificity and activity of the gyramides for inhibiting gyrase makes these compounds important chemical tools for studying the mechanism of gyrase and the connection between DNA topology and bacterial cell division.

  9. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells.

    Science.gov (United States)

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that activation of MAPK pathways by sulforaphane is unlikely to mediate sulforaphane-induced growth inhibition. Sulforaphane did not generate significant levels of intracellular ROS. Pretreatment with thiol reducers, but not ROS scavengers, prevented sulforaphane-induced growth inhibition. Furthermore, diamide, a thiol-oxidizing agent, enhanced both growth inhibition and cell death induced by sulforaphane, suggesting that the effect of sulforaphane on cell growth may be related to oxidation of protein thiols or change in cellular redox status. Our data indicate that supplementation with thiol-reducing agents should be avoided when sulforaphane is used to treat cancer.

  10. Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression

    Directory of Open Access Journals (Sweden)

    Sonia Pahwa

    2014-02-01

    Full Text Available Membrane-type 1 matrix metalloproteinase (MT1-MMP is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.

  11. Cystine growth inhibition through molecular mimicry: a new paradigm for the prevention of crystal diseases.

    Science.gov (United States)

    Lee, Michael H; Sahota, Amrik; Ward, Michael D; Goldfarb, David S

    2015-05-01

    Cystinuria is a genetic disease marked by recurrent kidney stone formation, usually at a young age. It frequently leads to chronic kidney disease. Treatment options for cystinuria have been limited despite comprehensive understanding of its genetic pathophysiology. Currently available therapies suffer from either poor clinical adherence to the regimen or potentially serious adverse effects. Recently, we employed atomic force miscopy (AFM) to identify L-cystine dimethylester (CDME) as an effective molecular imposter of L-cystine, capable of inhibiting crystal growth in vitro. More recently, we demonstrated CDME's efficacy in inhibiting L-cystine crystal growth in vivo utilizing a murine model of cystinuria. The application of AFM to discover inhibitors of crystal growth through structural mimicry suggests a novel approach to preventing and treating crystal diseases.

  12. Prostate cancer progression attributed to autonomic nerve development: Potential for therapeutic prevention of localized and metastatic disease

    OpenAIRE

    2013-01-01

    In a study recently published in Science, Magnon et al. show that both the sympathetic and parasympathetic components of the autonomic nervous system play an integral part in the development and dissemination of prostate cancer (PCa). Inhibition of the sympathetic nervous system (SNS) and disruption of the adrenergic receptors, specifically Ardβ2, resulted in the prevention of primary PCa tumor development in mice. The authors found that inhibition of the SNS is only successful in preventing ...

  13. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.

    Science.gov (United States)

    Smith, Ira J; Godinez, Guillermo L; Singh, Baljit K; McCaughey, Kelly M; Alcantara, Raniel R; Gururaja, Tarikere; Ho, Melissa S; Nguyen, Henry N; Friera, Annabelle M; White, Kathy A; McLaughlin, John R; Hansen, Derek; Romero, Jason M; Baltgalvis, Kristen A; Claypool, Mark D; Li, Wei; Lang, Wayne; Yam, George C; Gelman, Marina S; Ding, Rongxian; Yung, Stephanie L; Creger, Daniel P; Chen, Yan; Singh, Rajinder; Smuder, Ashley J; Wiggs, Michael P; Kwon, Oh-Sung; Sollanek, Kurt J; Powers, Scott K; Masuda, Esteban S; Taylor, Vanessa C; Payan, Donald G; Kinoshita, Taisei; Kinsella, Todd M

    2014-07-01

    Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G

  14. Practical Approaches to Evaluating Progress and Outcomes in Community-Wide Teen Pregnancy Prevention Initiatives.

    Science.gov (United States)

    Tevendale, Heather D; Condron, D Susanne; Garraza, Lucas Godoy; House, L Duane; Romero, Lisa M; Brooks, Megan A M; Walrath, Christine

    2017-03-01

    This paper presents an overview of the key evaluation components for a set of community-wide teen pregnancy prevention initiatives. We first describe the performance measures selected to assess progress toward meeting short-term objectives on the reach and quality of implementation of evidence-based teen pregnancy prevention interventions and adolescent reproductive health services. Next, we describe an evaluation that will compare teen birth rates in intervention communities relative to synthetic control communities. Synthetic controls are developed via a data-driven technique that constructs control communities by combining information from a pool of communities that are similar to the intervention community. Finally, we share lessons learned thus far in the evaluation of the project, with a focus on those lessons that may be valuable for local communities evaluating efforts to reduce teen pregnancy.

  15. Oral health information systems--towards measuring progress in oral health promotion and disease prevention

    DEFF Research Database (Denmark)

    Petersen, Poul Erik; Bourgeois, Denis; Bratthall, Douglas

    2005-01-01

    programmes oriented towards disease prevention and health promotion. The WHO Oral Health Country/Area Profile Programme (CAPP) provides data on oral health from countries, as well as programme experiences and ideas targeted to oral health professionals, policy-makers, health planners, researchers...... systems are being developed within the framework of the WHO STEPwise approach to surveillance of noncommunicable, chronic disease, and data stored in the WHO Global InfoBase may allow advanced health systems research. Sound knowledge about progress made in prevention of oral and chronic disease......This article describes the essential components of oral health information systems for the analysis of trends in oral disease and the evaluation of oral health programmes at the country, regional and global levels. Standard methodology for the collection of epidemiological data on oral health has...

  16. Prevention and health promotion: decades of progress, new challenges, and an emerging agenda.

    Science.gov (United States)

    Smith, Timothy W; Orleans, C Tracy; Jenkins, C David

    2004-03-01

    Daily habits (e.g., smoking, diet, and exercise) and their immediate consequences (e.g., obesity) confer risk for most of the major health problems in industrialized nations. Hence, determinants of these behaviors and their modifications have been central topics in health psychology. Considerable scientific and applied progress has been made, but the field faces important challenges and opportunities in the future. These challenges and opportunities include changes in demographics and patterns of health, the need for a more comprehensive model of the domain of health behavior and prevention, the need to integrate behavioral and psychosocial risk and resilience, the incorporation of new technologies, and addressing a variety of professional and economic barriers to the implementation of prevention in health care.

  17. BlockingαVβ3 Integrin Ligand Occupancy Inhibits the Progression of Albuminuria in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Laura A. Maile

    2014-01-01

    Full Text Available This study determined if blocking ligand occupancy of the αVβ3 integrin could inhibit the pathophysiologic changes that occur in the early stages of diabetic nephropathy (DN. Diabetic rats were treated with either vehicle or a monoclonal antibody that binds the β3 subunit of the αVβ3 integrin. After 4 weeks of diabetes the urinary albumin to creatinine ratio (UACR increased in both diabetic animals that subsequently received vehicle and in the animals that subsequently received the anti-β3 antibody compared with control nondiabetic rats. After 8 weeks of treatment the UACR continued to rise in the vehicle-treated rats; however it returned to levels comparable to control nondiabetic rats in rats treated with the anti-β3 antibody. Treatment with the antibody prevented the increase of several profibrotic proteins that have been implicated in the development of DN. Diabetes was associated with an increase in phosphorylation of the β3 subunit in kidney homogenates from diabetic animals, but this was prevented by the antibody treatment. This study demonstrates that, when administered after establishment of early pathophysiologic changes in renal function, the anti-β3 antibody reversed the effects of diabetes normalizing albuminuria and profibrotic proteins in the kidney to the levels observed in nondiabetic control animals.

  18. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans.

    Science.gov (United States)

    Spencer, Andrew G; Labonte, Eric D; Rosenbaum, David P; Plato, Craig F; Carreras, Christopher W; Leadbetter, Michael R; Kozuka, Kenji; Kohler, Jill; Koo-McCoy, Samantha; He, Limin; Bell, Noah; Tabora, Jocelyn; Joly, Kristin M; Navre, Marc; Jacobs, Jeffrey W; Charmot, Dominique

    2014-03-12

    The management of sodium intake is clinically important in many disease states including heart failure, kidney disease, and hypertension. Tenapanor is an inhibitor of the sodium-proton (Na(+)/H(+)) exchanger NHE3, which plays a prominent role in sodium handling in the gastrointestinal tract and kidney. When administered orally to rats, tenapanor acted exclusively in the gastrointestinal tract to inhibit sodium uptake. We showed that the systemic availability of tenapanor was negligible through plasma pharmacokinetic studies, as well as autoradiography and mass balance studies performed with (14)C-tenapanor. In humans, tenapanor reduced urinary sodium excretion by 20 to 50 mmol/day and led to an increase of similar magnitude in stool sodium. In salt-fed nephrectomized rats exhibiting hypervolemia, cardiac hypertrophy, and arterial stiffening, tenapanor reduced extracellular fluid volume, left ventricular hypertrophy, albuminuria, and blood pressure in a dose-dependent fashion. We observed these effects whether tenapanor was administered prophylactically or after disease was established. In addition, the combination of tenapanor and the blood pressure medication enalapril improved cardiac diastolic dysfunction and arterial pulse wave velocity relative to enalapril monotherapy in this animal model. Tenapanor prevented increases in glomerular area and urinary KIM-1, a marker of renal injury. The results suggest that therapeutic alteration of sodium transport in the gastrointestinal tract instead of the kidney--the target of current drugs--could lead to improved sodium management in renal disease.

  19. Theabrownin Inhibits Cell Cycle Progression and Tumor Growth of Lung Carcinoma through c-myc-Related Mechanism

    Science.gov (United States)

    Zhou, Li; Wu, Feifei; Jin, Wangdong; Yan, Bo; Chen, Xin; He, Yingfei; Yang, Weiji; Du, Wenlin; Zhang, Qiang; Guo, Yonghua; Yuan, Qiang; Dong, Xiaoqiao; Yu, Wenhua; Zhang, Jin; Xiao, Luwei; Tong, Peijian; Shan, Letian; Efferth, Thomas

    2017-01-01

    Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural

  20. ROLE OF DIETARY SUPPLEMENTATION IN PREVENTING PROGRESSION OF AGE-RELATED MACULAR DEGENERATION

    Directory of Open Access Journals (Sweden)

    N. A. Ermakova

    2016-01-01

    Full Text Available Age-related macular degeneration (AMD is a chronic, progressive, degenerative eye disease affecting the central retina. It is the leading cause of blindness among individuals of 65 years and older. In the early stage patients have drusen and/or alterations of pigmentation in the macular region. This disease can progress to geographic atrophy and/or choroidal neovascularization. It has been shown that oxidative stress and hypoxia are important in the pathogenesis of AMD. Patients may gain some visual improvement with inhibitors of vascular endothelial growth factor, but complete restoration of visual function is achieved only in small cases. No effective therapies are known for atrophic AMD. Many large observational studies have shown that dietary antioxidant supplementation is beneficial in preventing the progression of AMD from early to late stages. The Age-Related Eye Disease Study (AREDS demonstrated that daily oral supplementation with vitamins C (500 mg and E (400 IU, beta carotene (15 mg, zinc (80 mg and copper (2 mg reduced the risk of progression to advanced AMD by 25% at 5 years. In primary analyses AREDS II failed to show further reduce of this risk by addition of lutein (10 mg and zeaxanthin (2mg, or/and omega-3 long-chain polyunsaturated fatty acids [docosahexaenoic acid (350 mg DHA and eicosapentaenoic acid 650 mg (EPA] to the AREDS formulation. But there was no true placebo group. The simultaneous administration of beta carotene, lutein and zeaxanthin may suppress tissue level of the both laters because of competitive absorption of carotenoids. Subgroup analyses revealed that dietary supplementation with lutein, zeaxanthin and AREDS formulation without beta carotene may reduce the risk of progression to advanced AMD.The LUNA (Lutein nutrition effects measured by autofluorescence study demonstrated that supplementation with lutein (12 mg, zeaxanthin (1 mg, vitamin C (120 mg, vitamin E (17,6 mg, zinc (10 mg, selenium (40 mg resulted

  1. Targeting mTOR Signaling Can Prevent the Progression of FSGS.

    Science.gov (United States)

    Zschiedrich, Stefan; Bork, Tillmann; Liang, Wei; Wanner, Nicola; Eulenbruch, Kristina; Munder, Stefan; Hartleben, Björn; Kretz, Oliver; Gerber, Simon; Simons, Matias; Viau, Amandine; Burtin, Martine; Wei, Changli; Reiser, Jochen; Herbach, Nadja; Rastaldi, Maria-Pia; Cohen, Clemens D; Tharaux, Pierre-Louis; Terzi, Fabiola; Walz, Gerd; Gödel, Markus; Huber, Tobias B

    2017-07-01

    Mammalian target of rapamycin (mTOR) signaling is involved in a variety of kidney diseases. Clinical trials administering mTOR inhibitors to patients with FSGS, a prototypic podocyte disease, led to conflicting results, ranging from remission to deterioration of kidney function. Here, we combined complex genetic titration of mTOR complex 1 (mTORC1) levels in murine glomerular disease models, pharmacologic studies, and human studies to precisely delineate the role of mTOR in FSGS. mTORC1 target genes were significantly induced in microdissected glomeruli from both patients with FSGS and a murine FSGS model. Furthermore, a mouse model with constitutive mTORC1 activation closely recapitulated human FSGS. Notably, the complete knockout of mTORC1 by induced deletion of both Raptor alleles accelerated the progression of murine FSGS models. However, lowering mTORC1 signaling by deleting just one Raptor allele ameliorated the progression of glomerulosclerosis. Similarly, low-dose treatment with the mTORC1 inhibitor rapamycin efficiently diminished disease progression. Mechanistically, complete pharmacologic inhibition of mTOR in immortalized podocytes shifted the cellular energy metabolism toward reduced rates of oxidative phosphorylation and anaerobic glycolysis, which correlated with increased production of reactive oxygen species. Together, these data suggest that podocyte injury and loss is commonly followed by adaptive mTOR activation. Prolonged mTOR activation, however, results in a metabolic podocyte reprogramming leading to increased cellular stress and dedifferentiation, thus offering a treatment rationale for incomplete mTOR inhibition. Copyright © 2017 by the American Society of Nephrology.

  2. Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Crosio, Claudia; Valle, Cristiana; Casciati, Arianna; Iaccarino, Ciro; Carrì, Maria Teresa

    2011-03-18

    Motor neuron death in amyotrophic lateral sclerosis (ALS) is considered a "non-cell autonomous" process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1(G93A) ubiquitously and the dominant negative form of IκBα (IκBαAA) in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus.

  3. Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Claudia Crosio

    Full Text Available Motor neuron death in amyotrophic lateral sclerosis (ALS is considered a "non-cell autonomous" process, with astrocytes playing a critical role in disease progression. Glial cells are activated early in transgenic mice expressing mutant SOD1, suggesting that neuroinflammation has a relevant role in the cascade of events that trigger the death of motor neurons. An inflammatory cascade including COX2 expression, secretion of cytokines and release of NO from astrocytes may descend from activation of a NF-κB-mediated pathway observed in astrocytes from ALS patients and in experimental models. We have attempted rescue of transgenic mutant SOD1 mice through the inhibition of the NF-κB pathway selectively in astrocytes. Here we show that despite efficient inhibition of this major pathway, double transgenic mice expressing the mutant SOD1(G93A ubiquitously and the dominant negative form of IκBα (IκBαAA in astrocytes under control of the GFAP promoter show no benefit in terms of onset and progression of disease. Our data indicate that motor neuron death in ALS cannot be prevented by inhibition of a single inflammatory pathway because alternative pathways are activated in the presence of a persistent toxic stimulus.

  4. Putting prevention into practice: qualitative study of factors that inhibit and promote preventive care by general practitioners, with a focus on elderly patients

    Directory of Open Access Journals (Sweden)

    Hussein Rugzan J

    2010-09-01

    Full Text Available Abstract Background General practitioners (GPs have a key role in providing preventive care, particularly for elderly patients. However, various factors can inhibit or promote the implementation of preventive care. In the present study, we identified and examined factors that inhibit and promote preventive care by German GPs, particularly for elderly patients, and assessed changes in physicians' attitudes toward preventive care throughout their careers. Methods A qualitative, explorative design was used to identify inhibitors and promoters of preventive care in German general medical practice. A total of 32 GPs in Berlin and Hannover were surveyed. Questions about factors that promote or inhibit implementation of preventive care and changes in physicians' perceptions of promoting and inhibiting factors throughout their careers were identified. Episodic interviews, which encouraged the reporting of anecdotes regarding daily knowledge and experiences, were analyzed using ATLAS/ti. Socio-demographic data of GPs and structural information about their offices were collected using short questionnaires. The factors identified as inhibitory or promoting were classified as being related to patients, physicians, or the healthcare system. The changes in GP attitudes toward preventive care throughout their careers were classified as personal transitions or as social and health policy transitions. Results Most of the identified barriers to preventive care were related to patients, such as a lack of motivation for making lifestyle changes and a lack of willingness to pay for preventive interventions. In addition, the healthcare system seemed to inadequately promote preventive care, mainly due to poor reimbursement for preventive care and fragmentation of care. GPs own attitudes and health habits seemed to influence the implementation of preventive care. GPs recognized their own lack of awareness of effective preventive interventions, particularly for elderly

  5. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention

    Directory of Open Access Journals (Sweden)

    Tsatsakis Aristidis M

    2009-06-01

    Full Text Available Abstract CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR. Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism.

  6. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    Directory of Open Access Journals (Sweden)

    Sarika Kapoor

    Full Text Available The sodium-glucose-cotransporter-2 (SGLT2 inhibitor dapagliflozin (DAPA induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD, we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group. Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d. DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated.

  7. Quantitative study of myocardial microcirculation in arterial hypertension due to progressive inhibition of NO synthesis

    Directory of Open Access Journals (Sweden)

    Leila Maria Meirelles Pereira

    1999-11-01

    Full Text Available OBJECTIVE: To study the quantitative changes in intramyocardial blood vessels in rats in whom nitric oxide synthesis was inhibited. METHODS: Four groups of 10 rats were studied: control (C25 and C40 and L-NAME (L25 and L40. The animals L25 and L40 received L-NAME in the dosage of 50mg/kg/day for 25 and 40 days, respectively. On days 26 and 41 the animals in groups 25 and 40 were sacrificed. Analysis of the myocardium was performed using light microscopy and stereology. RESULTS: Arterial blood pressure and heart weight increased 74.5 and 57.8% after 25 days and 90.2 and 34.6% after 40 days, respectively. Comparing the L-NAME rats with the respective controls revealed that vessel volume density decreased 31.3% after 40 days, and the vessel length-density decreased 53.5% after 25 days and 25.7% after 40 days. The mean cross-sectional area of the vessels showed an important reduction of 154.6% after 25 days. The intramyocardial vessels decreased significantly in length- density in the L-NAME animals. The mean cross-sectional area of the vessels, which normally increases during heart growth between 25 and 40 days, showed a precocious increase by the 25th day in the L-NAME rats. This suggests an increase of the size of the heart, including blood vessels. CONCLUSION: The inhibition of the NO synthesis provokes rarefaction in the intramyocardial vessels that progresses with the time of administration of L-NAME.

  8. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    Science.gov (United States)

    Kapoor, Sarika; Rodriguez, Daniel; Riwanto, Meliana; Edenhofer, Ilka; Segerer, Stephan; Mitchell, Katharyn; Wüthrich, Rudolf P

    2015-01-01

    The sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA) induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD), we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d) or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group). Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d) and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d). DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min) and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min) after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated.

  9. Age-Related Neurodegeneration Prevention Through mTOR Inhibition: Potential Mechanisms and Remaining Questions

    Science.gov (United States)

    Jahrling, Jordan B.; Laberge, Remi-Martin

    2016-01-01

    With the global aging population, Alzheimer's disease, Parkinson's disease and mild cognition impairment are increasing in prevalence. The success of rapamycin as an agent to extend lifespan in various organisms, including mice, brings hope that chronic mTOR inhibition could also refrain age-related neurodegeneration. Here we review the evidence suggesting that mTOR inhibition - mainly with rapamycin - is a valid intervention to delay age-related neurodegeneration. We discuss the potential mechanisms by which rapamycin may facilitate neurodegeneration prevention or restoration of cognitive function. We also discuss the known side effects of rapamycin and provide evidence to alleviate exaggerated concerns regarding its wider clinical use. We explore the small molecule alternatives to rapamycin and propose future directions for their development, mainly by exploring the possibility of targeting the downstream effectors of mTOR: S6K1 and especially S6K2. Finally, we discuss the strengths and weaknesses of the models used to determine intervention efficacy for neurodegeneration. We address the difficulties of interpreting data using the common way of investigating the efficacy of interventions to delay/prevent neurodegeneration by observing animal behavior while these animals are under treatment. We propose an experimental design that should isolate the variable of aging in the experimental design and resolve the ambiguity present in recent literature. PMID:26059360

  10. Vinegar Treatment Prevents the Development of Murine Experimental Colitis via Inhibition of Inflammation and Apoptosis.

    Science.gov (United States)

    Shen, Fengge; Feng, Jiaxuan; Wang, Xinhui; Qi, Zhimin; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Wang, Chao; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-02-10

    This study investigated the preventive effects of vinegar and acetic acid (the active component of vinegar) on ulcerative colitis (UC) in mice. Vinegar (5% v/v) or acetic acid (0.3% w/v) treatment significantly reduced the disease activity index and histopathological scores, attenuated body weight loss, and shortened the colon length in a murine experimental colitis model induced by dextran sulfate sodium (DSS). Further mechanistic analysis showed that vinegar inhibited inflammation through suppressing Th1 and Th17 responses, the NLRP3 inflammasome, and MAPK signaling activation. Vinegar also inhibited endoplasmic reticulum (ER) stress-mediated apoptosis in the colitis mouse model. Surprisingly, pretreatment with vinegar for 28 days before DSS induction increased levels of the commensal lactic acid-producing or acetic acid-producing bacteria, including Lactobacillus, Bifidobacteria, and Enterococcus faecalis, whereas decreased Escherichia coli levels were found in the feces of mice. These results suggest that vinegar supplementation might provide a new dietary strategy for the prevention of UC.

  11. Preventive effect of rikkunshito on gastric motor function inhibited by L-dopa in rats.

    Science.gov (United States)

    Wang, Lixin; Mogami, Sachiko; Karasawa, Hiroshi; Yamada, Chihiro; Yakabi, Seiichi; Yakabi, Koji; Hattori, Tomohisa; Taché, Yvette

    2014-05-01

    We previously reported that ghrelin prevented l-dopa (LD)-induced inhibition of gastric emptying (GE) of a non-nutrient solution in rats. Parkinson's disease treatment involves the combined administration of l-dopa with the enzyme l-amino acid decarboxylase inhibitor, carbidopa (CD) to reduce peripheral formation of dopamine. We investigated the effect LD/CD given orogastrically (og) on GE of a non-nutrient or nutrient meal and whether og pretreatment with rikkunshito, a kampo medicine clinically used to treat gastroparesis, influenced LD/CD effect on GE and postprandial antral and duodenal motility in conscious rats. LD/CD (20/2 mgkg(-1)) decreased significantly GE to 26.3 ± 6.0% compared to 61.2 ± 3.2% in og vehicle monitored 20-min after a non-nutrient meal and to 41.9 ± 5.8% compared to 72.9 ± 5.2% in og vehicle monitored 60 min after a nutrient meal. Rikkunshito (0.5 or 1.0 g kg(-1)) reduced the LD/CD (20/2 mg kg(-1)) inhibition of GE of non-nutrient meal (36.9 ± 7.4% and 46.6 ± 4.8% respectively vs. 12.1 ± 7.4% in og vehicle plus LD/CD) while having no effect alone (56.6 ± 8.5%). The ghrelin antagonist, [d-Lys(3)]-GHRP-6 (1 mg kg(-1)) injected intraperitoneally partially reversed rikkunshito preventive effect on LD/CD-inhibited GE. Rikkunshito (1.0 g kg(-1)) blocked LD/CD (20/2 mg kg(-1))-induced delayed GE of a nutrient meal and the reduction of postprandial antral motility. In 6-hydroxydopamine-induced Parkinson's disease rat model, rikkunshito (1.0 g kg(-1), og) also prevented LD/CD-inhibited gastric emptying of a nutrient meal and enhanced fasting plasma levels of acylated ghrelin. These data indicate that oral rikkunshito alleviates the delayed GE induced by LD/CD in naïve and PD rat model in part through ghrelin-related mechanisms.

  12. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Directory of Open Access Journals (Sweden)

    Ramón A. Lorca

    2011-01-01

    Full Text Available Although the physiological function of the cellular prion protein (PrPC remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+.

  13. Inhibition of sodium current by taurine magnesium coordination compound prevents cesium chloride-induced arrhythmias.

    Science.gov (United States)

    Yin, Yongqiang; Wen, Ke; Wu, Yanna; Kang, Yi; Lou, Jianshi

    2012-05-01

    The mechanism(s) by which taurine magnesium coordination compound (TMCC) inhibits experimental arrhythmias remains poorly understood. The purpose of this study was to observe the effects of TMCC against cesium chloride-induced arrhythmia in the rabbit heart and find whether the antiarrhythmic activity is related to inhibition of sodium current. Early afterdepolarization was induced by 1.5 mM cesium chloride (1 ml kg(-1)) through intravenous injection. The monophasic action potentials (MAP) and electrocardiograms were simultaneously recorded. The effect of TMCC on functional refractory periods (FRPs) in the left atrium was also observed in vitro. Arrhythmias onset was significantly retarded by TMCC. The number of ventricular premature contractions and incidence of monophasic ventricular tachycardia and polyphasic ventricular tachycardia in 10 min were decreased by TMCC. These effects can be abolished by veratridine (10 μg kg(-1)). MAP duration at 90% repolarization was significantly prolonged by TMCC, which can be prolonged even longer by veratridine (10 μg kg(-1)). In vitro experiments showed that FRPs was prolonged by TMCC which can be cancelled by veratridine (10 μg kg(-1)). TMCC prevents cesium chloride-induced arrhythmias, and inhibition of sodium current, in part, contributes to the antiarrhythmic effect of TMCC.

  14. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Science.gov (United States)

    Lorca, Ramón A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.; Huidobro-Toro, J. Pablo

    2011-01-01

    Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+. PMID:22114745

  15. Cycloheximide prevents the de novo polypeptide synthesis required to recover from acetylene inhibition in Nitrosopumilus maritimus.

    Science.gov (United States)

    Vajrala, Neeraja; Bottomley, Peter J; Stahl, David A; Arp, Daniel J; Sayavedra-Soto, Luis A

    2014-06-01

    Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N. maritimus NH3 oxidation in a similar manner to what was observed previously with N. europaea. However, cycloheximide (CHX), a widely used eukaryotic protein synthesis inhibitor, but not bacteria-specific protein synthesis inhibitors (kanamycin and gentamycin), inhibited the recovery of NH3-oxidizing activity in N. maritimus. CHX prevented the incorporation of (14)CO2 -labeling into cellular proteins, providing further evidence that CHX acts as a protein synthesis inhibitor in N. maritimus. If the effect of CHX on protein synthesis can be confirmed among other isolates of AOA, the combination of C2H2 inactivation followed by recovery of NH3 oxidation either in the presence of bacteria-selective protein synthesis inhibitors or CHX might be used to estimate the relative contributions of AOB and AOA to NH3 oxidation in natural environments.

  16. Ampelopsis brevipedunculata Extract Prevents Bone Loss by Inhibiting Osteoclastogenesis in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ju-Young Kim

    2014-11-01

    Full Text Available Osteoclasts play a critical role in bone resorbing disorders such as osteoporosis, periodontitis, and rheumatoid arthritis. Therefore, discovery of agents capable of suppressing osteoclast differentiation may aid the development of a therapeutic access for the treatment of pathological bone loss. Ampelopsis brevipedunculata has been used as herbal folk medicine to treat liver diseases and inflammation in Asia. However, its effects on osteoclast differentiation are unknown. We were aimed to investigate the anti-osteoclastogenic activity in vitro and in vivo and to elucidate the underlying mechanism of Ampelopsis brevipedunculata extract (ABE. In this study, ABE inhibited receptor activator of NF-κB ligand (RANKL-induced osteoclast differentiation, the formation of filamentous actin rings and the bone resorbing activity of mature osteoclasts. ABE inhibited RANKL-induced p38 and IκB phosphorylation and IκB degradation. Also, ABE suppressed the mRNA and protein expression of nuclear factor of activated T cells c1 (NFATc1 and c-Fos, and the mRNA expression of genes required for cell fusion and bone resorption, such as osteoclast-associated receptor (OSCAR, tartrate resistant acid phosphatase (TRAP, cathepsin K, dendritic cell-specific transmembrane protein (DC-STAMP, β3-integrin and osteoclast stimulatory transmembrane protein (OC-STAMP. Furthermore, results of micro-CT and histologic analysis indicated that ABE remarkably prevented lipopolysaccharide (LPS-induced bone erosion. These results demonstrate that ABE prevents LPS-induced bone erosion through inhibition of osteoclast differentiation and function, suggesting the promise of ABE as a potential cure for various osteoclast-associated bone diseases.

  17. Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson's disease.

    Science.gov (United States)

    Zhang, Jiaxiang; Rittman, Timothy; Nombela, Cristina; Fois, Alessandro; Coyle-Gilchrist, Ian; Barker, Roger A; Hughes, Laura E; Rowe, James B

    2016-01-01

    Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of

  18. Rapid progression of intracranial melanoma metastases controlled with combined BRAF/MEK inhibition after discontinuation of therapy: a clinical challenge.

    Science.gov (United States)

    N Cagney, Daniel; Alexander, Brian M; Hodi, F Stephen; Buchbinder, Elizabeth I; Ott, Patrick A; Aizer, Ayal A

    2016-09-01

    Novel systemic therapies with anti-tumor activity in the brain including small molecules targeting BRAF and MEK, and immune checkpoint inhibition, offer the possibility of improved control of intracranial disease. A number of prospective trials support the judicious use of modern systemic therapies in patients with melanoma and limited brain metastases .The intracranial clinical course of patients who progress extracranially on BRAF/MEK inhibition remains poorly described in the literature. In this report, we highlight a series of clinical cases, with rapid progression of intracranial disease following discontinuation of dabrafenib/trametinib for extracranial disease progression or toxicity, a previously unreported finding in the medical literature with significant implications for patient care.

  19. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    Science.gov (United States)

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. © 2016 Wiley Periodicals, Inc.

  20. Bioactive natural products in cancer prevention and therapy: Progress and promise.

    Science.gov (United States)

    Bishayee, Anupam; Sethi, Gautam

    2016-10-01

    Natural products represent a rich source for the discovery and development of cancer preventive and anticancer drugs. Nearly, 80% of all drugs approved by the United States Food and Drug Administration during the last three decades for cancer therapy are either natural products per se or are based thereon, or mimicked natural products in one form or another. With the advent and refinement of new technologies, such as genetic techniques for production of secondary plant metabolites, combinatorial synthesis and high-throughput screening, it is expected that novel compounds from natural sources, including medicinal plants, would be identified and developed as safe and effective chemopreventive and anticancer drugs. Numerous bioactive natural compounds have been shown to be useful in prevention and therapy of cancer by targeting various signaling molecules and pathways. Extensive literature underscores the anticancer and chemopreventive activity of a plethora of naturally occurring agents, including phytochemicals. Several of these molecules have been tested in clinical trials and some of them have shown promise in combination therapy when administered along with standard chemotherapeutic agents. Thus, accelerated chemopreventive and chemotherapeutic drug development from natural sources is of great importance. In this special theme issue, contributions from eminent scientists and scholars around the world presented critical analysis of the current progress and promise of natural bioactive constituents in cancer prevention and therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression.

    Science.gov (United States)

    Khoronenkova, Svetlana V; Dianov, Grigory L

    2015-03-31

    DNA single-strand breaks (SSBs) arise as a consequence of spontaneous DNA instability and are also formed as DNA repair intermediates. Their repair is critical because they otherwise terminate gene transcription and generate toxic DNA double-strand breaks (DSBs) on replication. To prevent the formation of DSBs, SSB repair must be completed before DNA replication. To accomplish this, cells should be able to detect unrepaired SSBs, and then delay cell cycle progression to allow more time for repair; however, to date there is no evidence supporting the coordination of SSB repair and replication in human cells. Here we report that ataxia-telangiectasia mutated kinase (ATM) plays a major role in restricting the replication of SSB-containing DNA and thus prevents DSB formation. We show that ATM is activated by SSBs and coordinates their repair with DNA replication. SSB-mediated ATM activation is followed by a G1 cell cycle delay that allows more time for repair and thus prevents the replication of damaged DNA and DSB accrual. These findings establish an unanticipated role for ATM in the signaling of DNA SSBs and provide important insight into the molecular defects leading to genetic instability in patients with ataxia-telangiectasia.

  2. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    Science.gov (United States)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  3. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    Science.gov (United States)

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis.

  4. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D; Tinder, Teresa L; Subramani, Durai B; Bradley, Judy M; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2009-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.

  5. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  6. Effect of Inhibition of Intestinal Cholesterol Absorption on the Prevention of Cholesterol Gallstone Formation.

    Science.gov (United States)

    Portincasa, Piero; Wang, David Q-H

    2017-01-01

    Cholesterol cholelithiasis is a multifactorial hepatobiliary disease. Interactions between genetic and environmental factors play a critical role in biliary cholesterol homeostasis and its imbalance enhances cholelithogenesis. In patients developing symptoms or complications of gallstone disease, laparoscopic cholecystectomy is recommended for treatment of gallstones. In a subgroup of patients with small, radiolucent pure cholesterol gallstones, the hydrophilic bile acid, ursodeoxycholic acid (UDCA) is still considered the only pharmacological therapy able to induce oral litholysis. Identifying novel and effective pharmacological therapies is being investigated. We propose that the specific intestinal Niemann-Pick C1-like 1 protein inhibitor ezetimibe is a potential agent for preventing gallstone formation by reducing bioavailability of intestine- derived cholesterol to the liver for biliary secretion and desaturating bile through the inhibition of intestinal absorption of cholesterol. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Science.gov (United States)

    Pamenter, Matthew E; Ryu, Julie; Hua, Serena T; Perkins, Guy A; Mendiola, Vincent L; Gu, Xiang Q; Ellisman, Mark H; Haddad, Gabriel G

    2012-01-01

    During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus

  8. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.

  9. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro.

    Science.gov (United States)

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-04-01

    Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase.

  10. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  11. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    Science.gov (United States)

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Dasatinib inhibits c-src phosphorylation and prevents the proliferation of Triple-Negative Breast Cancer (TNBC) cells which overexpress Syndecan-Binding Protein (SDCBP)

    Science.gov (United States)

    Lang, Rong-Gang; Li, Wei-Dong; Sun, Hui; Liu, Fang-Fang; Guo, Xiao-Jing; Gu, Feng; Fu, Li

    2017-01-01

    Triple negative breast cancer (TNBC) progresses rapidly but lacks effective targeted therapies. Our previous study showed that downregulating syndecan-binding protein (SDCBP) in TNBC inhibits the proliferation of TNBC cells. Dasatinib is a new small-molecule inhibitor of c-src phosphorylation. The aim of this study was to investigate if SDCBP is a potential marker to indicate whether a TNBC is suitable for dasatinib therapy. This study applied co-immunoprecipitation to identify the interaction between SDCBP and c-src in TNBC cell lines. In addition, immunohistochemistry was used to investigate SDCBP and tyrosine-419 phosphorylated c-src (p-c-src-Y419) expression in TNBC tissues. SDCBP-overexpressing MDA-MB-231 cells were then constructed to evaluate the effects of dasatinib on SDCBP-induced TNBC progression in vitro and tumor formation in nude mice. We found wild-type SDCBP interacted with c-src and promoted the phosphorylation of c-src; this phosphorylation was completely blocked by dasatinib. SDCBP lacking the PDZ domain had no such effect. Among the 52 consecutive random TNBC cases examined, the expression of SDCBP was consistent with that of p-c-src-Y419, and positively correlated with histological grading or Ki-67 levels. SDCBP overexpression significantly accelerated the proliferation and cell cycle progression of the TNBC cell line MDA-MB-231; these effects were prevented by dasatinib treatment. However, the subsequent inhibition of p27 expression partially restored the proliferation and viability of the TNBC cells. The results of this study suggest that SDCBP interacts with c-src, regulates G1/S in TNBC cells, and enhances tumor cell proliferation by promoting the tyrosine phosphorylation of c-src at residue 419. Dasatinib inhibits such phosphorylation and blocks SDCBP-induced cell cycle progression. Therefore, SDCBP might be an important marker for identifying TNBC cases that are suitable for dasatinib therapy. PMID:28141839

  13. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  14. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    Science.gov (United States)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  15. Polysaccharides from wolfberry prevents corticosterone-induced inhibition of sexual behavior and increases neurogenesis.

    Directory of Open Access Journals (Sweden)

    Benson Wui-Man Lau

    Full Text Available Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of infertility and sexual dysfunction. However, there is still a scarcity of experimental evidence to support the pro-sexual effect of wolfberry. The aim of this study is to determine the effect of Lycium barbarum polysaccharides (LBP on male sexual behavior of rats. Here we report that oral feeding of LBP for 21 days significantly improved the male copulatory performance including increase of copulatory efficiency, increase of ejaculation frequency and shortening of ejaculation latency. Furthermore, sexual inhibition caused by chronic corticosterone was prevented by LBP. Simultaneously, corticosterone suppressed neurogenesis in subventricular zone and hippocampus in adult rats, which could be reversed by LBP. The neurogenic effect of LBP was also shown in vitro. Significant correlation was found between neurogenesis and sexual performance, suggesting that the newborn neurons are associated with reproductive successfulness. Blocking neurogenesis in male rats abolished the pro-sexual effect of LBP. Taken together, these results demonstrate the pro-sexual effect of LBP on normal and sexually-inhibited rats, and LBP may modulate sexual behavior by regulating neurogenesis.

  16. A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, T.J.; Kallmes, D.F. [Mayo Clinic and Foundation, Department of Radiology, Rochester, MN (United States); Marx, W.F. [Asheville Radiology Associates, Asheville, NC (United States)

    2006-03-15

    We tested the hypothesis that nonspecific matrix metalloproteinase (MMP) inhibition with doxycycline would decrease the incidence of intracranial aneurysm formation in a rat aneurysm model. We performed common carotid artery ligation on 96 Long-Evans rats. A treatment group of 48 animals was chosen at random to receive oral doxycycline (3 mg/kg) in addition to standard rat chow, and the control group of 48 animals received standard rat chow only. The major circle of Willis arteries was dissected at 1 year following carotid ligation, and the proportions of animals with aneurysms were compared between groups using Fisher's exact test. Four animals given oral doxycycline and ten control animals expired before 1 year. Of the examined animals, eight saccular intracranial aneurysms were found in 8 of 45 animals which had received doxycycline (17.8%) and seven saccular intracranial aneurysms were found in 7 of 37 control animals (18.9%). There was no significant difference in aneurysm formation between the doxycycline-treated and control groups (P=0.894). Nonspecific MMP inhibition with doxycycline is not effective in preventing intracranial aneurysm formation in a rat model. (orig.)

