WorldWideScience

Sample records for inhibition prevents progressive

  1. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions.

    Science.gov (United States)

    Pifarré, Paula; Gutierrez-Mecinas, María; Prado, Judith; Usero, Lorena; Roura-Mir, Carme; Giralt, Mercedes; Hidalgo, Juan; García, Agustina

    2014-01-01

    In addition to detrimental inflammation, widespread axon degeneration is an important feature of multiple sclerosis (MS) pathology and a major correlate for permanent clinical deficits. Thus, treatments that combine immunomodulatory and neuroprotective effects are beneficial for MS. Using myelin oligodendrocyte glycoprotein peptide 35-55 (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a model of MS, we recently showed that daily treatment with the phosphodiesterase 5 (PDE5) inhibitor sildenafil at peak disease rapidly ameliorates clinical symptoms and neuropathology (Pifarre et al., 2011). We have now investigated the immunomodulatory and neuroprotective actions of sildenafil treatment from the onset of EAE when the immune response prevails and show that early administration of the drug prevents disease progression. Ultrastructural analysis of spinal cord evidenced that sildenafil treatment preserves axons and myelin and increases the number of remyelinating axons. Immunostaining of oligodendrocytes at different stages of differentiation showed that sildenafil protects immature and mature myelinating oligodendrocytes. Brain-derived neurotrophic factor (BDNF), a recognized neuroprotectant in EAE, was up-regulated by sildenafil in immune and neural cells suggesting its implication in the beneficial effects of the drug. RNA microarray analysis of spinal cord revealed that sildenafil up-regulates YM-1, a marker of the alternative macrophage/microglial M2 phenotype that has neuroprotective and regenerative properties. Immunostaining confirmed up-regulation of YM-1 while the classical macrophage/microglial activation marker Iba-1 was down-regulated. Microarray analysis also showed a notable up-regulation of several members of the granzyme B cluster (GrBs). Immunostaining revealed expression of GrBs in Foxp3+-T regulatory cells (Tregs) suggesting a role for these proteases in sildenafil-induced suppression of T effector cells (Teffs). In vitro analysis of

  2. Multi-targeted DATS Prevents Tumor Progression and Promotes Apoptosis in an Animal Model of Glioblastoma via HDAC-inhibition

    Science.gov (United States)

    Wallace, Gerald C; Haar, Catherine P; Vandergrift, W Alex; Giglio, Pierre; Ray, Swapan K; Patel, Sunil J; Banik, Naren L; Das, Arabinda

    2015-01-01

    Glioblastoma, the most malignant and lethal of brain tumors, remains incurable despite aggressive chemotherapy and surgical interventions. Few new chemotherapeutics for glioblastoma therapy have been explored in preclinical models, and some agents approved for have reached the clinical setting. However success rates are not significant. Previous investigations involving diallyl trisulfide (DATS), a garlic constituent, have indicated significant anti-cancer effects in vitro, including: glioblastoma growth inhibition, extrinsic and intrinsic apoptotic pathway activation, and cell death. DATS has also been shown to inhibit histone deacetylase activity and impede glioblastoma tumor progression. We hypothesized that DATS would block ectopic U87MG induced tumors by inhibiting multiple pro-apoptotic pathways via HDAC. To this end, ectopic tumors were developed in SCID mice and subsequently treated with daily intraperitoneal injections of DATS. Results indicate that a range of DATS doses (10μg/kg-10mg/kg) dose-dependently reduced tumor volume and number of mitotic cells within tumors after seven days. Our histological and biochemical assays demonstrate that DATS reduces mitosis in tumors, decreases HDAC activity, increases in acetylation of H3 and H4, inhibits cell cycle progression, promotes apoptotic cascade activation (m-calpian, Bax, caspase-3) and decreases pro-survival markers (Survivin, Bcl-2, p-Akt, c-Myc, mTOR, EGFR, VEGF). Our data also demonstrates an increase in p21/WAF1 expression, which correlates with increased p53 expression and MDM2 degradation following DATS treatment. Finally, histological assessment and enzyme assays suggest that even the highest dose of DATS administered in this study did not negatively impact hepatic function. These in vivo findings strongly support orthotopic investigation into the therapeutic potential of DATS and further review of the epigenetic mechanisms behind its anti-cancer activities. PMID:23754639

  3. Preventing Breast Cancer: Making Progress

    Science.gov (United States)

    ... Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of Contents ... the time a woman is taking the pills, notes Leslie Ford, M.D., associate director for NCI's ...

  4. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    Science.gov (United States)

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline

  5. New metformin derivative HL156A prevents oral cancer progression by inhibiting the insulin-like growth factor/AKT/mammalian target of rapamycin pathways.

    Science.gov (United States)

    Lam, Thuy Giang; Jeong, Yun Soo; Kim, Soo-A; Ahn, Sang-Gun

    2017-12-29

    Metformin is a biguanide widely prescribed as an antidiabetic drug for type 2 diabetes mellitus patients. The purpose of the present study was to observe the effects of the new metformin derivative, HL156A, on human oral cancer cell and to investigate its possible mechanisms. It was observed that HL156A significantly decreased FaDu and YD-10B cell viability and colony formation in a dose-dependent way. HL156A also markedly reduced wound closure and migration of FaDu and YD-10B cells. We observed that HL156A decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) levels and apoptotic cells with caspase-3 and -9 activation. HL156A inhibited the expression and activation of insulin-like growth factor (IGF)-1 and its downstream proteins, AKT, mammalian target of rapamycin (mTOR), and ERK1/2. In addition, HL156A activated AMP-activated protein kinase/nuclear factor kappa B (AMPK-NF-κB) signaling of FaDu and YD-10B cells. A xenograft mouse model further showed that HL156A suppressed AT84 mouse oral tumor growth, accompanied by down-regulated p-IGF-1, p-mTOR, proliferating cell nuclear antigen (PCNA) and promoted p-AMPK and TUNEL expression. These results suggest the potential value of the new metformin derivative HL156A as a candidate for a therapeutic modality for the treatment of oral cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Hanford Site pollution prevention progress report; FINAL

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  7. Hanford Site pollution prevention progress report 1999

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  8. Hanford Site pollution prevention progress report

    Energy Technology Data Exchange (ETDEWEB)

    BETSCH, M.D.

    1999-10-05

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its

  9. Geranylgeranylacetone inhibits ovarian cancer progression in vitro and in vivo

    International Nuclear Information System (INIS)

    Hashimoto, Kae; Morishige, Ken-ichirou; Sawada, Kenjiro; Ogata, Seiji; Tahara, Masahiro; Shimizu, Shoko; Sakata, Masahiro; Tasaka, Keiichi; Kimura, Tadashi

    2007-01-01

    Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation

  10. tanzania danida dental health programme progress in prevention

    African Journals Online (AJOL)

    The third sector we need to examine ~ garding progress in prevention is the activities of the dental profeSSionals themselves. As part of the continuing education programme, all dental assistants have attended a workshop' on epidemiology, health education and planning of preventive programmes. They accepted this new.

  11. Getting Personal: Progress and Pitfalls in HIV Prevention among Latinas

    Science.gov (United States)

    Amaro, Hortensia; Raj, Anita; Reed, Elizabeth; Ulibarri, Monica

    2011-01-01

    This article first presents the political, personal, and epidemiological context of Hortensia Amaro's 1988 publication in "Psychology of Women Quarterly" ("PWQ"), "Considerations for Prevention of HIV Infection Among Hispanic Women" (Amaro, 1988). Second, it provides a brief summary of progress in HIV prevention with Latinas. The third section…

  12. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression.

    Science.gov (United States)

    Zhou, Q; Sherwin, R P; Parrish, C; Richters, V; Groshen, S G; Tsao-Wei, D; Markland, F S

    2000-06-01

    We report the results of a multidisciplinary study on the inhibitory effect of a snake venom disintegrin, contortrostatin, a 13.5 kDa homodimeric protein isolated from Agkistrodon contortrix contortrix (southern copperhead) venom, on breast cancer progression. We demonstrate that contortrostatin binds to integrins and blocks the adhesion of human breast cancer cells (MDA-MB-435) to extracellular matrix (ECM) proteins including fibronectin and vitronectin, but it has no effect on adhesion of the cells to laminin and Matrigel. Contortrostatin also prevents invasion of MDA-MB-435 cells through an artificial Matrigel basement membrane. Daily local injection of contortrostatin (5 microg per mouse per day) into MDA-MB-435 tumor masses in an orthotopic xenograft nude mouse model inhibits growth of the tumor by 74% (p = 0.0164). More importantly, it reduces the number of pulmonary macro-metastasis of the breast cancer by 68% (p cancer cells, and does not inhibit proliferation of the breast cancer cells in vitro. However, contortrostatin inhibits angiogenesis induced by the breast cancer, as shown by immunohistochemical quantitation of the vascular endothelial cells in tumor tissue removed from the nude mice. We have identified alpha(v)beta3, an important integrin mediating cell motility and tumor invasion, as one of the binding sites of contortrostatin on MDA-MB-435 cells. We conclude that contortrostatin blocks alpha(v)beta3, and perhaps other integrins, and thus inhibits in vivo progression.

  13. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Myung

    Full Text Available Androgen receptor (AR is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD. Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  14. Novel Approaches to Breast Cancer Prevention and Inhibition of Metastases

    Science.gov (United States)

    2014-10-01

    TSPAN6 mRNA is expressed in multiple tissues including kidney, liver, thyroid, prostate, pancreas, uterus, testis, salivary and adrenal glands , or smooth......2013 – 29 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Novel Approaches to Breast Cancer Prevention and Inhibition of Metastases 5b

  15. ACAT Inhibition and Progression of Carotid Atherosclerosis in Patients With Familial Hypercholesterolemia The CAPTIVATE Randomized Trial

    NARCIS (Netherlands)

    Meuwese, Marijn C.; de Groot, Eric; Duivenvoorden, Raphaël; Trip, Mieke D.; Ose, Leiv; Maritz, Frans J.; Basart, Dick C. G.; Kastelein, John J. P.; Habib, Rafik; Davidson, Michael H.; Zwinderman, Aeilko H.; Schwocho, Lee R.; Stein, Evan A.

    2009-01-01

    Context Inhibition of acyl coenzyme A: cholesterol acyltransferase (ACAT), an intracellular enzyme involved in cholesterol accumulation, with pactimibe was developed to assist in the prevention of cardiovascular disease. Objective To evaluate the efficacy and safety of pactimibe in inhibition of

  16. Hanford site pollution prevention plan progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kirkendall, J.R.

    1996-08-26

    This report tracks progress made during 1995 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307,`Plans,` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, `Waste Reduction,` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in- process reuse or reclamation of valuable spent material.

  17. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  18. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  19. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hui-fang [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Bao, Xiao-hong [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Wang, Zhi-gang [College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021 (China); Tomono, Yasuko [Division of Molecular and Cell Biology, Shigei Medical Research Institute, 2117 Yamada, Okayama 700-0202 (Japan); Sakurama, Kazufumi; Ohara, Toshiaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Fukazawa, Takuya; Yamatsuji, Tomoki [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Fujiwara, Toshiyoshi [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Naomoto, Yoshio, E-mail: ynaomoto@med.kawasaki-m.ac.jp [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  20. Hanford Site Pollution Prevention Plan Progress report, 1993

    International Nuclear Information System (INIS)

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan

  1. Hanford Site Pollution Prevention Plan Progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan.

  2. Prevention of dipyrone (metamizole) induced inhibition of aspirin antiplatelet effects.

    Science.gov (United States)

    Polzin, Amin; Richter, Stefan; Schrör, Karsten; Rassaf, Tienush; Merx, Marc W; Kelm, Malte; Hohlfeld, Thomas; Zeus, Tobias

    2015-07-01

    We have recently shown that dipyrone (metamizole), a non-opioid analgesic, can nullify aspirin (acetylsalicylic acid; ASA) antiplatelet effects in patients with coronary artery disease (CAD). In this study, we analysed the aspirin and dipyrone drug-drug interaction in order to identify strategies to prevent the dipyrone induced inhibition of asprin antiplatelet effects. Platelet function was measured by arachidonic acid-induced light-transmission aggregometry, thromboxane (TX) B2- formation by immunoassay. Dipyrone metabolite plasma levels were determined by high-performance-liquid-chromatography (HPLC). In seven healthy individuals, in vitro ASA (30 µM/ 100 µM/ 300 µM/ 1,000 µM) and dipyrone (10 µM) coincubation revealed, that the aspirin and dipyrone interaction can be overcome by increasing doses of aspirin. In 36 aspirin and dipyrone comedicated CAD patients, addition of ASA (30 µM/ 100 µM) in vitro inhibited, but did not completely overcome the dipyrone induced reduction of aspirin antiplatelet effects. Notably, the inhibition of thromboxane formation in aspirin and dipyrone comedicated CAD patients coincided with dipyrone plasma levels. In a cross-over designed study in four healthy individuals, we were able to prove that inhibition of aspirin (100 mg/ day) effects by dipyrone (750 mg/ day) was reversible. Furthermore, aspirin (100 mg/ day) medication prior to dipyrone (750 mg/ day) intake prevented the inhibition of antiplatelet effects by dipyrone in 12 healthy individuals. In conclusion, aspirin medication prior to dipyrone intake preserves antiplatelet effects, circumventing the pharmacodynamic drug-drug interaction at the level of cyclooxygenase-1.

  3. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway.

    Directory of Open Access Journals (Sweden)

    Itay Israel Shemesh

    Full Text Available Diabetic nephropathy (DN is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn't decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rpS6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.

  4. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration.

    Science.gov (United States)

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of β-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which led to mitochondrial permeability transition pore (PTP) opening, cytochrome c release and cell death. These events were fully prevented by Imeglimin treatment. This protective effect on cell death occurred without any effect on oxygen consumption rate, on lactate production and on cytosolic redox or phosphate potentials. Imeglimin also dramatically decreased reactive oxygen species production, inhibiting specifically reverse electron transfer through complex I. We conclude that Imeglimin prevents hyperglycemia-induced cell death in HMEC-1 through inhibition of PTP opening without inhibiting mitochondrial respiration nor affecting cellular energy status. Considering the high prevalence of macrovascular and microvascular complications in type 2 diabetic subjects, these results together suggest a potential benefit of Imeglimin in diabetic angiopathy.

  5. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ``Plans,`` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ``Waste Reduction,`` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD.

  6. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ''Plans,'' for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ''Waste Reduction,'' an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD

  7. Myopia onset and progression: can it be prevented?

    Science.gov (United States)

    Russo, Andrea; Semeraro, Francesco; Romano, Mario R; Mastropasqua, Rodolfo; Dell'Omo, Roberto; Costagliola, Ciro

    2014-06-01

    Myopia is the commonest ocular abnormality and the high and growing prevalence of myopia, especially but not only in Asian populations, as well as its progressive nature in children, has contributed to a recent surge in interest. Such worldwide growing prevalence seems to be associated with increasing educational pressures, combined with life-style changes, which have reduced the time that children spend outdoors. Highly nearsighted people are at greater risk for several vision-threatening problems such as retinal detachments, choroidal neovascularization, cataracts and glaucoma, thus the potential benefits of interventions that can limit or prevent myopia progression would be of remarkable social impact. Our understanding of the regulatory processes that lead an eye to refractive errors is undoubtedly incomplete but has grown enormously in the last decades thanks to the animal studies, observational clinical studies, and randomized clinical trials recently published. In this review we assess the effects of several types of life-style and interventions, including outdoor activities, eye drops, undercorrection of myopia, multifocal spectacles, contact lenses, and refractive surgery on the onset and progression of nearsightedness.

  8. Preventing progression from arthralgia to arthritis: targeting the right patients.

    Science.gov (United States)

    van Steenbergen, Hanna W; da Silva, José A Pereira; Huizinga, Tom W J; van der Helm-van Mil, Annette H M

    2018-01-01

    Early treatment is associated with improved outcomes in patients with rheumatoid arthritis (RA), suggesting that a 'window of opportunity', in which the disease is most susceptible to disease-modifying treatment, exists. Autoantibodies and markers of systemic inflammation can be present long before clinical arthritis, and maturation of the immune response seems to coincide with the development of RA. The pre-arthritis phase associated with symptoms such as as joint pain without clinical arthritis (athralgia) is now hypothesized to fall within the aforementioned window of opportunity. Consequently, disease modulation in this phase might prevent the occurrence of clinically apparent arthritis, which would result in a persistent disease course if untreated. Several ongoing proof-of-concept trials are now testing this hypothesis. This Review highlights the importance of adequate risk prediction for the correct design, execution and interpretation of results of these prevention trials, as well as considerations when translating these findings into clinical practice. The patients' perspectives are discussed, and the accuracy with which RA development can be predicted in patients presenting with arthralgia is evaluated. Currently, the best starting position for preventive studies is proposed to be the inclusion of patients with an increased risk of RA, such as those identified as fulfilling the EULAR definition of 'arthralgia suspicious for progression to RA'.

  9. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance.

    Science.gov (United States)

    O'Malley, Katherine J; Langmann, Gabrielle; Ai, Junkui; Ramos-Garcia, Raquel; Vessella, Robert L; Wang, Zhou

    2012-07-01

    Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression; however, all patients eventually relapse with castration-resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting Heat shock protein 90 (HSP90) regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance. The HSP90 inhibitor 17-AAG was injected intraperitoneally into nude mice bearing LuCaP35 xenograft tumors to determine the effect of HSP90 inhibition on prostate cancer progression to castration resistance and host survival. Administration of 17-AAG maintained androgen-sensitivity, delayed the progression of LuCaP35 xenograft tumors to castration resistance, and prolonged the survival of host. In addition, 17-AAG prevented nuclear localization of endogenous AR in LuCaP35 xenograft tumors in castrated nude mice. Targeting Hsp90 or the mechanism by which HSP90 regulates androgen-independent AR nuclear localization and activation may lead to new approaches to prevent and/or treat castration-resistant prostate cancer. Copyright © 2011 Wiley Periodicals, Inc.

  10. MicroRNA-197 inhibits gastric cancer progression by directly targeting metadherin.

    Science.gov (United States)

    Liao, Zhiwei; Li, Yue; Zhou, Yuanhang; Huang, Qi; Dong, Jian

    2018-01-01

    Gastric cancer is the fifth most frequent malignancy and the fourth most common cause of cancer‑associated mortality worldwide. MicroRNAs (miRNAs) are a group of small RNAs that regulate several cellular processes. In particular, a large number of miRNAs are involved in gastric cancer formation and progression. Thus, miRNAs may be considered as effective diagnostic biomarkers and therapeutic methods for gastric cancer. The aim of the current study was to detect miRNA (miR)‑197 expression in gastric cancer and to investigate its biological role and associated mechanism in gastric cancer. In the present study, miR‑197 expression was demonstrated to be considerably downregulated in gastric cancer tissues and cell lines. Its low expression level was associated with tumour size, invasive depth, tumour‑node‑metastasis staging and lymph node metastasis. High expression of miR‑197 inhibited tumour cell proliferation and invasion in vitro. Subsequently, metadherin (MTDH) was identified as a direct target gene of miR‑197 in gastric cancer, and this was confirmed by bioinformatics analysis, Dual‑luciferase reporter assay, reverse transcription quantitative polymerase chain reaction and western blot analysis. MTDH expression was upregulated in gastric cancer and was inversely correlated with miR‑197 expression levels. In addition, MTDH overexpression prevented the proliferation and inhibited invasion induced by miR‑197 overexpression. In addition, miR‑197 was demonstrated to regulate the phosphatase and tensin homolog (PTEN)/AKT signalling pathway in gastric cancer. The results of the present study suggested that miR‑197 serves a tumour‑suppressing role in human gastric carcinogenesis and progression by regulating the MTDH/PTEN/AKT signalling pathway. The miR‑197/MTDH axis may provide a novel effective therapeutic target for patients with gastric cancer.

  11. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Directory of Open Access Journals (Sweden)

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  12. Assessing the role of prevention partnerships in STD prevention: a review of comprehensive STD prevention systems progress reports.

    Science.gov (United States)

    Hogben, Matthew; Hood, Julia; Collins, Dayne; McFarlane, Mary

    2013-11-01

    Systematic analysis of STD programme data contributes to a national portrait of sexually transmitted disease (STD) prevention activities, including research and evaluation specifically designed to optimise programme efficiency and impact. We analysed the narrative of the 2009 annual progress reports of the US Comprehensive STD Prevention Systems cooperative agreement for 58 STD programmes, concentrating on programme characteristics and partnerships. Programmes described 516 unique partnerships with a median of seven organisations cited per STD programme. Non-profit organisations (including service providers) were most frequently cited. Higher gonorrhoea morbidity was associated with reporting more partnerships; budget problems were associated with reporting fewer. Challenges to engaging in partnerships included budget constraints, staff turnover and low interest. Data provide a source of information for judging progress in programme collaboration and for informing a sustained programme-focused research and evaluation agenda.

  13. Furanyl Fatty Acid Inhibition of FABP5 as a Mechanism for Treatment and Prevention of Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0699 TITLE: Furanyl Fatty Acid Inhibition of FABP5 as a Mechanism for Treatment and Prevention of Cancer PRINCIPAL...pharmacologic inhibition will prevent the oncogenic effects of FABP5 overexpression in highly relevant breast cancer models that display a high ratio of...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Furanyl Fatty Acid Inhibition of FABP5 as a Mechanism for Treatment and Prevention of

  14. Bicarbonate therapy for prevention of chronic kidney disease progression.

    Science.gov (United States)

    Łoniewski, Igor; Wesson, Donald E

    2014-03-01

    Kidney injury in chronic kidney disease (CKD) is likely multifactorial, but recent data support that a component is mediated by mechanisms used by the kidney to increase acidification in response to an acid challenge to systemic acid-base status. If so, systemic alkalization might attenuate this acid-induced component of kidney injury. An acid challenge to systemic acid-base status increases nephron acidification through increased production of endothelin, aldosterone, and angiotensin II, each of which can contribute to kidney inflammation and fibrosis that characterizes CKD. Systemic alkalization that ameliorates an acid challenge might attenuate the contributions of angiotensin II, endothelin, and aldosterone to kidney injury. Some small clinical studies support the efficacy of alkalization in attenuating kidney injury and slowing glomerular filtration rate decline in CKD. This review focuses on the potential that orally administered NaHCO₃ prevents CKD progression and additionally addresses its mechanism of action, side effects, possible complications, dosage, interaction, galenic form description, and contraindications. Current National Kidney Foundation guidelines recommend oral alkali, including NaHCO₃(-), in CKD patients with serum HCO₃(-) <22 mmol/l. Although oral alkali can be provided by other medications and by base-inducing dietary constituents, oral NaHCO₃ will be the focus of this review because of its relative safety and apparent efficacy, and its comparatively low cost.

  15. Inhibition of Mutation: A Novel Approach to Preventing and Treating Cancer

    National Research Council Canada - National Science Library

    Romesberg, Floyd E

    2007-01-01

    .... Specific biochemical pathways are responsible for introducing mutation to the genome. Using drug(s) to inhibit one or more of these proteins and thereby prevent cancer is a novel and unique cancer prevention approach...

  16. ADAMTS13 Retards Progression of Diabetic Nephropathy by Inhibiting Intrarenal Thrombosis in Mice.

    Science.gov (United States)

    Dhanesha, Nirav; Doddapattar, Prakash; Chorawala, Mehul R; Nayak, Manasa K; Kokame, Koichi; Staber, Janice M; Lentz, Steven R; Chauhan, Anil K

    2017-07-01

    ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type I repeats-13) prevents microvascular thrombosis by cleaving prothrombogenic ultralarge von Willebrand factor (VWF) multimers. Clinical studies have found association between reduced ADAMTS13-specific activity, ultralarge VWF multimers, and thrombotic angiopathy in patients with diabetic nephropathy. It remains unknown, however, whether ADAMTS13 deficiency or ultralarge VWF multimers have a causative effect in diabetic nephropathy. The extent of renal injury was evaluated in wild-type (WT), Adamts 13 -/- and Adamts 13 -/- Vwf -/- mice after 26 weeks of streptozotocin-induced diabetic nephropathy. We found that WT diabetic mice exhibited low plasma ADAMTS13-specific activity and increased VWF levels ( P thrombosis (assessed by plasminogen activator inhibitor, VWF, fibrin(ogen), and CD41-positive microthrombi), increased mesangial cell expansion, and extracellular matrix deposition ( P thrombosis, and alleviated histological changes in glomeruli, suggesting that exacerbation of diabetic nephropathy in the setting of ADAMTS13 deficiency is VWF dependent. ADAMTS13 retards progression of diabetic nephropathy, most likely by inhibiting VWF-dependent intrarenal thrombosis. Alteration in ADAMTS13-VWF balance may be one of the key pathophysiological mechanisms of thrombotic angiopathy in diabetes mellitus. © 2017 American Heart Association, Inc.

  17. Efficacy of nighttime brace in preventing progression of idiopathic scoliosis of less than 25°.

    Science.gov (United States)

    Lateur, G; Grobost, P; Gerbelot, J; Eid, A; Griffet, J; Courvoisier, A

    2017-04-01

    The objective of the present study was to assess, at skeletal maturity, the efficacy of non-operative treatment by isolated nighttime brace in the prevention of progression of progressive idiopathic scoliosis of less than 25°. Isolated nighttime brace treatment is effective in the prevention of progression of mild progressive idiopathic scoliosis (Cobbscoliosis with Cobb anglescoliosis (scoliosis, ensuring a safe curve of around 20°. Level IV, retrospective study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Inhibition of fatty acid synthase prevents preadipocyte differentiation

    International Nuclear Information System (INIS)

    Schmid, Bernhard; Rippmann, Joerg F.; Tadayyon, Moh; Hamilton, Bradford S.

    2005-01-01

    Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 μM), triclosan (50 μM), and C75 (50 μM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1- 14 C]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPα, and PPARγ mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPα and PPARγ mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation

  19. Astaxanthin inhibits gemcitabine-resistant human pancreatic cancer progression through EMT inhibition and gemcitabine resensitization.

    Science.gov (United States)

    Yan, Tao; Li, Hai-Ying; Wu, Jian-Song; Niu, Qiang; Duan, Wei-Hong; Han, Qing-Zeng; Ji, Wang-Ming; Zhang, Tao; Lv, Wei

    2017-11-01

    Pancreatic cancer rapidly acquires resistance to chemotherapy resulting in its being difficult to treat. Gemcitabine is the current clinical chemotherapy strategy; however, owing to gemcitabine resistance, it is only able to prolong the life of patients with pancreatic cancer for a limited number of months. Understanding the underlying molecular mechanisms of gemcitabine resistance and selecting a suitable combination of agents for the treatment of pancreatic cancer is required. Astaxanthin (ASX) is able to resensitize gemcitabine-resistant human pancreatic cancer cells (GR-HPCCs) to gemcitabine. ASX was identified to upregulate human equilibrative nucleoside transporter 1 (hENT1) and downregulate ribonucleoside diphosphate reductase (RRM) 1 and 2 to enhance gemcitabine-induced cell death in GR-HPCCs treated with gemcitabine, and also downregulates TWIST1 and ZEB1 to inhibit the gemcitabine-induced epithelial-mesenchymal transition (EMT) phenotype in GR-HPCCs and to mediate hENT1, RRM1 and RRM2. Furthermore, ASX acts through the hypoxia-inducible factor 1α/signal transducer and activator of transcription 3 signaling pathway to mediate TWIST1, ZEB1, hENT1, RRM1 and RRM2, regulating the gemcitabine-induced EMT phenotype and gemcitabine-induced cell death. Co-treatment with ASX and gemcitabine in a tumor xenograft model induced by GR-HPCCs supported the in vitro results. The results of the present study provide a novel therapeutic strategy for the treatment of gemcitabine-resistant pancreatic cancer.

  20. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    Science.gov (United States)

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Smoking Cessation - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Drug Education and Prevention: Has Progress Been Made?

    Science.gov (United States)

    Coggans, Niall

    2006-01-01

    Ten years after publication of the UK Government's strategy for drug misuse in 1995, Tackling Drugs Together, the impact of drug education and prevention programmes remains less than desired. The 1995 strategy envisaged a new emphasis on education and prevention and there have been developments since then in drug education, especially with…

  3. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  4. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei

    2016-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  5. Targeting vasculogenesis to prevent progression in multiple myeloma.

    Science.gov (United States)

    Moschetta, M; Mishima, Y; Kawano, Y; Manier, S; Paiva, B; Palomera, L; Aljawai, Y; Calcinotto, A; Unitt, C; Sahin, I; Sacco, A; Glavey, S; Shi, J; Reagan, M R; Prosper, F; Bellone, M; Chesi, M; Bergsagel, L P; Vacca, A; Roccaro, A M; Ghobrial, I M

    2016-05-01

    The role of endothelial progenitor cell (EPC)-mediated vasculogenesis in hematological malignancies is not well explored. Here, we showed that EPCs are mobilized from the bone marrow (BM) to the peripheral blood at early stages of multiple myeloma (MM); and recruited to MM cell-colonized BM niches. Using EPC-defective ID1+/- ID3-/- mice, we found that MM tumor progression is dependent on EPC trafficking. By performing RNA-sequencing studies, we confirmed that endothelial cells can enhance proliferation and favor cell-cycle progression only in MM clones that are smoldering-like and have dependency on endothelial cells for tumor growth. We further confirmed that angiogenic dependency occurs early and not late during tumor progression in MM. By using a VEGFR2 antibody with anti-vasculogenic activity, we demonstrated that early targeting of EPCs delays tumor progression, while using the same agent at late stages of tumor progression is ineffective. Thus, although there is significant angiogenesis in myeloma, the dependency of the tumor cells on EPCs and vasculogenesis may actually precede this step. Manipulating vasculogenesis at an early stage of disease may be examined in clinical trials in patients with smoldering MM, and other hematological malignancies with precursor conditions.

  6. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  7. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  8. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  9. Research progress of primary prevention for stroke: reports from China

    Directory of Open Access Journals (Sweden)

    Liang-dan TU

    2015-01-01

    Full Text Available Chinese researchers have published some studies in English journals in the past 2 years. These studies focused on status and costs of primary prevention for stroke, warfarin for atrial fibrillation (AF, angiotensin converting enzyme inhibitor (ACEI and angiotensin Ⅱ receptor blocker (ARB for diabetes mellitus, vitamin B supplementation for reducing plasm homocysteine level and the risk of cerebrovascular disease, non-high-density lipoprotein cholesterol (non-HDL-C levels and asymptomatic intracranial arterial stenosis, and Qigong exercises for the prevention of stroke. In this review, we outline the data on primary prevention for stroke and review the risk factors and their management. DOI: 10.3969/j.issn.1672-6731.2015.01.004

  10. [Prognosis and progression of cognitive impairment. Preventive measures].

    Science.gov (United States)

    López Mongil, Rosa; López Trigo, José Antonio

    2016-06-01

    Because of the substantial increase in population ageing, age-related processes, such as dementia and Alzheimer disease (AD), are becoming highly prevalent. The course of this disease, including preprodromic phases, lasts at least 20 years. The presence of comorbidities, especially those of vascular origin, can trigger and aggravate disease progression. On the other hand, cognitive reserve, the absence or control of comorbid factors and healthy lifestyles can protect or modify -in the sense of slow down- disease progression. Knowledge of the phases of AD and their functional impact on affected individuals helps to identify the average prognosis and, in particular, to establish and predict care plans based on the individual's needs. Copyright © 2016 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    International Nuclear Information System (INIS)

    None

    2001-01-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports

  12. Annual report of waste generation and pollution prevention progress 2000 [USDOE] [9th edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This ninth edition of the Annual Report of Waste Generation and Pollution Prevention Progress highlights waste reduction, pollution prevention accomplishments, and cost savings/avoidance for the U.S. Department of Energy (DOE) Pollution Prevention Program for Fiscal Year 2000. This edition marks the first time that progress toward meeting the 2005 Pollution Prevention Goals, issued by the Secretary of Energy in November 1999, is being reported. In addition, the Annual Report has a new format, and now contains information on a fiscal year basis, which is consistent with other DOE reports.

  13. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  14. Annual report of waste generation and pollution prevention progress 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  15. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression.

    Directory of Open Access Journals (Sweden)

    Kyla Walworth

    Full Text Available Elevated valosin containing protein (VCP/p97 levels promote the progression of non-small cell lung carcinoma (NSCLC. Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC progression. The VCP inhibitor(s (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface were tested for their in vitro efficacy in modulating H1299 (NSCLC cells proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay and migration (p<0.05; scratch-assay, and increased apoptosis (p<0.05; caspase-3/7-assay as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion as compared to the control-DDN treatment (p<0.05. Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay and increased caspase-3/7 mediated apoptotic cell death (p<0.05 as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001 by DDNDBeQ treatment as compared to control

  16. Physical Activity Prevents Progression for Cognitive Impairment and Vascular Dementia

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Ferro, José M

    2012-01-01

    BACKGROUND AND PURPOSE: We aimed to study if physical activity could interfere with progression for cognitive impairment and dementia in older people with white matter changes living independently. METHODS: The LADIS (Leukoaraiosis and Disability) prospective multinational European study evaluates....... Physical activity was recorded during the clinical interview. MRI was performed at entry and at the end of the study. RESULTS: Six hundred thirty-nine subjects were included (74.1±5 years old, 55% women, 9.6±3.8 years of schooling, 64% physically active). At the end of follow-up, 90 patients had dementia...... (vascular dementia, 54; Alzheimer disease with vascular component, 34; frontotemporal dementia, 2), and 147 had cognitive impairment not dementia. Using Cox regression analysis, physical activity reduced the risk of cognitive impairment (dementia and not dementia: β=-0.45, P=0.002; hazard ratio, 0.64; 95...

  17. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  18. Carotid Artery Stenting Successfully Prevents Progressive Stroke Due to Mobile Plaque

    Directory of Open Access Journals (Sweden)

    Masahiro Oomura

    2015-05-01

    Full Text Available We report a case of progressive ischemic stroke due to a mobile plaque, in which carotid artery stenting successfully prevented further infarctions. A 78-year-old man developed acute multiple infarcts in the right hemisphere, and a duplex ultrasound showed a mobile plaque involving the bifurcation of the left common carotid artery. Maximal medical therapy failed to prevent further infarcts, and the number of infarcts increased with his neurological deterioration. Our present case suggests that the deployment of a closed-cell stent is effective to prevent the progression of the ischemic stroke due to the mobile plaque.

  19. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  20. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  1. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: xiangruimengzz@163.com [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China); Chen, Xiaoqi [Department of Digestion and Oncology, The First Affiliated Hospital of Henan Uninversity of TCM, 19 Renmin Road, Zhengzhou 450000, Henan Province (China); Lu, Peng [Department of Gastrointestinal Surgery, The People' s Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou 450000, Henan Province (China); Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China)

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. - Highlights: • Expression of miR-202 was decreased in ESCC tissues and cell lines. • MiR-202 overexpression inhibited ESCC cell growth and induced apoptosis. • MiR-202 directly targeted LAMA1 in ESCC. • The LAMA1-FAK-PI3K signaling mediated the suppressive role of miR-202.

  2. Icaritin Reduces Oral Squamous Cell Carcinoma Progression via the Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Jian-Guang Yang

    2017-01-01

    Full Text Available Icaritin, a traditional Chinese medicine, possesses antitumor activity. The current study aimed to investigate icaritin effect and potential mechanism on oral squamous cell carcinoma (OSCC development. OSCC cells proliferation, apoptosis, and autophagy were analyzed after incubation with icaritin at different concentrations and incubation times. The expressions of proteins related to proliferation, apoptosis, and autophagy, as well as signal transducer and activator of transcription 3 (STAT3 signal network, were also evaluated by western blot. Furthermore, STAT3 was knocked down by siRNA transfection to determine STAT3 role in OSCC cell proliferation and apoptosis. An oral specific carcinogenesis mouse model was used to explore icaritin effect on OSCC in vivo. Icaritin significantly inhibited OSCC proliferation in vitro and reduced the expression of both the cell-cycle progression proteins cyclin A2 and cyclin D1. Besides, icaritin increased cleaved caspase 3 and cleaved poly-(ADP-ribose polymerase expression leading to apoptosis, and it activated autophagy. Icaritin significantly inhibited the expression of phospho-STAT3 (p-STAT3 in a dose- and time-dependent manner. In the in vivo experiment, the number of malignant tumors in the icaritin-treated group was significantly lower than the control. Overall, icaritin suppressed proliferation, promoted apoptosis and autophagy, and inhibited STAT3 signaling in OSCC in vitro and in vivo. In conclusion, icaritin might be a potential therapeutic agent against OSCC development.

  3. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis.

    Science.gov (United States)

    Trias, Emiliano; Ibarburu, Sofía; Barreto-Núñez, Romina; Babdor, Joël; Maciel, Thiago T; Guillo, Matthias; Gros, Laurent; Dubreuil, Patrice; Díaz-Amarilla, Pablo; Cassina, Patricia; Martínez-Palma, Laura; Moura, Ivan C; Beckman, Joseph S; Hermine, Olivier; Barbeito, Luis

    2016-07-11

    In the SOD1(G93A) mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1(G93A) rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1(G93A) spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1(G93A) rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models

  4. Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model

    International Nuclear Information System (INIS)

    Hillman, Gilda G; Wang, Yu; Che, Mingxin; Raffoul, Julian J; Yudelev, Mark; Kucuk, Omer; Sarkar, Fazlul H

    2007-01-01

    We have previously reported the potentiation of radiotherapy by the soy isoflavone genistein for prostate cancer using prostate tumor cells in vitro and orthotopic prostate tumor models in vivo. However, when genistein was used as single therapy in animal models, it promoted metastasis to regional para-aortic lymph nodes. To clarify whether these intriguing adverse effects of genistein are intrinsic to the orthotopic prostate tumor model, or these results could also be recapitulated in another model, we used the orthotopic metastatic KCI-18 renal cell carcinoma (RCC) model established in our laboratory. The KCI-18 RCC cell line was generated from a patient with papillary renal cell carcinoma. Following orthotopic renal implantation of KCI-18 RCC cells and serial in vivo kidney passages in nude mice, we have established a reliable and predictable metastatic RCC tumor model. Mice bearing established kidney tumors were treated with genistein combined with kidney tumor irradiation. The effect of the therapy was assessed on the primary tumor and metastases to various organs. In this experimental model, the karyotype and histological characteristics of the human primary tumor are preserved. Tumor cells metastasize from the primary renal tumor to the lungs, liver and mesentery mimicking the progression of RCC in humans. Treatment of established kidney tumors with genistein demonstrated a tendency to stimulate the growth of the primary kidney tumor and increase the incidence of metastasis to the mesentery lining the bowel. In contrast, when given in conjunction with kidney tumor irradiation, genistein significantly inhibited the growth and progression of established kidney tumors. These findings confirm the potentiation of radiotherapy by genistein in the orthotopic RCC model as previously shown in orthotopic models of prostate cancer. Our studies in both RCC and prostate tumor models demonstrate that the combination of genistein with primary tumor irradiation is a more

  5. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Meliana Riwanto

    Full Text Available Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD. Here we tested whether metabolic reprogramming towards aerobic glycolysis ("Warburg effect" plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+, a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1 in cystic kidneys of Cy/+ rats compared with wild-type (+/+ rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day for 5 weeks resulted in significantly lower kidney weights (-27% and 2-kidney/total-body-weight ratios (-20% and decreased renal cyst index (-48% compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min, BUN (0.69±0.26 vs 0.40±0.10 ml/min and uric acid (0.38±0.20 vs 0.21±0.10 ml/min, and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD.

  6. Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Liang [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hu, Jia [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Weng, Yuxiong [Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Jia, Jie [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zhang, Yukun, E-mail: zhangyukuncom@126.com [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2017-03-15

    Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptional activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity. - Highlights: • SIRT6 expression is decreased in degenerative nucleus pulposus (NP) tissues. • SIRT6 overexpression lowers IL-1β-induced matrix degradation of NP. • SIRT6 inhibition induces matrix degradation of NP. • SIRT6 prevents matrix degradation of NP via the NF-κB signaling pathway.

  7. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration

    OpenAIRE

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of ?-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which ...

  8. Ketogenic Diet Prevents Epileptogenesis and Disease Progression in Adult Mice and Rats

    Science.gov (United States)

    Lusardi, Theresa A.; Akula, Kiran K.; Coffman, Shayla Q.; Ruskin, David; Masino, Susan A.; Boison, Detlev

    2015-01-01

    Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects. PMID:26256422

  9. Propofol Prevents the Progression of Malignant PCC In Vitro and In Vivo.

    Science.gov (United States)

    Wang, Hua; Zhang, Shu; Zhang, Aihong; Yan, Cunling

    2018-03-22

    This study aimed to explore the efficacy of propofol to treat malignant pheochromocytoma (PCC) in vitro and in vivo. In vitro, PC12 cells were treated with different concentrations of propofol (0, 1, 5, and 10 μg/mL) for specific times followed by a MTT assay to detect cell proliferation. Transwell assays were performed to assess the function of propofol on the migration and invasion of PC12 cells, and flow cytometry to analyze cell apoptosis and cell cycle progression. Quantitative real-time polymerase chain reaction was carried out to analyze the expression level of mRNA (Bcl-2, Bax, and CyclinE). The levels of Bcl-2, Bax, CyclinE, FOXO1, FOXO3, Bim, procaspase-3, and active caspase-3 were determined by western blotting. In vivo, the effects of propofol on PCC tumor growth were detected by transplanted mouse model. Transferase dUTP nick-end labeling was performed to detect tissue cell apoptosis. The results indicated that propofol inhibited PC12 cell proliferation, prevented cell migration and invasion, and induced the apoptosis of PC12 cells in a dose- and time-dependent manner. Propofol treatment increased the expression of Bax and decreased that of Bcl-2. In addition, propofol significantly induced the G1/S phase arrest in PC12 cells, and the expression of Cyclin E was reduced. Moreover, the levels of FOXO1, FOXO3, Bim, procaspase-3, and active caspase-3 were enhanced by propofol treatment. In vivo, propofol treatment significantly reduced the PCC tumor growth and induced tissue cell apoptosis. In conclusion, propofol has potent anti-PCC activity in vitro and in vivo, and is a potential small-molecule drug for treating malignant PCC.

  10. Citrus aurantium Naringenin Prevents Osteosarcoma Progression and Recurrence in the Patients Who Underwent Osteosarcoma Surgery by Improving Antioxidant Capability

    Directory of Open Access Journals (Sweden)

    Lirong Zhang

    2018-01-01

    Full Text Available Citrus aurantium is rich in flavonoids, which may prevent osteosarcoma progression, but its related molecular mechanism remains unclear. Flavonoids were extracted from C. aurantium and purified by reparative HPLC. Each fraction was identified by using electrospray ionisation mass spectrometry (ESI-MS. Three main components (naringin, naringenin, and hesperetin were isolated from C. aurantium. Naringenin inhibited the growth of MG-63 cells, whereas naringin and hesperetin had no inhibitory function on cell growth. ROS production was increased in naringin- and hesperetin-treated groups after one day of culture while the level was always lowest in the naringenin-treated group after three days of culture. 95 osteosarcoma patients who underwent surgery were assigned into two groups: naringenin group (NG, received 20 mg naringenin daily, n=47 and control group (CG, received 20 mg placebo daily, n=48. After an average of two-year follow-up, osteosarcoma volumes were smaller in the NG group than in the CG group (P>0.01. The rate of osteosarcoma recurrence was also lower in the NG group than in CG group. ROS levels were lower in the NG group than in the CG group. Thus, naringenin from Citrus aurantium inhibits osteosarcoma progression and local recurrence in the patients who underwent osteosarcoma surgery by improving antioxidant capability.

  11. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression.

    Science.gov (United States)

    Kuroda, Kazunari; Kabata, Tamon; Hayashi, Katsuhiro; Maeda, Toru; Kajino, Yoshitomo; Iwai, Shintaro; Fujita, Kenji; Hasegawa, Kazuhiro; Inoue, Daisuke; Sugimoto, Naotoshi; Tsuchiya, Hiroyuki

    2015-09-03

    This study aimed to determine whether intra-articularly injected adipose-derived stem cells (ADSCs) inhibited articular cartilage degeneration during osteoarthritis (OA) development in a rabbit anterior cruciate ligament transection (ACLT) model. The paracrine effects of ADSCs on chondrocytes were investigated using a co-culture system. ACLT was performed on both knee joints of 12 rabbits. ADSCs were isolated from the subcutaneous adipose tissue. ADSCs with hyaluronic acid were intra-articularly injected into the left knee, and hyaluronic acid was injected into the right knee. The knees were compared macroscopically, histologically, and immunohistochemically at 8 and 12 weeks. In addition, cell viability was determined using co-culture system of ADSCs and chondrocytes. Macroscopically, osteoarthritis progression was milder in the ADSC-treated knees than in the control knees 8 weeks after ACLT. Histologically, control knees showed obvious erosions in both the medial and lateral condyles at 8 weeks, while cartilage was predominantly retained in the ADSC-treated knees. At 12 weeks, the ADSC-treated knees showed a slight suppression of cartilage degeneration, unlike the control knees. Immunohistochemically, MMP-13 expression was less in the ADSC-treated cartilage than in the control knees. The cell viability of chondrocytes co-cultured with ADSCs was higher than that of chondrocytes cultured alone. TNF-alpha-induced apoptotic stimulation was similar between the two groups. Intra-articularly injected ADSCs inhibited cartilage degeneration progression by homing to the synovium and secreting a liquid factor having chondro-protective effects such as chondrocyte proliferation and cartilage matrix protection.

  12. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  13. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents

  14. Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy

    NARCIS (Netherlands)

    Sarma, Satyam; Li, Na; van Oort, Ralph J.; Reynolds, Corey; Skapura, Darlene G.; Wehrens, Xander H. T.

    2010-01-01

    Aberrant intracellular Ca(2+) regulation is believed to contribute to the development of cardiomyopathy in Duchenne muscular dystrophy. Here, we tested whether inhibition of protein kinase A (PKA) phosphorylation of ryanodine receptor type 2 (RyR2) prevents dystrophic cardiomyopathy by reducing SR

  15. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Xiang-Rong Zuo

    Full Text Available BACKGROUND: Most of the deaths among patients with severe pulmonary arterial hypertension (PAH are caused by progressive right ventricular (RV pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. METHODOLOGY/PRINCIPAL FINDINGS: RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT. RV systolic pressure (RVSP was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD reversed these beneficial effects of nicorandil in MCT-injected rats. CONCLUSIONS/SIGNIFICANCE: Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K(+ (mitoK(ATP channels. The use of a mitoK(ATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV

  16. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression.

    Science.gov (United States)

    Shi, Jing; Wang, Yunpeng; Jia, Zhuomin; Gao, Yu; Zhao, Chaofei; Yao, Yuanxin

    2017-07-01

    Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.

  17. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells

    Science.gov (United States)

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-01-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process. PMID:26265439

  18. Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression.

    Science.gov (United States)

    Kim, Sungjin; Alsaidan, Omar Awad; Goodwin, Octavia; Li, Qianjin; Sulejmani, Essilvo; Han, Zhen; Bai, Aiping; Albers, Thomas; Beharry, Zanna; Zheng, Y George; Norris, James S; Szulc, Zdzislaw M; Bielawska, Alicja; Lebedyeva, Iryna; Pegan, Scott D; Cai, Houjian

    2017-12-15

    Protein N -myristoylation enables localization to membranes and helps maintain protein conformation and function. N -myristoyltransferases (NMT) catalyze co- or posttranslational myristoylation of Src family kinases and other oncogenic proteins, thereby regulating their function. In this study, we provide genetic and pharmacologic evidence that inhibiting the N -myristoyltransferase NMT1 suppresses cell-cycle progression, proliferation, and malignant growth of prostate cancer cells. Loss of myristoylation abolished the tumorigenic potential of Src and its synergy with androgen receptor in mediating tumor invasion. We identified the myristoyl-CoA analogue B13 as a small-molecule inhibitor of NMT1 enzymatic activity. B13 exposure blocked Src myristoylation and Src localization to the cytoplasmic membrane, attenuating Src-mediated oncogenic signaling. B13 exerted its anti-invasive and antitumor effects against prostate cancer cells, with minimal toxic side-effects in vivo Structural optimization based on structure-activity relationships enabled the chemical synthesis of LCL204, with enhanced inhibitory potency against NMT1. Collectively, our results offer a preclinical proof of concept for the use of protein myristoylation inhibitors as a strategy to block prostate cancer progression. Cancer Res; 77(24); 6950-62. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    Science.gov (United States)

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  20. Inhibition of Mammary Cancer Progression in Fetal Alcohol Exposed Rats by β-Endorphin Neurons.

    Science.gov (United States)

    Zhang, Changqing; Franklin, Tina; Sarkar, Dipak K

    2016-01-01

    Fetal alcohol exposure (FAE) increases the susceptibility to carcinogen-induced mammary cancer progression in rodent models. FAE also decreases β-endorphin (β-EP) level and causes hyperstress response, which leads to inhibition of immune function against cancer. Previous studies have shown that injection of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) into the third ventricle increases the number of β-EP neurons in the hypothalamus. In this study, we assessed the therapeutic potential of stress regulation using methods to increase hypothalamic levels of β-EP, a neuropeptide that inhibits stress axis activity, in treatment of carcinogen-induced mammary cancer in fetal alcohol exposed rats. Fetal alcohol exposed and control Sprague Dawley rats were given a dose of N-Nitroso-N-methylurea (MNU) at postnatal day 50 to induce mammary cancer growth. Upon detection of mammary tumors, the animals were either transplanted with β-EP neurons or injected with dbcAMP-delivering nanospheres into the hypothalamus to increase β-EP peptide production. Spleen cytokines were detected using reverse transcription polymerase chain reaction assays. Metastasis study was done by injecting mammary cancer cells MADB106 into jugular vein of β-EP-activated or control fetal alcohol exposed animals. Both transplantation of β-EP neurons and injection of dbcAMP-delivering nanospheres inhibited MNU-induced mammary cancer growth in control rats, and reversed the effect of FAE on the susceptibility to mammary cancer. Similar to the previously reported immune-enhancing and stress-suppressive effects of β-EP transplantation, injection of dbcAMP-delivering nanospheres increased the levels of interferon-γ and granzyme B and decreased the levels of epinephrine and norepinephrine in fetal alcohol exposed rats. Mammary cancer cell metastasis study also showed that FAE increased incidence of lung tumor retention, while β-EP transplantation inhibited lung tumor growth in

  1. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  2. Monitoring and Inhibiting MT1-MMP during Cancer Initiation and Progression

    Directory of Open Access Journals (Sweden)

    Sonia Pahwa

    2014-02-01

    Full Text Available Membrane-type 1 matrix metalloproteinase (MT1-MMP is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion. Numerous substrates and binding partners have been identified for MT1-MMP, and its role in collagenolysis appears crucial for tumor invasion. However, development of MT1-MMP inhibitors must consider the substantial functions of MT1-MMP in normal physiology and disease prevention. The present review examines the plethora of MT1-MMP activities, how these activities relate to cancer initiation and progression, and how they can be monitored in real time. Examination of MT1-MMP activities and cell surface behaviors can set the stage for the development of unique, selective MT1-MMP inhibitors.