  17. Inhibition of casein kinase 2 prevents growth of human osteosarcoma.

    Science.gov (United States)

    Takahashi, Kengo; Setoguchi, Takao; Tsuru, Arisa; Saitoh, Yoshinobu; Nagano, Satoshi; Ishidou, Yasuhiro; Maeda, Shingo; Furukawa, Tatsuhiko; Komiya, Setsuro

    2017-02-01

    High-dose chemotherapy and surgical treatment have improved the prognosis of osteosarcoma. However, more than 20% of patients with osteosarcoma still have a poor prognosis. We investigated the expression and function of casein kinase 2 (CK2) in osteosarcoma growth. We then examined the effects of CX-4945, a CK2 inhibitor, on osteosarcoma growth in vitro and in vivo to apply our findings to the clinical setting. We examined the expression of CK2α and CK2β by western blot analysis, and performed WST-1 assays using CK2α and CK2β siRNA or CX-4945. Flow cytometry and western blot analyses were performed to evaluate apoptotic cell death. Xenograft models were used to examine the effect of CX-4945 in vivo. Western blot analysis revealed upregulation of CK2α and CK2β in human osteosarcoma cell lines compared with human osteoblast cells or mesenchymal stem cells. WST assay showed that knockdown of CK2α or CK2β by siRNA inhibited the proliferation of human osteosarcoma cells. Treatment with 3 µM of CX-4945 inhibited osteosarcoma cell proliferation; however, the same concentration of CX-4945 did not affect the proliferation of human mesenchymal stem cells. Additionally, treatment with CX-4945 inhibited the proliferation of human osteosarcoma cells in a dose-dependent manner. Western blot and flow cytometry analyses showed that treatment with CX-4945 promoted apoptotic death of osteosarcoma cells. The xenograft model showed that treatment with CX-4945 significantly prevented osteosarcoma growth in vivo compared with control vehicle treatment. Our findings indicate that CK2 may be an attractive therapeutic target for treating osteosarcoma.

  18. Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC

    Science.gov (United States)

    Cai, Jia-Bin; Huang, Xiao-Yong; Wu, Chao; Zhang, Lu; Kang, Qiang; Liu, Li-Xin; Xie, Nan; Shen, Zao-Zhuo; Hu, Mei-Yu; Cao, Ya; Qiu, Shuang-Jian; Sun, Hui-Chuan; Zhou, Jian; Fan, Jia; Shi, Guo-Ming

    2016-01-01

    Our previous studies revealed that tetraspanin CD151 plays multiple roles in the progression of hepatocellular carcinoma (HCC) by forming a functional complex with integrin α6β1. Herein, we generated a monoclonal antibody (mAb) that dissociates the CD151/integrin α6β1 complex, and we evaluated its bioactivity in HCCs. A murine mAb, tetraspanin CD151 (IgG1, called CD151 mAb 9B), was successfully generated against the CD151-integrin α6β1 binding site of CD151 extracellular domains. Co-immunoprecipitation using CD151 mAb 9B followed by Western blotting detected a 28 kDa protein. Both immunofluorescent and immunohistochemical staining showed a good reactivity of CD151 mAb 9B in the plasma membrane and cytoplasm of HCC cells, as well as in liver cells. In vitro assays demonstrated that CD151 mAb 9B could inhibit neoangiogenesis and both the mobility and the invasiveness of HCC cells. An in vivo assay showed that CD151 mAb 9B inhibited tumor growth potential and HCC cells metastasis. We successfully produced a CD151 mAb 9B targeting the CD151/integrin α6β1-binding domain, which not only can displayed good reactivity to the CD151 antigen but also prevented tumor progression in HCC. PMID:26756217

  19. Inhibition of mixed-lineage kinase (MLK) activity during G2-phase disrupts microtubule formation and mitotic progression in HeLa cells.

    Science.gov (United States)

    Cha, Hyukjin; Dangi, Surabhi; Machamer, Carolyn E; Shapiro, Paul

    2006-01-01

    The mixed-lineage kinases (MLK) are serine/threonine protein kinases that regulate mitogen-activated protein (MAP) kinase signaling pathways in response to extracellular signals. Recent studies indicate that MLK activity may promote neuronal cell death through activation of the c-Jun NH2-terminal kinase (JNK) family of MAP kinases. Thus, inhibitors of MLK activity may be clinically useful for delaying the progression of neurodegenerative diseases, such as Parkinson's. In proliferating non-neuronal cells, MLK may have the opposite effect of promoting cell proliferation. In the current studies we examined the requirement for MLK proteins in regulating cell proliferation by examining MLK function during G2 and M-phase of the cell cycle. The MLK inhibitor CEP-11004 prevented HeLa cell proliferation by delaying mitotic progression. Closer examination revealed that HeLa cells treated with CEP-11004 during G2-phase entered mitosis similar to untreated G2-phase cells. However, CEP-11004 treated cells failed to properly exit mitosis and arrested in a pro-metaphase state. Partial reversal of the CEP-11004 induced mitotic arrest could be achieved by overexpression of exogenous MLK3. The effects of CEP-11004 treatment on mitotic events included the inhibition of histone H3 phosphorylation during prophase and prior to nuclear envelope breakdown and the formation of aberrant mitotic spindles. These data indicate that MLK3 might be a unique target to selectively inhibit transformed cell proliferation by disrupting mitotic spindle formation resulting in mitotic arrest.

  20. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Wen-Juan Wang

    Full Text Available Expression of lymphoid enhancer factor 1 (LEF1 is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.

  1. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo.

    Science.gov (United States)

    Wang, Wen-Juan; Yao, Yu; Jiang, Li-Li; Hu, Ting-Hua; Ma, Jie-Qun; Liao, Zi-Jun; Yao, Jun-Tao; Li, Dong-Fan; Wang, Shu-Hong; Nan, Ke-Jun

    2013-01-01

    Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.

  2. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss.

    Science.gov (United States)

    Ramadoss, Jayanth; Lunde, Emilie R; Ouyang, Nengtai; Chen, Wei-Jung A; Cudd, Timothy A

    2008-08-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.

  3. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  4. Caffeine prevents transcription inhibition and P-TEFb/7SK dissociation following UV-induced DNA damage.

    Directory of Open Access Journals (Sweden)

    Giuliana Napolitano

    Full Text Available BACKGROUND: The mechanisms by which DNA damage triggers suppression of transcription of a large number of genes are poorly understood. DNA damage rapidly induces a release of the positive transcription elongation factor b (P-TEFb from the large inactive multisubunit 7SK snRNP complex. P-TEFb is required for transcription of most class II genes through stimulation of RNA polymerase II elongation and cotranscriptional pre-mRNA processing. METHODOLOGY/PRINCIPAL FINDINGS: We show here that caffeine prevents UV-induced dissociation of P-TEFb as well as transcription inhibition. The caffeine-effect does not involve PI3-kinase-related protein kinases, because inhibition of phosphatidylinositol 3-kinase family members (ATM, ATR and DNA-PK neither prevents P-TEFb dissociation nor transcription inhibition. Finally, caffeine prevention of transcription inhibition is independent from DNA damage. CONCLUSION/SIGNIFICANCE: Pharmacological prevention of P-TEFb/7SK snRNP dissociation and transcription inhibition following UV-induced DNA damage is correlated.

  5. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Jin, Haifeng; Xu, Ruodan

    2009-01-01

    Triptolide, a diterpenoid triepoxide from the traditional Chinese medicinal herb Tripterygium wilfordii Hook. f., is a potential treatment for autoimmune diseases as well a possible anti-tumor agent. It inhibits proliferation of colorectal cancer cells in vitro and in vivo. In this study, its...... ability to block progress of colitis to colon cancer, and its molecular mechanism of action are investigated. A mouse model for colitis-induced colorectal cancer was used to test the effect of triptolide on cancer progression. Treatment of mice with triptolide decreased the incidence of colon cancer...... formation, and increased survival rate. Moreover, triptolide decreased the incidence of tumors in nude mice inoculated with cultured colon cancer cells dose-dependently. In vitro, triptolide inhibited the proliferation, migration and colony formation of colon cancer cells. Secretion of IL6 and levels of JAK...

  6. Mycalamide A Shows Cytotoxic Properties and Prevents EGF-Induced Neoplastic Transformation through Inhibition of Nuclear Factors

    Science.gov (United States)

    Dyshlovoy, Sergey A.; Fedorov, Sergey N.; Kalinovsky, Anatoly I.; Shubina, Larisa K.; Bokemeyer, Carsten; Stonik, Valentin A.; Honecker, Friedemann

    2012-01-01

    Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed. PMID:22822368

  7. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer.

    Science.gov (United States)

    Guo, Wenjie; Sun, Yang; Liu, Wen; Wu, Xingxin; Guo, Lele; Cai, Peifen; Wu, Xuefeng; Wu, Xudong; Shen, Yan; Shu, Yongqian; Gu, Yanhong; Xu, Qiang

    2014-06-01

    Nonresolving inflammation in the intestine predisposes individuals to the development of colitis-associated cancer (CAC). Inflammasomes are thought to mediate intestinal homeostasis, and their dysregulation contributes to inflammatory bowel diseases and CAC. However, few agents have been reported to reduce CAC by targeting inflammasomes. Here we show that the small molecule andrographolide (Andro) protects mice against azoxymethane/dextran sulfate sodium-induced colon carcinogenesis through inhibiting the NLRP3 inflammasome. Administration of Andro significantly attenuated colitis progression and tumor burden. Andro also inhibited NLRP3 inflammasome activation in macrophages both in vivo and in vitro, as indicated by reduced expression of cleaved CASP1, disruption of NLRP3-PYCARD-CASP1 complex assembly, and lower IL1B secretion. Importantly, Andro was found to trigger mitophagy in macrophages, leading to a reversed mitochondrial membrane potential collapse, which in turn inactivated the NLRP3 inflammasome. Moreover, downregulation of the PIK3CA-AKT1-MTOR-RPS6KB1 pathway accounted for Andro-induced autophagy. Finally, Andro-driven inhibition of the NLRP3 inflammasome and amelioration of murine models for colitis and CAC were significantly blocked by BECN1 knockdown, or by various autophagy inhibitors. Taken together, our findings demonstrate that mitophagy-mediated NLRP3 inflammasome inhibition by Andro is responsible for the prevention of CAC. Our data may help guide decisions regarding the use of Andro in patients with inflammatory bowel diseases, which ultimately reduces the risk of CAC.

  8. Excess Cdt1 inhibits nascent strand elongation by repressing the progression of replication forks in Xenopus egg extracts.

    Science.gov (United States)

    Nakazaki, Yuta; Tsuyama, Takashi; Seki, Masayuki; Takahashi, Mikiko; Enomoto, Takemi; Tada, Shusuke

    2016-02-01

    Cdt1 is a protein essential for initiation of DNA replication; it recruits MCM helicase, a core component of the replicative DNA helicase, onto replication origins. In our previous study, we showed that addition of excess Cdt1 inhibits nascent strand elongation during DNA replication in Xenopus egg extracts. In the present study, we investigated the mechanism behind the inhibitory effect of Cdt1. We found that addition of recombinant Cdt1 inhibited nascent DNA synthesis in a reinitiation-independent manner. To identify the mechanism by which Cdt1 inhibits nascent strand elongation, the effect of Cdt1 on loading of Mcm4 and Rpa70 onto chromatin was examined. The results showed that Cdt1 suppressed the excessive Rpa70 binding caused by extensive, aphidicolin-induced DNA unwinding; this unwinding occurs between stalled DNA polymerases and advancing replication forks. These findings suggested that excess Cdt1 suppressed the progression of replication forks.

  9. TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program

    Science.gov (United States)

    Florez, Jose C.; Jablonski, Kathleen A.; Bayley, Nick; Pollin, Toni I.; de Bakker, Paul I.W.; Shuldiner, Alan R.; Knowler, William C.; Nathan, David M.; Altshuler, David

    2006-01-01

    Background Common polymorphisms of the transcription factor 7–like 2 gene (TCF7L2) have recently been associated with type 2 diabetes. We examined whether the two most strongly associated variants (rs12255372 and rs7903146) predict the progression to diabetes in persons with impaired glucose tolerance who were enrolled in the Diabetes Prevention Program, in which lifestyle intervention or treatment with metformin was compared with placebo. Methods We genotyped these variants in 3548 participants and performed Cox regression analysis using genotype, intervention, and their interactions as predictors. We assessed the effect of genotype on measures of insulin secretion and insulin sensitivity at baseline and at one year. Results Over an average period of three years, participants with the risk-conferring TT genotype at rs7903146 were more likely to have progression from impaired glucose tolerance to diabetes than were CC homozygotes (hazard ratio, 1.55; 95 percent confidence interval, 1.20 to 2.01; P<0.001). The effect of genotype was stronger in the placebo group (hazard ratio, 1.81; 95 percent confidence interval, 1.21 to 2.70; P = 0.004) than in the metformin and lifestyle-intervention groups (hazard ratios, 1.62 and 1.15, respectively; P for the interaction between genotype and intervention not significant). The TT genotype was associated with decreased insulin secretion but not increased insulin resistance at baseline. Similar results were obtained for rs12255372. Conclusions Common variants in TCF7L2 seem to be associated with an increased risk of diabetes among persons with impaired glucose tolerance. The risk-conferring genotypes in TCF7L2 are associated with impaired beta-cell function but not with insulin resistance. (ClinicalTrials.gov number, NCT00004992.) PMID:16855264

  10. Proliferative Inhibition of Rabbit Lens Epithelial Cell—Preliminary Investigation for Prevention of After Cataract

    Institute of Scientific and Technical Information of China (English)

    XiaoboSu; ShaozhenLi

    1995-01-01

    Purpose:To study the ability of Homoharringtonine(Hh),5-Fluorouracil(5-Fu).and Adriamycin(ADM)on inhibiting the proliferation of rabbit lens epitthelium,Methods.Whole rabbit lenses were removed from freshly enucleated eyes under sterile condition.The rabbit lens eptithlia(RLE)were isolated and culatured:(1)The passage RLE were placed in 24-well tissue culture plates and incubated for 48hours.then exposed to different concentrations of Hh,5-Fu,and ADMfor 24and 72hours;(2)The passage RLEandHh(0.084μg/ml).5-Fu(0.058μg/ml),ADM(0.45ng/ml)were placed and cultured for 24hours;(3)The morphological changes of RLE exposed to different concentrations of Hh,5-Fu and ADM were studied under light microscope.Results:The ID50 of Hh,5-Fu and ADMexposed to RLEfor 24hours were 0.84μg/ml, 0.58μg/ml and4.50ng/ml,respectively,and those for 72hous were0.49μg/ml,0.33μg/ml and3.85ng/ml.The attachment rate of RLE after being cu-latured for 24hours with Hh,5-Fu and ADM were respectinely83.6%,89.1%and 87.3%,The morphological changes of RLE demonstrated that obvious changes in the cell membran e and cytoplasm were found even in lower concentra-tion ,but changes in the nuclei could only be found in higher concentation of these drugs.Conclusion:Hh can not only inhibit the proliferation of RLE but also reduce the number of attached cells.It is suggested that Hh may be more useful for the pre-vention of after cataract than 5-Fu and ADM.

  11. Low-dose UVB irradiation prevents MMP2-induced skin hyperplasia by inhibiting inflammation and ROS.

    Science.gov (United States)

    Dang, Lin; Wang, Yan; Xue, Yadong; He, Lei; Li, Yuzhen; Xiong, Jikui

    2015-09-01

    Skin cancer is one of the most common types of malignancy in the world. UV radiation is known as the primary environmental carcinogen responsible for skin cancer development. However, UV radiation is a ubiquitous substance existing in the environment and the physiological effect of UV radiation is consistently ignored. Therefore, in the present study, the physiological effect of UV radiation on inhibition of skin cancer was investigated. Normal mouse skin was processing by no pre-radiation or pre-radiation of low-dose UV before a medium or high dose of UV radiation. We found that the low-dose pre-radiated mouse skin tissue exhibited low skin inflammation, skin ROS production and consequently low skin epithelial hyperplasia after the medium-dose UV radiation compared with the no pre-radiated mouse. However, this inhibition was not indicated in the high-dose UV radiation group after low-dose pre-radiation. Furthermore, western blot analysis and gelatin zymography showed low expression and activation of MMP2 in the skin tissues processed following medium-dose radiation, but not in tissues treated with high-dose radiation after a low-dose pre-radiation. Further investigation of MMP2 inhibitors of TIMP2/TIMP4 showed an upregulated TIMP2 expression, but not TIMP4. Collectively, these data indicate that low-dose pre-radiation attenuates the skin inflammation and ROS production induced by medium-dose UV radiation and also elevates TIMP2 to withstand MMP2, therefore suppressing skin hyperplasia. The present study indicates a novel concept or prophylactic function of moderate UV radiation as a preventative strategy.

  12. Mesenchymal stem cells (MSC prevented the progression of renovascular hypertension, improved renal function and architecture.

    Directory of Open Access Journals (Sweden)

    Elizabeth B Oliveira-Sales

    Full Text Available Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C is a renin-angiotensin-system (RAS-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC (2×10(5 cells/animal were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i prevented the progressive increase of AP, (ii improved renal morphology and microvascular rarefaction, (iii reduced fibrosis, proteinuria and inflammatory cytokines, (iv suppressed the intrarenal RAS, iv decreased sympathetic hyperactivity in anesthetized animals and v MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.

  13. Meniscal Allograft Transplantation Does Not Prevent or Delay Progression of Knee Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Catherine Van Der Straeten

    Full Text Available Meniscal tears are common knee injuries. Meniscal allograft transplantation (MAT has been advocated to alleviate symptoms and delay osteoarthritis (OA after meniscectomy. We investigated (1 the long-term outcome of MAT as a treatment of symptomatic meniscectomy, (2 most important factors affecting survivorship and (3 OA progression.From 1989 till 2013, 329 MAT were performed in 313 patients. Clinical and radiographic results and MAT survival were evaluated retrospectively. Failure was defined as conversion to knee arthroplasty (KA or total removal of the MAT.Mean age at surgery was 33 years (15-57; 60% were males. No-to-mild cartilage damage was found in 156 cases, moderate-to-severe damage in 130. Simultaneous procedures in 118 patients included cartilage procedures, osteotomy or ACL-reconstruction. At a mean follow-up of 6.8 years (0.2-24.3years, 5 patients were deceased and 48 lost (14.6%, 186 MAT were in situ (56.5% whilst 90 (27.4% had been removed, including 63 converted to a KA (19.2%. Cumulative allograft survivorship was 15.1% (95% CI:13.9-16.3 at 24.0 years. In patients <35 years at surgery, survival was significantly better (24.1% compared to ≥35 years (8.0% (p = 0.017. In knees with no-to-mild cartilage damage more allografts survived (43.0% compared to moderate-to-severe damage (6.6% (p = 0.003. Simultaneous osteotomy significantly deteriorated survival (0% at 24.0 years (p = 0.010. 61% of patients underwent at least one additional surgery (1-11 for clinical symptoms after MAT. Consecutive radiographs showed significant OA progression at a mean of 3.8 years (p<0.0001. Incremental Kellgren-Lawrence grade was +1,1 grade per 1000 days (2,7yrs.MAT did not delay or prevent tibiofemoral OA progression. 19.2% were converted to a knee prosthesis at a mean of 10.3 years. Patients younger than 35 with no-to-mild cartilage damage may benefit from MAT for relief of symptoms (survivorship 51.9% at 20.2 years, but patients and healthcare payers

  14. Mind magic: a pilot study of preventive mind-body-based stress reduction in behaviorally inhibited and activated children

    NARCIS (Netherlands)

    Jellesma, F.C.; Cornelis, J.

    2012-01-01

    Purpose of study: The aim of this pilot study was to examine a mind-body-based preventive intervention program and to determine relationships between children's behavioral inhibition system (BIS) and behavioral activation system, stress, and stress reduction after the program. Design of study: Child

  15. Inhibiting Factors in the Prevention of Overweight in Infants: An Explorative Qualitative Study among Child Healthcare Practitioners in the Netherlands

    Science.gov (United States)

    Dera de Bie, Eveliene; Jansen, Maria; Gerver, Willem Jan

    2012-01-01

    The aim of this study was to explore inhibiting factors in the prevention of overweight in infants younger than one year, among practitioners working for municipal child healthcare organisations in the Netherlands. Twelve in-depth interviews with child healthcare physicians and nurses were conducted. All interviews were tape-recorded, after which…

  16. [Progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases].

    Science.gov (United States)

    Yao, Yuan; Yu, Chuan-xin

    2013-08-01

    Antibody has extensive application prospects in the biomedical field. The inherent disadvantages of traditional polyclonal antibody and monoclonal antibody limit their application values. The humanized and fragmented antibody remodeling has given a rise to a series of genetic engineered antibody variant. This paper reviews the progress of research on genetic engineering antibody and its application in prevention and control of parasitic diseases.

  17. Mitigating preventable chronic disease: Progress report of the Cleveland Clinic's Lifestyle 180 program

    Directory of Open Access Journals (Sweden)

    Ricanati Elizabeth HW

    2011-11-01

    Full Text Available Abstract Background Poor lifestyle choices are key in development and progression of preventable chronic diseases. The purpose of the study was to design and test a program to mitigate the physical and fiscal consequences of chronic diseases. Methods Here we report the outcomes for 429 participants with one or more chronic conditions, including obesity, hypertension, hyperlipidemia and diabetes mellitus, many of whom had failed traditional disease management programs, who enrolled into a comprehensive lifestyle intervention. The Lifestyle 180 program integrates nutrition, physical activity and stress management interventions and was conducted at the Wellness Institute of the Cleveland Clinic, United States. An intensive 6 week immersion course, with 8 hours of group instruction per week, was followed by 3 follow-up, 4 hour-long sessions over the course of 6 months. Results Changes in biometric (weight, height, waist circumference, resting heart rate and blood pressure and laboratory variables (fasting lipid panel, blood glucose, insulin, hemoglobin A1c, ultra sensitive C-reactive protein at 6 months were compared with baseline (pre-post analysis. At week 30, biometric and laboratory data were available for 244 (57% and 299 (70% participants, respectively. These had a mean ± SD reduction in weight (6.8 ± 6.9 kg, P Conclusion Implementation of a comprehensive lifestyle modification program among adults with common chronic conditions results in significant and clinically meaningful improvements in biometric and laboratory outcomes after 6 months.

  18. Repeated Administration of Bone Marrow-Derived Cells Prevents Disease Progression in Experimental Silicosis

    Directory of Open Access Journals (Sweden)

    Miquéias Lopes-Pacheco

    2013-12-01

    Full Text Available Background/Aims: Bone marrow-derived cells (BMDCs reduced mechanical and histologic changes in the lung in a murine model of silicosis, but these beneficial effects did not persist in the course of lung injury. We hypothesized that repeated administration of BMDCs may decrease lung inflammation and remodeling thus preventing disease progression. Methods: One hundred and two C57BL/6 mice were randomly divided into SIL (silica, 20 mg intratracheally [IT] and control (C groups (saline, IT. C and SIL groups were further randomized to receive BMDCs (2×106 cells or saline IT 15 and 30 days after the start of the protocol. Results: By day 60, BMDCs had decreased the fractional area of granuloma and the number of polymorphonuclear cells, macrophages (total and M1 phenotype, apoptotic cells, the level of transforming growth factor (TGF-β‚ and types I and III collagen fiber content in the granuloma. In the alveolar septa, BMDCs reduced the amount of collagen and elastic fibers, TGF-β, and the number of M1 and apoptotic cells. Furthermore, interleukin (IL-1β, IL-1R1, caspase-3 mRNA levels decreased and the level of IL-1RN mRNA increased. Lung mechanics improved after BMDC therapy. The presence of male donor cells in lung tissue was not observed using detection of Y chromosome DNA. Conclusion: repeated administration of BMDCs reduced inflammation, fibrogenesis, and elastogenesis, thus improving lung mechanics through the release of paracrine factors.

  19. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage.

    Directory of Open Access Journals (Sweden)

    Orquidea Garcia

    Full Text Available The potential for amniotic fluid stem cell (AFSC treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF, is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0 or chronic (day 14 intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL, but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.

  20. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression.

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K Craig; Liu, Bo

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms.

  1. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria.

    Science.gov (United States)

    Greene, E A; Hubert, C; Nemati, M; Jenneman, G E; Voordouw, G

    2003-07-01

    Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.

  2. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool.

    Science.gov (United States)

    Gad, Helge; Koolmeister, Tobias; Jemth, Ann-Sofie; Eshtad, Saeed; Jacques, Sylvain A; Ström, Cecilia E; Svensson, Linda M; Schultz, Niklas; Lundbäck, Thomas; Einarsdottir, Berglind Osk; Saleh, Aljona; Göktürk, Camilla; Baranczewski, Pawel; Svensson, Richard; Berntsson, Ronnie P-A; Gustafsson, Robert; Strömberg, Kia; Sanjiv, Kumar; Jacques-Cordonnier, Marie-Caroline; Desroses, Matthieu; Gustavsson, Anna-Lena; Olofsson, Roger; Johansson, Fredrik; Homan, Evert J; Loseva, Olga; Bräutigam, Lars; Johansson, Lars; Höglund, Andreas; Hagenkort, Anna; Pham, Therese; Altun, Mikael; Gaugaz, Fabienne Z; Vikingsson, Svante; Evers, Bastiaan; Henriksson, Martin; Vallin, Karl S A; Wallner, Olov A; Hammarström, Lars G J; Wiita, Elisee; Almlöf, Ingrid; Kalderén, Christina; Axelsson, Hanna; Djureinovic, Tatjana; Puigvert, Jordi Carreras; Häggblad, Maria; Jeppsson, Fredrik; Martens, Ulf; Lundin, Cecilia; Lundgren, Bo; Granelli, Ingrid; Jensen, Annika Jenmalm; Artursson, Per; Nilsson, Jonas A; Stenmark, Pål; Scobie, Martin; Berglund, Ulrika Warpman; Helleday, Thomas

    2014-04-10

    Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.

  3. Atherosclerosis stabilization with PCSK-9 inhibition: An evolving concept for cardiovascular prevention.

    Science.gov (United States)

    Robinson, Jennifer G; Heistad, Donald D; Fox, Keith A A

    2015-12-01

    Monoclonal antibodies (mAbs) to proprotein convertase subtilisin/kexin type 9 (PCSK-9) can further lower LDL-C by ≥60% in statin-treated patients. Preliminary data suggest they may reduce cardiovascular (CVD) events. Ongoing PCSK-9 mAb cardiovascular outcomes trials could provide the opportunity to determine whether a "legacy effect" similar to that observed for statins will occur over the post-trial observation period. We hypothesize these trials could demonstrate that (1) very aggressive LDL-C lowering with PCSK-9 mAbs added to background statin therapy will induce extensive atherosclerosis stabilization and regression in the large majority of treated patients, and (2) continued maintenance therapy with high intensity statin therapy (with or without ezetimibe) should then inhibit new plaque formation, with a long-term prevention of CVD events. The necessity of expensive lifetime treatment with PCSK-9 inhibitors could then be avoided in all but a small subset of patients who could benefit from longer treatment.

  4. Propofol Prevents Renal Ischemia-Reperfusion Injury via Inhibiting the Oxidative Stress Pathways

    Directory of Open Access Journals (Sweden)

    Yingjie Li

    2015-08-01

    Full Text Available Background/Aims: Renal ischemia/reperfusion injury (IRI is a risk for acute renal failure and delayed graft function in renal transplantation and cardiac surgery. The purpose of this study is to determine whether propofol could attenuate renal IRI and explore related mechanism. Methods: Male rat right kidney was removed, left kidney was subjected to IRI. Propofol was intravenously injected into rats before ischemia. The kidney morphology and renal function were analyzed. The expression of Bax, Bcl-2, caspase-3, cl-caspase-3, GRP78, CHOP and caspase-12 were detected by Western blot analysis. Results: IR rats with propofol pretreatment had better renal function and less tubular apoptosis than untreated IR rats. Propofol pretreated IR rats had lower Bax/Bcl-2 ratio and less cleaved caspase-3. The protein expression levels of GRP78, CHOP and caspase-12 decreased significantly in propofol pretreated IR rats. In vitro cell model showed that propofol significantly increased the viability of NRK-52E cells that were subjected to hypoxia/reoxygenation (H/R in a dose-dependent manner. The effect of propofol on the expression regulation of Bax, Bcl-2, caspase-3, GRP78, CHOP was consistent in both in vitro and in vivo models. Conclusion: Experimental results suggest that propofol prevents renal IRI via inhibiting oxidative stress.

  5. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Yukihiro Wada

    Full Text Available The effects of blocking the epidermal growth factor receptor (EGFR in acute kidney injury (AKI are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP-nephrotoxicity (CP-N. In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2. Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.

  6. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol

    Science.gov (United States)

    Wang, Helen H; Portincasa, Piero; de Bari, Ornella; Liu, Kristina J; Garruti, Gabriella; Neuschwander-Tetri, Brent A; Wang, David Q.-H

    2013-01-01

    Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors, and represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the US, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA) has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. Therefore, the development of novel, effective, and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide. PMID:23419155

  7. BACE-1 inhibition prevents the γ-secretase inhibitor evoked Aβ rise in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Edlund Michael

    2011-10-01

    Full Text Available Abstract Background Accumulation of amyloid β-peptide (Aβ in the plaques is one of the major pathological features in Alzheimer's disease (AD. Sequential cleavage of amyloid precursor protein (APP by β-site APP cleaving enzyme 1 (BACE-1 and γ-secretase results in the formation of Aβ peptides. Preventing Aβ formation is believed to attenuate AD progression and BACE-1 and γ-secretase are thus attractive targets for AD drug development. Methods Combining BACE-1 and γ-secretase inhibition on Aβ secretion from human neuroblastoma SH-SY5Y cells was evaluated in this study. Secreted Aβ40 and Aβ42 levels were measured from SH-SY5Y cells stably transfected with APPwt or APPswe genes. A selective BACE inhibitor and the γ-secretase inhibitor LY450139 (semagacestat were used to inhibit respective secretase. Results LY450139 increased Aβ40 and Aβ42 secretion from SH-SY5Y APPwt cells at low concentrations (by 60% at 3 nM followed by subsequent inhibition at higher concentrations (IC50 90 nM. Washout studies showed that the Aβ increase evoked by 3 nM LY450139 was not due to enhanced cleavage following substrate accumulation but rather to activation of Aβ formation. By contrast, LY450139 inhibited Aβ formation from SH-SY5Y APPswe in a monophasic manner (IC50 18 nM. The BACE inhibitor per se inhibited Aβ secretion from both SH-SY5Y APPwt and SH-SY5Y APPswe cells with IC50s ranging between 7 - 18 nM and also prevented the increased Aβ secretion evoked by 3 nM LY450139. Combining the BACE inhibitor with higher inhibitory concentrations of LY450139 failed to demonstrate any clear additive or synergistic effects. Conclusion BACE-1 inhibition attenuates the Aβ increase evoked by LY450139 while not providing any obvious synergistic effects on LY450139-mediated inhibition.

  8. Disease progresses more quickly in introverts. Shy, inhibited personalities may fare worse.

    Science.gov (United States)

    2004-03-01

    Los Angeles researchers recently have discovered clinical evidence that HIV-positive people with shy and introverted personalities tend to have a faster disease progression and less optimal outcomes under antiretroviral treatment than do people with extroverted personalities.

  9. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    Science.gov (United States)

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  10. Prophylactic orthosteric inhibition of leukocyte integrin CD11b/CD18 prevents long-term fibrotic kidney failure in cynomolgus monkeys

    Science.gov (United States)

    Dehnadi, Abbas; Benedict Cosimi, A.; Neal Smith, Rex; Li, Xiangen; Alonso, José L.; Means, Terry K.; Arnaout, M. Amin

    2017-01-01

    Ischaemic acute kidney injury (AKI), an inflammatory disease process, often progresses to chronic kidney disease (CKD), with no available effective prophylaxis. This is in part due to lack of clinically relevant CKD models in non-human primates. Here we demonstrate that inhibition of the archetypal innate immune receptor CD11b/CD18 prevents progression of AKI to CKD in cynomolgus monkeys. Severe ischaemia-reperfusion injury of the right kidney, with subsequent periods of the left ureter ligation, causes irreversible right kidney failure 3, 6 or 9 months after AKI. Moreover, prophylactic inactivation of CD11b/CD18, using the orthosteric CD11b/CD18 inhibitor mAb107, improves microvascular perfusion and histopathology, reduces intrarenal pro-inflammatory mediators and salvages kidney function long term. These studies reveal an important early role of CD11b+ leukocytes in post-ischaemic kidney fibrosis and failure, and suggest a potential early therapeutic intervention to mitigate progression of ischaemic AKI to CKD in humans. PMID:28071653

  11. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs.

    Science.gov (United States)

    Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.

  12. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression

    Directory of Open Access Journals (Sweden)

    Martinez Fernando J

    2010-09-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.

  13. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  14. Curcumin Prevents Aflatoxin B1 Hepatoxicity by Inhibition of Cytochrome P450 Isozymes in Chick Liver

    Directory of Open Access Journals (Sweden)

    Ni-Ya Zhang

    2016-11-01

    Full Text Available This study was designed to establish if Curcumin (CM alleviates Aflatoxin B1 (AFB1-induced hepatotoxic effects and to determine whether alteration of the expression of cytochrome P450 (CYP450 isozymes is involved in the regulation of these effects in chick liver. One-day-old male broilers (n = 120 were divided into four groups and used in a two by two factorial trial in which the main factors included supplementing AFB1 (< 5 vs. 100 μg/kg and CM (0 vs. 150 mg/kg in a corn/soybean-based diet. Administration of AFB1 induced liver injury, significantly decreasing albumin and total protein concentrations and increasing alanine aminotransferase and aspartate aminotransferase activities in serum, and induced hepatic histological lesions at week 2. AFB1 also significantly decreased hepatic glutathione peroxidase, catalase, and glutathione levels, while increasing malondialdehyde, 8-hydroxydeoxyguanosine, and exo-AFB1-8,9-epoxide (AFBO-DNA concentrations. In addition, the mRNA and/or activity of enzymes responsible for the bioactivation of AFB1 into AFBO—including CYP1A1, CYP1A2, CYP2A6, and CYP3A4—were significantly induced in liver microsomes after 2-week exposure to AFB1. These alterations induced by AFB1 were prevented by CM supplementation. Conclusively, dietary CM protected chicks from AFB1-induced liver injury, potentially through the synergistic actions of increased antioxidant capacities and inhibition of the pivotal CYP450 isozyme-mediated activation of AFB1 to toxic AFBO.

  15. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Directory of Open Access Journals (Sweden)

    Stichtenoth Guido

    2006-06-01

    Full Text Available Abstract Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM and stereology allows the differentiation of active (large aggregates = LA and inactive (small aggregates = SA subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf, Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL, multilamellar vesicles (MV, unilamellar vesicles (UV] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA as well as UV (corresponding to SA. The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV ratio (resembling the SA/LA ratio increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.

  16. Sphingosine-1-phosphate receptor inhibition prevents denervation-induced dendritic atrophy.

    Science.gov (United States)

    Willems, Laurent M; Zahn, Nadine; Ferreirós, Nerea; Scholich, Klaus; Maggio, Nicola; Deller, Thomas; Vlachos, Andreas

    2016-03-31

    A hallmark of several major neurological diseases is neuronal cell death. In addition to this primary pathology, secondary injury is seen in connected brain regions in which neurons not directly affected by the disease are denervated. These transneuronal effects on the network contribute considerably to the clinical symptoms. Since denervated neurons are viable, they are attractive targets for intervention. Therefore, we studied the role of Sphingosine-1-phosphate (S1P)-receptor signaling, the target of Fingolimod (FTY720), in denervation-induced dendritic atrophy. The entorhinal denervation in vitro model was used to assess dendritic changes of denervated mouse dentate granule cells. Live-cell microscopy of GFP-expressing granule cells in organotypic entorhino-hippocampal slice cultures was employed to follow individual dendritic segments for up to 6 weeks after deafferentation. A set of slice cultures was treated with FTY720 or the S1P-receptor (S1PR) antagonist VPC23019. Lesion-induced changes in S1P (mass spectrometry) and S1PR-mRNA levels (laser microdissection and qPCR) were determined. Denervation caused profound changes in dendritic stability. Dendritic elongation and retraction events were markedly increased, resulting in a net reduction of total dendritic length (TDL) during the first 2 weeks after denervation, followed by a gradual recovery in TDL. These changes were accompanied by an increase in S1P and S1PR1- and S1PR3-mRNA levels, and were not observed in slice cultures treated with FTY720 or VPC23019. We conclude that inhibition of S1PR signaling prevents dendritic destabilization and denervation-induced dendrite loss. These results suggest a novel neuroprotective effect for pharmaceuticals targeting neural S1PR pathways.

  17. MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells.

    Science.gov (United States)

    Lee, J-J; Drakaki, A; Iliopoulos, D; Struhl, K

    2012-08-16

    The peroxisome proliferators-activated receptor (PPAR)γ pathway is involved in cancer, but it appears to have both tumor suppressor and oncogenic functions. In neuroblastoma cells, miR-27b targets the 3' untranslated region of PPARγ and inhibits its mRNA and protein expression. miR-27b overexpression or PPARγ inhibition blocks cell growth in vitro and tumor growth in mouse xenografts. PPARγ activates expression of the pH regulator NHE1, which is associated with tumor progression. Lastly, miR-27b through PPARγ regulates nuclear factor-κB activity and transcription of inflammatory target genes. Thus, in neuroblastoma, miR-27b functions as a tumor suppressor by inhibiting the tumor-promoting function of PPARγ, which triggers an increased inflammatory response. In contrast, in breast cancer cells, PPARγ inhibits NHE1 expression and the inflammatory response, and it functions as a tumor suppressor. We suggest that the ability of PPARγ to promote or suppress tumor formation is linked to cell type-specific differences in regulation of NHE1 and other target genes.