  3. Accelerating Progress in Eating Disorders Prevention: A Call for Policy Translation Research and Training.

    Science.gov (United States)

    Austin, S Bryn

    2016-01-01

    The public health burden of eating disorders is well documented, and over the past several decades, researchers have made important advances in the prevention of eating disorders and related problems with body image. Despite these advances, however, several critical limitations to the approaches developed to date leave the field far from achieving the large-scale impact that is needed. This commentary provides a brief review of what achievements in prevention have been made and identifies the gaps that limit the potential for greater impact on population health. A plan is then offered with specific action steps to accelerate progress in high-impact prevention, most compellingly by promoting a shift in priorities to policy translation research and training for scholars through the adoption of a triggers-to-action framework. Finally, the commentary provides an example of the application of the triggers-to-action framework as practiced at the Strategic Training Initiative for the Prevention of Eating Disorders, a program based at the Harvard T. H. Chan School of Public Health and Boston Children's Hospital. Much has been achieved in the nearly 30 years of research carried out for the prevention of eating disorders and body image problems, but several critical limitations undermine the field's potential for meaningful impact. Through a shift in the field's priorities to policy translation research and training with an emphasis on macro-environmental influences, the pace of progress in prevention can be accelerated and the potential for large-scale impact substantially improved.

  4. BlockingαVβ3 Integrin Ligand Occupancy Inhibits the Progression of Albuminuria in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Laura A. Maile

    2014-01-01

    Full Text Available This study determined if blocking ligand occupancy of the αVβ3 integrin could inhibit the pathophysiologic changes that occur in the early stages of diabetic nephropathy (DN. Diabetic rats were treated with either vehicle or a monoclonal antibody that binds the β3 subunit of the αVβ3 integrin. After 4 weeks of diabetes the urinary albumin to creatinine ratio (UACR increased in both diabetic animals that subsequently received vehicle and in the animals that subsequently received the anti-β3 antibody compared with control nondiabetic rats. After 8 weeks of treatment the UACR continued to rise in the vehicle-treated rats; however it returned to levels comparable to control nondiabetic rats in rats treated with the anti-β3 antibody. Treatment with the antibody prevented the increase of several profibrotic proteins that have been implicated in the development of DN. Diabetes was associated with an increase in phosphorylation of the β3 subunit in kidney homogenates from diabetic animals, but this was prevented by the antibody treatment. This study demonstrates that, when administered after establishment of early pathophysiologic changes in renal function, the anti-β3 antibody reversed the effects of diabetes normalizing albuminuria and profibrotic proteins in the kidney to the levels observed in nondiabetic control animals.

  5. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice.

    Science.gov (United States)

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-07-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a hormone receptor-positive mammary tumor model. The recombinant adeno-associated viral vector-mediated overexpression of BDNF led to marked weight loss and decrease of adiposity without change of food intake. BDNF gene therapy improved glucose tolerance, alleviated steatosis, reduced leptin level, inhibited mouse breast cancer EO771 growth, and prevented the metastasis. The reduced tumor growth in BDNF-treated mice was associated with reduced angiogenesis, decreased proliferation, increased apoptosis, and reduced adipocyte recruitment and lipid accumulation. Moreover, BDNF gene therapy reduced inflammation markers in the hypothalamus, the mammary gland, the subcutaneous fat, and the mammary tumor. Our results suggest that manipulating a single gene in the brain may influence multiple mechanisms implicated in obesity-cancer association and provide a target for the prevention and treatment of both obesity and cancer.

  6. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    Directory of Open Access Journals (Sweden)

    Sarika Kapoor

    Full Text Available The sodium-glucose-cotransporter-2 (SGLT2 inhibitor dapagliflozin (DAPA induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD, we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group. Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d. DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated.

  7. Quantitative study of myocardial microcirculation in arterial hypertension due to progressive inhibition of NO synthesis

    Directory of Open Access Journals (Sweden)

    Leila Maria Meirelles Pereira

    1999-11-01

    Full Text Available OBJECTIVE: To study the quantitative changes in intramyocardial blood vessels in rats in whom nitric oxide synthesis was inhibited. METHODS: Four groups of 10 rats were studied: control (C25 and C40 and L-NAME (L25 and L40. The animals L25 and L40 received L-NAME in the dosage of 50mg/kg/day for 25 and 40 days, respectively. On days 26 and 41 the animals in groups 25 and 40 were sacrificed. Analysis of the myocardium was performed using light microscopy and stereology. RESULTS: Arterial blood pressure and heart weight increased 74.5 and 57.8% after 25 days and 90.2 and 34.6% after 40 days, respectively. Comparing the L-NAME rats with the respective controls revealed that vessel volume density decreased 31.3% after 40 days, and the vessel length-density decreased 53.5% after 25 days and 25.7% after 40 days. The mean cross-sectional area of the vessels showed an important reduction of 154.6% after 25 days. The intramyocardial vessels decreased significantly in length- density in the L-NAME animals. The mean cross-sectional area of the vessels, which normally increases during heart growth between 25 and 40 days, showed a precocious increase by the 25th day in the L-NAME rats. This suggests an increase of the size of the heart, including blood vessels. CONCLUSION: The inhibition of the NO synthesis provokes rarefaction in the intramyocardial vessels that progresses with the time of administration of L-NAME.

  8. Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells.

    Science.gov (United States)

    Bateman, Henry R; Liang, Qiaoli; Fan, Daping; Rodriguez, Vanessa; Lessner, Susan M

    2013-01-01

    Sparstolonin B (SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. Angiogenesis, the process of new capillary formation from existing blood vessels, is dysregulated in many pathological disorders, including diabetic retinopathy, tumor growth, and atherosclerosis. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. Microarray experiments with human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) demonstrated differential expression of several hundred genes in response to SsnB exposure (916 and 356 genes, respectively, with fold change ≥2, pcell types showed significant overlap, including genes associated with cell proliferation and cell cycle. Flow cytometric cell cycle analysis of HUVECs treated with SsnB showed an increase of cells in the G1 phase and a decrease of cells in the S phase. Cyclin E2 (CCNE2) and Cell division cycle 6 (CDC6) are regulatory proteins that control cell cycle progression through the G1/S checkpoint. Both CCNE2 and CDC6 were downregulated in the microarray data. Real Time quantitative PCR confirmed that gene expression of CCNE2 and CDC6 in HUVECs was downregulated after SsnB exposure, to 64% and 35% of controls, respectively. The data suggest that SsnB may exert its anti-angiogenic properties in part by downregulating CCNE2 and CDC6, halting progression through the G1/S checkpoint. In the chick chorioallantoic membrane (CAM) assay, SsnB caused significant reduction in capillary length and branching number relative to the vehicle control group. Overall, SsnB caused a significant reduction in angiogenesis (ANOVA, p<0.05), demonstrating its ex vivo efficacy.

  9. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    Science.gov (United States)

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. © 2016 Wiley Periodicals, Inc.

  10. Progress in the Prevention and Treatment of AIDS Associated with Tuberculosis

    Directory of Open Access Journals (Sweden)

    He Wenlong

    2016-06-01

    Full Text Available Epidemiological studies have shown that infection with the human immunodeficiency virus (HIV is an influential risk factor for infection with Mycobacterium tuberculosis (MTb, the rapid progression of the initial infection to active tuberculosis (TB, and the reactivation of latent TB infection. MTb infection is also one of the most common opportunistic infections in people with HIV, including AIDS patients receiving anti-retroviral therapy. Given the prevalence of HIV infection, the incidence of TB infection, which had begun to decline, is facing a severe situation. HIV associated with TB exerts an immense burden on the public health-care system, especially in countries with high incidences of HIV infection. Therefore, the global policies for the prevention and control of TB should be revised. Moreover, an increased investment in TB control has to be guaranteed. The purpose of this review is to summarize the recent progress in the prevention, treatment, and control of HIV and TB co-infection.

  11. Prevention of uncontrolled progressive collapse of a high-rise brick building

    Directory of Open Access Journals (Sweden)

    Pakhmurin Oleg

    2018-01-01

    Full Text Available In recent years, there is a trend towards increasing the failure rate of buildings and structures as a result of unforeseen situations. This study is aimed at assessing the operational reliability of the structure to prevent emergencies and progressive collapse. The behavior of structures affected by various factors was analyzed. The operational condition of a building with stone walls and a rigid structural frame constructed in the middle of the 20th century was considered. By means of a detailed instrumental examination, effects of long-term operation, climatic factors and violations during construction on the serviceability of the building were analyzed. Geotechnical conditions of the site were investigated. Necessary re-calculations for load-bearing structural elements and foundations were carried out. An expected failure diagram for vertical load-bearing structures of the building is presented. Proposals for preventing progressive collapse were developed on the basis of the author's technique.

  12. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos.

    Science.gov (United States)

    Philipova, Rada; Larman, Mark G; Leckie, Calum P; Harrison, Patrick K; Groigno, Laurence; Whitaker, Michael

    2005-07-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.

  13. Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-Ming; Shebib, Ahmad R; Johnson, Fruzsina K; Johnson, Robert A; Durante, William

    2018-04-27

    This study investigated the temporal activation of arginase in obese Zucker rats (ZR) and determined if arginase inhibition prevents the development of hypertension and improves insulin resistance in these animals. Arginase activity, plasma arginine and nitric oxide (NO) concentration, blood pressure, and insulin resistance were measured in lean and obese animals. There was a chronological increase in vascular and plasma arginase activity in obese ZR beginning at 8 weeks of age. The increase in arginase activity in obese animals was associated with a decrease in insulin sensitivity and circulating levels of arginine and NO. The rise in arginase activity also preceded the increase in blood pressure in obese ZR detected at 12 weeks of age. Chronic treatment of 8-week-old obese animals with an arginase inhibitor or L-arginine for 4 weeks prevented the development of hypertension and improved plasma concentrations of arginine and NO. Arginase inhibition also improved insulin sensitivity in obese ZR while L-arginine supplementation had no effect. In conclusion, arginase inhibition prevents the development of hypertension and improves insulin sensitivity while L-arginine administration only mitigates hypertension in obese animals. Arginase represents a promising therapeutic target in ameliorating obesity-associated vascular and metabolic dysfunction.

  14. Selective activation of angiotensin AT2 receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis.

    Science.gov (United States)

    Bruce, E; Shenoy, V; Rathinasabapathy, A; Espejo, A; Horowitz, A; Oswalt, A; Francis, J; Nair, A; Unger, T; Raizada, M K; Steckelings, U M; Sumners, C; Katovich, M J

    2015-05-01

    Pulmonary hypertension (PH) is a devastating disease characterized by increased pulmonary arterial pressure, which progressively leads to right-heart failure and death. A dys-regulated renin angiotensin system (RAS) has been implicated in the development and progression of PH. However, the role of the angiotensin AT2 receptor in PH has not been fully elucidated. We have taken advantage of a recently identified non-peptide AT2 receptor agonist, Compound 21 (C21), to investigate its effects on the well-established monocrotaline (MCT) rat model of PH. A single s.c. injection of MCT (50 mg·kg(-1) ) was used to induce PH in 8-week-old male Sprague Dawley rats. After 2 weeks of MCT administration, a subset of animals began receiving either 0.03 mg·kg(-1) C21, 3 mg·kg(-1) PD-123319 or 0.5 mg·kg(-1) A779 for an additional 2 weeks, after which right ventricular haemodynamic parameters were measured and tissues were collected for gene expression and histological analyses. Initiation of C21 treatment significantly attenuated much of the pathophysiology associated with MCT-induced PH. Most notably, C21 reversed pulmonary fibrosis and prevented right ventricular fibrosis. These beneficial effects were associated with improvement in right heart function, decreased pulmonary vessel wall thickness, reduced pro-inflammatory cytokines and favourable modulation of the lung RAS. Conversely, co-administration of the AT2 receptor antagonist, PD-123319, or the Mas antagonist, A779, abolished the protective actions of C21. Taken together, our results suggest that the AT2 receptor agonist, C21, may hold promise for patients with PH. © 2014 The British Pharmacological Society.

  15. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    2009-08-01

    Full Text Available The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results

  16. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    International Nuclear Information System (INIS)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang

    2014-01-01

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients

  17. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhijie [School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500 (China); Jiang, Hequn [The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041 (China); Liu, Ying; Huang, Yong [School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500 (China); Xiong, Xin [Laboratory Research Center, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016 (China); Wu, Hongwei, E-mail: hongweiwu2118@sina.com [The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041 (China); Dai, Xiaozhen, E-mail: xiaozhendai2012@163.com [School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500 (China); Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400044 (China); Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY (United States)

    2016-05-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future. - Highlights: • Sirt1 is a direct target of miR-133b in HCC. • miR-133b over-expression suppresses HCC progression in vitro and in vivo. • Sirt1 restoration reverses the effect of miR-133b over-expression on HCC cells. • GPC3 down-regulation reverses

  18. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  19. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1

    International Nuclear Information System (INIS)

    Tian, Zhijie; Jiang, Hequn; Liu, Ying; Huang, Yong; Xiong, Xin; Wu, Hongwei; Dai, Xiaozhen

    2016-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future. - Highlights: • Sirt1 is a direct target of miR-133b in HCC. • miR-133b over-expression suppresses HCC progression in vitro and in vivo. • Sirt1 restoration reverses the effect of miR-133b over-expression on HCC cells. • GPC3 down-regulation reverses

  20. Candidiasis: a fungal infection--current challenges and progress in prevention and treatment.

    Science.gov (United States)

    Hani, Umme; Shivakumar, Hosakote G; Vaghela, Rudra; Osmani, Riyaz Ali M; Shrivastava, Atul

    2015-01-01

    Despite therapeutic advances candidiasis remains a common fungal infection most frequently caused by C. albicans and may occur as vulvovaginal candidiasis or thrush, a mucocutaneous candidiasis. Candidiasis frequently occurs in newborns, in immune-deficient people like AIDS patients, and in people being treated with broad spectrum antibiotics. It is mainly due to C. albicans while other species such as C. tropicalis, C. glabrata, C. parapsilosis and C. krusei are increasingly isolated. OTC antifungal dosage forms such as creams and gels can be used for effective treatment of local candidiasis. Whereas, for preventing spread of the disease to deeper vital organs, candidiasis antifungal chemotherapy is preferred. Use of probiotics and development of novel vaccines is an advanced approach for the prevention of candidiasis. Present review summarizes the diagnosis, current status and challenges in the treatment and prevention of candidiasis with prime focus on host defense against candidiasis, advancements in diagnosis, probiotics role and recent progress in the development of vaccines against candidiasis.

  1. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis.

    Science.gov (United States)

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-05-09

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.

  2. Inhibition of 5-Lipoxygenase inhibitor zileuton in high-fat diet-induced nonalcoholic fatty liver disease progression model

    Directory of Open Access Journals (Sweden)

    Kuifen Ma

    2017-11-01

    Full Text Available Objective(s: Arachidonic Acid/5-lipoxygenase (AA/5-LOX pathway connects lipid metabolism and proinflammatory cytokine, which are both related to the development and progression of nonalcoholic fatty liver disease (NAFLD. Therefore, the present study was designed to investigate the role of AA/5-LOX pathway in progression of NAFLD, and the effect of zileuton, an inhibitor of 5-LOX, in this model. Materials and Methods: Animal model for progression of NAFLD was established via feeding high saturated fat diet (HFD. Liver function, HE staining, NAFLD activity score (NAS were used to evaluate NAFLD progression. We detected the lipid metabolism substrates: free fatty acids (FFA and AA, products: cysteinyl-leukotrienes (CysLTs, and changes in gene and protein level of key enzyme in AA/5-LOX pathway including PLA2 and 5-LOX. Furthermore, we determined whether NAFLD progression pathway was delayed or reversed when zileuton (1-[1-(1-benzothiophen-2-ylethyl]-1-hydroxyurea was administrated. Results: Rat model for progression of NAFLD was well established as analyzed by liver transaminase activities, hematoxylin-eosin (HE staining and NAS. The concentrations of substrates and products in AA/5-LOX pathway were increased with the progression of NAFLD. mRNA and protein expression of PLA2 and 5-LOX were all enhanced. Moreover, administration of zileuton inhibited AA/5-LOX pathway and reversed the increased transamine activities and NAS. Conclusion: AA/5-LOX pathway promotes the progression of NAFLD, which can be reversed by zileuton.

  3. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D; Tinder, Teresa L; Subramani, Durai B; Bradley, Judy M; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2009-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.

  4. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  5. Tea Polysaccharide Prevents Colitis-Associated Carcinogenesis in Mice by Inhibiting the Proliferation and Invasion of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Li-Qiao Liu

    2018-02-01

    Full Text Available The imbalance between cell proliferation and apoptosis can lead to tumor progression, causing oncogenic transformation, abnormal cell proliferation and cell apoptosis suppression. Tea polysaccharide (TPS is the major bioactive component in green tea, it has showed antioxidant, antitumor and anti-inflammatory bioactivities. In this study, the chemoprophylaxis effects of TPS on colitis-associated colon carcinogenesis, especially the cell apoptosis activation and inhibition effects on cell proliferation and invasion were analyzed. The azoxymethane/dextran sulfate sodium (AOM/DSS was used to induce the colorectal carcinogenesis in mice. Results showed that the tumor incidence was reduced in TPS-treated AOM/DSS mice compared to AOM/DSS mice. TUNEL staining and Ki-67 immunohistochemistry staining showed that the TPS treatment increased significantly the cell apoptosis and decreased cell proliferation among AOM/DSS mice. Furthermore, TPS reduced the expression levels of the cell cycle protein cyclin D1, matrix metalloproteinase (MMP-2, and MMP-9. In addition, in vitro studies showed that TPS, suppressed the proliferation and invasion of the mouse colon cancer cells. Overall, our findings demonstrated that TPS could be a potential agent in the treatment and/or prevention of colon tumor, which promoted the apoptosis and suppressed the proliferation and invasion of the mouse colon cancer cells via arresting cell cycle progression.

  6. Sappanone A inhibits RANKL-induced osteoclastogenesis in BMMs and prevents inflammation-mediated bone loss.

    Science.gov (United States)

    Choo, Young-Yeon; Tran, Phuong Thao; Min, Byung-Sun; Kim, Okwha; Nguyen, Hai Dang; Kwon, Seung-Hae; Lee, Jeong-Hyung

    2017-11-01

    Receptor activator of nuclear factor-kB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Suppressing osteoclastogenesis is considered an effective therapeutic approach for bone-destructive diseases, such as osteoporosis and rheumatoid arthritis. Sappanone A (SPNA), a homoisoflavanone compound isolated from the heartwood of Caesalpinia sappan, has been reported to exert anti-inflammatory effects; however, the effects of SPNA on osteoclastogenesis have not been investigated. In the present study, we describe for the first time that SPNA inhibits RANKL-induced osteoclastogenesis in mouse bone marrow macrophages (BMMs) and suppresses inflammation-induced bone loss in a mouse model. SPNA inhibited the formation of osteoclasts from BMMs, osteoclast actin-ring formation, and bone resorption in a concentration-dependent manner. At the molecular level, SPNA significantly inhibited RANKL-induced activation of the AKT/glycogen synthase kinase-3β (GSK-3β) signaling pathway without affecting its activation of the mitogen-activated protein kinases (MAPKs) JNK, p38, and ERK. In addition, SPNA suppressed the induction of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which is a crucial transcription factor in osteoclast differentiation. As a result, SPNA decreased osteoclastogenesis-related marker gene expression, including CtsK, TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), MMP-9 and osteoclast-associated receptor (OSCAR). In a mouse inflammatory bone loss model, SPNA significantly inhibited lipopolysaccharide (LPS)-induced bone loss by suppressing the number of osteoclasts. Taken together, these findings suggest that SPNA inhibits osteoclastogenesis and bone resorption by inhibiting the AKT/GSK-3β signaling pathway and may be a potential candidate compound for the prevention and/or treatment of inflammatory bone loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants.

    Directory of Open Access Journals (Sweden)

    Lorena Olivares-González

    Full Text Available Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2 for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

  8. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism.

    Science.gov (United States)

    Trefry, John C; Wooley, Dawn P

    2013-09-01

    Silver nanoparticles have been shown to inhibit viruses. However, very little is known about the mechanism of antiviral activity. This study tested the hypothesis that 25-nm silver nanoparticles inhibited Vaccinia virus replication by preventing viral entry. Plaque reduction, confocal microscopy, and beta-galactosidase reporter gene assays were used to examine viral attachment and entry in the presence and absence of silver nanoparticles. To explore the mechanism of inhibition, viral entry experiments were conducted with silver nanoparticles and small interfering RNAs designed to silence the gene coding for p21-activated kinase 1, a key mediator of macropinocytosis. The silver nanoparticles caused a 4- to 5-log reduction in viral titer at concentrations that were not toxic to cells. Virus was capable of adsorbing to cells but could not enter cells in the presence of silver nanoparticles. Virus particles that had adsorbed to cells in the presence of silver nanoparticles were found to be infectious upon removal from the cells, indicating lack of direct virucidal effect. The half maximal inhibitory concentration for viral entry in the presence of silver nanoparticles was 27.4+/-3.3 microg/ml. When macropinocytosis was blocked, this inhibition was significantly reduced. Thus, macropinocytosis was required for the full antiviral effect. For the first time, this study points to the novel result that a cellular process involved in viral entry is responsible for the antiviral effects of silver nanoparticles.

  9. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells.

    Science.gov (United States)

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that activation of MAPK pathways by sulforaphane is unlikely to mediate sulforaphane-induced growth inhibition. Sulforaphane did not generate significant levels of intracellular ROS. Pretreatment with thiol reducers, but not ROS scavengers, prevented sulforaphane-induced growth inhibition. Furthermore, diamide, a thiol-oxidizing agent, enhanced both growth inhibition and cell death induced by sulforaphane, suggesting that the effect of sulforaphane on cell growth may be related to oxidation of protein thiols or change in cellular redox status. Our data indicate that supplementation with thiol-reducing agents should be avoided when sulforaphane is used to treat cancer.

  10. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase.

    Science.gov (United States)

    Sato, Tsuyoshi; Enoki, Yuichiro; Sakamoto, Yasushi; Yokota, Kazuhiro; Okubo, Masahiko; Matsumoto, Masahito; Hayashi, Naoki; Usui, Michihiko; Kokabu, Shoichiro; Mimura, Toshihide; Nakazato, Yoshihiko; Araki, Nobuo; Fukuda, Toru; Okazaki, Yasushi; Suda, Tatsuo; Takeda, Shu; Yoda, Tetsuya

    2015-09-01

    Donepezil, an inhibitor of acetylcholinesterase (AChE) targeting the brain, is a common medication for Alzheimer's disease. Interestingly, a recent clinical study found that administration of this agent is associated with lower risk of hip fracture independently of falling, suggesting its direct effect on bone tissues as well. AChE has been reported to be involved in osteoblast function, but the role of AChE on osteoclastogenesis still remains unclear. We analyzed the effect of AChE and donepezil on osteoclastogenesis in vivo and in vitro. Cell-based assays were conducted using osteoclasts generated in cultures of murine bone marrow macrophages (BMMs) with receptor activator of nuclear factor-kappa B ligand (RANKL). The effect of donepezil was also determined in vivo using a mouse model of RANKL-induced bone loss. Recombinant AChE in BMMs cultured with RANKL further promoted RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast differentiation. RANKL also upregulated AChE expression in BMMs. RNA interference-mediated knockdown of AChE significantly inhibited RANKL-induced osteoclast differentiation and suppressed gene expression specific for osteoclasts. AChE upregulated expression of RANK, the receptor of RANKL, in BMMs. Donepezil decreased cathepsin K expression in BMMs and the resorptive function of osteoclasts on dentine slices. Donepezil decreased RANK expression in BMMs, resulting in the inhibition of osteoclast differentiation with downregulation of c-Fos and upregulation of Id2. Moreover, administration of donepezil prevented RANKL-induced bone loss in vivo, which was associated with the inhibition of bone resorption by osteoclasts. AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  11. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis

    Science.gov (United States)

    Chen, Xiao; Zhi, Xin; Pan, Panpan; Cui, Jin; Cao, Liehu; Weng, Weizong; Zhou, Qirong; Wang, Lin; Zhai, Xiao; Zhao, Qingiie; Hu, Honggang; Huang, Biaotong; Su, Jiacan

    2017-01-01

    Osteoporosis is a metabolic bone disease characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content. The imbalance between osteogenesis by osteoblasts and osteoclastogenesis by osteoclasts contributes to the pathogenesis of postmenopausal osteoporosis. Estrogen withdrawal leads to increased levels of proinflammatory cytokines. Overactivated osteoclasts by inflammation play a vital role in the imbalance. Matrine is an alkaloid found in plants from the Sophora genus with various pharmacological effects, including anti-inflammatory activity. Here we demonstrate that matrine significantly prevented ovariectomy-induced bone loss and inhibited osteoclastogenesis in vivo with decreased serum levels of TRAcp5b, TNF-α, and IL-6. In vitro matrine significantly inhibited osteoclast differentiation induced by receptor activator for NF-κB ligand (RANKL) and M-CSF in bone marrow monocytes and RAW264.7 cells as demonstrated by tartrate-resistant acid phosphatase (TRAP) staining and actin-ring formation as well as bone resorption through pit formation assays. For molecular mechanisms, matrine abrogated RANKL-induced activation of NF-κB, AKT, and MAPK pathways and suppressed osteoclastogenesis-related marker expression, including matrix metalloproteinase 9, NFATc1, TRAP, C-Src, and cathepsin K. Our study demonstrates that matrine inhibits osteoclastogenesis through modulation of multiple pathways and that matrine is a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.—Chen, X., Zhi, X., Pan, P., Cui, J., Cao, L., Weng, W., Zhou, Q., Wang, L., Zhai, X. Zhao, Q., Hu, H., Huang, B., Su, J. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. PMID:28739641

  12. Could successful cryoballoon ablation of paroxysmal atrial fibrillation prevent progressive left atrial remodeling?

    Science.gov (United States)

    Erdei, Tamás; Dénes, Mónika; Kardos, Attila; Mihálcz, Attila; Földesi, Csaba; Temesvári, András; Lengyel, Mária

    2012-03-19

    Radiofrequency catheter ablation of atrial fibrillation (AF) has been proved to be effective and to prevent progressive left atrial (LA) remodeling. Cryoballoon catheter ablation (CCA), using a different energy source, was developed to simplify the ablation procedure. Our hypothesis was that successful CCA can also prevent progressive LA remodeling. 36 patients selected for their first CCA because of nonvalvular paroxysmal AF had echocardiography before and 3, 6 and 12 months after CCA. LA diameters, volumes (LAV) and LA volume index (LAVI) were evaluated. LA function was assessed by: early diastolic velocities of the mitral annulus (Aa(sept), Aa(lat)), LA filling fraction (LAFF), LA emptying fraction (LAEF) and the systolic fraction of pulmonary venous flow (PVSF). Detailed left ventricular diastolic function assessment was also performed. Excluding recurrences in the first 3-month blanking period, the clinical success rate was 64%. During one-year of follow-up, recurrent atrial arrhythmia was found in 21 patients (58%). In the recurrent group at 12 months after ablation, minimal LAV (38 ± 19 to 44 ± 20 ml; p < 0.05), maximal LAV (73 ± 23 to 81 ± 24 ml; p < 0.05), LAVI (35 ± 10 to 39 ± 11 ml/m2; p = 0.01) and the maximal LA longitudinal diameter (55 ± 5 to 59 ± 6 mm; p < 0.01) had all increased. PVSF (58 ± 9 to 50 ± 10%; p = 0.01) and LAFF (36 ± 7 to 33 ± 8%; p = 0.03) had decreased. In contrast, after successful cryoballoon ablation LA size had not increased and LA function had not declined. In the recurrent group LAEF was significantly lower at baseline and at follow-up visits. In patients whose paroxysmal atrial fibrillation recurred within one year after cryoballoon catheter ablation left atrial size had increased and left atrial function had declined. In contrast, successful cryoballoon catheter ablation prevented progressive left atrial remodeling.

  13. Could successful cryoballoon ablation of paroxysmal atrial fibrillation prevent progressive left atrial remodeling?

    Directory of Open Access Journals (Sweden)

    Erdei Tamás

    2012-03-01

    Full Text Available Abstract Background Radiofrequency catheter ablation of atrial fibrillation (AF has been proved to be effective and to prevent progressive left atrial (LA remodeling. Cryoballoon catheter ablation (CCA, using a different energy source, was developed to simplify the ablation procedure. Our hypothesis was that successful CCA can also prevent progressive LA remodeling. Methods 36 patients selected for their first CCA because of nonvalvular paroxysmal AF had echocardiography before and 3, 6 and 12 months after CCA. LA diameters, volumes (LAV and LA volume index (LAVI were evaluated. LA function was assessed by: early diastolic velocities of the mitral annulus (Aasept, Aalat, LA filling fraction (LAFF, LA emptying fraction (LAEF and the systolic fraction of pulmonary venous flow (PVSF. Detailed left ventricular diastolic function assessment was also performed. Results Excluding recurrences in the first 3-month blanking period, the clinical success rate was 64%. During one-year of follow-up, recurrent atrial arrhythmia was found in 21 patients (58%. In the recurrent group at 12 months after ablation, minimal LAV (38 ± 19 to 44 ± 20 ml; p p 2; p = 0.01 and the maximal LA longitudinal diameter (55 ± 5 to 59 ± 6 mm; p p = 0.01 and LAFF (36 ± 7 to 33 ± 8%; p = 0.03 had decreased. In contrast, after successful cryoballoon ablation LA size had not increased and LA function had not declined. In the recurrent group LAEF was significantly lower at baseline and at follow-up visits. Conclusions In patients whose paroxysmal atrial fibrillation recurred within one year after cryoballoon catheter ablation left atrial size had increased and left atrial function had declined. In contrast, successful cryoballoon catheter ablation prevented progressive left atrial remodeling.

  14. Progressive strength training to prevent LYmphoedema in the first year after breast CAncer

    DEFF Research Database (Denmark)

    Ammitzbøll, Gunn; Lanng, Charlotte; Kroman, Niels

    2017-01-01

    BACKGROUND: Lymphoedema is a common late effect after breast cancer (BC) that has no effective cure once chronic. Accumulating evidence supports progressive strength training (PRT) as a safe exercise modality in relation to the onset and exacerbation of lymphoedema. In the 'preventive intervention...... against LYmphoedema after breast CAncer' (LYCA) feasibility study we examined the feasibility of a program of PRT in the first year after BC to inform a planned randomised controlled trial (RCT). MATERIAL AND METHODS: LYCA was a one-group prospective pilot trial inviting women operated with axillary lymph...

  15. Human Cerberus prevents nodal-receptor binding, inhibits nodal signaling, and suppresses nodal-mediated phenotypes.

    Directory of Open Access Journals (Sweden)

    Senem Aykul

    Full Text Available The Transforming Growth Factor-ß (TGFß family ligand Nodal is an essential embryonic morphogen that is associated with progression of breast and other cancers. It has therefore been suggested that Nodal inhibitors could be used to treat breast cancers where Nodal plays a defined role. As secreted antagonists, such as Cerberus, tightly regulate Nodal signaling during embryonic development, we undertook to produce human Cerberus, characterize its biochemical activities, and determine its effect on human breast cancer cells. Using quantitative methods, we investigated the mechanism of Nodal signaling, we evaluated binding of human Cerberus to Nodal and other TGFß family ligands, and we characterized the mechanism of Nodal inhibition by Cerberus. Using cancer cell assays, we examined the ability of Cerberus to suppress aggressive breast cancer cell phenotypes. We found that human Cerberus binds Nodal with high affinity and specificity, blocks binding of Nodal to its signaling partners, and inhibits Nodal signaling. Moreover, we showed that Cerberus profoundly suppresses migration, invasion, and colony forming ability of Nodal expressing and Nodal supplemented breast cancer cells. Taken together, our studies provide mechanistic insights into Nodal signaling and Nodal inhibition with Cerberus and highlight the potential value of Cerberus as anti-Nodal therapeutic.

  16. Practical Approaches to Evaluating Progress and Outcomes in Community-Wide Teen Pregnancy Prevention Initiatives.

    Science.gov (United States)

    Tevendale, Heather D; Condron, D Susanne; Garraza, Lucas Godoy; House, L Duane; Romero, Lisa M; Brooks, Megan A M; Walrath, Christine

    2017-03-01

    This paper presents an overview of the key evaluation components for a set of community-wide teen pregnancy prevention initiatives. We first describe the performance measures selected to assess progress toward meeting short-term objectives on the reach and quality of implementation of evidence-based teen pregnancy prevention interventions and adolescent reproductive health services. Next, we describe an evaluation that will compare teen birth rates in intervention communities relative to synthetic control communities. Synthetic controls are developed via a data-driven technique that constructs control communities by combining information from a pool of communities that are similar to the intervention community. Finally, we share lessons learned thus far in the evaluation of the project, with a focus on those lessons that may be valuable for local communities evaluating efforts to reduce teen pregnancy. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. Oral health information systems--towards measuring progress in oral health promotion and disease prevention

    DEFF Research Database (Denmark)

    Petersen, Poul Erik; Bourgeois, Denis; Bratthall, Douglas

    2005-01-01

    programmes oriented towards disease prevention and health promotion. The WHO Oral Health Country/Area Profile Programme (CAPP) provides data on oral health from countries, as well as programme experiences and ideas targeted to oral health professionals, policy-makers, health planners, researchers...... systems are being developed within the framework of the WHO STEPwise approach to surveillance of noncommunicable, chronic disease, and data stored in the WHO Global InfoBase may allow advanced health systems research. Sound knowledge about progress made in prevention of oral and chronic disease......This article describes the essential components of oral health information systems for the analysis of trends in oral disease and the evaluation of oral health programmes at the country, regional and global levels. Standard methodology for the collection of epidemiological data on oral health has...

  18. Niclosamide prevents the formation of large ubiquitin-containing aggregates caused by proteasome inhibition.

    Directory of Open Access Journals (Sweden)

    Esther Gies

    2010-12-01

    Full Text Available Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are interconnected and, in some instances, autophagy can redirect proteasome substrates to the lysosomes.To better understand the interplay between these two systems, we established a neuroblastoma cell population stably expressing the GFP-ubiquitin fusion protein. We show that inhibition of the proteasome leads to the formation of large ubiquitin-containing inclusions accompanied by lower solubility of the ubiquitin conjugates. Strikingly, the formation of the ubiquitin-containing aggregates does not require ectopic expression of disease-specific proteins. Moreover, formation of these focused inclusions caused by proteasome inhibition requires the lysine 63 (K63 of ubiquitin. We then assessed selected compounds that stimulate autophagy and found that the antihelmintic chemical niclosamide prevents large aggregate formation induced by proteasome inhibition, while the prototypical mTORC1 inhibitor rapamycin had no apparent effect. Niclosamide also precludes the accumulation of poly-ubiquitinated proteins and of p62 upon proteasome inhibition. Moreover, niclosamide induces a change in lysosome distribution in the cell that, in the absence of proteasome activity, may favor the uptake into lysosomes of ubiquitinated proteins before they form large aggregates.Our results indicate that proteasome inhibition provokes the formation of large ubiquitin containing aggregates in tissue culture cells, even in the absence of disease specific proteins. Furthermore our study suggests that the autophagy-inducing compound niclosamide may promote the selective clearance of ubiquitinated proteins in the absence

  19. Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation.

    Science.gov (United States)

    Strunk, V; Hahnenkamp, K; Schneuing, M; Fischer, L G; Rich, G F

    2001-03-01

    Nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) mediates hypotension and metabolic derangements in sepsis. We hypothesized that selective iNOS-inhibition would prevent hypotension in septic rats without inhibiting endothelium-dependent vasodilation caused by the physiologically important endothelial NOS. Rats were exposed to lipopolysaccharide (LPS) for 6 h and the selective iNOS-inhibitor L-N6-(1-iminoethyl)-lysine (L-NIL), the nonselective NOS-inhibitor N:(G)-nitro-L-arginine methyl ester (L-NAME), or control. Mean arterial pressure (MAP) and vasodilation to acetylcholine (ACh, endothelium-dependent), sodium nitroprusside (SNP, endothelium-independent), and isoproterenol (ISO, endothelium-independent beta agonist) were determined. Exhaled NO, nitrate/nitrite-(NOx) levels, metabolic data, and immunohistochemical staining for nitrotyrosine, a tracer of peroxynitrite-formation were also determined. In control rats, L-NAME increased MAP, decreased the response to ACh, and increased the response to SNP, whereas L-NIL did not alter these variables. LPS decreased MAP by 18% +/- 1%, decreased vasodilation (ACh, SNP, and ISO), increased exhaled NO, NOx, nitrotyrosine staining, and caused acidosis and hypoglycemia. L-NIL restored MAP and vasodilation (ACh, SNP, and ISO) to baseline and prevented the changes in exhaled NO, NOx, pH, and glucose levels. In contrast, L-NAME restored MAP and SNP vasodilation, but did not alter the decreased response to ACh and ISO or prevent the changes in exhaled NO and glucose levels. Finally, L-NIL but not L-NAME decreased nitrotyrosine staining in LPS rats. In conclusion, L-NIL prevents hypotension and metabolic derangements in septic rats without affecting endothelium-dependent vasodilation whereas L-NAME does not. Sepsis causes hypotension and metabolic derangements partly because of increased nitric oxide. Selective inhibition of nitric oxide produced by the inducible nitric oxide synthase enzyme prevents

  20. The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation.

    Science.gov (United States)

    Jeganathan, Karthik B; Malureanu, Liviu; van Deursen, Jan M

    2005-12-15

    Cdc20 and Cdh1 are the activating subunits of the anaphase-promoting complex (APC), an E3 ubiquitin ligase that drives cells into anaphase by inducing degradation of cyclin B and the anaphase inhibitor securin. To prevent chromosome missegregation, APC activity directed against these mitotic regulators must be inhibited until all chromosomes are properly attached to the mitotic spindle. Here we show that in mitosis timely destruction of securin by APC is regulated by the nucleocytoplasmic transport factors Rae1 and Nup98. We show that combined Rae1 and Nup98 haploinsufficiency in mice results in premature separation of sister chromatids, severe aneuploidy and untimely degradation of securin. We find that Rae1 and Nup98 form a complex with Cdh1-activated APC (APC(Cdh1)) in early mitosis and specifically inhibit APC(Cdh1)-mediated ubiquitination of securin. Dissociation of Rae1 and Nup98 from APC(Cdh1) coincides with the release of the mitotic checkpoint protein BubR1 from Cdc20-activated APC (APC(Cdc20)) at the metaphase to anaphase transition. Together, our results suggest that Rae1 and Nup98 are temporal regulators of APC(Cdh1) that maintain euploidy by preventing unscheduled degradation of securin.

  1. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  2. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoyong Wei

    2012-01-01

    Full Text Available Objective. Effects of Syringic acid (SA extracted from dendrobii on diabetic cataract (DC pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC.

  3. Selective Activation of At2 Receptor Attenuates Progression of Pulmonary Hypertension and Inhibits Cardiopulmonary Fibrosis

    DEFF Research Database (Denmark)

    Bruce, E; Shenoy, V; Rathinasabapathy, A

    2015-01-01

    BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) is a devastating disease characterized by increased pulmonary arterial pressure, which progressively leads to right heart failure and death. A dysregulated renin angiotensin system (RAS) has been implicated in the development and progression of PH...

  4. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression

    Directory of Open Access Journals (Sweden)

    Hidemasa Torii

    2017-02-01

    Full Text Available Prevalence of myopia is increasing worldwide. Outdoor activity is one of the most important environmental factors for myopia control. Here we show that violet light (VL, 360–400 nm wavelength suppresses myopia progression. First, we confirmed that VL suppressed the axial length (AL elongation in the chick myopia model. Expression microarray analyses revealed that myopia suppressive gene EGR1 was upregulated by VL exposure. VL exposure induced significantly higher upregulation of EGR1 in chick chorioretinal tissues than blue light under the same conditions. Next, we conducted clinical research retrospectively to compare the AL elongation among myopic children who wore eyeglasses (VL blocked and two types of contact lenses (partially VL blocked and VL transmitting. The data showed the VL transmitting contact lenses suppressed myopia progression most. These results suggest that VL is one of the important outdoor environmental factors for myopia control. Since VL is apt to be excluded from our modern society due to the excessive UV protection, VL exposure can be a preventive strategy against myopia progression.

  5. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression.

    Science.gov (United States)

    Torii, Hidemasa; Kurihara, Toshihide; Seko, Yuko; Negishi, Kazuno; Ohnuma, Kazuhiko; Inaba, Takaaki; Kawashima, Motoko; Jiang, Xiaoyan; Kondo, Shinichiro; Miyauchi, Maki; Miwa, Yukihiro; Katada, Yusaku; Mori, Kiwako; Kato, Keiichi; Tsubota, Kinya; Goto, Hiroshi; Oda, Mayumi; Hatori, Megumi; Tsubota, Kazuo

    2017-02-01

    Prevalence of myopia is increasing worldwide. Outdoor activity is one of the most important environmental factors for myopia control. Here we show that violet light (VL, 360-400nm wavelength) suppresses myopia progression. First, we confirmed that VL suppressed the axial length (AL) elongation in the chick myopia model. Expression microarray analyses revealed that myopia suppressive gene EGR1 was upregulated by VL exposure. VL exposure induced significantly higher upregulation of EGR1 in chick chorioretinal tissues than blue light under the same conditions. Next, we conducted clinical research retrospectively to compare the AL elongation among myopic children who wore eyeglasses (VL blocked) and two types of contact lenses (partially VL blocked and VL transmitting). The data showed the VL transmitting contact lenses suppressed myopia progression most. These results suggest that VL is one of the important outdoor environmental factors for myopia control. Since VL is apt to be excluded from our modern society due to the excessive UV protection, VL exposure can be a preventive strategy against myopia progression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Poly(Adp-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm.

    Science.gov (United States)

    Ozdülger, Ali; Cinel, Ismail; Unlü, Ali; Cinel, Leyla; Mavioglu, Ilhan; Tamer, Lülüfer; Atik, Ugur; Oral, Ugur

    2002-07-01

    Although the precise mechanism by which sepsis causes impairment of respiratory muscle contractility has not been fully elucidated, oxygen-derived free radicals are thought to play an important role. In our experimental study, the effects of poly(ADP-ribose) synthetase (PARS) inhibition on the diaphragmatic Ca(2+)-ATPase, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) levels and additionally histopathology of the diaphragm in lipopolysaccharide (LPS)-induced endotoxemia are investigated.Thirty-two male Wistar rats, weighing between 180-200 g were randomly divided into four groups. The first group (control; n=8) received saline solution and the second (LPS group; n=8) 10 mgkg(-1) LPS i.p. 3-Aminobenzamide (3-AB) as a PARS inhibitor; was given to the third group (C+3-AB, n=8) 20 min before administration of saline solution while the fourth group (LPS+3-AB, n=8) received 3-AB 20 min before LPS injection. Six hours later, under ketamin/xylasine anesthesia diapraghmatic specimens were obtained and the rats were decapitated. Diaphragmatic specimens were divided into four parts, three for biochemical analyses and one for histopathologic assessment. In the LPS group, tissue Ca(2+)-ATPase levels were found to be decreased and tissue MDA and 3-NT levels were found to be increased (P<0.05). In the LPS+3-AB group, 3-AB pretreatment inhibited the increase in MDA and 3-NT levels and Ca(2+)-ATPase activity remained similar to those in the control group (P<0.05). Histopathologic examination of diaphragm showed edema between muscle fibers only in LPS group. PARS inhibition with 3-AB prevented not only lipid peroxidation but also the decrease of Ca(2+)-ATPase activity in endotoxemia. These results highlights the importance of nitric oxide (NO)-peroxynitrite (ONOO(-))-PARS pathway in preventing free radical mediated injury. PARS inhibitors should further be investigated as a new thearapetic alternative in sepsis treatment.

  7. Ampelopsis brevipedunculata Extract Prevents Bone Loss by Inhibiting Osteoclastogenesis in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ju-Young Kim

    2014-11-01

    Full Text Available Osteoclasts play a critical role in bone resorbing disorders such as osteoporosis, periodontitis, and rheumatoid arthritis. Therefore, discovery of agents capable of suppressing osteoclast differentiation may aid the development of a therapeutic access for the treatment of pathological bone loss. Ampelopsis brevipedunculata has been used as herbal folk medicine to treat liver diseases and inflammation in Asia. However, its effects on osteoclast differentiation are unknown. We were aimed to investigate the anti-osteoclastogenic activity in vitro and in vivo and to elucidate the underlying mechanism of Ampelopsis brevipedunculata extract (ABE. In this study, ABE inhibited receptor activator of NF-κB ligand (RANKL-induced osteoclast differentiation, the formation of filamentous actin rings and the bone resorbing activity of mature osteoclasts. ABE inhibited RANKL-induced p38 and IκB phosphorylation and IκB degradation. Also, ABE suppressed the mRNA and protein expression of nuclear factor of activated T cells c1 (NFATc1 and c-Fos, and the mRNA expression of genes required for cell fusion and bone resorption, such as osteoclast-associated receptor (OSCAR, tartrate resistant acid phosphatase (TRAP, cathepsin K, dendritic cell-specific transmembrane protein (DC-STAMP, β3-integrin and osteoclast stimulatory transmembrane protein (OC-STAMP. Furthermore, results of micro-CT and histologic analysis indicated that ABE remarkably prevented lipopolysaccharide (LPS-induced bone erosion. These results demonstrate that ABE prevents LPS-induced bone erosion through inhibition of osteoclast differentiation and function, suggesting the promise of ABE as a potential cure for various osteoclast-associated bone diseases.

  8. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage.

    Directory of Open Access Journals (Sweden)

    Orquidea Garcia

    Full Text Available The potential for amniotic fluid stem cell (AFSC treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF, is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0 or chronic (day 14 intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL, but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.

  9. Amniotic Fluid Stem Cells Inhibit the Progression of Bleomycin-Induced Pulmonary Fibrosis via CCL2 Modulation in Bronchoalveolar Lavage

    Science.gov (United States)

    Garcia, Orquidea; Carraro, Gianni; Turcatel, Gianluca; Hall, Marisa; Sedrakyan, Sargis; Roche, Tyler; Buckley, Sue; Driscoll, Barbara; Perin, Laura; Warburton, David

    2013-01-01

    The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events. PMID:23967234

  10. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  11. Inhibition of multidrug efflux as a strategy to prevent biofilm formation.

    Science.gov (United States)

    Baugh, Stephanie; Phillips, Charlotte R; Ekanayaka, Aruna S; Piddock, Laura J V; Webber, Mark A

    2014-03-01

    We have recently shown that inactivation of any of the multidrug efflux systems of Salmonella results in loss of the ability to form a competent biofilm. The aim of this study was to determine the mechanism linking multidrug efflux and biofilm formation, and to determine whether inhibition of efflux is a viable antibiofilm strategy. Mutants lacking components of the AcrAB-TolC system in Salmonella enterica serovar Typhimurium were investigated for their ability to aggregate, produce biofilm matrix components and form a biofilm. The potential for export of a biofilm-relevant substrate via efflux pumps was investigated and expression of genes that regulate multidrug efflux and production of biofilm matrix components was measured. The ability of efflux inhibitors carbonyl cyanide m-chlorophenylhydrazone, chlorpromazine and phenyl-arginine-β-naphthylamide to prevent biofilm formation by Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus under static and flow conditions was assessed. Mutants of Salmonella Typhimurium that lack TolC or AcrB, but surprisingly not AcrA, were compromised in their ability to form biofilms. This defect was not related to changes in cellular hydrophobicity, aggregative ability or export of any biofilm-specific factor. The biofilm defect resulted from transcriptional repression of curli biosynthesis genes and consequent inhibition of production of curli. All three efflux inhibitors significantly reduced biofilm production in both static and flow biofilm assays, although different concentrations of each inhibitor were most active against each species. This work shows that both genetic inactivation and chemical inhibition of efflux pumps results in transcriptional repression of biofilm matrix components and a lack of biofilm formation. Therefore, inhibition of efflux is a promising antibiofilm strategy.

  12. Preventing HIV transmission through blockade of CCR5: rationale, progress and perspectives.

    Science.gov (United States)

    Hartley, Oliver; Martins, Elsa; Scurci, Ilaria

    2018-01-29

    Of the two million people estimated to be newly infected with human immunodeficiency virus (HIV) every year, 95% live in poorer regions of the world where effective HIV treatment is not universally available. Strategies to reduce the spread of HIV infection, which predominantly occurs via sexual contact, are urgently required. In the absence of an effective vaccine, a number of approaches to prevent HIV infection have been developed. These include using potent anti-HIV drugs prophylactically, either through systemic administration or topical application to the mucosal tissues that HIV initially encounters during sexual transmission. Genetic deficiency of the chemokine receptor CCR5 provides individuals with a remarkable degree of protection from HIV acquisition. This is because CCR5 is the major coreceptor used by HIV to infect new target cells. Since CCR5 deficiency does not appear to carry any health disadvantages, targeting the receptor is a promising strategy for both therapy and prevention of HIV. In this review we first describe the advantages and limitations of the currently available strategies for HIV prevention, then we focus on strategies targeting CCR5, covering the progress that has been made in developing different classes of CCR5 inhibitors for prophylaxis, and the perspectives for their future development as new weapons in the global fight against HIV/AIDS.