  18. HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways.

    Science.gov (United States)

    Lv, Daojun; Wu, Huayan; Xing, Rongwei; Shu, Fangpeng; Lei, Bin; Lei, Chengyong; Zhou, Xumin; Wan, Bo; Yang, Yu; Zhong, Liren; Mao, Xiangming; Zou, Yaguang

    2017-01-11

    Heterogeneous nuclear ribonucleoprotein L (hnRNP-L) is a promoter of various kinds of cancers, but its actions in bladder cancer (BC) are unclear. In this study, we investigated the function and the underlying mechanism of hnRNP-L in bladder carcinogenesis. Our results demonstrated that enhanced hnRNP-L expression in BC tissues was associated with poor overall survival of BC patients. Depletion of hnRNP-L significantly suppressed cell proliferation in vitro and inhibited xenograft tumor growth in vivo. Furthermore, downregulation of hnRNP-L resulted in G1-phase cell cycle arrest and enhanced apoptosis accompanied by inhibition of EMT and cell migration. All these cellular changes were reversed by ectopic expression of hnRNP-L. Deletion of hnRNP-L resulted in decreased expression of Bcl-2, enhanced expression of caspases-3, -6 and -9 and inhibition of the MAPK signaling pathway. These findings demonstrate that hnRNP-L contributes to poor prognosis and tumor progression of BC by inhibiting the intrinsic apoptotic signaling and enhancing MAPK signaling pathways.

  19. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Sophie Belin

    Full Text Available BACKGROUND: Ascorbic acid (AA, or Vitamin C, is most well known as a nutritional supplement with antioxidant properties. Recently, we demonstrated that high concentrations of AA act on PMP22 gene expression and partially correct the Charcot-Marie-Tooth disease phenotype in a mouse model. This is due to the capacity of AA, but not other antioxidants, to down-modulate cAMP intracellular concentration by a competitive inhibition of the adenylate cyclase enzymatic activity. Because of the critical role of cAMP in intracellular signalling, we decided to explore the possibility that ascorbic acid could modulate the expression of other genes. METHODS AND FINDINGS: Using human pangenomic microarrays, we found that AA inhibited the expression of two categories of genes necessary for cell cycle progression, tRNA synthetases and translation initiation factor subunits. In in vitro assays, we demonstrated that AA induced the S-phase arrest of proliferative normal and tumor cells. Highest concentrations of AA leaded to necrotic cell death. However, quiescent cells were not susceptible to AA toxicity, suggesting the blockage of protein synthesis was mainly detrimental in metabolically-active cells. Using animal models, we found that high concentrations of AA inhibited tumor progression in nude mice grafted with HT29 cells (derived from human colon carcinoma. Consistently, expression of tRNA synthetases and ieF2 appeared to be specifically decreased in tumors upon AA treatment. CONCLUSIONS: AA has an antiproliferative activity, at elevated concentration that could be obtained using IV injection. This activity has been observed in vitro as well in vivo and likely results from the inhibition of expression of genes involved in protein synthesis. Implications for a clinical use in anticancer therapies will be discussed.

  1. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways.

    Science.gov (United States)

    Doucette, Carolyn D; Greenshields, Anna L; Liwski, Robert S; Hoskin, David W

    2015-04-02

    Piperine, a pungent alkaloid found in the fruits of black pepper plants, has diverse physiological effects, including the ability to inhibit immune cell-mediated inflammation. Since the cytokine interleukin-2 (IL-2) is essential for the clonal expansion and differentiation of T lymphocytes, we investigated the effect of piperine on IL-2 signaling in IL-2-dependent mouse CTLL-2 T lymphocytes. Tritiated-thymidine incorporation assays and flow cytometric analysis of Oregon Green 488-stained cells showed that piperine inhibited IL-2-driven T lymphocyte proliferation; however, piperine did not cause T lymphocytes to die or decrease their expression of the high affinity IL-2 receptor, as determined by flow cytometry. Western blot analysis showed that piperine blocked the IL-2-induced phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5 without affecting the upstream phosphorylation of Janus kinase (JAK) 1 and JAK3. In addition, piperine inhibited the IL-2-induced phosphorylation of extracellular signal-regulated kinase 1/2 and Akt, which are signaling molecules that regulate cell cycle progression. Piperine also suppressed the expression of cyclin-dependent kinase (Cdk) 1, Cdk4, Cdk6, cyclin B, cyclin D2, and Cdc25c protein phosphatase by IL-2-stimulated T lymphocytes, indicating G0/G1 and G2/M cell cycle arrest. Piperine-mediated inhibition of IL-2 signaling and cell cycle progression in CTLL-2 T lymphocytes suggests that piperine should be further investigated in animal models as a possible natural source treatment for T lymphocyte-mediated transplant rejection and autoimmune disease.

  2. Inhibition of tumor progression during allergic airway inflammation in a murine model: significant role of TGF-β.

    Science.gov (United States)

    Tirado-Rodriguez, Belen; Baay-Guzman, Guillermina; Hernandez-Pando, Rogelio; Antonio-Andres, Gabriela; Vega, Mario I; Rocha-Zavaleta, Leticia; Bonifaz, Laura C; Huerta-Yepez, Sara

    2015-09-01

    TGF-β is an important mediator of pulmonary allergic inflammation, and it has been recently reported to be a potential inhibitor of lung tumor progression. The correlation between cancer and allergic inflammatory diseases remains controversial. Thus, the aim of the present study was to evaluate the effects of pulmonary allergic inflammation and in particular the role of TGF-β on cancer progression. Cancer cells were implanted in a BALB/c mice model of allergic airway inflammation, and tumor growth was measured. Apoptosis was evaluated by TUNEL assay, and TGF-β was measured by ELISA. Expression of proliferating cell nuclear antigen, TGF-β, TGF-β receptors I and II, phospho-Smad2 and phospho-Smad4 was evaluated by immunohistochemistry and quantified using digital pathology. The effect of a TGF-β activity inhibitor and recombinant TGF-β on tumor growth was analyzed. The effect of exogenous TGF-β on cell proliferation and apoptosis was evaluated in vitro. Mice with allergic airway inflammation exhibited decreased tumor volumes due to cell proliferation inhibition and increased apoptosis. TGF-β was increased in the sera and tumor tissues of allergic mice. TGF-β activity inhibition increased tumor progression in allergic mice by enhancing proliferation and decreasing apoptosis of tumor cells. The administration of TGF-β resulted in reduced tumor growth. This study is the first to establish an inverse relationship between allergic airway inflammation and tumor progression. This effect appears to be mediated by TGF-β, which is overexpressed in tumor cells during pulmonary allergic inflammation. This study indicates that TGF-β is a potential target for antitumor therapy.

  3. Oral grape seed extract inhibits prostate tumor growth and progression in TRAMP mice.

    Science.gov (United States)

    Raina, Komal; Singh, Rana P; Agarwal, Rajesh; Agarwal, Chapla

    2007-06-15

    Prostate cancer chemoprevention is an alternative and potential strategy to control this malignancy. Herein, we evaluated the chemopreventive efficacy of grape seed extract (GSE) against prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice where animals were fed with GSE by oral gavage at 200 mg/kg body weight dose during 4 to 28 weeks of age. Our results showed a significant reduction (46%, P cancer growth and progression in TRAMP mice, which could be mediated via a strong suppression of cell cycle progression and cell proliferation and an increase in apoptosis.

  4. Novel CXCR3/CXCR7-Directed Biological Antagonist for Inhibition of Breast Cancer Progression

    Science.gov (United States)

    2012-09-01

    the role of CXCR4 in BrCa progression. 4 Figure 2. CXCR7 (G protein-independent) cell-signaling pathways. The GPCR , CXCR7 is hypothesized to... antibody responses. Aim Two will characterize the mechanisms of mut-CXCL11-Ig that modulate BrCa progression in the presence and absence of docetaxel...and iv) Micromet. Imagestream analysis of protein expression and localization: PE/Cy5 conjugated anti-human CXCR4 antibody (clone#12G5) was purchased

  5. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Science.gov (United States)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  6. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice

    NARCIS (Netherlands)

    Wouters, Kristiaan; van Bilsen, Marc; van Gorp, Patrick J.; Bieghs, Veerle; Luetjohann, Dieter; Kerksiek, Anja; Staels, Bart; Hofker, Marten H.; Shiri-Sverdlov, Ronit

    2010-01-01

    Hepatic inflammation is the key factor in non-alcoholic steatohepatitis (NASH) and promotes progression to liver damage. We recently identified dietary cholesterol as the cause of hepatic inflammation in hyperlipidemic mice. We now show that hepatic transcriptome responses are strongly dependent on

  7. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2015-10-01

    as being possible MDSCs. The definition of MDSC requires these cells being immunosuppressive in a standard T cell proliferation assay. Therefore...circulation as the cancer progresses. The MDSCs display potent immunosuppressive activity to limit T cell proliferation. Importantly, depletion of...dependent increase of infiltrating and circulating granulocytic MDSCs in the mouse model. These MDSCs display potent immunosuppressive activity

  8. Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin–1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model

    Science.gov (United States)

    Wang, Qiwei; Zhou, Ting; Liu, Zhenjie; Ren, Jun; Phan, Noel; Gupta, Kartik; Stewart, Danielle M.; Morgan, Stephanie; Assa, Carmel; Kent, K. Craig; Liu, Bo

    2017-01-01

    Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair. PMID:28186202

  9. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth.

  10. A review of the evidence for dietary interventions in preventing or slowing the progression of age-related macular degeneration

    OpenAIRE

    Evans, J. R.; Lawrenson, J.

    2014-01-01

    Purpose: To summarise the results of recent Cochrane systematic reviews that have investigated whether nutritional supplements prevent or slow the progression of age-related macular degeneration (AMD).\\ud \\ud Recent findings: There is no good evidence from randomised controlled trials that the general population should be taking antioxidant vitamin supplements to reduce their risk of developing AMD later on in life. By contrast, there is moderate quality evidence that people with AMD may expe...

  11. Prevention of Atherosclerosis Progression by 9-cis-β-Carotene Rich Alga Dunaliella in apoE-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ayelet Harari

    2013-01-01

    Full Text Available Introduction. β-Carotene-rich diet has been shown to be inversely associated with the risk of coronary heart disease. However, clinical trials using synthetic all-trans-β-carotene failed to demonstrate a beneficial effect. We therefore sought to study the effect of natural source of β-carotene, the alga Dunaliella, containing both all-trans and 9-cis-β-carotene on atherosclerosis. In a previous study we showed that 9-cis-β-carotene-rich powder of the alga Dunaliella inhibits early atherogenesis in low-density lipoprotein receptor knockout mice. Aims. The aims of the current work were to study whether diet enriched with Dunaliella powder would inhibit the progression of established atherosclerosis in old male apoE-deficient mice and to compare the effect of Dunaliella on lipid profile and atherosclerosis in a low-versus high-fat diet fed mice. Methods. In the first experiment, young mice (12 weeks old were allocated into 3 groups: (1 low-fat diet; (2 low-fat diet + Dunaliella powder (8%; (3 low-fat diet + β-carotene-deficient Dunaliella. In the second experiment, old mice (7 months old with established atherosclerotic lesions were allocated into 4 groups: (1 low-fat diet; (2 low-fat diet + Dunaliella; (3 high fat-diet; (4 high-fat diet + Dunaliella. Results. In young mice fed a low-fat diet, a trend toward lower atherosclerotic lesion area in the aortic sinus was found in the Dunaliella group compared with the control group. In old mice with established atherosclerotic lesion, Dunaliella inhibited significantly plasma cholesterol elevation and atherosclerosis progression in mice fed a high-fat diet. Conclusion. The results of this study suggest that a diet containing natural carotenoids, rich in 9-cis-β-carotene, has the potential to inhibit atherosclerosis progression, particularly in high-fat diet regime.

  12. AC-93253 triggers the downregulation of melanoma progression markers and the inhibition of melanoma cell proliferation.

    Science.gov (United States)

    Karwaciak, Iwona; Gorzkiewicz, Michal; Ryba, Katarzyna; Dastych, Jaroslaw; Pulaski, Lukasz; Ratajewski, Marcin

    2015-07-01

    A major challenge in anti-melanoma therapy is to develop treatments that are effective for advanced melanoma patients. Unfortunately, the currently used regimens are not efficient and have unsatisfactory effects on disease progression, thus increasing the pressure to develop new, profitable drugs and to identify new molecular targets. Here, we show for the first time that AC-93253, a SIRT2 inhibitor, exerts a negative effect on the expression of a set of genes involved in the progression and chemoresistance (e.g., oncogenes, apoptosis-related genes, ABC transporter genes, and cell cycle control genes) of melanoma cells. Furthermore, melanoma cells exposed to AC-93253 and doxorubicin displayed altered biological responses, including apoptosis and proliferation, compared to cells exposed to single treatments. Taken together, we conclude that the usage of AC-93253 in combined therapy could be a promising strategy for melanoma patients.

  13. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-06-17

    Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  14. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Science.gov (United States)

    Li, Kun; Dias, Steven J; Rimando, Agnes M; Dhar, Swati; Mizuno, Cassia S; Penman, Alan D; Lewin, Jack R; Levenson, Anait S

    2013-01-01

    The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1), which is a part of nucleosome remodeling and deacetylation (NuRD) co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa). In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER), found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  15. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  16. Cide-a and Cide-c are induced in the progression of hepatic steatosis and inhibited by eicosapentaenoic acid.

    Science.gov (United States)

    Jinno, Yasutaka; Nakakuki, Masanori; Sato, Ayumi; Kawano, Hiroyuki; Notsu, Tatsuto; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2010-08-01

    Cide-a and Cide-c belong to the cell death-inducing DNA fragmentation factor-alpha-like effector family. Recent evidences suggest that these proteins may be involved in lipid accumulation in liver and adipose tissues. We confirmed that in the high-fat/high-sucrose diet-induced murine model of hepatic steatosis, the expression levels of the Cide-a and Cide-c genes were markedly and time-dependently increased, but returned to normal levels following improvement of hepatic steatosis by eicosapentaenoic acid (EPA) administration. Levels of expression of the Cide-a and Cide-c genes correlated well with plasma ALT. EPA inhibited the promoter activity of the Cide-a gene in vitro. Sterol regulatory element-binding protein-1 (SREBP-1) markedly enhanced the promoter activity of Cide-a, and EPA inhibited the expression of Cide-a mRNA. SREBP-1 and EPA did not affect those of Cide-c. These findings indicate that Cide-a and Cide-c are closely involved in the progression of hepatic steatosis, and that EPA inhibits Cide-a gene expression through SREBP-1 regulation.

  17. Dominant Suppression of β1 Integrin by Ectopic CD98-ICD Inhibits Hepatocellular Carcinoma Progression

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2016-11-01

    Full Text Available Hepatocellular carcinoma (HCC is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3, and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment.

  18. Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition.

    Science.gov (United States)

    Carvajal, Richard D; Lawrence, Donald P; Weber, Jeffrey S; Gajewski, Thomas F; Gonzalez, Rene; Lutzky, Jose; O'Day, Steven J; Hamid, Omid; Wolchok, Jedd D; Chapman, Paul B; Sullivan, Ryan J; Teitcher, Jerrold B; Ramaiya, Nikhil; Giobbie-Hurder, Anita; Antonescu, Cristina R; Heinrich, Michael C; Bastian, Boris C; Corless, Christopher L; Fletcher, Jonathan A; Hodi, F Stephen

    2015-05-15

    Although durable responses can be achieved with tyrosine kinase inhibitors such as imatinib in melanomas harboring KIT mutations, the efficacy of alternative inhibitors after progression to imatinib and the activity of these agents on brain metastases are unknown. We conducted a phase II study of nilotinib 400 mg twice a day in two cohorts of patients with melanomas harboring KIT mutations or amplification: (A) those refractory or intolerant to a prior KIT inhibitor; and (B) those with brain metastases. The primary endpoint was 4-month disease control rate. Secondary endpoints included response rate, time-to-progression (TTP), and overall survival (OS). A Simon two-stage and a single-stage design was planned to assess for the primary endpoint in cohorts A and B, respectively. Twenty patients were enrolled and 19 treated (11 in cohort A; 8 in cohort B). Three patients on cohort A [27%; 95% confidence interval (CI), 8%-56%] and 1 on cohort B (12.5%; 90% CI, 0.6%-47%) achieved the primary endpoint. Two partial responses were observed in cohort A (18.2%; 90% CI, 3%-47%); none were observed in cohort B. The median TTP and OS was 3.3 (90% CI, 2.1-3.9 months) and 9.1 months (90% CI, 4.3-14.2 months), respectively, in all treated patients. Nilotinib may achieve disease control in patients with melanoma harboring KIT alterations and whose disease progressed after imatinib therapy. The efficacy of this agent in KIT-altered melanoma with brain metastasis is limited. ©2015 American Association for Cancer Research.

  19. The influence of angiotensin-converting enzyme inhibition on renal tubular function in progressive chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1996-01-01

    fractional proximal reabsorption (FPR) was moderately subnormal. During the study, GFR decreased and sodium clearance was unchanged; fractional excretion of sodium therefore increased. In the group of patients randomized to treatment with enalapril (n = 34), GFR at 1 month was 83% (P .... In the conventional group, the fractional clearances of these three plasma proteins all increased. It is concluded that in progressive chronic nephropathy ACE-inhibitor treatment was associated with different adaptive tubular changes in the handling of sodium, water, and protein compared with conventional...

  20. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges.

    Science.gov (United States)

    Rainey, Stephanie M; Shah, Pranav; Kohl, Alain; Dietrich, Isabelle

    2014-03-01

    Arthropod-borne viruses (arboviruses) pose a considerable threat to human and animal health, yet effective control measures have proven difficult to implement, and novel means of controlling their replication in arthropod vectors, such as mosquitoes, are urgently required. One of the most exciting approaches to emerge from research on arthropods is the use of the endosymbiotic intracellular bacterium Wolbachia to control arbovirus transmission from mosquito to vertebrate. These α-proteobacteria propagate through insects, in part through modulation of host reproduction, thus ensuring spread through species and maintenance in nature. Since it was discovered that Wolbachia endosymbiosis inhibits insect virus replication in Drosophila species, these bacteria have also been shown to inhibit arbovirus replication and spread in mosquitoes. Importantly, it is not clear how these antiviral effects are mediated. This review will summarize recent work and discuss determinants of antiviral effectiveness that may differ between individual Wolbachia/vector/arbovirus interactions. We will also discuss the application of this approach to field settings and the associated risks.

  1. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression.

    Science.gov (United States)

    Aleku, Manuela; Schulz, Petra; Keil, Oliver; Santel, Ansgar; Schaeper, Ute; Dieckhoff, Britta; Janke, Oliver; Endruschat, Jens; Durieux, Birgit; Röder, Nadine; Löffler, Kathrin; Lange, Christian; Fechtner, Melanie; Möpert, Kristin; Fisch, Gerald; Dames, Sibylle; Arnold, Wolfgang; Jochims, Karin; Giese, Klaus; Wiedenmann, Bertram; Scholz, Arne; Kaufmann, Jörg

    2008-12-01

    We have previously described a small interfering RNA (siRNA) delivery system (AtuPLEX) for RNA interference (RNAi) in the vasculature of mice. Here we report preclinical data for Atu027, a siRNA-lipoplex directed against protein kinase N3 (PKN3), currently under development for the treatment of advanced solid cancer. In vitro studies revealed that Atu027-mediated inhibition of PKN3 function in primary endothelial cells impaired tube formation on extracellular matrix and cell migration, but is not essential for proliferation. Systemic administration of Atu027 by repeated bolus injections or infusions in mice, rats, and nonhuman primates results in specific, RNAi-mediated silencing of PKN3 expression. We show the efficacy of Atu027 in orthotopic mouse models for prostate and pancreatic cancers with significant inhibition of tumor growth and lymph node metastasis formation. The tumor vasculature of Atu027-treated animals showed a specific reduction in lymph vessel density but no significant changes in microvascular density.

  2. Weight and Physical Activity - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Risk factor assessment tools for the prevention of periodontitis progression a systematic review

    OpenAIRE

    Lang, Niklaus P.; Suvan, Jean E; Tonetti, Maurizio S

    2015-01-01

    OBJECTIVES (i) To identify characteristics of currently published patient-based tools used to assess levels of risk for periodontitis progression and (ii) systematically review the evidence documenting the use of patient-based risk assessment tools for predicting periodontitis progression. MATERIAL AND METHODS A systematic review was prepared on the basis of an electronic search of the literature supplemented with manually searching the relevant journals of the latest 5 years. Prospective ...

  4. Ricin Inhibits Activation of the Unfolded Protein Response by Preventing Splicing of the HAC1 mRNA*

    Science.gov (United States)

    Parikh, Bijal A.; Tortora, Andrew; Li, Xiao-Ping; Tumer, Nilgun E.

    2011-01-01

    Ricin A chain (RTA) inhibits protein synthesis by removing a specific adenine from the highly conserved α-sarcin/ricin loop in the large rRNA. Expression of RTA with its own signal sequence in yeast resulted in its translocation into the endoplasmic reticulum (ER) and subsequent glycosylation. Because RTA must unfold within the ER, it may be vulnerable to host defenses, such as the unfolded protein response (UPR). UPR was induced in cells expressing an active site mutant but not the wild type RTA, indicating that the active site of RTA played a role in perturbing the ER stress response. The inactive RTA without the signal sequence did not induce UPR, indicating that translocation into the ER was critical for induction of UPR. The wild type RTA inhibited activation of UPR not only due to ER stress induced by the protein itself but also by global effectors such as tunicamycin and dithiothreitol. Mature RTA without the signal sequence also inhibited UPR, providing evidence that inhibition of UPR occurred on the cytosolic face of the ER. RTA could not inhibit UPR when the spliced form of HAC1 mRNA was provided in trans, indicating that it had a direct effect on UPR upstream of HAC1-dependent transcriptional activation. Only the precursor form of HAC1 mRNA was detected in cells expressing RTA after exposure to ER stress, demonstrating that ricin inhibits activation of UPR by preventing HAC1 mRNA splicing. The RTA mutants that depurinated ribosomes but did not kill cells were not able to inhibit activation of UPR by tunicamycin, providing evidence that the inability to activate UPR in response to ER stress contributes to the cytotoxicity of ricin. PMID:18180297

  5. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression.

    Science.gov (United States)

    Cantrell, Michael A; Ebelt, Nancy D; Pfefferle, Adam D; Perou, Charles M; Van Den Berg, Carla Lynn

    2015-05-20

    Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.

  6. Metformin Prevents Renal Fibrosis in Mice with Unilateral Ureteral Obstruction and Inhibits Ang II-Induced ECM Production in Renal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Yang Shen

    2016-01-01

    Full Text Available Renal fibrosis is the final common pathway of chronic kidney disease (CKD, and no effective medication is available clinically for managing its progression. Metformin was initially developed as an anti-diabetic drug and recently gained attention for its potential in the treatment of other diseases. In this study, we investigated its effects on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO in vivo and in angiotensin II (Ang II–treated renal fibroblast NRK-49F cells in vitro. Our data showed that UUO induced renal fibrosis and combined with the activation of ERK signaling, the upregulation of fibronectin, collagen I, and transforming growth factor-β (TGF-β. The administration of metformin inhibited the activation of ERK signaling and attenuated the production of extracellular matrix (ECM proteins and collagen deposition in the obstructed kidneys. In cultured renal fibroblasts, Ang II increased the expression of fibronectin and collagen I and also activated ERK signaling and TGF-β in a time-dependent manner. Pretreatment of the cells with metformin blocked Ang II–induced ERK signaling activation and ECM overproduction. Our results show that metformin prevents renal fibrosis, possibly through the inhibition of ERK signaling, and may be a novel strategy for the treatment of renal fibrosis.

  7. Metformin Prevents Renal Fibrosis in Mice with Unilateral Ureteral Obstruction and Inhibits Ang II-Induced ECM Production in Renal Fibroblasts.

    Science.gov (United States)

    Shen, Yang; Miao, Naijun; Xu, Jinlan; Gan, Xinxin; Xu, Dan; Zhou, Li; Xue, Hong; Zhang, Wei; Lu, Limin

    2016-01-22

    Renal fibrosis is the final common pathway of chronic kidney disease (CKD), and no effective medication is available clinically for managing its progression. Metformin was initially developed as an anti-diabetic drug and recently gained attention for its potential in the treatment of other diseases. In this study, we investigated its effects on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) in vivo and in angiotensin II (Ang II)-treated renal fibroblast NRK-49F cells in vitro. Our data showed that UUO induced renal fibrosis and combined with the activation of ERK signaling, the upregulation of fibronectin, collagen I, and transforming growth factor-β (TGF-β). The administration of metformin inhibited the activation of ERK signaling and attenuated the production of extracellular matrix (ECM) proteins and collagen deposition in the obstructed kidneys. In cultured renal fibroblasts, Ang II increased the expression of fibronectin and collagen I and also activated ERK signaling and TGF-β in a time-dependent manner. Pretreatment of the cells with metformin blocked Ang II-induced ERK signaling activation and ECM overproduction. Our results show that metformin prevents renal fibrosis, possibly through the inhibition of ERK signaling, and may be a novel strategy for the treatment of renal fibrosis.

  8. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  9. Current Evidence to Justify, and the Methodological Considerations for a Randomised Controlled Trial Testing the Hypothesis that Statins Prevent the Malignant Progression of Barrett's Oesophagus

    Institute of Scientific and Technical Information of China (English)

    David Thurtle; Leo Alexandre; Yoon K Loke; Ed Cheong; Andrew Hart

    2014-01-01

    Barrett's oesophagus is the predominant risk factor for oesophageal adenocarcinoma, a cancer whose incidence is increasing and which has a poor prognosis. This article reviews the latest experimental and epidemiological evidence justifying the development of a randomised controlled trial investigating the hypothesis that statins prevent the malignant progression of Barrett's oesophagus, and explores the methodological considerations for such a trial. The experimental evidence suggests anti-carcinogenic properties of statins on oesophageal cancer cell lines, based on the inhibition of the mevalonate pathway and the production of pro-apoptotic proteins. The epidemiological evidence reports inverse associations between statin use and the incidence of oesophageal carcinoma in both general population and Barrett's oesophagus cohorts. Such a randomised controlled trial would be a large multi-centre trial, probably investigating simvastatin, given the wide clinical experience with this drug, relatively low side-effect profile and low ifnancial cost. As with any clinical trial, high adherence is important, which could be increased with therapy, patient, doctor and system-focussed interventions. We would suggest there is now sufifcient evidence to justify a full clinical trial that attempts to prevent this aggressive cancer in a high-risk population.

  10. Current Evidence to Justify, and the Methodological Considerations for a Randomised Controlled Trial Testing the Hypothesis that Statins Prevent the Malignant Progression of Barrett's Oesophagus

    Directory of Open Access Journals (Sweden)

    David Thurtle

    2014-12-01

    Full Text Available Barrett’s oesophagus is the predominant risk factor for oesophageal adenocarcinoma, a cancer whose incidence is increasing and which has a poor prognosis. This article reviews the latest experimental and epidemiological evidence justifying the development of a randomised controlled trial investigating the hypothesis that statins prevent the malignant progression of Barrett’s oesophagus, and explores the methodological considerations for such a trial. The experimental evidence suggests anti-carcinogenic properties of statins on oesophageal cancer cell lines, based on the inhibition of the mevalonate pathway and the production of pro-apoptotic proteins. The epidemiological evidence reports inverse associations between statin use and the incidence of oesophageal carcinoma in both general population and Barrett’s oesophagus cohorts. Such a randomised controlled trial would be a large multi-centre trial, probably investigating simvastatin, given the wide clinical experience with this drug, relatively low side-effect profile and low financial cost. As with any clinical trial, high adherence is important, which could be increased with therapy, patient, doctor and system-focussed interventions. We would suggest there is now sufficient evidence to justify a full clinical trial that attempts to prevent this aggressive cancer in a high-risk population.

  11. Enhanced cytotoxic T-cell function and inhibition of tumor progression by Mst1 deficiency.

    Science.gov (United States)

    Yasuda, Kaneki; Ueda, Yoshihiro; Ozawa, Madoka; Matsuda, Tadashi; Kinashi, Tatsuo

    2016-01-01

    Mammalian ste-20 like kinase Mst1 plays important roles during apoptosis, proliferation, cell polarity, and migration. Here, we report a novel role of Mst1 for cytotoxic T-cell responses and tumor suppression. The defect of Mst1 caused decreased levels of FoxO, and promoted cytotoxicity in vitro. Mst1(-/-) cytotoxic T cells also exhibited enhanced T-bet expression that was associated with elevated expression levels of IFNγ and granzyme B. Moreover, Mst1(-/-) cytotoxic T cells suppressed tumor growth in vivo. The data suggest that Mst1 inhibits cytotoxicity via T-bet suppression by FoxO1 and FoxO3a. Thus, Mst1 is a potential therapeutic target for tumor immunotherapy.

  12. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition

    Directory of Open Access Journals (Sweden)

    Flores Juana M

    2010-07-01

    Full Text Available Abstract Background ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. Results Our results show that both Δ9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. Conclusions Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.

  13. Inhibition of cyclooxygenase-2 prevents intra-abdominal adhesions by decreasing activity of peritoneal fibroblasts

    Directory of Open Access Journals (Sweden)

    Wei G

    2015-06-01

    Full Text Available Guangbing Wei,1 Xin Chen,2 Guanghui Wang,1 Pengbo Jia,1,3 Qinhong Xu,2 Gaofeng Ping,1 Kang Wang,1 Xuqi Li1 1Department of General Surgery, 2Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, 3Department of General Surgery, First People’s Hospital of Xianyang City, Xianyang, People’s Republic of China Background: Postoperative intra-abdominal adhesions are common complications after abdominal surgery. The exact molecular mechanisms that are responsible for these complications remain unclear, and there are no effective methods for preventing adhesion formation or reformation. The aim of the study reported here was to investigate the preventive effects and underlying potential molecular mechanisms of selective cyclooxygenase-2 (COX-2 inhibitors in a rodent model of postoperative intra-abdominal adhesions.Materials and methods: The expression of COX-2 in postoperative intra-abdominal adhesions and normal peritoneal tissue was examined by immunohistochemistry and Western blot analysis. Assays were performed to elucidate the effect of COX-2 inhibition on hypoxia-induced fibroblast activity in vitro and on intra-abdominal adhesion formation in vivo.Results: Hypoxia-induced COX-2 expression in peritoneal fibroblasts was increased in postoperative intra-abdominal adhesions. Inhibition of COX-2 attenuated the activating effect of hypoxia on normal peritoneal fibroblasts in vitro. Data indicate that selective COX-2 inhibitor prevents in vivo intra-abdominal adhesion by inhibition of basic fibroblast growth factor and transforming growth factor-beta expression, but not through an antiangiogenic mechanism. Furthermore, using selective COX-2 inhibitors to prevent intra-abdominal adhesions did not adversely affect the weight, bowel motility, or healing of intestinal anastomoses in a rat model.Conclusion: These results show that hypoxia-induced COX-2 expression in peritoneal

  14. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4(+)/FoxP3(+) regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  15. UVB-induced cell death signaling is associated with G1-S progression and transcription inhibition in primary human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tatiana Grohmann Ortolan

    Full Text Available DNA damage induced by ultraviolet (UV radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR and the other specific for transcribed DNA (TCR, and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient and XP-C (GGR-deficient primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high, defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.

  16. A new mechanism of action of sulodexide in diabetic nephropathy: inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Masola Valentina

    2012-10-01

    Full Text Available Abstract Background Epithelial-mesenchymal transition of tubular cells is a widely recognized mechanism that sustains interstitial fibrosis in diabetic nephropathy (DN. The signaling of FGF-2, a growth factor involved in this mechanism, is regulated by glycosaminoglycans. Heparanase-1, an endoglycosidase that cleaves heparan sulfate, is implicated in the pathogenesis of diabetic nephropathy and is necessary to FGF-2 for the induction of tubular cells transition. Well known Heparanase-1 inhibitors are heparin(s and sulodexide, a low-molecular weight heparin – dermatan sulphate blend, which is effective in the treatment of DN. Methods We have investigated the inhibition by sulodexide and its components of Heparanase-1 by an ELISA assay. We have analyzed its effect on the epithelial-mesenchymal transition of tubular cells by real time gene expression analysis, zymography and migration assay. Results Results show that sulodexide is an effective heparanase-1 inhibitor, exclusively in virtue to the heparin component, with an IC50 of 5 μg/ml. In FGF-2 treated tubular cells, sulodexide also prevents the over-expression of the mesenchymal markers αSMA, vimentin and fibronectin and the motility increase, i.e. the epithelial-mesenchymal transition of tubular cells. Moreover, sulodexide prevents FGF-2 induced heparanase-1 and MMP9 increase switching off the autocrine loop that FGF-2 activates to support its signal. Conclusions The findings highlight the capacity of sulodexide to inhibit heparanase-1 and to control tubular fibrosis triggered by epithelial-mesenchymal transition. In conclusion, these sulodexide activities support the value of this agent in controlling the progression of nephropathy to renal failure.

  17. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1.

    Science.gov (United States)

    Tian, Zhijie; Jiang, Hequn; Liu, Ying; Huang, Yong; Xiong, Xin; Wu, Hongwei; Dai, Xiaozhen

    2016-05-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future.

  18. Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A

    Directory of Open Access Journals (Sweden)

    Saxena Deepti

    2009-10-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor eIF5A has been implicated in HIV-1 replication. This protein contains the apparently unique amino acid hypusine that is formed by the post-translational modification of a lysine residue catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase (DOHH. DOHH activity is inhibited by two clinically used drugs, the topical fungicide ciclopirox and the systemic medicinal iron chelator deferiprone. Deferiprone has been reported to inhibit HIV-1 replication in tissue culture. Results Ciclopirox and deferiprone blocked HIV-1 replication in PBMCs. To examine the underlying mechanisms, we investigated the action of the drugs on eIF5A modification and HIV-1 gene expression in model systems. At early times after drug exposure, both drugs inhibited substrate binding to DOHH and prevented the formation of mature eIF5A. Viral gene expression from HIV-1 molecular clones was suppressed at the RNA level independently of all viral genes. The inhibition was specific for the viral promoter and occurred at the level of HIV-1 transcription initiation. Partial knockdown of eIF5A-1 by siRNA led to inhibition of HIV-1 gene expression that was non-additive with drug action. These data support the importance of eIF5A and hypusine formation in HIV-1 gene expression. Conclusion At clinically relevant concentrations, two widely used drugs blocked HIV-1 replication ex vivo. They specifically inhibited expression from the HIV-1 promoter at the level of transcription initiation. Both drugs interfered with the hydroxylation step in the hypusine modification of eIF5A. These results have profound implications for the potential therapeutic use of these drugs as antiretrovirals and for the development of optimized analogs.

  19. Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A.

    Science.gov (United States)

    Hoque, Mainul; Hanauske-Abel, Hartmut M; Palumbo, Paul; Saxena, Deepti; D'Alliessi Gandolfi, Darlene; Park, Myung Hee; Pe'ery, Tsafi; Mathews, Michael B

    2009-10-13

    Eukaryotic translation initiation factor eIF5A has been implicated in HIV-1 replication. This protein contains the apparently unique amino acid hypusine that is formed by the post-translational modification of a lysine residue catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase (DOHH). DOHH activity is inhibited by two clinically used drugs, the topical fungicide ciclopirox and the systemic medicinal iron chelator deferiprone. Deferiprone has been reported to inhibit HIV-1 replication in tissue culture. Ciclopirox and deferiprone blocked HIV-1 replication in PBMCs. To examine the underlying mechanisms, we investigated the action of the drugs on eIF5A modification and HIV-1 gene expression in model systems. At early times after drug exposure, both drugs inhibited substrate binding to DOHH and prevented the formation of mature eIF5A. Viral gene expression from HIV-1 molecular clones was suppressed at the RNA level independently of all viral genes. The inhibition was specific for the viral promoter and occurred at the level of HIV-1 transcription initiation. Partial knockdown of eIF5A-1 by siRNA led to inhibition of HIV-1 gene expression that was non-additive with drug action. These data support the importance of eIF5A and hypusine formation in HIV-1 gene expression. At clinically relevant concentrations, two widely used drugs blocked HIV-1 replication ex vivo. They specifically inhibited expression from the HIV-1 promoter at the level of transcription initiation. Both drugs interfered with the hydroxylation step in the hypusine modification of eIF5A. These results have profound implications for the potential therapeutic use of these drugs as antiretrovirals and for the development of optimized analogs.

  20. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akinori [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Kikuguchi, Chisato [Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan); Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  1. HnRNP-L promotes prostate cancer progression by enhancing cell cycling and inhibiting apoptosis.

    Science.gov (United States)

    Zhou, Xumin; Li, Qi; He, Jincan; Zhong, Liren; Shu, Fangpeng; Xing, Rongwei; Lv, Daojun; Lei, Bin; Wan, Bo; Yang, Yu; Wu, Huayan; Mao, Xiangming; Zou, Yaguang

    2016-12-27

    Expression of the RNA-binding protein HnRNP-L was previously shown to associate with tumorigenesis in liver and lung cancer. In this study, we examined the role of HnRNP-L in prostate cancer (Pca). We found that HnRNP-L is overexpressed in prostate tissue samples from 160 PC patients compared with tissue samples from 32 donors with cancers other than Pca. Moreover, HnRNP-L positively correlated with aggressive tumor characteristics. HnRNP-L knockdown inhibited cell proliferation and promoted cell apoptosis of Pca cell lines in vitro, and suppressed tumor growth when the cells were subcutaneously implanted in an athymic mouse model. Conversely, overexpression of HnRNP-L promoted cell proliferation and tumor growth while prohibiting cell apoptosis. HnRNP-L promoted cell proliferation and tumor growth in Pca in part by interacting with endogenous p53 mRNA, which was closely associated with cyclin p21. In addition, HnRNP-L affected cell apoptosis by directly binding the classical apoptosis protein BCL-2. These observations suggest HnRNP-L is an important regulatory factor that exerts pro-proliferation and anti-apoptosis effects in Pca through actions affecting the cell cycle and intrinsic apoptotic signaling. Thus HnRNP-L could potentially serve as a valuable molecular biomarker or therapeutic target in the treatment of Pca.