  13. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy.

    Science.gov (United States)

    Reed, Sarah A; Sandesara, Pooja B; Senf, Sarah M; Judge, Andrew R

    2012-03-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.

  14. Lactobacillus acidophilus ATCC 4356 Prevents Atherosclerosis via Inhibition of Intestinal Cholesterol Absorption in Apolipoprotein E-Knockout Mice

    Science.gov (United States)

    Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-01-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE−/−) mice. Eight-week-old ApoE−/− mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE−/− mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. PMID:25261526

  15. Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directions.

    Science.gov (United States)

    Upadhyay, Vivek A; Brunner, Andrew M; Fathi, Amir T

    2017-09-01

    Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme. Over the last two decades, there has been a growing focus on the metabolic derangements that occur with IDH1 and IDH2 mutations. The altered IDH protein leads to accumulation of 2-hydroxyglutarate (2-HG), a metabolite with oncogenic activity via epigenetic mechanisms. The advent of IDH inhibitors has engendered hope in novel and targeted therapies in IDH1/2 mutant myeloid malignancies. We here summarize the basic physiology of IDH, the metabolic and oncogenic consequences of mutant IDH1/2, and the clinical significance of IDH inhibition in hematologic malignancies. We also discuss completed and ongoing clinical trials focusing on the inhibition of IDH proteins, which have demonstrated preliminary indications of efficacy. The promise of IDH inhibition is now being further investigated as a novel therapeutic approach for AML and other myeloid malignancies. Copyright © 2017. Published by Elsevier Inc.

  16. Inhibition of apoptosis by BCL2 prevents leukemic transformation of a murine myelodysplastic syndrome

    Science.gov (United States)

    Saw, Jesslyn; Jowett, Jeremy B. M.; Aplan, Peter D.; Strasser, Andreas; Jane, Stephen M.; Curtis, David J.

    2012-01-01

    Programmed cell death or apoptosis is a prominent feature of low-risk myelodysplastic syndromes (MDS), although the underlying mechanism remains controversial. High-risk MDS have less apoptosis associated with increased expression of the prosurvival BCL2-related proteins. To address the mechanism and pathogenic role of apoptosis and BCL2 expression in MDS, we used a mouse model resembling human MDS, in which the fusion protein NUP98-HOXD13 (NHD13) of the chromosomal translocation t(2;11)(q31;p15) is expressed in hematopoietic cells. Hematopoietic stem and progenitor cells from 3-month-old mice had increased rates of apoptosis associated with increased cell cycling and DNA damage. Gene expression profiling of these MDS progenitors revealed a specific reduction in Bcl2. Restoration of Bcl2 expression by a BCL2 transgene blocked apoptosis of the MDS progenitors, which corrected the macrocytic anemia. Blocking apoptosis also restored cell-cycle quiescence and reduced DNA damage in the MDS progenitors. We expected that preventing apoptosis would accelerate malignant transformation to acute myeloid leukemia (AML). However, contrary to expectations, preventing apoptosis of premalignant cells abrogated transformation to AML. In contrast to the current dogma that overcoming apoptosis is an important step toward cancer, this work demonstrates that gaining a survival advantage of premalignant cells may delay or prevent leukemic progression. PMID:22855610

  17. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.

  18. Inhibition of TRF1 Telomere Protein Impairs Tumor Initiation and Progression in Glioblastoma Mouse Models and Patient-Derived Xenografts.

    Science.gov (United States)

    Bejarano, Leire; Schuhmacher, Alberto J; Méndez, Marinela; Megías, Diego; Blanco-Aparicio, Carmen; Martínez, Sonia; Pastor, Joaquín; Squatrito, Massimo; Blasco, Maria A

    2017-11-13

    Glioblastoma multiforme (GBM) is a deadly and common brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity, including glioma stem cells (GSCs). Telomere genes are frequently mutated. The telomere binding protein TRF1 is essential for telomere protection, and for adult and pluripotent stem cells. Here, we find TRF1 upregulation in mouse and human GBM. Brain-specific Trf1 genetic deletion in GBM mouse models inhibited GBM initiation and progression, increasing survival. Trf1 deletion increased telomeric DNA damage and reduced proliferation and stemness. TRF1 chemical inhibitors mimicked these effects in human GBM cells and also blocked tumor sphere formation and tumor growth in xenografts from patient-derived primary GSCs. Thus, targeting telomeres throughout TRF1 inhibition is an effective therapeutic strategy for GBM. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  20. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  1. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Science.gov (United States)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  2. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity

    DEFF Research Database (Denmark)

    Molnar, Christoph; Scherer, Almut; Baraliakos, Xenofon

    2018-01-01

    OBJECTIVES: To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). METHODS: Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years...... were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial...... generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. RESULTS: A total...

  3. A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation

    International Nuclear Information System (INIS)

    Kaufmann, T.J.; Kallmes, D.F.; Marx, W.F.

    2006-01-01

    We tested the hypothesis that nonspecific matrix metalloproteinase (MMP) inhibition with doxycycline would decrease the incidence of intracranial aneurysm formation in a rat aneurysm model. We performed common carotid artery ligation on 96 Long-Evans rats. A treatment group of 48 animals was chosen at random to receive oral doxycycline (3 mg/kg) in addition to standard rat chow, and the control group of 48 animals received standard rat chow only. The major circle of Willis arteries was dissected at 1 year following carotid ligation, and the proportions of animals with aneurysms were compared between groups using Fisher's exact test. Four animals given oral doxycycline and ten control animals expired before 1 year. Of the examined animals, eight saccular intracranial aneurysms were found in 8 of 45 animals which had received doxycycline (17.8%) and seven saccular intracranial aneurysms were found in 7 of 37 control animals (18.9%). There was no significant difference in aneurysm formation between the doxycycline-treated and control groups (P=0.894). Nonspecific MMP inhibition with doxycycline is not effective in preventing intracranial aneurysm formation in a rat model. (orig.)

  4. Does inhibition of poly(ADP-ribose) polymerase prevent energy overconsumption under microgravity?

    Science.gov (United States)

    Dobrota, C.; Piso, M. I.; Keul, A.

    When plants are exposed to a stress signal they expend a lot of energy and exhibit enhanced respiration rates This is partially due to a breakdown in the NAD pool caused by the enhanced activity PARP which uses NAD as a substrate to synthesize polymers of ADP-ribose Stress-induced depletion of NAD results in a similar depletion of energy since ATP molecules are required to resynthesize the depleted NAD It seems that plants with lowered poly ADP ribosyl ation activity appear tolerant to multiple stresses Inhibiting PARP activity prevents energy overconsumption under stress allowing normal mitochondrial respiration We intend to study if the microgravity is perceived by plants as a stress factor and if experimental inhibition of poly ADP-ribose polymerase may improve the energetic level of the cells References DeBlock M Verduyn C De Brouwer D and Cornelissen M 2005 Poly ADP-ribose polymerase in plants affects energy homeostasis cell death and stress tolerance The Plant Journal 41 95--106 Huang S Greenway H Colmerm T D and Millar A H 2005 Protein synthesis by rice coleoptiles during prolonged anoxia Implications for glycolysis growth and energy utilization Annals of Botany 96 703--715 Mittler R Vanderauwera S Gollery M and Van Breusegem F 2005 Reactive oxygen gene network of plants Trends in Plant Science 9 10 490-498

  5. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

    Directory of Open Access Journals (Sweden)

    Chen-he Zhou

    2018-03-01

    Full Text Available Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK and phosphatidylinositol 3-kinase (PI3K-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist and/or SC79 (an AKT agonist in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

  6. Regenerative Therapy Prevents Heart Failure Progression in Dyssynchronous Nonischemic Narrow QRS Cardiomyopathy

    Science.gov (United States)

    Yamada, Satsuki; Arrell, D Kent; Martinez-Fernandez, Almudena; Behfar, Atta; Kane, Garvan C; Perez-Terzic, Carmen M; Crespo-Diaz, Ruben J; McDonald, Robert J; Wyles, Saranya P; Zlatkovic-Lindor, Jelena; Nelson, Timothy J; Terzic, Andre

    2015-01-01

    Background Cardiac resynchronization therapy using bi-ventricular pacing is proven effective in the management of heart failure (HF) with a wide QRS-complex. In the absence of QRS prolongation, however, device-based resynchronization is reported unsuitable. As an alternative, the present study tests a regenerative cell-based approach in the setting of narrow QRS-complex HF. Methods and Results Progressive cardiac dyssynchrony was provoked in a chronic transgenic model of stress-triggered dilated cardiomyopathy. In contrast to rampant end-stage disease afflicting untreated cohorts, stem cell intervention early in disease, characterized by mechanical dyssynchrony and a narrow QRS-complex, aborted progressive dyssynchronous HF and prevented QRS widening. Stem cell-treated hearts acquired coordinated ventricular contraction and relaxation supporting systolic and diastolic performance. Rescue of contractile dynamics was underpinned by a halted left ventricular dilatation, limited hypertrophy, and reduced fibrosis. Reverse remodeling reflected a restored cardiomyopathic proteome, enforced at systems level through correction of the pathological molecular landscape and nullified adverse cardiac outcomes. Cell therapy of a dyssynchrony-prone cardiomyopathic cohort translated prospectively into improved exercise capacity and prolonged survivorship. Conclusions In narrow QRS HF, a regenerative approach demonstrated functional and structural benefit, introducing the prospect of device-autonomous resynchronization therapy for refractory disease. PMID:25964205

  7. Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice.

    Science.gov (United States)

    Oh, Yun K; Bachar, Adi R; Zacharias, David G; Kim, Sung Gyun; Wan, Junxiang; Cobb, Laura J; Lerman, Lilach O; Cohen, Pinchas; Lerman, Amir

    2011-11-01

    Humanin (HN) is a cytoprotective peptide derived from endogenous mitochondria, expressed in the endothelial layer of human vessels, but its role in atherogenesis in vivo is not known. In vitro study, however, HN reduced oxidized low-density lipoprotein induced formation of reactive oxygen species and apoptosis. The present study tested the hypothesis that long term treatment with HN will have a protective role against endothelial dysfunction and progression of atherosclerosis in vivo. Daily intraperitonial injection of the HN analogue HNGF6A for 16 weeks prevented endothelial dysfunction and decreased atherosclerotic plaque size in the proximal aorta of ApoE-deficient mice fed on a high cholesterol diet, without showing direct vasoactive effects or cholesterol-reducing effects. HN was expressed in the endothelial layer on the aortic plaques. HNGF6A treatment reduced apoptosis and nitrotyrosine immunoreactivity in the aortic plaques without affecting the systemic cytokine profile. HNGF6A also preserved expression of endothelial nitric oxide synthase in aorta. HN may have a protective effect on endothelial function and progression of atherosclerosis by modulating oxidative stress and apoptosis in the developing plaque. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries

    Science.gov (United States)

    Liu, Ya-Ling; Nascimento, Marcelle; Burne, Robert A

    2012-01-01

    Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. PMID:22996271

  9. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice

    NARCIS (Netherlands)

    Wouters, Kristiaan; van Bilsen, Marc; van Gorp, Patrick J.; Bieghs, Veerle; Luetjohann, Dieter; Kerksiek, Anja; Staels, Bart; Hofker, Marten H.; Shiri-Sverdlov, Ronit

    2010-01-01

    Hepatic inflammation is the key factor in non-alcoholic steatohepatitis (NASH) and promotes progression to liver damage. We recently identified dietary cholesterol as the cause of hepatic inflammation in hyperlipidemic mice. We now show that hepatic transcriptome responses are strongly dependent on

  10. Laminaria japonica Polysaccharide Inhibits Vascular Calcification via Preventing Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Li, Xue-Ying; Li, Qiang-Ming; Fang, Qing; Zha, Xue-Qiang; Pan, Li-Hua; Luo, Jian-Ping

    2018-02-28

    This study aimed to investigate the effect and underlying mechanism of a purified Laminaria japonica polysaccharide (LJP61A) on preventing vascular calcification (VC). In the adenine-induced chronic renal failure (CRF) mice VC model and the β-glycerophosphate (β-GP)-induced vascular smooth muscle cells (VSMC) calcification model, LJP61A was found to significantly inhibit VC phenotypes as determined by biochemical analysis and von Kossa, alizarin red, and immunohistochemical staining. Meanwhile, LJP61A remarkably up-regulated the mRNA levels of VSMC related markers and down-regulated the mRNA levels of sodium-dependent phosphate cotransporter Pit-1. In addition, LJP61A could significantly decrease the protein levels of core-binding factor-1, osteocalcin, bone morphogenetic protein 2, and receptor activator for nuclear factor-κB ligand, and it can increase the protein levels of osteoprotegerin and matrix gla protein. These results indicated that LJP61A ameliorated VC both in vivo and in vitro via preventing osteoblastic differentiation of VSMC, suggesting LJP61A might be a potential therapeutic agent for VC in CRF patients.

  11. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function.

    Science.gov (United States)

    Jones, Natalie C; Lynn, Megan L; Gaudenz, Karin; Sakai, Daisuke; Aoto, Kazushi; Rey, Jean-Phillipe; Glynn, Earl F; Ellington, Lacey; Du, Chunying; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2008-02-01

    Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1-mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span. These improvements, however, occur independently of the effects on ribosome biogenesis; thus suggesting that it is p53-dependent neuroepithelial apoptosis that is the primary mechanism underlying the pathogenesis of TCS. Our work further implies that neuroepithelial and neural crest cells are particularly sensitive to cellular stress during embryogenesis and that suppression of p53 function provides an attractive avenue for possible clinical prevention of TCS craniofacial birth defects and possibly those of other neurocristopathies.

  12. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  13. The Bolger conference on PDE-5 inhibition and HIV risk: implications for health policy and prevention.

    Science.gov (United States)

    Rosen, Raymond C; Catania, Joseph A; Ehrhardt, Anke A; Burnett, Arthur L; Lue, Tom F; McKenna, Kevin; Heiman, Julia R; Schwarcz, Sandy; Ostrow, David G; Hirshfield, Sabina; Purcell, David W; Fisher, William A; Stall, Ron; Halkitis, Perry N; Latini, David M; Elford, Jonathan; Laumann, Edward O; Sonenstein, Freya L; Greenblatt, David J; Kloner, Robert A; Lee, Jay; Malebranche, David; Janssen, Erick; Diaz, Rafael; Klausner, Jeffrey D; Caplan, Arthur L; Jackson, Graham; Shabsigh, Ridwan; Khalsa, Jag H; Stoff, David M

    2006-11-01

    Recent reports have linked the use of phosphodiesterase type 5 (PDE-5) inhibitors with increased rates of high-risk sexual behavior and HIV transmission in some individuals. A National Institute of Mental Health (NIMH)-funded, multidisciplinary conference was convened to evaluate scientific research, clinical and ethical considerations, and public policy implications of this topic. Published and unpublished findings on effects of PDE-5 inhibitors on sexual behavior; published guidelines and management recommendations. Leading investigators in relevant disciplines (e.g., public health, epidemiology, medical ethics, urology, psychology) participated in a 2-day meeting, including representatives of government, scientific, and regulatory agencies (the Centers for Disease Control, Food and Drug Administration, NIMH, and the National Institute on Drug Abuse). Panelists provided critical reviews of substantive areas of research, followed by question and answer sessions on each topic. On the second day, working groups were convened to identify critical gaps and priorities in three major areas: (i) research and evaluation needs; (ii) prevention strategies and clinical management issues; and (iii) policy and prevention implications. Research needs and priorities were categorized into four specific areas: (i) basic and clinical/laboratory research; (ii) epidemiology and risk factors; (iii) social-behavioral processes and interventions; and (iv) prevention/policy and educational needs. Identified gaps in the available data include populations at risk (e.g., risk among heterosexuals, risk profiles among subpopulations of men who have sex with men) and the specific role of PDE-5 inhibitors in HIV seroconversion. Specific areas of emphasis were the need for safer sex counseling, comprehensive sexually transmitted infection (STI) screening and follow-up when indicated, avoidance of potentially dangerous drug interactions, and potential benefits of testosterone replacement for HIV

  14. Novel CXCR3/CXCR7-Directed Biological Antagonist for Inhibition of Breast Cancer Progression

    Science.gov (United States)

    2012-09-01

    to regulate cell functions including: proliferation, survival, membrane trafficking and cytoskeletal structures (Cantrell, 2001). Src activity is...the role of CXCR4 in BrCa progression. 4 Figure 2. CXCR7 (G protein-independent) cell-signaling pathways. The GPCR , CXCR7 is hypothesized to...transcriptional and/or -translational modification of chemokine receptors may occur, which would not doubt effect their function . Receptor expression

  15. Coordination of FOXA2 and SIRT6 suppresses the hepatocellular carcinoma progression through ZEB2 inhibition

    OpenAIRE

    Liu J; Yu Z; Xiao Y; Meng Q; Wang Y; Chang W

    2018-01-01

    Jinghua Liu,1 Zhen Yu,2 Yuanyuan Xiao,2 Qiong Meng,2 Yeying Wang,2 Wei Chang2 1Department of Gastroenterology and Hepatology, The 4th Affiliated Hospital of Kunming Medical University, 2School of Public Health, Kunming Medical University, Kunming, China Background: The Forkhead transcription family member FOXA2 plays a fundamental role in hepatocellular carcinoma (HCC) progression, but the precise interaction factor and molecular regulation of FOXA2 are not fully understood. Objective: In thi...

  16. Myeloid-Derived Suppressor Cells Associated With Disease Progression in Primary HIV Infection: PD-L1 Blockade Attenuates Inhibition.

    Science.gov (United States)

    Zhang, Zi-Ning; Yi, Nan; Zhang, Tong-Wei; Zhang, Le-Le; Wu, Xian; Liu, Mei; Fu, Ya-Jing; He, Si-Jia; Jiang, Yong-Jun; Ding, Hai-Bo; Chu, Zhen-Xing; Shang, Hong

    2017-10-01

    Events occurring during the initial phase of human immunodeficiency virus (HIV) infection are intriguing because of their dramatic impact on the subsequent course of the disease. In particular, the relationship between myeloid-derived suppressor cells (MDSCs) and HIV pathogenesis in primary infection remains unknown and the mechanism of MDSCs in HIV infection are incompletely defined. The frequency of MDSC expression in patients with primary HIV infection (PHI) and chronic HIV infection was measured, and the association with disease progression was studied. Programmed death-ligand 1 (PD-L1) and galectin-9 (Gal-9) expression on MDSCs was measured and in vitro blocking experiments were performed to study the role of PD-L1 in MDSCs' inhibition. We found increased levels of HLA-DRCD14CD33CD11b granulocytic(G)-MDSCs in PHI individuals compared with normal controls, which correlated with viral loads and was negatively related to CD4 T-cell levels. When cocultured with purified G-MDSCs, both proliferation and interferon-γ secretion by T cell receptor (TCR)-stimulated CD8 T cells from HIV-infected patients were significantly inhibited. We also demonstrated that PD-L1, but not Gal-9, expression on HLA-DRCD14CD33CD11b cells increased during HIV infection. The suppressive activity of G-MDSCs from HIV-infected patients was attenuated by PD-L1 blockade. We found a significant increase in G-MDSCs in PHI patients that was related to disease progression and PD-L1 was used by MDSCs to inhibit CD8 T cells in HIV infection. Our data improve the understanding of HIV pathogenesis in PHI.

  17. Dominant Suppression of β1 Integrin by Ectopic CD98-ICD Inhibits Hepatocellular Carcinoma Progression

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2016-11-01

    Full Text Available Hepatocellular carcinoma (HCC is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3, and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment.

  18. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  19. Targeting Androgen Receptor and JunD Interaction for Prevention of Prostate Cancer Progression

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Kegel, Stacy J.; Church, Dawn R.; Schmidt, Joseph S.; Reuter, Quentin R.; Saphner, Elizabeth L.; Basu, Hirak S.; Wilding, George

    2014-01-01

    BACKGROUND Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N1-Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. METHODS A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. RESULTS Selected lead compound GWARJD10 with EC50 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC50 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. CONCLUSIONS Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. PMID:24647988

  20. Meniscal Allograft Transplantation Does Not Prevent or Delay Progression of Knee Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Catherine Van Der Straeten

    Full Text Available Meniscal tears are common knee injuries. Meniscal allograft transplantation (MAT has been advocated to alleviate symptoms and delay osteoarthritis (OA after meniscectomy. We investigated (1 the long-term outcome of MAT as a treatment of symptomatic meniscectomy, (2 most important factors affecting survivorship and (3 OA progression.From 1989 till 2013, 329 MAT were performed in 313 patients. Clinical and radiographic results and MAT survival were evaluated retrospectively. Failure was defined as conversion to knee arthroplasty (KA or total removal of the MAT.Mean age at surgery was 33 years (15-57; 60% were males. No-to-mild cartilage damage was found in 156 cases, moderate-to-severe damage in 130. Simultaneous procedures in 118 patients included cartilage procedures, osteotomy or ACL-reconstruction. At a mean follow-up of 6.8 years (0.2-24.3years, 5 patients were deceased and 48 lost (14.6%, 186 MAT were in situ (56.5% whilst 90 (27.4% had been removed, including 63 converted to a KA (19.2%. Cumulative allograft survivorship was 15.1% (95% CI:13.9-16.3 at 24.0 years. In patients <35 years at surgery, survival was significantly better (24.1% compared to ≥35 years (8.0% (p = 0.017. In knees with no-to-mild cartilage damage more allografts survived (43.0% compared to moderate-to-severe damage (6.6% (p = 0.003. Simultaneous osteotomy significantly deteriorated survival (0% at 24.0 years (p = 0.010. 61% of patients underwent at least one additional surgery (1-11 for clinical symptoms after MAT. Consecutive radiographs showed significant OA progression at a mean of 3.8 years (p<0.0001. Incremental Kellgren-Lawrence grade was +1,1 grade per 1000 days (2,7yrs.MAT did not delay or prevent tibiofemoral OA progression. 19.2% were converted to a knee prosthesis at a mean of 10.3 years. Patients younger than 35 with no-to-mild cartilage damage may benefit from MAT for relief of symptoms (survivorship 51.9% at 20.2 years, but patients and healthcare payers

  1. Roflumilast inhibits leukocyte-platelet interactions and prevents the prothrombotic functions of polymorphonuclear leukocytes and monocytes.

    Science.gov (United States)

    Totani, L; Amore, C; Di Santo, A; Dell'Elba, G; Piccoli, A; Martelli, N; Tenor, H; Beume, R; Evangelista, V

    2016-01-01

    ESSENTIALS: Thrombosis is a major comorbidity in patients with chronic obstructive pulmonary disease (COPD). Roflumilast is a selective phosphodiesterase type-4 (PDE4) inhibitor approved for treatment of severe COPD. PDE4 blockade by roflumilast inhibits prothrombotic functions of neutrophils and monocytes. PDE4 inhibitors may reduce thrombotic risk in COPD as well as in other vascular diseases. Roflumilast, an oral selective phosphodiesterase type 4 inhibitor, is approved for the treatment of severe chronic obstructive pulmonary disease (COPD). A recent meta-analysis of trials on COPD revealed that treatment with roflumilast was associated with a significant reduction in the rate of major cardiovascular events. The mechanisms of this effect remain unknown. We tested the hypothesis that roflumilast N-oxide (RNO), the active metabolite of roflumilast, curbs the molecular mechanisms required for leukocyte-platelet (PLT) interactions and prevents the prothrombotic functions of polymorphonuclear leukocytes (PMNs) and monocytes (MNs). Using well-characterized in vitro models, we analysed the effects of RNO on: (i) PMN adhesiveness; (ii) the release of neutrophil extracellular traps (NETs); and (iii) tissue factor expression in MNs. Key biochemical events underlying the inhibitory effects of RNO were defined. In PMNs, RNO prevented phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt on Ser473, and Src family kinase (SFK)-mediated Pyk2 phosphorylation on Tyr579-580, while inducing protein kinase A-mediated phosphorylation of C-terminal Src kinase, the major negative regulator of SFKs. Modulation of these signaling pathways by RNO resulted in a significant impairment of PMN adhesion to activated PLTs or human umbilical vein endothelial cells, mainly mediated by inhibition of the adhesive function of Mac-1. Moreover RNO curbed SFK/PI3K-mediated NET release by PMNs adherent on fibrinogen-coated surfaces. In MNs interacting with activated PLTs, RNO curbed PI3K

  2. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus

    Directory of Open Access Journals (Sweden)

    Fox Simon W

    2007-01-01

    Full Text Available Abstract Background IL-10 has a potent inhibitory effect on osteoclastogenesis. In vitro and in vivo studies confirm the importance of this cytokine in bone metabolism, for instance IL-10-deficient mice develop the hallmarks of osteoporosis. Although it is known that IL-10 directly inhibits osteoclastogenesis at an early stage, preventing differentiation of osteoclast progenitors to preosteoclasts, the precise mechanism of its action is not yet clear. Several major pathways regulate osteoclastogenesis, with key signalling genes such as p38, TRAF6, NF-κB and NFATc1 well established as playing vital roles. We have looked at gene expression in eleven of these genes using real-time quantitative PCR on RNA extracted from RANKL-treated RAW264.7 monocytes. Results There was no downregulation by IL-10 of DAP12, FcγRIIB, c-jun, RANK, TRAF6, p38, NF-κB, Gab2, Pim-1, or c-Fos at the mRNA level. However, we found that IL-10 significantly reduces RANKL-induced NFATc1 expression. NFATc1 is transcribed from two alternative promoters in Mus musculus and, interestingly, only the variant transcribed from promoter P1 and beginning with exon 1 was downregulated by IL-10 (isoform 1. In addition, immunofluorescence studies showed that IL-10 reduces NFATc1 levels in RANKL-treated precursors and suppresses nuclear translocation. The inhibitory effect of IL-10 on tartrate-resistant acid phosphatase-positive cell number and NFATc1 mRNA expression was reversed by the protein kinase C agonist phorbol myristate acetate, providing evidence that interleukin-10 disrupts NFATc1 activity through its effect on Ca2+ mobilisation. Conclusion IL-10 acts directly on mononuclear precursors to inhibit NFATc1 expression and nuclear translocation, and we provide evidence that the mechanism may involve disruption of Ca2+ mobilisation. We detected downregulation only of the NFATc1 isoform 1 transcribed from promoter P1. This is the first report indicating that one of the ways in which

  3. Coordination of FOXA2 and SIRT6 suppresses the hepatocellular carcinoma progression through ZEB2 inhibition.

    Science.gov (United States)

    Liu, Jinghua; Yu, Zhen; Xiao, Yuanyuan; Meng, Qiong; Wang, Yeying; Chang, Wei

    2018-01-01

    The Forkhead transcription family member FOXA2 plays a fundamental role in hepatocellular carcinoma (HCC) progression, but the precise interaction factor and molecular regulation of FOXA2 are not fully understood. In this study, we found that FOXA2 could interact with sirtuin 6 (SIRT6) directly in vivo and in vitro. We explored that the expressions of FOXA2 and SIRT6 were significantly downregulated in human HCC and HCC cell lines. Functionally, cell counting kit-8 assay and Transwell® assay were performed; we demonstrated that the knockdown of FOXA2 and SIRT6 promoted HepG2 cells and Huh7 cells proliferation and invasion in vitro. Mechanically, using luciferase reporter assay and fast chromatin immunoprecipitation assay, we showed that FOXA2 and SIRT6 regulated the expression of ZEB2 from transcription level. ZEB2 suppression was involved in the anti-oncogenesis effect of FOXA2 and SIRT6. The negative correlation between the expressions of ZEB2 and FOXA2 or SIRT6 was observed in the tissues of HCC patients. Our findings indicated that the coordination function of FOXA2 and SIRT6 played a critical role in HCC progression and may serve as potential drug candidates for HCC.

  4. miR-761 inhibits tumor progression by targeting MSI1 in ovarian carcinoma.

    Science.gov (United States)

    Shi, Can; Zhang, Zhenyu

    2016-04-01

    Increasing evidences have revealed that microRNAs regulate various biological processes. However, the roles of miR-761 have not been investigated in ovarian cancer. Here, we found that miR-761 expression was significantly lower in ovarian cancer tissues than in their paired noncancerous tissues. Further study revealed that miR-761 overexpression inhibited the ovarian cancer cell proliferation and invasion. Mechanistically, we demonstrated that the oncogenic properties of miR-761 in ovarian cancer were mediated in part by regulating MSI1 expression. miR-761 and MSI1 are inversely expressed in ovarian cancer tissues. In conclusion, we demonstrated that miR-761 repressed ovarian cancer proliferation and invasion by targeting MSI1.

  5. Baicalin hydrate inhibits cancer progression in nasopharyngeal carcinoma by affecting genome instability and splicing.

    Science.gov (United States)

    Lai, Weiwei; Jia, Jiantao; Yan, Bin; Jiang, Yiqun; Shi, Ying; Chen, Ling; Mao, Chao; Liu, Xiaoli; Tang, Haosheng; Gao, Menghui; Cao, Ya; Liu, Shuang; Tao, Yongguang

    2018-01-02

    Baicalin hydrate (BH), a natural compound, has been investigated for many years because of its traditional medicinal properties. However, the anti-tumor activities of BH and its epigenetic role in NPC have not been elucidated. In this study, we identified that BH inhibits NPC cell growth in vivo and in vitro by inducing apoptosis and cell cycle arrest. BH epigenetically regulated genome instability by up-regulating the expression of satellite 2 (Sat2), alpha satellite (α-Sat), and major satellite (Major-Sat). BH also increased the level of IKKα, Suv39H1, and H3K9me3 and decreased LSH expression. Interestingly, BH promoted the splicing of Suv39H1 via the enhancement of m6A RNA methylation, rather than DNA methylation. Taken together, our results demonstrated that BH has an anti-tumor role in NPC and revealed a unique role of BH in genome instability and splicing in response to DNA damage.

  6. Mind magic: a pilot study of preventive mind-body-based stress reduction in behaviorally inhibited and activated children

    NARCIS (Netherlands)

    Jellesma, F.C.; Cornelis, J.

    2012-01-01

    Purpose of study: The aim of this pilot study was to examine a mind-body-based preventive intervention program and to determine relationships between children's behavioral inhibition system (BIS) and behavioral activation system, stress, and stress reduction after the program. Design of study:

  7. Diabetes autoantibodies do not predict progression to diabetes in adults: the Diabetes Prevention Program.

    Science.gov (United States)

    Dabelea, D; Ma, Y; Knowler, W C; Marcovina, S; Saudek, C D; Arakaki, R; White, N H; Kahn, S E; Orchard, T J; Goldberg, R; Palmer, J; Hamman, R F

    2014-09-01

    To determine if the presence of diabetes autoantibodies predicts the development of diabetes among participants in the Diabetes Prevention Program. A total of 3050 participants were randomized into three treatment groups: intensive lifestyle intervention, metformin and placebo. Glutamic acid decarboxylase (GAD) 65 autoantibodies and insulinoma-associated-2 autoantibodies were measured at baseline and participants were followed for 3.2 years for the development of diabetes. The overall prevalence of GAD autoantibodies was 4.0%, and it varied across racial/ethnic groups from 2.4% among Asian-Pacific Islanders to 7.0% among non-Hispanic black people. There were no significant differences in BMI or metabolic variables (glucose, insulin, HbA(1c), estimated insulin resistance, corrected insulin response) stratified by baseline GAD antibody status. GAD autoantibody positivity did not predict diabetes overall (adjusted hazard ratio 0.98; 95% CI 0.56-1.73) or in any of the three treatment groups. Insulinoma-associated-2 autoantibodies were positive in only one participant (0.033%). These data suggest that 'diabetes autoimmunity', as reflected by GAD antibodies and insulinoma-associated-2 autoantibodies, in middle-aged individuals at risk for diabetes is not a clinically relevant risk factor for progression to diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  8. Repeated Treatments with Ingenol Mebutate Prevents Progression of UV-Induced Photodamage in Hairless Mice

    DEFF Research Database (Denmark)

    Erlendsson, Andrés Már; Thaysen-Petersen, Daniel; Bay, Christiane

    2016-01-01

    : UVR+IngMeb 6.00 vs. UVR+IngMeb+CP 3.00 p field-directed treatments with IngMeb prevent progression of cutaneous photodamage in hairless mice, while CP cannot be used to alleviate IngMeb-induced LSR. The findings suggest that IngMeb may potentially serve as a prophylactic...... skin responses (LSR). METHODS: Hairless mice (n = 60; 3 groups of 20 mice) were irradiated with solar simulated ultraviolet radiation (UVR) throughout the study. Five single treatments with IngMeb were given at 4-week intervals (Days 21, 49, 77, 105, and 133). Clobetasol propionate (CP) was applied...... once daily for 5 days prior to each IngMeb application, as well as 6 h and 1 day post treatment. One week after IngMeb treatment No. 1, 3, and 5 (Days 28, 84, and 140), biopsies from four mice in each group were collected for histological evaluation of UV-damage on a standardized UV-damage scale (0...

  9. Congressing kinetochores progressively load Ska complexes to prevent force-dependent detachment.

    Science.gov (United States)

    Auckland, Philip; Clarke, Nicholas I; Royle, Stephen J; McAinsh, Andrew D

    2017-06-05

    Kinetochores mediate chromosome congression by either sliding along the lattice of spindle microtubules or forming end-on attachments to their depolymerizing plus-ends. By following the fates of individual kinetochores as they congress in live cells, we reveal that the Ska complex is required for a distinct substep of the depolymerization-coupled pulling mechanism. Ska depletion increases the frequency of naturally occurring, force-dependent P kinetochore detachment events, while being dispensable for the initial biorientation and movement of chromosomes. In unperturbed cells, these release events are followed by reattachment and successful congression, whereas in Ska-depleted cells, detached kinetochores remain in a futile reattachment/detachment cycle that prevents congression. We further find that Ska is progressively loaded onto bioriented kinetochore pairs as they congress. We thus propose a model in which kinetochores mature through Ska complex recruitment and that this is required for improved load-bearing capacity and silencing of the spindle assembly checkpoint. © 2017 Auckland et al.

  10. Mitigating preventable chronic disease: Progress report of the Cleveland Clinic's Lifestyle 180 program

    Directory of Open Access Journals (Sweden)

    Ricanati Elizabeth HW

    2011-11-01

    Full Text Available Abstract Background Poor lifestyle choices are key in development and progression of preventable chronic diseases. The purpose of the study was to design and test a program to mitigate the physical and fiscal consequences of chronic diseases. Methods Here we report the outcomes for 429 participants with one or more chronic conditions, including obesity, hypertension, hyperlipidemia and diabetes mellitus, many of whom had failed traditional disease management programs, who enrolled into a comprehensive lifestyle intervention. The Lifestyle 180 program integrates nutrition, physical activity and stress management interventions and was conducted at the Wellness Institute of the Cleveland Clinic, United States. An intensive 6 week immersion course, with 8 hours of group instruction per week, was followed by 3 follow-up, 4 hour-long sessions over the course of 6 months. Results Changes in biometric (weight, height, waist circumference, resting heart rate and blood pressure and laboratory variables (fasting lipid panel, blood glucose, insulin, hemoglobin A1c, ultra sensitive C-reactive protein at 6 months were compared with baseline (pre-post analysis. At week 30, biometric and laboratory data were available for 244 (57% and 299 (70% participants, respectively. These had a mean ± SD reduction in weight (6.8 ± 6.9 kg, P Conclusion Implementation of a comprehensive lifestyle modification program among adults with common chronic conditions results in significant and clinically meaningful improvements in biometric and laboratory outcomes after 6 months.

  11. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice.

    Science.gov (United States)

    Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell

    2018-03-13

    Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for this study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor-bearing mice. ©2018 The Author(s).

  12. Atherosclerosis stabilization with PCSK-9 inhibition: An evolving concept for cardiovascular prevention.

    Science.gov (United States)

    Robinson, Jennifer G; Heistad, Donald D; Fox, Keith A A

    2015-12-01

    Monoclonal antibodies (mAbs) to proprotein convertase subtilisin/kexin type 9 (PCSK-9) can further lower LDL-C by ≥60% in statin-treated patients. Preliminary data suggest they may reduce cardiovascular (CVD) events. Ongoing PCSK-9 mAb cardiovascular outcomes trials could provide the opportunity to determine whether a "legacy effect" similar to that observed for statins will occur over the post-trial observation period. We hypothesize these trials could demonstrate that (1) very aggressive LDL-C lowering with PCSK-9 mAbs added to background statin therapy will induce extensive atherosclerosis stabilization and regression in the large majority of treated patients, and (2) continued maintenance therapy with high intensity statin therapy (with or without ezetimibe) should then inhibit new plaque formation, with a long-term prevention of CVD events. The necessity of expensive lifetime treatment with PCSK-9 inhibitors could then be avoided in all but a small subset of patients who could benefit from longer treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification.

    Science.gov (United States)

    Wang, Jun; Klysik, Elzbieta; Sood, Subeena; Johnson, Randy L; Wehrens, Xander H T; Martin, James F

    2010-05-25

    Atrial fibrillation (AF), the most prevalent sustained cardiac arrhythmia, often coexists with the related arrhythmia atrial flutter (AFL). Limitations in effectiveness and safety of current therapies make an understanding of the molecular mechanism underlying AF more urgent. Genome-wide association studies implicated a region of human chromosome 4q25 in familial AF and AFL, approximately 150 kb distal to the Pitx2 homeobox gene, a developmental left-right asymmetry (LRA) gene. To investigate the significance of the 4q25 variants, we used mouse models to investigate Pitx2 in atrial arrhythmogenesis directly. When challenged by programmed stimulation, Pitx2(null+/-) adult mice had atrial arrhythmias, including AFL and atrial tachycardia, indicating that Pitx2 haploinsufficiency predisposes to atrial arrhythmias. Microarray and in situ studies indicated that Pitx2 suppresses sinoatrial node (SAN)-specific gene expression, including Shox2, in the left atrium of embryos and young adults. In vivo ChIP and transfection experiments indicated that Pitx2 directly bound Shox2 in vivo, supporting the notion that Pitx2 directly inhibits the SAN-specific genetic program in left atrium. Our findings implicate Pitx2 and Pitx2-mediated LRA-signaling pathways in prevention of atrial arrhythmias.

  14. Goreisan Prevents Brain Edema after Cerebral Ischemic Stroke by Inhibiting Aquaporin 4 Upregulation in Mice.

    Science.gov (United States)

    Nakano, Takafumi; Nishigami, Chisa; Irie, Keiichi; Shigemori, Yutaka; Sano, Kazunori; Yamashita, Yuta; Myose, Takayuki; Tominaga, Koji; Matsuo, Koichi; Nakamura, Yoshihiko; Ishikura, Hiroyasu; Kamimura, Hidetoshi; Egawa, Takashi; Mishima, Kenichi

    2018-03-01

    Aquaporin 4 (AQP4) is a water-selective transport protein expressed in astrocytes throughout the central nervous system. AQP4 level increases after cerebral ischemia and results in ischemic brain edema. Brain edema markedly influences mortality and motor function by elevating intracranial pressure that leads to secondary brain damage. Therefore, AQP4 is an important target to improve brain edema after cerebral ischemia. The Japanese herbal Kampo medicine, goreisan, is known to inhibit AQP4 activity. Here, we investigated whether goreisan prevents induction of brain edema by cerebral ischemia via AQP4 using 4-hour middle cerebral artery occlusion (4h MCAO) mice. Goreisan was orally administered at a dose of 500 mg/kg twice a day for 5 days before MCAO. AQP4 expression and motor coordination were measured by Western blotting and rotarod test, respectively. Brain water content of 4h MCAO mice was significantly increased at 24 hours after MCAO. Treatment with goreisan significantly decreased both brain water content and AQP4 expression in the ischemic brain at 24 hours after MCAO. In addition, treatment with goreisan alleviated motor coordination deficits at 24 hours after MCAO. The results of this study suggested that goreisan may be a useful new therapeutic option for ischemic brain edema. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Coordination of FOXA2 and SIRT6 suppresses the hepatocellular carcinoma progression through ZEB2 inhibition

    Directory of Open Access Journals (Sweden)

    Liu J

    2018-03-01

    Full Text Available Jinghua Liu,1 Zhen Yu,2 Yuanyuan Xiao,2 Qiong Meng,2 Yeying Wang,2 Wei Chang2 1Department of Gastroenterology and Hepatology, The 4th Affiliated Hospital of Kunming Medical University, 2School of Public Health, Kunming Medical University, Kunming, China Background: The Forkhead transcription family member FOXA2 plays a fundamental role in hepatocellular carcinoma (HCC progression, but the precise interaction factor and molecular regulation of FOXA2 are not fully understood. Objective: In this study, we found that FOXA2 could interact with sirtuin 6 (SIRT6 directly in vivo and in vitro. We explored that the expressions of FOXA2 and SIRT6 were significantly downregulated in human HCC and HCC cell lines. Methods: Functionally, cell counting kit-8 assay and Transwell® assay were performed; we demonstrated that the knockdown of FOXA2 and SIRT6 promoted HepG2 cells and Huh7 cells proliferation and invasion in vitro. Results: Mechanically, using luciferase reporter assay and fast chromatin immunoprecipitation assay, we showed that FOXA2 and SIRT6 regulated the expression of ZEB2 from transcription level. ZEB2 suppression was involved in the anti-oncogenesis effect of FOXA2 and SIRT6. The negative correlation between the expressions of ZEB2 and FOXA2 or SIRT6 was observed in the tissues of HCC patients.Conclusion: Our findings indicated that the coordination function of FOXA2 and SIRT6 played a critical role in HCC progression and may serve as potential drug candidates for HCC. Keywords: FOXA2, SIRT6, ZEB2, proliferation, invasion

  16. Gynecologic Cancer Prevention and Control in the National Comprehensive Cancer Control Program: Progress, Current Activities, and Future Directions

    OpenAIRE

    Stewart, Sherri L.; Lakhani, Naheed; Brown, Phaeydra M.; Larkin, O. Ann; Moore, Angela R.; Hayes, Nikki S.

    2013-01-01

    Gynecologic cancer confers a large burden among women in the United States. Several evidence-based interventions are available to reduce the incidence, morbidity, and mortality from these cancers. The National Comprehensive Cancer Control Program (NCCCP) is uniquely positioned to implement these interventions in the US population. This review discusses progress and future directions for the NCCCP in preventing and controlling gynecologic cancer.

  17. Gynecologic cancer prevention and control in the National Comprehensive Cancer Control Program: progress, current activities, and future directions.

    Science.gov (United States)

    Stewart, Sherri L; Lakhani, Naheed; Brown, Phaeydra M; Larkin, O Ann; Moore, Angela R; Hayes, Nikki S

    2013-08-01

    Gynecologic cancer confers a large burden among women in the United States. Several evidence-based interventions are available to reduce the incidence, morbidity, and mortality from these cancers. The National Comprehensive Cancer Control Program (NCCCP) is uniquely positioned to implement these interventions in the US population. This review discusses progress and future directions for the NCCCP in preventing and controlling gynecologic cancer.

  18. Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease.

    Science.gov (United States)

    Sampson, Anna L; Singer, Richard F; Walters, Giles D

    2017-10-30

    participants: MD -73.35 µmol/L, 95% CI -107.28 to -39.41) and a rise in eGFR (1 study, 113 participants: MD 5.50 mL/min/1.73 m 2 , 95% CI 0.59 to 10.41). However it probably makes little or no difference to eGFR at two years (2 studies, 164 participants: MD 4.00 mL/min, 95% CI -3.28 to 11.28). Uric acid lowering therapy reduced uric acid levels at all time points (3, 4, 6, 12 and 24 months) (high certainty evidence).There is insufficient evidence to support an effect on blood pressure, proteinuria or other cardiovascular markers by uric acid lowering therapy. It should be noted that the apparent benefits of treatment were not apparent at all time points, introducing the potential for bias. There is limited data which suggests uric acid lowering therapy may prevent progression of chronic kidney disease but the conclusion is very uncertain. Benefits were not observed at all time points and study quality was generally low. Larger studies are required to study the effect of uric acid lowering therapy on CKD progression. Three ongoing studies will hopefully provide much needed high quality data.

  19. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    International Nuclear Information System (INIS)

    Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru; Yamamoto, Tadashi

    2012-01-01

    Highlights: ► CNOT3 depletion increases the mitotic index. ► CNOT3 inhibits the expression of MAD1. ► CNOT3 destabilizes the MAD1 mRNA. ► MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4–NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4–NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4–NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4–NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  20. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akinori [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Kikuguchi, Chisato [Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan); Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  1. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol

    Science.gov (United States)

    Wang, Helen H; Portincasa, Piero; de Bari, Ornella; Liu, Kristina J; Garruti, Gabriella; Neuschwander-Tetri, Brent A; Wang, David Q.-H

    2013-01-01

    Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors, and represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the US, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA) has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. Therefore, the development of novel, effective, and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide. PMID:23419155

  2. Atropine for the Prevention of Myopia Progression in Children: A Report by the American Academy of Ophthalmology.

    Science.gov (United States)

    Pineles, Stacy L; Kraker, Raymond T; VanderVeen, Deborah K; Hutchinson, Amy K; Galvin, Jennifer A; Wilson, Lorri B; Lambert, Scott R

    2017-12-01

    To review the published literature on the efficacy of topical atropine for the prevention of myopic progression in children. Literature searches were last conducted in December 2016 in the PubMed database with no date restrictions, but were limited to studies published in English, and in the Cochrane Library database without any restrictions. The combined searches yielded 98 citations, 23 of which were reviewed in full text. Of these, 17 articles were deemed appropriate for inclusion in this assessment and subsequently were assigned a level of evidence rating by the panel methodologist. Seventeen level I, II, and III studies were identified. Most of the studies reported less myopic progression in children treated with atropine compared with various control groups. All 8 of the level I and II studies that evaluated primarily myopic progression revealed less myopic progression with atropine (myopic progression ranging from 0.04±0.63 to 0.47±0.91 diopters (D)/year) compared with control participants (myopic progression ranging from 0.38±0.39 to 1.19±2.48 D/year). In studies that evaluated myopic progression after cessation of treatment, a rebound effect was noted. Several studies evaluated the optimal dosage of atropine with regard to myopic progression, rebound after treatment cessation, and minimization of side effects. Lower dosages of atropine (0.5%, 0.1%, and 0.01%) were found to be slightly less effective during treatment periods of 1 to 2 years, but they were associated with less rebound myopic progression (for atropine 0.01%, mean myopic progression after treatment cessation of 0.28±0.33 D/year, compared with atropine 0.5%, 0.87±0.52 D/year), fewer side effects, and similar long-term results for myopic progression after the study period and rebound effect were considered. The most robust and well-designed studies were carried out in Asian populations. Studies involving patients of other ethnic backgrounds failed to provide sufficient evidence of an

  3. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

    Science.gov (United States)

    Vennin, Claire; Chin, Venessa T.; Warren, Sean C.; Lucas, Morghan C.; Herrmann, David; Magenau, Astrid; Melenec, Pauline; Walters, Stacey N.; del Monte-Nieto, Gonzalo; Conway, James R. W.; Nobis, Max; Allam, Amr H.; McCloy, Rachael A.; Currey, Nicola; Pinese, Mark; Boulghourjian, Alice; Zaratzian, Anaiis; Adam, Arne A. S.; Heu, Celine; Nagrial, Adnan M.; Chou, Angela; Steinmann, Angela; Drury, Alison; Froio, Danielle; Giry-Laterriere, Marc; Harris, Nathanial L. E.; Phan, Tri; Jain, Rohit; Weninger, Wolfgang; McGhee, Ewan J.; Whan, Renee; Johns, Amber L; Samra, Jaswinder S.; Chantrill, Lorraine; Gill, Anthony J.; Kohonen-Corish, Maija; Harvey, Richard P.; Biankin, Andrew V.; Jeffry Evans, T. R.; Anderson, Kurt I.; Grey, Shane T.; Ormandy, Christopher J.; Gallego-Ortega, David; Wang, Yingxiao; Samuel, Michael S.; Sansom, Owen J.; Burgess, Andrew; Cox, Thomas R.; Morton, Jennifer P.; Pajic, Marina; Timpson, Paul

    2018-01-01

    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or “priming,” using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer. PMID:28381539

  4. MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression.

    Science.gov (United States)

    Chen, Shuo; Chen, Xi; Xiu, Yin-Ling; Sun, Kai-Xuan; Zhao, Yang

    2015-06-28

    The expression of microRNA-490-3P has been reported to regulate hepatocellular carcinoma cell proliferation, migration and invasion, and its overexpression significantly inhibits A549 lung cancer cell proliferation. Here, we demonstrated for the first time that miR-490 mRNA expression was significantly lower in ovarian carcinoma and borderline tumors compared to benign tumors, and lower in metastatic ovarian carcinoma (omentum) than primary ovarian carcinoma, and was negatively associated with differentiation and International Federation of Gynecology and Obstetrics (FIGO) staging. MiR-490-3P overexpression promoted G1/S or G2/M arrest and apoptosis; reduced cell proliferation, migration and invasion; reduced CDK1, Bcl-xL, MMP2/9, CCND1, SMARCD1 mRNA or protein expression; and induced P53 expression. Dual-luciferase reporter assay indicated miR-490-3P directly targeted CDK1. In vivo studies showed that miR-490-3P transfection suppressed tumor development and CDK1, Bcl-xL, MMP2/9 expression while inducing P53 expression. These findings indicate that miR-490-3P may target CDK1 and inhibit ovarian epithelial carcinoma tumorigenesis and progression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  6. Water extract of Rumex crispus prevents bone loss by inhibiting osteoclastogenesis and inducing osteoblast mineralization.

    Science.gov (United States)

    Shim, Ki-Shuk; Lee, Bohyoung; Ma, Jin Yeul

    2017-10-26

    Rumex crispus root has traditionally been used in Asian medicine for the treatment of hemorrhage and dermatolosis. The aim of this study was to explore the pharmaceutical effects of water extract of Rumex crispus (WERC) on osteoblast and osteoclast differentiation. We also studied the effect of WERC on the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced trabecular bone destruction mice model. High performance liquid chromatography analysis was used to identify three compounds (emodin, chrysophanol, and physcion) of WERC. The in vivo effect of WERC was examined using an administration of WERC or vehicle on the ICR mice with bone loss induced by intraperitoneal RANKL injection on day 0 and 1. All mice were sacrificed by cervical dislocation at day 7 and the femurs of mice were isolated for soft X-ray and Micro-CT analysis. The in vitro effect of WERC on osteoblast mineralization or osteoclast differentiation was examined by alizarin red S staining or by tartrate-resistant acid phosphatase staining and assay. To determine the transcription level of osteoblast or osteoclast-specific genes, real-time quantitative polymerase chain reaction was used. Western blot analysis was performed to study the effect of WERC on mitogen-activated protein kinases (MAPK) or nuclear factor-κB (NF-κB) signaling molecules. The presence of three compounds in WERC was determined. WERC significantly suppressed RANKL-induced trabecular bone loss by preventing microstructural deterioration. In vitro, WERC increased osteoblast mineralization by enhancing the transcription of runt-related transcription factor 2 and its transcriptional coactivators, and by stimulating extracellular signal-regulated kinase phosphorylation. Furthermore, WERC significantly inhibited osteoclast differentiation by suppressing the activation of the RANKL signalings (MAPK and NF-κB) and the increasing inhibitory factors of nuclear factor of activated T cells cytoplasmic 1. This study showed that

  7. Progression of Human Renal Cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1

    Directory of Open Access Journals (Sweden)

    Junichiro Miyazaki

    2017-04-01

    Full Text Available Renal cell carcinoma (RCC is the most lethal urological malignancy with high risk of recurrence; thus, new prognostic biomarkers are needed. In this study, a new RCC antigen, PTPL1 associated RhoGAP1 (PARG1, was identified by using serological identification of recombinant cDNA expression cloning with sera from RCC patients. PARG1 protein was found to be differentially expressed in RCC cells among patients. High PARG1 expression is significantly correlated with various clinicopathological factors relating to cancer cell proliferation and invasion, including G3 percentage (P = .0046, Ki-67 score (p expression is also correlated with high recurrence of N0M0 patients (P = .0084 and poor prognosis in RCC patients (P = .0345. Multivariate analysis has revealed that high PARG1 expression is an independent factor for recurrence (P = .0149 of N0M0 RCC patients. In in vitro studies, depletion of PARG1by siRNA in human RCC cell lines inhibited their proliferation through inducing G1 cell cycle arrest via upregulation of p53 and subsequent p21Cip1/Waf1, which are mediated by increased RhoA-ROCK activities. Similarly, PARG1 depletion cells inhibited invasion ability via increasing RhoA-ROCK activities in the RCC cell lines. Conversely, overexpression of PARG1 on human embryonic kidney cell line HEK293T promotes its cell proliferation and invasion. These results indicate that PARG1 plays crucial roles in progression of human RCC in increasing cell proliferation and invasion ability via inhibition of the RhoA-ROCK axis, and PARG1 is a poor prognostic marker, particularly for high recurrence of N0M0 RCC patients.

  8. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  9. Adipose-derived regenerative cell therapy inhibits the progression of monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Eguchi, Masamichi; Ikeda, Satoshi; Kusumoto, Saburo; Sato, Daisuke; Koide, Yuji; Kawano, Hiroaki; Maemura, Koji

    2014-11-24

    Functional and structural changes in pulmonary vasculature characterize pulmonary arterial hypertension (PAH) and the prognosis of advanced PAH remains poor despite progress in pharmacotherapy. Adipose-derived regenerative cells (ADRCs) promote cell regeneration at pathological sites and comprise a novel therapy for ailments of various organs. We investigated the effects of ADRC therapy in rat models of monocrotaline (MCT)-induced pulmonary hypertension (PH) and the underlying mechanisms. Rats were assigned to Control and MCT groups without and with (M/A) intravenous transfusion of seven million ADRCs on day 7. We echocardiographically evaluated pulmonary hypertension as pulmonary artery flow acceleration time (PAAT) and deceleration (PADc). Right ventricular (RV) systolic pressure was measured by catheterization on day 28 and then pathological changes in pulmonary vessels were assessed. We analyzed PAH-associated gene expression on day 14 using real-time RT-PCR. Echocardiography and RV catheterization showed that ADRC therapy inhibited PH development (assessed as PAAT, PADc, and RV systolic pressure) at day 28 (MCT vs. M/A, PPulmonary vascular remodeling was also inhibited (vessel wall thickness: MCT vs. M/A, P<0.01). Messenger RNA levels of endothelin (ET) A and B receptors, ET-1 and transforming growth factor (TGF)-β increased in the lungs by MCT were suppressed by ADRCs (MCT vs. M/A, P<0.05). The development of PH was inhibited by ADRCs through suppressing changes in the expression of genes associated with ET and TGF-β systems. We believe that ADRC therapy could serve as a novel strategy for treating PH. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Progress in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania

    International Nuclear Information System (INIS)

    Kurselis, S.; Stadalnikas, A.

    2001-01-01

    Full text: The paper gives a general overview of the progress which has been made in the activities on prevention and combating of illicit trafficking of nuclear material in Lithuania. It describes the measures which were taken to strengthen nuclear material accounting and control and physical protection. The current status of the national legislation and the functions of institutions involved in control of nuclear material and combating of illicit trafficking are discussed. Lithuania, similar to many countries, did not avoid a new type of a crime - smuggling of nuclear materials - which was observed in the 1990's. The most serious case in Lithuania happened in 1993 when fresh fuel assembly was stolen from Ignalina NPP. This assembly contains approximately 124 kg of UO 2 (enrichment 2%). 100 kg of the pellets from this assembly was found later in several pieces at different places. This case served as a strong stimulus to strengthen prevention measures of Illicit trafficking. The legal basis was created and governmental institutions were obliged with special duties related with nuclear material. The laws and regulations set the order for the shipment and handling of nuclear material. The penalties for violation of these laws and regulations specified in Penal Code and Administrative Code were made stricter. The State system of accounting for and control of nuclear material (SSAC) is a very important element in prevention of the illicit trafficking. The Regulations of Accounting for and Control of Nuclear Material at Nuclear Facilities and LOFs was issued by the State Nuclear Power Safety Inspectorate (VATESI) on 10 December 1997 following the provisions of the Law on Nuclear Energy. Lithuania extended its international obligations by ratifying the Protocol Additional to the Safeguards Agreement (entered into force on 5 July 2000). The fully computerized nuclear material accountancy system was created at Ignalina NPP. The system gives the possibility to find the

  11. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation.

    Science.gov (United States)

    Lu, Guan-Ling; Lee, Chia-Hsu; Chiou, Lih-Chu

    2016-08-01

    The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Directory of Open Access Journals (Sweden)

    Stichtenoth Guido

    2006-06-01

    Full Text Available Abstract Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM and stereology allows the differentiation of active (large aggregates = LA and inactive (small aggregates = SA subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf, Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL, multilamellar vesicles (MV, unilamellar vesicles (UV] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA as well as UV (corresponding to SA. The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV ratio (resembling the SA/LA ratio increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.

  13. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Science.gov (United States)

    Ochs, Matthias; Schüttler, Markus; Stichtenoth, Guido; Herting, Egbert

    2006-01-01

    Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM) and stereology allows the differentiation of active (large aggregates = LA) and inactive (small aggregates = SA) subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf), Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL), multilamellar vesicles (MV), unilamellar vesicles (UV)] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA) as well as UV (corresponding to SA). The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV) ratio (resembling the SA/LA ratio) increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation. PMID:16756655

  14. The myosin II ATPase inhibitor blebbistatin prevents thrombin-induced inhibition of intercellular calcium wave propagation in corneal endothelial cells.

    Science.gov (United States)

    Ponsaerts, Raf; D'hondt, Catheleyne; Bultynck, Geert; Srinivas, Sangly P; Vereecke, Johan; Himpens, Bernard

    2008-11-01

    Thrombin inhibits intercellular Ca(2+) wave propagation in bovine corneal endothelial cells (BCECs) through a mechanism dependent on myosin light chain (MLC) phosphorylation. In this study, blebbistatin, a selective myosin II ATPase inhibitor, was used to investigate whether the effect of thrombin is mediated by enhanced actomyosin contractility. BCECs were exposed to thrombin (2 U/mL) for 5 minutes. MLC phosphorylation was assayed by immunocytochemistry. Ca(2+) waves were visualized by confocal microscopy with Fluo-4AM. Fluorescence recovery after photobleaching (FRAP) was used to investigate intercellular communication (IC) via gap junctions. ATP release was measured by luciferin-luciferase assay. Lucifer yellow (LY) uptake was used to investigate hemichannel activity, and Fura-2 was used to assay thrombin- and ATP-mediated Ca(2+) responses. Pretreatment with blebbistatin (5 microM for 20 minutes) or its nitro derivative prevented the thrombin-induced inhibition of the Ca(2+) wave. Neither photo-inactivated blebbistatin nor the inactive enantiomers prevented the thrombin effect. Blebbistatin also prevented thrombin-induced inhibition of LY uptake, ATP release and FRAP, indicating that it prevented the thrombin effect on paracrine and gap junctional IC. In the absence of thrombin, blebbistatin had no significant effect on paracrine or gap junctional IC. The drug had no influence on MLC phosphorylation or on [Ca(2+)](i) transients in response to thrombin or ATP. Blebbistatin prevents the inhibitory effects of thrombin on intercellular Ca(2+) wave propagation. The findings demonstrate that myosin II-mediated actomyosin contractility plays a central role in thrombin-induced inhibition of gap junctional IC and of hemichannel-mediated paracrine IC.

  15. [Progress of Clinical Trials on Bone Marrow Mesenchymal Stem Cells for Prevention and Therapy of Graft-Versus-Host Disease].

    Science.gov (United States)

    Zhong, Dan-Li; Tu, San-Fang; Li, Yu-Hua

    2015-12-01

    Graft-versus-host disease (GVHD) is a major complication following allogenetic hematopoietic stem cell transplantation, which shows a great threat to patients' survival and life quality. Along with multiple differentiation potential to various types of progenitor cells, bone marrow mesenchymal stem cells (BMMSC) have been confirmed to possess low immunogenicity and exert favorable immunomodulation. The recent studies show that the safety and high efficiency of BMMSC to prevent and cure GVHD greatly improved survival rate of the hosts. The most recent progress on prevention and therapy of GVHD is summarized in this review based on biology of BMMSC and pathogenesis of GVHD, so as to provide the effective evidence for further research.

  16. Pharmacological hypothesis: Nitric oxide-induced inhibition of ADAM-17 activity as well as vesicle release can in turn prevent the production of soluble endothelin-converting enzyme.

    Science.gov (United States)

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W; Parkington, Helena C; Smith, Ian

    2017-10-01

    Endothelin-1 (ET-1) and nitric oxide (NO) are two highly potent vasoactive molecules with opposing effects on the vasculature. Endothelin-converting enzyme (ECE) and nitric oxide synthase (NOS) catalyse the production of ET-1 and NO, respectively. It is well established that these molecules play a crucial role in the initiation and progression of cardiovascular diseases and have therefore become targets of therapy. Many studies have examined the mechanism(s) by which NO regulates ET-1 production. Expression and localization of ECE-1 is a key factor that determines the rate of ET-1 production. ECE-1 can either be membrane bound or be released from the cell surface to produce a soluble form. NO has been shown to reduce the expression of both membrane-bound and soluble ECE-1. Several studies have examined the mechanism(s) behind NO-mediated inhibition of ECE expression on the cell membrane. However, the precise mechanism(s) behind NO-mediated inhibition of soluble ECE production are unknown. We hypothesize that both exogenous and endogenous NO, inhibits the production of soluble ECE-1 by preventing its release via extracellular vesicles (e.g., exosomes), and/or by inhibiting the activity of A Disintegrin and Metalloprotease-17 (ADAM17). If this hypothesis is proven correct in future studies, these pathways represent targets for the therapeutic manipulation of soluble ECE-1 production. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  17. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation.

    NARCIS (Netherlands)

    Braake, A.D. ter; Tinnemans, P.T.; Shanahan, C.M.; Hoenderop, J.G.J.; Baaij, J.H.F. de

    2018-01-01

    Magnesium has been shown to effectively prevent vascular calcification associated with chronic kidney disease. Magnesium has been hypothesized to prevent the upregulation of osteoblastic genes that potentially drives calcification. However, extracellular effects of magnesium on hydroxyapatite

  18. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice

    OpenAIRE

    Kentaro Nakamura; Hidekazu Tonouchi; Akina Sasayama; Kinya Ashida

    2018-01-01

    Low-carbohydrate, high-fat diets (ketogenic diets) might prevent tumor progression and could be used as supportive therapy; however, few studies have addressed the effect of such diets on colorectal cancer. An infant formula with a ketogenic composition (ketogenic formula; KF) is used to treat patients with refractory epilepsy. We investigated the effect of KF on cancer and cancer cachexia in colon tumor-bearing mice. Mice were randomized into normal (NR), tumor-bearing (TB), and ketogenic fo...

  19. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression

    Science.gov (United States)

    Pfefferle, Adam D.; Perou, Charles M.; Van Den Berg, Carla Lynn

    2015-01-01

    Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis. PMID:25970777

  20. Weight and Physical Activity - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  1. UV Exposure and Sun-Protective Behavior - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  2. Tobacco Policy/Regulatory Factors - Prevention Summary Table | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  3. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    Science.gov (United States)

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis.

  5. Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry

    OpenAIRE

    Padalko, Elizaveta; Ohnishi, Tomokazu; Matsushita, Kenji; Sun, Henry; Fox-Talbot, Karen; Bao, Clare; Baldwin, William M.; Lowenstein, Charles J.

    2004-01-01

    Although peroxynitrite is harmful to the host, the beneficial effects of peroxynitrite are less well understood. We explored the role of peroxynitrite in the host immune response to Coxsackievirus infection. Peroxynitrite inhibits viral replication in vitro, in part by inhibiting viral RNA entry into the host cell. Nitrotyrosine, a marker for peroxynitrite production, is colocalized with viral antigens in the hearts of infected mice but not control mice. Nitrotyrosine coprecipitates with the ...

  6. Hydrogen sulphide-releasing diclofenac derivatives inhibit breast cancer-induced osteoclastogenesis in vitro and prevent osteolysis ex vivo.

    Science.gov (United States)

    Frantzias, J; Logan, J G; Mollat, P; Sparatore, A; Del Soldato, P; Ralston, S H; Idris, A I

    2012-03-01

    Hydrogen sulphide (H(2)S) and prostaglandins are both involved in inflammation, cancer and bone turnover, and non-steroidal anti-inflammatory drugs (NSAIDs) and H(2)S donors exhibit anti-inflammatory and anti-tumour properties. H(2)S-releasing diclofenac (S-DCF) derivatives are a novel class of NSAIDs combining the properties of a H(2)S donor with those of a conventional NSAID. We studied the effects of the S-DCF derivatives ACS15 and ACS32 on osteoclast and osteoblast differentiation and activity in vitro, human and mouse breast cancer cells support for osteoclast formation and signalling in vitro, and osteolysis ex vivo. The S-diclofenac derivatives ACS15 and ACS32 inhibited the increase in osteoclast formation induced by human MDA-MB-231 and MCF-7 and mouse 4T1 breast cancer cells without affecting breast cancer cell viability. Conditioned media from human MDA-MB-231 cells enhanced IκB phosphorylation and osteoclast formation and these effects were significantly inhibited following treatment by ACS15 and ACS32, whereas the parent compound diclofenac had no effects. ACS15 and ACS32 inhibited receptor activator of NFκB ligand-induced osteoclast formation and resorption, and caused caspase-3 activation and apoptosis in mature osteoclasts via a mechanism dependent on IKK/NFκB inhibition. In calvaria organ culture, human MDA-MB-231 cells caused osteolysis, and this effect was completely prevented following treatment with ACS15 and ACS32. S-diclofenac derivatives inhibit osteoclast formation and activity, suppress breast cancer cell support for osteoclastogenesis and prevent osteolysis. This suggests that H(2)S-releasing diclofenac derivatives exhibit anti-resorptive properties, which might be of clinical value in the treatment of osteolytic bone disease. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  8. Current Evidence to Justify, and the Methodological Considerations for a Randomised Controlled Trial Testing the Hypothesis that Statins Prevent the Malignant Progression of Barrett's Oesophagus

    Directory of Open Access Journals (Sweden)

    David Thurtle

    2014-12-01

    Full Text Available Barrett’s oesophagus is the predominant risk factor for oesophageal adenocarcinoma, a cancer whose incidence is increasing and which has a poor prognosis. This article reviews the latest experimental and epidemiological evidence justifying the development of a randomised controlled trial investigating the hypothesis that statins prevent the malignant progression of Barrett’s oesophagus, and explores the methodological considerations for such a trial. The experimental evidence suggests anti-carcinogenic properties of statins on oesophageal cancer cell lines, based on the inhibition of the mevalonate pathway and the production of pro-apoptotic proteins. The epidemiological evidence reports inverse associations between statin use and the incidence of oesophageal carcinoma in both general population and Barrett’s oesophagus cohorts. Such a randomised controlled trial would be a large multi-centre trial, probably investigating simvastatin, given the wide clinical experience with this drug, relatively low side-effect profile and low financial cost. As with any clinical trial, high adherence is important, which could be increased with therapy, patient, doctor and system-focussed interventions. We would suggest there is now sufficient evidence to justify a full clinical trial that attempts to prevent this aggressive cancer in a high-risk population.

  9. Risk factor assessment tools for the prevention of periodontitis progression a systematic review.

    Science.gov (United States)

    Lang, Niklaus P; Suvan, Jean E; Tonetti, Maurizio S

    2015-04-01

    (i) To identify characteristics of currently published patient-based tools used to assess levels of risk for periodontitis progression and (ii) systematically review the evidence documenting the use of patient-based risk assessment tools for predicting periodontitis progression. A systematic review was prepared on the basis of an electronic search of the literature supplemented with manually searching the relevant journals of the latest 5 years. Prospective and retrospective cohort studies were included as no randomized controlled clinical trials were available. The search identified 336 titles, and 19 articles were included in this systematic review. The search identified five different risk assessment tools. Results of nine of 10 cohort studies reporting outcomes of 2110 patients indicate that risk assessment tools are able to identify subjects with different probability of periodontitis progression and/or tooth loss. Subjects with higher risk scores showed more progression of periodontitis and tooth loss. In treated populations, results of patient-based risk assessments, for example periodontal risk calculator (PRC) and periodontal risk assessment (PRA), predicted periodontitis progression and tooth loss in various populations. Additional research on the utility of risk assessment and results in improving patient management are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Endothelium-Independent Hypoxic Contraction Is Prevented Specifically by Nitroglycerin via Inhibition of Akt Kinase in Porcine Coronary Artery

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2016-01-01

    Full Text Available Objective. Hypoxia-induced sustained contraction of porcine coronary artery is endothelium-independent and mediated by PI3K/Akt/Rho kinase. Nitroglycerin (NTG is a vasodilator used to treat angina pectoris and acute heart failure. The present study was to determine the role of NTG in hypoxia-induced endothelium-independent contraction and the underlying mechanism. Methods and Results. Organ chamber technique was used to measure the isometric vessel tension of isolated porcine coronary arteries. Protein levels of phosphorylated and total Akt were determined by western blot. A sustained contraction of porcine coronary arteries induced by hypoxia was significantly reduced by NTG but not by isoproterenol. This contraction was also inhibited by DETA NONOate, 8-Br-cGMP, which can be reversed by ODQ, and Rp-8-Br-PET-cGMPS. The restored contraction was blocked by LY294002. The reduction of Akt-p at Ser-473 by NTG, DETA NONOate, and 8-Br-cGMP was significantly inhibited by ODQ, PKG-I. The decrease in Akt-p level by NTG and 8-Br-cGMP was prevented by calyculin A but not by okadaic acid. Conclusions. These results demonstrated that the endothelium-independent sustained hypoxic vasoconstriction can be prevented by NTG and that the inhibition of PI3K/Akt signaling pathway may be involved.

  11. Licochalcone A Prevents Platelet Activation and Thrombus Formation through the Inhibition of PLCγ2-PKC, Akt, and MAPK Pathways.

    Science.gov (United States)

    Lien, Li-Ming; Lin, Kuan-Hung; Huang, Li-Ting; Tseng, Mei-Fang; Chiu, Hou-Chang; Chen, Ray-Jade; Lu, Wan-Jung

    2017-07-12

    Platelet activation is involved in cardiovascular diseases, such as atherosclerosis and ischemic stroke. Licochalcone A (LA), an active ingredient of licorice, exhibits multiple biological activities such as anti-oxidation and anti-inflammation. However, its role in platelet activation remains unclear. Therefore, the study investigated the antiplatelet mechanism of LA. Our data revealed that LA (2-10 μM) concentration dependently inhibited platelet aggregation induced by collagen, but not thrombin and U46619. LA markedly attenuated collagen-stimulated ATP release, P-selectin secretion, calcium mobilization, and GPIIbIIIa activation, but did not interfere with the collagen binding to platelets. Moreover, LA significantly reduced the activation of PLCγ2, PKC, Akt and MAPKs. Thus, LA attenuates platelet activation, possibly by inhibiting collagen receptor downstream signaling but not by blocking the collagen receptors. In addition, LA prevented adenosine diphosphate (ADP)-induced acute pulmonary thrombosis, fluorescein sodium-induced platelet thrombus formation, and middle cerebral artery occlusion/reperfusion-induced brain injury in mice, but did not affect normal hemostasis. This study demonstrated that LA effectively reduced platelet activation and thrombus formation, in part, through the inhibition of PLCγ2-PKC, Akt, and MAPK pathways, without the side effect of bleeding. These findings also indicate that LA may provide a safe and alternative therapeutic approach for preventing thromboembolic disorders such as stroke.

  12. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    Science.gov (United States)

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension. Copyright © 2015 the American Physiological Society.

  13. Research progress on influencing factors of hospital infection and prevention and control measures

    OpenAIRE

    He Wenlong; Meng Lingbo; Wang Yaogang

    2015-01-01

    Hospital infections are associated with the emergence of hospitals. As the understanding of hospital infections deepen and prevention and control measures improve, hospital infections have become manageable. In recent years, affected by the increase in invasive treatment technology, antimicrobial abuse, and other factors, the control of hospital infection has encountered new problems. This paper reviews the influencing factors of hospital infections and their prevention and control measures.

  14. A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation.

    Science.gov (United States)

    Kim, Donghwa; Sun, Mei; He, Lili; Zhou, Qing-Hua; Chen, Jun; Sun, Xia-Meng; Bepler, Gerold; Sebti, Said M; Cheng, Jin Q

    2010-03-12

    The Akt pathway is frequently hyperactivated in human cancer and functions as a cardinal nodal point for transducing extracellular and intracellular oncogenic signals and, thus, presents an exciting target for molecular therapeutics. Here we report the identification of a small molecule Akt/protein kinase B inhibitor, API-1. Although API-1 is neither an ATP competitor nor substrate mimetic, it binds to pleckstrin homology domain of Akt and blocks Akt membrane translocation. Furthermore, API-1 treatment of cancer cells results in inhibition of the kinase activities and phosphorylation levels of the three members of the Akt family. In contrast, API-1 had no effects on the activities of the upstream Akt activators, phosphatidylinositol 3-kinase, phosphatidylinositol-dependent kinase-1, and mTORC2. Notably, the kinase activity and phosphorylation (e.g. Thr(P)(308) and Ser(P)(473)) levels of constitutively active Akt, including a naturally occurring mutant AKT1-E17K, were inhibited by API-1. API-1 is selective for Akt and does not inhibit the activation of protein kinase C, serum and glucocorticoid-inducible kinase, protein kinase A, STAT3, ERK1/2, or JNK. The inhibition of Akt by API-1 resulted in induction of cell growth arrest and apoptosis selectively in human cancer cells that harbor constitutively activated Akt. Furthermore, API-1 inhibited tumor growth in nude mice of human cancer cells in which Akt is elevated but not of those cancer cells in which it is not. These data indicate that API-1 directly inhibits Akt through binding to the Akt pleckstrin homology domain and blocking Akt membrane translocation and that API-1 has anti-tumor activity in vitro and in vivo and could be a potential anti-cancer agent for patients whose tumors express hyperactivated Akt.

  15. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice.

    Directory of Open Access Journals (Sweden)

    Michael Seimetz

    Full Text Available Chronic obstructive pulmonary disease (COPD is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating and a combination of both.C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor, Piclamilast (PDE4 inhibitor or both. Functional measurements (lung compliance, hemodynamics and structural investigations (alveolar and vascular morphometry as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted.Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages.Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.

  16. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  17. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice

    Science.gov (United States)

    Pichl, Alexandra; Bednorz, Mariola; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo; Seeger, Werner; Grimminger, Friedrich; Weissmann, Norbert

    2015-01-01

    Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. PMID:26058042

  18. Progression of Pancreatic Adenocarcinoma Is Significantly Impeded with a Combination of Vaccine and COX-2 Inhibition1

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D.; Tinder, Teresa L.; Subramani, Durai B.; Bradley, Judy M.; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2013-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRASG12D mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E2 and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer. PMID:19109152

  19. Investigation of Chitosan for Prevention of Diabetic Progression Through Gut Microbiota Alteration in Sugar Rich Diet Induced Diabetic Rats.

    Science.gov (United States)

    Prajapati, Bhumika; Rajput, Parth; Jena, Prasant Kumar; Seshadri, Sriram

    2015-01-01

    Sugar rich diet induces inflammation and insulin resistance mainly through gut microbiota alteration. Gut microflora dysbiosis increases plasma lipopolysaccharide and reduces short chain fatty acids to impair the insulin signaling cascades by different molecular pathways to progress into diabetes. Chitosan based formulations have major significance in insulin delivery system due to their ability to protect the insulin from enzymatic degradation and its efficient inter-epithelial transport. This study was designed to investigate the effect of chitosan administration on gut microflora mediated signaling pathways to prevent the diet induced diabetes. Male wistar rats were divided into non-diabetic group with a normal diet (CD), diabetic group with high sucrose diet (HSD) and treatment group with HSD and chitosan (60 mg/kg). After 8 weeks of the study, significant alterations in two major gut dominant microbial phyla i.e Firmicutes and Bacteroides and four dominant microbial species i.e. Lactobacilli, Bifidobacteria, Escherichia and Clostridia were observed in HSD group compared to CD. This microbial dysbiosis in dominant phyla was significantly prevented in chitosan administrated HSD group. Chitosan administration had also reduced the HSD induced activation of Toll like receptors and Nod like receptors signaling pathways compared to HSD control group to reduce the inflammation. These suggest that chitosan can prevent the progression of Type 2 Diabetes through gut microbiota alteration, reducing endotoxin and microbes mediated inflammation.

  20. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl.

    Science.gov (United States)

    Ikematsu, Shuka; Tasaka, Masao; Torii, Keiko U; Uchida, Naoyuki

    2017-03-01

    Secondary growth is driven by continuous cell proliferation and differentiation of the cambium that acts as vascular stem cells, producing xylem and phloem to expand vascular tissues laterally. During secondary growth of hypocotyls in Arabidopsis thaliana, the xylem undergoes a drastic phase transition from a parenchyma-producing phase to a fiber-producing phase at the appropriate time. However, it remains to be fully elucidated how progression of secondary growth is properly controlled. We focused on phenotypes of hypocotyl vasculatures caused by double mutation in ERECTA (ER) and ER-LIKE1 (ERL1) receptor-kinase genes to elucidate their roles in secondary growth. ER and ERL1 redundantly suppressed excessive radial growth of the hypocotyl vasculature during secondary growth. ER and ERL1 also prevented premature initiation of the fiber differentiation process mediated by the NAC SECONDARY WALL THICKENING PROMOTING FACTORs in the hypocotyl xylem. Upon floral transition, the hypocotyl xylem gained a competency to respond to GA in a BREVIPEDICELLUS-dependent manner, which was a prerequisite for fiber differentiation. However, even after the floral transition, ER and ERL1 prevented precocious initiation of the GA-mediated fiber formation. Collectively, our findings reveal that ER and ERL1 redundantly prevent premature progression of sequential events in secondary growth. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Keratoconus progression is not inhibited by reducing eyelid muscular force with botulinum toxin A treatment: a randomized trial

    Directory of Open Access Journals (Sweden)

    Adimara da Candelaria Renesto

    Full Text Available ABSTRACT Purpose: To evaluate whether reducing eyelid muscular force through the administration of botulinum toxin type A (BTX-A to the orbicularis oculi muscles of patients with keratoconus affected corneal parameters indicative of disease progression. Methods: In this prospective parallel randomized clinical trial, 40 eyes of 40 patients with keratoconus were randomized into equally sized control and BTX-A groups. Patients in the BTX-A group received subcutaneous BTX-A injections into the orbicularis muscle. The control group received no intervention. Palpebral fissure height, best spectacle-corrected visual acuity (BSCVA, and corneal topographic parameters were evaluated at baseline and at 3-, 6-, 12-, and 18-month follow-ups. Results: The mean ± standard deviation vertical palpebral fissure heights were 9.74 ± 1.87 mm and 9.45 ± 1.47 mm at baseline in the control and BTX-A groups, respectively, and 10.0 ± 1.49 mm and 9.62 ± 1.73 mm at 18 months, with no significant difference between the groups (p=0.337. BSCVA values were 0.63 ± 0.56 and 0.60 ± 0.27 at baseline in the control and BTX-A groups (p=0.643, and 0.52 ± 0.59 and 0.45 ± 0.26 at 18 months, again with no significant difference between the groups (p=0.452. In addition, there were no statistical differences between the groups at 18 months for the three keratometry topographic parameters: flattest (K1, steepest (K2, and mean (Km keratometry (p=0.562. Conclusion: BTX-A inhibition of eyelid force generation did not result in detectable changes in corneal parameters in keratoconic patients during 18 months of follow-up.

  2. AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer.

    Science.gov (United States)

    Brunckhorst, Melissa K; Lerner, Dimitry; Wang, Shaomeng; Yu, Qin

    2012-07-01

    Ovarian carcinoma is the most deadly gynecological malignancy. Current chemotherapeutic drugs are only transiently effective and patients with advance disease often develop resistance despite significant initial responses. Mounting evidence suggests that anti-apoptotic proteins, including those of the inhibitor of apoptosis protein (IAP) family, play important roles in the chemoresistance. There has been a recent emergence of compounds that block the IAP functions. Here, we evaluated AT-406, a novel and orally active antagonist of multiple IAP proteins, in ovarian cancer cells as a single agent and in the combination with carboplatin for therapeutic efficacy and mechanism of action. We demonstrate that AT-406 has significant single agent activity in 60% of human ovarian cancer cell lines examined in vitro and inhibits ovarian cancer progression in vivo and that 3 out of 5 carboplatin-resistant cell lines are sensitive to AT-406, highlighting the therapeutic potential of AT-406 for patients with inherent or acquired platinum resistance. Additionally, our in vivo studies show that AT-406 enhances the carboplatin-induced ovarian cancer cell death and increases survival of the experimental mice, suggesting that AT-406 sensitizes the response of these cells to carboplatin. Mechanistically, we demonstrate that AT-406 induced apoptosis is correlated with its ability to down-regulate XIAP whereas AT-406 induces cIAP1 degradation in both AT-406 sensitive and resistance cell lines. Together, these results demonstrate, for the first time, the anti-ovarian cancer efficacy of AT-406 as a single agent and in the combination with carboplatin, suggesting that AT-406 has potential as a novel therapy for ovarian cancer patients, especially for patients exhibiting resistance to the platinum-based therapies.

  3. Inhibition of NADPH oxidases prevents chronic ethanol-induced bone loss in female rats

    Science.gov (United States)

    Previous in vitro data suggest that ethanol (EtOH) activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption obse...

  4. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  5. Artemisia capillaris inhibited enterovirus 71-induced cell injury by preventing viral internalization

    Directory of Open Access Journals (Sweden)

    Ming-Hong Yen

    2018-03-01

    Full Text Available Artemisia capillaris (A. capillaris is a common herbal drug used for thousands years in ancient China. A. capillaris has been empirically used to manage hand-foot-mouth disease (HFMD, which is commonly caused by enterovirus 71 (EV71. EV71 can cause meningoencephalitis with mortality and neurologic sequelae without effective management. It is presently unknown whether A. capillaris is effective against EV71 infection. To test the hypothesis that it could protect cells from EV71-induced injury, a hot water extract of A. capillaris was tested in human foreskin fibroblast cells (CCFS-1/KMC and human rhabdomyosarcoma cells (RD cells by plaque reduction assay and flow cytometry. Inhibition of viral replication was examined by reverse quantitative RT-PCR (qRT-PCR. Its effect on translations of viral proteins (VP0, VP1, VP2, protease 2B and 3AB, and apoptotic proteins were examined by western blot. A. capillaris was dose-dependently effective against EV71 infection in both CCFS-1/KMC cells and RD cells by inhibiting viral internalization. However, A. capillaris was minimally effective on viral attachment, VP2 translation, and inhibition of virus-induced apoptosis. Further isolation of effective molecules is needed. In conclusion, A. capillaris has anti-EV71 activity mainly by inhibiting viral internalization. A. capillaris would be better to manage EV71 infection in combination with other agents.

  6. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways.

    Directory of Open Access Journals (Sweden)

    Muthu K Shanmugam

    Full Text Available Prostate cancer is one of the leading causes of cancer death among men worldwide. In this study, using transgenic adenocarcinoma of mouse prostate (TRAMP mice, the effect of diet enriched with 1% w/w ursolic acid (UA was investigated to evaluate the stage specific chemopreventive activity against prostate cancer. We found that TRAMP mice fed with UA diet for 8 weeks (weeks 4 to 12 delayed formation of prostate intraepithelial neoplasia (PIN. Similarly, mice fed with UA diet for 6 weeks (weeks 12 to 18 inhibited progression of PIN to adenocarcinoma as determined by hematoxylin and eosin staining. Finally, TRAMP mice fed with UA diet for 12 weeks (weeks 24 to 36 demonstrated markedly reduced tumor growth without any significant effects on total body weight and prolonged overall survival. With respect to the molecular mechanism, we found that UA down-regulated activation of various pro-inflammatory mediators including, NF-κB, STAT3, AKT and IKKα/β phosphorylation in the dorsolateral prostate (DLP tissues that correlated with the reduction in serum levels of TNF-α and IL-6. In addition, UA significantly down-regulated the expression levels of cyclin D1 and COX-2 but up-regulated the levels of caspase-3 as revealed by immunohistochemical analysis of tumor tissue sections. Finally, UA was detected in serum samples obtained from various mice groups fed with enriched diet in nanogram quantity indicating that it is well absorbed in the GI tract. Overall, our findings provide strong evidence that UA can be an excellent agent for both the prevention and treatment of prostate cancer.

  7. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction. Copyright © 2016 the American Physiological Society.

  8. TRPC3 Overexpression Promotes the Progression of Inflammation-Induced Preterm Labor and Inhibits T Cell Activation.

    Science.gov (United States)

    Jing, Chen; Dongming, Zheng; Hong, Cui; Quan, Na; Sishi, Liu; Caixia, Liu

    2018-01-01

    To detect the expression of the TRPC3 channel protein in the tissues of women experiencing preterm labor and investigate its interaction with T lymphocytes, providing a theoretical basis for the clinical prevention of threatened preterm labor and the development of drug-targeted therapy. Forty-seven women experiencing preterm labor and 47 women experiencing normal full-term labor were included in this study. All included women underwent delivery via cesarean section; uterine samples were obtained at delivery. The expression of TRPC3 in uterine tissue was detected by immunohistochemistry, real-time quantitative reverse transcription-PCR, and western blot assay. Activation of T lymphocytes in peripheral blood and uterine tissue were detected by flow cytometry. A TRPC3-/- mouse model of inflammation-induced preterm labor was established; expression of TRPC3, Cav3.1, and Cav3.2 were analyzed in mouse uterine tissue. Activation of T lymphocytes in female mouse and human peripheral blood samples was determined using flow cytometry. In women experiencing preterm labor, expression of TRPC3 and the Cav3.1 and Cav3.2 proteins was significantly increased; in addition, the percentage of CD3+, CD4+, and CD8+ T cells in peripheral blood was significantly decreased. TRPC3 knockout significantly delayed the occurrence of preterm labor in mice. The muscle tension of ex vivo uterine strips was lower, Cav3.1 and Cav3.2 protein expression was lower, and the percentage of CD8+ T lymphocytes was significantly increased in wild-type mice subjected to an inflammation-induced preterm labor than in wild-type mice experiencing normal full-term labor. TRPC3 is closely related to the initiation of labor. TRPC3 relies on Cav3.1 and Cav3.2 proteins to inhibit inflammation-induced preterm labor by inhibiting the activation of T cells, in particular CD8+ T lymphocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression?

    Science.gov (United States)

    Otero-Rey, Eva Maria; Suarez-Alen, Fatima; Peñamaria-Mallon, Manuel; Lopez-Lopez, Jose; Blanco-Carrion, Andres

    2014-11-01

    Oral lichen planus is a potentially malignant disorder with a capacity, although low, for malignant transformation. Of all the factors related to the process of malignant transformation, it is believed that the chronic inflammatory process plays a key role in the development of oral cancer. This inflammatory process is capable of providing a microenvironment based on different inflammatory cells and molecules that affect cellular growth, proliferation and differentiation. The objectives of our study are: to review the available evidence about the possible relationship between the chronic inflammatory process present in oral lichen planus and its malignant transformation, to discuss the potential therapeutic implications derived from this relationship and to study the role that topical corticosteroids play in the control of oral lichen planus inflammation and its possible progression to malignant transformation. The maintenance of a minimum dose of topical corticosteroids could prevent the inflammatory progression of oral lichen planus to oral cancer.

  10. Contributions of Peer Support to Health, Health Care, and Prevention: Papers from Peers for Progress.

    Science.gov (United States)

    Fisher, Edwin B; Ayala, Guadalupe X; Ibarra, Leticia; Cherrington, Andrea L; Elder, John P; Tang, Tricia S; Heisler, Michele; Safford, Monika M; Simmons, David

    2015-08-01

    SUBSTANTIAL: evidence documents the benefits of peer support provided by community health workers, lay health advisors, promotores de salud, and others. The papers in this supplement, all supported by the Peers for Progress program of the American Academy of Family Physicians Foundation, contribute to the growing body of literature addressing the efficacy, effectiveness, feasibility, reach, sustainability, and adoption of peer support for diabetes self-management. They and additional papers supported by Peers for Progress contribute to understanding how peer support can be implemented in real world settings. Topics include examination of the peers who provide peer support, reaching the hardly reached, success factors in peer support interventions, proactive approaches, attention to emotions, peer support in behavioral health, dissemination models and their application in China, peer support in the patient-centered medical home, research challenges, and policy implications. © 2015 Annals of Family Medicine, Inc.

  11. [Research progress on a nanodrug delivery system for prevention and control of dental caries and periodontal diseases].

    Science.gov (United States)

    Yaling, Jiang; Mingye, Feng; Lei, Cheng

    2017-02-01

    Dental caries and periodontal diseases are common chronic infectious diseases that cause serious damage to oral health. Bacteria is the primary factor leading to such conditions. As a dental plaque control method, chemotherapeutic agents face serious challenges in dental care because of the specific physiological and anatomical characteristics of the oral cavity. Nanodrug delivery system is a series of new drug delivery systems at nanoscale, and it can target cells, promote sustainedrelease effects, and enhance biodegradation. This review focuses on research progress on nanodrug delivery systems for prevention and control of dental caries and periodontal diseases.

  12. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression

    OpenAIRE

    Torii, Hidemasa; Kurihara, Toshihide; Seko, Yuko; Negishi, Kazuno; Ohnuma, Kazuhiko; Inaba, Takaaki; Kawashima, Motoko; Jiang, Xiaoyan; Kondo, Shinichiro; Miyauchi, Maki; Miwa, Yukihiro; Katada, Yusaku; Mori, Kiwako; Kato, Keiichi; Tsubota, Kinya

    2017-01-01

    Prevalence of myopia is increasing worldwide. Outdoor activity is one of the most important environmental factors for myopia control. Here we show that violet light (VL, 360?400?nm wavelength) suppresses myopia progression. First, we confirmed that VL suppressed the axial length (AL) elongation in the chick myopia model. Expression microarray analyses revealed that myopia suppressive gene EGR1 was upregulated by VL exposure. VL exposure induced significantly higher upregulation of EGR1 in chi...

  13. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    Science.gov (United States)

    2014-09-01

    epilepsy syndrome . The controlled cortical impact (CCI) model of posttraumatic epilepsy in mice is a well established animal model of TBI that results...intractable and often progressive epilepsy syndrome . Much evidence indicates that abnormalities in inhibitory neurotransmission are important in TLE...worse than the moderately injured animals. 2. Memory performance is not significantly changed while vestibular motor performance is partially

  14. Progress on new vaccine strategies for the immunotherapy and prevention of cancer

    OpenAIRE

    Berzofsky, Jay A.; Terabe, Masaki; Oh, SangKon; Belyakov, Igor M.; Ahlers, Jeffrey D.; Janik, John E.; Morris, John C.

    2004-01-01

    In recent years, great strides in understanding and regulating the immune system have led to new hope for harnessing its exquisite specificity to destroy cancer cells without affecting normal tissues. This review examines the fundamental immunologic advances and the novel vaccine strategies arising from these advances, as well as the early clinical trials studying new approaches to treat or prevent cancer.

  15. Halfway There: A Prescription for Continued Progress in Preventing Teen Pregnancy.

    Science.gov (United States)

    National Campaign To Prevent Teen Pregnancy, Washington, DC.

    This report offers findings and recommendations by the National Campaign To Prevent Teen Pregnancy. Nearly one million teens become pregnant annually. The teen birth rate increased 24 percent between 1986-91 and has fallen 20 percent since then. Overall, too many parents and adult leaders do not take a strong stand against teen pregnancy. Strident…

  16. A Systematic Process to Prioritize Prevention Activities: Sustaining Progress Toward the Reduction of Military Injuries

    Science.gov (United States)

    2010-01-01

    high ecause there are proven prevention strategies (e.g., voiding overtraining , conducting agility-like training, se of mouthguards)30 that could be...avoids overtraining and utilizes agility- ike training has been found to reduce physical training– elated injuries while meeting desired physical fıtness

  17. EPODE approach for childhood obesity prevention: methods, progress and international development.

    Science.gov (United States)

    Borys, J-M; Le Bodo, Y; Jebb, S A; Seidell, J C; Summerbell, C; Richard, D; De Henauw, S; Moreno, L A; Romon, M; Visscher, T L S; Raffin, S; Swinburn, B

    2012-04-01

    Childhood obesity is a complex issue and needs multi-stakeholder involvement at all levels to foster healthier lifestyles in a sustainable way. 'Ensemble Prévenons l'Obésité Des Enfants' (EPODE, Together Let's Prevent Childhood Obesity) is a large-scale, coordinated, capacity-building approach for communities to implement effective and sustainable strategies to prevent childhood obesity. This paper describes EPODE methodology and its objective of preventing childhood obesity. At a central level, a coordination team, using social marketing and organizational techniques, trains and coaches a local project manager nominated in each EPODE community by the local authorities. The local project manager is also provided with tools to mobilize local stakeholders through a local steering committee and local networks. The added value of the methodology is to mobilize stakeholders at all levels across the public and the private sectors. Its critical components include political commitment, sustainable resources, support services and a strong scientific input--drawing on the evidence-base--together with evaluation of the programme. Since 2004, EPODE methodology has been implemented in more than 500 communities in six countries. Community-based interventions are integral to childhood obesity prevention. EPODE provides a valuable model to address this challenge. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  18. EPODE approach for childhood obesity prevention : methods, progress and international development

    NARCIS (Netherlands)

    Borys, J.M.; Le Bodo, Y.; Jebb, S.A.; Seidell, J C; Summerbell, C.; Richard, D.; De Henauw, S.; Moreno, L.A.; Romon, M.; Visscher, T L S; Raffin, S.; Swinburn, B.

    Childhood obesity is a complex issue and needs multi-stakeholder involvement at all levels to foster healthier lifestyles in a sustainable way. 'Ensemble Prévenons l'Obésité Des Enfants' (EPODE, Together Let's Prevent Childhood Obesity) is a large-scale, coordinated, capacity-building approach for

  19. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells

    OpenAIRE

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    ABSTRACT The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that act...

  20. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity.

    Science.gov (United States)

    Yamauchi, Mika; Tsuruma, Kazuhiro; Imai, Shunsuke; Nakanishi, Tomohiro; Umigai, Naofumi; Shimazawa, Masamitsu; Hara, Hideaki

    2011-01-10

    Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  2. Pathogenetics aspects of relationship mouth infectious diseases with development and progression atherosclerosis and possibility for their integrated prevention

    Directory of Open Access Journals (Sweden)

    M. V. Avdeeva

    2012-01-01

    Full Text Available The article contains the modern literature data about impact of various infectious agents on the development and progression of atherosclerotic disease. The data are demonstrated the role of various infectious diseases, including periodontal diseases, in the development of biological degradation and destabilization of atherosclerotic plaques. The article questions of organization of primary prevention of cardiovascular disease based on the screening assessment by stomatologist the oral sanitary status. Necessary to carry out sanitation of chronic infection foci of the mouth on the basis of existing children’s health centers. The children’s health centers have a set of dental equipment, with which can perform a screening diagnosis of dental caries, periodontal diseases, non-carious lesions, diseases of the mucous membranes, and conduct preventive oral sanitation. The duties of dental hygienists is teaching children of different age groups to the rules of oral care, demonstration of skills, brushing teeth, information about the importance of prevention of dental caries and periodontal disease, as it is not only important for the preservation of the teeth, but also may prevent the development of ardiovasculardisease adulthood.

  3. Inhibition of chaperone-mediated autophagy prevents glucotoxicity in the Caenorhabditis elegans mev-1 mutant by activation of the proteasome.

    Science.gov (United States)

    Eisermann, Dorothé Jenni; Wenzel, Uwe; Fitzenberger, Elena

    2017-02-26

    Chronic hyperglycemia is a hallmark of diabetes mellitus and the main cause of diabetes-associated complications. Increased intracellular glucose levels lead to damaged proteins and in consequence disturb cellular proteostasis. As an important contributor to the maintenance and restoration of proteostasis, autophagy mediates the lysosomal degradation of damaged proteins or entire cellular organelles. In the present study we used the stress-sensitive mev-1 mutant of the nematode Caenorhabditis elegans in order to assess the role of lmp-2, a homologue of the lysosome associated membrane protein type 2A, in the context of glucotoxicity, which was achieved by feeding glucose in a liquid medium. Knockdown of lmp-2 by RNA interference completely prevented the survival reduction caused by glucose under heat stress. Those effects were associated with the prevention of (1) increased lysosome formation and (2) reduction of proteasomal activity, which were observed under glucose feeding. Finally, the survival reduction due to knockdown of ubiquitin remained unaffected by the additional lmp-2 knockdown in the absence or presence of glucose. In conclusion, our study provides evidence that lmp-2, a key player in chaperone-mediated autophagy, is functional in C. elegans, too. Inhibition of lmp-2 prevents the reduction of proteasomal activity by glucose and thereby prevents also glucotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Inhibition of a Descending Prefrontal Circuit Prevents Ketamine-Induced Stress Resilience in Females

    DEFF Research Database (Denmark)

    Dolzani, S. D.; Baratta, M. V.; Moss, J. M.

    2018-01-01

    Stress is a potent etiological factor in the onset of major depressive disorder and posttraumatic stress disorder (PTSD). Therefore, significant efforts have been made to identify factors that produce resilience to the outcomes of a later stressor, in hopes of preventing untoward clinical outcomes....... The NMDA receptor antagonist ketamine has recently emerged as a prophylactic capable of preventing neurochemical and behavioral outcomes of a future stressor. Despite promising results of preclinical studies performed in male rats, the effects of proactive ketamine in female rats remains unknown...

  5. A research agenda to guide progress on childhood obesity prevention in Latin America.

    Science.gov (United States)

    Kline, L; Jones-Smith, J; Jaime Miranda, J; Pratt, M; Reis, R S; Rivera, J A; Sallis, J F; Popkin, B M

    2017-07-01

    Childhood obesity rates in Latin America are among the highest in the world. This paper examines and evaluates the many efforts underway in the region to reduce and prevent further increases in obesity, identifies and discusses unique research challenges and opportunities in Latin America, and proposes a research agenda in Latin America for the prevention of childhood obesity and concomitant non-communicable diseases. Identified research gaps include biological challenges to healthy growth across the life cycle, diet and physical activity dynamics, community interventions promoting healthy child growth, and rigorous evaluation of national food and activity programs and regulatory actions. Addressing these research gaps is critical to advance the evidence-based policy and practice in childhood obesity tailored to the Latin American context that will be effective in addressing obesity. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.

  6. Inhibiting 11β-hydroxysteroid dehydrogenase type 1 prevents stress effects on hippocampal synaptic plasticity and impairs contextual fear conditioning.

    Science.gov (United States)

    Sarabdjitsingh, R Angela; Zhou, Ming; Yau, Joyce L W; Webster, Scott P; Walker, Brian R; Seckl, Jonathan R; Joëls, Marian; Krugers, Harm J

    2014-06-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes intracellular regeneration of corticosterone and cortisol, thereby enhancing glucocorticoid action. Inhibition of 11β-HSD1 reverses the deficits in cognition with aging, a state of elevated glucocorticoid levels. However, any impact of 11β-HSD1 inhibition during high glucocorticoid states in younger animals is unknown. Here we examined whether a single injection of the selective 11β-HSD1 inhibitor UE2316 modifies the effect of stress on hippocampal long-term potentiation and fear conditioning, a learning paradigm that is strongly modulated by glucocorticoids. We found that novelty stress suppresses hippocampal synaptic potentiation. This effect was completely prevented by administration of UE2316 one hour before stress exposure. A single injection of UE2316 also impaired contextual, but not tone-cue-fear conditioning. These observations suggest that local metabolism of glucocorticoids is relevant for the outcome of stress effects on hippocampal synaptic plasticity and contextual fear conditioning. Selective 11β-HSD1 inhibitors may be an interesting new approach to the prevention of trauma-associated psychopathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model.