  2. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells

    DEFF Research Database (Denmark)

    Larsen, L; Tonnesen, M; Ronn, S G

    2007-01-01

    AIMS/HYPOTHESIS: The immune-mediated elimination of pancreatic beta cells in type 1 diabetes involves release of cytotoxic cytokines such as IL-1beta and IFNgamma, which induce beta cell death in vitro by mechanisms that are both dependent and independent of nitric oxide (NO). Nuclear factor kappa...... deacetylases (HDAC), and positive effects of HDAC inhibition have been obtained in several inflammatory diseases. Thus, the aim of this study was to investigate whether HDAC inhibition protects beta cells against cytokine-induced toxicity. MATERIALS AND METHODS: The beta cell line, INS-1, or intact rat islets...

  3. Xanthohumol inhibits cell cycle progression and proliferation of larynx cancer cells in vitro.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Król, Sylwia Katarzyna; Dmoszyńska-Graniczka, Magdalena; Zdzisińska, Barbara; Stepulak, Andrzej; Gagoś, Mariusz

    2015-10-05

    Xanthohumol (XN), a prenylflavonoid derived from the hop plant (Humulus lupulus L.) has been found to exhibit a broad spectrum of biological properties, including anti-cancer activity. In this study, the mechanisms involved in anti-cancer activity of XN in human RK33 and RK45 larynx cancer cell lines were investigated. The effect of XN on the viability of larynx cancer and normal cells (human skin fibroblasts HSF and rat oligodendroglia-derived cells, OLN-93) was compared. Additionally, the influence of XN on proliferation, cell cycle progression, induction of apoptosis in larynx cancer cells, as well as the molecular mechanisms underlying in these processes were analyzed. XN promoted the reduction of cell viability in cancer cells, but showed low cytotoxicity to normal cells. The decrease in cell viability in the cancer cells was coupled with induction of apoptosis via two pathways. The mechanisms involved in these effects of XN were associated with cell growth inhibition by induction of cell cycle arrest in the G1 phase, increased p53 and p21/WAF1 expression levels, downregulation of cyclin D1 and Bcl-2, and activation of caspases-9, -8, and -3. Moreover, this compound inhibited phosphorylation of ERK1/2, suggesting a key role of the ERKs pathway in the XN-mediated growth suppressing effects against the studied cells. These results indicate that XN could be used as a potential agent for the treatment of patients with larynx cancer.

  4. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β.

    Science.gov (United States)

    Jung, Hye-Won; Park, Inae; Ghil, Sungho

    2014-09-01

    Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

  5. Identification of IGFBP-3 fragments generated by KLK2 and prevention of fragmentation by KLK2-inhibiting peptides.

    Science.gov (United States)

    Hekim, Can; Riipi, Tero; Weisell, Janne; Närvänen, Ale; Koistinen, Riitta; Stenman, Ulf-Håkan; Koistinen, Hannu

    2010-04-01

    Kallikrein-related peptidase 2 (KLK2) degrades insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in vitro. IGFBP-3 forms complexes with IGFs, preventing them from binding to their receptors and stimulating cell proliferation and survival. IGF-independent actions have also been described for IGFBP-3. The degradation of IGFBP-3 by KLK2 or other proteases in the prostate may promote the growth of prostate cancer. We studied IGFBP-3 degradation by immunoblotting and two specific immunoassays, one recognizing only native non-fragmented IGFBP-3 and the other one recognizing both intact and proteolytically cleaved IGFBP-3. Peptides were used to inhibit the enzyme activity of KLK2 and cleavage sites in IGFBP-3 were identified by mass spectrometry. KLK2 proteolyzed IGFBP-3 into several small fragments, mostly after Arg residues, in keeping with the trypsin-like activity of KLK2. The fragmentation could be inhibited by KLK2-inhibiting peptides in a dose-dependent fashion. As degradation of IGFBP-3 could lead to a more aggressive cancer phenotype, inhibition of KLK2 activity might be useful for treatment of prostate cancer and other diseases associated with increased KLK2 activity.

  6. Progress for dengue virus diseases. Towards the NS2B-NS3pro inhibition for a therapeutic-based approach.

    Science.gov (United States)

    Melino, Sonia; Paci, Maurizio

    2007-06-01

    Transmitted by the Aedes aegypti mosquito, the dengue virus is the etiological agent of dengue fever, dengue hemorrhagic fever and dengue shock syndrome, and, as such, is a significant factor in the high death rate found in most tropical and subtropical areas of the world. Dengue diseases are not only a health burden to developing countries, but pose an emerging problem worldwide. The immunopathological mechanisms appear to include a complex series of immune responses. A rapid increase in the levels of cytokines and chemical mediators during dengue disease plays a key role in inducing plasma leakage, shock and hemorrhagic manifestations. Currently, there are no vaccines available against dengue virus, although several tetravalent live-attenuated dengue vaccines are in clinical phases I or II, and prevention through vaccination has become a major priority on the agendas of the World Health Organization and of national ministries of health and military organizations. An alternative to vaccines is found in therapeutic-based approaches. Understanding the molecular mechanisms of viral replication has led to the development of potential drugs, and new molecular viral targets for therapy are emerging. The NS3 protease domain of the NS3 protein is responsible for processing the viral polyprotein and its inhibition is one of the principal aims of pharmacological therapy. This review is an overview of the progress made against dengue virus; in particular, it examines the unique properties--structural and functional--of the NS3 protease for the treatment of dengue virus infections by the inhibition of viral polyprotein processing.

  7. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice--brief report.

    Science.gov (United States)

    Rotllan, Noemi; Ramírez, Cristina M; Aryal, Binod; Esau, Christine C; Fernández-Hernando, Carlos

    2013-08-01

    To study the efficacy of anti-miRNA-33 therapy on the progression of atherosclerosis. Ldlr(-/-) mice were injected subcutaneously with PBS, control, or anti-miR-33 oligonucleotides weekly and fed a Western diet for 12 weeks. At the end of treatment, the expression of miR-33 target genes was increased in the liver and aorta, demonstrating effective inhibition of miR-33 function. Interestingly, plasma high-density lipoprotein (HDL)-cholesterol was significantly increased in anti-miR-33-treated mice but only when they were fed a chow diet. However, HDL isolated from anti-miR-33-treated mice showed an increase cholesterol efflux capacity compared with HDL isolated from nontargeting oligonucleotide-treated mice. Analysis of atherosclerosis revealed a significant reduction of plaque size and macrophage content in mice receiving anti-miR-33. In contrast, no differences in collagen content and necrotic areas were observed among the 3 groups. Long-term anti-miR-33 therapy significantly reduces the progression of atherosclerosis and improves HDL functionality. The antiatherogenic effect is independent of plasma HDL-cholesterol levels.

  8. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr−/− mice

    Science.gov (United States)

    Rotllan, Noemi; Ramírez, Cristina M.; Aryal, Binod; Esau, Christine C.; Fernández-Hernando, Carlos

    2014-01-01

    Objective To study the efficacy of anti-miRNA-33 therapy on the progression of atherosclerosis. Approach and Results Ldlr−/− mice were injected subcutaneously with PBS, control or anti-miR-33 oligonucleotides weekly and fed a Western diet for 12 weeks. At the end of treatment, the expression of miR-33 target genes was increased in the liver and aorta, demonstrating effective inhibition of miR-33 function. Interestingly, plasma HDL cholesterol (HDL-C) was significantly increased in anti-miR-33 treated mice but only when they were fed a chow diet. However, HDL isolated from anti-miR-33 treated mice showed an increase cholesterol efflux capacity compared to HDL isolated from non-targeting oligonucleotide treated mice. Analysis of atherosclerosis revealed a significant reduction of plaque size and macrophage content in mice receiving anti-miR-33. In contrast, no differences in collagen content and necrotic areas were observed between the three groups. Conclusions Long-term anti-miR-33 therapy significantly reduces the progression of atherosclerosis and improves HDL functionality. The anti-atherogenic effect is independent of plasma HDL-C levels. PMID:23702658

  9. Progression of Human Renal Cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1.

    Science.gov (United States)

    Miyazaki, Junichiro; Ito, Keiichi; Fujita, Tomonobu; Matsuzaki, Yuriko; Asano, Takako; Hayakawa, Masamichi; Asano, Tomohiko; Kawakami, Yutaka

    2017-01-26

    Renal cell carcinoma (RCC) is the most lethal urological malignancy with high risk of recurrence; thus, new prognostic biomarkers are needed. In this study, a new RCC antigen, PTPL1 associated RhoGAP1 (PARG1), was identified by using serological identification of recombinant cDNA expression cloning with sera from RCC patients. PARG1 protein was found to be differentially expressed in RCC cells among patients. High PARG1 expression is significantly correlated with various clinicopathological factors relating to cancer cell proliferation and invasion, including G3 percentage (P = .0046), Ki-67 score (p expression is also correlated with high recurrence of N0M0 patients (P = .0084) and poor prognosis in RCC patients (P = .0345). Multivariate analysis has revealed that high PARG1 expression is an independent factor for recurrence (P = .0149) of N0M0 RCC patients. In in vitro studies, depletion of PARG1by siRNA in human RCC cell lines inhibited their proliferation through inducing G1 cell cycle arrest via upregulation of p53 and subsequent p21(Cip1/Waf1), which are mediated by increased RhoA-ROCK activities. Similarly, PARG1 depletion cells inhibited invasion ability via increasing RhoA-ROCK activities in the RCC cell lines. Conversely, overexpression of PARG1 on human embryonic kidney cell line HEK293T promotes its cell proliferation and invasion. These results indicate that PARG1 plays crucial roles in progression of human RCC in increasing cell proliferation and invasion ability via inhibition of the RhoA-ROCK axis, and PARG1 is a poor prognostic marker, particularly for high recurrence of N0M0 RCC patients.

  10. Progression of Human Renal Cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1

    Directory of Open Access Journals (Sweden)

    Junichiro Miyazaki

    2017-04-01

    Full Text Available Renal cell carcinoma (RCC is the most lethal urological malignancy with high risk of recurrence; thus, new prognostic biomarkers are needed. In this study, a new RCC antigen, PTPL1 associated RhoGAP1 (PARG1, was identified by using serological identification of recombinant cDNA expression cloning with sera from RCC patients. PARG1 protein was found to be differentially expressed in RCC cells among patients. High PARG1 expression is significantly correlated with various clinicopathological factors relating to cancer cell proliferation and invasion, including G3 percentage (P = .0046, Ki-67 score (p expression is also correlated with high recurrence of N0M0 patients (P = .0084 and poor prognosis in RCC patients (P = .0345. Multivariate analysis has revealed that high PARG1 expression is an independent factor for recurrence (P = .0149 of N0M0 RCC patients. In in vitro studies, depletion of PARG1by siRNA in human RCC cell lines inhibited their proliferation through inducing G1 cell cycle arrest via upregulation of p53 and subsequent p21Cip1/Waf1, which are mediated by increased RhoA-ROCK activities. Similarly, PARG1 depletion cells inhibited invasion ability via increasing RhoA-ROCK activities in the RCC cell lines. Conversely, overexpression of PARG1 on human embryonic kidney cell line HEK293T promotes its cell proliferation and invasion. These results indicate that PARG1 plays crucial roles in progression of human RCC in increasing cell proliferation and invasion ability via inhibition of the RhoA-ROCK axis, and PARG1 is a poor prognostic marker, particularly for high recurrence of N0M0 RCC patients.

  11. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  12. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  13. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition.

    Science.gov (United States)

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young Min; Jeong, Migyeong; Park, Jong-Min; Go, Eun-Jin; Hahm, Ki-Baik

    2016-02-16

    Sonic hedgehog (SHH) signaling is essential in normal development of the gastrointestinal (GI) tract, whereas aberrantly activated SHH is implicated in GI cancers because it facilitates carcinogenesis by redirecting stem cells. Since colitis-associated cancer (CAC) is associated with inflammatory bowel diseases, in which SHH and IL-6 signaling, inflammation propagation, and cancer stem cell (CSC) activation have been implicated, we hypothesized that SHH inhibitors may prevent CAC by blocking the above SHH-related carcinogenic pathways. In the intestinal epithelial cells IEC-6 and colon cancer cells HCT-116, IL-6 expression and its signaling were assessed with SHH inhibitors and levels of other inflammatory mediators, proliferation, apoptosis, tumorsphere formation, and tumorigenesis were also measured. CAC was induced in C57BL/6 mice by administration of azoxymethane followed by dextran sodium sulfate administration. SHH inhibitors were administered by oral gavage and the mice were sacrificed at 16 weeks. TNF-α-stimulated IEC-6 cells exhibited increased levels of proinflammatory cytokines and enzymes, whereas SHH inhibitors suppressed TNF-α-induced inflammatory signaling, especially IL-6/IL-6R/gp130 signaling. SHH inhibitors significantly induced apoptosis, inhibited cell proliferation, suppressed tumorsphere formation, and reduced stemness factors. In the mouse model, SHH inhibitors significantly reduced tumor incidence and multiplicity, decreased the expression of IL-6, TNF-α, COX-2, STAT3, and NF-κB, and significantly induced apoptosis. In colosphere xenografts, SHH inhibitor significantly suppressed tumorigenesis by inhibiting tumorsphere formation. Taken together, our data suggest that administration of SHH inhibitors could be an effective strategy to prevent colitis-induced colorectal carcinogenesis, mainly by targeting IL-6 signaling, ablating CSCs, and suppressing oncogenic inflammation, achieving chemoquiescence ultimately.

  14. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    Science.gov (United States)

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene.

  15. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction.

  16. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  17. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor...

  18. Non-canonical Wnt4 prevents skeletal aging and inflammation by inhibiting NF-κB

    Science.gov (United States)

    Yu, Bo; Chang, Jia; Liu, Yunsong; Li, Jiong; Kevork, Kareena; Al-Hezaimi, Khalid; Graves, Dana T; Park, No-Hee; Wang, Cun-Yu

    2014-01-01

    Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic inflammation associated with aging and arthritis promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a therapeutic agent for treating osteoporosis by attenuating NF-κB. PMID:25108526

  19. Inhibition of hypusine biosynthesis in plasmodium: a possible, new strategy in prevention and therapy of malaria.

    Science.gov (United States)

    Kaiser, A; Ulmer, D; Goebel, T; Holzgrabe, U; Saeftel, M; Hoerauf, A

    2006-11-01

    The increasing drug resistance of malaria parasites against chemotherapeutics enforces new strategies in finding new drugs. Here, we describe a new class of compounds the piperidone 3-carboxylates which show an antiplasmodial effect in vitro and in vivo. This effect might be caused by inhibition of eukaryotic initiation factor (eIF-5A).

  20. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse.

    Science.gov (United States)

    Gross, G; Imamura, T; Vogt, S K; Wozniak, D F; Nelson, D M; Sadovsky, Y; Muglia, L J

    2000-06-01

    Prostaglandins (PGs) have proven important during parturition, but inhibition of PG production treating preterm labor (PTL) results in significant maternal and fetal side effects. We hypothesize that specific inhibition of either cyclooxygenase (COX)-1 or -2 may result in separation of therapeutic and toxic effects. We demonstrate that COX-2, but not COX-1, is induced during inflammation-mediated PTL caused by lipopolysaccharide (LPS) administration. A two- to threefold increase in uterine and ovarian PG concentrations coincides with this induction of COX-2. The COX-2-selective inhibitor SC-236 proved effective in stopping preterm delivery and the increases in PGs. The COX-1-selective inhibitor SC-560 also attenuated uterine and ovarian PG production after LPS but did not inhibit PTL as efficiently as SC-236. COX-1-deficient mice, which show delay in the onset of term labor, exhibited no delay in onset of PTL after LPS. These findings suggest that the mechanisms for initiation of inflammation-mediated PTL and term labor differ and that selective COX-2 inhibition may provide a means of stopping inflammation-induced PTL in humans.

  1. Adeno-associated virus mediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Miao Chen; Guang-Ji Wang; Yong Diao; Rui-An Xu; Hai-Tang Xie; Xin-Yan Li; Jian-Guo Sun

    2005-01-01

    AIM: To investigate the effects of adeno-associated virus (AAV) mediated expression of human interferon-γ for gene therapy in experimental hepatic fibrosisin vitro and in vivo.METHODS: We constructed the recombinant AAV encoding human INF-γ (rAAV- INF-γ) and took the primary rat hepatic stellate cells and carbon tetrachloride induced rats as the experimental hepatic fibrosis model in vitro and in vivo. Immunocytochemistry analysis was used to reveal the expression of α-SMA, the marker protein expressed in hepatic stellate cells. The mRNA expression of TGF-β, TIMP-L, and MMP-13 were analyzed by RT-PCR method. In vivo study, the hydroxyproline content in liver and serum AST, ALT were also detected.RESULTS: In vitro study, AAV vector could mediated efficient expression of human INF-γ,, which inhibit the activation of hepatic stellate cells, decrease the expression of α-SMA and mRNA of TIMP-1, TGF-β, with the MMP-13unchanged. In vivo study, the histological examination revealed that rAAV- INF-γ could inhibit the progression of the hepatic fibrosis. In the rAAV-INF-γ induced group,the hydroxyproline content and serum AST, ALT level were decreased to 177±28 μg/g wet liver, 668.5±140.0,458.4±123.5 U/L, compare with the fibrosis control group 236±31 μg/g wet liver, 1 019.1±276.3, 770.5±154.3 U/L,respectively (P<0.01). mRNA expression of TIMP-1 in the rAAV-INF-γ induced rat liver was decreased while no significant change was observed in TGF-β and MMP-13.CONCLUSION: All these results indicated that rAAV-INF-γhas potential effects for gene therapy of hepatic fibrosis,which could inhibit the progression of hepatic fibrosis.

  2. Losartan may inhibit the progression of liver fibrosis in chronic HCV patients

    Science.gov (United States)

    Salama, Zakaria A.; Sadek, Ahmed; Abdelhady, Ahmed M.; Morsy, Shereif Ahmed; Esmat, Gamal

    2016-01-01

    Background Abundant experimental evidence indicates overproduction of angiotensin II in the injured liver, and a role in stimulation of hepatic stellate cell (HSC) activation and fibrogenesis thereby, representing an attractive antifibrotic target. The aim of this study was to examine the antifibrotic effect of losartan on histopathologic level in chronic HCV patients. Methods A prospective study on fifty patients with chronic HCV and liver fibrosis proved by liver biopsy was conducted. They included patients who did not respond (n=36) or comply (n=2) or receive therapy due to established cirrhosis (n=10), or refused to receive (n=2) combined interferon and ribavirin therapy. They were divided randomly into 2 groups. The 1st group (n=25) was given losartan 50 mg OD for 1 year and the 2nd group (25 patients) was given silymarin, 140 mg t.i.d., (silymarin group). Liver biopsy was done at baseline and 1 year from the onset of treatment (end of study). Results In the second liver biopsy after 1 year, the decrease in fibrosis stage was significantly different between losartan group and silymarin group (a decrease of 1.88±0.96 (50.9%) vs. 0.45±0.93 (11.7%), respectively; P<0.01). In patients treated with losartan, regression in fibrosis stage was observed in 14/16 patients vs. 2/11 in silymarin group (P<0.01). No differences were observed in inflammation grades in both groups. A significant increase in albumin and prothrombin levels and a decrease in systolic blood pressure were found in losartan but not in silymarin group (P=0.009, 0.001 & 0.018 respectively and P=0.158, 0.603 & 0.288, respectively). Conclusions Histopathological scores showed that losartan had an inhibitory effect on progression and even led to regression of fibrosis stage but had no effect on the grade of inflammation. PMID:27275467

  3. ARF inhibits the growth and malignant progression of non-small-cell lung carcinoma.

    Science.gov (United States)

    Busch, S E; Moser, R D; Gurley, K E; Kelly-Spratt, K S; Liggitt, H D; Kemp, C J

    2014-05-15

    Non-small-cell lung carcinoma (NSCLC) is among the deadliest of human cancers. The CDKN2A locus, which houses the INK4a and ARF tumor suppressor genes, is frequently altered in NSCLC. However, the specific role of ARF in pulmonary tumorigenesis remains unclear. KRAS and other oncogenes induce the expression of ARF, thus stabilizing p53 activity and arresting cell proliferation. To address the role of ARF in Kras-driven NSCLC, we compared the susceptibility of NIH/Ola strain wild-type and Arf-knockout mice to urethane-induced lung carcinogenesis. Lung tumor size, malignancy and associated morbidity were significantly increased in Arf(-/-) compared with Arf(+/+) animals at 25 weeks after induction. Pulmonary tumors from Arf-knockout mice exhibited increased cell proliferation and DNA damage compared with wild-type mice. A subgroup of tumors in Arf(-/-) animals presented as dedifferentiated and metastatic, with many characteristics of pulmonary sarcomatoid carcinoma, a neoplasm previously undocumented in mouse models. Our finding of a role for ARF in NSCLC is consistent with the observation that benign adenomas from Arf(+/+) mice robustly expressed ARF, while ARF expression was markedly reduced in malignant adenocarcinomas. ARF expression also frequently colocalized with the expression of p21(CIP1), a transcriptional target of p53, arguing that ARF induces the p53 checkpoint to arrest cell proliferation in vivo. Taken together, these findings demonstrate that induction of ARF is an early response in lung tumorigenesis that mounts a strong barrier against tumor growth and malignant progression.

  4. [The production of mouse model of slowly progressive diabetes mellitus and the preventive effect of low molecular weight chitosan on the progression of the diabetes mellitus].

    Science.gov (United States)

    Ito, Mikio

    2013-01-01

    The aim of our study was to produce a new diabetic model by a single i.p. injection of various doses of streptozotocin (STZ) to 8-week-old male Institute of Cancer Research (ICR) mice. When STZ was i.p. injected at doses rainging from 75 to 200 mg/kg, in the group injected 200 mg/kg STZ, the non-fasting serum glucose levels markedly rose from 1 week after STZ administration and the high glucose levels were maintained for 9 weeks. The serum glucose levels in the group administered 100 mg/kg STZ were within a normal range at 1 week after STZ administration, but thereafter continued to increase gradually till 9 weeks. In contrast with the serum glucose levels, a marked reduction in the percentage of the relative numbers of β-cells in the islets of pancreas from 1 week in mice injected 200 mg/kg STZ was observed. On the other hand, in 100 mg/kg STZ mice, the number of β-cells was almost normal percentage at 1 week and then continued to gradually decrease as the time went on throughout 24-week-observation. These results indicate that only the 100 mg/kg STZ injection produces slowly progressive diabetes mellitus in mice. Low molecular weight (LMW) chitosan (chitosan lactate, average of molecular weight: 20000) was administered as drinking water from prediabetic stage (from 2 weeks after 100 mg/kg STZ injection). The 0.2% or 0.8% LMW chitosan administration prevented the progression of 100 mg/kg STZ-induced slowly progressive diabetes mellitus. The mechanisms, which LMW chitosan is effective in this model may be discussed on β-cells.

  5. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury.

    Science.gov (United States)

    Lee, Jee Y; Kang, So R; Yune, Tae Y

    2015-05-01

    Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.

  6. 变形链球菌粘附抑制多肽的研究进展%Research progress on adhesion-inhibiting peptides of Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    石佳伟(综述); 姜颖(审校)

    2016-01-01

    Streptococcus mutans (S. mutans) is considered as a primary cariogenic bacterium. Its ability of ad-herence and further accumulation on teeth to generate dental biofilm constitutes an important condition for dental caries. Adhesins generated by S. mutans include cell surface protein antigen AgI/II (PAc) and the glucosyltransferase (Gtf) en-zyme, etc. A new possibility may be brought in to prevent dental caries with adhesion-blocking synthetic peptides de-signed specifically for such adhesions. In this paper, we summarize the characteristics of adhesins and make a survey of recent progress on adhesion-inhibiting peptides of Streptococcus mutans. We also propose a simple, safe and efficient way to prevent caries.%变形链球菌是人类龋病的主要致病菌,该菌在牙面粘附聚集并形成致龋性微生态环境-牙菌斑,进而导致龋病发生。变形链球菌粘附的表面粘附素主要有表面蛋白(PAc)、葡萄糖基转移酶(Gtf)等。针对这些粘附素设计的粘附抑制多肽为龋病的预防带来了一种全新的可能。本文就变形链球菌粘附素的特点及变形链球菌粘附抑制多肽的研究进展做一综述,有望建立一种简单、安全、有效的新型防龋方法。

  7. Pathogenetics aspects of relationship mouth infectious diseases with development and progression atherosclerosis and possibility for their integrated prevention

    Directory of Open Access Journals (Sweden)

    M. V. Avdeeva

    2012-01-01

    Full Text Available The article contains the modern literature data about impact of various infectious agents on the development and progression of atherosclerotic disease. The data are demonstrated the role of various infectious diseases, including periodontal diseases, in the development of biological degradation and destabilization of atherosclerotic plaques. The article questions of organization of primary prevention of cardiovascular disease based on the screening assessment by stomatologist the oral sanitary status. Necessary to carry out sanitation of chronic infection foci of the mouth on the basis of existing children’s health centers. The children’s health centers have a set of dental equipment, with which can perform a screening diagnosis of dental caries, periodontal diseases, non-carious lesions, diseases of the mucous membranes, and conduct preventive oral sanitation. The duties of dental hygienists is teaching children of different age groups to the rules of oral care, demonstration of skills, brushing teeth, information about the importance of prevention of dental caries and periodontal disease, as it is not only important for the preservation of the teeth, but also may prevent the development of ardiovasculardisease adulthood.

  8. Halfway There: A Prescription for Continued Progress in Preventing Teen Pregnancy.

    Science.gov (United States)

    National Campaign To Prevent Teen Pregnancy, Washington, DC.

    This report offers findings and recommendations by the National Campaign To Prevent Teen Pregnancy. Nearly one million teens become pregnant annually. The teen birth rate increased 24 percent between 1986-91 and has fallen 20 percent since then. Overall, too many parents and adult leaders do not take a strong stand against teen pregnancy. Strident…

  9. EPODE approach for childhood obesity prevention: methods, progress and international development.

    Science.gov (United States)

    Borys, J-M; Le Bodo, Y; Jebb, S A; Seidell, J C; Summerbell, C; Richard, D; De Henauw, S; Moreno, L A; Romon, M; Visscher, T L S; Raffin, S; Swinburn, B

    2012-04-01

    Childhood obesity is a complex issue and needs multi-stakeholder involvement at all levels to foster healthier lifestyles in a sustainable way. 'Ensemble Prévenons l'Obésité Des Enfants' (EPODE, Together Let's Prevent Childhood Obesity) is a large-scale, coordinated, capacity-building approach for communities to implement effective and sustainable strategies to prevent childhood obesity. This paper describes EPODE methodology and its objective of preventing childhood obesity. At a central level, a coordination team, using social marketing and organizational techniques, trains and coaches a local project manager nominated in each EPODE community by the local authorities. The local project manager is also provided with tools to mobilize local stakeholders through a local steering committee and local networks. The added value of the methodology is to mobilize stakeholders at all levels across the public and the private sectors. Its critical components include political commitment, sustainable resources, support services and a strong scientific input--drawing on the evidence-base--together with evaluation of the programme. Since 2004, EPODE methodology has been implemented in more than 500 communities in six countries. Community-based interventions are integral to childhood obesity prevention. EPODE provides a valuable model to address this challenge.

  10. Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China

    Institute of Scientific and Technical Information of China (English)

    Lin ming Dou; Zonglong Mu; Zhenlei Li; Anye Cao; Siyuan Gong

    2014-01-01

    As one of the dynamic disasters of coal mines, rockburst seriously affects underground safe coal mining. Based on the laboratory test, field test, and theoretical analysis, this study proposed the principle of the rock burst induced by the combination of dynamic and static stresses and divided such rock burst into three types, including induced by primary dynamic stress, mainly induced by dynamic stress, and by dynamic stress in low critical stress state. The expressions of the static stress induced by coal mining and dynamic stress induced by mining tremors were obtained. Moreover, theories and technologies at home and abroad were summarized concerning the monitoring, forecasting, and preventing of rockburst. These mainly include the zoning and leveling forecasting method, electromagnetic radiation technology, elastic wave and seismic wave computed tomography technologies in aspect of rockburst monitoring, as well as the intensity weakening theory, the strong-soft-strong structure effect, the directional hydraulic fracturing technology, the roadway support system in regards of rockburst prevention. The prospect of rockburst development suggested that researches concerning the rockburst mechanism should be quantitatively developed around the roadway and coalface surrounding coal-rock mass. It should be focused on the rockburst mechanism and prevention technology of mining with over 1,000 km deep and mining in large tectonic zone. In addition, the monitoring and prevention of rockburst should be based on rockburst mechanism.

  11. p-Bromophenacyl bromide prevents cumene hydroperoxide-induced mitochondrial permeability transition by inhibiting pyridine nucleotide oxidation.

    Science.gov (United States)

    Zhukova, A; Gogvadze, G; Gogvadze, V

    2004-01-01

    Mitochondrial permeability transition is commonly characterized as a Ca2+ -dependent non-specific increase in inner membrane permeability that results in swelling of mitochondria and their de-energization. In the present study, the effect of different inhibitors of phospholipase A2--p-bromophenacyl bromide, dibucaine, and aristolochic acid--on hydroperoxide-induced permeability transitions in rat liver mitochondria was tested. p-Bromophenacyl bromide completely prevented the hydroperoxide-induced mitochondrial permeability transition while the effects of dibucaine or aristolochic acid were negligible. Organic hydroperoxides added to mitochondria undergo reduction to corresponding alcohols by mitochondrial glutathione peroxidase. This reduction occurs at the expense of GSH which, in turn, can be reduced by glutathione reductase via oxidation of mitochondrial pyridine nucleotides. The latter is considered a prerequisite step for mitochondrial permeability transition. Among all the inhibitors tested, only p-bromophenacyl bromide completely prevented hydroperoxide-induced oxidation of mitochondrial pyridine nucleotides. Interestingly, p-bromophenacyl bromide had no affect on mitochondrial glutathione peroxidase, but reacted with mitochondrial glutathione that prevented pyridine nucleotides from being oxidized. Our data suggest that p-bromophenacyl bromide prevents hydroperoxide-induced deterioration of mitochondria via interaction with glutathione rather than through inhibition of phospholipase A2.

  12. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  13. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation.

    Science.gov (United States)

    Tanaka, M; Setoguchi, T; Hirotsu, M; Gao, H; Sasaki, H; Matsunoshita, Y; Komiya, S

    2009-06-16

    The study shows constitutive activation of the Notch pathway in various types of malignancies. However, it remains unclear how the Notch pathway is involved in the pathogenesis of osteosarcoma. We investigated the expression of the Notch pathway molecules in osteosarcoma biopsy specimens and examined the effect of Notch pathway inhibition. Real-time PCR revealed overexpression of Notch2, Jagged1, HEY1, and HEY2. On the other hand, Notch1 and DLL1 were downregulated in biopsy specimens. Notch pathway inhibition using gamma-secretase inhibitor and CBF1 siRNA slowed the growth of osteosarcomas in vitro. In addition, gamma-secretase inhibitor-treated xenograft models exhibited significantly slower osteosarcoma growth. Cell cycle analysis revealed that gamma-secretase inhibitor promoted G1 arrest. Real-time PCR and western blot revealed that gamma-secretase inhibitor reduced the expression of accelerators of the cell cycle, including cyclin D1, cyclin E1, E2, and SKP2. On the other hand, p21(cip1) protein, a cell cycle suppressor, was upregulated by gamma-secretase inhibitor treatment. These findings suggest that inhibition of Notch pathway suppresses osteosarcoma growth by regulation of cell cycle regulator expression and that the inactivation of the Notch pathway may be a useful approach to the treatment of patients with osteosarcoma.

  14. Aldose Reductase Inhibition Prevents Endotoxin-Induced Inflammatory Responses in Retinal Microglia

    Science.gov (United States)

    Chang, Kun-Che; Ponder, Jessica; LaBarbera, Daniel V.; Petrash, J. Mark

    2014-01-01

    Purpose. Retinal microglia become activated in diabetes and produce pro-inflammatory molecules associated with changes in retinal vasculature and increased apoptosis of retinal neurons and glial cells. We sought to determine if the action of aldose reductase (AR), an enzyme linked to the pathogenesis of diabetic retinopathy, contributes to activation of microglial cells. Methods. Involvement of AR in the activation process was studied using primary cultures of retinal microglia (RMG) isolated from wild-type and AR-null mice, or in mouse macrophage cultures treated with either AR inhibitors or small interfering RNA (siRNA) directed to AR. Inflammatory cytokines were measured by ELISA. Cell migration was measured using a transwell assay. Gelatin zymography was used to detect active matrix metalloproteinase (MMP)-9, while RMG-induced apoptosis of adult retinal pigment epithelium (ARPE-19) cells was studied in a cell coculture system. Results. Aldose reductase inhibition or genetic deficiency substantially reduced lipopolysacharide (LPS)-induced cytokine secretion from macrophages and RMG. Aldose reductase inhibition or deficiency also reduced the activation of MMP-9 and attenuated LPS-induced cell migration. Additionally, blockade of AR by sorbinil or through genetic means caused a reduction in the ability of activated RMG to induce apoptosis of ARPE-19 cells. Conclusions. These results demonstrate that the action of AR contributes to the activation of RMG. Inhibition of AR may be a therapeutic strategy to reduce inflammation associated with activation of RMG in disease. PMID:24677107

  15. Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.

    Science.gov (United States)

    Pedroni, Silvia M A; Gonzalez, Juan M; Wade, Jean; Jansen, Maurits A; Serio, Andrea; Marshall, Ian; Lennen, Ross J; Girardi, Guillermina

    2014-01-01

    Premature babies are particularly vulnerable to brain injury. In this study we focus on cortical brain damage associated with long-term cognitive, behavioral, attentional or socialization deficits in children born preterm. Using a mouse model of preterm birth (PTB), we demonstrated that complement component C5a contributes to fetal cortical brain injury. Disruption of cortical dendritic and axonal cytoarchitecture was observed in PTB-mice. Fetuses deficient in C5aR (-/-) did not show cortical brain damage. Treatment with antibody anti-C5, that prevents generation of C5a, also prevented cortical fetal brain injury in PTB-mice. C5a also showed a detrimental effect on fetal cortical neuron development and survival in vitro. Increased glutamate release was observed in cortical neurons in culture exposed to C5a. Blockade of C5aR prevented glutamate increase and restored neurons dendritic and axonal growth and survival. Similarly, increased glutamate levels - measured by (1)HMRS - were observed in vivo in PTB-fetuses compared to age-matched controls. The blockade of glutamate receptors prevented C5a-induced abnormal growth and increased cell death in isolated fetal cortical neurons. Simvastatin and pravastatin prevented cortical fetal brain developmental and metabolic abnormalities -in vivo and in vitro. Neuroprotective effects of statins were mediated by Akt/PKB signaling pathways. This study shows that complement activation plays a crucial role in cortical fetal brain injury in PTL and suggests that complement inhibitors and statins might be good therapeutic options to improve neonatal outcomes in preterm birth. © 2013.

  16. A novel peptide inhibits the influenza virus replication by preventing the viral attachment to the host cells

    Directory of Open Access Journals (Sweden)

    Mohamed Rajik, Abdul Rahman Omar, Aini Ideris, Sharifah Syed Hassan, Khatijah Yusoff

    2009-01-01

    Full Text Available Avian influenza viruses (AIV, the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA and neuraminidase (NA against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1 against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP expression inside the host cell has also been observed during the peptide (P1 treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.

  17. Project Energize: intervention development and 10 years of progress in preventing childhood obesity

    OpenAIRE

    Rush, Elaine; Cairncross, Carolyn; Williams, Margaret Hinepo; Tseng, Marilyn; Coppinger, Tara; McLennan, Steph; Latimer, Kasha

    2016-01-01

    Prevention of childhood obesity is a global priority. The school setting offers access to large numbers of children and the ability to provide supportive environments for quality physical activity and nutrition. This article describes Project Energize, a through-school physical activity and nutrition programme that celebrated its 10-year anniversary in 2015 so that it might serve as a model for similar practices, initiatives and policies elsewhere. The programme was envisaged and financed by ...

  18. Research progress of new antiplatelet drugs in the prevention and treatment for ischemic stroke

    OpenAIRE

    Zhou, Yu-ying; Li, Pan

    2013-01-01

    Nowadays, antiplatelet drugs are still the routine medication in the acute phase and in secondary prevention of ischemic stroke. Although the clinical effect of classic antiplatelet drugs, such as aspirin and clopidogrel, has been recognized, some problems still exist, such as clopidogrel resistance and increased bleeding risk. Therefore, new antiplatelet drugs have been studied and are incorporated into the clinical use currently. Their different pharmacokinetic and pharmacodynamic propertie...

  19. A Computational Model of Peripheral Photocoagulation for the Prevention of Progressive Diabetic Capillary Occlusion

    Directory of Open Access Journals (Sweden)

    Thomas J. Gast

    2016-01-01

    Full Text Available We developed a computational model of the propagation of retinal ischemia in diabetic retinopathy and analyzed the consequences of various patterns and sizes of burns in peripheral retinal photocoagulation. The model addresses retinal ischemia as a phenomenon of adverse local feedback in which once a capillary is occluded there is an elevated probability of occlusion of adjacent capillaries resulting in enlarging areas of retinal ischemia as is commonly seen clinically. Retinal burns of different sizes and patterns, treated as local oxygen sources, are predicted to have different effects on the propagation of retinal ischemia. The patterns of retinal burns are optimized with regard to minimization of the sum of the photocoagulated retina and computer predicted ischemic retina. Our simulations show that certain patterns of retinal burns are effective at preventing the spatial spread of ischemia by creating oxygenated boundaries across which the ischemia does not propagate. This model makes no statement about current PRP treatment of avascular peripheral retina and notes that the usual spot sizes used in PRP will not prevent ischemic propagation in still vascularized retinal areas. The model seems to show that a properly patterned laser treatment of still vascularized peripheral retina may be able to prevent or at least constrain the propagation of diabetic retinal ischemia in those retinal areas with intact capillaries.

  20. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion.

    Science.gov (United States)

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression.

  1. Inhibiting renin angiotensin system in rate limiting step by aliskiren as a new approach for preventing indomethacin induced gastric ulcers.