    Science.gov (United States)

    Stoddart, Angela; Wang, Jianghong; Hu, Chunmei; Fernald, Anthony A; Davis, Elizabeth M; Cheng, Jason X; Le Beau, Michelle M

    2017-06-01

    There is accumulating evidence that functional alteration(s) of the bone marrow (BM) microenvironment contribute to the development of some myeloid disorders, such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In addition to a cell-intrinsic role of WNT activation in leukemia stem cells, WNT activation in the BM niche is also thought to contribute to the pathogenesis of MDS and AML. We previously showed that the Apc -haploinsufficient mice ( Apc del/+ ) model MDS induced by an aberrant BM microenvironment. We sought to determine whether Apc, a multifunctional protein and key negative regulator of the canonical β-catenin (Ctnnb1)/WNT-signaling pathway, mediates this disease through modulating WNT signaling, and whether inhibition of WNT signaling prevents the development of MDS in Apc del/+ mice. Here, we demonstrate that loss of 1 copy of Ctnnb1 is sufficient to prevent the development of MDS in Apc del/+ mice and that altered canonical WNT signaling in the microenvironment is responsible for the disease. Furthermore, the US Food and Drug Administration (FDA)-approved drug pyrvinium delays and/or inhibits disease in Apc del /+ mice, even when it is administered after the presentation of anemia. Other groups have observed increased nuclear CTNNB1 in stromal cells from a high frequency of MDS/AML patients, a finding that together with our results highlights a potential new strategy for treating some myeloid disorders. © 2017 by The American Society of Hematology.

  8. Iguratimod prevents ovariectomy‑induced bone loss and suppresses osteoclastogenesis via inhibition of peroxisome proliferator‑activated receptor‑γ.

    Science.gov (United States)

    Wu, Ying-Xing; Sun, Yue; Ye, Ya-Ping; Zhang, Peng; Guo, Jia-Chao; Huang, Jun-Ming; Jing, Xing-Zhi; Xiang, Wei; Yu, Shi-Ying; Guo, Feng-Jing

    2017-12-01

    Iguratimod is known for its anti‑inflammatory activities and therapeutic effects in patients with rheumatoid arthritis. It has previously been demonstrated that iguratimod attenuates bone destruction and osteoclast formation in the Walker 256 rat mammary gland carcinoma cell‑induced bone cancer pain model. Therefore, it was hypothesized that iguratimod may additionally exhibit therapeutic effects on benign osteoclast‑associated diseases including postmenopausal osteoporosis. In the present study, ovariectomized mice were used to investigate the effects of iguratimod in vivo. Bone marrow mononuclear cells were cultured to detect the effects of iguratimod on receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclastogenesis in vitro and the molecular mechanisms involved. It was demonstrated that iguratimod may prevent ovariectomy‑induced bone loss by suppressing osteoclast activity in vivo. Consistently, iguratimod may inhibit RANKL‑induced osteoclastogenesis and bone resorption in primary bone marrow mononuclear cells. At the molecular level, peroxisome proliferator‑activated receptor‑γ (PPAR‑γ)/c‑Fos pathway, which is essential in RANKL‑induced osteoclast differentiation, was suppressed by iguratimod. Subsequently, iguratimod decreased the expression of nuclear factor of activated T cells c1 and downstream osteoclast marker genes. The results of the present study demonstrated that iguratimod may inhibit ovariectomy‑induced bone loss and osteoclastogenesis by modulating RANKL signaling. Therefore, iguratimod may act as a novel therapeutic to prevent postmenopausal osteoporosis.

  9. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: natural approaches for the prevention and management of ankylosing spondylitis.

    Science.gov (United States)

    Winnett, V; Sirdaarta, J; White, A; Clarke, F M; Cock, I E

    2017-04-01

    A wide variety of herbal remedies are used in traditional Australian medicine to treat inflammatory disorders, including autoimmune inflammatory diseases. One hundred and six extracts from 40 native Australian plant species traditionally used for the treatment of inflammation and/or to inhibit bacterial growth were investigated for their ability to inhibit the growth of a microbial trigger for ankylosing spondylitis (K. pneumoniae). Eighty-six of the extracts (81.1%) inhibited the growth of K. pneumoniae. The D. leichardtii, Eucalyptus spp., K. flavescens, Leptospermum spp., M. quinquenervia, Petalostigma spp., P. angustifolium, S. spinescens, S. australe, S. forte and Tasmannia spp. extracts were effective K. pneumoniae growth inhibitors, with MIC values generally <1000 µg/mL. The T. lanceolata peppercorn extracts were the most potent growth inhibitors, with MIC values as low as 16 µg/mL. These extracts were examined by non-biased GC-MS headspace analysis and comparison with a compound database. A notable feature was the high relative abundance of the sesquiterpenoids polygodial, guaiol and caryophyllene oxide, and the monoterpenoids linalool, cineole and α-terpineol in the T. lanceolata peppercorn methanolic and aqueous extracts. The extracts with the most potent K. pneumoniae inhibitory activity (including the T. lanceolata peppercorn extracts) were nontoxic in the Artemia nauplii bioassay. The lack of toxicity and the growth inhibitory activity of these extracts against K. pneumoniae indicate their potential for both preventing the onset of ankylosing spondylitis and minimising its symptoms once the disease is established.

  10. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice.

    Science.gov (United States)

    Nakamura, Kentaro; Tonouchi, Hidekazu; Sasayama, Akina; Ashida, Kinya

    2018-02-14

    Low-carbohydrate, high-fat diets (ketogenic diets) might prevent tumor progression and could be used as supportive therapy; however, few studies have addressed the effect of such diets on colorectal cancer. An infant formula with a ketogenic composition (ketogenic formula; KF) is used to treat patients with refractory epilepsy. We investigated the effect of KF on cancer and cancer cachexia in colon tumor-bearing mice. Mice were randomized into normal (NR), tumor-bearing (TB), and ketogenic formula (KF) groups. Colon 26 cells were inoculated subcutaneously into TB and KF mice. The NR and TB groups received a standard diet, and the KF mice received KF ad libitum . KF mice preserved their body, muscle, and carcass weights. Tumor weight and plasma IL-6 levels were significantly lower in KF mice than in TB mice. In the KF group, energy intake was significantly higher than that in the other two groups. Blood ketone body concentrations in KF mice were significantly elevated, and there was a significant negative correlation between blood ketone body concentration and tumor weight. Therefore, KF may suppress the progression of cancer and the accompanying systemic inflammation without adverse effects on weight gain, or muscle mass, which might help to prevent cancer cachexia.

  11. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Kentaro Nakamura

    2018-02-01

    Full Text Available Low-carbohydrate, high-fat diets (ketogenic diets might prevent tumor progression and could be used as supportive therapy; however, few studies have addressed the effect of such diets on colorectal cancer. An infant formula with a ketogenic composition (ketogenic formula; KF is used to treat patients with refractory epilepsy. We investigated the effect of KF on cancer and cancer cachexia in colon tumor-bearing mice. Mice were randomized into normal (NR, tumor-bearing (TB, and ketogenic formula (KF groups. Colon 26 cells were inoculated subcutaneously into TB and KF mice. The NR and TB groups received a standard diet, and the KF mice received KF ad libitum. KF mice preserved their body, muscle, and carcass weights. Tumor weight and plasma IL-6 levels were significantly lower in KF mice than in TB mice. In the KF group, energy intake was significantly higher than that in the other two groups. Blood ketone body concentrations in KF mice were significantly elevated, and there was a significant negative correlation between blood ketone body concentration and tumor weight. Therefore, KF may suppress the progression of cancer and the accompanying systemic inflammation without adverse effects on weight gain, or muscle mass, which might help to prevent cancer cachexia.

  12. Prevention of disease progression in Leishmania infantum-infected dogs with dietary nucleotides and active hexose correlated compound.

    Science.gov (United States)

    Segarra, Sergi; Miró, Guadalupe; Montoya, Ana; Pardo-Marín, Luis; Teichenné, Joan; Ferrer, Lluís; Cerón, José Joaquín

    2018-02-21

    The prevalence of Leishmania infantum infection in clinically healthy dogs can be several times higher than that of clinical disease in endemic areas. Although treatment is not recommended in dogs with subclinical infection, these animals should be managed to prevent disease progression and parasite transmission to human beings or to other dogs. Dietary nucleotides and active hexose correlated compound (AHCC) have been shown to modulate the immune response. A recent study in dogs with clinical leishmaniosis receiving an initial 28-day course of methylglucamine antimoniate showed that six-month administration of a dietary supplement containing nucleotides plus AHCC achieves similar efficacy to allopurinol. Since the type of immune response plays a key role in the evolution of patients with leishmaniosis, the present study was aimed at evaluating the preventive effect of this supplement in avoiding or delaying disease progression in clinically healthy Leishmania-infected dogs. Forty-six dogs were included in this multicenter, randomized, double-blind, placebo-controlled trial. Dogs received once-daily oral administration of a placebo or a dietary supplement containing nucleotides plus AHCC. Disease progression was monitored throughout the study in both groups. At 0, 60, 180 and 365 days of treatment, clinical signs were evaluated using a validated clinical scoring system, and several analytes were measured from blood, urine, and bone marrow samples. During the study, a significantly lower (P = 0.047) proportion of dogs changed their clinical status and became sick in the supplement group (3/20; 15%), compared to the placebo group (10/22; 45.5%). ELISA-determined antibody titers were significantly reduced compared to baseline at all time points with the supplement (P < 0.01), but not with the placebo. The mean clinical score of disease severity was significantly lower in the supplement group after 180 days (P = 0.014). No significant differences were

  13. Amyloid-β inhibits PDGFβ receptor activation and prevents PDGF-BB-induced neuroprotection.

    Science.gov (United States)

    Liu, Hui; Saffi, Golam T; Vasefi, Maryam S; Choi, Youngjik; Kruk, Jeff S; Ahmed, Nawaz; Gondora, Nyasha; Mielke, John; Leonenko, Zoya; Beazely, Michael A

    2018-01-09

    PDGFβ receptors and their ligand, PDGF-BB, are upregulated in vivo after neuronal insults such as ischemia. When applied exogenously, PDGF-BB is neuroprotective against excitotoxicity and HIV proteins. Given this growth factor's neuroprotective ability, we sought to determine if PDGF-BB would be neuroprotective against amyloid-β (1-42), one of the pathological agents associated with Alzheimer's disease (AD). In both primary hippocampal neurons and the human-derived neuroblastoma cell line, SH-SY5Y, amyloid- treatment for 24 h decreased surviving cell number in a concentration-dependent manner. Pretreatment with PDGF-BB failed to provide any neuroprotection against amyloid-β in primary neurons and only very limited protective effects in SH-SY5Y cells. In addition to its neuroprotective action, PDGF promotes cell growth and division in several systems, and the application of PDGF-BB alone to serum-starved SH-SY5Y cells resulted in an increase in cell number. Amyloid-β attenuated the mitogenic effects of PDGF-BB, inhibited PDGF-BB-induced PDGFβ receptor phosphorylation, and attenuated the ability of PDGF-BB to protect neurons against NMDA-induced excitotoxicity. Despite the ability of amyloid-β to inhibit PDGF receptor activation, immunoprecipitation experiments failed to detect a physical interaction between amyloid-β and PDGF-BB or the PDGFβ receptor. However, G protein-coupled receptor transactivation of the PDGFβ receptor (an exclusively intracellular signaling pathway) remained unaffected by the presence of amyloid-β. As the PDGF system is upregulated upon neuronal damage, the ability of amyloid-β to inhibit this endogenous neuroprotective system should be further investigated in the context of AD pathophysiology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced acute lung injury.

    Science.gov (United States)

    Oyaizu, Takeshi; Fung, Shan-Yu; Shiozaki, Atsushi; Guan, Zehong; Zhang, Qiao; dos Santos, Claudia C; Han, Bing; Mura, Marco; Keshavjee, Shaf; Liu, Mingyao

    2012-05-01

    Pulmonary ischemia-reperfusion is a pathological process seen in several clinical conditions, including lung transplantation, cardiopulmonary bypass, resuscitation for circulatory arrest, atherosclerosis, and pulmonary embolism. A better understanding of its molecular mechanisms is very important. Rat left lung underwent in situ ischemia for 60 min, followed by 2 h of reperfusion. The gene expression profiles and Src protein tyrosine kinase (PTK) phosphorylation were studied over time, and PP2, an Src PTK inhibitor, was intravenously administered 10 min before lung ischemia to determine the role of Src PTK in lung injury. Reperfusion following ischemia significantly changed the expression of 169 genes, with Mmp8, Mmp9, S100a9, and S100a8 being the most upregulated genes. Ischemia alone only affected expression of 9 genes in the lung. However, Src PTK phosphorylation (activation) was increased in the ischemic lung, mainly on the alveolar wall. Src PTK inhibitor pretreatment decreased phosphorylation of Src PTKs, total protein tyrosine phosphorylation, and STAT3 phosphorylation. It increased phosphorylation of the p85α subunit of PI3 kinase, a signal pathway that can inhibit coagulation and inflammation. PP2 reduced leukocyte infiltration in the lung, apoptotic cell death, fibrin deposition, and severity of acute lung injury after reperfusion. Src inhibition also significantly reduced CXCL1 (GRO/KI) and CCL2 (MCP-1) chemokine levels in the serum. During pulmonary ischemia, Src PTK activation, rather than alteration in gene expression, may play a critical role in reperfusion-induced lung injury. Src PTK inhibition presents a new prophylactic treatment for pulmonary ischemia-reperfusion-induced acute lung injury.

  15. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  16. [Lactobacillus rhamnosus GG conditioned medium prevents E. coli meningitis by inhibiting nuclear factor-κB pathway].

    Science.gov (United States)

    Zeng, Qing; He, Xiao-Long; Xiao, Han-Sheng; DU, Lei; Li, Yu-Jing; Chen, Le-Cheng; Tian, Hui-Wen; Huang, Sheng-He; Cao, Hong

    2017-01-20

    To investigate whether Lactobacillus rhamnosus GG conditioned medium(LGG-CM)has preventive effect against E. coli K1-induced neuropathogenicity in vitro by inhibiting nuclear factor-κB (NF-κB) signaling pathway. An in vitro blood-brain barrier (BBB) model was constructed using human brain microvascular endothelial cells (HBMECs). The effect of LGG-CM on E. coli-actived NF-κB signaling pathway was assayed using Western blotting. Invasion assay and polymorphonuclear leukocyte (PMN) transmigration assay were performed to explore whether LGG-CM could inhibit E. coli invasion and PMN transmigration across the BBB in vitro. The expressions of ZO-1 and CD44 were detected using Western blotting and immunofluorescence. The changes of trans-epithelial electric resistance (TEER) and bacterial translocation were determined to evaluate the BBB permeability. Pre-treament with LGG-CM inhibited E. coli-activated NF-κB signaling pathway in HBMECs and decreased the invasion of E. coli K1 and transmigration of PMN. Western blotting showed that LGG-CM could alleviate E. coli-induced up-regulation of CD44 and down-regulation of ZO-1 expressions in HBMECs. In addition, pre-treatment with LGG-CM alleviated E. coli K1-induced reduction of TEER and suppressed bacterial translocation across the BBB in vitro. LGG-CM can block E. coli-induced activation of NF-κB signaling pathway and thereby prevents E. coli K1-induced neuropathogenicity by decreasing E. coli K1 invasion rates and PMN transmigration.

  17. Exon skipping restores dystrophin expression, but fails to prevent disease progression in later stage dystrophic dko mice.

    Science.gov (United States)

    Wu, B; Cloer, C; Lu, P; Milazi, S; Shaban, M; Shah, S N; Marston-Poe, L; Moulton, H M; Lu, Q L

    2014-09-01

    Antisense therapy with both chemistries of phosphorodiamidate morpholino oligomers (PMOs) and 2'-O-methyl phosphorothioate has demonstrated the capability to induce dystrophin expression in Duchenne muscular dystrophy (DMD) patients in phase II-III clinical trials with benefit in muscle functions. However, potential of the therapy for DMD at different stages of the disease progression is not understood. In this study, we examined the effect of peptide-conjugated PMO (PPMO)-mediated exon skipping on disease progression of utrophin-dystrophin-deficient mice (dko) of four age groups (21-29, 30-39, 40-49 and 50+ days), representing diseases from early stage to advanced stage with severe kyphosis. Biweekly intravenous (i.v.) administration of the PPMO restored the dystrophin expression in nearly 100% skeletal muscle fibers in all age groups. This was associated with the restoration of dystrophin-associated proteins including functional glycosylated dystroglycan and neuronal nitric synthase. However, therapeutic outcomes clearly depended on severity of the disease at the time the treatment started. The PPMO treatment alleviated the disease pathology and significantly prolonged the life span of the mice receiving treatment at younger age with mild phenotype. However, restoration of high levels of dystrophin expression failed to prevent disease progression to the mice receiving treatment when disease was already at advanced stage. The results could be critical for design of clinical trials with antisense therapy to DMD.

  18. L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model with upregulation of mitochondrial pathway.

    Directory of Open Access Journals (Sweden)

    Hisashi Ishikawa

    Full Text Available Non-alcoholic steatohepatitis (NASH is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC. Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid, an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1 high-fat diet (HFD (control group; 2 HFD mixed with 0.28% L-carnitine (L-carnitine group; and 3 HFD mixed with 0.01% α-tocopherol (α-tocopherol group. After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial β-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although α-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis. Conclusion: L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by

  19. Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner.

    Science.gov (United States)

    Avtanski, Dimiter B; Nagalingam, Arumugam; Kuppusamy, Panjamurthy; Bonner, Michael Y; Arbiser, Jack L; Saxena, Neeraj K; Sharma, Dipali

    2015-06-30

    Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is designed to test the efficacy of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, against oncogenic actions of leptin and systematically elucidate the underlying mechanisms. Our results show that HNK significantly inhibits leptin-induced breast-cancer cell-growth, invasion, migration and leptin-induced breast-tumor-xenograft growth. Using a phospho-kinase screening array, we discover that HNK inhibits phosphorylation and activation of key molecules of leptin-signaling-network. Specifically, HNK inhibits leptin-induced Wnt1-MTA1-β-catenin signaling in vitro and in vivo. Finally, an integral role of miR-34a in HNK-mediated inhibition of Wnt1-MTA1-β-catenin axis was discovered. HNK inhibits Stat3 phosphorylation, abrogates its recruitment to miR-34a promoter and this release of repressor-Stat3 results in miR-34a activation leading to Wnt1-MTA1-β-catenin inhibition. Accordingly, HNK treatment inhibited breast tumor growth in diet-induced-obese mouse model (exhibiting high leptin levels) in a manner associated with activation of miR-34a and inhibition of MTA1-β-catenin. These data provide first in vitro and in vivo evidence for the leptin-antagonist potential of HNK revealing a crosstalk between HNK and miR34a and Wnt1-MTA1-β-catenin axis.

  20. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER): study design and progress.

    Science.gov (United States)

    Kivipelto, Miia; Solomon, Alina; Ahtiluoto, Satu; Ngandu, Tiia; Lehtisalo, Jenni; Antikainen, Riitta; Bäckman, Lars; Hänninen, Tuomo; Jula, Antti; Laatikainen, Tiina; Lindström, Jaana; Mangialasche, Francesca; Nissinen, Aulikki; Paajanen, Teemu; Pajala, Satu; Peltonen, Markku; Rauramaa, Rainer; Stigsdotter-Neely, Anna; Strandberg, Timo; Tuomilehto, Jaakko; Soininen, Hilkka

    2013-11-01

    Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) is a multi-center, randomized, controlled trial ongoing in Finland. Participants (1200 individuals at risk of cognitive decline) are recruited from previous population-based non-intervention studies. Inclusion criteria are CAIDE Dementia Risk Score ≥6 and cognitive performance at the mean level or slightly lower than expected for age (but not substantial impairment) assessed with the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery. The 2-year multidomain intervention consists of: nutritional guidance; exercise; cognitive training and social activity; and management of metabolic and vascular risk factors. Persons in the control group receive regular health advice. The primary outcome is cognitive performance as measured by the modified Neuropsychological Test Battery, Stroop test, and Trail Making Test. Main secondary outcomes are: dementia (after extended follow-up); disability; depressive symptoms; vascular risk factors and outcomes; quality of life; utilization of health resources; and neuroimaging measures. Screening began in September 2009 and was completed in December 2011. All 1200 persons are enrolled and the intervention is ongoing as planned. Baseline clinical characteristics indicate that several vascular risk factors and unhealthy lifestyle-related factors are present, creating a window of opportunity for prevention. The intervention will be completed during 2014. The FINGER is at the forefront of international collaborative efforts to solve the clinical and public health problems of early identification of individuals at increased risk of late-life cognitive impairment, and of developing intervention strategies to prevent or delay the onset of cognitive impairment and dementia. Copyright © 2013. Published by Elsevier Inc.

  1. The occluding loop of cathepsin B prevents its effective inhibition by human kininogens.

    Science.gov (United States)

    Naudin, C; Lecaille, F; Chowdhury, S; Krupa, J C; Purisima, E; Mort, J S; Lalmanach, G

    2010-07-30

    Kininogens, the major plasma cystatin-like inhibitors of cysteine cathepsins, are degraded at sites of inflammation, and cathepsin B has been identified as a prominent mediator of this process. Cathepsin B, in contrast to cathepsins L and S, is poorly inhibited by kininogens. This led us to delineate the molecular interactions between this protease and kininogens (high molecular weight kininogen and low molecular weight kininogen) and to elucidate the dual role of the occluding loop in this weak inhibition. Cathepsin B cleaves high molecular weight kininogen within the N-terminal region of the D2 and D3 cystatin-like domains and close to the consensus QVVAG inhibitory pentapeptide of the D3 domain. The His110Ala mutant, unlike His111Ala cathepsin B, fails to hydrolyze kininogens, but rather forms a tight-binding complex as observed by gel-filtration analysis. K(i) values (picomolar range) as well as association rate constants for the His110Ala cathepsin B variant compare to those reported for cathepsin L for both kininogens. Homology modeling of isolated inhibitory (D2 and D3) domains and molecular dynamics simulations of the D2 domain complexed with wild-type cathepsin B and its mutants indicate that additional weak interactions, due to the lack of the salt bridge (Asp22-His110) and the subsequent open position of the occluding loop, increase the inhibitory potential of kininogens on His110Ala cathepsin B. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Measuring progress in tobacco prevention and control: the role of surveillance

    Directory of Open Access Journals (Sweden)

    Indu B Ahluwalia

    2017-03-01

    Full Text Available Nearly six million people worldwide die from tobacco-attributable causes every year, making tobacco the leading cause of preventable disease and death. If current trends continue, tobacco use is expected to result in one billion deaths by the end of the century, most of these in low- and middle-income countries. Cigarette smoking is the most common form of tobacco use in most countries, and the majority of adult smokers try their first cigarette before the age of 18...

  3. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  4. The biflavonoid amentoflavone inhibits neovascularization preventing the activity of proangiogenic vascular endothelial growth factors

    DEFF Research Database (Denmark)

    Tarallo, Valeria; Lepore, Laura; Marcellini, Marcella

    2011-01-01

    collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation...... as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area...... crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop...

  5. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    International Nuclear Information System (INIS)

    Fujimura, Masatake; Usuki, Fusako; Kawamura, Miwako; Izumo, Shuji

    2011-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associated with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.

  6. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  7. [Progress on prevention for anterior knee pain after primary total knee arthroplasty].

    Science.gov (United States)

    Gao, Yao-Zu; Chen, Chong-Wei; Wei, Xiao-Chun

    2014-04-01

    Total knee arthroplasty (TKA) identified as an effective treatment for ultimate knee joint disease can effectively relieve pain, correct deformity, improve knee function and enhance the quality of life of patients. Patient satisfaction has been increasingly considered as an important factor in evaluating the success of primary TKA. Anterior knee pain that usually appears in the region of the anterior knee is a recognized complaint for primary TKA and has a strong impact on the improvement of knee function and patient satisfaction of primary TKA. Accordingly, the relief of anterior knee pain has become one of the primary goals of primary TKA. At present, soft tissue lesions around the patellar caused by patellar maltracking and the elevation of internal pressure in subchondral bone because of the high contact stress of patellofemoral joint are both considered as the mechanism of anterior knee pain. For the past few years,on increasing number of studies have focused on the prevention of anterior knee pain following primary TKA. However, none of the past treatment such as patellar resurfacing, patellar denervation without patellar resurfacing or a mobile-bearing prosthesis has a good and affirmative effect on it. The prevention and treatment of anterior knee pain following primary TKA still is a difficult solved problem. To address this problem, we need further researches about the cause of anterior knee pain, knee joint prosthesis and biomechanics of patellofemoral joint, as well as lots of randomized controlled trials.

  8. [Progress of researches on prevention and treatment of sports fatigue with moxibustion therapy].

    Science.gov (United States)

    Xu, Hui-Qian; Zhang, Hong-Ru; Gu, Yi-Huang

    2014-04-01

    Sports fatigue belongs to the category of functional deficiency-syndrome according to the theory of traditional Chinese medicine. The moxibustion therapy has a long history and possesses a definite therapeutic effect in the prevention and treatment of sports fatigue. In the present paper, the authors reviewed development of researches on the effects of moxibustion intervention in the prevention and treatment of sports fatigue in recent 5 years. Results of researches showed that moxibustion intervention can 1) eliminate free radicals and reduce oxidative damage; 2) increase energy (glycogen) supply to delay the production of fatigue; 3) raise serum testosterone level (relieve exercise-induced neuroendocrine disorder) and reduce post-sports fatigue; 4) raise the anaerobic exercise ability, reduce the accumulation of metabolic products in the body and strengthen the endurance capacity of the skeletal muscle; and 5) improve ischemic cardiac function, and suppress cardiomyocyte apopotosis, etc. However, we should further strengthen our investigations on the moxibustion therapy in the ancient classical literature and sum up academic thoughts of different academic schools in the successive dynasties, put emphasis on the large sample randomized controlled clinical trails, establish united treatment standards, etc., and provide much evidence for effectively treating sports fatigue in the future.

  9. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  10. Inhibition of listeriolysin O oligomerization by lutein prevents Listeria monocytogenes infection.

    Science.gov (United States)

    Liu, Bowen; Teng, Zihao; Wang, Jianfeng; Lu, Gejin; Deng, Xuming; Li, Li

    2017-01-01

    The foodborne pathogenic bacterial species Listeria monocytogenes (L. monocytogenes) has caused incalculable damages to public health, and its successful infection requires various virulence factors, including Listeriolysin O (LLO). By forming pores in phagosomal membranes and even in some organelles, LLO plays an indispensable role in the ability of L. monocytogenes to escape from host immune attacks. Because of its critical role, LLO offers an appropriate therapeutic target against L. monocytogenes infection. Here, lutein, a natural small molecule existing widely in fruits and vegetables, is demonstrated as an effective inhibitor of LLO that works by blocking its oligomerization during invasion without showing significant bacteriostatic activity. Further assays applying lutein in cell culture models of invasion and in animal models showed that lutein could effectively inhibit L. monocytogenes infection. Overall, our results indicate that lutein may represent a promising and novel therapeutic agent against L. monocytogenes infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  12. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  13. Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3

    Science.gov (United States)

    Yahara, Yasuhito; Takemori, Hiroshi; Okada, Minoru; Kosai, Azuma; Yamashita, Akihiro; Kobayashi, Tomohito; Fujita, Kaori; Itoh, Yumi; Nakamura, Masahiro; Fuchino, Hiroyuki; Kawahara, Nobuo; Fukui, Naoshi; Watanabe, Akira; Kimura, Tomoatsu; Tsumaki, Noriyuki

    2016-01-01

    Osteoarthritis is a common debilitating joint disorder. Risk factors for osteoarthritis include age, which is associated with thinning of articular cartilage. Here we generate chondrocyte-specific salt-inducible kinase 3 (Sik3) conditional knockout mice that are resistant to osteoarthritis with thickened articular cartilage owing to a larger chondrocyte population. We also identify an edible Pteridium aquilinum compound, pterosin B, as a Sik3 pathway inhibitor. We show that either Sik3 deletion or intraarticular injection of mice with pterosin B inhibits chondrocyte hypertrophy and protects cartilage from osteoarthritis. Collectively, our results suggest Sik3 regulates the homeostasis of articular cartilage and is a target for the treatment of osteoarthritis, with pterosin B as a candidate therapeutic. PMID:27009967

  14. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease.

    Science.gov (United States)

    Cruz, E A; Reuter, S; Martin, H; Dehzad, N; Muzitano, M F; Costa, S S; Rossi-Bergmann, B; Buhl, R; Stassen, M; Taube, C

    2012-01-15

    Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization.

    Directory of Open Access Journals (Sweden)

    Hamid el Azzouzi

    Full Text Available BACKGROUND: The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK, c-Jun NH2-terminal kinase (JNK and the extracellular signal-regulated kinase (ERK1/2 pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. METHODOLOGY/PRINCIPAL FINDING: Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. CONCLUSION: Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.

  16. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine

    Science.gov (United States)

    Brumbaugh, Ariel R; Mobley, Harry LT

    2012-01-01

    Uncomplicated urinary tract infections (UTIs) are common, with nearly half of all women experiencing at least one UTI in their lifetime. This high frequency of infection results in huge annual economic costs, decreased workforce productivity and high patient morbidity. At least 80% of these infections are caused by uropathogenic Escherichia coli (UPEC). UPEC can reside side by side with commensal strains in the gastrointestinal tract and gain access to the bladder via colonization of the urethra. Antibiotics represent the current standard treatment for UTI; however, even after treatment, patients frequently suffer from recurrent infection with the same or different strains. In addition, successful long-term treatment has been complicated by a rise in both the number of antibiotic-resistant strains and the prevalence of antibiotic-resistance mechanisms. As a result, preventative approaches to UTI, such as vaccination, have been sought. This review summarizes recent advances in UPEC vaccine development and outlines future directions for the field. PMID:22873125

  17. Oral health information systems--towards measuring progress in oral health promotion and disease prevention

    DEFF Research Database (Denmark)

    Petersen, Poul Erik; Bourgeois, Denis; Bratthall, Douglas

    2005-01-01

    This article describes the essential components of oral health information systems for the analysis of trends in oral disease and the evaluation of oral health programmes at the country, regional and global levels. Standard methodology for the collection of epidemiological data on oral health has...... been designed by WHO and used by countries worldwide for the surveillance of oral disease and health. Global, regional and national oral health databanks have highlighted the changing patterns of oral disease which primarily reflect changing risk profiles and the implementation of oral health...... programmes oriented towards disease prevention and health promotion. The WHO Oral Health Country/Area Profile Programme (CAPP) provides data on oral health from countries, as well as programme experiences and ideas targeted to oral health professionals, policy-makers, health planners, researchers...

  18. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    Receptor Tyrosine Kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  19. Inhibition of gingipains prevents Porphyromonas gingivalis-induced preterm birth and fetal death in pregnant mice.

    Science.gov (United States)

    Takii, Ryosuke; Kadowaki, Tomoko; Tsukuba, Takayuki; Yamamoto, Kenji

    2018-04-05

    Accumulating epidemiological evidence indicates that infection with Porphyromonas gingivalis which is a major periodontal pathogen, causes preterm birth and low birth weight. However, virulence factors of P. gingivalis responsible for preterm birth/low birth weight remain to be elucidated. In this study, using P. gingivalis-infected pregnant mice as an in vivo model, we investigated whether gingipains-cysteine proteinases produced by P. gingivalis-affect preterm birth and low birth weight. We found that intravenous infection of pregnant mice with P. gingivalis induced higher accumulation of the bacterium in the placenta than that in other organs. Compared to infection with P. gingivalis wild-type, infection with a gingipain-deficient P. gingivalis mutant KDP136 led to significant reduction in preterm birth and pregnancy loss. Although repetitive low-level infections of P. gingivalis failed to induce preterm birth and fetal death, it induced suppressive effects on IFN-γ production. Therapeutically, treatment with ginginpain inhibitors prevented fetal death and preterm birth caused by P. gingivalis infection and resulted in recovery of IFN-γ suppression caused by repetitive chronic P. gingivalis infection. These results indicate that gingipains are major virulence factors of P. gingivalis responsible for preterm birth/low birth, and gingipain inhibitors may be useful not only as a therapeutic agent for periodontal diseases, but also as a preventive medicine for preterm birth/low birth weight. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  1. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model.

    Science.gov (United States)

    Li, Xiaoxia; Wu, Miaoqin; Zhang, Luyi; Liu, Hui; Zhang, Lan; He, Jinjing

    2017-12-01

    In this study, we evaluated the effect of oral administration of riboflavin combined with whole-body ultraviolet A (UVA) irradiation on the biochemical and biomechanical properties of sclera in a guinea pig model to control the progression of myopia. Experimental groups were administered 0.1% riboflavin solution with or without vitamin C by gavage from 3 days before myopic modeling and during the modeling process. Guinea pigs underwent 30 min of whole-body UVA irradiation after each gavage for 2 weeks. For control groups, guinea pigs were administered vitamin C and underwent either whole-body UVA irradiation without 0.1% riboflavin solution or whole-body fluorescent lamp irradiation with or without 0.1% riboflavin solution. Resultantly, myopia models were established with an increased axial length and myopic diopter. Compared with myopic eyes in the control groups, the net increase in axial length, diopter and strain assessment decreased significantly, and the net decrease in sclera thickness, ultimate load, and stress assessment decreased significantly in experimental groups. MMP-2 expression showed a lower net increase, while TIMP-2 expression showed a lower net decrease. In addition, hyperplasia of scleral fibroblasts was more active in myopic eyes of experimental groups. Overall, our results showed that oral administration of riboflavin with whole-body UVA irradiation could increase the strength and stiffness of sclera by altering the biochemical and biomechanical properties, and decreases in axial elongation and myopic diopter are greater in the guinea pig myopic model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Emdogain does not prevent progressive root resorption after replantation of avulsed teeth: a clinical study.

    Science.gov (United States)

    Schjøtt, M; Andreasen, J O

    2005-02-01

    Emdogain has been shown in clinical and experimental studies to promote regeneration of all periodontal tissues: cementum with anchoring fibres, a functional, periodontal ligament and alveolar bone in connection with treatment of marginal periodontitis. The intention of this study was to analyse whether this regenerative capacity upon the periodontal ligament also worked in a trauma situation where a significant number of PDL cells have been eliminated because of unphysiologic storage or actual damage during avulsion or replantation. Furthermore if ankylosis sites already established because of earlier replantation after avulsion could be surgical removed and application of Emdogain could revert the ankylosis stage to a normal PDL situation. The first treatment situation was tested in seven patients with a total of 16 avulsed teeth with varying time of extra oral storage. The teeth were extra-orally endodontically treated and the root and socket covered with Emdogain before replantation. All teeth demonstrated subsequent ankylosis, primarily diagnosed by a percussion test. The second treatment situation where an ankylosis was already established constituted of seven patients with a total of 11 teeth because of previous replantation after avulsion. These teeth were all extracted, the ankylosis sites removed and the root and socket treated with Emdogain. After 6 months all teeth showed recurrence of ankylosis. It is concluded that Emdogain was not able to prevent or cure ankylosis.

  3. Inhibition of NOS-NO System Prevents Autoimmune Orchitis Development in Rats: Relevance of NO Released by Testicular Macrophages in Germ Cell Apoptosis and Testosterone Secretion.

    Directory of Open Access Journals (Sweden)

    Sabrina Jarazo Dietrich

    Full Text Available Although the testis is considered an immunoprivileged organ it can orchestrate immune responses against pathological insults such as infection and trauma. Experimental autoimmune orchitis (EAO is a model of chronic inflammation whose main histopathological features it shares with human orchitis. In EAO an increased number of macrophages infiltrate the interstitium concomitantly with progressive germ cell degeneration and impaired steroidogenesis. Up-regulation of nitric oxide (NO-NO synthase (NOS system occurs, macrophages being the main producers of NO.The aim of our study was to evaluate the role of NO-NOS system in orchitis development and determine the involvement of NO released by testicular macrophages on germ cell apoptosis and testosterone secretion.EAO was induced in rats by immunization with testicular homogenate and adjuvants (E group and a group of untreated normal rats (N was also studied. Blockage of NOS by i.p. injection of E rats with a competitive inhibitor of NOS, L-NAME (8mg/kg, significantly reduced the incidence and severity of orchitis and lowered testicular nitrite content. L-NAME reduced germ cell apoptosis and restored intratesticular testosterone levels, without variations in serum LH. Co-culture of N testicular fragments with testicular macrophages obtained from EAO rats significantly increased germ cell apoptosis and testosterone secretion, whereas addition of L-NAME lowered both effects and reduced nitrite content. Incubation of testicular fragments from N rats with a NO donor DETA-NOnoate (DETA-NO induced germ cell apoptosis through external and internal apoptotic pathways, an effect prevented by N-acetyl-L-cysteine (NAC. DETA-NO inhibited testosterone released from Leydig cells, whereas NAC (from 2.5 to 15 mM did not prevent this effect.We demonstrated that NO-NOS system is involved in the impairment of testicular function in orchitis. NO secreted mainly by testicular macrophages could promote oxidative stress

  4. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide.

    Science.gov (United States)

    Korshunov, Sergey; Imlay, Karin R C; Imlay, James A

    2016-07-01

    When sulfur compounds are scarce or difficult to process, Escherichia coli adapts by inducing the high-level expression of sulfur-compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low-micromolar levels of sulfide inhibited the proton-pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back-up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic-anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats. © 2016 John Wiley & Sons Ltd.

  5. Swimming Exercise Prevents Fibrogenesis in Chronic Kidney Disease by Inhibiting the Myofibroblast Transdifferentiation

    Science.gov (United States)

    Peng, Chiung-Chi; Chen, Kuan-Chou; Hsieh, Chiu-Lan; Peng, Robert Y.

    2012-01-01

    Background The renal function of chronic kidney disease (CKD) patients may be improved by a number of rehabilitative mechanisms. Swimming exercise training was supposed to be beneficial to its recovery. Methodology/Principal Findings Doxorubicin-induced CKD (DRCKD) rat model was performed. Swimming training was programmed three days per week, 30 or 60 min per day for a total period of 11 weeks. Serum biochemical and pathological parameters were examined. In DRCKD, hyperlipidemia was observed. Active mesangial cell activation was evidenced by overexpression of PDGFR, P-PDGFR, MMP-2, MMP-9, α-SMA, and CD34 with a huge amount collagen deposition. Apparent myofibroblast transdifferentiation implicating fibrogenesis in the glomerular mesangium, glomerulonephritis and glomeruloscelorosis was observed with highly elevated proteinuria and urinary BUN excretion. The 60-min swimming exercise but not the 30 min equivalent rescued most of the symptoms. To quantify the effectiveness of exercise training, a physical parameter, i.e. “the strenuosity coefficient” or “the myokine releasing coefficient”, was estimated to be 7.154×10−3 pg/mL-J. Conclusions The 60-min swimming exercise may ameliorate DRCKD by inhibiting the transdifferentiation of myofibroblasts in the glomerular mesangium. Moreover, rehabilitative exercise training to rescue CKD is a personalized remedy. Benefits depend on the duration and strength of exercise, and more importantly, on the individual physiological condition. PMID:22761655

  6. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis.

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie Z M; Baily, James E; Sharp, Matthew G F; Garden, O James; Hughes, Jeremy; Howie, Sarah E M; Holmes, Duncan S; Liddle, John; Iredale, John P

    2016-02-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.

  7. Inhibiting HSP90 prevents the induction of myeloid-derived suppressor cells by melanoma cells.

    Science.gov (United States)

    Janssen, Nicole; Speigl, Lisa; Pawelec, Graham; Niessner, Heike; Shipp, Christopher

    2018-02-21

    Metastatic melanoma is the most dangerous form of skin cancer, with an ever-increasing incidence worldwide. Despite encouraging results with immunotherapeutic approaches, long-term survival is still poor. This is likely partly due to tumour-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs), which were shown to be associated with response to therapy and survival. Thus, identifying pathways responsible for MDSC differentiation may provide new therapeutic targets and improve efficacy of existing immunotherapies. Therefore, we've analysed mechanisms by which tumour cells contribute to the induction of MDSCs. Established melanoma cell lines were pre-treated with inhibitors of different pathways and tested for their capacity to alleviate T cell suppression via MDSC differentiation in vitro. Targeting HSP70/90 in melanoma cells resulted in reduced induction of immune suppressive cells on a phenotypic and functional basis, for which a more potent effect was observed when HSP90 was inhibited under hypoxic conditions. This initial study suggests a novel mechanism in tumour cells responsible for the induction of MDSC in melanoma. Copyright © 2018. Published by Elsevier Inc.

  8. Soyasaponins Ab and Bb prevent scopolamine-induced memory impairment in mice without the inhibition of acetylcholinesterase.

    Science.gov (United States)

    Hong, Sung-Woon; Yoo, Dae-Hyung; Woo, Jae-Yeon; Jeong, Jin-Ju; Yang, Jeong-Hwa; Kim, Dong-Hyun

    2014-03-05

    Soy (Glycine max, family Leguminosae), which contains isoflavones and saponins as main constituents, is known to exhibit memory-enhancing effects. Therefore, to investigate the role of soyasaponins in memory impairments, we isolated soyasaponins Ab (SA) and Bb (SB) from soybean and measured their protective effects against scopolamine-induced memory impairment in mice. SA and SB significantly prevented scopolamine-induced memory impairment in passive avoidance and Y-maze tasks. Compared to SA, SB rescued memory impairment more potently. Treatment with SB (10 mg/kg, p.o.) protected memory impairment in passive avoidance and Y-maze tasks to 97% (F = 68.10, P scopolamine-induced memory impairment in Morris water maze task (F = 14.51, P mice. However, SA and SB did not inhibit acetylcholinesterase in vitro and ex vivo. On the basis of these findings, we suggest that soybean, particularly soyasaponins, may protect memory impairment by increasing BDNF expression and CREB phosphorylation.

  9. Rca1 inhibits APC-Cdh1(Fzr) and is required to prevent cyclin degradation in G2.

    Science.gov (United States)

    Grosskortenhaus, Ruth; Sprenger, Frank

    2002-01-01

    We demonstrate that Rca1 is an essential inhibitor of the anaphase-promoting complex/cyclosome (APC) in Drosophila. APC activity is restricted to mitotic stages and G1 by its activators Cdc20-Fizzy (Cdc20(Fzy)) and Cdh1-Fizzy-related (Cdh1(Fzr)), respectively. In rca1 mutants, cyclins are degraded prematurely in G2 by APC-Cdh1(Fzr)-dependent proteolysis, and cells fail to execute mitosis. Overexpression of Cdh1(Fzr) mimics the rca1 phenotype, and coexpression of Rca1 blocks this Cdh1(Fzr) function. We show that Rca1 and Cdh1(Fzr) are in a complex that also includes the APC component Cdc27. Previous studies have shown that phosphorylation of Cdh1 prevents its interaction with the APC. Our data reveal a different mode of APC regulation by Rca1 at the G2 stage, when low Cdk activity is unable to inhibit Cdh1(Fzr) interaction.

  10. The role and progress of interventional therapy in the prevention and treatment of postoperative hepatocellular carcinoma recurrence

    International Nuclear Information System (INIS)

    Xiao Yunping; Xiao Enhua

    2008-01-01

    The articles concerning intensive effect and progress of interventional therapy for hepatocellular carcinoma (HCC) recurrence were comprehensively reviewed. Along with unceasing abundance of all interventional methods (including transcatheter arterial chemoemblization (TACE), percutaneous dehydrated ethanol injection, radio frequency ablation, percutaneous microwave therapy, argon-helium cryoablation, high-intensity focused ultrasound and radionuclide interventional therapy, etc), combined interventional therapies mainly TACE were increasingly appreciated in postoperative HCC recurrence, but still have to be further standardized. With further emerging and maturing of new technologies, such as antiangiogenesis, gene therapy and targeted therapy on HCC metastatic and recurrence specific cycle; the effect of combined therapy will be further promoted. Interventional therapy will play an important role in the prevention and treatment of postoperative HCC recurrence in the foreseen furture. (authors)

  11. Prevention of Stomatitis: Using Dexamethasone-Based Mouthwash to Inhibit Everolimus-Related Stomatitis

    Science.gov (United States)

    Saigal, Babita; Guerra, Laura

    2018-04-01

    A common class-specific toxicity of mammalian target of rapamycin (mTOR) inhibitors is stomatitis. Some patients experience a severe form of mTOR inhibitor-associated stomatitis (mIAS) that can have a negative effect on nutritional status, compromise quality of life, and potentially lead to nonadherence, reducing the efficacy of cancer therapy. This article aims to address an unmet need for education about mIAS among oncology nurses and patients and to share findings about everolimus-related stomatitis from the SWISH trial. The authors reviewed the literature on mIAS and selected a case series of experiences to illustrate successes and clinical challenges that an oncology nurse might encounter when caring for patients with advanced breast cancer who may develop everolimus-related stomatitis. Recommendations are provided for oncology nurses to educate patients on prevention, early detection, monitoring, and management strategies to mitigate the incidence and severity of everolimus-related stomatitis.

  12. Tempol inhibits TGF-β and MMPs upregulation and prevents cardiac hypertensive changes.

    Science.gov (United States)

    Rizzi, Elen; Castro, Michele M; Ceron, Carla S; Neto-Neves, Evandro M; Prado, Cibele M; Rossi, Marcos A; Tanus-Santos, Jose E; Gerlach, Raquel F

    2013-04-30

    Increased oxidative stress upregulates matrix metalloproteinases (MMPs) and transforming grow factor (TGF-β), which are involved in hypertensive cardiac remodeling. We tested the hypothesis that tempol (an antioxidant) could prevent these alterations in two-kidney, one-clip (2K1C) hypertension. Sham-operated or hypertensive rats were treated with tempol (18 mg.kg(-1)day(-1) or vehicle) for 8 weeks. Systolic blood pressure was monitored weekly. At the end of the treatment, a catheter was inserted into the left carotid artery and into the left ventricle (LV) to assess arterial blood pressure and contractile function. Morphometry of the LV was carried out in hematoxylin/eosin sections and fibrosis was assessed in picrosirius red-stained sections. Cardiac TGF-β level was evaluated by immunofluorescence. Cardiac MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Cardiac superoxide production was evaluated by dihydroethidium probe. Tempol treatment attenuated 2K1C-induced hypertension and reversed the contractile dysfunction in 2K1C rats. Cardiac hypertrophy was ameliorated by antioxidant treatment. Hypertensive rats showed increased cardiac MMP-2 levels, however tempol did not decrease MMP-2 levels. Increased TGF-β level, total gelatinolytic activity and oxidative stress were found in untreated 2K1C rats. Tempol treatment decreased oxidative stress, TGF-β levels, and gelatinolytic activity in 2K1C rats to control levels. Tempol blunted the increases in TGF-β, the proteolytic imbalance, and the morphological and functional alterations found in 2K1C-induced cardiac hypertrophy. These findings are consistent with the idea that antioxidants may help to prevent hypertension-induced cardiac hypertrophy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Frederic Derbre

    Full Text Available Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO. The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1 and Muscle RING (Really Interesting New Gene Finger-1 (MuRF-1. We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.

  14. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway.

    Science.gov (United States)

    Tang, Yan; Tang, Yong; Cheng, Ying-Sheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) and Notch signaling are important for the growth and invasion of pancreatic cancer, which is a leading cause of cancer-related deaths worldwide. miR-34a has been shown to play pivotal roles in the progression of several types of cancer. However, little is known about the regulatory mechanisms of miR-34a in pancreatic cancer processes. The aim of this study was to determine whether miR-34a has negative effects on pancreatic cancer and whether these effects are related to EMT and Notch signaling. In vitro, we demonstrated that miR-34a inhibited, while miR-34a inhibitors enhanced, migration and invasion of pancreatic cancer cell lines (PANC-1 and SW-1990).These effects were reversed by Snail1 overexpression or Snail1 shRNA. Furthermore, the anti-apoptotic effects of the miR-34a inhibitors in pancreatic cancer cells were abrogated by Notch1 shRNA. Luciferase reporter assays revealed that the Snail1 and Notch1 genes were direct targets of miR-34a. In vivo, we also demonstrated that miR-34a inhibited pancreatic cancer growth by decreasing Snail1 and Notch1 expression. Therefore, our results indicate that miR-34a inhibits pancreatic cancer progression by post-transcriptionally regulating Snail1 and Notch1 expression.

  15. Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice.

    Science.gov (United States)

    Liu, Hui-li; Zhao, Gang; Zhang, He; Shi, Li-de

    2013-11-01

    Previously our study has demonstrated that long-term treadmill exercise improved cognitive deficit in APP/PS1 transgenic mice of Alzheimer's disease (AD) paralleled by enhanced long-term potentiation (LTP). The present study was undertaken to further investigate whether the treadmill running could inhibit the progression of Alzheimer's disease (AD)-like neuropathology in hippocampus of the APP/PS1 mouse models of AD, and to define a potential molecular mechanism underlying the exercise-induced reduction in AD-like neuropathology. Five months of treadmill exercise resulted in a robust reduction in β-amyloid (Aβ) deposition and tau phosphorylation in the hippocampus of APP/PS1 mice. This was accompanied by a significant decrease in APP phosphorylation and PS1 expression. We also observed GSK3, rather than CDK5, was inhibited by treadmill exercise. These results indicate that treadmill exercise is sufficient to inhibit the progression of AD-like neuropathology in the hippocampus of APP/PS1 transgenic mouse model, and may mediate APP processing in favor of reduced Aβ deposition. In addition, we demonstrate that treadmill exercise attenuates AD-like neuropathology in AD transgenic mice via a GSK3 dependent signaling pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The Association between Endometriomas and Ovarian Cancer: Preventive Effect of Inhibiting Ovulation and Menstruation during Reproductive Life

    Directory of Open Access Journals (Sweden)

    Giovanni Grandi

    2015-01-01

    Full Text Available Although endometriosis frequently involves multiple sites in the pelvis, malignancies associated with this disease are mostly confined to the ovaries, evolving from an endometrioma. Endometriomas present a 2-3-fold increased risk of transformation in clear-cell, endometrioid, and possibly low-grade serous ovarian cancers, but not in mucinous ovarian cancers. These last cancers are, in some aspects, different from the other epithelial ovarian cancers, as they do not appear to be decreased by the inhibition of ovulation and menstruation. The step by step process of transformation from typical endometrioma, through atypical endometrioma, finally to ovarian cancer seems mainly related to oxidative stress, inflammation, hyperestrogenism, and specific molecular alterations. Particularly, activation of oncogenic KRAS and PI3K pathways and inactivation of tumor suppressor genes PTEN and ARID1A are suggested as major pathogenic mechanisms for endometriosis associated clear-cell and endometrioid ovarian cancer. Both the risk for endometriomas and their associated ovarian cancers seems to be highly and similarly decreased by the inhibition of ovulation and retrograde menstruation, suggesting a common pathogenetic mechanism and common possible preventive strategies during reproductive life.