    Science.gov (United States)

    Halici, Zekai; Polat, Beyzagul; Cadirci, Elif; Topcu, Atilla; Karakus, Emre; Kose, Duygu; Albayrak, Abdulmecit; Bayir, Yasin

    2016-10-25

    Previously blocking the renin angiotensin system (RAAS) has been effective in the prevention of gastric damage. Therefore, the aim of this study was to investigate the effects of aliskiren, and thus, direct renin blockage, in indomethacin-induced gastric damage model. Effects of aliskiren were evaluated in indomethacin-induced gastric damage model on Albino Wistar rats. Effects of famotidine has been investigated as standard antiulcer agent. Stereological analyses for ulcer area determination, biochemical analyses for oxidative status determination and molecular analyses for tissue cytokine and cyclooxygenase determination were performed on stomach tissues. In addition, to clarify antiulcer effect mechanism of aliskiren pylorus ligation-induced gastric acid secretion model was applied on rats. Aliskiren was able to inhibit indomethacin-induced ulcer formation. It also inhibited renin, and thus, decreased over-produced Angiotensin-II during ulcer formation. Aliskiren improved the oxidative status and cytokine profile of the stomach, which was most probably impaired by increased Angiotensin II concentration. Aliskiren also increased gastroprotective prostaglandin E2 concentration. Finally, aliskiren did not change the gastric acidity in pylorus ligation model. Aliskiren exerted its protective effects on stomach tissue by decreasing inflammatory cytokines and oxidative stress as a result of inhibiting the RAAS, at a rate-limiting step, as well as its end product, angiotensin II. Aliskiren also significantly increased protective factors such as PGE2, but not affect aggressive factors such as gastric acidity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Identifying risk and preventing progression to Type 2 diabetes in vulnerable and disadvantaged adults: a pragmatic review.

    Science.gov (United States)

    Taylor, J; Cottrell, C; Chatterton, H; Hill, J; Hughes, R; Wohlgemuth, C; Holt, R I G

    2013-01-01

    To identify effective approaches to recognize diabetes risk and prevent progression to Type 2 diabetes in vulnerable groups, whose diabetes risk may be difficult to identify or manage. UK-based interventions that assess diabetes risk and/or target known risk factors were identified through four main sources: submissions to two calls for evidence by the National Institute for Health and Clinical Excellence; local practice examples collected via a targeted email questionnaire; selected electronic databases; and a focused search of relevant websites. No restriction was placed on the study type or evaluation methods used. Key themes and sub-themes on outcomes, as well as facilitators and barriers to successful delivery, are reported. Twenty-four interventions met all inclusion criteria: 15 included a risk identification element and 14 included preventative activities. A range of risk identification tools were used to improve diagnosis of unmet diabetes-related health needs and raise awareness of diabetes risk factors. All preventative interventions focused on lifestyle change. No interventions monitored blood glucose as an outcome and only one reported improvements in baseline risk scores. Facilitators included tailored and flexible programme design, outreach delivery in familiar locations and effective inter-agency working. Barriers included literacy and language difficulties, transient participant populations, low prioritization of diabetes prevention and cost. It is possible to engage successfully with high-risk adults in vulnerable groups to achieve positive health outcomes relevant to the prevention of diabetes. However, more robust evidence on longer-term outcomes is required to ensure that programmes are targeted and delivered appropriately. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  3. [Lactobacillus rhamnosus GG conditioned medium prevents E. coli meningitis by inhibiting nuclear factor-κB pathway].

    Science.gov (United States)

    Zeng, Qing; He, Xiao-Long; Xiao, Han-Sheng; DU, Lei; Li, Yu-Jing; Chen, Le-Cheng; Tian, Hui-Wen; Huang, Sheng-He; Cao, Hong

    2017-01-20

    To investigate whether Lactobacillus rhamnosus GG conditioned medium(LGG-CM)has preventive effect against E. coli K1-induced neuropathogenicity in vitro by inhibiting nuclear factor-κB (NF-κB) signaling pathway. An in vitro blood-brain barrier (BBB) model was constructed using human brain microvascular endothelial cells (HBMECs). The effect of LGG-CM on E. coli-actived NF-κB signaling pathway was assayed using Western blotting. Invasion assay and polymorphonuclear leukocyte (PMN) transmigration assay were performed to explore whether LGG-CM could inhibit E. coli invasion and PMN transmigration across the BBB in vitro. The expressions of ZO-1 and CD44 were detected using Western blotting and immunofluorescence. The changes of trans-epithelial electric resistance (TEER) and bacterial translocation were determined to evaluate the BBB permeability. Pre-treament with LGG-CM inhibited E. coli-activated NF-κB signaling pathway in HBMECs and decreased the invasion of E. coli K1 and transmigration of PMN. Western blotting showed that LGG-CM could alleviate E. coli-induced up-regulation of CD44 and down-regulation of ZO-1 expressions in HBMECs. In addition, pre-treatment with LGG-CM alleviated E. coli K1-induced reduction of TEER and suppressed bacterial translocation across the BBB in vitro. LGG-CM can block E. coli-induced activation of NF-κB signaling pathway and thereby prevents E. coli K1-induced neuropathogenicity by decreasing E. coli K1 invasion rates and PMN transmigration.

  4. Prevention of export of anoxia/reoxygenation injury from ischemic to nonischemic cardiomyocytes via inhibition of endocytosis.

    Science.gov (United States)

    Khaidakov, Magomed; Mercanti, Federico; Wang, Xianwei; Ding, Zufeng; Dai, Yao; Romeo, Francesco; Sawamura, Tatsuya; Mehta, Jawahar L

    2014-06-15

    Myocardial infarct size is determined by the death of nonischemic border zone cardiomyocytes caused by export of injury signals from the infarct zone. The countermeasures to limit infarct size, therefore, should be aimed at nonselective blockade of most, if not all, injury signals from entering nonischemic cells. To test whether inhibition of endocytosis might limit infarct size, HL-1 cardiomyocytes were subjected to anoxia (6 h) and reoxygenation (1 h). Anoxic and reoxygenated cells showed a multifold increase in mitochondrial ROS production accompanied with upregulation of scavenger receptors lectin-like oxidized low-density lipoprotein receptor-1 and CD36 and stimulation of stress signals, including NADPH oxidase subunit p22(phox), SOD2, and beclin-1. Incubation of healthy cardiomyocytes in media from anoxic and reoxygenated cells (conditioned media) resulted in qualitatively similar responses, including increase in the generation of mitochondrial ROS, p22(phox), SOD2, and beclin-1. Anoxia and reoxygenation caused collapse of clathrin-mediated endocytosis and stimulation of macropinocytosis, whereas in cultures exposed to conditioned media, the activity of endocytosis was uniformly higher. Conditioned media also significantly aggravated cytotoxic effects of TNF-α and angiotensin II, and suppression of endocytosis reversed these trends, resulting in an overall increase of metabolic activity. Moreover, inhibition of endocytosis prevented binding of oxidized cellular fragments with greater efficiency than targeted neutralization of the scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1. Many of the observations in HL-1 cardiomyocytes were confirmed in primary cardiomyocyte cultures. Our data suggest that endocytosis is upregulated in border zone cardiomyocytes, and inhibition of endocytosis may be an effective approach to prevent export of injury signals from the infarct zone.

  5. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    Science.gov (United States)

    Romero, Haylie K.; Christensen, Sean B.; Gajewiak, Joanna; Ramachandra, Renuka; Elmslie, Keith S.; Vetter, Douglas E.; Ghelardini, Carla; Iadonato, Shawn P.; Mercado, Jose L.; Olivera, Baldomera M.; McIntosh, J. Michael

    2017-01-01

    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain. PMID:28223528

  6. Socio-spatial violence prevention: Inhibiting violence in Caracas, Venezuela through spatial planning

    Directory of Open Access Journals (Sweden)

    Nicholas Kasang

    2014-05-01

    Full Text Available Contemporary urban growth in many cities in Latin American and Africa has been accompanied by unprece¬dented levels of urban violence. Latin America epitomizes this trend as three of the world’s most dangerous cities, Ciudad Juárez, San Pedro Sula, and Caracas, are located within this region (JÁCOME; GRATIUS, 2011, p. 2. Of these three, Caracas is notable because its exorbitant homicide rate cannot be explicitly attributed to the illicit drug trade-cartel wars that consume Mexico, nor is it represented by the civil conflict-gang violence that afflicts Central America. Moreover, the Venezuelan context is further distinguished as inequality, which is consistently cited as the primary catalyst for the emergence of everyday reactionary violence, is not overtly characteristic of the contemporary situation. Rather, caraqueño insecurity has largely been attributed to the exacerbation of social factors that perpetuate violence as “[…] an end in itself or a [mechanism] to injure/ eliminate another person in order to resolve an interpersonal conflict […]” (SANJUÁN, 2002, p. 95. Based on this reality, this work proposes the inclusion of socio-spatial interventions into contemporary prevention initiatives. Spatial interventions have shown a “[…] significant capacity to prevent the occurrence of violence in areas that are either totally or partially excluded from economic development and larger society […]” (DÍAZ; MELLER, 2012, p. 23. Implications of this work have the capacity to augment predominantly technical vio¬lence prevention precedent and enhance knowledge on alternative mechanisms to prevent insecurity. This study employs a comprehensive literature review in conjunction with data analyses in the development of a spatial proposal for Caracas.

  7. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss

    OpenAIRE

    Ramadoss, Jayanth; Lunde, Emilie R.; Ouyang, Nengtai; Chen, Wei-Jung A.; Cudd, Timothy A.

    2008-01-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury...

  8. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  9. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    Science.gov (United States)

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression.

  10. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  11. Myricitrin Inhibits Acrylamide-Mediated Cytotoxicity in Human Caco-2 Cells by Preventing Oxidative Stress

    Science.gov (United States)

    Chen, Wei; Feng, Lina; Shen, Yang; Su, Hongming; Li, Ya; Zhuang, Jingjing; Zhang, Lingxia; Zheng, Xiaodong

    2013-01-01

    Oxidative stress was thought to be associated with acrylamide cytotoxicity, but the link between oxidative stress and acrylamide cytotoxicity in the gastrointestinal tract, the primary organ in contact with dietary acrylamide, is still unclear. This study was conducted to evaluate the antioxidant activity of natural dietary compound myricitrin and its protective role against acrylamide cytotoxicity. We found that myricitrin can effectively scavenge multiple free radicals (including DPPH free radical, hydroxyl radical, and ABTS free radical) in a concentration-dependent manner. Our results further indicated that the presence of myricitrin (2.5–10 μg/mL) was found to significantly inhibit acrylamide-induced cytotoxicity in human gastrointestinal Caco-2 cells. Moreover, acrylamide-induced cytotoxicity is closely related to oxidative stress in Caco-2 cells. Interestingly, myricitrin was able to suppress acrylamide toxicity by inhibiting ROS generation. Taken together, these results demonstrate that myricitrin had a profound antioxidant effect and can protect against acrylamide-mediated cytotoxicity. PMID:24224177

  12. GLB prevents tumor metastasis of Lewis lung carcinoma by inhibiting tumor adhesion actions

    Institute of Scientific and Technical Information of China (English)

    Yan PAN; Qian-liu SONG; Yan-hua LIN; Ning LU; He-ming YU; Xue-jun LI

    2005-01-01

    Aim: To investigate the inhibitory effect of a new compound of GLB on tumor metastasis in vivo and analyze its actions on tumor cell adhesion to clarify its mechanism.Methods: The effect of GLB on tumor metastasis was analyzed by Lewis lung carcinoma model.The pathological morphology of lung alveolar was evaluated by hematoxylin-eosin staining.The effect of GLB on the proliferation of human prostate cancer cell (PC-3M, with a high metastatic characteristic) was studied using the MTT method, and its actions on PC-3M cell adhesion to human umbilical vein endothelial cells (HUVEC) and laminin were analyzed in vitro.Lewis lung carcinoma metastasis significantly (P<0.05).Simultaneously, GLB could mitigate the damage of lung alveolar caused by metastasic tumor deposits.In vitro, GLB inhibited dramatically the adhesion of PC-3M cells to HUVEC (P<0.01) and laminin (P<0.05), without cytotoxic or anti-proliferative action on PC-3M cells.Conclusion: GLB has anti-tumor metastatic activity, which partly depends on its inhibition of tumor adhesion.

  13. Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, and metastasis.

    Science.gov (United States)

    Aviezer, D; Cotton, S; David, M; Segev, A; Khaselev, N; Galili, N; Gross, Z; Yayon, A

    2000-06-01

    Fibroblast growth factors (FGFs) and vascular endothelial growth factor (VEGF) play a pivotal role in the multistep pathway of tumor progression, metastasis, and angiogenesis. We have identified a porphyrin analogue, 5,10,15,20-tetrakis(methyl-4-pyridyl)-21H,23H-porphine-tetra -p-tosylate salt (TMPP), as a potent inhibitor of FGF2 and VEGF receptor binding and activation. TMPP demonstrated potent inhibition of binding of soluble FGF receptor 1 (FGFR1) to FGF2 immobilized on heparin at submicromolar concentrations. TMPP inhibits binding of radiolabeled FGF2 to FGFR in a cell-free system as well as to cells genetically engineered to express FGFR1. Furthermore, TMPP also inhibits the binding of VEGF to its tyrosine kinase receptor in a dose-dependent manner. In an in vitro angiogenic assay measuring the extent of endothelial cell growth, tube formation, and sprouting, TMPP dramatically reduced the extent of the FGF2-induced endothelial cell outgrowth and differentiation. In a Lewis lung carcinoma model, mice receiving TMPP showed a marked inhibition of both primary tumor progression and lung metastases development, with nearly total inhibition of the metastatic phenotype upon alternate daily injections of TMPP at 25 microg/g of body mass. Finally, novel meso-pyridylium-substituted, nonsymmetric porphyrins, as well as a novel corrole-based derivative, with >50-fold increase in activity in vitro, had a significantly improved efficacy in blocking tumor progression and metastasis in vivo.

  14. Non-steroidal anti-inflammatory drug, nabumetone, prevents indometacin-induced gastric damage via inhibition of neutrophil functions.

    Science.gov (United States)

    Ishiwata, Yoshiro; Okamoto, Masayuki; Yokochi, Shoji; Hashimoto, Hiroyuki; Nakamura, Takashi; Miyachi, Atsushi; Naito, Yuji; Yoshikawa, Toshikazu

    2003-02-01

    Nabumetone is a non-steroidal anti-inflammatory drug (NSAID). It works as a prodrug and is extensively metabolized to an active metabolite, 6-methoxy-2-naphthylacetic acid (6MNA). It is well known that neutrophil infiltration and activation are critical in the pathogenesis of NSAID-induced gastric injury, and nabumetone shows less incidence of gastrointestinal irritancy. We examined the effects of nabumetone on neutrophil activation and on indometacin-induced gastric damage. In the indometacin-induced gastric mucosal injury, rats were treated with indometacin and then nabumetone or 6MNA was orally administered. Nabumetone prevented gastric damage accompanied by the reduction of neutrophil infiltration into gastric mucosa, but such an effect was not observed with 6MNA. Nabumetone reduced the formyl methionyl leucyl phenylalanine (fMLP)-induced respiratory burst of human neutrophils to 30% of the control level in-vitro, but 6MNA did not. In addition, nabumetone prevented the fMLP-induced migration of neutrophils. Nabumetone did not inhibit O2- generation in the xanthine-xanthine oxidase system. These results suggest that nabumetone prevents gastric damage induced by the active metabolite, 6MNA, via the suppression of neutrophil activation in gastric mucosa.

  15. Beta-endorphin neuron regulates stress response and innate immunity to prevent breast cancer growth and progression.

    Science.gov (United States)

    Sarkar, Dipak K; Zhang, Changqing

    2013-01-01

    Body and mind interact extensively with each other to control health. Emerging evidence suggests that chronic neurobehavioral stress can promote various tumor growth and progression. The biological reaction to stress involves a chemical cascade initiated within the central nervous system and extends to the periphery, encompassing the immune, endocrine, and autonomic systems. Activation of sympathetic nervous system, such as what happens in the "fight or flight" response, downregulates tumor-suppressive genes, inhibits immune function, and promotes tumor growth. On the other hand, an optimistic attitude or psychological intervention helps cancer patients to survive longer via increase in β-endorphin neuronal suppression of stress hormone levels and sympathetic outflows and activation of parasympathetic control of tumor suppressor gene and innate immune cells to destroy and clear tumor cells.

  16. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  17. Politics of science: Progress toward prevention of the dementia-Alzheimer's syndrome.

    Science.gov (United States)

    Khachaturian, Zaven S; Khachaturian, Ara S

    2015-01-01

    There exist many challenges hampering the discovery and development of effective interventions to prevent dementia. Three major trends have now intersected to influence the emerging interest in disease modifying therapies that may delay or halt dementia. The three crucial factors shaping this current focus are: (1) the emergence of the longevity revolution and the impact of a aging society, (2) the effects of the US Federal investment in research in advancing knowledge about the neurobiology of aging and dementia, and (3) the problem of US legislators and health policy makers to balance the allocation of evermore scarce research funding resources. The purpose of this essay is to provide a survey of the politics of science and to describe efforts to correctly manage the high level of expectations of both the patient and research communities. The perspective offered reviews the history and evolution of the ideas to treat or prevent dementia and Alzheimer's disease as a national strategic goal. The aim is to evaluate the interplay between science and formulation of public policy for setting research priority. We use the history of developing US National Institute of Aging's extramural research programs on brain aging and Alzheimer's disease (Khachaturian, 2006; 2007) as an initial case study.

  18. [Progress of researches on prevention and treatment of sports fatigue with moxibustion therapy].

    Science.gov (United States)

    Xu, Hui-Qian; Zhang, Hong-Ru; Gu, Yi-Huang

    2014-04-01

    Sports fatigue belongs to the category of functional deficiency-syndrome according to the theory of traditional Chinese medicine. The moxibustion therapy has a long history and possesses a definite therapeutic effect in the prevention and treatment of sports fatigue. In the present paper, the authors reviewed development of researches on the effects of moxibustion intervention in the prevention and treatment of sports fatigue in recent 5 years. Results of researches showed that moxibustion intervention can 1) eliminate free radicals and reduce oxidative damage; 2) increase energy (glycogen) supply to delay the production of fatigue; 3) raise serum testosterone level (relieve exercise-induced neuroendocrine disorder) and reduce post-sports fatigue; 4) raise the anaerobic exercise ability, reduce the accumulation of metabolic products in the body and strengthen the endurance capacity of the skeletal muscle; and 5) improve ischemic cardiac function, and suppress cardiomyocyte apopotosis, etc. However, we should further strengthen our investigations on the moxibustion therapy in the ancient classical literature and sum up academic thoughts of different academic schools in the successive dynasties, put emphasis on the large sample randomized controlled clinical trails, establish united treatment standards, etc., and provide much evidence for effectively treating sports fatigue in the future.

  19. Progress on obesity prevention over 20 years in Australia and New Zealand.

    Science.gov (United States)

    Swinburn, B; Wood, A

    2013-11-01

    The lessons learned from over 20 years of obesity prevention efforts in Australia and New Zealand are presented. The obesity epidemic started in the 1980s but poor monitoring systems meant the rise in obesity prevalence initially went undetected. In the 1990 s, experts started advocating for government action; however, it was the rapid increase in media reports on obesity in the early 2000s which created the pressure for action. Several, comprehensive reports produced some programme investment but no regulatory policies were implemented. The powerful food industry lobby ensured this lack of policies on front-of-pack food labelling, restrictions on unhealthy food marketing to children, or taxes on unhealthy foods. The New Zealand government even backpedalled by rescinding healthy school food guidelines and withdrawing funding for the comprehensive national obesity strategy. In 2007, Australian Governments started a major long term-investment in preventive health in order to improve economic productivity. Other positive initiatives, especially in Australia, were: the establishment of several advocacy organizations; successful, long-term, whole-of-community projects reducing childhood obesity; a national knowledge exchange system for practitioners; and some innovative programmes and social marketing. However, despite multiple reports and strong advocacy, key recommended regulatory policies remain unimplemented, largely due to the private sector interests dominating public policy development.

  20. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation.

    Science.gov (United States)

    Bravo Cruz, Ariana G; Shisler, Joanna L

    2016-10-01

    The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKRkd cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65-CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB-promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.

  1. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  2. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection

    DEFF Research Database (Denmark)

    Christensen, Dan Ploug; Gysemans, Conny; Lundh, Morten

    2014-01-01

    in the nonobese diabetic (NOD) mouse model of type 1 diabetes and counteract inflammatory target cell damage by a mechanism of action consistent with transcription factor-rather than global chromatin-hyperacetylation. Weaning NOD mice received low doses of vorinostat and givinostat in their drinking water until...... and their transcription factors Gata3 and FoxP3 in parallel to a decrease in inflammatory dendritic cell subsets and their cytokines IL-6, IL-12, and TNF-α. KDACi also inhibited LPS-induced Cox-2 expression in peritoneal macrophages from C57BL/6 and NOD mice. In insulin-producing β-cells, givinostat did not upregulate......Type 1 diabetes is due to destruction of pancreatic β-cells. Lysine deacetylase inhibitors (KDACi) protect β-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes...

  3. Inhibition of listeriolysin O oligomerization by lutein prevents Listeria monocytogenes infection.

    Science.gov (United States)

    Liu, Bowen; Teng, Zihao; Wang, Jianfeng; Lu, Gejin; Deng, Xuming; Li, Li

    2017-01-01

    The foodborne pathogenic bacterial species Listeria monocytogenes (L. monocytogenes) has caused incalculable damages to public health, and its successful infection requires various virulence factors, including Listeriolysin O (LLO). By forming pores in phagosomal membranes and even in some organelles, LLO plays an indispensable role in the ability of L. monocytogenes to escape from host immune attacks. Because of its critical role, LLO offers an appropriate therapeutic target against L. monocytogenes infection. Here, lutein, a natural small molecule existing widely in fruits and vegetables, is demonstrated as an effective inhibitor of LLO that works by blocking its oligomerization during invasion without showing significant bacteriostatic activity. Further assays applying lutein in cell culture models of invasion and in animal models showed that lutein could effectively inhibit L. monocytogenes infection. Overall, our results indicate that lutein may represent a promising and novel therapeutic agent against L. monocytogenes infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  5. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood.

    Science.gov (United States)

    McAdow, Molly; Kim, Hwan Keun; Dedent, Andrea C; Hendrickx, Antoni P A; Schneewind, Olaf; Missiakas, Dominique M

    2011-10-01

    Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci--coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA)--were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.

  6. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo.

    Science.gov (United States)

    Mezouar, Soraya; Darbousset, Roxane; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe

    2015-01-15

    Venous thromboembolism constitutes one of the main causes of death during the progression of a cancer. We previously demonstrated that tissue factor (TF)-bearing cancer cell-derived microparticles accumulate at the site of injury in mice developing a pancreatic cancer. The presence of these microparticles at the site of thrombosis correlates with the size of the platelet-rich thrombus. The objective of this study was to determine the involvement of TF expressed by cancer cell-derived microparticles on thrombosis associated with cancer. We observed that pancreatic cancer cell derived microparticles expressed TF, its inhibitor tissue factor pathway inhibitor (TFPI) as well as the integrins αvβ1 and αvβ3. In mice bearing a tumor under-expressing TF, a significant decrease in circulating TF activity associated with an increase bleeding time and a 100-fold diminished fibrin generation and platelet accumulation at the site of injury were observed. This was mainly due to the interaction of circulating cancer cell-derived microparticles expressing TFPI with activated platelets and fibrinogen. In an ectopic model of cancer, treatment of mice with Clopidogrel, an anti-platelet drug, decreased the size of the tumors and restored hemostasis by preventing the accumulation of cancer cell-derived microparticles at the site of thrombosis. In a syngeneic orthotopic model of pancreatic cancer Clopidogrel also significantly inhibited the development of metastases. Together, these results indicate that an anti-platelet strategy may efficiently treat thrombosis associated with cancer and reduce the progression of pancreatic cancer in mice.

  7. Resveratrol prevents inflammation-dependent hepatic melanoma metastasis by inhibiting the secretion and effects of interleukin-18

    Directory of Open Access Journals (Sweden)

    Valcarcel Maria

    2011-05-01

    Full Text Available Abstract Background Implantation and growth of metastatic cancer cells at distant organs is promoted by inflammation-dependent mechanisms. A hepatic melanoma metastasis model where a majority of metastases are generated via interleukin-18-dependent mechanisms was used to test whether anti-inflammatory properties of resveratrol can interfere with mechanisms of metastasis. Methods Two experimental treatment schedules were used: 1 Mice received one daily oral dose of 1 mg/kg resveratrol after cancer cell injection and the metastasis number and volume were determined on day 12. 2 Mice received one daily oral dose of 1 mg/kg resveratrol along the 5 days prior to the injection of cancer cells and both interleukin-18 (IL-18 concentration in the hepatic blood and microvascular retention of luciferase-transfected B16M cells were determined on the 18th hour. In vitro, primary cultured hepatic sinusoidal endothelial cells were treated with B16M-conditioned medium to mimic their in vivo activation by tumor-derived factors and the effect of resveratrol on IL-18 secretion, on vascular cell adhesion molecule-1 (VCAM-1 expression and on tumor cell adhesion were studied. The effect of resveratrol on melanoma cell activation by IL-18 was also studied. Results Resveratrol remarkably inhibited hepatic retention and metastatic growth of melanoma cells by 50% and 75%, respectively. The mechanism involved IL-18 blockade at three levels: First, resveratrol prevented IL-18 augmentation in the blood of melanoma cell-infiltrated livers. Second, resveratrol inhibited IL-18-dependent expression of VCAM-1 by tumor-activated hepatic sinusoidal endothelium, preventing melanoma cell adhesion to the microvasculature. Third, resveratrol inhibited adhesion- and proliferation-stimulating effects of IL-18 on metastatic melanoma cells through hydrogen peroxide-dependent nuclear factor-kappaB translocation blockade on these cells. Conclusions These results demonstrate multiple sites

  8. Engagement, Retention, and Progression to Type 2 Diabetes: A Retrospective Analysis of the Cluster-Randomised "Let's Prevent Diabetes" Trial.

    Directory of Open Access Journals (Sweden)

    Laura J Gray

    2016-07-01

    Full Text Available Prevention of type 2 diabetes mellitus (T2DM is a global priority. Let's Prevent Diabetes is a group-based diabetes prevention programme; it was evaluated in a cluster-randomised trial, in which the primary analysis showed a reduction in T2DM (hazard ratio [HR] 0.74, 95% CI 0.48-1.14, p = 0.18. We examined the association of engagement and retention with the Let's Prevent Diabetes prevention programme and T2DM incidence.We used data from a completed cluster-randomised controlled trial including 43 general practices randomised to receive either standard care or a 6-h group structured education programme with an annual refresher course for 2 y. The primary outcome was progression to T2DM at 3 y. The characteristics of those who attended the initial education session (engagers versus nonengagers and those who attended all sessions (retainers versus nonretainers were compared. Risk reduction of progression to T2DM by level of attendance was compared to standard care. Eight hundred and eighty participants were recruited, with 447 to the intervention arm, of which 346 (77.4% were engagers and 130 (29.1% were retainers. Retainers and engagers were more likely to be older, leaner, and nonsmokers than nonretainers/nonengagers. Engagers were also more likely to be male and be from less socioeconomically deprived areas than nonengagers. Participants who attended the initial session and at least one refresher session were less likely to develop T2DM compared to those in the control arm (30 people of 248 versus 67 people of 433, HR 0.38 [95% CI 0.24-0.62]. Participants who were retained in the programme were also less likely to develop T2DM compared to those in the control arm (7 people of 130 versus 67 people of 433, HR 0.12 [95% CI 0.05-0.28]. Being retained in the programme was also associated with improvements in glucose, glycated haemoglobin (HbA1c, weight, waist circumference, anxiety, quality of life, and daily step count. Given that the data used are

  9. Targeting obesity-related adipose tissue dysfunction to prevent cancer development and progression.

    Science.gov (United States)

    Gucalp, Ayca; Iyengar, Neil M; Hudis, Clifford A; Dannenberg, Andrew J

    2016-02-01

    The incidence of obesity, a leading modifiable risk factor for common solid tumors, is increasing. Effective interventions are needed to minimize the public health implications of obesity. Although the mechanisms linking increased adiposity to malignancy are incompletely understood, growing evidence points to complex interactions among multiple systemic and tissue-specific pathways including inflamed white adipose tissue. The metabolic and inflammatory consequences of white adipose tissue dysfunction collectively provide a plausible explanation for the link between overweight/obesity and carcinogenesis. Gaining a better understanding of these underlying molecular pathways and developing risk assessment tools that identify at-risk populations will be critical in implementing effective and novel cancer prevention and management strategies.

  10. Effectiveness of cyclooxygenase-2 inhibition in limiting abdominal aortic aneurysm progression in mice correlates with a differentiated smooth muscle cell phenotype.

    Science.gov (United States)

    Mukherjee, Kamalika; Gitlin, Jonathan M; Loftin, Charles D

    2012-12-01

    Abdominal aortic aneurysms (AAAs) are a chronic condition that often progress over years to produce a weakened aorta with increased susceptibility for rupture, and currently, there are no pharmacological treatments available to slow disease progression. AAA development has been characterized by increased expression of cyclooxygenase-2 (COX-2), and inactivation of COX-2 before disease initiation reduces AAA incidence in a mouse model of the disease. The current study determined the effectiveness of COX-2 inhibition on AAA progression when treatment was begun after initiation of the disease. COX-2 inhibitor treatment with celecoxib was initiated after angiotensin II-induced AAA formation in a strain of nonhyperlipidemic mice that we have previously identified as highly susceptible to AAA development. When analyzed at different time points during progression of the disease, celecoxib treatment significantly reduced the incidence and severity of AAAs. The celecoxib treatment also protected the mice from aortic rupture and death. The aneurysmal lesion displayed an altered smooth muscle cell (SMC) phenotype, whereas celecoxib treatment was associated with increased expression of differentiated SMC markers and reduced dedifferentiation marker expression during AAA progression. Maintenance of a differentiated SMC phenotype is associated with the effectiveness of COX-2 inhibition for limiting AAA progression in nonhyperlipidemic mice.

  11. Inhibition of MAPK-mediated ACE expression by compound C66 prevents STZ-induced diabetic nephropathy.

    Science.gov (United States)

    Pan, Yong; Huang, Yi; Wang, Zhe; Fang, Qilu; Sun, Yusheng; Tong, Chao; Peng, Kesong; Wang, Yangwei; Miao, Lining; Cai, Lu; Zhao, Yunjie; Liang, Guang

    2014-02-01

    A range of in vitro, experimental and clinical intervention studies have implicated an important role for hyperglycaemia-induced activation of the renin-angiotensin system (RAS) in the development and progression of diabetic nephropathy (DN). Blockade of RAS by angiotensin converting enzyme (ACE) inhibitors is an effective strategy in treating diabetic kidney diseases. However, few studies demonstrate the mechanism by which hyperglycaemia up-regulates the expression of ACE gene. Our previous studies have identified a novel curcumin analogue, (2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone (C66), which could inhibit the high glucose (HG)-induced phosphorylation of mitogen-activated protein kinases in mouse macrophages. In this study, we found that the renal protection of C66 in diabetic mice was associated with mitogen-activated protein kinase (MAPK) inactivation and ACE/angiotensin II (Ang II) down-regulation. Generally, MAPKs have been considered as a downstream signalling of Ang II and a mediator for Ang II-induced pathophysiological actions. However, using C66 and specific inhibitors as small molecule probes, in vitro experiments demonstrate that the MAPK signalling pathway regulates ACE expression under HG stimulation, which contributes to renal Ang II activation and the development of DN. This study indicates that C66 is a potential candidate of DN therapeutic agents, and more importantly, that reduction in ACE expression by MAPKs inhibition seems to be an alternative strategy for the treatment of DN.

  12. Inhibition of NOS-NO System Prevents Autoimmune Orchitis Development in Rats: Relevance of NO Released by Testicular Macrophages in Germ Cell Apoptosis and Testosterone Secretion.

    Directory of Open Access Journals (Sweden)

    Sabrina Jarazo Dietrich

    Full Text Available Although the testis is considered an immunoprivileged organ it can orchestrate immune responses against pathological insults such as infection and trauma. Experimental autoimmune orchitis (EAO is a model of chronic inflammation whose main histopathological features it shares with human orchitis. In EAO an increased number of macrophages infiltrate the interstitium concomitantly with progressive germ cell degeneration and impaired steroidogenesis. Up-regulation of nitric oxide (NO-NO synthase (NOS system occurs, macrophages being the main producers of NO.The aim of our study was to evaluate the role of NO-NOS system in orchitis development and determine the involvement of NO released by testicular macrophages on germ cell apoptosis and testosterone secretion.EAO was induced in rats by immunization with testicular homogenate and adjuvants (E group and a group of untreated normal rats (N was also studied. Blockage of NOS by i.p. injection of E rats with a competitive inhibitor of NOS, L-NAME (8mg/kg, significantly reduced the incidence and severity of orchitis and lowered testicular nitrite content. L-NAME reduced germ cell apoptosis and restored intratesticular testosterone levels, without variations in serum LH. Co-culture of N testicular fragments with testicular macrophages obtained from EAO rats significantly increased germ cell apoptosis and testosterone secretion, whereas addition of L-NAME lowered both effects and reduced nitrite content. Incubation of testicular fragments from N rats with a NO donor DETA-NOnoate (DETA-NO induced germ cell apoptosis through external and internal apoptotic pathways, an effect prevented by N-acetyl-L-cysteine (NAC. DETA-NO inhibited testosterone released from Leydig cells, whereas NAC (from 2.5 to 15 mM did not prevent this effect.We demonstrated that NO-NOS system is involved in the impairment of testicular function in orchitis. NO secreted mainly by testicular macrophages could promote oxidative stress

  13. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and Fibroblast Growth Factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  14. Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression.

    Science.gov (United States)

    Luo, Xue; Peng, Jian-Ming; Su, Lan-DI; Wang, Dong-Yan; Yu, You-Jiang

    2016-02-01

    Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb Stephania tetrandra S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following treatment with Fan, Cell Counting Kit-8, phase contrast imaging and Giemsa staining assays were used to detect cell viability; flow cytometry was performed to analyze the cell cycle distribution; and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to investigate changes in the expression levels of cell cycle-associated genes and proteins. In the present study, treatment with Fan markedly inhibited the proliferation of SPC-A-1 lung cancer cells and significantly increased the percentage of cells in the G0/G1 phase of the cell cycle in a dose-dependent manner (PSPC-A-1 lung cancer cells and induced cell cycle arrest at the G0/G1 phase. These effects may be mediated by the downregulation of cellular CDK4, CDK6 and cyclin D1 levels, thus leading to hypophosphorylation of Rb and subsequent suppression of E2F-1 activity. Therefore, the present results suggest that Fan may be a potential drug candidate for the prevention of lung cancer.

  15. 奶牛乳房炎防治的新进展%New Progress on Cow Mastitis Prevention and Treatment

    Institute of Scientific and Technical Information of China (English)

    李国华; 李贞; 乔军; 陈创夫

    2011-01-01

    奶牛乳房炎是高产奶牛最常见的疾病,对奶业的发展危害严重.近年来,国内外学者对该病开展了大量的研究工作,作者对奶牛乳房炎的研究进展作一综述,为该病的科学防治提供有益的参考.%Cow mastitis is the most common diseases occurred in high-yielding dairy,which do seriously harmful to the development of the dairy industry. In recent years,many scholars carried out a lot of research work on cow mastitis, the new progress on prevention and treatment of mastitis in dairy cows were reviewed in the paper,which provide a useful reference for the scientific control of cow mastitis.

  16. Arterial steroid injection therapy can inhibit the progression of severe acute hepatic failure toward fulminant liver failure

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kotoh; Tsuyoshi Tajima; Yoshiki Asayama; Kousei Ishigami; Masakazu Hirakawa; Munechika Enjoji; Makoto Nakamuta; Tsuyoshi Yoshimoto; Motoyuki Kohjima; Shusuke Morizono; Shinsaku Yamashita; Yuki Horikawa; Kengo Yoshimitsu

    2006-01-01

    AIM: To utilize transcatheter arterial steroid injection therapy (TASIT) via the hepatic artery to reduce hepatic macrophage activity in patients with severe acute hepatic failure.METHODS: Thirty-four patients with severe acute hepatic failure were admitted to our hospital between June 2002 to June 2006 providing for the possibility of liver transplantation (LT). Seventeen patients were treated using traditional liver supportive procedures, and the other 17 patients additionally underwent TASIT with 1000 mg methylprednisolone per day for 3 continuous days.RESULTS: Of the 17 patients who received TASIT, 13 were cured without any complications, 2 died, and 2 underwent LT. Of the 17 patients who did not receive TASIT, 4 were self-limiting, 7 died, and 6 underwent LT.Univariate logistic analysis revealed that ascites, serum albumin, prothrombin time, platelet count, and TASIT were significant variables for predicating the prognosis.Multivariate logistic regression analysis using stepwise variable selection showed that prothrombin time, platelet count, and TASIT were independent predictive factors.CONCLUSION: TASIT might effectively prevent the progression of severe acute hepatic failure to a fatal stage of fulminant liver failure.

  17. Progression of Pancreatic Adenocarcinoma Is Significantly Impeded with a Combination of Vaccine and COX-2 Inhibition1

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D.; Tinder, Teresa L.; Subramani, Durai B.; Bradley, Judy M.; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2013-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRASG12D mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E2 and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer. PMID:19109152

  18. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways.

    Directory of Open Access Journals (Sweden)

    Muthu K Shanmugam

    Full Text Available Prostate cancer is one of the leading causes of cancer death among men worldwide. In this study, using transgenic adenocarcinoma of mouse prostate (TRAMP mice, the effect of diet enriched with 1% w/w ursolic acid (UA was investigated to evaluate the stage specific chemopreventive activity against prostate cancer. We found that TRAMP mice fed with UA diet for 8 weeks (weeks 4 to 12 delayed formation of prostate intraepithelial neoplasia (PIN. Similarly, mice fed with UA diet for 6 weeks (weeks 12 to 18 inhibited progression of PIN to adenocarcinoma as determined by hematoxylin and eosin staining. Finally, TRAMP mice fed with UA diet for 12 weeks (weeks 24 to 36 demonstrated markedly reduced tumor growth without any significant effects on total body weight and prolonged overall survival. With respect to the molecular mechanism, we found that UA down-regulated activation of various pro-inflammatory mediators including, NF-κB, STAT3, AKT and IKKα/β phosphorylation in the dorsolateral prostate (DLP tissues that correlated with the reduction in serum levels of TNF-α and IL-6. In addition, UA significantly down-regulated the expression levels of cyclin D1 and COX-2 but up-regulated the levels of caspase-3 as revealed by immunohistochemical analysis of tumor tissue sections. Finally, UA was detected in serum samples obtained from various mice groups fed with enriched diet in nanogram quantity indicating that it is well absorbed in the GI tract. Overall, our findings provide strong evidence that UA can be an excellent agent for both the prevention and treatment of prostate cancer.

  19. Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Yingying Wu; Bing Xue; Xiaojin Li; Hongchen Liu

    2012-01-01

    Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabeticperipheral neuropathy.Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity.This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro.Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis.Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine.The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR,while protein expression of cleaved caspase-3 and-9 were analyzed by means of western blotting.Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress,mitochondrial depolarization and apoptosis in a dose-dependent manner.Furthermore,puerarin treatment downregulated Bax expression,upregulated bcl-2 expression and attenuated the activation of caspase-3 and-9.Overall,our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.

  20. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  1. Swimming Exercise Prevents Fibrogenesis in Chronic Kidney Disease by Inhibiting the Myofibroblast Transdifferentiation

    Science.gov (United States)

    Peng, Chiung-Chi; Chen, Kuan-Chou; Hsieh, Chiu-Lan; Peng, Robert Y.

    2012-01-01

    Background The renal function of chronic kidney disease (CKD) patients may be improved by a number of rehabilitative mechanisms. Swimming exercise training was supposed to be beneficial to its recovery. Methodology/Principal Findings Doxorubicin-induced CKD (DRCKD) rat model was performed. Swimming training was programmed three days per week, 30 or 60 min per day for a total period of 11 weeks. Serum biochemical and pathological parameters were examined. In DRCKD, hyperlipidemia was observed. Active mesangial cell activation was evidenced by overexpression of PDGFR, P-PDGFR, MMP-2, MMP-9, α-SMA, and CD34 with a huge amount collagen deposition. Apparent myofibroblast transdifferentiation implicating fibrogenesis in the glomerular mesangium, glomerulonephritis and glomeruloscelorosis was observed with highly elevated proteinuria and urinary BUN excretion. The 60-min swimming exercise but not the 30 min equivalent rescued most of the symptoms. To quantify the effectiveness of exercise training, a physical parameter, i.e. “the strenuosity coefficient” or “the myokine releasing coefficient”, was estimated to be 7.154×10−3 pg/mL-J. Conclusions The 60-min swimming exercise may ameliorate DRCKD by inhibiting the transdifferentiation of myofibroblasts in the glomerular mesangium. Moreover, rehabilitative exercise training to rescue CKD is a personalized remedy. Benefits depend on the duration and strength of exercise, and more importantly, on the individual physiological condition. PMID:22761655

  2. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression

    Science.gov (United States)

    Lee, Jong Hun; Khor, Tin Oo; Shu, Limin; Su, Zheng-Yuan; Fuentes, Francisco; Kong, Ah-Ng Tony

    2013-01-01

    Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2–Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including

  3. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Frederic Derbre

    Full Text Available Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO. The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1 and Muscle RING (Really Interesting New Gene Finger-1 (MuRF-1. We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.

  4. Ilex latifolia Prevents Amyloid β Protein (25-35)-Induced Memory Impairment by Inhibiting Apoptosis and Tau Phosphorylation in Mice.

    Science.gov (United States)

    Kim, Joo Youn; Lee, Hong Kyu; Jang, Ji Yeon; Yoo, Jae Kuk; Seong, Yeon Hee

    2015-12-01

    Ilex latifolia Thunb. (Aquifoliaceae), a Chinese bitter tea called "kudingcha," has been widely consumed as a health beverage and found to possess antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-ischemic activities. The aim of the present study was to investigate the neuroprotective effects of an ethanol extract of I. latifolia against amyloid β protein (Aβ)-induced memory impairment in mice and neurotoxicity in cultured rat cortical neurons. Memory impairment in mice was induced by intracerebroventricular injection of 15 nmol Aβ (25-35) and measured by the passive avoidance test and Morris water maze test. Chronic administration of I. latifolia (25-100 mg/kg, p.o.) significantly prevented Aβ (25-35)-induced memory loss. I. latifolia also prevented the decrease of glutathione concentrations, increased lipid peroxidation, expression of phosphorylated tau (p-tau), and changes in apoptosis-associated proteins in the memory-impaired mouse brain. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 36 h induced neuronal apoptotic death. The neuronal cell death, elevation of intracellular Ca(2+) concentration, generation of reactive oxygen species, and expression of proapoptotic proteins caused by Aβ (25-35) in the cultured neurons were inhibited by treatment with I. latifolia (1-50 μg/mL). These results suggest that I. latifolia may have a possible therapeutic role in managing cognitive impairment associated with Alzheimer's disease. The underlying mechanism might involve the antiapoptotic effects mediated by antioxidant activity and inhibition of p-tau formation.

  5. Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study.

    Science.gov (United States)

    Schjøtt, M; Andreasen, J O

    2005-02-01

    Emdogain has been shown in clinical and experimental studies to promote regeneration of all periodontal tissues: cementum with anchoring fibres, a functional, periodontal ligament and alveolar bone in connection with treatment of marginal periodontitis. The intention of this study was to analyse whether this regenerative capacity upon the periodontal ligament also worked in a trauma situation where a significant number of PDL cells have been eliminated because of unphysiologic storage or actual damage during avulsion or replantation. Furthermore if ankylosis sites already established because of earlier replantation after avulsion could be surgical removed and application of Emdogain could revert the ankylosis stage to a normal PDL situation. The first treatment situation was tested in seven patients with a total of 16 avulsed teeth with varying time of extra oral storage. The teeth were extra-orally endodontically treated and the root and socket covered with Emdogain before replantation. All teeth demonstrated subsequent ankylosis, primarily diagnosed by a percussion test. The second treatment situation where an ankylosis was already established constituted of seven patients with a total of 11 teeth because of previous replantation after avulsion. These teeth were all extracted, the ankylosis sites removed and the root and socket treated with Emdogain. After 6 months all teeth showed recurrence of ankylosis. It is concluded that Emdogain was not able to prevent or cure ankylosis.

  6. Phosphorylated Peptides from Antarctic Krill (Euphausia superba) Prevent Estrogen Deficiency Induced Osteoporosis by Inhibiting Bone Resorption in Ovariectomized Rats.

    Science.gov (United States)

    Xia, Guanghua; Zhao, Yanlei; Yu, Zhe; Tian, Yingying; Wang, Yiming; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu

    2015-11-04

    In the current study, we investigated the improvement of phosphorylated peptides from Antarctic krill Euphausia superba (PP-AKP) on osteoporosis in ovariectomized rats. PP-AKP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that PP-AKP treatment remarkably prevented the reduction of bone mass and improved cancellous bone structure and biochemical properties. PP-AKP also significantly decreased serum contents of tartrate-resistant acid phosphatase (TRACP), cathepsin K (Cath-k), matrix metalloproteinases-9 (MMP-9), deoxypyridinoline (DPD), C-terminal telopeptide of collagen I (CTX-1), Ca, and P. Mechanism investigation revealed that PP-AKP significantly increased the osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio in mRNA expression, protein expression, and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of nuclear factor of activated T-cells (NFATc1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), diminishing the mRNA expression and phosphorylation of nuclear factor κB p65 (NF-κB p65), three key transcription factors in NF-κB pathways. These results suggest that PP-AKP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  7. Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase

    Science.gov (United States)

    Ahn, Jee-Yin; Liu, Xia; Liu, Zhixue; Pereira, Lorena; Cheng, Dongmei; Peng, Junmin; Wade, Paul A; Hamburger, Anne W; Ye, Keqiang

    2006-01-01

    Akt promotes cell survival through phosphorylation. The physiological functions of cytoplasmic Akt have been well defined, but little is known about the nuclear counterpart. Employing a cell-free apoptotic assay and NGF-treated PC12 nuclear extracts, we purified Ebp1 as a factor, which contributes to inhibition of DNA fragmentation by CAD. Depletion of Ebp1 from nuclear extracts or knockdown of Ebp1 in PC12 cells abolishes the protective effects of nerve growth factor, whereas overexpression of Ebp1 prevents apoptosis. Ebp1 (S360A), which cannot be phosphorylated by PKC, barely binds Akt or inhibits DNA fragmentation, whereas Ebp1 S360D, which mimics phosphorylation, strongly binds Akt and suppresses apoptosis. Further, phosphorylated nuclear but not cytoplasmic Akt interacts with Ebp1 and enhances its antiapoptotic action independent of Akt kinase activity. Moreover, knocking down of Akt diminishes the antiapoptotic effect of Ebp1 in the nucleus. Thus, nuclear Akt might contribute to suppressing apoptosis through interaction with Ebp1. PMID:16642037

  8. Progress in the development of deposition prevention and cleaning techniques of in-vessel optics in ITER

    Science.gov (United States)

    Mukhin, E.; Vukolov, K.; Semenov, V.; Tolstyakov, S.; Kochergin, M.; Kurskiev, G.; Podushnikova, K.; Razdobarin, A.; Gorodetsky, A.; Zalavutdinov, R.; Bukhovets, V.; Zakharov, A.; Bulovich, S.; Veiko, V.; Shakshno, E.

    2009-08-01

    The lifetime of front optical components unprotected from reactor grade plasmas may be very short due to intensive contamination with carbon and beryllium-based materials eroded by the plasma from beryllium walls and carbon tiles. Deposits result in a significant reduction and spectral alterations of optical transmission. In addition, even rather thin and transparent deposits can dramatically change the shape of reflectance spectra, especially for mirrors with rather low reflectivity, such as W or Mo. The distortion of data obtained with various optical diagnostics may affect the safe operation of ITER. Therefore, the development of optics-cleaning and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The problem is of particular concern for optical elements positioned in the divertor region. The latest achievements in protection of in-vessel optics are presented using the example of deposition prevention/cleaning techniques for in-machine components of the Thomson scattering system in the divertor. Careful consideration of well-known and novel protection approaches shows that neither of them alone provides guaranteed survivability of the first in-vessel optics in the divertor. Only a set of complementary prevention/cleaning techniques, which include special materials for mirrors and inhibition additives for plasma, is able to manage the challenging task. The essential issue, which needs to be addressed in the immediate future, is an extensive development of techniques tested under experimental conditions (exposure time and contamination fluxes) similar to those expected in ITER.

  9. Cyclooxygenase product inhibition with acetylsalicylic acid slows disease progression in the Han:SPRD-Cy rat model of polycystic kidney disease.

    Science.gov (United States)

    Ibrahim, Naser H M; Gregoire, Melanie; Devassy, Jessay G; Wu, Yinhong; Yoshihara, Daisuke; Yamaguchi, Tamio; Nagao, Shizuko; Aukema, Harold M

    2015-01-01

    Renal cyclooxygenase (COX) derived eicosanoids are elevated and lipoxygenase (LOX) products are reduced in the Han:SPRD-Cy rat model of polycystic kidney disease (PKD). Selective COX2 inhibition reduces kidney disease progression, but COX1 levels also are elevated in this model. Since the effect of reducing the products of both COX isoforms and the role of LOX products is not known, weanling normal and diseased Han:SPRD-cy littermates were given either low dose acetylsalicylic acid (ASA), nordihydroguaiaretic (NDGA) or no treatment for eight weeks. Renal eicosanoids were altered in the diseased compared to normal cortex, with COX products being higher and LOX products being lower. ASA reduced COX products, cyst growth and kidney water content, while NDGA reduced LOX products without altering disease progression or kidney function. Hence, a human equivalent ASA dose equal to less than one regular strength aspirin per day slowed disease progression, while further reduction of LOX products did not worsen disease progression.

  10. Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways

    Directory of Open Access Journals (Sweden)

    Dan Bao

    2015-08-01

    Full Text Available Cardiac hypertrophy is associated with many forms of heart disease, and identifying important modifier genes involved in the pathogenesis of cardiac hypertrophy could lead to the development of new therapeutic strategies. Tomoregulin-1 is a growth factor that is primarily involved in embryonic development and adult central nervous system (CNS function, and it is expressed abnormally in a variety of CNS pathologies. Tomoregulin-1 is also expressed in the myocardium. However, the effects of tomoregulin-1 on the heart, particularly on cardiac hypertrophy, remains unknown. The aim of the study is to examine whether and by what mechanism tomoregulin-1 regulates the development of cardiac hypertrophy induced by pressure overload. In this study, we found that tomoregulin-1 was significantly upregulated in two cardiac hypertrophy models: cTnTR92Q transgenic mice and thoracic aorta constriction (TAC-induced cardiac hypertrophy mice. The transgenic overexpression of tomoregulin-1 increased the survival rate, improved the cardiac geometry and functional parameters of echocardiography, and decreased the degree of cardiac hypertrophy of the TAC mice, whereas knockdown of tomoregulin-1 expression resulted in an opposite phenotype and exacerbated phenotypes of cardiac hypertrophy induced by TAC. A possible mechanism by which tomoregulin-1 regulates the development of cardiac hypertrophy in TAC-induced cardiac hypertrophy is through inhibiting TGFβ non-canonical (TAK1-JNK pathways in the myocardium. Tomoregulin-1 plays a protective role in the modulation of adverse cardiac remodeling from pressure overload in mice. Tomoregulin-1 could be a therapeutic target to control the development of cardiac hypertrophy.

  11. Inhibition of arachidonate 15-lipoxygenase prevents 4-hydroxynonenal-induced protein damage in male germ cells.

    Science.gov (United States)

    Bromfield, Elizabeth G; Mihalas, Bettina P; Dun, Matthew D; Aitken, R John; McLaughlin, Eileen A; Walters, Jessica L H; Nixon, Brett

    2017-03-01

    Lipid peroxidation products, such as 4-hydroxynonenal (4HNE), are causative agents responsible for extensive protein damage within the male and female germlines. Recently, we have demonstrated that 4HNE production can initiate the proteolytic degradation of the molecular chaperone Heat Shock Protein A2 (HSPA2) in male germ cells. These events may be partially responsible for HSPA2 deficiency in the spermatozoa of patients that repeatedly fail in vitro fertilization. Given this, mechanisms that limit the production of 4HNE will be highly advantageous for the preservation of male fertility. The propagation of 4HNE in somatic cells has been linked to the enzymatic actions of arachidonate 15-lipoxygenase (ALOX15), a member of the lipoxygenase family of proteins. In view of this association, this study sought to explore ALOX15 as a physiological target to manipulate the levels of 4HNE produced in the male germline. Herein, we have demonstrated that ALOX15 is markedly upregulated in response to oxidative stress in round spermatids and the GC-2 cell line. Pharmacological inhibition of ALOX15 in GC-2 cells resulted in a significant reduction in both mitochondrial and cytoplasmic reactive oxygen species, as well as a dramatic reduction in 4HNE. Importantly, the reduced bioavailability of this aldehyde appears to confer positive downstream effects to its target proteins such that HSPA2 could be protected from damage by 4HNE. Taken together, these results suggest that the actions of ALOX15 are intimately tied to the production of 4HNE. Thus, the ALOX15 protein may be a promising new target for the mitigation of germline oxidative stress. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor.

    Science.gov (United States)

    Barak, Segev; Weiner, Ina

    2007-05-01

    The fact that muscarinic antagonists may evoke a psychotic state ('antimuscarinic psychosis'), along with findings of cholinergic alterations in schizophrenia, have kindled an interest in the involvement of the cholinergic system in this disorder. Latent inhibition (LI) is a cross-species phenomenon manifested as a poorer conditioning of a stimulus seen when the stage of conditioning is preceded by a stage of repeated nonreinforced pre-exposure to that stimulus, and is considered to index the capacity to ignore irrelevant stimuli. Amphetamine-induced LI disruption and its reversal by antipsychotic drugs (APDs) is a well-established model of positive symptoms of schizophrenia. Here, we tested whether the muscarinic antagonist scopolamine would disrupt LI and whether such disruption would be reversed by APDs and by the acetylcholinesterase inhibitor physostigmine. The results showed that scopolamine at doses of 0.15 and 0.5 mg/kg disrupted LI, and that this effect was due to the action of the drug in the pre-exposure stage, suggesting a role of muscarinic transmission in attentional processes underlying LI. Both the typical and the atypical APDs, haloperidol and clozapine, reversed scopolamine-induced LI disruption when given in conditioning or in both stages, but not in pre-exposure, indicating that the mechanism of antipsychotic action in this model is independent of the mechanism of action of the propsychotic drug. Scopolamine-induced LI disruption was reversed by physostigmine (0.05 and 0.15 mg/kg), which was ineffective in reversing amphetamine-induced LI disruption, pointing to distinct mechanisms underlying LI disruption by these two propsychotic drugs. The latter was further supported by the finding that unlike amphetamine, the LI-disrupting doses of scopolamine did not affect activity levels. We propose scopolamine-induced LI disruption as a model of cholinergic-related positive symptoms in schizophrenia.

  13. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Sang; Xiao-Lei Shi; Bin Han; Tao Huang; Xu Huang; Hao-Zhen Ren; Yi-Tao Ding

    2016-01-01

    BACKGROUND: Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs trans-plantation route in a swine ALF model. METHODS: The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), pe-ripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs trans-plantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS: The average survival time of each group was 10.7 ± 1.6 days (InP), 6.0±0.9 days (AH), 4.7±1.4 days (PV), 4.3± 0.8 days (IH), respectively, when compared with the average survival time of 3.8±0.8 days in the D-Gal group. The sur-vival rates between the InP group and D-Gal group revealed a statistically signiifcant difference (P CONCLUSIONS: Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC trans-plantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.

  14. Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways.

    Science.gov (United States)

    Bao, Dan; Lu, Dan; Liu, Ning; Dong, Wei; Lu, Ying-Dong; Qin, Chuan; Zhang, Lian-Feng

    2015-08-01

    Cardiac hypertrophy is associated with many forms of heart disease, and identifying important modifier genes involved in the pathogenesis of cardiac hypertrophy could lead to the development of new therapeutic strategies. Tomoregulin-1 is a growth factor that is primarily involved in embryonic development and adult central nervous system (CNS) function, and it is expressed abnormally in a variety of CNS pathologies. Tomoregulin-1 is also expressed in the myocardium. However, the effects of tomoregulin-1 on the heart, particularly on cardiac hypertrophy, remains unknown. The aim of the study is to examine whether and by what mechanism tomoregulin-1 regulates the development of cardiac hypertrophy induced by pressure overload. In this study, we found that tomoregulin-1 was significantly upregulated in two cardiac hypertrophy models: cTnT(R92Q) transgenic mice and thoracic aorta constriction (TAC)-induced cardiac hypertrophy mice. The transgenic overexpression of tomoregulin-1 increased the survival rate, improved the cardiac geometry and functional parameters of echocardiography, and decreased the degree of cardiac hypertrophy of the TAC mice, whereas knockdown of tomoregulin-1 expression resulted in an opposite phenotype and exacerbated phenotypes of cardiac hypertrophy induced by TAC. A possible mechanism by which tomoregulin-1 regulates the development of cardiac hypertrophy in TAC-induced cardiac hypertrophy is through inhibiting TGFβ non-canonical (TAK1-JNK) pathways in the myocardium. Tomoregulin-1 plays a protective role in the modulation of adverse cardiac remodeling from pressure overload in mice. Tomoregulin-1 could be a therapeutic target to control the development of cardiac hypertrophy. © 2015. Published by The Company of Biologists Ltd.

  15. Chronic mechanistic target of rapamycin inhibition: preventing cancer to delay aging, or vice versa?.

    Science.gov (United States)

    Sharp, Zelton Dave; Curiel, Tyler Jay; Livi, Carolina Becker

    2013-01-01

    Cancer and aging appear to be inexorably linked, yet approaches to ameliorate them in concert are lacking. Although not (easily) feasible in humans, years of preclinical research show that diet and growth factor restriction each successfully address cancer and aging together. Chronic treatment of genetically heterogeneous mice with an enteric formulation of rapamycin (eRapa) extended maximum lifespan of both genders when started in mid or late life. In part, cancer amelioration in treated mice suggested that long-term eRapa, like diet restriction, could be a pharmacological approach feasible for use in the clinic. We review the current understanding of the role of the mechanistic target of rapamycin (mTOR) in cancer and aging. We also discuss the tumor immune surveillance system, and the need for a better understanding of its responses to mTOR inhibitors. We also address the issue of the misperception that rapamycin is a potent immunosuppressant. Finally, we review the current state of mTOR inhibitors in the cancer clinic. Because of the burgeoning elderly population most at risk for cancer, there is a great need for our eRapa findings to be a proof of concept for the development of new and more comprehensive approaches to cancer prevention that are safe and also mitigate other deleterious effects of aging.

  16. Grape seed proanthocyanidines and skin cancer prevention: inhibition of oxidative stress and protection of immune system.

    Science.gov (United States)

    Katiyar, Santosh K

    2008-06-01

    Overexposure of the skin to UV radiation has a variety of adverse effects on human health, including the development of skin cancers. There is a need to develop nutrition-based efficient chemopreventive strategies. The proanthocyanidins present in grape seeds (Vitis vinifera) have been shown to have some biological effects, including prevention of photocarcinogenesis. The present communication discusses the in vitro and in vivo studies of the possible protective effect of grape seed proanthocyanidins (GSPs) and the molecular mechanism for these effects. In SKH-1 hairless mice, dietary supplementation with GSPs is associated with a decrease of UVB-induced skin tumor development in terms of tumor incidence, tumor multiplicity, and a decrease in the malignant transformation of papillomas to carcinomas. It is suggested that the chemopreventive effects of dietary GSPs are mediated through the attenuation of UV-induced: (i) oxidative stress; (ii) activation of mitogen-activated protein kinases and nuclear factor-kappa B (NF-kappaB) signaling pathways; and (iii) immunosuppression through alterations in immunoregulatory cytokines. Collectively, these studies indicate protective potential of GSPs against experimental photocarcinogenesis in SKH-1 hairless mice, and the possible mechanisms of action of GSPs, and suggest that dietary GSPs could be useful in the attenuation of the adverse UV-induced health effects in human skin.

  17. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Janis Ya-Xian Zhan

    2016-01-01

    Full Text Available Andrographolide sodium bisulfate (ASB, a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  18. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available BACKGROUND: The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.

  19. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy.

    Science.gov (United States)

    Benkafadar, Nesrine; Menardo, Julien; Bourien, Jérôme; Nouvian, Régis; François, Florence; Decaudin, Didier; Maiorano, Domenico; Puel, Jean-Luc; Wang, Jing

    2017-01-01

    Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin-induced ototoxicity remains unclear, and hearing preservation during cisplatin-based chemotherapy in patients is lacking. We found activation of the ATM-Chk2-p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin-induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient-derived triple-negative breast cancer protected auditory function, without compromising the anti-tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin-based chemotherapy. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Pentoxifylline prevents nonalcoholic steatohepatitis-related liver pre-neoplasms by inhibiting hepatic inflammation and lipogenesis.

    Science.gov (United States)

    Shirakami, Yohei; Shimizu, Masahito; Kubota, Masaya; Ohno, Tomohiko; Kochi, Takahiro; Nakamura, Nobuhiko; Sumi, Takafumi; Tanaka, Takuji; Moriwaki, Hisataka; Seishima, Mitsuru

    2016-05-01

    Nonalcoholic steatohepatitis (NASH) has gained attention as a hepatic manifestation associated with metabolic syndrome and one of the causes for chronic liver damage leading to hepatocellular carcinoma. Although no standard medicinal treatment for NASH has been established, pentoxifylline (PTX), a medicine used to improve circulation, has recently been reported to ameliorate the histopathological appearance of NASH. In the present study, we investigated the effects of PTX on the development of NASH and diethylnitrosamine-induced liver tumorigenesis in C57BLKS/J- +Lepr/+Lepr obese and diabetic mice, which are considered a rodent model for NASH-related hepatocarcinogenesis. Mice were administered diethylnitrosamine, and then they received water with or without PTX. At the time of sacrifice, the development of hepatic pre-neoplastic lesions was significantly suppressed in the PTX groups. Hepatic triglyceride contents were decreased by PTX administration. The serum levels of triglyceride, free fatty acid, and alanine aminotransferase were all decreased by PTX treatment, as was the mRNA expression of proinflammatory cytokines, macrophage-inducing chemokines, and several lipogenic genes in the liver. In-vitro studies also showed that PTX treatment decreased the expression of several lipogenic genes and chemokines in cell lines. These findings suggest that PTX prevents NASH-related liver tumorigenesis by attenuating chronic hepatic inflammation and decreasing lipogenic gene expression in the liver.

  1. Inhibition of cortisol production with metyrapone prevents mental stress-induced endothelial dysfunction and baroreflex impairment.

    Science.gov (United States)

    Broadley, Andrew J M; Korszun, Ania; Abdelaal, Eltigani; Moskvina, Valentina; Jones, Christopher J H; Nash, Gerard B; Ray, Clare; Deanfield, John; Frenneaux, Michael P

    2005-07-19

    This study was designed to investigate the role of cortisol in stress-induced endothelial dysfunction and impaired baroreflex sensitivity (BRS) by blocking cortisol production with metyrapone before subjecting healthy volunteers to mental stress. Mental stress raises cortisol levels and is associated with increased coronary heart disease (CHD) morbidity and mortality, especially from sudden cardiac death. It also causes endothelial dysfunction and impaired BRS. We measured brachial artery flow-mediated dilation (FMD), a measure of endothelial function, and BRS in 36 subjects without CHD risk factors who were then randomized in a double-blind fashion to oral metyrapone 750 mg x 2 or placebo. Five hours later we subjected subjects to mental stress and then remeasured endothelial function and BRS. Prestress cortisol levels were significantly higher in the placebo group at 270.5 (30.9) nmol/l versus 89.1 (11.8) nmol/l (p = 0.01), and the increase with stress was higher at 57.9 (17.9) nmol/l versus 11.2 (2.2) nmol/l (p Analysis of covariation showed a significant effect of metyrapone on change in both FMD (p = 0.009) and BRS (p = 0.024). Stress-related endothelial dysfunction and BRS impairment can be prevented by blocking cortisol production with metyrapone, demonstrating a direct or facilitative role for cortisol in these phenomena and suggesting mechanisms by which stress contributes to CHD and sudden cardiac death.

  2. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition.

    Science.gov (United States)

    Li, Ying; Zhang, Yue; Sun, Yongming; Wu, Shubiao; Kong, Xiaoying; Yuan, Zhenhong; Dong, Renjie

    2017-05-01

    This study aims to investigate the effect of bioaugmentation with enriched methanogenic propionate degrading microbial consortia on propionate fermentation under ammonia stress from total ammonia nitrogen concentration (TAN) of 3.0gNL(-1). Results demonstrated that bioaugmentation could prevent unstable digestion against further deterioration. After 45days of 1dosage (0.3g dry cell weight L(-1)d(-1), DCW L(-1)d(-1)) of bioaugmentation, the average volumetric methane production (VMP), methane recovery rate and propionic acid (HPr) degradation rate was enhanced by 70mLL(-1)d(-1), 21% and 51%, respectively. In contrast, the non-bioaugmentation reactor almost failed. Routine addition of a double dosage (0.6g DCW L(-1)d(-1)) of bioaugmentation culture was able to effectively recover the failing digester. The results of FISH suggested that the populations of Methanosaetaceae increased significantly, which could be a main contributor for the positive effect on methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Drosophila Crumbs prevents ectopic Notch activation in developing wings by inhibiting ligand-independent endocytosis.

    Science.gov (United States)

    Nemetschke, Linda; Knust, Elisabeth

    2016-12-01

    Many signalling components are apically restricted in epithelial cells, and receptor localisation and abundance is key for morphogenesis and tissue homeostasis. Hence, controlling apicobasal epithelial polarity is crucial for proper signalling. Notch is a ubiquitously expressed, apically localised receptor, which performs a plethora of functions; therefore, its activity has to be tightly regulated. Here, we show that Drosophila Crumbs, an evolutionarily conserved polarity determinant, prevents Notch endocytosis in developing wings through direct interaction between the two proteins. Notch endocytosis in the absence of Crumbs results in the activation of the ligand-independent, Deltex-dependent Notch signalling pathway, and does not require the ligands Delta and Serrate or γ-secretase activity. This function of Crumbs is not due to general defects in apicobasal polarity, as localisation of other apical proteins is unaffected. Our data reveal a mechanism to explain how Crumbs directly controls localisation and trafficking of the potent Notch receptor, and adds yet another aspect of Crumbs regulation in Notch pathway activity. Furthermore, our data highlight a close link between the apical determinant Crumbs, receptor trafficking and tissue homeostasis.

  4. Project Energize: intervention development and 10 years of progress in preventing childhood obesity.

    Science.gov (United States)

    Rush, Elaine; Cairncross, Carolyn; Williams, Margaret Hinepo; Tseng, Marilyn; Coppinger, Tara; McLennan, Steph; Latimer, Kasha

    2016-01-26

    Prevention of childhood obesity is a global priority. The school setting offers access to large numbers of children and the ability to provide supportive environments for quality physical activity and nutrition. This article describes Project Energize, a through-school physical activity and nutrition programme that celebrated its 10-year anniversary in 2015 so that it might serve as a model for similar practices, initiatives and policies elsewhere. The programme was envisaged and financed by the Waikato District Health Board of New Zealand in 2004 and delivered by Sport Waikato to 124 primary schools as a randomised controlled trial from 2005 to 2006. The programme has since expanded to include all 242 primary schools in the Waikato region and 70 schools in other regions, including 53,000 children. Ongoing evaluation and development of Project Energize has shown it to be sustainable (ongoing for >10 years), both effective (lower obesity, higher physical fitness) and cost effective (one health related cost quality adjusted life year between $18,000 and $30,000) and efficient ($45/child/year) as a childhood 'health' programme. The programme's unique community-based approach is inclusive of all children, serving a population that is 42% Māori, the indigenous people of New Zealand. While the original nine healthy eating and seven quality physical activity goals have not changed, the delivery and assessment processes has been refined and the health service adapted over the 10 years of the programme existence, as well as adapted over time to other settings including early childhood education and schools in Cork in Ireland. Evaluation and research associated with the programme delivery and outcomes are ongoing. The dissemination of findings to politicians and collaboration with other service providers are both regarded as priorities.

  5. Use of corticosteroids to prevent progression of Graves' ophthalmopathy after radioiodine therapy for hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Bartalena, L.; Marcocci, C.; Bogazzi, F.; Panicucci, M.; Lepri, A.; Pinchera, A. (Univ. of Pisa (Italy))

    1989-11-16

    We studied the effects of radioiodine treatment of hyperthyroidism due to Graves' disease on Graves' ophthalmopathy and the possible protective role of corticosteroids. Between June 1985 and June 1988, 26 patients were randomly assigned to treatment with radioiodine alone (group 1) and 26 to treatment with this agent and concomitant administration of systemic prednisone for four months (group 2). The initial dose of prednisone was 0.4 to 0.5 mg per kilogram of body weight for one month; the drug was gradually withdrawn over the next three months. All patients were evaluated at 3-month intervals for 18 months after they underwent radioiodine therapy. Ocular changes were assessed with the ophthalmopathy index; patients with moderate-to-severe changes (scores greater than or equal to 4) were excluded from the study. Before treatment, 10 patients in group 1 and 5 in group 2 had no evidence of ophthalmopathy: in none of them did ocular symptoms appear after radioiodine therapy. Among the patients in group 1 with an initial ophthalmopathy index greater than or equal to 1, ocular disease worsened in 56 percent (mostly involving soft-tissue changes and extraocular-muscle function) and did not change in 44 percent. In contrast, ophthalmopathy improved in 52 percent and did not change in 48 percent of group 2. The mean ophthalmopathy index increased from 1.5 to 3.0 in group 1 (P less than 0.005) and decreased from 2.2 to 1.3 in group 2 (P less than 0.05). We conclude that systemic corticosteroid treatment prevents the exacerbations of Graves' ophthalmopathy that occur after radioiodine therapy in a substantial proportion of patients with hyperthyroidism who have some degree of ocular involvement before treatment.

  6. KIOM-79, an Inhibitor of AGEs–Protein Cross-linking, Prevents Progression of Nephropathy in Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Young Sook Kim

    2011-01-01

    Full Text Available Advanced glycation end products (AGEs have been implicated in the development of diabetic complications, including diabetic nephropathy. KIOM-79, an 80% ethanolic extract obtained from parched Puerariae Radix, gingered Magnolia Cortex, Glycyrrhiza Radix and Euphorbia Radix, was investigated for its effects on the development of renal disease in Zucker diabetic fatty rats, an animal model of type 2 diabetes. In vitro inhibitory effect of KIOM-79 on AGEs cross-linking was examined by enzyme-linked immunosorbent assay (ELISA. KIOM-79 (50 mg/kg/day was given to Zucker diabetic fatty rats for 13 weeks. Body and kidney weight, blood glucose, glycated hemoglobin, urinary albumin and creatinine excretions were monitored. Kidney histopathology, collagen accumulation, fibrinogen and transforming growth factor-beta 1 (TGF-β1 expression were also examined. KIOM-79 reduced blood glucose, kidney weight, histologic renal damage and albuminuria in Zucker diabetic fatty rats. KIOM-79 prevented glomerulosclerosis, tubular degeneration, collagen deposition and podocyte apoptosis. In the renal cortex, TGF-β1, fibronectin mRNA and protein were significantly reduced by KIOM-79 treatment. KIOM-79 reduces AGEs accumulation in vivo, AGE–protein cross-linking and protein oxidation. KIOM-79 could be beneficial in preventing the progression of diabetic glomerularsclerosis in type 2 diabetic rats by attenuating AGEs deposition in the glomeruli.

  7. Re-expression of AKAP12 inhibits progression and metastasis potential of colorectal carcinoma in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    Full Text Available BACKGROUND: AKAP12/Gravin (A kinase anchor protein 12 is one of the A-kinase scaffold proteins and a potential tumor suppressor gene in human primary cancers. Our recent study demonstrated the highly recurrent loss of AKAP12 in colorectal cancer and AKAP12 reexpression inhibited proliferation and anchorage-independent growth in colorectal cancer cells, implicating AKAP12 in colorectal cancer pathogenesis. METHODS: To evaluate the effect of this gene on the progression and metastasis of colorectal cancer, we examined the impact of overexpressing AKAP12 in the AKAP12-negative human colorectal cancer cell line LoVo, the single clone (LoVo-AKAP12 compared to mock-transfected cells (LoVo-CON. RESULTS: pCMV6-AKAP12-mediated AKAP12 re-expression induced apoptosis (3% to 12.7%, p<0.01, migration (89.6±7.5 cells to 31.0±4.1 cells, p<0.01 and invasion (82.7±5.2 cells to 24.7±3.3 cells, p<0.01 of LoVo cells in vitro compared to control cells. Nude mice injected with LoVo-AKAP12 cells had both significantly reduced tumor volume (p<0.01 and increased apoptosis compared to mice given AKAP12-CON. The quantitative human-specific Alu PCR analysis showed overexpression of AKAP12 suppressed the number of intravasated cells in vivo (p<0.01. CONCLUSION: These results demonstrate that AKAP12 may play an important role in tumor growth suppression and the survival of human colorectal cancer.

  8. Krüppel-like Factor 4 Inhibits Tumorigenic Progression and Metastasis in a Mouse Model of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer L Yori

    2011-07-01

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that functions as an oncogene or tumor suppressor in a highly tissue-specific cell-dependent manner. However, its precise role in breast cancer and metastasis remains unclear. Here, we show that transient adenoviral expression of KLF4 in the 4T1 orthotopic mammary cancer model significantly attenuated primary tumor growth as well as micrometastases to the lungs and liver. These results can be attributed, in part, to decreased proliferation and increased apoptosis. Further supporting a tumor-suppressive role for KLF4 in the breast, we found that KLF4 expression is lost in a mouse model of HER2/NEU/ERBB2-positive breast cancer. To determine whether enforced KLF4 expression could alter tumor latency in these mice, we used a doxycycline-inducible expression model in the context of the MMTV-Neu transgene. Surprisingly, tumors that developed in this model also lost KLF4 expression, suggesting negative selection for sustained expression. We have previously reported that KLF4 inhibits epithelial-to-mesenchymal transition (EMT, a preliminary step in metastatic progression. Overexpression of KLF4 in 4T1 cells led to a significant reduction in the expression of Snail, a key mediator of EMT and metastasis. Conversely, KLF4 silencing increased Snail expression in the nontransformed MCF-10A cell line. Collectively, these data demonstrate the first functional, in vivo evidence for KLF4 as a tumor suppressor in breast cancer cells. Furthermore, our findings suggest an inhibitory role for KLF4 during breast cancer metastases that functions, in part, through repression of Snail.

  9. Janus kinase inhibition prevents cancer- and myocardial infarction-mediated diaphragm muscle weakness in mice.

    Science.gov (United States)

    Smith, Ira J; Roberts, Brandon; Beharry, Adam; Godinez, Guillermo L; Payan, Donald G; Kinsella, Todd M; Judge, Andrew R; Ferreira, Leonardo F

    2016-04-15

    Respiratory dysfunction is prevalent in critically ill patients and can lead to adverse clinical outcomes, including respiratory failure and increased mortality. Respiratory muscles, which normally sustain respiration through inspiratory muscle contractions, become weakened during critical illness, and recent studies suggest that respiratory muscle weakness is related to systemic inflammation. Here, we investigate the pathophysiological role of the inflammatory JAK1/3 signaling pathway in diaphragm weakness in two distinct experimental models of critical illness. In the first experiment, mice received subcutaneous injections of PBS or C26 cancer cells and were fed chow formulated with or without the JAK1/3 inhibitor R548 for 26 days. Diaphragm specific force was significantly reduced in tumor-bearing mice receiving standard chow; however, treatment with the JAK1/3 inhibitor completely prevented diaphragm weakness. Diaphragm cross-sectional area was diminished by ∼25% in tumor-bearing mice but was similar to healthy mice in tumor-bearing animals treated with R548. In the second study, mice received sham surgery or coronary artery ligation, leading to myocardial infarction (MI), and were treated with R548 or vehicle 1 h postsurgery, and once daily for 3 days. Diaphragm specific force was comparable between sham surgery/vehicle, sham surgery/R548 and MI/R548 groups, but significantly decreased in the MI/vehicle group. Markers of oxidative damage and activated caspase-3, mechanisms previously identified to reduce muscle contractility, were not elevated in diaphragm extracts. These experiments implicate JAK1/3 signaling in cancer- and MI-mediated diaphragm weakness in mice, and provide a compelling case for further investigation. Copyright © 2016 the American Physiological Society.

  10. Molecular epidemiology in cancer risk assessment and prevention: recent progress and avenues for future research.

    Science.gov (United States)

    Wogan, G N

    1992-01-01

    these changes are known to occur in chemically induced tumors of experimental animals, the possible role of chemical carcinogens in the induction of genetic abnormalities in human cancers has yet to be determined. Continuing investigations employing the methods of molecular epidemiology promise to provide further evidence concerning these relationships. Future investigations employing newly developed molecular biological methods, in particular those based on polymerase chain reaction amplification of DNA, to identify alterations in DNA and chromosomal structure, combined with methods for characterizing exposure to carcinogens and early effects, have great potential for further elucidating the role of genotoxic agents in the etiology of human cancers and also for the development of strategies for their prevention. PMID:1486846

  11. Loquat (Eriobotrya japonica) extract prevents dexamethasone-induced muscle atrophy by inhibiting the muscle degradation pathway in Sprague Dawley rats.