  17. Phosphorylated Peptides from Antarctic Krill (Euphausia superba) Prevent Estrogen Deficiency Induced Osteoporosis by Inhibiting Bone Resorption in Ovariectomized Rats.

    Science.gov (United States)

    Xia, Guanghua; Zhao, Yanlei; Yu, Zhe; Tian, Yingying; Wang, Yiming; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu

    2015-11-04

    In the current study, we investigated the improvement of phosphorylated peptides from Antarctic krill Euphausia superba (PP-AKP) on osteoporosis in ovariectomized rats. PP-AKP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that PP-AKP treatment remarkably prevented the reduction of bone mass and improved cancellous bone structure and biochemical properties. PP-AKP also significantly decreased serum contents of tartrate-resistant acid phosphatase (TRACP), cathepsin K (Cath-k), matrix metalloproteinases-9 (MMP-9), deoxypyridinoline (DPD), C-terminal telopeptide of collagen I (CTX-1), Ca, and P. Mechanism investigation revealed that PP-AKP significantly increased the osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio in mRNA expression, protein expression, and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of nuclear factor of activated T-cells (NFATc1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), diminishing the mRNA expression and phosphorylation of nuclear factor κB p65 (NF-κB p65), three key transcription factors in NF-κB pathways. These results suggest that PP-AKP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  18. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications

    Science.gov (United States)

    Ohta, Shigeo

    2011-01-01

    Persistent oxidative stress is one of the major causes of most lifestyle-related diseases, cancer and the aging process. Acute oxidative stress directly causes serious damage to tissues. Despite the clinical importance of oxidative damage, antioxidants have been of limited therapeutic success. We have proposed that molecular hydrogen (H2) has potential as a “novel” antioxidant in preventive and therapeutic applications [Ohsawa et al., Nat Med. 2007: 13; 688-94]. H2 has a number of advantages as a potential antioxidant: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect reactive oxygen species (ROS) that function in cell signaling, thereby, there should be little adverse effects of consuming H2. There are several methods to ingest or consume H2, including inhaling hydrogen gas, drinking H2-dissolved water (hydrogen water), taking a hydrogen bath, injecting H2-dissolved saline (hydrogen saline), dropping hydrogen saline onto the eye, and increasing the production of intestinal H2 by bacteria. Since the publication of the first H2 paper in Nature Medicine in 2007, the biological effects of H2 have been confirmed by the publication of more than 38 diseases, physiological states and clinical tests in leading biological/medical journals, and several groups have started clinical examinations. Moreover, H2 shows not only effects against oxidative stress, but also various anti-inflammatory and anti-allergic effects. H2 regulates various gene expressions and protein-phosphorylations, though the molecular mechanisms underlying the marked effects of very small amounts of H2 remain elusive. PMID:21736547

  19. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort.

    Science.gov (United States)

    Molnar, Christoph; Scherer, Almut; Baraliakos, Xenofon; de Hooge, Manouk; Micheroli, Raphael; Exer, Pascale; Kissling, Rudolf O; Tamborrini, Giorgio; Wildi, Lukas M; Nissen, Michael J; Zufferey, Pascal; Bernhard, Jürg; Weber, Ulrich; Landewé, Robert B M; van der Heijde, Désirée; Ciurea, Adrian

    2018-01-01

    To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. A total of 432 patients with AS contributed to data for 616 radiographic intervals. Radiographic progression was defined as an increase in ≥2 mSASSS units in 2 years. Mean (SD) mSASSS increase was 0.9 (2.6) units in 2 years. Prior use of TNFi reduced the odds of progression by 50% (OR 0.50, 95% CI 0.28 to 0.88) in the multivariable analysis. While no direct effect of TNFi on progression was present in an analysis including time-varying ASDAS (OR 0.61, 95% CI 0.34 to 1.08), the indirect effect, via a reduction in ASDAS, was statistically significant (OR 0.75, 95% CI 0.59 to 0.97). TNFis are associated with a reduction of spinal radiographic progression in patients with AS. This effect seems mediated through the inhibiting effect of TNFi on disease activity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy.

    Science.gov (United States)

    Srivastava, Isha N; Shperdheja, Jona; Baybis, Marianna; Ferguson, Tanya; Crino, Peter B

    2016-01-01

    Mammalian target of rapamycin (mTOR) pathway signaling governs cellular responses to hypoxia and inflammation including induction of autophagy and cell survival. Cerebral palsy (CP) is a neurodevelopmental disorder linked to hypoxic and inflammatory brain injury however, a role for mTOR modulation in CP has not been investigated. We hypothesized that mTOR pathway inhibition would diminish inflammation and prevent neuronal death in a mouse model of CP. Mouse pups (P6) were subjected to hypoxia-ischemia and lipopolysaccharide-induced inflammation (HIL), a model of CP causing neuronal injury within the hippocampus, periventricular white matter, and neocortex. mTOR pathway inhibition was achieved with rapamycin (an mTOR inhibitor; 5mg/kg) or PF-4708671 (an inhibitor of the downstream p70S6kinase, S6K, 75 mg/kg) immediately following HIL, and then for 3 subsequent days. Phospho-activation of the mTOR effectors p70S6kinase and ribosomal S6 protein and expression of hypoxia inducible factor 1 (HIF-1α) were assayed. Neuronal cell death was defined with Fluoro-Jade C (FJC) and autophagy was measured using Beclin-1 and LC3II expression. Iba-1 labeled, activated microglia were quantified. Neuronal death, enhanced HIF-1α expression, and numerous Iba-1 labeled, activated microglia were evident at 24 and 48 h following HIL. Basal mTOR signaling, as evidenced by phosphorylated-S6 and -S6K levels, was unchanged by HIL. Rapamycin or PF-4,708,671 treatment significantly reduced mTOR signaling, neuronal death, HIF-1α expression, and microglial activation, coincident with enhanced expression of Beclin-1 and LC3II, markers of autophagy induction. mTOR pathway inhibition prevented neuronal death and diminished neuroinflammation in this model of CP. Persistent mTOR signaling following HIL suggests a failure of autophagy induction, which may contribute to neuronal death in CP. These results suggest that mTOR signaling may be a novel therapeutic target to reduce neuronal cell death in

  1. Laser treatment of drusen to prevent progression to advanced age-related macular degeneration

    Science.gov (United States)

    Virgili, Gianni; Michelessi, Manuele; Parodi, Maurizio B; Bacherini, Daniela; Evans, Jennifer R

    2016-01-01

    Background Drusen are amorphous yellowish deposits beneath the sensory retina. People with drusen, particularly large drusen, are at higher risk of developing age-related macular degeneration (AMD). The most common complication in AMD is choroidal neovascularisation (CNV), the growth of new blood vessels in the centre of the macula. The risk of CNV is higher among people who are already affected by CNV in one eye. It has been observed clinically that laser photocoagulation of drusen leads to their disappearance and may prevent the occurrence of advanced disease (CNV or geographic atrophy) associated with visual loss. Objectives To examine the effectiveness and adverse effects of laser photocoagulation of drusen in AMD. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 7), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2015), EMBASE (January 1980 to August 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to August 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 3 August 2015. Selection criteria Randomised controlled trials (RCTs) of laser treatment of drusen in AMD in which laser treatment had been compared with no intervention or sham treatment. Two types of trials were included. Some trials studied one eye of each participant (unilateral studies); other studies recruited participants with bilateral drusen and randomised one eye to photocoagulation or control and the fellow eye to the other group. Data collection and analysis Two review authors independently

  2. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Janis Ya-Xian Zhan

    2016-01-01

    Full Text Available Andrographolide sodium bisulfate (ASB, a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  3. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    Science.gov (United States)

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  4. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available BACKGROUND: The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.

  5. Wasabia japonica is a potential functional food to prevent colitis via inhibiting the NF-κB signaling pathway.

    Science.gov (United States)

    Kang, Ju-Hee; Choi, Seungho; Jang, Jeong-Eun; Ramalingam, Prakash; Ko, Young Tag; Kim, Sun Yeou; Oh, Seung Hyun

    2017-08-01

    Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are prevalent and debilitating health problems worldwide. Many types of drugs are used to treat IBDs, but they exhibit adverse effects such as vomiting, nausea, abdominal pain, diarrhea, etc. In order to overcome the limitations of current therapeutic drugs, scientists have searched for functional foods from natural resources. In this study, we investigated the anti-colitic effects of Wasabia japonica extract in a DSS-induced colitis model. Wasabi japonica is a plant of the Brassicaceae family that has recently been reported to exhibit properties of detoxification, anti-inflammation, and induction of apoptosis in cancer cells. In this study, we generated wasabi ethanol extract (WK) and assessed its anti-colitic effect. In addition, in order to improve delivery of the extract to the colon, WK was coated with 5% Eudragit S100 (WKE), after which the anti-colitic effects of WKE were assessed. In conclusion, WK prevented development of colitis through inhibition of the NF-kB signaling pathway and recovery of epithelial tight junctions. In addition, the anti-colitic effect of WK was enhanced by improving its delivery to the colon by coating the WK with Eudragit S100. Therefore, we suggest that wasabi can be used as a new functional food to prevent IBDs due to its anti-colitic effect.

  6. MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells.

    Science.gov (United States)

    Lyons, Jesse; Bastian, Boris C; McCormick, Frank

    2013-08-20

    The melanocortin 1 receptor (MC1R) mediates the tanning response through induction of cAMP and downstream pigmentary enzymes. Diminished function alleles of MC1R are associated with decreased tanning and increased melanoma risk, which has been attributed to increased rates of mutation. We have found that MC1R or cAMP signaling also directly decreases proliferation in melanoma cell lines. MC1R overexpression, treatment with the MC1R ligand, or treatment with small-molecule activators of cAMP signaling causes delayed progression from G2 into mitosis. This delay is caused by phosphorylation and inhibition of cdc25B, a cyclin dependent kinase 1-activating phosphatase, and is rescued by expression of a cdc25B mutant that cannot be phosphorylated at the serine 323 residue. These results show that MC1R and cAMP signaling can directly inhibit melanoma growth through regulation of the G2/M checkpoint.

  7. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome.

    Science.gov (United States)

    Yang, Shun-Min; Ka, Shuk-Man; Hua, Kuo-Feng; Wu, Tzu-Hua; Chuang, Yi-Ping; Lin, Ya-Wen; Yang, Feng-Ling; Wu, Shih-Hsiung; Yang, Sung-Sen; Lin, Shih-Hua; Chang, Jia-Ming; Chen, Ann

    2013-08-01

    High levels of reactive oxygen species (ROS), systemic T cell activation, and macrophage infiltration in the kidney are implicated in the acceleration and progression of IgA nephropathy (IgAN), the most frequent type of primary glomerulonephritis. However, the pathogenic mechanism of IgAN is still little understood, and it remains a challenge to establish a specific therapeutic strategy for this type of glomerular disorder. Recently, we showed that antroquinonol (Antroq), a pure active compound from Antrodia camphorata mycelium, inhibits renal inflammation and reduces oxidative stress in a mouse model of renal fibrosis. But the anti-inflammatory and immune-regulatory effects of Antroq on the acceleration and progression of primary glomerular disorders have not been determined. In this study, we show that Antroq administration substantially impeded the development of severe renal lesions, such as intense glomerular proliferation, crescents, sclerosis, and periglomerular interstitial inflammation, in mice with induced accelerated and progressive IgAN (AcP-IgAN). Further mechanistic analysis in AcP-IgAN mice showed that, early in the developmental stage of the AcP-IgAN model, Antroq promoted the Nrf2 antioxidant pathway and inhibited the activation of T cells and NLRP3 inflammasome. Significantly improved proteinuria/renal function and histopathology in AcP-IgAN mice of an established stage supported potential therapeutic effects of Antroq on the disease. In addition, Antroq was shown to inhibit activation of NLRP3 inflammasome in vitro by an IgA immune complex (IC) partly involving a reduced ROS production in IgA-IC-primed macrophages, and this finding may be helpful in the understanding of the mode of action of Antroq in the treated AcP-IgAN mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    Science.gov (United States)

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  9. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  10. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  11. Inhibition of CIP2A attenuates tumor progression by inducing cell cycle arrest and promoting cellular senescence in hepatocellular carcinoma.

    Science.gov (United States)

    Yang, Xue; Qu, Kai; Tao, Jie; Yin, Guozhi; Han, Shaoshan; Liu, Qingguang; Sun, Hao

    2018-01-08

    CIP2A is a recent identified oncogene that inhibits protein phosphatase 2A (PP2A) and stabilizes c-Myc in cancer cells. To investigate the potential oncogenic role and prognostic value of CIP2A, we comprehensively analyzed the CIP2A expression levels in pan-cancer and observed high expression level of CIP2A in majority cancer types, including hepatocellular carcinoma (HCC). Based on a validation cohort including 60 HCC and 20 non-tumorous tissue samples, we further confirmed the high mRNA and protein expression levels of CIP2A in HCC, and found high CIP2A mRNA expression level was associated with unfavorable overall and recurrence-free survival in patients with HCC. Mechanistic investigations revealed that inhibition of CIP2A significantly attenuated cellular proliferation in vitro and tumourigenicity in vivo. Bioinformatic analysis suggested that CIP2A might be involved in regulating cell cycle. Our experimental data further confirmed CIP2A knockdown induced cell cycle arrest at G1 phase. We found accumulated cellular senescence in HCC cells with CIP2A knockdown, companying expression changes of senescence associated proteins (p21, CDK2, CDK4, cyclin D1, MCM7 and FoxM1). Mechanistically, CIP2A knockdown repressed FoxM1 expression and induced FoxM1 dephosphorylation. Moreover, inhibition of PP2A by phosphatase inhibitor rescued the repression of FoxM1. Taken together, our results showed that CIP2A was highly expressed in HCC. Inhibition of CIP2A induced cell cycle arrest and promoted cellular senescence via repressing FoxM1 transcriptional activity, suggesting a potential anti-cancer target for patients with HCC. Copyright © 2017. Published by Elsevier Inc.

  12. Saponins from soy bean and mung bean inhibit the antigen specific activation of helper T cells by blocking cell cycle progression.

    Science.gov (United States)

    Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon

    2013-02-01

    Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.

  13. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways.

    Directory of Open Access Journals (Sweden)

    Fátima Guerrero

    Full Text Available BACKGROUND: Transforming growth factor-β (TGF-β is a key cytokine during differentiation of mesenchymal stem cells (MSC into vascular smooth muscle cells (VSMC. High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS: Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS: Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.

  14. miR-195 Inhibits Tumor Progression by Targeting RPS6KB1 in Human Prostate Cancer.

    Science.gov (United States)

    Cai, Chao; Chen, Qing-Biao; Han, Zhao-Dong; Zhang, Yan-Qiong; He, Hui-Chan; Chen, Jia-Hong; Chen, Yan-Ru; Yang, Sheng-Bang; Wu, Yong-Ding; Zeng, Yan-Ru; Qin, Guo-Qiang; Liang, Yu-Xiang; Dai, Qi-Shan; Jiang, Fu-Neng; Wu, Shu-lin; Zeng, Guo-Hua; Zhong, Wei-De; Wu, Chin-Lee

    2015-11-01

    To investigate the involvement of hsa-miRNA-195-5p (miR-195) in progression and prognosis of human prostate cancer. qRT-PCR was performed to detect miR-195 expression in both prostate cancer cell lines and clinical tissue samples. Its clinical significance was statistically analyzed. The roles of miR-195 and its candidate target gene, ribosomal protein S6 kinase, 70 kDa, polypeptide 1 (RPS6KB1) in prostate cancer progression were confirmed on the basis of both in vitro and in vivo systems. miR-195 downregulation in prostate cancer tissues was significantly associated with high Gleason score (P = 0.001), positive metastasis failure (P biochemical recurrence (BCR, P cancer patients (P = 0.022). Then, we confirmed the tumor suppressive role of miR-195 through prostate cancer cell invasion, migration, and apoptosis assays in vitro, along with tumor xenograft growth, angiogenesis, and invasion in vivo according to both gain-of-function and loss-of-function experiments. In addition, RPS6KB1 was identified as a novel direct target of miR-195 through proteomic expression profiling combined with bioinformatic target prediction and luciferase reporter assay. Moreover, the reexpression and knockdown of RPS6KB1 could respectively rescue and imitate the effects induced by miR-195. Importantly, RPS6KB1 expression was closely correlated with aggressive progression and poor prognosis in prostate cancer patients as opposed to miR-195. Furthermore, we identified MMP-9, VEGF, BAD, and E-cadherin as the downstream effectors of miR-195-RPS6KB1 axis. The newly identified miR-195-RPS6KB1 axis partially illustrates the molecular mechanism of prostate cancer progression and represents a novel potential therapeutic target for prostate cancer treatment. ©2015 American Association for Cancer Research.

  15. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats

    Directory of Open Access Journals (Sweden)

    Khadijeh Abhari

    2016-07-01

    Full Text Available Background: Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. Objective: In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA, using arthritis-induced rat model. Design: Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1 control: normal healthy rats fed with standard diet, 2 disease control (RA: arthritis-induced rats fed with standard diet, 3 prebiotic (PRE: RA+ 5% w/w long-chain inulin, 4 probiotic (PRO: RA+ 109 spores/day B. coagulans by orogastric gavage, 5 synbiotic (SYN: RA+ 5% w/w long-chain inulin and 109 spores/day B. coagulans, and 6 treatment control: (INDO: RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn, serum amyloid A (SAA, and TNF-α and alpha-1-acid glycoprotein (α1 AGp was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction, respectively. Results: Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001. A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN

  16. Direct renin inhibition is not enough to prevent reactive oxygen species generation and vascular dysfunction in renovascular hypertension.

    Science.gov (United States)

    Martins-Oliveira, Alisson; Guimaraes, Danielle A; Ceron, Carla S; Rizzi, Elen; Oliveira, Diogo M M; Tirapelli, Carlos R; Casarini, Dulce E; Fernandes, Fernanda B; Pinheiro, Lucas C; Tanus-Santos, Jose E

    2018-02-15

    Renin-angiotensin system activation promotes oxidative stress and endothelial dysfunction. However, no previous study has examined the effects of the renin inhibitor aliskiren, either alone or combined with angiotensin II type 1 antagonists on alterations induced by two-kidney, one-clip (2K1C) hypertension. We compared the vascular effects of aliskiren (50mg/kg/day), losartan (10mg/kg/day), or both by gavage for 4 weeks in 2K1C and control rats. Treatment with losartan, aliskiren, or both exerted similar antihypertensive effects. Aliskiren lowered plasma Ang I concentrations in sham rats and in hypertensive rats treated with aliskiren or with both drugs. Aliskiren alone or combined with losartan decreased plasma angiotensin II concentrations measured by high performance liquid chromatography, whereas losartan alone had no effects. In contrast, losartan alone or combined with aliskiren abolished hypertension-induced increases in aortic angiotensin II concentrations, whereas aliskiren alone exerted no such effects. While hypertension enhanced aortic oxidative stress assessed by dihydroethidium fluorescence and by lucigenin chemiluminescence, losartan alone or combined with aliskiren, but not aliskiren alone, abolished this alteration. Hypertension impaired aortic relaxation induced by acetylcholine, and losartan alone or combined with aliskiren, but not aliskiren alone, reversed this alteration. Losartan alone or combined with aliskiren, but not aliskiren alone, increased plasma nitrite concentrations in 2K1C rats. These findings show that antihypertensive effects of aliskiren do not prevent hypertension-induced vascular oxidative stress and endothelial dysfunction. These findings contrast those found with losartan and suggest that renin inhibition is not enough to prevent hypertension-induced impaired redox biology and vascular dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    International Nuclear Information System (INIS)

    Hou, Jianghong; Xue, Xiaolin; Li, Junnong

    2016-01-01

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.

  18. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jianghong, E-mail: jianghonghou@163.com [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China); Xue, Xiaolin [Department of Cardiovascular, The First Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710061 (China); Li, Junnong [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China)

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.

  19. Daily Intake of Grape Powder Prevents the Progression of Kidney Disease in Obese Type 2 Diabetic ZSF1 Rats

    Directory of Open Access Journals (Sweden)

    Salwa M. K. Almomen

    2017-03-01

    Full Text Available Individuals living with metabolic syndrome (MetS such as diabetes and obesity are at high risk for developing chronic kidney disease (CKD. This study investigated the beneficial effect of whole grape powder (WGP diet on MetS-associated CKD. Obese diabetic ZSF1 rats, a kidney disease model with MetS, were fed WGP (5%, w/w diet for six months. Kidney disease was determined using blood and urine chemical analyses, and histology. When compared to Vehicle controls, WGP intake did not change the rat bodyweight, but lowered their kidney, liver and spleen weight, which were in parallel with the lower serum glucose and the higher albumin or albumin/globin ratio. More importantly, WGP intake improved the renal function as urination and proteinuria decreased, or it prevented kidney tissue damage in these diabetic rats. The renal protection of WGP diet was associated with up-regulation of antioxidants (Dhcr24, Gstk1, Prdx2, Sod2, Gpx1 and Gpx4 and downregulation of Txnip (for ROS production in the kidneys. Furthermore, addition of grape extract reduced H2O2-induced cell death of cultured podocytes. In conclusion, daily intake of WGP reduces the progression of kidney disease in obese diabetic rats, suggesting a protective function of antioxidant-rich grape diet against CKD in the setting of MetS.

  20. Inhibiting the inevitable

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2006-01-01

    conservation is to ‘buy time’ for the object. Inhibitive conservation of plastics involves the removal or reduction of factors causing or accelerating degradation including light, oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to conservation have been developed......Once plastics objects are registered in museum collections, the institution becomes responsible for their long term preservation, until the end of their useful lifetime. Plastics appear to deteriorate faster than other materials in museum collections and have a useful lifetime between 5 and 25...... years. Preventive or inhibitive conservation involves controlling the environments in which objects are placed during storage and display, with the aim of slowing the major deterioration reactions. Once in progress, degradation of plastics cannot be stopped or reversed, so the aim of preventive...

  1. Curcumin Prevents Formation of Polyglutamine Aggregates by Inhibiting Vps36, a Component of the ESCRT-II Complex

    Science.gov (United States)

    Verma, Meenakshi; Sharma, Abhishek; Naidu, Swarna; Bhadra, Ankan Kumar; Kukreti, Ritushree; Taneja, Vibha

    2012-01-01

    Small molecules with antioxidative properties have been implicated in amyloid disorders. Curcumin is the active ingredient present in turmeric and known for several biological and medicinal effects. Adequate evidence substantiates the importance of curcumin in Alzheimer's disease and recent evidence suggests its role in Prion and Parkinson's disease. However, contradictory effects have been suggested for Huntington's disease. This difference provided a compelling reason to investigate the effect of curcumin on glutamine-rich (Q-rich) and non-glutamine-rich (non Q-rich) amyloid aggregates in the well established yeast model system. Curcumin significantly inhibited the formation of htt72Q-GFP (a Q-rich) and Het-s-GFP (a non Q-rich) aggregates in yeast. We show that curcumin prevents htt72Q-GFP aggregation by down regulating Vps36, a component of the ESCRT-II (Endosomal sorting complex required for transport). Moreover, curcumin disrupted the htt72Q-GFP aggregates that were pre-formed in yeast and cured the yeast prion, [PSI +]. PMID:22880132

  2. Pharmacological Inhibition of Transforming Growth Factor β Signaling Decreases Infection and Prevents Heart Damage in Acute Chagas' Disease▿

    Science.gov (United States)

    Waghabi, Mariana C.; de Souza, Elen M.; de Oliveira, Gabriel M.; Keramidas, Michelle; Feige, Jean-Jacques; Araújo-Jorge, Tania C.; Bailly, Sabine

    2009-01-01

    Chagas' disease induced by Trypanosoma cruzi infection is an important cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. We previously reported that transforming growth factor β (TGF-β) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. This prompted us to evaluate the therapeutic action of an inhibitor of TGF-β signaling (SB-431542) administered during the acute phase of experimental Chagas' disease. Male Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically for the following 30 days. SB-431542 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that SB-431542 treatment was effective in protecting the cardiac conduction system. By 14 day postinfection, enzymatic biomarkers of tissue damage indicated that muscle injury was decreased by SB-431542 treatment, with significantly lower blood levels of aspartate aminotransferase and creatine kinase. In conclusion, inhibition of TGF-β signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic agent for acute and chronic Chagas' disease that warrants further clinical exploration. PMID:19738024

  3. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats.

    Science.gov (United States)

    Abhari, Khadijeh; Shekarforoush, Seyed Shahram; Hosseinzadeh, Saeid; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2016-01-01

    Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA), using arthritis-induced rat model. Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1) control: normal healthy rats fed with standard diet, 2) disease control (RA): arthritis-induced rats fed with standard diet, 3) prebiotic (PRE): RA+ 5% w/w long-chain inulin, 4) probiotic (PRO): RA+ 10(9) spores/day B. coagulans by orogastric gavage, 5) synbiotic (SYN): RA+ 5% w/w long-chain inulin and 10(9) spores/day B. coagulans, and 6) treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn), serum amyloid A (SAA), and TNF-α and alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction), respectively. Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P coagulans and prebiotic inulin can improve the biochemical and clinical parameters of induced RA in rat.

  4. Casein phosphopeptide-amorphous calcium phosphate incorporated into sugar confections inhibits the progression of enamel subsurface lesions in situ.

    Science.gov (United States)

    Walker, G D; Cai, F; Shen, P; Adams, G G; Reynolds, C; Reynolds, E C

    2010-01-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) has been demonstrated to exhibit anticariogenic activity in randomized, controlled clinical trials of sugar-free gum and a tooth cream. Two randomized, double-blind, crossover studies were conducted to investigate the potential of CPP-ACP added to hard candy confections to slow the progression of enamel subsurface lesions in an in situ model. The confections studied were: (1) control sugar (65% sucrose + 33% glucose syrup); (2) control sugar-free; (3) sugar + 0.5% (w/w) CPP-ACP; (4) sugar + 1.0% (w/w) CPP-ACP; (5) sugar-free + 0.5% (w/w) CPP-ACP. Participants (10 and 14 in study 1 and 2) wore a removable palatal appliance containing enamel half-slabs with subsurface lesions, except for meals and oral hygiene procedures, and consumed 1 confection 6 times a day for 10 days. The enamel half-slabs were inset to allow the development of plaque on the enamel surface. Participants rested for 1 week before crossing over to another confection. The appliances were stored in a humid container at 37 degrees C when not in the mouth. After each treatment period, the enamel half-slabs were removed, paired with their demineralized control half-slabs, embedded, sectioned and then analysed using transverse microradiography. In both studies consumption of the control sugar confection resulted in significant demineralization (progression) of the enamel subsurface lesions. However, consumption of the sugar confections containing CPP-ACP did not result in lesion progression, but in fact in significant remineralization (regression) of the lesions. Remineralization by consumption of the sugar + 1.0% CPP-ACP confection was significantly greater than that obtained with the sugar-free confection. Copyright 2010 S. Karger AG, Basel.

  5. A report with consensus statements of the International Society of Nephrology 2004 Consensus Workshop on Prevention of Progression of Renal Disease, Hong Kong, June 29, 2004

    NARCIS (Netherlands)

    Li, Philip Kam-Tao; Weening, Jan J.; Dirks, John; Lui, Sing Leung; Szeto, Cheuk Chun; Tang, Sydney; Atkins, Robert C.; Mitch, William E.; Chow, Kai Ming; D'Amico, Giuseppe; Freedman, Barry I.; Harris, David C.; Hooi, Lai-Seong; de Jong, Paul E.; Kincaid-Smith, Priscilla; Lai, Kar Neng; Lee, Evan; Li, Fu-Keung; Lin, Shan-Yan; Lo, Wai-Kei; Mani, M. K.; Mathew, Timothy; Murakami, Mutsumi; Qian, Jia-Qi; Ramirez, Sylvia; Reiser, Thomas; Tomino, Yasuhiko; Tong, Matthew K.; Tsang, Wai-Kay; Tungsanga, Kriang; Wang, Haiyan; Wong, Andrew K.; Wong, Kim Ming; Yang, Wu-Chang; de Zeeuw, Dick; Yu, Alex W.; Remuzzi, Giuseppe

    2005-01-01

    This report summarizes the discussions of the International Society of Nephrology (ISN) 2004 Consensus Workshop on Prevention of Progression of Renal Disease, which was held in Hong Kong on June 29, 2004. Three key areas were discussed during the workshop: (1) screening for chronic kidney disease;

  6. A Diet Rich in Unsaturated Fatty Acids Prevents Progression Toward Heart Failure in a Rabbit Model of Pressure and Volume Overload

    NARCIS (Netherlands)

    den Ruijter, Hester M.; Verkerk, Arie O.; Schumacher, Cees A.; Houten, Sander M.; Belterman, Charly N. W.; Baartscheer, Antonius; Brouwer, Ingeborg A.; van Bilsen, Marc; de Roos, Baukje; Coronel, Ruben

    2012-01-01

    Background-During heart failure (HF), cardiac metabolic substrate preference changes from fatty acid (FA) toward glucose oxidation. This change may cause progression toward heart failure. We hypothesize that a diet rich in FAs may prevent this process, and that dietary omega 3-FAs have an added

  7. Adaptation in Response of Excitation and Inhibition Factors of Angiogenesis after 4 Weeks of Progressive Resistant Training in Sedentary Men

    Directory of Open Access Journals (Sweden)

    s. Karami

    2016-09-01

    Full Text Available Aims: The sport activity is an important factor affecting the capillary density and angiogenesis. Nitric oxide (NO and vascular endothelial growth factor (VEGF are the most important stimulative regulators in the angiogenesis. In addition, endostatin is one of the inhibitors of angiogenesis. The aim of this study was to investigate the adaptation in the responses of the angiogenesis inhibition and stimulating factors after 4-week increasing resistive exercises in the sedentary men. Materials & Methods: In the semi-experimental study, 20 healthy and inactive male students, aged between 20 and 25 years, who were residents of Tehran University Dormitory, were studied in the first semester of the academic year 2015-16. The subjects, selected via available sampling method, were divided into two groups including experimental and control groups (n=10 per group. 4-week resistive exercises were done three sessions per week. Blood-sampling was done before and 48 hours after the last exercise session. VEGF, NO, and endostatin were then measured. Data was analyzed by SPSS 18 software using independent and dependent T tests, as well as Pearson correlation coefficient test. Findings: In experimental group, VEGF and No significantly increased at the posttest stage than the pretest (p=0.001. Nevertheless, no significant difference was observed in control group (p>0.05. In both experimental and control groups, endostatin level did not significantly increase at the posttest stage than the pretest (p>0.05. In addition, VEGF and NO were the only variables that were significantly correlated (p=0.016; r=0.82. Conclusion: 4-week increasing resistive exercises in the sedentary men significantly affect the angiogenes stimulating factors, i. e. VEGF and NO, while such exercises do not significantly affect the angiogenesis inhibition factor, i. e. endostatin.

  8. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials

    DEFF Research Database (Denmark)

    Chaturvedi, N.; Porta, M.; Klein, R.

    2008-01-01

    BACKGROUND: Results of previous studies suggest that renin-angiotensin system blockers might reduce the burden of diabetic retinopathy. We therefore designed the DIabetic REtinopathy Candesartan Trials (DIRECT) Programme to assess whether candesartan could reduce the incidence and progression of ...... of retinopathy, we did not see a beneficial effect on retinopathy progression Udgivelsesdato: 2008/10/18...

  9. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials

    DEFF Research Database (Denmark)

    Chaturvedi, Nish; Porta, Massimo; Klein, Ronald

    2008-01-01

    BACKGROUND: Results of previous studies suggest that renin-angiotensin system blockers might reduce the burden of diabetic retinopathy. We therefore designed the DIabetic REtinopathy Candesartan Trials (DIRECT) Programme to assess whether candesartan could reduce the incidence and progression of ...... of retinopathy, we did not see a beneficial effect on retinopathy progression....

  10. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  11. Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway

    Directory of Open Access Journals (Sweden)

    Du Jin-Xing

    2012-04-01

    Full Text Available Abstract Background Huangqi decoction was first described in Prescriptions of the Bureau of Taiping People's Welfare Pharmacy in Song Dynasty (AD 1078, and it is an effective recipe that is usually used to treat consumptive disease, anorexia, and chronic liver diseases. Transforming growth factor beta 1 (TGFβ1 plays a key role in the progression of liver fibrosis, and Huangqi decoction and its ingredients (IHQD markedly ameliorated hepatic fibrotic lesions induced by ligation of the common bile duct (BDL. However, the mechanism of IHQD on hepatic fibrotic lesions is not yet clear. The purpose of the present study is to elucidate the roles of TGFβ1 activation, Smad-signaling pathway, and extracellular signal-regulated kinase (ERK in the pathogenesis of biliary fibrosis progression and the antifibrotic mechanism of IHQD. Methods A liver fibrosis model was induced by ligation of the common bile duct (BDL in rats. Sham-operation was performed in control rats. The BDL rats were randomly divided into two groups: the BDL group and the IHQD group. IHQD was administrated intragastrically for 4 weeks. At the end of the fifth week after BDL, animals were sacrificed for sampling of blood serum and liver tissue. The effect of IHQD on the TGFβ1 signaling pathway was evaluated by western blotting and laser confocal microscopy. Results Decreased content of hepatic hydroxyproline and improved liver function and histopathology were observed in IHQD rats. Hepatocytes, cholangiocytes, and myofibroblasts in the cholestatic liver injury released TGFβ1, and activated TGFβ1 receptors can accelerate liver fibrosis. IHQD markedly inhibited the protein expression of TGFβ1, TGFβ1 receptors, Smad3, and p-ERK1/2 expression with no change of Smad7 expression. Conclusion IHQD exert significant therapeutic effects on BDL-induced fibrosis in rats through inhibition of the activation of TGFβ1-Smad3 and TGFβ1-ERK1/2 signaling pathways.

  12. Tempol (4 hydroxy-tempo) inhibits anoxia-induced progression of mitochondrial dysfunction and associated neurobehavioral impairment in neonatal rats.

    Science.gov (United States)

    Samaiya, Puneet K; Narayan, Gopeshwar; Kumar, Ashok; Krishnamurthy, Sairam

    2017-04-15

    Anoxia leads to a robust generation of reactive oxygen species/nitrogen species which can result in mitochondrial dysfunction and associated cell death in the cerebral cortex of neonates. The present study investigated the pharmacological role of tempol in the treatment of rat neonatal cortical mitochondrial dysfunction induced insult progression (day-1 to day-7) and associated neurobehavioral alterations post-anoxia. Rat pups of 30h age or postnatal day 2 (PND2) were randomly divided into 5 groups (n=5 per group): (1) Control; (2) Anoxia; (3) Anoxia+Tempol 75mg/kg; (4) Anoxia+Tempol 150mg/kg; and (5) Anoxia+Tempol 300mg/kg, and subjected to two episode of anoxia (10min each) at 24h of time interval in an enclosed chamber supplied with 100% N 2 . Tempol significantly decreased nitric oxide (NO) formation and simultaneously improved superoxide dismutase (SOD) and catalase (CAT) activities. Further, we observed a significantly (Ptempol. Furthermore, tempol decreased expression of mitochondrial Bax, cytochrome-C, caspase-9 and caspase-3 while the increase in expression of cytoplasmic Bax, mitochondrial Bcl-2 on day-7 in cortical region indicating regulation of intrinsic pathway of apoptosis. Further, it improved anoxia-induced neurobehavioral outcome (hanging and reflex latencies). Biochemical, molecular and behavioral studies suggest the role of tempol in preserving mitochondrial function and associated neurobehavioral outcomes after neonatal anoxia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthetic resveratrol-curcumin hybrid derivative inhibits mitosis progression in estrogen positive MCF-7 breast cancer cells.

    Science.gov (United States)

    de Freitas Silva, Matheus; Coelho, Letícia Ferreira; Guirelli, Isadora Mitestainer; Pereira, Rodrigo Machado; Ferreira-Silva, Guilherme Álvaro; Graravelli, Graciana Y; Horvath, Renato de Oliveira; Caixeta, Ester Siqueira; Ionta, Marisa; Viegas, Claudio

    2018-03-02

    Curcumin (1) and resveratrol (2) are bioactive natural compounds that display wide pharmacological properties, including antitumor activity. However, their clinical application has been limited due to their low solubility and bioavailability. Nevertheless, independent studies have considered these compounds as interesting prototypes for developing new chemical structures useful for anticancer therapy. Here in, we report the synthesis of novel curcumin-like hydrazide analogues (3a and 3b), and a series of curcumin-resveratrol hybrid compounds (4a-f), and the evaluation of their cytotoxic potential on three tumor cell lines MCF-7 (breast), A549 (lung), and HepG2 (liver). Cell viability was significantly reduced in all tested cell lines when compounds 4c-4e were used. The IC 50 values for these compounds on MCF-7 cells were lower than those for curcumin, resveratrol, or curcumin combined with resveratrol. We evidenced that 4c promoted a drastic increase of G2/M population. The accumulation of cells in mitosis onset in treated cultures was due to, at least in part, the ability of 4c to modulate nuclear kinase proteins, which orchestrate important events in mitosis progression. We have also observed significant reduction of the relative RNAm abundance of CCNB1, PLK1, AURKA, AURKB in samples treated with 4c, with concomitant increase of CDKN1A (p21). Thus, compound 4c is a promising multi-target antitumor agent that should be considered for further in vivo studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Treatment with acetylsalicylic acid prevents short to mid-term radiographic progression of nontraumatic osteonecrosis of the femoral head: a pilot study

    Science.gov (United States)

    Albers, Anthony; Carli, Alberto; Routy, Bertrand; Harvey, Edward J.; Séguin, Chantal

    2015-01-01

    Background Nontraumatic osteonecrosis of the femoral head (ONFH) is a progressive disease in young adults producing substantial morbidity and frequently resulting in total hip arthroplasty. Although hip-preserving surgical procedures represent the current mainstay of treatment for early disease, medical therapies targeting specific pathways in the ONFH pathogenesis could help prevent disease progression while producing less morbidity. Acetylsalicylic acid (ASA) is a promising alternative to other therapies for ONFH owing to its anti-inflammatory and antithrombotic mechanisms of action and its relatively benign side effect profile. Methods We followed a prospective cohort of 10 patients (12 hips) with precollapse ONFH who were given ASA to prevent disease progression. Their outcomes were compared with those of a historic control group taken from the literature. Results Progression occurred in 1 of 12 (8%) patients taking ASA compared with 30 of 45 (66.6%) controls (p = 0.002) at a mean follow-up of 3.7 years. Patients taking ASA also tended to exhibit decreased femoral head involvement at the end of therapy. Conclusion This hypothesis-generating study leads us to believe that ASA may be a simple and effective treatment option for delaying disease progression in patients with early-stage ONFH. PMID:26011853

  15. An active extract of Ulmus pumila inhibits adipogenesis through regulation of cell cycle progression in 3T3-L1 cells.

    Science.gov (United States)

    Ghosh, Chiranjit; Chung, Ha-Yull; Nandre, Rahul M; Lee, John Hwa; Jeon, Tae-Il; Kim, In-Sook; Yang, Seung Hak; Hwang, Seong-Gu

    2012-06-01

    Obesity and its associated metabolic disorders has become a major obstacle in improving the average life span. In this regard therapeutic approach using natural compounds are currently receiving much attention. Herbal compounds rich in triterpenes are well known to regulate glucose and lipid metabolism. Here, we have found that Ulmus pumila (UP) contained at least four different triterpenoids and inhibited adipogenesis of 3T3-L1 cells. The cell viability was dose dependently decreased by UP showing the increase of cell accumulation in G1 phase while reducing in S and G2/M phase of cell cycle. UP treatment also significantly decreased the GPDH activity and intracellular lipid accumulation. In addition, UP inhibited the mRNA levels of adipogenic transcription factors and lipogenic genes such as PPARγ, C/EBPα, SREBP1c and FAS while showing no effects on C/EBP-β and C/EBP-δ. Importantly enough, treatment of cells with UP suppressed the TNF-α induced activation of NF-κB signaling. Collectively, our results indicate that UP extract effectively attenuated adipogenesis by controlling cell cycle progression and down regulating adipogenic gene expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy

    Directory of Open Access Journals (Sweden)

    Watanabe Hirotsuna

    2009-11-01

    Full Text Available Abstract Background The chemopreventive effects of dietary phytochemicals on malignant tumors have been studied extensively because of a relative lack of toxicity. To achieve desirable effects, however, treatment with a single agent mostly requires high doses. Therefore, studies on effective combinations of phytochemicals at relatively low concentrations might contribute to chemopreventive strategies. Results Here we found for the first time that co-treatment with I3C and genistein, derived from cruciferous vegetables and soy, respectively, synergistically suppressed the viability of human colon cancer HT-29 cells at concentrations at which each agent alone was ineffective. The suppression of cell viability was due to the induction of a caspase-dependent apoptosis. Moreover, the combination effectively inhibited phosphorylation of Akt followed by dephosphorylation of caspase-9 or down-regulation of XIAP and survivin, which contribute to the induction of apoptosis. In addition, the co-treatment also enhanced the induction of autophagy mediated by the dephosphorylation of mTOR, one of the downstream targets of Akt, whereas the maturation of autophagosomes was inhibited. These results give rise to the possibility that co-treatment with I3C and genistein induces apoptosis through the simultaneous inhibition of Akt activity and progression of the autophagic process. This possibility was examined using inhibitors of Akt combined with inhibitors of autophagy. The combination effectively induced apoptosis, whereas the Akt inhibitor alone did not. Conclusion Although in vivo study is further required to evaluate physiological efficacies and toxicity of the combination treatment, our findings might provide a new insight into the development of novel combination therapies/chemoprevention against malignant tumors using dietary phytochemicals.

  17. [The role of balanced low-protein diet in inhibition of predialysis chronic kidney disease progression in patients with systemic diseases].

    Science.gov (United States)

    Milovanov, Iu S; Lysenko, L V; Milovanova, L Iu; Dobrosmyslov, I A

    2009-01-01

    To evaluate the effects of low-protein diet (LPD) balanced by addition of highly energetic mix and essential keto/amino acids on inhibition of renal failure in patients with systemic diseases with predialysis stages of chronic disease of the kidney (CDK). Forty six patients with stage III--IV of CDK in systemic diseases (33 SLE patients and 13 with systemic vasculitis) were randomized into three groups. Group 1 consisted of 18 patients with CDK (10 with stage III and 8 with stage IV). They received LPD (0.6 g/kg/day) with addition of essential keto/amino acids for 24-48 months. Group 2 of 18 CDK patients with the same stages received the same diet but greater amount of vegetable protein (highly purified soya protein) to 0.3 g/kg/day in highly energetic nutrient mixture. Group 3--10 CDK patients (7 with stage III and 3 with stage IV) received free diet. Group 1 and 2 patients received LPD irrespective of the nutrient status assessed basing on anthropometric and other data. Protein consumption and caloric value were estimated by 3-day food diary. Before diet therapy, out of 46 examinees nutrient status was abnormal in 45.7% patients. Both variants of LPD were well tolerated and nutrient status was corrected while the rate of nutritive disorders in group 3 increased 1.5-fold (from 40 to 60%) with progression of renal failure. Intake of LPD diet for at least a year reduced glomerular filtration rate inhibition, especially in addition of highly energetic mixture. Early (predialysis) restriction of diet protein (0.6 g/kg/day) with addition of highly energetic mixture and essential keto/amino acids improves a nutritive status of CDK patients and inhibits GFR decline.

  18. Inhibition of Pancreatic Intraepithelial Neoplasia Progression to Carcinoma by Nitric Oxide-Releasing Aspirin in p48Cre/+-LSL-KrasG12D/+ Mice

    Directory of Open Access Journals (Sweden)

    Chinthalapally V. Rao

    2012-09-01

    Full Text Available Nitric oxide-releasing aspirin (NO-aspirin represents a novel class of promising chemopreventive agents. Unlike conventional nonsteroidal anti-inflammatory drugs, NO-aspirin seems to be free of adverse effects while retaining the beneficial activities of its parent compound. The effect of NO-aspirin on pancreatic carcinogenesis was investigated by assessing the development of precursor pancreatic lesions and adenocarcinomas in KrasG12D/+ transgenic mice that recapitulate human pancreatic cancer progression. Six-week-old male p48Cre/+-LSL-KrasG12D/+ transgenic mice (20 per group were fed diets containing 0, 1000, or 2000 ppm NO-aspirin. The development of pancreatic tumors was monitored by positron emission tomography imaging. All mice were killed at the age of 41 weeks and assessed for pancreatic intraepithelial neoplasia (PanIN and pancreatic ductal adenocarcinoma (PDAC and for molecular changes in the tumors. Our results reveal that NO-aspirin at 1000 and 2000 ppm significantly suppressed pancreatic tumor weights, PDAC incidence, and carcinoma in situ (PanIN-3 lesions. The degree of inhibition of PanIN-3 and carcinoma was more pronounced with NO-aspirin at 1000 ppm (58.8% and 48%, respectively than with 2000 ppm (47% and 20%, respectively. NO-aspirin at 1000 ppm significantly inhibited the spread of carcinoma in the pancreas (∼97%; P < .0001. Decreased expression of cyclooxygenase (COX; with ∼42% inhibition of total COX activity, inducible nitric oxide synthase, proliferating cell nuclear antigen, Bcl-2, cyclin D1, and β-catenin was observed, with induction of p21, p38, and p53 in the pancreas of NO-aspirin-treated mice. These results suggest that low-dose NO-aspirin possesses inhibitory activity against pancreatic carcinogenesis by modulating multiple molecular targets.

  19. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials

    DEFF Research Database (Denmark)

    Chaturvedi, N.; Porta, M.; Klein, R.

    2008-01-01

    BACKGROUND: Results of previous studies suggest that renin-angiotensin system blockers might reduce the burden of diabetic retinopathy. We therefore designed the DIabetic REtinopathy Candesartan Trials (DIRECT) Programme to assess whether candesartan could reduce the incidence and progression of ...

  20. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  1. Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Mahesh Hegde

    Full Text Available BACKGROUND: Levamisole, an imidazo(2,1-bthiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4'-fluorophenyl-5-thiocyanato-imidazo[2,1-b][1], [3], [4]thiadiazole. MATERIALS AND METHODS: ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo. RESULTS: We have determined the IC(50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC(50 5 µM. Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models. CONCLUSION: Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent.

  2. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Ranganatha R Somasagara

    Full Text Available The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties.Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB fruits in leukaemia (CEM and breast cancer (T47D cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated.The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  3. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Somasagara, Ranganatha R; Hegde, Mahesh; Chiruvella, Kishore K; Musini, Anjaneyulu; Choudhary, Bibha; Raghavan, Sathees C

    2012-01-01

    The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  4. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model.

    Science.gov (United States)

    Liu, Qi; Ma, Pingchuan; Liu, Lanxia; Ma, Guilei; Ma, Jingjing; Liu, Xiaoxuan; Liu, Yijin; Lin, Wanjun; Zhu, Yingjun

    2017-01-01

    Our study investigated poly(lactic-co-glycolic acid) (PLGA) as protein delivery vehicles encapsulate CTLA-4-antibody (anti-CTLA-4) which is essential for CD4+CD25+Treg cells suppressive function exposing superior potential for inhibiting endometriosis progress in mouse model than single anti-CTLA-4. Anti-CTLA-4 loaded PLGA combined to ligands CTLA-4 in surface of CD4+CD25+Treg cells which distributed in peritoneal fluid of mouse endometriosis model. The particle size, zeta potential of the anti-CTLA-4 loaded nanoparticles was detected by dynamic light scattering. Morphology of nanoparticles was evaluated by transmission electron microscopy (TEM). Confocal laser scanning microscopy (CLSM) indicated distribution of anti-CTLA-4 with PLGA or without in peritoneal fluid. Cumulative anti-CTLA-4 release from nanoparticles was evaluated by Micro BCA assay. The percentage of CD4+CD25+Treg cells in peritoneal fluid was demonstrated by flow cytometer. In vitro experiment we co-culture ectopic endometrial cells (EEC) with isolated CD4+CD25+Treg cells in peritoneal fluid (PF), proliferation and invasion of ectopic endometrial cells (EEC) was measured by BrdU ELISA assay and Matrigel invasion assay. In comparison with anti-CTLA-4 without nanoparticles, the bioconjugates PLGA/anti-CTLA-4 were tolerated in peritoneal fluid with a controlled release of anti-CTLA-4 in 3, 7, 14days. Moreover, PLGA/anti-CTLA-4 had superior protective regulation ability to reduce level of CD4+CD25+Treg cells in peritoneal fluid. Most strikingly, in vitro experiment, PLGA/anti-CTLA-4 exhibited better ability in inhibiting proliferation and invasion of ectopic endometrial cells in co-culture system compared with anti-CTLA-4. Progressively, PLGA/anti-CTLA-4 had better suppressive activity to inhibited IL-10 and TGF-beta secreted by CD4+CD25+Treg cells which indicating that PLGA/anti-CTLA-4 suppressed cells proliferation and invasion through reduced IL-10 and TGF-beta production. Thus, PLGA/anti-CTLA-4 may

  5. Strategic Prevention Framework State Incentive Grant Progress Report: Building a Sustainable Substance Abuse Prevention System, State of Hawai'i, 2006-2010

    Science.gov (United States)

    Yuan, S.; Lai, M.C.; Heusel, K.

    2011-01-01

    In 2006, the Hawai'i State Department of Health (DOH) received the Strategic Prevention Framework State Incentive Grant (SPF-SIG) from the Substance Abuse and Mental Health Services Administration (SAMHSA) to establish a comprehensive, coordinated, and sustainable substance abuse prevention infrastructure in Hawai'i. The SPF-SIG Project is funded…

  6. High serum bicarbonate level within the normal range prevents the progression of chronic kidney disease in elderly chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Kanda Eiichiro

    2013-01-01

    Full Text Available Abstract Background Metabolic acidosis leads to chronic kidney disease (CKD progression. The guidelines recommend a lower limit of serum bicarbonate level, but no upper limit. For serum bicarbonate level to be clinically useful as a therapeutic target marker, it is necessary to investigate the target serum bicarbonate level within the normal range to prevent CKD progression. Methods One hundred and thirteen elderly CKD patients, whose serum bicarbonate level was controlled within the normal range, were enrolled in this retrospective cohort study in Ibaraki, Japan. Outcome was defined as a decrease of 25% or more in estimated glomerular filtration rate (eGFR or starting dialysis. We used Cox proportional hazard models adjusted for patients’ characteristics to examine the association between serum bicarbonate level and the outcome. Results Female patients were 36.3%: average age (SD, 70.4 (6.6 years; eGFR, 25.7 (13.6 ml/min/1.73 m2; serum bicarbonate level, 27.4 (3.2 mEq/l. Patients with the lowest quartile of serum bicarbonate levels [23.4 (1.8 mEq/l] showed a high risk of CKD progression compared with patients with high serum bicarbonate levels [28.8 (2.3 mEq/l]: adjusted hazard ratio (HR, 3.511 (95% CI, 1.342-9.186. A 1 mEq/l increase in serum bicarbonate level was associated with a low risk of CKD progression: adjusted HR, 0.791 [95% confidence interval (CI, 0.684-0.914]. Conclusions In elderly CKD patients, our findings suggest that serum bicarbonate level is independently associated with CKD progression, and that a high serum bicarbonate level is associated with a low risk of CKD progression. A high target serum bicarbonate level within the normal range may be effective for preventing CKD progression.

  7. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Zelieann R., E-mail: zelieann@illinois.edu; Hannon, Patrick R., E-mail: phannon2@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P{sub 4}) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P{sub 4}, androstenedione (A), testosterone (T), estrone (E{sub 1}), and 17β-estradiol (E{sub 2}) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E{sub 2}. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P{sub 4}, A, T, and E{sub 1} that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. - Highlights: • Mono-OH MXC inhibited antral follicle steroidogenesis, growth, and survival. • Pregnenolone partially restored steroidogenesis

  8. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  9. Pregnenolone co-treatment partially restores steroidogenesis, but does not prevent growth inhibition and increased atresia in mouse ovarian antral follicles treated with mono-hydroxy methoxychlor.

    Science.gov (United States)

    Craig, Zelieann R; Hannon, Patrick R; Flaws, Jodi A

    2013-11-01

    Mono-hydroxy methoxychlor (mono-OH MXC) is a metabolite of the pesticide, methoxychlor (MXC). Although MXC is known to decrease antral follicle numbers, and increase follicle death in rodents, not much is known about the ovarian effects of mono-OH MXC. Previous studies indicate that mono-OH MXC inhibits mouse antral follicle growth, increases follicle death, and inhibits steroidogenesis in vitro. Further, previous studies indicate that CYP11A1 expression and production of progesterone (P4) may be the early targets of mono-OH MXC in the steroidogenic pathway. Thus, this study tested whether supplementing pregnenolone, the precursor of progesterone and the substrate for HSD3B, would prevent decreased steroidogenesis, inhibited follicle growth, and increased follicle atresia in mono-OH MXC-treated follicles. Mouse antral follicles were exposed to vehicle (dimethylsulfoxide), mono-OH MXC (10 μg/mL), pregnenolone (1 μg/mL), or mono-OH MXC and pregnenolone together for 96 h. Levels of P4, androstenedione (A), testosterone (T), estrone (E1), and 17β-estradiol (E2) in media were determined, and follicles were processed for histological evaluation of atresia. Pregnenolone treatment alone stimulated production of all steroid hormones except E2. Mono-OH MXC-treated follicles had decreased sex steroids, but when given pregnenolone, produced levels of P4, A, T, and E1 that were comparable to those in vehicle-treated follicles. Pregnenolone treatment did not prevent growth inhibition and increased atresia in mono-OH MXC-treated follicles. Collectively, these data support the idea that the most upstream effect of mono-OH MXC on steroidogenesis is by reducing the availability of pregnenolone, and that adding pregnenolone may not be sufficient to prevent inhibited follicle growth and survival. © 2013.

  10. Non-steroidal anti-inflammatory agents to induce regression and prevent the progression of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Grabosch, Shannon M; Shariff, Osman M; Helm, C William

    2018-02-12

    This is an updated version of the original Cochrane review published in 2014, Issue 4. Cervical intraepithelial neoplasia (CIN) precedes the development of invasive carcinoma of the cervix. Current treatment of CIN is quite effective, but there is morbidity for the patient related to pain, bleeding, infection, cervical stenosis and premature birth in a subsequent pregnancy. Effective treatment with medications, rather than surgery, would be beneficial. To evaluate the effectiveness and safety of non-steroidal anti-inflammatory agents (NSAIDs), including cyclooxygenase-2 (COX-2) inhibitors, to induce regression and prevent the progression of CIN. Previously, we searched the Cochrane Gynaecological Cancer Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 11), MEDLINE (November, 2013) and Embase (November week 48, 2013). An updated search was performed in August 2017 for CENTRAL (2017, Issue 8), MEDLINE (July, week 3, 2017) and Embase (July week 31, 2017). Trial registries and journals were also searched as part of the update. Randomised controlled trials (RCTs) or controlled trials of NSAIDs in the treatment of CIN. Three review authors independently abstracted data and assessed risks of bias in accordance with Cochrane methodology. Outcome data were pooled using fixed-effect meta-analyses. In three RCTs, 171 women over the age of 18 years were randomised to receive celecoxib 400 mg daily for 14 to 18 weeks versus placebo (one study, 130 participants), celecoxib 200 mg twice daily by mouth for six months versus placebo (one study, 25 participants), or rofecoxib 25 mg once daily by mouth for three months versus placebo (one study, 16 participants). The study with rofecoxib was discontinued when the medicine was withdrawn from the market in 2004. The trials ran from June 2005 to April 2012, June 2002 to October 2003, and May to October 2004, respectively. We have chosen to include the data from the rofecoxib study as

  11. A novel polysaccharide derived from algae extract inhibits cancer progression via JNK, not via the p38 MAPK signaling pathway

    Science.gov (United States)

    Xie, Peiyu; Horio, Fukuko; Fujii, Isao; Zhao, Jien; Shinohara, Makoto; Matsukura, Makoto

    2018-01-01

    Cancer has long been one of the most malignant diseases worldwide. Processes in cancer cells are often mediated by Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and other signaling pathways. Traditional therapies are often problematic. Recently, a novel polysaccharide derived from algae extract was investigated due to the increasing interest in biological activities of compounds from marine organisms. The effect of this novel polysaccharide on human MKN45 gastric carcinoma cells was determined previously. The current aimed to determine whether the polysaccharide affects other types of cancer, and the deeper mechanisms involved in the process. Human MCF-7 breast cancer cells were used to investigate the novel polysaccharide for its role in the cell growth and migration, and determine the mechanisms affected. MTT assay, nuclear staining and fluorescence activated cell sorting analysis demonstrated that the novel polysaccharide reduced the viability of MCF-7 cells by inducing cell apoptosis and arresting the cells at G2/M phase. Results of western blot analysis demonstrated that phosphorylation of JNK and expression of p53, caspase-9 and caspase-3 were upregulated in the polysaccharide-treated MCF-7 cells. SP600125, an inhibitor of JNK, maintained MCF-7 cell viability, prevented cell apoptosis and cycle arrest, and downregulated the polysaccharide-induced protein phosphorylation/expression. However, a migration assay demonstrated that the novel polysaccharide did not change the migration of MCF-7 cells, as well as the expression of p38 MAPK, and matrix metalloproteinase-9 and -2. Taken together, the current study demonstrated that the novel polysaccharide suppressed cancer cell growth, induced cancer cell apoptosis and cell cycle arrest via JNK signaling, but had no effect on cancer cell migration and p38 MAPK signaling. PMID:29512724

  12. Tangeretin and its metabolite 4'-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K.

    Science.gov (United States)

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, M R

    2011-04-01

    The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4'-hydroxy-5,6,7,8-tetramethoxyflavone (4'-OH-TMF) in this effect. We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [(3)H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4'-OH-TMF. Low micromolar concentrations of tangeretin or 4'-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4'-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. Tangeretin and 4'-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4'-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Tangeretin and its metabolite 4′-hydroxytetramethoxyflavone attenuate EGF-stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K

    Science.gov (United States)

    Cheng, Z; Surichan, S; Ruparelia, K; Arroo, R; Boarder, MR

    2011-01-01

    BACKGROUND AND PURPOSE The mechanisms by which the dietary compound tangeretin has anticancer effects may include acting as a prodrug, forming an antiproliferative product in cancer cells. Here we show that tangeretin also inhibits cell cycle progression in hepatocytes and investigate the role of its primary metabolite 4′-hydroxy-5,6,7,8-tetramethoxyflavone (4′-OH-TMF) in this effect. EXPERIMENTAL APPROACH We used epidermal growth factor (EGF)-stimulated rat hepatocytes, with [3H]-thymidine incorporation into DNA as an index of progression to S-phase of the cell cycle, and Western blots for phospho-proteins involved in the cell signalling cascade. KEY RESULTS Incubation of tangeretin with microsomes expressing CYP1A, or with hepatocytes, generated a primary product we identified as 4′-OH-TMF. Low micromolar concentrations of tangeretin or 4′-OH-TMF gave a concentration-dependent inhibition of EGF-stimulated progression to S-phase while having little effect on cell viability. To determine whether time for conversion of tangeretin to an active metabolite would enhance the inhibitory effect we used long pre-incubations; this reduced the inhibitory effect, in parallel with a reduction in the concentration of tangeretin. The EGF-stimulation of hepatocyte cell cycle progression requires signalling through Akt/mTOR/p70S6K kinase cascades. The tangeretin metabolite 4′-OH-TMF selectively inhibited S6K phosphorylation in the absence of significant inhibition of upstream Akt activity, suggesting an effect at the level of mTOR. CONCLUSIONS AND IMPLICATIONS Tangeretin and 4′-OH-TMF both inhibit cell cycle progression in primary hepatocytes. The inhibition of p70S6K phosphorylation by 4′-OH-TMF raises the possibility that inhibition of the mTOR pathway may contribute to the anticancer influence of a flavonoid-rich diet. PMID:21198542

  14. National strategy for suicide prevention in Japan: impact of a national fund on progress of developing systems for suicide prevention and implementing initiatives among local authorities.

    Science.gov (United States)

    Nakanishi, Miharu; Yamauchi, Takashi; Takeshima, Tadashi

    2015-01-01

    In Japan, the Cabinet Office released the 'General Principles of Suicide Prevention Policy' in 2007 and suggested nine initiatives. In 2009, a national fund was launched to help prefectures (the administrative divisions of Japan) and local authorities implement five categories of suicide-prevention programs. This paper examines the impact of the national fund on the establishment of the systems for suicide prevention and the implementation of these initiatives among local authorities. The present study included 1385 local authorities (79.5%) from all 47 prefectures that responded to the cross-sectional questionnaire survey. Improved suicide-prevention systems and the implementation of nine initiatives in April 2013 were observed among 265 local authorities (19.1%) that implemented 'Training of community service providers' and 'Public awareness campaigns'; 178 local authorities (12.9%) that implemented 'Face-to-face counseling', 'Training of community service providers' and 'Public awareness campaigns'; and 324 local authorities (23.4%) that implemented 'Trauma-informed policies and practices'. There was no significant difference in suicide-prevention systems and the implementation of nine initiatives between 203 local authorities (14.7%) that implemented only 'Public awareness campaigns' and 231 local authorities (16.7%) that did not implement any suicide-prevention programs. The results of our study suggest that the national fund promoted the establishment of community systems for suicide prevention and helped implement initiatives among local authorities. The national suicide-prevention strategy in Japan should explore a standard package of programs to guide community suicide-prevention efforts with a sustained workforce among local authorities. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  15. Low dose of insulin detemir controls glycaemia, insulinemia and prevents diabetes mellitus progression in the dog with pituitary-dependent hyperadrenocorticism.

    Science.gov (United States)

    Miceli, D D; Gallelli, M F; Cabrera Blatter, M F; Martiarena, B; Brañas, M M; Ortemberg, L R; Gómez, N V; Castillo, V A

    2012-08-01

    Diabetes is often associated with pituitary-dependent hyperadrenocorticism (PDH). Hypercortisolism causes insulin resistance and affects β-cell function. The purpose of this study was to test if daily administration of a long-acting insulin analogue during the first month of anti-PDH treatment can prevent progress to diabetes in these animals. Twenty-six PDH dogs were divided into three groups: one group with glycaemia 5.83 mmol/L and Dogs with glycaemia 5.83 mmol/L which received insulin did not develop diabetes. In the non-insulin group, 6/7 dogs developed diabetes after the third month. There is a 13-fold higher risk of diabetes in dogs with glycaemia >5.83 mmol/L and no insulin treatment. Administering insulin detemir to dogs with PDH and glycaemia >5.83 mmol/L could prevent progression to diabetes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A novel arctigenin-containing latex glove prevents latex allergy by inhibiting type I/IV allergic reactions.

    Science.gov (United States)

    Wang, Yong-Xin; Xue, Dan-Ting; Liu, Meng; Zhou, Zheng-Min; Shang, Jing

    2016-03-01

    The present study aimed at developing a natural compound with anti-allergic effect and stability under latex glove manufacturing conditions and investigating whether its anti-allergic effect is maintained after its addition into the latex. The effects of nine natural compounds on growth of the RBL-2H3 cells and mouse primary spleen lymphocytes were determined using MTT assay. The compounds included glycyrrhizin, osthole, tetrandrine, tea polyphenol, catechin, arctigenin, oleanolic acid, baicalin and oxymatrine. An ELISA assay was used for the in vitro anti-type I/IV allergy screening; in this process β-hexosaminidase, histamine, and IL-4 released from RBL-2H3 cell lines and IFN-γ and IL-2 released from mouse primary spleen lymphocytes were taken as screening indices. The physical stability of eight natural compounds and the dissolubility of arctigenin, selected based on the in vitro pharnacodynamaic screening and the stability evaluation, were detected by HPLC. The in vivo pharmacodynamic confirmation of arctigenin and final latex product was evaluated with a passive cutaneous anaphylaxis (PCA) model and an allergen-specific skin response model. Nine natural compounds showed minor growth inhibition on RBL-2H3 cells and mouse primary spleen lymphocytes. Baicalin and arctigenin had the best anti-type I and IV allergic effects among the natural compounds based on the in vitro pharmacodynamic screening. Arctigenin and catechin had the best physical stability under different manufacturing conditions. Arctigenin was the selected for further evaluation and proven to have anti-type I and IV allergic effects in vivo in a dose-dependent manner. The final product of the arctigenin-containing latex glove had anti-type I and IV allergic effects in vivo which were mainly attributed to arctigenin as proved from the dissolubility results. Arctigenin showed anti-type I and IV allergic effects in vitro and in vivo, with a good stability under latex glove manufacturing conditions

  17. Steroids do not prevent photoreceptor degeneration in the light-exposed T4R rhodopsin mutant dog retina irrespective of AP-1 inhibition.

    Science.gov (United States)

    Gu, Danian; Beltran, William A; Pearce-Kelling, Sue; Li, Zexiao; Acland, Gregory M; Aguirre, Gustavo D

    2009-07-01

    AP-1 has been proposed as a key intermediate linking exposure to light and photoreceptor cell death in rodent light-damage models. Inhibition of AP-1 associated with steroid administration also prevents light damage. In this study the role of steroids in inhibiting AP-1 activation and/or in preventing photoreceptor degeneration was examined in the rhodopsin mutant dog model. The dogs were dark adapted overnight, eyes dilated with mydriatics; the right eye was light occluded and the fundus of the left eye photographed ( approximately 15-17 overlapping frames) with a fundus camera. For biochemical studies, the dogs remained in the dark for 1 to 3 hours after exposure. Twenty-four hours before exposure to light, some dogs were treated with systemic dexamethasone or intravitreal/subconjunctival triamcinolone. AP-1 DNA-binding activity was determined by electrophoresis mobility shift assay (EMSA) and phosphorylation of c-Fos and activation of ERK1/2 were determined by immunoblot analyses. The eyes were collected 1 hour and 2 weeks after exposure to light, for histopathology and immunocytochemistry. Inhibition of AP-1 activation, and phosphorylation of ERK1/2 and c-Fos were found after dexamethasone treatment in light-exposed T4R RHO mutant dog retinas. In contrast, increased AP-1 activity and phosphorylation of c-Fos and ERK1/2 were found in triamcinolone-treated mutant retinas. Similar extensive rod degeneration was found after exposure to light with or without treatment, and areas with surviving photoreceptor nuclei consisted primarily of cones. Only with systemic dexamethasone did the RPE cell layer remain. Intraocular or systemic steroids fail to prevent light-induced photoreceptor degeneration in the T4R RHO dog retina. Finding that systemic dexamethasone prevents AP-1 activation, yet does not prevent retinal light damage, further supports the hypothesis that AP-1 is not the critical player in the cell-death signal that occurs in rods.

  18. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells

    Directory of Open Access Journals (Sweden)

    Seung Eun Song

    2016-04-01

    Full Text Available This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6–25 mM increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM. High glucose increased reactive oxygen species (ROS generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

  19. Wnt/?-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance

    OpenAIRE

    Wickstr?m, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbj?rnsson, Baldur; Sand?n, Emma; Darabi, Anna; Siesj?, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-01-01

    Published version also available at http://dx.doi.org/10.1038/ncomms9904 The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant corr...

  20. Persistent effect of mTOR inhibition on preneoplastic foci progression and gene expression in a rat model of hepatocellular carcinoma.

    Science.gov (United States)

    Francois-Vaughan, Heather; Adebayo, Adeola O; Brilliant, Kate E; Parry, Nicola M A; Gruppuso, Philip A; Sanders, Jennifer A

    2016-04-01

    Hepatocellular carcinoma (HCC) is a heterogeneous disease in which tumor subtypes can be identified based on the presence of adult liver progenitor cells. Having previously identified the mTOR pathway as critical to progenitor cell proliferation in a model of liver injury, we investigated the temporal activation of mTOR signaling in a rat model of hepatic carcinogenesis. The model employed chemical carcinogens and partial hepatectomy to induce progenitor marker-positive HCC. Immunohistochemical staining for phosphorylated ribosomal protein S6 indicated robust mTOR complex 1 (mTORC1) activity in early preneoplastic lesions that peaked during the first week and waned over the subsequent 10 days. Continuous administration of rapamycin by subcutaneous pellet for 70 days markedly reduced the development of focal lesions, but resulted in activation of the PI3K signaling pathway. To test the hypothesis that early mTORC1 activation was critical to the development and progression of preneoplastic foci, we limited rapamycin administration to the 3-week period at the start of the protocol. Focal lesion burden was reduced to a degree indistinguishable from that seen with continuous administration. Short-term rapamycin did not result in the activation of PI3K or mTORC2 pathways. Microarray analysis revealed a persistent effect of short-term mTORC1 inhibition on gene expression that resulted in a genetic signature reminiscent of normal liver. We conclude that mTORC1 activation during the early stages of hepatic carcinogenesis may be critical due to the development of preneoplastic focal lesions in progenitor marker-positive HCC. mTORC1 inhibition may represent an effective chemopreventive strategy for this form of liver cancer. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Non-Lethal Sonodynamic Therapy Inhibits Atherosclerotic Plaque Progression in ApoE-/- Mice and Attenuates ox-LDL-mediated Macrophage Impairment by Inducing Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-05-01

    Full Text Available Background: Previous studies from our group showed that low-intensity sonodynamic therapy (SDT has protective effects on atherosclerosis (AS. However, because the intensity of ultrasound passing through tissue is attenuated, the consequences of very low-intensity SDT, referred to as non-lethal SDT (NL-SDT, on atherosclerotic plaques are unclear. The aim of this study was to determine whether NL-SDT affects atherosclerotic plaques and to elucidate the possible underlying mechanisms. Methods: An AS model was established using ApoE-/- mice fed a western diet. En face Oil Red O staining was used to measure atherosclerotic plaque size. Hematoxylin and eosin staining and immunohistochemical staining were used to observe plaque morphology and assess the location of macrophages and heme oxygenase 1 (HO-1. HO-1 mRNA and protein levels in AS plaques were evaluated by real-time PCR and western blotting. Human THP-1 cells and mouse peritoneal macrophages were used in this study. Western blotting was used to investigate the expression of cellular proteins after NL-SDT. Macrophage apoptosis was evaluated by TUNEL assays and flow cytometry with Annexin V/PI double staining. Intracellular reactive oxygen species (ROS and mitochondrial membrane potential (MMP were measured with 2′-7′-dichlorofluorescein diacetate (DCFH-DA and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide (JC-1 staining, respectively. Results: NL-SDT significantly inhibited AS progression and reduced the necrotic core area. NL-SDT induced HO-1 expression in lesional macrophages and in cultured macrophages. NL-SDT activated the protein kinase B (AKT and extracellular signal-related protein kinase (ERK pathways and the transcription factor NF-E2-related factor 2 (Nrf2.NL-SDT significantly reduced oxidized LDL (ox-LDL-induced macrophage MMP collapse, ROS production and cell apoptosis. Zinc protoporphyrin (ZnPP, a HO-1-specific inhibitor, reversed the

  2. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages.

    Science.gov (United States)

    Alvarado, Raquel; To, Joyce; Lund, Maria E; Pinar, Anita; Mansell, Ashley; Robinson, Mark W; O'Brien, Bronwyn A; Dalton, John P; Donnelly, Sheila

    2017-01-01

    The NLRP3 inflammasome is a multimeric protein complex that controls the production of IL-1β, a cytokine that influences the development of both innate and adaptive immune responses. Helminth parasites secrete molecules that interact with innate immune cells, modulating their activity to ultimately determine the phenotype of differentiated T cells, thus creating an immune environment that is conducive to sustaining chronic infection. We show that one of these molecules, FhHDM-1, a cathelicidin-like peptide secreted by the helminth parasite, Fasciola hepatica, inhibits the activation of the NLRP3 inflammasome resulting in reduced secretion of IL-1β by macrophages. FhHDM-1 had no effect on the synthesis of pro-IL-1β. Rather, the inhibitory effect was associated with the capacity of the peptide to prevent acidification of the endolysosome. The activation of cathepsin B protease by lysosomal destabilization was prevented in FhHDM-1-treated macrophages. By contrast, peptide derivatives of FhHDM-1 that did not alter the lysosomal pH did not inhibit secretion of IL-1β. We propose a novel immune modulatory strategy used by F. hepatica, whereby secretion of the FhHDM-1 peptide impairs the activation of NLRP3 by lysosomal cathepsin B protease, which prevents the downstream production of IL-1β and the development of protective T helper 1 type immune responses that are detrimental to parasite survival.-Alvarado, R., To, J., Lund, M. E., Pinar, A., Mansell, A., Robinson, M. W., O'Brien, B. A., Dalton, J. P., Donnelly, S. The immune modulatory peptide FhHDM-1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages. © FASEB.

  3. U-Bang-Haequi Tang: A Herbal Prescription that Prevents Acute Inflammation through Inhibition of NF-κB-Mediated Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Min Hwangbo

    2014-01-01

    Full Text Available Since antiquity, medical herbs have been prescribed for both treatment and preventative purposes. Herbal formulas are used to reduce toxicity as well as increase efficacy in traditional Korean medicine. U-bang-haequi tang (UBT is a herbal prescription containing Arctii fructus and Forsythia suspensa as its main components and has treated many human diseases in traditional Korean medicine. This research investigated the effects of UBT against an acute phase of inflammation. For this, we measured induction of nitric oxide (NO and related proteins in macrophage cell line stimulated by lipopolysaccharide (LPS. Further, paw swelling was measured in carrageenan-treated rats. Carrageenan significantly induced activation of inflammatory cells and increases in paw volume, whereas oral administration of 0.3 or 1 g/kg/day of UBT inhibited the acute inflammatory response. In RAW264.7 cells, UBT inhibited mRNA and protein expression levels of iNOS. UBT treatment also blocked elevation of NO production, nuclear translocation of NF-κB, phosphorylation of Iκ-Bα induced by LPS. Moreover, UBT treatment significantly blocked the phosphorylation of p38 and c-Jun NH2-terminal kinases by LPS. In conclusion, UBT prevented both acute inflammation in rats as well as LPS-induced NO and iNOS gene expression through inhibition of NF-κB in RAW264.7 cells.

  4. Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction.

    Science.gov (United States)

    Drosatos, Konstantinos; Drosatos-Tampakaki, Zoi; Khan, Raffay; Homma, Shunichi; Schulze, P Christian; Zannis, Vassilis I; Goldberg, Ira J

    2011-10-21

    Septic shock results from bacterial infection and is associated with multi-organ failure, high mortality, and cardiac dysfunction. Sepsis causes both myocardial inflammation and energy depletion. We hypothesized that reduced cardiac energy production is a primary cause of ventricular dysfunction in sepsis. The JNK pathway is activated in sepsis and has also been implicated in impaired fatty acid oxidation in several tissues. Therefore, we tested whether JNK activation inhibits cardiac fatty acid oxidation and whether blocking JNK would restore fatty acid oxidation during LPS treatment. LPS treatment of C57BL/6 mice and adenovirus-mediated activation of the JNK pathway in cardiomyocytes inhibited peroxisome proliferator-activated receptor α expression and fatty acid oxidation. Surprisingly, none of the adaptive responses that have been described in other types of heart failure, such as increased glucose utilization, reduced αMHC:βMHC ratio or induction of certain microRNAs, occurred in LPS-treated mice. Treatment of C57BL/6 mice with a general JNK inhibitor (SP600125) increased fatty acid oxidation in mice and a cardiomyocyte-derived cell line. JNK inhibition also prevented LPS-mediated reduction in fatty acid oxidation and cardiac dysfunction. Inflammation was not alleviated in LPS-treated mice that received the JNK inhibitor. We conclude that activation of JNK signaling reduces fatty acid oxidation and prevents the peroxisome proliferator-activated receptor α down-regulation that occurs with LPS.

  5. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  6. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  7. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  8. Glycemic control with insulin prevents progression of dental caries and caries-related periodontitis in diabetic WBN/KobSlc rats.

    Science.gov (United States)

    Nakahara, Yutaka; Sano, Tomoya; Kodama, Yasushi; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2013-07-01

    We have previously reported that dental caries progress in spontaneously and chemically induced diabetic rodent models. The aim of this study was to clarify the relationship between hyperglycemia and dental caries by evaluating the preventive effect of glycemic control with insulin on the progression of the lesions in diabetic rats. Male WBN/KobSlc rats aged 15 weeks were divided into groups of spontaneously diabetic rats (intact group), spontaneously diabetic rats with insulin treatment (INS group), alloxan-induced prolonged diabetic rats (AL group), and alloxan-induced prolonged diabetic rats with insulin treatment (AL + INS group). The animals were killed at 90 weeks of age, and their oral tissue was examined. Dental caries and periodontitis were frequently detected in the intact group, and the lesions were enhanced in the AL group (in which there was an increased duration of diabetes). Meanwhile, glycemic control with insulin reduced the incidence and severity of dental caries and periodontitis in the INS group, and the effects became more pronounced in the AL + INS group. In conclusion, glycemic control by insulin prevented the progression of dental caries and caries-related periodontitis in the diabetic rats.

  9. Potential of the Angiotensin Receptor Blockers (ARBs) Telmisartan, Irbesartan, and Candesartan for Inhibiting the HMGB1/RAGE Axis in Prevention and Acute Treatment of Stroke

    Science.gov (United States)

    Kikuchi, Kiyoshi; Tancharoen, Salunya; Ito, Takashi; Morimoto-Yamashita, Yoko; Miura, Naoki; Kawahara, Ko-ichi; Maruyama, Ikuro; Murai, Yoshinaka; Tanaka, Eiichiro

    2013-01-01

    Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs. PMID:24065095

  10. An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Masaya Koshizaka

    2012-01-01

    Full Text Available Recently, it has been reported that the Notch pathway is involved in the pathogenesis of diabetic nephropathy. In this study, we investigated the activation of the Notch pathway in Ins2 Akita diabetic mouse (Akita mouse and the effects of telmisartan, an angiotensin II type1 receptor blocker, on the Notch pathway. The intracellular domain of Notch1 (ICN1 is proteolytically cleaved from the cell plasma membrane in the course of Notch activation. The expression of ICN1 and its ligand, Jagged1, were increased in the glomeruli of Akita mice, especially in the podocytes. Administration of telmisartan significantly ameliorated the expression of ICN1 and Jagged1. Telmisartan inhibited the angiotensin II-induced increased expression of transforming growth factor β and vascular endothelial growth factor A which could directly activate the Notch signaling pathway in cultured podocytes. Our results indicate that the telmisartan prevents diabetic nephropathy through the inhibition of the Notch pathway.

  11. Periplocoside A prevents experimental autoimmune encephalomyelitis by suppressing IL-17 production and inhibits differentiation of Th17 cells.

    Science.gov (United States)

    Zhang, Jing; Ni, Jia; Chen, Zhen-hua; Li, Xin; Zhang, Ru-jun; Tang, Wei; Zhao, Wei-min; Yang, Yi-fu; Zuo, Jian-ping

    2009-08-01

    The aim of this study was to determine the therapeutic effect of Periplocoside A (PSA), a natural product isolated from the traditional Chinese herbal medicine Periploca sepium Bge, in MOG(35-55) (myelin oligodendrocyte glycoprotein 35-55)-induced experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice immunized with MOG(35-55) were treated with (50 mg/kg or 25 mg/kg) or without PSA following immunization and continuously throughout the study. The degree of CNS inflammation was evaluated by H&E staining. Anti-MOG-specific recall responses were analyzed by [3H]-Thymidine incorporation, ELISA, and RT-PCR. The proportion of IL-17-producing T cells was measured by flow cytometry. Oral administration of PSA significantly reduced the incidence and severity of EAE, which closely paralleled the inhibition of MOG(35-55)-specific IL-17 production. Importantly, PSA inhibited the transcription of IL-17 mRNA and RORgammat. Further studies examining intracellular staining and adoptive transfer EAE validated the direct suppressive effect of PSA on Th17 cells. In vitro studies also showed that PSA significantly inhibited the differentiation of Th17 cells from murine purified CD4+ T cells in a dose-dependent manner. PSA ameliorated EAE by suppressing IL-17 production and inhibited the differentiation of Th17 cells in vitro. Our results provide new insight into the potential mechanisms underlying the immunosuppressive and anti-inflammatory effects of PSA.

  12. Inhibition of Calpain Prevents N-Methyl-D-aspartate-Induced Degeneration of the Nucleus Basalis and Associated Behavioral Dysfunction

    NARCIS (Netherlands)

    Nimmrich, Volker; Szabo, Robert; Nyakas, Csaba; Granic, Ivica; Reymann, Klaus G.; Schroeder, Ulrich H.; Gross, Gerhard; Schoemaker, Hans; Wicke, Karsten; Moeller, Achim; Luiten, Paul

    2008-01-01

    N-Methyl-D-aspartate( NMDA) receptor-mediated excitotoxicity is thought to underlie a variety of neurological disorders, and inhibition of either the NMDA receptor itself, or molecules of the intracellular cascade, may attenuate neurodegeneration in these diseases. Calpain, a calcium-dependent

  13. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation.

    Science.gov (United States)

    Zuo, Jiangcheng; Yu, Yalan; Zhu, Man; Jing, Wei; Yu, Mingxia; Chai, Hongyan; Liang, Chunzi; Tu, Jiancheng

    2018-02-06

    Breast cancer is a common cancer in women of worldwide. Cancer cells with stem-like properties played important roles in breast cancer, such as relapse, metastasis and treatment resistance. Micro-RNA-155 (miR-155) is a well-known oncogenic miRNA overexpressed in many human cancers. The expression levels of miR-155 in 38 pairs of cancer tissues and adjacent normal tissues from breast cancer patients were detected using quantitative real-time PCR. The invasive cell line MDA-MB-231 was used to quantify the expression of miR-155 by tumor-sphere forming experiment. Soft agar colony formation assay and tumor xenografts was used to explore whether the inhibition of miR-155 could reduce proliferation of cancer cells in vivo and vitro. In the study, we found miR-155 was upregulated in BC. Soft agar colony formation assay and tumor xenografts showed inhibition of miR-155 could significantly reduce proliferation of cancer cells in vivo and vitro, which confirmed that miR-155 is an effective therapeutic target of breast cancer. Sphere-forming experiment showed that overexpression of miR-155 significantly correlated with stem-like properties. Expressions of ABCG2, CD44 and CD90 were repressed by inhibition of miR-155, but CD24 was promoted. Interestingly, inhibition of miR-155 rendered MDA-MB-231 cells more sensitive to Doxorubicinol, which resulted in an increase of inhibition rate from 20.23% to 68.72%. Expression of miR-155 not only was a therapeutic target but also was associated with cancer stem cell formation and Doxorubicinol sensitivity. Our results underscore the importance of miR-155 as a therapeutic target and combination of Doxorubicinol and miR-155-silencing would be a potential way to cure breast cancer.

  14. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    Science.gov (United States)

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  15. Peripheral Zone Inflammation is Not Strongly Associated with Lower Urinary Tract Symptom Incidence and Progression in the Placebo Arm of the Prostate Cancer Prevention Trial*

    Science.gov (United States)

    Kulac, Ibrahim; Gumuskaya, Berrak; Drake, Charles G.; Gonzalez, Beverly; Arnold, Kathryn B.; Goodman, Phyllis J.; Kristal, Alan R.; Lucia, M. Scott; Thompson, Ian M.; Isaacs, William B.; De Marzo, Angelo M.; Platz, Elizabeth A.

    2017-01-01

    Background Intraprostatic inflammation has been associated with lower urinary tract symptom (LUTS) progression. However, prior studies used tissue removed for clinical indications, potentially skewing inflammation extent or biasing the association. We, therefore, evaluated inflammation and LUTS incidence and progression in men who underwent biopsy of the prostate peripheral zone irrespective of indication. Material and Methods We developed nested case-control sets in men in the placebo arm of the Prostate Cancer Prevention Trial who were free of clinical BPH and had a protocol-directed year 7 biopsy. Cases had baseline IPSS 75th percentile (N = 46) and controls had a slope 75th percentile (N = 46) and controls had a slope inflammation and mean extent (%) of tissue area with inflammation. Results Inflammation prevalence in low cases (64%) was similar to controls (66%), but higher in moderate (69%) and high (73%) cases (P-trend = 0.4). Extent did not differ across LUTS categories (P-trend = 0.5). For progression from IPSS inflammation (10.1% versus 4.6%, P = 0.06). Conclusion Peripheral zone intraprostatic inflammation is not strongly associated with LUTS incidence or progression. PMID:27325488

  16. Inhibition of Ovarian Epithelial Carcinoma Tumorigenesis and Progression by microRNA 106b Mediated through the RhoC Pathway.

    Directory of Open Access Journals (Sweden)

    Shuo Chen

    Full Text Available Epithelial ovarian cancer (EOC is the most lethal of the gynecological malignancies. Exploring the molecular mechanisms and major factors of invasion and metastasis could have great significance for the treatment and prognosis of EOC. Studies have demonstrated that microRNA 106b (miR-106b may be a promising therapeutic target for inhibiting breast cancer bone metastasis, but the role of miR-106b in EOC is largely unknown. In this work, miRNA-106b expression was quantified in various ovarian tissues and tumors. Ovarian carcinoma cell lines were transfected with miR-106b, after which, cell phenotype and expression of relevant molecules was assayed. Dual-luciferase reporter assays and xenograft mouse models were also used to investigate miR-106b and its target gene. MiR-106b mRNA expression was found to be significantly higher in normal ovarian tissues and benign tumors than in ovarian carcinomas and borderline tumors (p < 0.01, and was negatively associated with differentiation (Well vs. Por & Mod and the International Federation of Gynecology and Obstetrics (FIGO staging (stage I/II vs. stage III/IV in ovarian carcinoma (p < 0.05. MiR-106b transfection reduced cell proliferation; promoted G1 or S arrest and apoptosis (p < 0.05; suppressed cell migration and invasion (p < 0.05; reduced Ras homolog gene family member C (RhoC, P70 ribosomal S6 kinase (P70S6K, Bcl-xL, Matrix metallopeptidase 2 (MMP2, MMP9 mRNA and protein expression; and induced p53 expression (p < 0.05. Dual-luciferase reporter assays indicated that miR-106b directly targets RhoC by binding its 3'UTR. MiR-106b transfection also suppressed tumor development and RhoC expression in vivo in xenograft mouse models. This is the first demonstration that miR-106b may inhibit tumorigenesis and progression of EOC by targeting RhoC. The involvement of miR-106b-mediated RhoC downregulation in EOC aggression may give extended insights into molecular mechanisms underlying cancer aggression

  17. Murine analogues of etanercept and of F8-IL10 inhibit the progression of collagen-induced arthritis in the mouse.

    Science.gov (United States)

    Doll, Fabia; Schwager, Kathrin; Hemmerle, Teresa; Neri, Dario

    2013-09-27

    Etanercept is a fusion protein consisting of the soluble portion of the p75-tumor necrosis factor receptor (TNFR) and the Fc fragment of human IgG1, which is often used for the treatment of patients with rheumatoid arthritis. F8-IL10 is a human immunocytokine based on the F8 antibody and interleukin-10, which is currently being investigated in rheumatoid arthritis with promising clinical results. We have aimed at expressing murine versions of these two fusion proteins, in order to assess their pharmaceutical performance in the collagen-induced model of rheumatoid arthritis in the mouse. Two fusion proteins (termed muTNFR-Fc and F8-muIL10) were cloned, expressed in chinese hamster ovary (CHO) cells, purified and characterized. Biological activity of muTNFR-Fc was assessed by its ability to inhibit TNF-induced killing of mouse fibroblasts, while F8-muIL10 was characterized in terms of muIL10 activity, of binding affinity to the cognate antigen of F8, the alternatively-spliced EDA domain of fibronectin, by quantitative biodistribution analysis and in vivo imaging. The therapeutic activity of both fusion proteins was investigated in a collagen-induced mouse model of arthritis. Mouse plasma was analyzed for anti-drug antibody formation and cytokine levels were determined by bead-based multiplex technology. The association of F8-IL10 proteins with blood cells was studied in a centrifugation assay with radiolabeled protein. Both fusion proteins exhibited excellent purity and full biological activity in vitro. In addition, F8-muIL10 was able to localize on newly-formed blood vessels in vivo. When used in a murine model of arthritis, the two proteins inhibited arthritis progression. The activity of muTNFR-Fc was tested alone and in combination with F8-huIL10. The chimeric version of F8-IL10 was not better then the fully human fusion protein and showed similar generation of mouse anti-fusion protein antibodies. Incubation studies of F8-muIL10 and F8-huIL10 with blood

  18. Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation

    NARCIS (Netherlands)

    Brundel, BJJM; Kampinga, HH; Henning, RH

    2004-01-01

    Objective: Atrial fibrillation (AF) is a progressive disease. Previously, clinical and animal experimental studies in AF revealed a variety of myocyte remodeling processes including L-type Ca(2+) channel reduction and structural changes, which finally result in electrical remodeling and contractile

  19. Exendin-4 Prevents Vascular Smooth Muscle Cell Proliferation and Migration by Angiotensin II via the Inhibition of ERK1/2 and JNK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Kosuke Nagayama

    Full Text Available Angiotensin II (Ang II is a main pathophysiological culprit peptide for hypertension and atherosclerosis by causing vascular smooth muscle cell (VSMC proliferation and migration. Exendin-4, a glucagon-like peptide-1 (GLP-1 receptor agonist, is currently used for the treatment of type-2 diabetes, and is believed to have beneficial effects for cardiovascular diseases. However, the vascular protective mechanisms of GLP-1 receptor agonists remain largely unexplained. In the present study, we examined the effect of exendin-4 on Ang II-induced proliferation and migration of cultured rat aortic smooth muscle cells (RASMC. The major findings of the present study are as follows: (1 Ang II caused a phenotypic switch of RASMC from contractile type to synthetic proliferative type cells; (2 Ang II caused concentration-dependent RASMC proliferation, which was significantly inhibited by the pretreatment with exendin-4; (3 Ang II caused concentration-dependent RASMC migration, which was effectively inhibited by the pretreatment with exendin-4; (4 exendin-4 inhibited Ang II-induced phosphorylation of ERK1/2 and JNK in a pre-incubation time-dependent manner; and (5 U0126 (an ERK1/2 kinase inhibitor and SP600125 (a JNK inhibitor also inhibited both RASMC proliferation and migration induced by Ang II stimulation. These results suggest that exendin-4 prevented Ang II-induced VSMC proliferation and migration through the inhibition of ERK1/2 and JNK phosphorylation caused by Ang II stimulation. This indicates that GLP-1 receptor agonists should be considered for use in the treatment of cardiovascular diseases in addition to their current use in the treatment of diabetes mellitus.

  20. Will PEDF Therapy Reverse Chronic Demyelination and Prevent Axon Loss in a Murine Model of Progressive Multiple Sclerosis

    Science.gov (United States)

    2015-12-01

    Multiple Sclerosis ? PRINCIPAL INVESTIGATOR: David Pleasure MD CONTRACTING ORGANIZATION: University of California Davis, CA 95618 REPORT DATE...Murine Model of Progressive Multiple Sclerosis ? 5b. GRANT NUMBER W81XWH-12-1-0566 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Pleasure MD 5d...enhance central nervous system (CNS) remyelination and preserve CNS axons in mouse models of multiple sclerosis models. After determining the dosage of

  1. Can long-term antibiotic treatment prevent progression of peripheral arterial occlusive disease? A large, randomized, double-blinded, placebo-controlled trial

    DEFF Research Database (Denmark)

    Joensen, J B; Juul, Svend; Henneberg, E

    2007-01-01

    history. Follow-up was performed every 6 months. Primary events were defined as death, peripheral revascularization and major lower limb amputation. Secondary events were thrombosis, stroke, transient cerebral ischaemic attack and myocardial infarction. Change in ABPI was also investigated. Data were......, no significant differences were found. CONCLUSION: Long-term treatment with roxithromycin is ineffective in preventing death, amputation, peripheral revascularization, myocardial infarction, stroke, transient cerebral ischaemic attack, thrombosis and decline in ABPI in patients with an established diagnosis......PURPOSE: The purpose was to investigate in a large, randomized, double-blinded, placebo-controlled trial, whether antibiotic treatment can prevent progression of peripheral arterial disease (PAD). MATERIAL AND METHODS: Five hundred and seven patients were included; all patients had an established...

  2. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

    Science.gov (United States)

    Song, Seung Eun; Jo, Hye Jun; Kim, Yong-Woon; Cho, Young-Je; Kim, Jae-Ryong; Park, So-Young

    2016-04-01

    This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6-25 mM) increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM) prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM). High glucose increased reactive oxygen species (ROS) generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX) 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK)1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor) prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF)-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Prevention of cisplatin-induced ototoxicity by the inhibition of gap junctional intercellular communication in auditory cells.

    Science.gov (United States)

    Kim, Yeon Ju; Kim, Jangho; Tian, Chunjie; Lim, Hye Jin; Kim, Young Sun; Chung, Jong Hoon; Choung, Yun-Hoon

    2014-10-01

    Cis-diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic drug for cancer therapy. However, most patients treated with cisplatin are at a high risk of ototoxicity, which causes severe hearing loss. Inspired by the "Good Samaritan effect" or "bystander effect" from gap junction coupling, we investigated the role of gap junctions in cisplatin-induced ototoxicity as a potential therapeutic method. We showed that connexin 43 (Cx43) was highly expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, mediating cell-cell communication. The viability of HEI-OC1 cells was greatly decreased by cisplatin treatment, and cisplatin-treated HEI-OC1 cells showed lower Cx43 expression compared to that of untreated HEI-OC1 cells. In particular, high accumulation of Cx43 was observed around the nucleus of cisplatin-treated cells, whereas scattered punctuate expression of Cx43 was observed in the cytoplasm and membrane in normal cells, suggesting that cisplatin may interrupt the normal gap junction communication by inhibiting the trafficking of Cx43 to cell membranes in HEI-OC1 cells. Interestingly, we found that the inhibition of gap junction activity reduced cisplatin-induced apoptosis of auditory hair cells. Cx43 siRNA- or 18α-GA-treated HEI-OC1 cells showed higher cell viability compared to control HEI-OC1 cells during cisplatin treatment; this was also supported by fluorescence recovery after photobleaching studies. Inhibition of gap junction activity reduced recovery of calcein acetoxymethyl ester fluorescence compared to control cells. Additionally, analysis of the mechanisms involved demonstrated that highly activate extracellular signal-regulated kinase and protein kinase B, combined with inhibition of gap junctions may promote cell viability during cisplatin treatment.

  4. Putative skin-protective formulations in preventing and/or inhibiting experimentally-produced irritant and allergic contact dermatitis.

    Science.gov (United States)

    Zhai, H; Willard, P; Maibach, H I

    1999-10-01

    The effectiveness of skin protective formulations was evaluated in a previously-described in vivo human model. All formulations failed to inhibit ammonium hydroxide and urea irritation. Only paraffin wax in cetyl alcohol statistically (plauryl sulfate irritation. Paraffin wax in cetyl alcohol was quantitatively the most effective formulation. These results suggest that some formulations may provide protective effects against certain, but not all, irritants or allergens.

  5. Artesunate inhibits RANKL-induced osteoclastogenesis and bone resorption in vitro and prevents LPS-induced bone loss in vivo.

    Science.gov (United States)

    Wei, Cheng-Ming; Liu, Qian; Song, Fang-Ming; Lin, Xi-Xi; Su, Yi-Ji; Xu, Jiake; Huang, Lin; Zong, Shao-Hui; Zhao, Jin-Min

    2018-01-01

    Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases. © 2017 Wiley Periodicals, Inc.

  6. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats.

    Science.gov (United States)

    Ozeki, N; Muneta, T; Koga, H; Nakagawa, Y; Mizuno, M; Tsuji, K; Mabuchi, Y; Akazawa, C; Kobayashi, E; Matsumoto, K; Futamura, K; Saito, T; Sekiya, I

    2016-06-01

    We investigated the effects of single or repetitive intra-articular injections of synovial mesenchymal stem cells (MSCs) on a rat osteoarthritis (OA) model, and elucidated the behaviors and underlying mechanisms of the stem cells after the injection. One week after the transection of the anterior cruciate ligament (ACL) of wild type Lewis rats, one million synovial MSCs were injected into the knee joint every week. Cartilage degeneration was evaluated with safranin-o staining after the first injection. To analyze cell kinetics or MSC properties, luciferase, LacZ, and GFP expressing synovial MSCs were used. To confirm the role of MSCs, species-specific microarray and PCR analyses were performed using human synovial MSCs. Histological analysis for femoral and tibial cartilage showed that a single injection was ineffective but weekly injections had significant chondroprotective effects for 12 weeks. Histological and flow-cytometric analyses of LacZ and GFP expressing synovial MSCs revealed that injected MSCs migrated mainly into the synovium and most of them retained their undifferentiated MSC properties though the migrated cells rapidly decreased. In vivo imaging analysis revealed that MSCs maintained in knees while weekly injection. Species-specific microarray and PCR analyses showed that the human mRNAs on day 1 for 21 genes increased over 50-fold, and increased the expressions of PRG-4, BMP-2, and BMP-6 genes encoding chondroprotective proteins, and TSG-6 encoding an anti-inflammatory one. Not single but periodic injections of synovial MSCs maintained viable cells without losing their MSC properties in knees and inhibited osteoarthritis (OA) progression by secretion of trophic factors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Simvastatin prevents and reverses chronic pulmonary hypertension in newborn rats via pleiotropic inhibition of RhoA signaling.

    Science.gov (United States)

    Wong, Mathew J; Kantores, Crystal; Ivanovska, Julijana; Jain, Amish; Jankov, Robert P

    2016-11-01

    Chronic neonatal pulmonary hypertension (PHT) frequently results in early death. Systemically administered Rho-kinase (ROCK) inhibitors prevent and reverse chronic PHT in neonatal rats, but at the cost of severe adverse effects, including systemic hypotension and growth restriction. Simvastatin has pleiotropic inhibitory effects on isoprenoid intermediates that may limit activity of RhoA, which signals upstream of ROCK. We therefore hypothesized that statin treatment would safely limit pulmonary vascular RhoA activity and prevent and reverse experimental chronic neonatal PHT via downstream inhibitory effects on pathological ROCK activity. Sprague-Dawley rats in normoxia (room air) or moderate normobaric hypoxia (13% O 2 ) received simvastatin (2 mg·kg -1 ·day -1 ip) or vehicle from postnatal days 1-14 (prevention protocol) or from days 14-21 (rescue protocol). Chronic hypoxia increased RhoA and ROCK activity in lung tissue. Simvastatin reduced lung content of the isoprenoid intermediate farnesyl pyrophosphate and decreased RhoA/ROCK signaling in the hypoxia-exposed lung. Preventive or rescue treatment of chronic hypoxia-exposed animals with simvastatin decreased pulmonary vascular resistance, right ventricular hypertrophy, and pulmonary arterial remodeling. Preventive simvastatin treatment improved weight gain, did not lower systemic blood pressure, and did not cause apparent toxic effects on skeletal muscle, liver or brain. Rescue therapy with simvastatin improved exercise capacity. We conclude that simvastatin limits RhoA/ROCK activity in the chronic hypoxia-exposed lung, thus preventing or ameliorating hemodynamic and structural markers of chronic PHT and improving long-term outcome, without causing adverse effects. Copyright © 2016 the American Physiological Society.

  8. Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas

    Science.gov (United States)

    Costello, Leslie C.; Franklin, Renty B.