    Science.gov (United States)

    Noh, Kyung Kyun; Chung, Ki Wung; Sung, Bokyung; Kim, Min Jo; Park, Chan Hum; Yoon, Changshin; Choi, Jae Sue; Kim, Mi Kyung; Kim, Cheol Min; Kim, Nam Deuk; Chung, Hae Young

    2015-09-01

    In the Orient, loquat (Eriobotrya japonica) extract (LE) is widely used in teas, food and folk medicines. The leaves of the loquat tree have been used for generations to treat chronic bronchitis, coughs, phlegm production, high fever and gastroenteric disorders. One of the major active components of loquat leaves is ursolic acid, which was recently investigated in the context of preventing muscle atrophy. The present study investigated the therapeutic potential of LE on dexamethasone‑induced muscle atrophy in rats. Daily intraperitoneal injections of dexamethasone caused muscle atrophy and evidence of muscle atrophy prevention by LE was demonstrated using various assays. In particular, dexamethasone‑induced grip strength loss was alleviated by LE and the increase in serum creatine kinase activity, a surrogate marker of muscle damage, caused by dexamethasone injection was reduced by LE. Western blot analysis and immunoprecipitation demonstrated that dexamethasone markedly increased the protein expression levels of muscle ring finger 1 (MuRF1), which causes the ubiquitination and degradation of myosin heavy chain (MyHC), and decreased the protein expression levels of MyHC as well as increased the ubiquitinated MyHC to MyHC ratio. However, LE reduced the dexamethasone‑induced protein expression levels of MuRF1 and ubiquitinated MyHC. Additional experiments revealed that LE supplementation inhibited the nuclear translocation of FoxO1 induced by dexamethasone. These findings suggested that LE prevented dexamethasone‑induced muscle atrophy by regulating the FoxO1 transcription factor and subsequently the expression of MuRF1.

  12. Laser treatment of drusen to prevent progression to advanced age-related macular degeneration

    Science.gov (United States)

    Virgili, Gianni; Michelessi, Manuele; Parodi, Maurizio B; Bacherini, Daniela; Evans, Jennifer R

    2016-01-01

    Background Drusen are amorphous yellowish deposits beneath the sensory retina. People with drusen, particularly large drusen, are at higher risk of developing age-related macular degeneration (AMD). The most common complication in AMD is choroidal neovascularisation (CNV), the growth of new blood vessels in the centre of the macula. The risk of CNV is higher among people who are already affected by CNV in one eye. It has been observed clinically that laser photocoagulation of drusen leads to their disappearance and may prevent the occurrence of advanced disease (CNV or geographic atrophy) associated with visual loss. Objectives To examine the effectiveness and adverse effects of laser photocoagulation of drusen in AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 7), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2015), EMBASE (January 1980 to August 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to August 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 3 August 2015. Selection criteria Randomised controlled trials (RCTs) of laser treatment of drusen in AMD in which laser treatment had been compared with no intervention or sham treatment. Two types of trials were included. Some trials studied one eye of each participant (unilateral studies); other studies recruited participants with bilateral drusen and randomised one eye to photocoagulation or control and the fellow eye to the other group. Data collection and analysis Two review authors independently

  13. 禽流感防制进展%Progress on Avian Influenza Prevention

    Institute of Scientific and Technical Information of China (English)

    赵婧; 邱小为

    2012-01-01

    Avian influenza(AI) is one of zoonoses caused by type A influenza viruse,which is also called Fowl Plague.Serious systemic symptoms of the respiratory system and other deadly infectious diseases can be caused.mortality of Infected poultry is very high,however,wild birds are not mostly dominant infected.Since 1997 Hong Kong avian influenza virus subtype H5N1 happened first breakthrough the species barrier to infect human beings and caused death,various human avian influenza cases were reported worldwide,degree of concern about human avian influenza has also reached an unprecedented level.In recent years,the global total of 19 countries on three continents and regions occurred avian influenza.The epidemic is spreading in some parts of the regions,and the emergence of human cases of avian influenza virus.Avian influenza not only causes significant damage to livestock breed industry,but also pose a serious threat to human health.Pathogens,epidemiology,clinical symptoms,pathological changes,diagnosis,prevention and treatment of Aenvian influza are discussed completely and briefly in this article.%禽流感(Avian influenza,AI)是由A型流感病毒所引起的禽类的一种传染病。能引起禽类呼吸系统到严重全身败血症等多种症状的烈性传染病。禽类感染后病死率很高,但对野生禽类多为不显性感染。自从1997年香港发生禽流感病毒H5N1亚型首次突破种属屏障感染人类并引起死亡以来,世界各国纷纷报道各种人禽流感病例的发生,人禽流感的关注程度也达到了前所未有的高度。近几年全球共有三大洲的19个国家和地区发生禽流感疫情。一些地区的疫情呈现蔓延的趋势,并且出现了人感染禽流感病毒的病例。禽流感不仅对养殖业造成重大损失,更对人类健康造成严重威胁。本文全面地介绍了禽流感的病原、流行病学、临床症状、病理变化、诊断和防制。

  14. Olmesartan, an angiotensin II receptor blocker inhibits the progression of cataract formation in cadmium chloride induced hypertensive albino rats.

    Science.gov (United States)

    Choudhary, Rajesh; Bodakhe, Surendra H

    2016-12-15

    Previously we found that cadmium chloride (CdCl2) exposure substantially elevates hypertension and potentiates cataract formation. In the present study, we investigated the protective effects of olmesartan, an angiotensin II receptor blocker against cataractogenesis in the CdCl2-induced hypertensive animal model. Male Sprague-Dawley albino rats (150-180g) were randomly selected and assigned to four groups (n=6). Among the four groups, one group (normal) received 0.3% carboxymethyl cellulose (10ml/kg/day, p.o.), another group (CdCl2 control) received CdCl2 (0.5mg/kg/day, i.p.), and remaining two groups received olmesartan at two doses level (2 and 4mg/kg/day, p.o.) concurrently with CdCl2 for six consecutive weeks. Blood pressure and cataract formation were examined biweekly, and pathophysiological parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. The olmesartan treatment significantly restored the blood pressure, lenticular opacity, serum and lens antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reduced), and malondialdehyde level. Additionally, it significantly restored the proteins, ions (Na(+), K(+), and Ca(2+)), and ATPase pumps activity (Na(+)K(+) ATPase and Ca(2+) ATPase) in the lens as compared to CdCl2 control group. The findings demonstrate that olmesartan potentially inhibits the risk of cataract formation in the hypertensive state via restoration of lenticular oxidative stress, ATPase function, and ionic contents in the eye lenses. The results suggest that angiotensin II receptor blockers play an important role to prevent cataract formation in several pathogenic conditions like hypertension, diabetes, and oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  16. Prevention of topical surfactant-induced itch-related responses by chlorogenic acid through the inhibition of increased histamine production in the epidermis.

    Science.gov (United States)

    Inami, Yoshihiro; Andoh, Tsugunobu; Kuraishi, Yasushi

    2013-01-01

    Effects of chlorogenic acid on surfactant-induced itching were studied in mice. Topical application of sodium laurate increased hind-paw scratching, an itch-related response, 2 h after application, which was inhibited by topical post-treatment with chlorogenic acid. Sodium laurate increased the histamine content and 53-kDa L-histidine decarboxylase in the epidermis, which were also inhibited by post-treatment with chlorogenic acid. These results suggest that topical chlorogenic acid is effective in the prevention of itching induced by anionic surfactants. The inhibitory activity of chlorogenic acid may be due to the inhibition of an increase in histamine in the epidermis.

  17. Epidermal Growth Factor Receptor Inhibition Slows Progression of Diabetic Nephropathy in Association With a Decrease in Endoplasmic Reticulum Stress and an Increase in Autophagy

    OpenAIRE

    Zhang, Ming-Zhi; Wang, Yinqui; Paueksakon, Paisit; Harris, Raymond C.

    2014-01-01

    Previous studies by us and others have reported renal epidermal growth factor receptors (EGFRs) are activated in models of diabetic nephropathy. In the present study, we examined the effect of treatment with erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of diabetic nephropathy in a type 1 diabetic mouse model. Inhibition of renal EGFR activation by erlotinib was confirmed by decreased phosphorylation of EGFR and extracellular signal–related kinase 1/2. Increased...

  18. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  19. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1.

    Science.gov (United States)

    Chen, Zhiheng; Liu, Shaojun; Tian, Li; Wu, Minghao; Ai, Feiyan; Tang, Wuliang; Zhao, Lian; Ding, Juan; Zhang, Liyang; Tang, Anliu

    2015-11-10

    miR-124 and miR-506 are reportedly down-regulated and associated with tumor progression in many cancers, but little is known about their intrinsic regulatory mechanisms in colorectal cancer (CRC). In this study, we found that the miR-124 and miR-506 levels were significantly lower in human CRC tissues than in controls, as indicated by qRT-PCR and in situ hybridization histochemistry. We also found that the overexpression of miR-124 or miR-506 inhibited tumor cell progression and increased sensitivity to chemotherapy in vitro. Increased miR-124 or miR-506 expression also inhibited tumor cell proliferation and invasion in vivo. Luciferase reporter assays and western blotting were used to determine the association between miR-124, miR-506 and their target genes, DNMTs. We further identified that miR-124 and miR-506 directly targeted DNMT3B and indirectly targeted DNMT1. The overexpression of miR-124 and miR-506 reduced global DNA methylation and restored the expression of E-cadherin, MGMT and P16. In conclusion, our data showed that miR-124 and miR-506 inhibit progression and increase sensitivity to chemotherapy by targeting DNMT3B and DNMT1 in CRC. These findings may provide novel avenues for the development of targeted therapies.

  20. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    Science.gov (United States)

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  1. TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways

    Science.gov (United States)

    Almadén, Yolanda; Martínez-Moreno, Julio M.; Montes de Oca, Addy; Rodriguez-Ortiz, María Encarnación; Diaz-Tocados, Juan M.; Canalejo, Antonio; Florio, Mónica; López, Ignacio; Richards, William G.; Rodriguez, Mariano; Aguilera-Tejero, Escolástico; Muñoz-Castañeda, Juan R.

    2014-01-01

    Background Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. Results Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. Conclusions Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway. PMID:24586576

  2. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  3. Relaxin Prevents Cardiac Fibroblast-Myofibroblast Transition via Notch-1-Mediated Inhibition of TGF-β/Smad3 Signaling

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Pini, Alessandro; Tani, Alessia; Nistri, Silvia; Nosi, Daniele; Zecchi-Orlandini, Sandra; Bani, Daniele; Formigli, Lucia

    2013-01-01

    The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion

  4. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available The hormone relaxin (RLX is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT, a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this

  5. High levels of anti-Nef antibodies may prevent AIDS disease progression in vertically HIV-1-infected infants

    Directory of Open Access Journals (Sweden)

    Guillermo Corró

    2014-02-01

    Full Text Available Introduction: HIV-1-associated CD4+ T-cell depletion is a consequence of uninfected cell death. Nef is one of the viral factors that trigger apoptosis on bystander cells, though the plasma Nef levels do not correlate with Th lymphocytes counts. The aim of our study was to evaluate whether anti-Nef antibodies were involved in paediatric AIDS development and whether they can prevent the CD4+ T-cell depletion in vertically infected children. Methods: Two hundred and seventy three HIV-1 vertically infected children seen at Garrahan Paediatric Hospital were randomly included in the study, adding 13 selected cases: seven LTNP (long-term non-progressors and six RP (rapid progressors children (ntotal=286. Specific anti-HIV-1-Nef antibodies were titrated by indirect ELISA and compared between groups. The plasma blocking effect on Nef-dependent cytotoxicity was evaluated in Jurkat cells using recombinant Nef as apoptotic stimulus and patient plasmas as blockers, measuring the apoptotic levels using Annexin-V stain and flow cytometry. Results: Only 63.4% of the patients had specific anti-Nef antibodies, and the levels of anti-Nef antibodies found in the selected LTNPs plasmas were always significantly higher (p=1.55×10−4 than those in RPs or general HIV-1+ paediatric populations. The LTNPs’ plasma had a strong inhibitory effect on Nef-dependent cytotoxicity even at high dilutions, while RP plasmas had little or no effect on Nef-induced apoptosis. Discussion and conclusions: High anti-Nef antibody levels are associated and predict slow or non-progression to AIDS in vertically HIV-1-infected children. They could be an efficient tool in preventing Nef-associated bystander effect, preserving CD4+ T-cells and the immune function in the context of paediatric HIV-1 infection.

  6. A novel pentapeptide targeting integrin β3-subunit inhibits platelet aggregation and its application in rat for thrombosis prevention

    Directory of Open Access Journals (Sweden)

    Qingrong eQu

    2016-03-01

    Full Text Available Background: Antiplatelet therapy plays a pivotal role in the prevention and treatment of thrombotic diseases. We reported the screening of P1C as a novel integrin-binding peptide from the C-terminal of connective tissue growth factor. Primary study indicated that P1C has potential against platelet aggregation. Objectives: In this study, we aimed to find the shortest active unit from the P1C fragments and explore its in vivo and in vitro activities. Methods: A series of truncated P1C fragments was prepared and screened for antiplatelet activity. The most active fragment was evaluated using coagulation assays. Flow cytometry and confocal microscopy were used to determine the interaction between the peptide and the integrin. The in vivo potential was further explored using two types of rat models. Results: From a series of truncated P1C forms, a so-called P1Cm peptide of 5-amino acids, namely, IRTPK, was screened out as the shortest active unit with superior activity. Coagulation experiments and an in vivo toxicity assay demonstrated that P1Cm is safe in vivo and inhibits ADP- and TH-induced human platelet aggregation in vitro in a concentration-dependent manner. Furthermore, it has limited effect on the coagulation parameters. Flow cytometry and confocal microscopy experiments consistently indicated that the peptide specifically binds the β3-subunit of integrin on platelets. Further experiments using rat models of artery-vein shunt and carotid arterial thrombosis illustrated that P1Cm can effectively prevent thrombosis formation. Conclusion: All the results suggested that P1Cm may be a new, promising antithrombotic alternative to currently available antiplatelet treatments.

  7. Preventive effect of α-lipoic acid on prepulse inhibition deficits in a juvenile two-hit model of schizophrenia.

    Science.gov (United States)

    Deslauriers, J; Racine, W; Sarret, P; Grignon, S

    2014-07-11

    Some pathophysiological models of schizophrenia posit that prenatal inflammation sensitizes the developing brain to second insults in early life and enhances brain vulnerability, thereby increasing the risk of developing the disorder during adulthood. We previously developed a two-hit animal model, based on the well-established prenatal immune challenge with poly-inosinic/cytidylic acid (polyI:C), followed by juvenile restraint stress (RS). We observed an additive disruption of prepulse inhibition (PPI) of acoustic startle in juvenile mice submitted to both insults. Previous studies have also reported that oxidative stress is associated with pathophysiological mechanisms of psychiatric disorders, including schizophrenia. We report here that PPI disruption in our two-hit animal model of schizophrenia is associated with an increase in oxidative stress. These findings led us to assess whether α-lipoic acid, an antioxidant, can prevent both increase in oxidative status and PPI deficits in our juvenile in vivo model of schizophrenia. In the offspring submitted to prenatal injection of polyI:C and to RS, treatment with α-lipoic acid prevented the development of PPI deficits 24h after the last period of RS. α-Lipoic acid also improved PPI performance in control mice. The reversal effect of α-lipoic acid pretreatment on these behavioral alterations was further accompanied by a normalization of the associated oxidative status and dopaminergic and GABAergic abnormalities in the prefrontal cortex. Based on our double insult paradigm, these results support the hypothesis that oxidative stress plays an important role in the development of PPI deficits, a well-known behavior associated with schizophrenia. These findings form the basis of future studies aiming to unravel mechanistic insights of the putative role of antioxidants in the treatment of schizophrenia, especially during the prodromal stage.

  8. 8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation.

    Science.gov (United States)

    Jiménez-García, Lidia; Través, Paqui G; López-Fontal, Raquel; Herranz, Sandra; Higueras, María Angeles; de Las Heras, Beatriz; Hortelano, Sonsoles; Luque, Alfonso

    2016-07-15

    Endothelial activation contributes to lung inflammatory disorders by inducing leucocyte recruitment to pulmonary parenchyma. Consequently, vascular-targeted therapies constitute promising strategies for the treatment of inflammatory pathologies. In the present study, we evaluated the effect of 8,9-dehydrohispanolone-15,16-lactol diterpene (DT) on lung endothelium during inflammation. Lung endothelial cells pre-treated with DT and activated with lipopolysaccharide (LPS) or tumour necrosis factor-α (TNF-α) exhibited reduced expression of the pro-inflammatory cytokines Cxcl10, Ccl5 and Cxcl1, whereas the anti-inflammatory molecules IL1r2 and IL-10 were induced. Consistent with this result, DT pre-treatment inhibited nuclear factor κB (NF-κB) nuclear translocation, by interfering with IκBα phosphorylation, and consequently NF-κB transcriptional activity in endothelium activated by LPS or TNF-α. Furthermore, DT, probably through p38 signalling, induced transcriptional activation of genes containing activator protein 1 (AP-1)-binding elements. Inhibition of p38 prevented IL1r2 mRNA expression in endothelium incubated with DT alone or in combination with LPS or TNF-α. Accordingly, conditioned medium (CM) from these cells failed to stimulate leucocytes as measured by a reduction in adhesive ability of the leucocyte cell line J774 to fibronectin (FN). Additionally, DT reduced the expression of the endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) after activation. Similarly, expression of VCAM-1 and ICAM-1 molecules on the lung endothelial layer of C57/BL6 mice pre-treated with DT and challenged with LPS were unchanged. Finally, inhibition of vascular adhesion molecule expression by DT decreased the interaction of J774 cells with lung endothelial cells in an inflammatory environment. Our findings establish DT as a novel endothelial inhibitor for the treatment of inflammatory

  9. mTOR inhibition prevents rapid-onset of carcinogen-induced malignancies in a novel inducible HPV-16 E6/E7 mouse model.

    Science.gov (United States)

    Callejas-Valera, Juan Luis; Iglesias-Bartolome, Ramiro; Amornphimoltham, Panomwat; Palacios-Garcia, Julia; Martin, Daniel; Califano, Joseph A; Molinolo, Alfredo A; Gutkind, J Silvio

    2016-10-01

    The rising incidence of human papillomavirus (HPV)-associated malignancies, especially for oropharyngeal cancers, has highlighted the urgent need to understand how the interplay between high-risk HPV oncogenes and carcinogenic exposure results in squamous cell carcinoma (SCC) development. Here, we describe an inducible mouse model expressing high risk HPV-16 E6/E7 oncoproteins in adults, bypassing the impact of these viral genes during development. HPV-16 E6/E7 genes were targeted to the basal squamous epithelia in transgenic mice using a doxycycline inducible cytokeratin 5 promoter (cK5-rtTA) system. After doxycycline induction, both E6 and E7 were highly expressed, resulting in rapid epidermal hyperplasia with a remarkable expansion of the proliferative cell compartment to the suprabasal layers. Surprisingly, in spite of the massive growth of epithelial cells and their stem cell progenitors, HPV-E6/E7 expression was not sufficient to trigger mTOR activation, a key oncogenic driver in HPV-associated malignancies, and malignant progression to SCC. However, these mice develop SCC rapidly after a single exposure to a skin carcinogen, DMBA, which was increased by the prolonged exposure to a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Thus, only few oncogenic hits may be sufficient to induce cancer in E6/E7 expressing cells. All HPV-E6/E7 expressing SCC lesions exhibited increased mTOR activation. Remarkably, rapamycin, an mTOR inhibitor, abolished tumor development when administered to HPV-E6/E7 mice prior to DMBA exposure. Our findings revealed that mTOR inhibition protects HPV-E6/E7 expressing tissues form SCC development upon carcinogen exposure, thus supporting the potential clinical use of mTOR inhibitors as a molecular targeted approach for prevention of HPV-associated malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. A report with consensus statements of the International Society of Nephrology 2004 Consensus Workshop on Prevention of Progression of Renal Disease, Hong Kong, June 29, 2004

    NARCIS (Netherlands)

    Dirks, J; Lui, SL; Szeto, CC; Tang, S; Atkins, RC; Mitch, WE; Chow, KM; D'Amico, G; Freedman, BI; Harris, DC; Hooi, LS; de Jong, PE; Kincaid-Smith, P; Lai, KN; Lee, E; Li, FK; Lin, SY; Lo, WK; Mani, MK; Mathew, T; Murakami, M; Qian, JQ; Ramirez, S; Reiser, T; Tomino, Y; Tong, MK; Tsang, WK; Tungsanga, K; Wang, HY; Wong, AK; Wong, KM; Yang, WC; de Zeeuw, D; Yu, AW; Remuzzi, G; Weening, J.J.

    2005-01-01

    This report summarizes the discussions of the International Society of Nephrology (ISN) 2004 Consensus Workshop on Prevention of Progression of Renal Disease, which was held in Hong Kong on June 29, 2004. Three key areas were discussed during the workshop: (1) screening for chronic kidney disease; (

  11. Daily Intake of Grape Powder Prevents the Progression of Kidney Disease in Obese Type 2 Diabetic ZSF1 Rats

    Directory of Open Access Journals (Sweden)

    Salwa M. K. Almomen

    2017-03-01

    Full Text Available Individuals living with metabolic syndrome (MetS such as diabetes and obesity are at high risk for developing chronic kidney disease (CKD. This study investigated the beneficial effect of whole grape powder (WGP diet on MetS-associated CKD. Obese diabetic ZSF1 rats, a kidney disease model with MetS, were fed WGP (5%, w/w diet for six months. Kidney disease was determined using blood and urine chemical analyses, and histology. When compared to Vehicle controls, WGP intake did not change the rat bodyweight, but lowered their kidney, liver and spleen weight, which were in parallel with the lower serum glucose and the higher albumin or albumin/globin ratio. More importantly, WGP intake improved the renal function as urination and proteinuria decreased, or it prevented kidney tissue damage in these diabetic rats. The renal protection of WGP diet was associated with up-regulation of antioxidants (Dhcr24, Gstk1, Prdx2, Sod2, Gpx1 and Gpx4 and downregulation of Txnip (for ROS production in the kidneys. Furthermore, addition of grape extract reduced H2O2-induced cell death of cultured podocytes. In conclusion, daily intake of WGP reduces the progression of kidney disease in obese diabetic rats, suggesting a protective function of antioxidant-rich grape diet against CKD in the setting of MetS.

  12. The lack of eye care preventive services in public health leads to an increase of progressive blindness

    Directory of Open Access Journals (Sweden)

    Clecilene Gomes CARVALHO

    2012-01-01

    Full Text Available Blindness is a serious public health problem. In Brazil, it is estimated that there are 1 million 100 thousandblind and about four million visually impaired, 80% of blindness in the world are predictable causes and / or treatable.Considering the epidemiological importance of eye diseases and magnitude of blindness in Brazil, saw the need for aliterature review in order to understand the problem for future interventions. The survey results showed that: the maincauses of blindness are diabetic retinopathy, macular degeneration, cataracts, glaucoma, and an alarming number ofchildhood blindness due to various causes, the progressive increase of blindness is attributed to several factors, inparticular, the lack eye care, lack of infrastructure, organization, financial resources, which are aggravated by poverty,misinformation, inequality of the population and the absence / lack of educational efforts, despite the alarming statisticsand the gradual increase in blindness, has no effective measure to control it. The model of care in ophthalmologycurative until then, highlights the need for urgent action to ensure eye care in primary health care, thus allowing toensure the completeness, quality, equity in service of disease prevention, promotion, recovery and rehabilitation of eyehealth .

  13. Evaluating Progress in Radon Control Activities for Lung Cancer Prevention in National Comprehensive Cancer Control Program Plans, 2011-2015.

    Science.gov (United States)

    Acree, Pascal; Puckett, Mary; Neri, Antonio

    2017-04-04

    Radon is the second leading cause of lung cancer among smokers and the leading cause among nonsmokers. The Centers for Disease Control and Prevention's National Comprehensive Cancer Control Program (NCCCP) funds every state, seven tribes, seven territories and the District of Columbia to develop formal cancer plans that focus efforts in cancer control. A 2010 review of cancer plans identified radon-related activities in 27 (42%) plans. Since then, 37 coalitions have updated their plans with new or revised cancer control objectives. There has also been recent efforts to increase awareness about radon among cancer coalitions. This study assesses NCCCP grantees current radon activities and changes since the 2010 review. We reviewed all 65 NCCCP grantee cancer plans created from 2005 to 2015 for radon related search terms and categorized plans by radon activities. The program's most recent annual progress report to CDC was also reviewed. We then compared the results from the updated plans with the findings from the 2010 review to assess changes in radon activities among cancer coalitions. Changes in state radon laws between 2010 and 2015 were also assessed. While a number of cancer plans have added or expanded radon-specific activities since 2010, approximately one-third of NCCCP grantees still do not include radon in their cancer plans. Cancer programs can consider addressing radon through partnership with existing radon control programs to further reduce the risk of lung cancer, especially among non-smokers.

  14. Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration.

    Science.gov (United States)

    Qi, Xiaoping; Pay, S Louise; Yan, Yuanqing; Thomas, James; Lewin, Alfred S; Chang, Lung-Ji; Grant, Maria B; Boulton, Michael E

    2017-04-05

    Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.

  15. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models.

    Science.gov (United States)

    Huang, Bingxu; Liu, Juxiong; Ju, Chen; Yang, Dongxue; Chen, Guangxin; Xu, Shiyao; Zeng, Yalong; Yan, Xuan; Wang, Wei; Liu, Dianfeng; Fu, Shoupeng

    2017-09-22

    The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  16. Inhibition of NAPDH Oxidase 2 (NOX2 Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Leroy C Joseph

    Full Text Available Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  17. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats

    Directory of Open Access Journals (Sweden)

    Khadijeh Abhari

    2016-07-01

    Full Text Available Background: Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. Objective: In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA, using arthritis-induced rat model. Design: Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1 control: normal healthy rats fed with standard diet, 2 disease control (RA: arthritis-induced rats fed with standard diet, 3 prebiotic (PRE: RA+ 5% w/w long-chain inulin, 4 probiotic (PRO: RA+ 109 spores/day B. coagulans by orogastric gavage, 5 synbiotic (SYN: RA+ 5% w/w long-chain inulin and 109 spores/day B. coagulans, and 6 treatment control: (INDO: RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn, serum amyloid A (SAA, and TNF-α and alpha-1-acid glycoprotein (α1 AGp was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction, respectively. Results: Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001. A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN

  18. Methotrexate affects HMGB1 expression in rheumatoid arthritis, and the downregulation of HMGB1 prevents rheumatoid arthritis progression.

    Science.gov (United States)

    Li, Yuan-Bo; Xu, Peng; Xu, Ke; Cai, Yong-Song; Sun, Meng-Yao; Yang, Le; Sun, Jian; Lu, She-Min

    2016-09-01

    High-mobility group box 1 (HMGB1) is associated with the development of rheumatoid arthritis (RA). Recent studies have shown that methotrexate (MTX) may inhibit the expression of HMGB1. This study examined whether HMGB1 might be involved in the treatment of RA using MTX. Synovial tissues were collected from RA patients who were treated with MTX for at least 6 months (RA-MTX group, 7 cases) and from those without MTX treatment (RA-noMTX group, 7 cases). Additionally, patients with osteoarthritis (OA group, 7 cases) were used as controls. The expression and locations of HMGB1 in the tissues were detected using real-time PCR, western blot, and immunohistochemistry. Additionally, OA-fibroblast-like synoviocytes (FLSs) and RA-FLSs were isolated and cultured, and the expression of HMGB1 was reduced in these cells by transfection with HMGB1 siRNA. Cell proliferation, migration, and invasion abilities were detected. Furthermore, the effects of HMGB1 on matrix metalloproteinase (MMP)-2 and MMP-13 were measured using western blot analysis. At the tissue level, HMGB1 expression in synovial membrane did not differ significantly between the OA and RA-MTX groups, but was significantly lower in these groups than in the RA-noMTX group. In cell experiments, the cell doubling time in the RA-FLS HMGB1 siRNA group was significantly extended compared with that in the RA-FLS negative control (NC)-siRNA group. The amount of cell migration and invasion in the RA-FLS HMGB1 siRNA group was significantly lower compared with that in the NC-siRNA group; the MMP-2 and MMP-13 expression levels were also lower. These results showed that MTX reduced HMGB1 expression in RA synovial tissues, and through the downregulation of HMGB1 expression in tissues, MTX may slow disease progression of RA.

  19. 维生素K2防治骨质疏松症的研究进展%The research progress of vitamin K2 for the prevention and treatment of osteoporosis

    Institute of Scientific and Technical Information of China (English)

    胡江伟

    2011-01-01

    维生素K2是一种与骨形成和骨吸收有关的药物,具有促进骨形成和抑制骨吸收的双重作用.本文着重论述维生素K2对骨代谢的影响和维生素K2预防和治疗骨质疏松症的临床应用研究等方面的研究新进展.%Objective Vitamin K2 is a medicine related to bone formation and bone resorption. It has a dual function of stimulating bone formation and inhibiting bone resorption. This paper mainly reviews the research progress of the effect of vitamin K2 on bone metabolism and its clinical application for the prevention and treatment of osteoporosis.

  20. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  1. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Yanling Zhang

    Full Text Available Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2 leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection. To examine this further we administered the SGLT2 inhibitor, dapagliflozin, to 5/6 (subtotally nephrectomised rats, a model of progressive chronic kidney disease (CKD that like CKD in humans is characterised by single nephron hyperfiltration and intraglomerular hypertension and where angiotensin converting enzyme inhibitors and angiotensin receptor blockers are demonstrably beneficial. When compared with untreated rats, both sham surgery and 5/6 nephrectomised rats that had received dapagliflozin experienced substantial glycosuria. Nephrectomised rats developed hypertension, heavy proteinuria and declining GFR that was unaffected by the administration of dapagliflozin. Similarly, SGLT2 inhibition did not attenuate the extent of glomerulosclerosis, tubulointerstitial fibrosis or overexpression of the profibrotic cytokine, transforming growth factor-ß1 mRNA in the kidneys of 5/6 nephrectomised rats. While not precluding beneficial effects in the diabetic setting, these findings indicate that SGLT2 inhibition does not have renoprotective effects in this classical model of progressive non-diabetic CKD.

  2. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores.

    Science.gov (United States)

    Burt, Richard K; Cohen, Bruce A; Russell, Eric; Spero, Kenneth; Joshi, Akash; Oyama, Yu; Karpus, William J; Luo, Kehuan; Jovanovic, Borko; Traynor, Ann; Karlin, Karyn; Stefoski, Dusan; Burns, William H

    2003-10-01

    There were 21 patients with rapidly progressive multiple sclerosis (MS) treated on a phase 1/2 study of intense immune suppressive therapy and autologous hematopoietic stem cell (HSC) support with no 1-year mortality. Following transplantation, one patient had a confirmed acute attack of MS. Neurologic progression defined by the expanded disability status scale (EDSS) did not increase in disability by 1.0 or more steps in any of 9 patients with a pretransplantation EDSS of 6.0 or less. In 8 of 12 patients with high pretransplantation disability scores (EDSS > 6.0), progressive neurologic disability as defined by at least a 1-point increase in the EDSS has occurred and was manifested as gradual neurologic deterioration. There were 2 patients with a pretransplantation EDSS of 7.0 and 8.0 who died from complications of progressive disease at 13 and 18 months following treatment. Our experience suggests that intense immune suppression using a total body irradiation (TBI)-based regimen and hematopoietic stem cell transplantation (HSCT) are not effective for patients with progressive disease and high pretransplantation disability scores. Further studies are necessary to determine the role of intense immune suppressive therapy and HSC support in ambulatory patients with less accumulated disability and more inflammatory disease activity. Specifically, more patients and longer follow-up would be required in patients with an EDSS of 6.0 or less before drawing conclusions on this subgroup.

  3. Velvet antler peptide prevents pressure overload-induced cardiac fibrosis via transforming growth factor (TGF)-β1 pathway inhibition.

    Science.gov (United States)

    Zhao, Lihong; Mi, Yang; Guan, Hongya; Xu, Yan; Mei, Yingwu

    2016-07-15

    Velvet antlers (VAs) are commonly used in traditional Chinese medicine and invigorant and contain many functional components for health promotion. The velvet antler peptide sVAP32 is one of active components in VAs; based on structural study, the sVAP32 interacts with TGF-β1 receptors and disrupts the TGF-β1 pathway. We hypothesized that sVAP32 prevents cardiac fibrosis from pressure overload by blocking TGF-β1 signaling. Sprague-Dawley rats underwent transverse aortic constriction (TAC) or a sham operation. After one month, rats received either sVAP32 (15mg/kg/day) or vehicle for an additional one month. TAC surgery induced significant cardiac dysfunction, fibroblast activation and fibrosis; these effects were improved by treatment with sVAP32. In the heart tissue, TAC remarkably increased the expression of TGF-β1 and connective tissue growth factor (CTGF), reactive oxygen species levels, and the phosphorylation levels of Smad2/3 and extracellular signal-regulated kinases 1/2 (ERK1/2). SVAP32 inhibited the increases in reactive oxygen species levels, CTGF expression and the phosphorylation of Smad2/3 and ERK1/2, but not TGF-β1 expression. In cultured cardiac fibroblasts, angiotensin II (Ang II) had similar effects compared to TAC surgery, such as increases in α-SMA-positive cardiac fibroblasts and collagen synthesis. SVAP32 eliminated these effects by disrupting TGF-β1 binding to its receptors and blocking Ang II/TGF-β1 downstream signaling. These results demonstrated that sVAP32 has anti-fibrotic effects by blocking the TGF-β1 pathway in cardiac fibroblasts.

  4. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials

    DEFF Research Database (Denmark)

    Chaturvedi, N.; Porta, M.; Klein, R.;

    2008-01-01

    BACKGROUND: Results of previous studies suggest that renin-angiotensin system blockers might reduce the burden of diabetic retinopathy. We therefore designed the DIabetic REtinopathy Candesartan Trials (DIRECT) Programme to assess whether candesartan could reduce the incidence and progression of ...

  5. Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41.

    Science.gov (United States)

    Rivero-Buceta, Eva; Doyagüez, Elisa G; Colomer, Ignacio; Quesada, Ernesto; Mathys, Leen; Noppen, Sam; Liekens, Sandra; Camarasa, María-José; Pérez-Pérez, María-Jesús; Balzarini, Jan; San-Félix, Ana

    2015-12-01

    Dendrimers containing from 9 to 18 tryptophan residues at the peryphery have been efficiently synthesized and tested against HIV replication. These compounds inhibit an early step of the replicative cycle of HIV, presumably virus entry into its target cell. Our data suggest that HIV inhibition can be achieved by the preferred interaction of the compounds herein described with glycoproteins gp120 and gp41 of the HIV envelope preventing interaction between HIV and the (co)receptors present on the host cells. The results obtained so far indicate that 9 tryptophan residues on the periphery are sufficient for efficient gp120/gp41 binding and anti-HIV activity.

  6. Research Progress of Inhibition Mechanism of Benzotriazole as Corrosion Inhibitor of Copper%铜缓蚀剂苯并三氮唑缓蚀机理的研究进展

    Institute of Scientific and Technical Information of China (English)

    谢文州; 郦和生; 李志林; 杨玉

    2013-01-01

    A review was provided of the research progress of the inhibition mechanism of benzotriazole (BTA) as corrosion inhibitor for copper. The surface structure and composition as well as the corrosion inhibition type of protective films of BTA formed in acidic medium, nearly neutral medium and alkaline medium were highlighted. It was pointed out that BTA functioned to prevent Cu from corrosion by forming protective films on Cu surface. The formation of BTA protective films was affected by oxygen, anodic polarization, BTA concentration and pH value, while elevating BTA concentration and pH value favored the formation of the BTA protective films.%综述了数十年来苯并三氮唑(BTA)对铜缓蚀机理的研究成果,重点介绍了酸性、近中性、碱性及含氯介质中BTA所形成缓蚀膜的结构与组成、缓蚀作用类型:BTA通过在铜表面形成一层保护膜而抑制铜腐蚀,缓蚀膜的形成受到氧气、阳极极化、BTA浓度和pH值的影响,高BTA浓度及高pH值均有利于缓蚀膜的形成.

  7. Cost-effectiveness of anti-oxidant vitamins plus zinc treatment to prevent the progression of intermediate age-related macular degeneration. A Singapore perspective

    OpenAIRE

    Saxena, Nakul; George, Pradeep Paul; Heng, Bee Hoon; Lim, Tock Han; Yong, Shao Onn

    2015-01-01

    Purpose: To determine if providing high dose anti-oxidant vitamins and zinc treatment age-related eye disease study (AREDS formulation) to patients with intermediate age-related macular degeneration (AMD) aged 40–79 years from Singapore is cost-effective in preventing progression to wet AMD. Methods: A hypothetical cohort of category 3 and 4 AMD patients from Singapore was followed for 5 calendar years to determine the number of patients who would progress to wet AMD given the following treat...

  8. Cost-effectiveness of anti-oxidant vitamins plus zinc treatment to prevent the progression of intermediate age-related macular degeneration. A Singapore perspective

    OpenAIRE

    Nakul Saxena; Pradeep Paul George; Bee Hoon Heng; Tock Han Lim; Shao Onn Yong

    2015-01-01

    Purpose: To determine if providing high dose anti-oxidant vitamins and zinc treatment age-related eye disease study (AREDS formulation) to patients with intermediate age-related macular degeneration (AMD) aged 40-79 years from Singapore is cost-effective in preventing progression to wet AMD. Methods: A hypothetical cohort of category 3 and 4 AMD patients from Singapore was followed for 5 calendar years to determine the number of patients who would progress to wet AMD given the following treat...

  9. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.

    Science.gov (United States)

    Dasgupta, Tanushree; Antony, Jisha; Braithwaite, Antony W; Horsfield, Julia A

    2016-06-10

    Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

  10. High serum bicarbonate level within the normal range prevents the progression of chronic kidney disease in elderly chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Kanda Eiichiro

    2013-01-01

    Full Text Available Abstract Background Metabolic acidosis leads to chronic kidney disease (CKD progression. The guidelines recommend a lower limit of serum bicarbonate level, but no upper limit. For serum bicarbonate level to be clinically useful as a therapeutic target marker, it is necessary to investigate the target serum bicarbonate level within the normal range to prevent CKD progression. Methods One hundred and thirteen elderly CKD patients, whose serum bicarbonate level was controlled within the normal range, were enrolled in this retrospective cohort study in Ibaraki, Japan. Outcome was defined as a decrease of 25% or more in estimated glomerular filtration rate (eGFR or starting dialysis. We used Cox proportional hazard models adjusted for patients’ characteristics to examine the association between serum bicarbonate level and the outcome. Results Female patients were 36.3%: average age (SD, 70.4 (6.6 years; eGFR, 25.7 (13.6 ml/min/1.73 m2; serum bicarbonate level, 27.4 (3.2 mEq/l. Patients with the lowest quartile of serum bicarbonate levels [23.4 (1.8 mEq/l] showed a high risk of CKD progression compared with patients with high serum bicarbonate levels [28.8 (2.3 mEq/l]: adjusted hazard ratio (HR, 3.511 (95% CI, 1.342-9.186. A 1 mEq/l increase in serum bicarbonate level was associated with a low risk of CKD progression: adjusted HR, 0.791 [95% confidence interval (CI, 0.684-0.914]. Conclusions In elderly CKD patients, our findings suggest that serum bicarbonate level is independently associated with CKD progression, and that a high serum bicarbonate level is associated with a low risk of CKD progression. A high target serum bicarbonate level within the normal range may be effective for preventing CKD progression.

  11. CSN5 silencing inhibits invasion and arrests cell cycle progression in human colorectal cancer SW480 and LS174T cells in vitro.

    Science.gov (United States)

    Zhong, Gang; Li, Huikai; Shan, Tao; Zhang, Nan

    2015-01-01

    CSN5 has been implicated as a candidate oncogene in human cancers by genetic linkage with activation of the poor-prognosis, wound response gene expression signature. The present study aimed to investigate the effect of silencing CSN5 on invasion and cell cycle progression of human colorectal cancer cells, and to determine the potential molecular mechanisms that are involved. The CSN5 specific small interfering RNA (shRNA) plasmid vector was constructed and then transfected into colorectal cancer cells. The expression of CSN5 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell adhesion and invasion were analyzed using MTS and Transwell assays, respectively, and cell cycle progression was analyzed using flow cytometry. Adhesion, invasion, and cell cycle distribution were assessed following knockdown of CSN5 by RNA interference (RNAi). Furthermore, knockdown of CSN5 significantly inhibited cell adhesion and reduced the number of invasive cells, while increasing the percentage of cells in the G0/G1 phase (Pcell cycle associated proteins in cells with silenced CSN5. The expression levels of CSN5 in colorectal cancer cells transfected with siRNA were decreased, leading to a significant inhibition of colorectal cancer cell adhesion and invasion. Western blot analysis revealed that silencing of CSN5 may inhibit CD44, matrix metalloproteinase (MMP) 2 and MMP 9 protein expression, significantly promoted cell cycle-related genes P53 and P27 expression. In addition, CSN5 silencing may induce activation PI3K/AKT signal regulated cell invasion. Moreover, CSN5 silencing inhibited the secretion of TGF-β, IL-1β and IL-6 and the transcriptional activity of transcription factor NF-κB and Twist in human colorectal cancer cells. Taken together, down regulation of CSN5 may inhibit invasion and arrests cell cycle progression in colorectal cancer via PI3K/AKT/NF-κB signal pathway, which indicates that there is a

  12. Theca cells and theca-cell conditioned medium inhibit the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa.

    Science.gov (United States)

    van Tol, H T; Bevers, M M

    1998-11-01

    The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell-cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that

  13. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    Science.gov (United States)

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  14. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  15. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hannon, Patrick R., E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P{sub 4}) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P{sub 4}, androstenedione (A), testosterone (T), estrone (E{sub 1}), and 17β-estradiol (E{sub 2}) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E{sub 2}. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P{sub 4}, A, T, and E{sub 1} that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. - Highlights: • Mono-OH MXC inhibited antral follicle steroidogenesis, growth, and survival. • Pregnenolone partially restored steroidogenesis

  16. Antibody-Mediated Targeting of Alpha PDGF Receptor to Inhibit the Progression of Skeletal Micro-Metastases

    Science.gov (United States)

    2012-10-01

    or PC3-N cells expressing full-length PDGFRα trea- ted in the same fashion. To test their bone-metastatic potential, PC3-N(αΔX) cells were then... Levitt MJ, et al. A phase II trial of imatinib mesylate in patients with prostate specific antigen progression after local therapy for prostate

  17. Tumor progression locus 2 ablation suppressed hepatocellular carcinoma development by inhibiting hepatic inflammation and steatosis in mice

    Science.gov (United States)

    Background: Tumor progression locus 2 (TPL2), a serine threonine kinase, functions as a critical regulator of inflammatory pathways and mediates oncogenic events. The potential role of Tpl2 in nonalcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) development remains unkn...

  18. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor.

    Science.gov (United States)

    Craig, Zelieann R; Hannon, Patrick R; Flaws, Jodi A

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P4) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P4, androstenedione (A), testosterone (T), estrone (E1), and 17β-estradiol (E2) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E2. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P4, A, T, and E1 that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival.

  19. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes.

    Science.gov (United States)

    Jain, S K; Lim, G

    2001-02-01

    Vitamin B(6) (pyridoxine) supplementation has been found beneficial in preventing diabetic neuropathy and retinopathy, and the glycosylation of proteins. Oxygen radicals and oxidative damage have been implicated in the cellular dysfunction and complications of diabetes. This study was undertaken to test the hypothesis that pyridoxine (P) and pyridoxamine (PM) inhibit superoxide radical production, reduce lipid peroxidation and glycosylation, and increase the (Na+ + K+)-ATPase activity in high glucose-exposed red blood cells (RBC). Superoxide radical production was assessed by the reduction of cytochrome C by glucose in the presence and absence of P or PM in a cell-free buffered solution. To examine cellular effects, washed normal human RBC were treated with control and high glucose concentrations with and without P or PM. Both P and PM significantly lowered lipid peroxidation and glycated hemoglobin (HbA(1)) formation in high glucose-exposed RBC. P and PM significantly prevented the reduction in (Na+ + K+)-ATPase activity in high glucose-treated RBC. Thus, P or PM can inhibit oxygen radical production, which in turn prevents the lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction induced by the hyperglycemia. This study describes a new biochemical mechanism by which P or PM supplementation may delay or inhibit the development of complications in diabetes.

  20. Colominic acid inhibits the proliferation of cultured bovine aortic endothelial cells and injures their monolayers: cell density-dependent effects prevented by sulfation.

    Science.gov (United States)

    Yamamoto, Chika; Morita, Yuki; Yamaguchi, Shinya; Hayashi, Toshimitsu; Kaji, Toshiyuki

    2006-01-18

    Colominic acid (CA), produced by Escherichia coli K1, is a polymer of sialic acid linked through alpha (2-->8) glycosidic linkages. Although there are several studies on the biological activities of chemically sulfated CA, the activity of CA has been incompletely understood. In the present study, we investigated the effects of CA, prepared as an alpha2,8-linked homopolymer of N-acetylneuraminic acid, on the proliferation and monolayer maintenance of bovine aortic endothelial cells in culture. The results indicate that CA potently inhibits the proliferation of sparse endothelial cells without nonspecific cell damage. The inhibitory effect of CA was markedly stronger than those of sodium spirulan and calcium spirulan, known polysaccharides that inhibit endothelial cell proliferation. On the other hand, in dense endothelial cells, CA induced nonspecific cell damage and markedly injured the monolayer. These results indicate that CA has two distinct effects on vascular endothelial cells: one is the inhibition of proliferation when the cell density is low, and the other is the nonspecific cytotoxicity when the cell density is high. Interestingly, these cell density-dependent effects of CA could be prevented by sulfation of the CA chains. Therefore, it is concluded that CA not only inhibits the proliferation of sparse endothelial cells without nonspecific cell damage but also injures dense cells in a monolayer by nonspecific cytotoxicity, which can be prevented by sulfation of the polysaccharide.

  1. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    Science.gov (United States)

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    The present study aimed at developing a natural compound with anti-allergic effect and stability under latex glove manufacturing conditions and investigating whether its anti-allergic effect is maintained after its addition into the latex. The effects of nine natural compounds on growth of the RBL-2H3 cells and mouse primary spleen lymphocytes were determined using MTT assay. The compounds included glycyrrhizin, osthole, tetrandrine, tea polyphenol, catechin, arctigenin, oleanolic acid, baicalin and oxymatrine. An ELISA assay was used for the in vitro anti-type I/IV allergy screening; in this process β-hexosaminidase, histamine, and IL-4 released from RBL-2H3 cell lines and IFN-γ and IL-2 released from mouse primary spleen lymphocytes were taken as screening indices. The physical stability of eight natural compounds and the dissolubility of arctigenin, selected based on the in vitro pharnacodynamaic screening and the stability evaluation, were detected by HPLC. The in vivo pharmacodynamic confirmation of arctigenin and final latex product was evaluated with a passive cutaneous anaphylaxis (PCA) model and an allergen-specific skin response model. Nine natural compounds showed minor growth inhibition on RBL-2H3 cells and mouse primary spleen lymphocytes. Baicalin and arctigenin had the best anti-type I and IV allergic effects among the natural compounds based on the in vitro pharmacodynamic screening. Arctigenin and catechin had the best physical stability under different manufacturing conditions. Arctigenin was the selected for further evaluation and proven to have anti-type I and IV allergic effects in vivo in a dose-dependent manner. The final product of the arctigenin-containing latex glove had anti-type I and IV allergic effects in vivo which were mainly attributed to arctigenin as proved from the dissolubility results. Arctigenin showed anti-type I and IV allergic effects in vitro and in vivo, with a good stability under latex glove manufacturing conditions

  2. Transfer of bcl-xs plasmid is effective in preventing and inhibiting rat hepatocellular carcinoma induced by N-nitrosomorpholine.

    Science.gov (United States)

    Baba, M; Iishi, H; Tatsuta, M

    2001-08-01

    To examine the effect of the bcl-xs gene on the sequence from hepatic precancerous lesions, foci and neoplastic nodules, to hepatocellular carcinomas, Sprague-Dawley rats were given water containing 175 mg/l N-nitrosomorpholine (NNM) for 8 weeks. At weeks 1, 4 and 7, the left lobe of the rat liver was exposed and injected with the bcl-xs plasmid (pCR3.1-rat bcl-xs cDNA) or pCR3.1 encapsulated in cationic empty liposomes each at a dose of 80 microg plasmid/kg body weight. One minute later, low-field-strength, long-duration electric pulses were applied to the left lobe using a pincette electrode with circular poles 1 cm in diameter. The in vivo electroporation procedure significantly increased the transfer of the reporter gene chloramphenicol acetyl transferase (CAT) plasmid via empty liposomes. Thus, CAT mRNA was expressed not only at the sites of electrode contact but at sites 0.5-1.0 cm away from the electrode, and expression also increased with increasing doses of plasmid, meaning that in vivo electroporation enabled the expression of plasmid DNA throughout an extensive area of the rat liver. By week 11, the neoplastic nodules were significantly fewer and smaller in the bcl-xs group than in the pCR3.1 group at the two sites, one with and the other without electrode contact. No hepatocellular carcinomas were found in the rats that had received the bcl-xs plasmid, whereas these tumors were observed in 30% of the rats given pCR3.1. Moreover, overexpression of the bcl-xs protein was detected, and apoptotic activity was significantly increased in the neoplastic nodules, foci and hepatocytes adjacent to the hepatic lesions. These results indicate that the bcl-xs plasmid inhibits the occurrence and growth of rat hepatocellular carcinoma and may thus be effective for the prevention and treatment of human liver tumors.

  3. Paeoniflorin prevents hepatic fibrosis of Schistosomiasis japonica by inhibiting TGF-β1 production from macrophages in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effect of paeoniflorin (PAE)on hepatic fibrosis of mice with Schistosomiasis japonica in vivo and in vitro,a model of hepatic fibrosis caused by schistosomiasis was established in mice infected with cercariae of Schistosomajaponicum.Then,PAE was orally administered before and after praziquantel treatment and both therapeutics were given simultaneously at different time points after the infection.The concentration of serum hyaluronic acid(HA)was determined by radioimmunoassay(RIA).Hepatic granuloma and fibrosis were evaluated via HE and Masson staining.The expression of s-smooth muscle actin(α-SMA),transforming growth factor 131(TGF-β1)and collagen I(Col Ⅰ)protein was detected by immunohistochemistry.The effect of soluble egg antigen(SEA)and PAE on the production of TGF-131 from mouse peritoneal macrophages (PMφs)was investigated by RT-PCR,Western blotting and ELISA.The effect of TGF-β1 in optimum macrophage-conditioned medium(OPMCM)on the proliferation of hepatic stellate cells(HSCs)and collagen secretion from HSCs with anti-TGF-β1 antibody was explored by MTT assay and ELISA.The results show that PAE could significantly reduce the concentration of serum HA,the size of egg granuloma,the severity of hepatic fibrosis and the expression of α-SMA,TGF-β1 and Col I protein in the pre-treatment group.However,in sim-or post-treatment group,PAE did not have any significant therapeutic effect.TGF-β1 could be secreted from PMφs stimulated by SEA.Meanwhile,the production of TGF-β1 from PMφs could be depressed significantly by PAE in a concentration-dependent manner.TGF-β1 could promote the proliferation of HSCs and the secretion of collagens.In a word,PAE can prevent hepatic granuloma and fibrosis caused by schistosomiasis japonica through the inhibition of the secretion of TGF-β1 from PMφs,the proliferation and activation of HSCs and the secretion of collagens from HSCs.

  4. The dual role of complement in the progression of renal disease in NZB/W F(1) mice and alternative pathway inhibition.

    Science.gov (United States)

    Sekine, Hideharu; Ruiz, Phillip; Gilkeson, Gary S; Tomlinson, Stephen

    2011-10-01

    Complement plays a dual role in the progression of systemic lupus erythematosus since it has important protective functions, such as the clearance of immune complexes and apoptotic cells, but is also a mediator of renal inflammation. To investigate this balance in a clinically relevant setting, we investigated how targeted inhibition of all complement pathways vs. targeted inhibition of only the alternative pathway impacts immune and therapeutic outcomes in NZB/W F(1) mice. Following onset of proteinuria, mice were injected twice weekly with CR2-fH (inhibits alternative pathway), CR2-Crry (inhibits all pathways at C3 activation step), sCR2 (C3d targeting vehicle) or saline. Sera were analyzed every 2 weeks for anti-dsDNA antibody levels, and urinary albumin excretion was determined. Kidneys were collected for histological evaluation at 32 weeks. Compared to the control group, all CR2-fH, CR2-Crry and sCR2 treated groups showed significantly reduced serum anti-dsDNA antibody levels and strong trends towards reduced glomerular IgG deposition levels. Glomerular C3 deposition levels were also significantly reduced in all three-treated groups. However, significant reductions of disease activity (albuminuria and glomerulonephritis) were only seen in the CR2-fH treated group. These data highlight the dual role played by complement in the pathogenesis of lupus, and demonstrate a benefit of selectively inhibiting the alternative complement pathway, presumably because of protective contributions from the classical and/or lectin pathways. The sCR2 targeting moiety appears to be contributing to therapeutic outcome via modulation of autoimmunity. Furthermore, these results are largely consistent with our previous data using the MRL/lpr lupus model, thus broadening the significance of these findings.

  5. Early low-frequency stimulation of the pudendal nerve can inhibit detrusor overactivity and delay progress of bladder fibrosis in dogs with spinal cord injuries.

    Science.gov (United States)

    Li, P; Liao, L; Chen, G; Zhang, F; Tian, Y

    2013-09-01

    To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at the early stage of spinal cord injury (SCI) in dogs, and to explore the possible effects on delayed progression of bladder fibrosis after SCI. The study was performed using six dogs with spinal cord transection at the T9–T10 level. Group 1 (three dogs) under went low-frequency electrical stimulation of the pudendal nerve 1 day after spinal cord transection. Group 2 (three dogs) underwent only spinal cord transection. All dogs underwent urodynamic examination at 1 and 3 months after SCI. The bladders were removed for histological examination of fibrosis at 3 months after SCI. Bladder capacity and compliance were significantly increased (Pstimulation in group 1 when compared with group 2 at 1 and 3 months after SCI. Non-voiding contractions (NVCs) were inhibited in group 1 compared with group 2. Collagen fibers were significantly increased and elastic fibers were significantly decreased (PEarly low-frequency pudendal nerve stimulation can inhibit detrusor overactivity (DO), increase bladder capacity and delay the progression of bladder fibrosis.

  6. KRT6 interacting with notch1 contributes to progression of renal cell carcinoma, and aliskiren inhibits renal carcinoma cell lines proliferation in vitro.

    Science.gov (United States)

    Hu, Jing; Zhang, Li-Chao; Song, Xu; Lu, Jian-Rao; Jin, Zhu

    2015-01-01

    Notch signaling is a conserved and widely expressed signaling pathway, which mediates various physiological processes including tumorigenesis. This study aims to explore the potential role and mechanism of notch1 interacting with KRT6B in the progression of RCC. The results indicated that the mRNA and protein expression of notch1 and KRT6 were significantly increased in tumor tissues, and highly positive correlation existed between notch1 and KRT6. Moreover, the patients with high notch1 expression had a significantly poorer prognosis than those of low expression patients. In vitro, KRT6 loss-of-function could inhibit the expression of notch1 and induce renal carcinoma cell death. Eventually, we found that renin inhibitor, aliskiren, could inhibit cell proliferation and decrease the expression of notch1 and KRT6 as well as regulate apoptosis-related protein expression in 786-O and ACHN renal carcinoma cell lines. These results suggested that the upregulation of notch1 and KRT6B might be involved in the development, progression and prognosis of human RCC, and aliskiren could suppress renal carcinoma cell proliferation, at least partially, through downregulation the expression of notch1 and KRT6.

  7. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis

    OpenAIRE

    Trias, Emiliano; Ibarburu, Sofía; Barreto-Núñez, Romina; Babdor, Joël; Maciel, Thiago T.; Guillo, Matthias; Gros, Laurent; Dubreuil, Patrice; Díaz-Amarilla, Pablo; Cassina, Patricia; Martínez-Palma, Laura; Moura, Ivan C.; Beckman, Joseph S.; Hermine, Olivier; Barbeito, Luis

    2016-01-01

    Background In the SOD1G93A mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefo...

  8. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Bae, Jeehyeon, E-mail: jeehyeon@cau.ac.kr [Department of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Rhee, Sangmyung, E-mail: sangmyung.rhee@cau.ac.kr [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression.

  9. THE MAPK ERK5, BUT NOT ERK1/2, INHIBITS THE PROGRESSION OF MONOCYTIC PHENOTYPE TO THE FUNCTIONING MACROPHAGE

    Science.gov (United States)

    Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S; Kafka, Michael; Danilenko, Michael; Studzinski, George P

    2014-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D3 (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. PMID:25447310

  10. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jianghong, E-mail: jianghonghou@163.com [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China); Xue, Xiaolin [Department of Cardiovascular, The First Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710061 (China); Li, Junnong [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China)

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.

  11. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion.

    Science.gov (United States)

    Zheng, Hao; Li, Ying; Wang, Yuzhong; Zhao, Haixia; Zhang, Jing; Chai, Hongyan; Tang, Tian; Yue, Jiang; Guo, Austin M; Yang, Jing

    2014-10-01

    Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E2 (PGE2) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr(458)), phospho-PDK (Ser(241)) and phospho-Akt (Thr(308)). Conversely, the exogenous addition of PGE2, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE2, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE2, 20-HETE and phospho-Akt (Thr(308)). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities.

  12. Prevention and recovery of (mu(3)-diethylentriamino)-chloro-palladium(II)-chloride induced inhibition of Na/K-ATPase by SH containing ligands--L-cysteine and glutathione.

    Science.gov (United States)

    Krinulović, Katarina; Bugarcić, Zivadin; Vrvić, Miroslav; Krstić, Danijela; Vasić, Vesna

    2006-12-01

    The effect of (mu(3)-diethylentriamino)-chloro-palladium(II)-chloride ([PdCl(dien)]Cl) on the activity of Na/K-ATPase from porcine cerebral cortex was studied in vitro, in the absence and presence of -SH containing ligands L-cysteine and glutathione (GSH). The aim of the study was to elucidate the mechanism of [PdCl(dien)](+) induced inhibition of the enzyme activity and to examine the ability of thiols to prevent and recover the inhibition. The coordinative interaction between [PdCl(dien)](+) and enzyme was verified by UV and (1)H NMR spectra. The semblance in the changes in absorption spectra of [PdCl(dien)](+) in the presence of Na/K-ATPase and thiols (L-cysteine and GSH) suggested that the complex ion interacts with enzymatic sulfhydryl groups. [PdCl(dien)](+) inhibited the enzyme activity in a dose-dependent manner. The Hill analysis of the inhibition curve yielded the half-maximum inhibitory activity value, IC(50)=1.21 x 10(-4)M, and Hill coefficient, n=0.7, suggesting the negative cooperation for binding of [PdCl(dien)](+) to the enzyme. Dependence of the initial reaction rate on the concentration of MgATP(2-) exhibited typical Michelis-Menten kinetics in the absence and presence of the inhibitor. Kinetic analysis showed that [PdCl(dien)](+) inhibited Na/K-ATPase by reducing the maximum reaction rate (V(max)), rather than changing the affinity to the substrate (K(m)). Kinetic parameters derived using Lineweaver-Burk transformation of experimental data indicated the non-competitive nature of Na/K-ATPase inhibition. The inhibitory constant, K(i)=1.05 x 10(-4)M, was determined from secondary replot of Lineweaver-Burk graph, and correlated with stability constants of [Pd(dien)(thiol)] complexes. 1 x 10(-3)M L-cysteine or GSH prevented the enzyme inhibition induced by Pd(II) complex cation when present below 1 x 10(-4)M. The both thiols completely reversed the inhibited activity in the concentration dependent manner, due to the complex formation with [PdCl(dien)](+).

  13. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages.

    Science.gov (United States)

    Alvarado, Raquel; To, Joyce; Lund, Maria E; Pinar, Anita; Mansell, Ashley; Robinson, Mark W; O'Brien, Bronwyn A; Dalton, John P; Donnelly, Sheila

    2017-01-01

    The NLRP3 inflammasome is a multimeric protein complex that controls the production of IL-1β, a cytokine that influences the development of both innate and adaptive immune responses. Helminth parasites secrete molecules that interact with innate immune cells, modulating their activity to ultimately determine the phenotype of differentiated T cells, thus creating an immune environment that is conducive to sustaining chronic infection. We show that one of these molecules, FhHDM-1, a cathelicidin-like peptide secreted by the helminth parasite, Fasciola hepatica, inhibits the activation of the NLRP3 inflammasome resulting in reduced secretion of IL-1β by macrophages. FhHDM-1 had no effect on the synthesis of pro-IL-1β. Rather, the inhibitory effect was associated with the capacity of the peptide to prevent acidification of the endolysosome. The activation of cathepsin B protease by lysosomal destabilization was prevented in FhHDM-1-treated macrophages. By contrast, peptide derivatives of FhHDM-1 that did not alter the lysosomal pH did not inhibit secretion of IL-1β. We propose a novel immune modulatory strategy used by F. hepatica, whereby secretion of the FhHDM-1 peptide impairs the activation of NLRP3 by lysosomal cathepsin B protease, which prevents the downstream production of IL-1β and the development of protective T helper 1 type immune responses that are detrimental to parasite survival.-Alvarado, R., To, J., Lund, M. E., Pinar, A., Mansell, A., Robinson, M. W., O'Brien, B. A., Dalton, J. P., Donnelly, S. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages. © FASEB.

  14. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium

    Directory of Open Access Journals (Sweden)

    Wu L

    2015-11-01

    Full Text Available Lin Wu, Wei Yang, Su-ning Zhang, Ji-bin Lu Department of Thoracic Surgery, Sheng Jing Hospital of China Medical University, Shenyang, People’s Republic of China Objective: Alpinetin is a novel flavonoid that has demonstrated potent antitumor activity in previous studies. However, the efficacy and mechanism of alpinetin in treating lung cancer have not been determined. Methods: We evaluated the impact of different doses and durations of alpinetin treatment on the cell proliferation, the apoptosis of lung cancer cells, as well as the drug-resistant lung cancer cells. Results: This study showed that the alpinetin inhibited the cell proliferation, enhanced the apoptosis, and inhibited the PI3K/Akt signaling in lung cancer cells. Moreover, alpinetin significantly increased the sensitivity of drug-resistant lung cancer cells to the chemotherapeutic effect of cis-diammined dichloridoplatium. Taken together, this study demonstrated that alpinetin significantly suppressed the development of human lung cancer possibly by influencing mitochondria and the PI3K/Akt signaling pathway and sensitized drug-resistant lung cancer cells. Conclusion: Alpinetin may be used as a potential compound for combinatorial therapy or as a complement to other chemotherapeutic agents when multiple lines of treatments have failed to reduce lung cancer. Keywords: alpinetin, cell proliferation and apoptosis, drug resistance reversal, PI3K/Akt, lung cancer

  15. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy.

    Science.gov (United States)

    Zhang, Ming-Zhi; Wang, Yinqui; Paueksakon, Paisit; Harris, Raymond C

    2014-06-01

    Previous studies by us and others have reported renal epidermal growth factor receptors (EGFRs) are activated in models of diabetic nephropathy. In the present study, we examined the effect of treatment with erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of diabetic nephropathy in a type 1 diabetic mouse model. Inhibition of renal EGFR activation by erlotinib was confirmed by decreased phosphorylation of EGFR and extracellular signal-related kinase 1/2. Increased albumin/creatinine ratio in diabetic mice was markedly attenuated by erlotinib treatment. Erlotinib-treated animals had less histological glomerular injury as well as decreased renal expression of connective tissue growth factor and collagens I and IV. Autophagy plays an important role in the pathophysiology of diabetes mellitus, and impaired autophagy may lead to increased endoplasmic reticulum (ER) stress and subsequent tissue injury. In diabetic mice, erlotinib-treated mice had evidence of increased renal autophagy, as indicated by altered expression and activity of ATG12, beclin, p62, and LC3A II, hallmarks of autophagy, and had decreased ER stress, as indicated by decreased expression of C/EBP homologous protein, binding immunoglobulin protein, and protein kinase RNA-like ER kinase. The mammalian target of rapamycin (mTOR) pathway, a key factor in the development of diabetic nephropathy and an inhibitor of autophagy, is inhibited by AMP-activated protein kinase (AMPK) activation. Erlotinib-treated mice had activated AMPK and inhibition of the mTOR pathway, as evidenced by decreased phosphorylation of raptor and mTOR and the downstream targets S6 kinase and eukaryotic initiation factor 4B. Erlotinib also led to AMPK-dependent phosphorylation of Ulk1, an initiator of mammalian autophagy. These studies demonstrate that inhibition of EGFR with erlotinib attenuates the development of diabetic nephropathy in type 1 diabetes, which is mediated at least in part by inhibition of m

  16. U-Bang-Haequi Tang: A Herbal Prescription that Prevents Acute Inflammation through Inhibition of NF-κB-Mediated Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Min Hwangbo

    2014-01-01

    Full Text Available Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine. U-bang-haequi tang (UBT is a herbal prescription containing Arctii fructus and Forsythia suspensa as its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS. Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bα induced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.

  17. Diabetic HDL-associated myristic acid inhibits acetylcholine-induced nitric oxide generation by preventing the association of endothelial nitric oxide synthase with calmodulin.

    Science.gov (United States)

    White, James; Guerin, Theresa; Swanson, Hollie; Post, Steven; Zhu, Haining; Gong, Ming; Liu, Jun; Everson, William V; Li, Xiang-An; Graf, Gregory A; Ballard, Hubert O; Ross, Stuart A; Smart, Eric J

    2008-01-01

    In the current study, we examined whether diabetes affected the ability of HDL to stimulate nitric oxide (NO) production. Using HDL isolated from both diabetic humans and diabetic mouse models, we found that female HDL no longer induced NO synthesis, despite containing equivalent amounts of estrogen as nondiabetic controls. Furthermore, HDL isolated from diabetic females and males prevented acetylcholine-induced stimulation of NO generation. Analyses of both the human and mouse diabetic HDL particles showed that the HDLs contained increased levels of myristic acid. To determine whether myristic acid associated with HDL particles was responsible for the decrease in NO generation, myristic acid was added to HDL isolated from nondiabetic humans and mice. Myristic acid-associated HDL inhibited the generation of NO in a dose-dependent manner. Importantly, diabetic HDL did not alter the levels of endothelial NO synthase or acetylcholine receptors associated with the cells. Surprisingly, diabetic HDL inhibited ionomycin-induced stimulation of NO production without affecting ionomycin-induced increases in intracellular calcium. Further analysis indicated that diabetic HDL prevented calmodulin from interacting with endothelial NO synthase (eNOS) but did not affect the activation of calmodulin kinase or calcium-independent mechanisms for stimulating eNOS. These studies are the first to show that a specific fatty acid associated with HDL inhibits the stimulation of NO generation. These findings have important implications regarding cardiovascular disease in diabetic patients.

  18. Glycemic control with insulin prevents progression of dental caries and caries-related periodontitis in diabetic WBN/KobSlc rats.

    Science.gov (United States)

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-07-01

    We have previously reported that dental caries progress in spontaneously and chemically induced diabetic rodent models. The aim of this study was to clarify the relationship between hyperglycemia and dental caries by evaluating the preventive effect of glycemic control with insulin on the progression of the lesions in diabetic rats. Male WBN/KobSlc rats aged 15 weeks were divided into groups of spontaneously diabetic rats (intact group), spontaneously diabetic rats with insulin treatment (INS group), alloxan-induced prolonged diabetic rats (AL group), and alloxan-induced prolonged diabetic rats with insulin treatment (AL + INS group). The animals were killed at 90 weeks of age, and their oral tissue was examined. Dental caries and periodontitis were frequently detected in the intact group, and the lesions were enhanced in the AL group (in which there was an increased duration of diabetes). Meanwhile, glycemic control with insulin reduced the incidence and severity of dental caries and periodontitis in the INS group, and the effects became more pronounced in the AL + INS group. In conclusion, glycemic control by insulin prevented the progression of dental caries and caries-related periodontitis in the diabetic rats.

  19. Adaptation in Response of Excitation and Inhibition Factors of Angiogenesis after 4 Weeks of Progressive Resistant Training in Sedentary Men

    Directory of Open Access Journals (Sweden)

    s. Karami

    2016-09-01

    Full Text Available Aims: The sport activity is an important factor affecting the capillary density and angiogenesis. Nitric oxide (NO and vascular endothelial growth factor (VEGF are the most important stimulative regulators in the angiogenesis. In addition, endostatin is one of the inhibitors of angiogenesis. The aim of this study was to investigate the adaptation in the responses of the angiogenesis inhibition and stimulating factors after 4-week increasing resistive exercises in the sedentary men. Materials & Methods: In the semi-experimental study, 20 healthy and inactive male students, aged between 20 and 25 years, who were residents of Tehran University Dormitory, were studied in the first semester of the academic year 2015-16. The subjects, selected via available sampling method, were divided into two groups including experimental and control groups (n=10 per group. 4-week resistive exercises were done three sessions per week. Blood-sampling was done before and 48 hours after the last exercise session. VEGF, NO, and endostatin were then measured. Data was analyzed by SPSS 18 software using independent and dependent T tests, as well as Pearson correlation coefficient test. Findings: In experimental group, VEGF and No significantly increased at the posttest stage than the pretest (p=0.001. Nevertheless, no significant difference was observed in control group (p>0.05. In both experimental and control groups, endostatin level did not significantly increase at the posttest stage than the pretest (p>0.05. In addition, VEGF and NO were the only variables that were significantly correlated (p=0.016; r=0.82. Conclusion: 4-week increasing resistive exercises in the sedentary men significantly affect the angiogenes stimulating factors, i. e. VEGF and NO, while such exercises do not significantly affect the angiogenesis inhibition factor, i. e. endostatin.

  20. Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke

    Science.gov (United States)

    Kikuchi, Kiyoshi; Tancharoen, Salunya; Ito, Takashi; Morimoto-Yamashita, Yoko; Miura, Naoki; Kawahara, Ko-ichi; Maruyama, Ikuro; Murai, Yoshinaka; Tanaka, Eiichiro

    2013-01-01

    Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs. PMID:24065095

  1. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    Science.gov (United States)

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-11-25

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.

  2. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity.

  3. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  4. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  5. Nitric Oxide Releasing Nanoparticles prevent Propionibacterium acnes induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response

    Science.gov (United States)

    Qin, Min; Landriscina, Angelo; Rosen, Jamie; Wei, Gabrielle; Kao, Stephanie; Olcott, William; Agak, George W.; Paz, Karin Blecher; Bonventre, Josephine; Clendaniel, Alicea; Harper, Stacey; Adler, Brandon; Krausz, Aimee; Friedman, Joel; Nosanchuk, Joshua; Kim, Jenny; Friedman, Adam J

    2015-01-01

    Propionibacterium acnes induction of IL-1 cytokines through the NLRP3 inflammasome was recently highlighted as a dominant etiological factor for acne vulgaris. Therefore, therapeutics targeting both the stimulus and the cascade would be ideal. Nitric oxide (NO), a potent biological messenger, has documented broad-spectrum antimicrobial and immunomodulatory properties. To harness these characteristics to target acne, we utilized an established nanotechnology capable of generating/releasing nitric oxide over time (NO-np). P. acnes was found to be highly sensitive to all concentrations of NO-np tested, though human keratinocyte, monocyte, and embryonic zebra fish assays revealed no cytotoxicity. NO-np significantly suppressed IL-1β, TNF-α, IL-8 and IL-6 from human monocytes and IL-8 and IL-6 from human keratinocytes respectively. Importantly, silencing of NLRP3 expression by small interfering RNA did not limit NO-np inhibition of IL-1 β secretion from monocytes, and neither TNF-α, nor IL-6 secretion nor inhibition by NO-np was found to be dependent on this pathway. The observed mechanism by which NO-np impacts IL-1β secretion was through inhibition of caspase-1 and IL-1β gene expression. Together, these data suggest that NO-np can effectively prevent P. acnes induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response. PMID:26172313

  6. Nitric Oxide-Releasing Nanoparticles Prevent Propionibacterium acnes-Induced Inflammation by Both Clearing the Organism and Inhibiting Microbial Stimulation of the Innate Immune Response.

    Science.gov (United States)

    Qin, Min; Landriscina, Angelo; Rosen, Jamie M; Wei, Gabrielle; Kao, Stephanie; Olcott, William; Agak, George W; Paz, Karin B; Bonventre, Josephine; Clendaniel, Alicea; Harper, Stacey; Adler, Brandon L; Krausz, Aimee E; Friedman, Joel M; Nosanchuk, Joshua D; Kim, Jenny; Friedman, Adam J

    2015-11-01

    Propionibacterium acnes induction of IL-1 cytokines through the NLRP3 (NLR, nucleotide oligomerization domain-like receptor) inflammasome was recently highlighted as a dominant etiological factor for acne vulgaris. Therefore, therapeutics targeting both the stimulus and the cascade would be ideal. Nitric oxide (NO), a potent biological messenger, has documented broad-spectrum antimicrobial and immunomodulatory properties. To harness these characteristics to target acne, we used an established nanotechnology capable of generating/releasing NO over time (NO-np). P. acnes was found to be highly sensitive to all concentrations of NO-np tested, although human keratinocyte, monocyte, and embryonic zebra fish assays revealed no cytotoxicity. NO-np significantly suppressed IL-1β, tumor necrosis factor-α (TNF-α), IL-8, and IL-6 from human monocytes, and IL-8 and IL-6 from human keratinocytes, respectively. Importantly, silencing of NLRP3 expression by small interfering RNA did not limit NO-np inhibition of IL-1 β secretion from monocytes, and neither TNF-α nor IL-6 secretion, nor inhibition by NO-np was found to be dependent on this pathway. The observed mechanism by which NO-np impacts IL-1β secretion was through inhibition of caspase-1 and IL-1β gene expression. Together, these data suggest that NO-np can effectively prevent P. acnes-induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response.

  7. Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway

    Directory of Open Access Journals (Sweden)

    Du Jin-Xing

    2012-04-01

    Full Text Available Abstract Background Huangqi decoction was first described in Prescriptions of the Bureau of Taiping People's Welfare Pharmacy in Song Dynasty (AD 1078, and it is an effective recipe that is usually used to treat consumptive disease, anorexia, and chronic liver diseases. Transforming growth factor beta 1 (TGFβ1 plays a key role in the progression of liver fibrosis, and Huangqi decoction and its ingredients (IHQD markedly ameliorated hepatic fibrotic lesions induced by ligation of the common bile duct (BDL. However, the mechanism of IHQD on hepatic fibrotic lesions is not yet clear. The purpose of the present study is to elucidate the roles of TGFβ1 activation, Smad-signaling pathway, and extracellular signal-regulated kinase (ERK in the pathogenesis of biliary fibrosis progression and the antifibrotic mechanism of IHQD. Methods A liver fibrosis model was induced by ligation of the common bile duct (BDL in rats. Sham-operation was performed in control rats. The BDL rats were randomly divided into two groups: the BDL group and the IHQD group. IHQD was administrated intragastrically for 4 weeks. At the end of the fifth week after BDL, animals were sacrificed for sampling of blood serum and liver tissue. The effect of IHQD on the TGFβ1 signaling pathway was evaluated by western blotting and laser confocal microscopy. Results Decreased content of hepatic hydroxyproline and improved liver function and histopathology were observed in IHQD rats. Hepatocytes, cholangiocytes, and myofibroblasts in the cholestatic liver injury released TGFβ1, and activated TGFβ1 receptors can accelerate liver fibrosis. IHQD markedly inhibited the protein expression of TGFβ1, TGFβ1 receptors, Smad3, and p-ERK1/2 expression with no change of Smad7 expression. Conclusion IHQD exert significant therapeutic effects on BDL-induced fibrosis in rats through inhibition of the activation of TGFβ1-Smad3 and TGFβ1-ERK1/2 signaling pathways.

  8. Downregulation of miR-382 by propranolol inhibits the progression of infantile hemangioma via the PTEN-mediated AKT/mTOR pathway.