    2016-01-01

    Introduction Efficacious chemotherapy does not exist for treatment or prevention of prostate, liver, and pancreatic carcinomas, and some other cancers that exhibit decreased zinc in malignancy. Zinc treatment offers a potential solution; but its support has been deterred by adverse bias. Areas covered 1. The clinical and experimental evidence for the common ZIP transporter/Zn down regulation in these cancers. 2. The evidence for a zinc approach to prevent and/or treat these carcinomas. 3. The issues that introduce bias against support for the zinc approach. Expert opinion ZIP/Zn downregulation is a clinically established common event in prostate, hepatocellular and pancreatic cancers. 2. Compelling evidence supports the plausibility that a zinc treatment regimen will prevent development of malignancy and termination of progressing malignancy in these cancers; and likely other carcinomas that exhibit decreased zinc. 3. Scientifically-unfounded issues that oppose this ZIP/Zn relationship have introduced bias against support for research and funding of a zinc treatment approach. 4. The clinically-established and supporting experimental evidence provide the scientific credibility that should dictate the support for research and funding of a zinc approach for the treatment and possible prevention of these cancers. 5. This is in the best interest of the medical community and the public-at-large. PMID:27885880

  9. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Science.gov (United States)

    Kim, Junghyun; Jo, Kyuhyung; Lee, Ik-Soo; Kim, Chan-Sik; Kim, Jin Sook

    2016-01-01

    Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs) are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE) against damage to retinal vascular cells were investigated in streptozotocin (STZ)-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB) and inducible nitric oxide synthase (iNOS) were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling)-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs) binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells. PMID:27657123

  10. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  11. The prevention of endothelial dysfunction through endothelial cell apoptosis inhibition in a hypercholesterolemic rabbit model: the effect of L-arginine supplementation

    Directory of Open Access Journals (Sweden)

    Haghjooyjavanmard Shaghayegh

    2008-08-01

    Full Text Available Abstract Background The impact of L-arginine on atherogenesis and its ability to prevent endothelial dysfunction have been studied extensively during the past years. L-arginine is a substance for nitric oxide synthesis which involves in apoptosis. Hypercholesterolemia promotes endothelial dysfunction, and it is hypothesized that L-arginine prevents endothelial dysfunction through endothelial cells apoptosis inhibition. To test this hypothesis, thirty rabbits were assigned into two groups. The control group received 1% cholesterol diet for 4 weeks, and the L-arginine group received same diets plus 3% L-arginine in drinking water. Results No significant differences were observed in cholesterol level between two groups, but the nitrite concentration in L-arginine group was significantly higher than other group (control group: 11.8 ± 1; L-arginine group: 14.7 ± 0.5 μmol/l; (p p p Conclusion The inhibition of endothelial cells apoptosis by L-arginine restores endothelial function in a model of hypercholesterolemia.

  12. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Li, Ying [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Yue, Jiang [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Guo, Austin M., E-mail: Austin_Guo@nymc.edu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr{sup 458}), phospho-PDK (Ser{sup 241}) and phospho-Akt (Thr{sup 308}). Conversely, the exogenous addition of PGE{sub 2}, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE{sub 2}, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE{sub 2}, 20-HETE and phospho-Akt (Thr{sup 308}). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities. - Highlights: • Isoliquiritigenin induces anoikis and suppresses

  13. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  14. Prevention of Asthma Exacerbation in a Mouse Model by Simultaneous Inhibition of NF-κB and STAT6 Activation Using a Chimeric Decoy Strategy

    Directory of Open Access Journals (Sweden)

    Tetsuo Miyake

    2018-03-01

    Full Text Available Transactivation of inflammatory and immune mediators in asthma is tightly regulated by nuclear factor κB (NF-κB and signal transducer and activator of transcription 6 (STAT6. Therefore, we investigated the efficacy of simultaneous inhibition of NF-κB and STAT6 using a chimeric decoy strategy to prevent asthma exacerbation. The effects of decoy oligodeoxynucleotides were evaluated using an ovalbumin-induced mouse asthma model. Ovalbumin-sensitized mice received intratracheal administration of decoy oligodeoxynucleotides 3 days before ovalbumin challenge. Fluorescent-dye-labeled decoy oligodeoxynucleotides could be detected in lymphocytes and macrophages in the lung, and activation of NF-κB and STAT6 was inhibited by chimeric decoy oligodeoxynucleotide transfer. Consequently, treatment with chimeric or NF-κB decoy oligodeoxynucleotides protected against methacholine-induced airway hyperresponsiveness, whereas the effect of chimeric decoy oligodeoxynucleotides was significantly greater than that of NF-κB decoy oligodeoxynucleotides. Treatment with chimeric decoy oligodeoxynucleotides suppressed airway inflammation through inhibition of overexpression of interleukin-4 (IL-4, IL-5, and IL-13 and inflammatory infiltrates. Histamine levels in the lung were reduced via suppression of mast cell accumulation. A significant reduction in mucin secretion was observed due to suppression of MUC5AC gene expression. Interestingly, the inhibitory effects on IL-5, IL-13, and histamine secretion were achieved by transfer of chimeric decoy oligodeoxynucleotides only. This novel therapeutic approach could be useful to treat patients with various types of asthma.

  15. Evidence that antioxidants prevent the inhibition of Na+,K(+)-ATPase activity induced by octanoic acid in rat cerebral cortex in vitro.

    Science.gov (United States)

    de Assis, Dênis R; Ribeiro, César A J; Rosa, Rafael B; Schuck, Patricia F; Dalcin, Karina B; Vargas, Carmen R; Wannmacher, Clóvis M D; Dutra-Filho, Carlos S; Wyse, Angela T S; Briones, Paz; Wajner, Moacir

    2003-08-01

    The objective of the present study was to investigate the in vitro effects of octanoic acid, which accumulates in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and in Reye syndrome, on key enzyme activities of energy metabolism in the cerebral cortex of young rats. The activities of the respiratory chain complexes I-IV, creatine kinase, and Na+,K(+)-ATPase were evaluated. Octanoic acid did not alter the electron transport chain and creatine kinase activities, but, in contrast, significantly inhibited Na+,K(+)-ATPase activity both in synaptic plasma membranes and in homogenates prepared from cerebral cortex. Furthermore, decanoic acid, which is also increased in MCAD deficiency, and oleic acid strongly reduced Na+,K(+)-ATPase activity, whereas palmitic acid had no effect. We also examined the effects of incubating glutathione and trolox (alpha-tocopherol) alone or with octanoic acid on Na+,K(+)-ATPase activity. Tested compounds did not affect Na+,K(+)-ATPase activity by itself, but prevented the inhibitory effect of octanoic acid. These results suggest that inhibition of Na+,K(+)-ATPase activity by octanoic acid is possibly mediated by oxidation of essential groups of the enzyme. Considering that Na+,K(+)-ATPase is critical for normal brain function, it is feasible that the significant inhibition of this enzyme activity by octanoate and also by decanoate may be related to the neurological dysfunction found in patients affected by MCAD deficiency and Reye syndrome.

  16. Salvia plebeia R.Br. inhibits signal transduction of IL-6 and prevents ovariectomy-induced bone loss by suppressing osteoclastogenesis.

    Science.gov (United States)

    Kim, Mi-Hwa; Jung, Kyungsook; Nam, Ki-Hoan; Jang, Hyun-Jae; Lee, Seung Woong; Kim, Yesol; Park, Chan Sun; Lee, Tae-Hoon; Park, Jee Hun; Choi, Jung Ho; Rho, Mun-Chual; Oh, Hyun-Mee

    2016-12-01

    The interleukin-6 (IL-6) family of cytokines plays a key role in the pathogenesis of rheumatoid arthritis and osteoporosis through the regulation of bone formation and resorption. In this study, it was observed that ethanol extract of Salvia plebeia R.Br. (S.P-EE) inhibited IL-6-induced signaling cascade including phosphorylation of JAK2/STAT3 and ERK. Subsequently, it was examined whether S.P-EE treatment could recover bone loss in ovariectomized (OVX) mice. Indeed, S.P-EE exhibited both preventive and therapeutic effect on OVX-induced bone loss in trabecular microarchitecture along with significant increase in bone mineral density and content. To understand the mechanism of action of S.P-EE in bone metabolism, the effect of S.P-EE on osteoclast differentiation and activity was investigated. S.P-EE significantly inhibited RANKL-induced osteoclast differentiation by suppressing phosphorylation of MAPK and Akt, and expression of NFATc1 and osteoclast marker genes. S.P-EE also inhibited bone-resorbing activity of osteoclasts. Furthermore, isolation and identification of the active compounds which are responsible for the inhibitory effect of S.P-EE on osteoclast differentiation was carried out. Six major flavonoids and plebeiolide A-C were isolated and examined their effects on osteoclast differentiation. Luteolin and hispidulin, and plebeiolide A and C, not B exhibited potent inhibitory activity on RANKL-induced osteoclast formation.

  17. CDK1 Inhibition Targets the p53-NOXA-MCL1 Axis, Selectively Kills Embryonic Stem Cells, and Prevents Teratoma Formation

    Directory of Open Access Journals (Sweden)

    Noelle E. Huskey

    2015-03-01

    Full Text Available Embryonic stem cells (ESCs have adopted an accelerated cell-cycle program with shortened gap phases and precocious expression of cell-cycle regulatory proteins, including cyclins and cyclin-dependent kinases (CDKs. We examined the effect of CDK inhibition on the pathways regulating proliferation and survival of ESCs. We found that inhibiting cyclin-dependent kinase 1 (CDK1 leads to activation of the DNA damage response, nuclear p53 stabilization, activation of a subset of p53 target genes including NOXA, and negative regulation of the anti-apoptotic protein MCL1 in human and mouse ESCs, but not differentiated cells. We demonstrate that MCL1 is highly expressed in ESCs and loss of MCL1 leads to ESC death. Finally, we show that clinically relevant CDK1 inhibitors prevent formation of ESC-derived tumors and induce necrosis in established ESC-derived tumors. Our data demonstrate that ES cells are uniquely sensitive to CDK1 inhibition via a p53/NOXA/MCL1 pathway.

  18. Late administration of a specific COX-2 inhibitor does not treat and/or prevent progression of gastric tumors in rats submitted to duodenogastric reflux procedure

    Directory of Open Access Journals (Sweden)

    Paulo Antônio Rodrigues

    2013-06-01

    Full Text Available PURPOSE:To assess whether late introduction of a specific COX-2 inhibitor (Meloxicam can treat and/or prevent the progression of tumors in the stomach of rats submitted to duodenogastric reflux. METHODS: Seventy five male Wistar rats, weighing 150 grams, were submitted to the induction of duodenogastric reflux through the pylorus. At 36 weeks of follow-up were established three experimental groups: DGR36 sacrificed immediately, DGR54 and DGR54MLX both sacrificed at 54th week of follow-up . The animals of the latter group were fed with a rat chow premixed with Meloxicam (2.0 mg/ kg feed; 0.3 mg / kg bw / day and the other two with standard rat chow. The lesions found in the pyloric mucosa and gastrojejunal anastomosis were analyzed macroscopically and histologically. For statistical analysis was adjusted a generalized linear model assuming a binomial distribution with LOGIT link function. RESULTS: No significant differences were found when comparing the incidences of benign tumor lesions (Adenomatous Hyperplasia, p=0.4915, or malignant (Mucinous Adenocarcinoma, p=0.2731, among groups. CONCLUSION: Late introduction of specific COX-2 inhibitor (Meloxicam did not treat and was not able to prevent the progression of tumoral lesions induced by duodenogastric reflux in the rat stomachs.

  19. Probenecid and N-Acetylcysteine Prevent Loss of Intracellular Glutathione and Inhibit Neuronal Death after Mechanical Stretch Injury In Vitro.

    Science.gov (United States)

    Du, Lina; Empey, Philip E; Ji, Jing; Chao, Honglu; Kochanek, Patrick M; Bayır, Hülya; Clark, Robert S B

    2016-10-15

    Probenecid and N-acetylcysteine (NAC) can preserve intracellular levels of the vital antioxidant glutathione (GSH) via two distinct biochemical pathways. Probenecid inhibits transporter-mediated GSH efflux and NAC serves as a cysteine donor for GSH synthesis. We hypothesized that probenecid and NAC alone would maintain intracellular GSH concentrations and inhibit neuronal death after traumatic stretch injury, and that the drugs in combination would produce additive effects. Sex-segregated rat primary cortical neurons were treated with probenecid (100 μM) and NAC (50 μM), alone and in combination (Pro-NAC), then subjected to mechanical stretch (10s -1 strain rate, 50% membrane deformation). At 24 h, both probenecid and NAC inhibited trauma-induced intracellular GSH depletion, lactate dehydrogenase (LDH) release, and propidium iodide (PI) uptake in both XY- and XX-neurons. Combined Pro-NAC treatment was superior to probenecid or NAC alone in maintenance of intracellular GSH and neuronal death assessed by PI uptake. Interestingly, caspase 3 activity 24 h after mechanical trauma was more prominent in XX-neurons, and treatment effects (probenecid, NAC, and Pro-NAC) were observed in XX- but not XY-neurons; however, XY-neurons were ultimately more vulnerable to mechanical stretch-induced injury than their XX counterparts, as was evidenced by more neuronal death detected by LDH release and PI uptake. In addition, after stretch injury in HT22 hippocampal cells, both NAC and probenecid were highly effective at reducing oxidative stress detected by dichlorofluorescein fluorescence. These in vitro data support further testing of this drug combination in models of traumatic neuronal injury in vivo.

  20. Rare sugar d-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats

    Science.gov (United States)

    Hossain, Akram; Yamaguchi, Fuminori; Hirose, Kayoko; Matsunaga, Toru; Sui, Li; Hirata, Yuko; Noguchi, Chisato; Katagi, Ayako; Kamitori, Kazuyo; Dong, Youyi; Tsukamoto, Ikuko; Tokuda, Masaaki

    2015-01-01

    Background The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, d-psicose (d-allulose), a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects. Aim Above mentioned efficacy of d-psicose (d-allulose) has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM) model Otsuka Long-Evans Tokushima Fatty (OLETF) rats with short-term treatment. In this study we investigated the long-term effect of d-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats. Methods Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO), were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests. Results d-Psicose prevented the commencement and progression of T2DM till 60 weeks through the maintenance of blood glucose levels, decrease in body weight gain, and the control of postprandial hyperglycemia, with decreased levels of HbA1c in comparison to nontreated control rats. This improvement in glycemic control was accompanied by the maintenance of plasma insulin levels and the preservation of pancreatic β-cells with the significant reduction in inflammatory markers. Body fat accumulation was significantly lower in the treatment group, with decreased infiltration of macrophages in the abdominal adipose tissue. Conclusion Our findings suggest that the rare sugar d-psicose could be beneficial for the

  1. Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Hossain, Akram; Yamaguchi, Fuminori; Hirose, Kayoko; Matsunaga, Toru; Sui, Li; Hirata, Yuko; Noguchi, Chisato; Katagi, Ayako; Kamitori, Kazuyo; Dong, Youyi; Tsukamoto, Ikuko; Tokuda, Masaaki

    2015-01-01

    The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, d-psicose (d-allulose), a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects. Above mentioned efficacy of d-psicose (d-allulose) has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM) model Otsuka Long-Evans Tokushima Fatty (OLETF) rats with short-term treatment. In this study we investigated the long-term effect of d-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats. Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO), were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests. d-Psicose prevented the commencement and progression of T2DM till 60 weeks through the maintenance of blood glucose levels, decrease in body weight gain, and the control of postprandial hyperglycemia, with decreased levels of HbA1c in comparison to nontreated control rats. This improvement in glycemic control was accompanied by the maintenance of plasma insulin levels and the preservation of pancreatic β-cells with the significant reduction in inflammatory markers. Body fat accumulation was significantly lower in the treatment group, with decreased infiltration of macrophages in the abdominal adipose tissue. Our findings suggest that the rare sugar d-psicose could be beneficial for the prevention and control of obesity and

  2. Neurogenesis Inhibition Prevents Enriched Environment to Prolong and Strengthen Social Recognition Memory, But Not to Increase BDNF Expression.

    Science.gov (United States)

    Pereira-Caixeta, Ana Raquel; Guarnieri, Leonardo O; Pena, Roberta R; Dias, Thomáz L; Pereira, Grace Schenatto

    2017-07-01

    Hippocampus-dependent memories, such as social recognition (SRM), are modulated by neurogenesis. However, the precise role of newborn neurons in social memory processing is still unknown. We showed previously that 1 week of enriched environment (EE) is sufficient to increase neurogenesis in the hippocampus (HIP) and the olfactory bulb (OB) of mice. Here, we tested the hypothesis that 1 week of EE would enhance SRM persistence and strength. In addition, as brain-derived neurotrophic factor (BDNF) may mediate some of the neurogenesis effects on memory, we also tested if 1 week of EE would increase BDNF expression in the HIP and OB. We also predicted that neurogenesis inhibition would block the gain of function caused by EE on both SRM and BDNF expression. We found that EE increased BDNF expression in the HIP and OB of mice; at the same time, it allowed SRM to last longer. In addition, mice on EE had their SRM unaffected by memory consolidation interferences. As we predicted, treatment with the anti-mitotic drug AraC blocked EE effects on SRM. Surprisingly, neurogenesis inhibition did not affect the BDNF expression, increased by EE. Together, our results suggest that newborn neurons improve SRM persistence through a BDNF-independent mechanism. Interestingly, this study on social memory uncovered an unexpected dissociation between the effect of adult neurogenesis and BDNF expression on memory persistence, reassuring the idea that not all neurogenesis effects on memory are BDNF-dependent.

  3. Inhibition of the Renin-Angiotensin System Post Myocardial Infarction Prevents Inflammation-Associated Acute Cardiac Rupture.

    Science.gov (United States)

    Gao, Xiao-Ming; Tsai, Alan; Al-Sharea, Annas; Su, Yidan; Moore, Shirley; Han, Li-Ping; Kiriazis, Helen; Dart, Anthony M; Murphy, Andrew J; Du, Xiao-Jun

    2017-04-01

    Inhibition of the renin-angiotensin system (RAS) is beneficial in patient management after myocardial infarction (MI). However, whether RAS inhibition also provides cardiac protection in the acute phase of MI is unclear. Male 129sv mice underwent coronary artery occlusion to induce MI, followed by treatment with losartan (L, 20 and 60 mg/kg), perindopril (P, 2 and 6 mg/kg), amlodipine (20 mg/kg as a BP-lowering agent) or vehicle as control. Drug effects on hemodynamics were examined. Effects of treatments on incidence of cardiac rupture, haematological profile, monocyte and neutrophil population in the spleen and the heart, cardiac leukocyte density, expression of inflammatory genes and activity of MMPs were studied after MI. Incidence of cardiac rupture within 2 weeks was significantly and similarly reduced by both losartan (L) and perindopril (P) in a dose-dependent manner [75% (27/36) in vehicle, 40-45% in low-dose (L 10/22, P 8/20) and 16-20% (L 5/32, P 4/20) in high-dose groups, all P infarct tissue were attenuated by losartan and/or perindopril treatment (all P acute phase of MI through blockade of splenic release of monocytes and neutrophils and consequently attenuation of systemic and regional inflammatory responses.

  4. Neutrophil migration towards C5a and CXCL8 is prevented by non-steroidal anti-inflammatory drugs via inhibition of different pathways

    Science.gov (United States)

    Bertolotto, Maria; Contini, Paola; Ottonello, Luciano; Pende, Aldo; Dallegri, Franco; Montecucco, Fabrizio

    2014-01-01

    BACKGROUND AND PURPOSE Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to induce PG-independent anti-inflammatory actions. Here, we investigated the role of three different NSAIDs (naproxen, ibuprofen and oxaprozin) on neutrophil responses to CXCL8 and C5a. EXPERIMENTAL APPROACH Human neutrophils were isolated from healthy volunteers by dextran and Ficoll-Hypaque density gradients. Neutrophils were pre-incubated with different concentrations (1–100 µM) of NSAIDs or kinase inhibitors. Neutrophil degranulation into supernatants was tested by elisa and zymography. Neutrophil chemotaxis was determined using Boyden chambers. F-actin polymerization was determined by Alexa-Fluor 488-conjugated phalloidin fluorescent assay. Integrin expression was assessed by flow cytometry. The phosphorylation of intracellular kinases was studied by Western blot. KEY RESULTS Pretreatment with NSAIDs did not affect neutrophil degranulation, but inhibited neutrophil migration and polymerization of F-actin, in response to CXCL8 and C5a. Pretreatment with different NSAIDs prevented C5a-induced integrin (CD11b) up-regulation, while only ibuprofen reduced CXCL8-induced CD11b up-regulation. Pre-incubation with naproxen or oxaprozin, but not ibuprofen, inhibited the PI3K/Akt-dependent chemotactic pathways. Both endogenous (released in cell supernatants) or exogenous (added to cell cultures) PGE2 did not affect C5a- or CXCL8-induced activities. Short-term incubation with NSAIDs did not affect neutrophil PGE2 release. CONCLUSION AND IMPLICATIONS Treatment with NSAIDs reduced C5a- and CXCL8-induced neutrophil migration and F-actin polymerization via different mechanisms. Inhibition by ibuprofen was associated with integrin down-regulation, while naproxen and oxaprozin blocked the PI3K/Akt pathway. Both NSAID actions were independent of COX inhibition and PGE2 release. PMID:24597536

  5. Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Marco Pirazzini

    2014-09-01

    Full Text Available Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  6. Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice.

    Science.gov (United States)

    Roche, Clothilde; Besnier, Marie; Cassel, Roméo; Harouki, Najah; Coquerel, David; Guerrot, Dominique; Nicol, Lionel; Loizon, Emmanuelle; Remy-Jouet, Isabelle; Morisseau, Christophe; Mulder, Paul; Ouvrard-Pascaud, Antoine; Madec, Anne-Marie; Richard, Vincent; Bellien, Jeremy

    2015-05-01

    This study addressed the hypothesis that inhibiting the soluble epoxide hydrolase (sEH)-mediated degradation of epoxy-fatty acids, notably epoxyeicosatrienoic acids, has an additional impact against cardiovascular damage in insulin resistance, beyond its previously demonstrated beneficial effect on glucose homeostasis. The cardiovascular and metabolic effects of the sEH inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB; 10 mg/l in drinking water) were compared with those of the sulfonylurea glibenclamide (80 mg/l), both administered for 8 wk in FVB mice subjected to a high-fat diet (HFD; 60% fat) for 16 wk. Mice on control chow diet (10% fat) and nontreated HFD mice served as controls. Glibenclamide and t-AUCB similarly prevented the increased fasting glycemia in HFD mice, but only t-AUCB improved glucose tolerance and decreased gluconeogenesis, without modifying weight gain. Moreover, t-AUCB reduced adipose tissue inflammation, plasma free fatty acids, and LDL cholesterol and prevented hepatic steatosis. Furthermore, only the sEH inhibitor improved endothelium-dependent relaxations to acetylcholine, assessed by myography in isolated coronary arteries. This improvement was related to a restoration of epoxyeicosatrienoic acid and nitric oxide pathways, as shown by the increased inhibitory effects of the nitric oxide synthase and cytochrome P-450 epoxygenase inhibitors l-NA and MSPPOH on these relaxations. Moreover, t-AUCB decreased cardiac hypertrophy, fibrosis, and inflammation and improved diastolic function, as demonstrated by the increased E/A ratio (echocardiography) and decreased slope of the end-diastolic pressure-volume relation (invasive hemodynamics). These results demonstrate that sEH inhibition improves coronary endothelial function and prevents cardiac remodeling and diastolic dysfunction in obese insulin-resistant mice. Copyright © 2015 the American Physiological Society.

  7. Functional microarray analysis suggests repressed cell-cell signaling and cell survival-related modules inhibit progression of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2011-04-01

    Full Text Available Abstract Background Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+ and recurrent head and neck squamous cell carcinoma (HNSCC may increase our understanding of the complex biology of this disease. Methods Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative or tumor recurrence (recurrent or non-recurrent tumor after treatment (surgery with neck dissection followed by radiotherapy. Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results The most frequent alterations were the repression of modules in negative lymph node (N0 and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway

  8. [Research progress on antioxidation effect of traditional Chinese medicine polysaccharides and sports for diabetes prevention and treatment].

    Science.gov (United States)

    Wu, Wei; Zhang, Ling-Li; Zou, Jun

    2016-07-01

    Researchers found that oxidative stress was closely related to the development of diabetes, and hyperglycemia was a main cause for oxidative stress. Many researchers have proved that oxidative stress, present in diabetes, can aggravate diabetes. Now, traditional Chinese medicines have certain treatment and relief effects for oxidative stress in diabetes, but there are no scientific and systematic conclusions on the efficacy of different Chinese medicines for diabetes and complications. Tomakea scientific and systematic review on the recent years' researches on antioxidation effects of traditional Chinese medication polysaccharides for diabetes, analyze the antioxidation effects of sports in treatment of diabetes, and provide the reference and basis for medications and sports in diabetic patients, as well as prevention and treatments of diabetes and complications from aspects of "internal nursing and external workouts". Databases of CNKI and PubMed were retrieved with key words of "diabetes, oxidative stress, antioxidant, traditional Chinese medication, polysaccharide, sports" in both Chinese and English from Jan 2000 to Apr 2016.Finally 118 papers were included in for analysis and review. Polysaccharides of traditional Chinese medications as well as sports have antioxidation effects for diabetes and its complications, and the combination of these two would produce huge significance for relieving oxidative stress in diabetes, as well as for the prevention and treatment of diabetes and its complications. We need further researches on the levels of oxidative stress markers, doses of Chinese medicines, and the time of taking medications. Copyright© by the Chinese Pharmaceutical Association.

  9. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    International Nuclear Information System (INIS)

    Bueren, André O von; Shalaby, Tarek; Oehler-Jänne, Christoph; Arnold, Lucia; Stearns, Duncan; Eberhart, Charles G; Arcaro, Alexandre; Pruschy, Martin; Grotzer, Michael A

    2009-01-01

    With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly

  10. Dissecting the Potential Roles of Nigella sativa and Its Constituent Thymoquinone on the Prevention and on the Progression of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Marco Cascella

    2018-02-01

    Full Text Available Several nutraceuticals have been investigated for preventing or retarding the progression of different neurodegenerative diseases, including Alzheimer's disease (AD. Because Nigella sativa (NS and its isolated compound thymoquinone (TQ have significant anti-oxidant and anti-inflammatory proprieties, they could represent effective neuroprotective agents. The purpose of this manuscript is to analyze and to recapitulate the results of in vitro and in vivo studies on the potential role of NS/TQ in AD's prevention and treatment. The level of evidence for each included animal study has been assessed by using a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies 10-item checklist. We used MEDLINE and EMBASE databases to screen relevant articles published up to July 2017. A manual search was also performed. The database search yielded 38 studies, of which 18 were included in this manuscript. Results from these approaches suggest that NS or TQ could represent an effective strategy against AD due to the balancing of oxidative processes and the binding to specific intracellular targets. The overall effects mainly regard the prevention of hippocampal pyramidal cell loss and the increased cognitive functions.

  11. Calpastatin overexpression prevents progression of S-1,2-dichlorovinyl-L-cysteine (DCVC)-initiated acute renal injury and renal failure (ARF) in diabetes

    International Nuclear Information System (INIS)

    Dnyanmote, Ankur V.; Sawant, Sharmilee P.; Lock, Edward A.; Latendresse, John R.; Warbritton, Alan A.; Mehendale, Harihara M.

    2006-01-01

    Previously we have shown that 90% of streptozotocin (STZ)-induced type-1 diabetic (DB) mice survive from acute renal failure (ARF) and death induced by a normally LD 9 dose (75 mg/kg, i.p.) of the nephrotoxicant S-1,2-dichlorovinyl-L-cysteine (DCVC). This remarkable protection is due to a combination of slower progression of DCVC-initiated renal injury and increased compensatory nephrogenic tissue repair in the DB kidneys. BRDU immunohistochemistry revealed that the DB condition led to 4-fold higher number of proximal tubular cells (PTC) entering S-phase of cell cycle. In the present study, we tested the hypothesis that DB-induced augmentation of PTC into S-phase is accompanied by overexpression of the calpain-inhibitor calpastatin, which endogenously prevents the progression of DCVC-initiated renal injury mediated by the calpain escaping out of damaged PTCs. Immunohistochemical detection of renal calpain and its activity in the urine, over a time course after treatment with the LD 9 dose of DCVC, indicated progressive increase in leakage of calpain into the extracellular spaces of the injured PTCs of the non-diabetic (NDB) kidneys as compared to the DB kidneys. Calpastatin expression was minimally detected in the NDB kidneys, using immunohistochemistry, over the time course. On the other hand, consistently higher number of tubules in the DB kidney showed calpastatin expression over the time course. The lower leakage of calpain in the DB kidneys was commensurate with constitutively higher expression of calpastatin in the S-phase-laden PTCs of these mice. To test the protective role of newly divided/dividing PTCs, DB mice were given the anti-mitotic agent colchicine (CLC) (2 mg/kg and 1.5 mg/kg, i.p., on days 8 and 10 after STZ injection) prior to challenge with a LD 9 dose of DCVC, which led to 100% mortality by 48 h. Mortality was due to rapid progression of DCVC-initiated renal injury, suggesting that newly divided/dividing cells are instrumental in mitigating

  12. Neutralization of IL-8 prevents the induction of dermatologic adverse events associated with the inhibition of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Houtkamp, Mischa; Schuurhuis, Danita H

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance to treatm......Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance...... repeat dose treatment with HuMab-10F8, a neutralizing human antibody against IL-8, reduced the rash. Inhibition of IL-8 can therefore ameliorate dermatological adverse events induced by treatment with EGFR inhibitors....

  13. Indirubin-3-Oxime Prevents H2O2-Induced Neuronal Apoptosis via Concurrently Inhibiting GSK3β and the ERK Pathway.

    Science.gov (United States)

    Yu, Jie; Zheng, Jiacheng; Lin, Jiajia; Jin, Linlu; Yu, Rui; Mak, Shinghung; Hu, Shengquan; Sun, Hongya; Wu, Xiang; Zhang, Zaijun; Lee, Mingyuen; Tsim, Wahkeung; Su, Wei; Zhou, Wenhua; Cui, Wei; Han, Yifan; Wang, Qinwen

    2017-05-01

    Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H 2 O 2 )-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H 2 O 2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H 2 O 2 . In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H 2 O 2 -induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H 2 O 2 -induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H 2 O 2 -induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.

  14. Aloe Metabolites Prevent LPS-Induced Sepsis and Inflammatory Response by Inhibiting Mitogen-Activated Protein Kinase Activation.

    Science.gov (United States)

    Li, Chia-Yang; Suzuki, Katsuhiko; Hung, Yung-Li; Yang, Meng-Syuan; Yu, Chung-Ping; Lin, Shiuan-Pey; Hou, Yu-Chi; Fang, Shih-Hua

    2017-01-01

    Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.

  15. Pure neural leprosy: steroids prevent neuropathy progression Corticosteróides previnem a neuropatia na hanseníase

    Directory of Open Access Journals (Sweden)

    Márcia R. Jardim

    2007-12-01

    Full Text Available Multidrug therapy (MDT, with rifampicin, dapsone, and clofazimine, treats leprosy infection but is insufficient in arresting or preventing the nerve damage that causes impairments and disabilities. This case-series study evaluates the benefits of the combined use of steroids and MDT in preventing nerve damage in patients with pure neural leprosy (PNL. In addition to MDT, 24 patients (88% male aged 20-79 years, median=41 received a daily morning dose of 60 mg prednisone (PDN that was gradually reduced by 10 mg during each of the following 5 months. PNL was clinically diagnosed and confirmed by nerve histopathology or PCR. A low prevalence (8.3% of reaction was observed after release from treatment. However, most of the clinical parameters showed significant improvement; and a reduction of nerve conduction block was observed in 42% of the patients. The administration of full-dose PDN improved the clinical and electrophysiological condition of the PNL patients, contributing to the prevention of further neurological damage.A poliquimioterapia (PQT, com rifampicina, dapsona, e clofazimina, trata a infecção na hanseníase, mas é insuficiente para interromper ou prevenir o comprometimento neurológico que causa as incapacidades e desabilidades, nesta enfermidade. Este estudo de série de casos avalia o benefício do uso combinado de prednisona e PQT na prevenção do dano neurológico em pacientes com a forma neural pura da hanseníase (FNP. Além do PQT, 24 pacientes (88% homens, com idade variando entre 20-79, mediana=41 receberam uma dose diária de 60 mg prednisona que foi reduzida gradualmente na dose de 10 mg durante cada um dos 5 meses subseqüentes. FNP foi diagnosticada clinicamente e confirmada através do estudo histopatológico ou PCR. Baixa prevalência de reação (8,3% foi observada apenas após o final do tratamento. A maioria dos parâmetros clínicos mostrou melhora significativa e redução do bloqueio de condução foi observada

  16. Multifunctional liposomes delay phenotype progression and prevent memory impairment in a presymptomatic stage mouse model of Alzheimer disease.

    Science.gov (United States)

    Mancini, Simona; Balducci, Claudia; Micotti, Edoardo; Tolomeo, Daniele; Forloni, Gianluigi; Masserini, Massimo; Re, Francesca

    2017-07-28

    The failure of clinical trials largely focused on mild to moderate stages of Alzheimer disease has suggested to the scientific community that the effectiveness of Amyloid-β (Aβ)-centered treatments should be evaluated starting as early as possible, well before irreversible brain damage has occurred. Accordingly, also the preclinical development of new therapies should be carried out taking into account this suggestion. In the present investigation we evaluated the efficacy of a treatment with liposomes multifunctionalized for crossing the blood-brain barrier and targeting Aβ, carried out on young APP/PS1 Tg mice, taken as a model of pre-symptomatic disease stage. Liposomes were administered once a week to Tg mice for 7months, starting at the age of 5months and up to the age of 12 when they display AD-like cognitive and brain biochemical/anatomical features. The treatment prevented the onset of the long-term memory impairment and slowed down the deposition of brain Aβ; at anatomical level, prevented both ventricle enlargement and entorhinal cortex thickness reduction, otherwise occurring in untreated mice. Strikingly, these effects were maintained 3months after treatment discontinuation. An increase of Aβ levels in the liver was detected at the end of the treatment, then followed also by reduction of brain Amyloid Precursor Protein and increase of Aβ-degrading enzymes. These results suggest that the treatment promotes brain Aβ clearance by a peripheral 'sink' effect and ultimately affects Aβ turnover in the brain. Worth of note, the treatment was apparently not toxic for all the organs analyzed, in particular for brain, as suggested by the lower brain TNF-α and MDA levels, and by higher level of SOD activity in treated mice. Together, these findings promote a very early treatment with multi-functional liposomes as a well-tolerated nanomedicine-based approach, potentially suitable for a disease-modifying therapy of AD, able to delay or prevent relevant

  17. Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy

    International Nuclear Information System (INIS)

    Anscher, Mitchell S.; Chen, Liguang; Rabbani, Zahid; Kang Song; Larrier, Nicole; Huang Hong; Samulski, Thaddeus V.; Dewhirst, Mark W.; Brizel, David M.; Folz, Rodney J.; Vujaskovic, Zeljko

    2005-01-01

    The ability to optimize treatments for cancer on the basis of relative risks for normal tissue injury has important implications in oncology, because higher doses of radiation might, in some diseases, improve both local control and survival. To achieve this goal, a thorough understanding of the molecular mechanisms responsible for radiation-induced toxicity will be essential. Recent research has demonstrated that ionizing radiation triggers a series of genetic and molecular events, which might lead to chronic persistent alterations in the microenvironment and an aberrant wound-healing response. Disrupted epithelial-stromal cell communication might also be important. With the application of a better understanding of fundamental biology to clinical practice, new approaches to treating and preventing normal tissue injury can focus on correcting these disturbed molecular processes

  18. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  19. Australasian nutrition research for prevention and management of child obesity: innovation and progress in the last decade.

    Science.gov (United States)

    Golley, R K; McNaughton, S A; Collins, C E; Magarey, A; Garnett, S P; Campbell, K J; Mallan, K; Burrows, T

    2014-12-01

    The Food and Nutrition stream of Australasian Child and Adolescent Obesity Research Network (ACAORN) aims to improve the quality of dietary methodologies and the reporting of dietary intake within Australasian child obesity research (http://www.acaorn.org.au/streams/nutrition/). With 2012 marking ACAORN's 10th anniversary, this commentary profiles a selection of child obesity nutrition research published over the last decade by Food and Nutrition Stream members. In addition, stream activities have included the development of an online selection guide to assist researchers in their selection of appropriate dietary intake methodologies (http://www.acaorn.org.au/streams/nutrition/dietary-intake/index.php). The quantity and quality of research to guide effective child obesity prevention and treatment has increased substantially over the last decade. ACAORN provides a successful case study of how research networks can provide a collegial atmosphere to foster and coordinate research efforts in an otherwise competitive environment. © 2014 The Authors. Pediatric Obesity © 2014 International Association for the Study of Obesity.

  20. Progress in prevention of mother-to-child transmission of HIV infection in Ukraine: results from a birth cohort study

    Directory of Open Access Journals (Sweden)

    Pilipenko Tatyana

    2009-04-01

    Full Text Available Abstract Background Ukraine was the epicentre of the HIV epidemic in Eastern Europe, which has the most rapidly accelerating HIV epidemic world-wide today; national HIV prevalence is currently estimated at 1.6%. Our objective was to evaluate the uptake and effectiveness of interventions for prevention of mother-to-child transmission (PMTCT over an eight year period within operational settings in Ukraine, within the context of an ongoing birth cohort study. Methods The European Collaborative Study (ECS is an ongoing birth cohort study in which HIV-infected pregnant women identified before or during pregnancy or at delivery were enrolled and their infants prospectively followed. Three centres in Ukraine started enrolling in 2000, with a further three joining in September 2006. Results Of the 3356 women enrolled, 21% (689 reported current or past injecting drug use (IDU. Most women were diagnosed antenatally and of those, the proportion diagnosed in the first/second trimester increased from 47% in 2000/01 (83/178 to 73% (776/1060 in 2006/07 (p Conclusion There have been substantial improvements in use of PMTCT interventions in Ukraine, including earlier diagnosis of HIV-infected pregnant women and increasing coverage with antiretroviral prophylaxis and the initial MTCT rate has more than halved. Future research should focus on hard-to-reach populations such as IDU and on missed opportunities for further reducing the MTCT rate.

  1. Inhibition of matrix metalloproteinases-2 and -9 prevents cognitive impairment induced by pneumococcal meningitis in Wistar rats.

    Science.gov (United States)

    Barichello, Tatiana; Generoso, Jaqueline S; Michelon, Cleonice M; Simões, Lutiana R; Elias, Samuel G; Vuolo, Franciele; Comim, Clarissa M; Dal-Pizzol, Felipe; Quevedo, João

    2014-02-01

    Pneumococcal meningitis is a relevant clinical disease characterized by an intense inflammatory reaction into the subarachnoid and ventricular spaces, leading to blood-brain barrier breakdown, hearing loss, and cognitive impairment. Matrix metalloproteinases (MMPs) are capable of degrading components of the basal laminin, thus contributing to BBB damage and neuronal injury. In the present study, we evaluated the effects of MMP-2, MMP-9, and MMP-2/9 inhibitors on BBB integrity, learning, and memory in Wistar rats subjected to pneumococcal meningitis. The animals underwent a magna cistern tap and received either 10 µL sterile saline as a placebo or an equivalent volume of a Streptococcus pneumoniae suspension at a concentration of 5 × 10(9)cfu/mL. The rats were randomized into different groups that received adjuvant treatment with MMP-2, MMP-9 or MMP-2/9 inhibitors. The BBB integrity was evaluated, and the animals were habituated to open-field and object recognition tasks 10 days after meningitis induction. Adjuvant treatments with inhibitors of MMP-2 or MMP-2/9 prevented BBB breakdown in the hippocampus, and treatments with inhibitors of MMP-2, MMP-9 or MMP-2/9 prevented BBB breakdown in the cortex. Ten days after meningitis induction, the animals that received adjuvant treatment with the inhibitor of MMP-2/9 demonstrated that animals habituated to the open-field task faster and enhanced memory during short-term and long-term retention test sessions in the object recognition task. Further investigation is necessary to provide support for MMP inhibitors as an alternative treatment for bacterial meningitis; however, these findings suggest that the meningitis model could be a good research tool for studying the biological mechanisms involved in the behavioral alterations associated with pneumococcal meningitis.

  2. Progression of chronic kidney disease : The role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition - A patient-level meta-analysis

    NARCIS (Netherlands)

    Jafar, TH; Stark, PC; Schmid, CH; Landa, M; Maschio, G; de Jong, PE; de Zeeuw, D; Shahinfar, S; Toto, R; Levey, AS

    2003-01-01

    Background: Angiotensin-converting enzyme (ACE) inhibitors reduce blood pressure and urine protein excretion and slow the progression of chronic kidney disease. Purpose: To determine the levels of blood pressure and urine protein excretion associated with the lowest risk for progression of chronic

  3. Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus-induced deficits in the novel object recognition task in rats

    Science.gov (United States)

    Rojas, Asheebo; Ganesh, Thota; Manji, Zahra; O’neill, Theon; Dingledine, Raymond

    2016-01-01

    Survivors of exposure to an organophosphorus nerve agent may develop a number of complications including long-term cognitive deficits (Miyaki et al., 2005; Nishiwaki et al., 2001). We recently demonstrated that inhibition of the prostaglandin E2 receptor, EP2, attenuates neuroinflammation and neurodegeneration caused by status epilepticus (SE) induced by the soman analog, diisopropylfluorophosphate (DFP), which manifest within hours to days of the initial insult. Here, we tested the hypothesis that DFP exposure leads to a loss of cognitive function in rats that is blocked by early, transient EP2 inhibition. Adult male Sprague-Dawley rats were administered vehicle or the competitive EP2 antagonist, TG6-10-1, (ip) at various times relative to DFP-induced SE. DFP administration resulted in prolonged seizure activity as demonstrated by cortical electroencephalography (EEG). A single intraperitoneal injection of TG6-10-1 or vehicle 1 h prior to DFP did not alter the development of seizures, the latency to SE or the duration of SE. Rats administered six injections of TG6-10-1 starting 90 min after the onset of DFP-induced SE could discriminate between a novel and familiar object 6–12 weeks after SE, unlike vehicle treated rats which showed no preference for the novel object. By contrast, behavioral changes in the light-dark box and open field assays were not affected by TG6-10-1. Delayed mortality after DFP was also unaffected by TG6-10-1. Thus, selective inhibition of the EP2 receptor may prevent SE-induced memory impairment in rats caused by exposure to a high dose of DFP. PMID:27477533

  4. 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells.

    Science.gov (United States)

    Liu, Xiuting; Zhou, Wei; Zhang, Xin; Ding, Yang; Du, Qianming; Hu, Rong

    2018-04-01

    Indoleamine 2,3-dioxygenase 1 (IDO1), known as IDO, catabolizes tryptophan through kynurenine pathway, whose activity is correlated with impaired clinical outcome of colorectal cancer. Here we showed that 1-L-MT, a canonical IDO inhibitor, suppressed proliferation of human colorectal cancer cells through inducing mitotic death. Our results showed that inhibition of IDO decreased the transcription of CDC20, which resulted in G2/M cycle arrest of HCT-116 and HT-29. Furthermore, 1-L-MT induced mitochondria injuries and caused apoptotic cancer cells. Importantly, 1-L-MT protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and size. What is more, IDO1-/- mice exhibited fewer tumor burdens and reduced proliferation in the neoplastic epithelium, while, 1-L-MT did not exhibit any further protective effects on IDO-/- mice, confirming the critical role of IDO and the protective effect of 1-L-MT-mediated IDO inhibition in CRC. Furthermore, 1-L-MT also alleviated CRC in Rag1-/- mice, demonstrating the modulatory effects of IDO independent of its role in modulating adaptive immunity. Taken together, our findings validated that the anti-proliferation effect of 1-L-MT in vitro and the prevention of CRC in vivo were through IDO-induced cell cycle disaster of colon cancer cells. Our results identified 1-L-MT as a promising candidate for the chemoprevention of CRC. © 2018 UICC.

  5. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology.

    Science.gov (United States)

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming

    2013-09-15

    This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction

    Directory of Open Access Journals (Sweden)

    Pan Jing

    2012-08-01

    Full Text Available Abstract Curcumin,a natural polyphenol obtained from turmeric,has been implicated to be neuroprotective in a variety of neurodegenerative disorders although the mechanism remains poorly understood. The results of our recent experiments indicated that curcumin could protect dopaminergic neurons from apoptosis in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson’s disease (PD. The death of dopaminergic neurons and the loss of dopaminergic axon in the striatum were significantly suppressed by curcumin in MPTP mouse model. Further studies showed that curcumin inhibited JNKs hyperphosphorylation induced by MPTP treatment. JNKs phosphorylation can cause translocation of Bax to mitochondria and the release of cytochrome c which both ultimately contribute to mitochondria-mediated apoptosis. These pro-apoptosis effect can be diminished by curcumin. Our experiments demonstrated that curcumin can prevent nigrostriatal degeneration by inhibiting the dysfunction of mitochondrial through suppressing hyperphosphorylation of JNKs induced by MPTP. Our results suggested that JNKs/mitochondria pathway may be a novel target in the treatment of PD patients.

  7. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP.

    Science.gov (United States)

    Mukherjee, Rajarshi; Mareninova, Olga A; Odinokova, Irina V; Huang, Wei; Murphy, John; Chvanov, Michael; Javed, Muhammad A; Wen, Li; Booth, David M; Cane, Matthew C; Awais, Muhammad; Gavillet, Bruno; Pruss, Rebecca M; Schaller, Sophie; Molkentin, Jeffery D; Tepikin, Alexei V; Petersen, Ole H; Pandol, Stephen J; Gukovsky, Ilya; Criddle, David N; Gukovskaya, Anna S; Sutton, Robert

    2016-08-01

    Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Sialoglycoproteins prepared from the eggs of Carassius auratus prevent bone loss by inhibiting the NF-κB pathway in ovariectomized rats.

    Science.gov (United States)

    Xia, Guanghua; Wang, Jingfeng; Sun, Shuhong; Zhao, Yanlei; Wang, Yiming; Yu, Zhe; Wang, Shanshan; Xue, Changhu

    2016-02-01

    In this study, we investigated the improvement of osteoporosis by sialoglycoproteins isolated from the eggs of Carassius auratus (Ca-SGP) in ovariectomized rats. Ca-SGP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that Ca-SGP treatment remarkably prevented the reduction of bone mass, improved cancellous bone structure and biochemical properties. Ca-SGP also significantly decreased the serum contents of TRAP, Cath-K, MMP-9, DPD, CTX-1, Ca, and P. Mechanism investigation revealed that Ca-SGP significantly increased the OPG/RANKL ratio in mRNA expression, protein expression and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of NFATc1 and TRAF6, diminishing the mRNA expression and phosphorylation of NF-κB p65, three key transcription factors in NF-κB pathways. These results suggest that Ca-SGP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  9. G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: a pilot trial.

    Directory of Open Access Journals (Sweden)

    Thomas Duning

    clinical data showed no significant effect, DTI measurements suggest that the widespread and progressive microstructural neural damage in ALS can be modulated by G-CSF treatment. These findings may carry significant implications for further clinical trials on ALS using growth factors. TRIAL REGISTRATION: ClinicalTrials.gov NCT00298597.

  10. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice

    Directory of Open Access Journals (Sweden)

    Ortsäter Henrik

    2012-02-01

    Full Text Available Abstract Background Green tea was suggested as a therapeutic agent for the treatment of diabetes more than 70 years ago, but the mechanisms behind its antidiabetic effect remains elusive. In this work, we address this issue by feeding a green tea extract (TEAVIGO™ with a high content of epigallocatechin gallate (EGCG or the thiazolidinedione PPAR-γ agonist rosiglitazone, as positive control, to db/db mice, an animal model for diabetes. Methods Young (7 week-old db/db mice were randomized and assigned to receive diets supplemented with or without EGCG or rosiglitazone for 10 weeks. Fasting blood glucose, body weight and food intake was measured along the treatment. Glucose and insulin levels were determined during an oral glucose tolerance test after 10 weeks of treatment. Pancreata were sampled at the end of the study for blinded histomorphometric analysis. Islets were isolated and their mRNA expression analyzed by quantitative RT-PCR. Results The results show that, in db/db mice, EGCG improves glucose tolerance and increases glucose-stimulated insulin secretion. EGCG supplementation reduces the number of pathologically changed islets of Langerhans, increases the number and the size of islets, and heightens pancreatic endocrine area. These effects occurred in parallel with a reduction in islet endoplasmic reticulum stress markers, possibly linked to the antioxidative capacity of EGCG. Conclusions This study shows that the green tea extract EGCG markedly preserves islet structure and enhances glucose tolerance in genetically diabetic mice. Dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes.

  11. Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy.

    Science.gov (United States)

    Kelly, Katherine J; Zhang, Jizhong; Han, Ling; Wang, Mingsheng; Zhang, Shaobo; Dominguez, Jesus H

    2013-12-15

    Diabetic nephropathy, the most common cause of progressive chronic renal failure and end-stage renal disease, has now reached global proportions. The only means to rescue diabetic patients on dialysis is renal transplantation, a very effective therapy but severely limited by the availability of donor kidneys. Hence, we tested the role of intravenous renal cell transplantation (IRCT) on obese/diabetic Zucker/SHHF F1 hybrid (ZS) female rats with severe ischemic and diabetic nephropathy. Renal ischemia was produced by bilateral renal clamping of the renal arteries at 10 wk of age, and IRCT with genetically modified normal ZS male tubular cells was given intravenously at 15 and 20 wk of age. Rats were euthanized at 34 wk of age. IRCT with cells expressing serum amyloid A had strong and long-lasting beneficial effects on renal function and structure, including tubules and glomeruli. However, donor cells were found engrafted only in renal tubules 14 wk after the second infusion. The results indicate that IRCT with serum amyloid A-positive cells is effective in preventing the progression of chronic kidney disease in rats with diabetic and ischemic nephropathy.

  12. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  13. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1.

    Science.gov (United States)

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-12-23

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

  14. Lychee Seed Saponins Improve Cognitive Function and Prevent Neuronal Injury via Inhibiting Neuronal Apoptosis in a Rat Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Xiuling Wang

    2017-02-01

    Full Text Available Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS on neuroprotection and associated mechanisms. We established a rat model of Alzheimer’s disease (AD by injecting Aβ25–35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment.

  15. Tanshinone IIA Inhibits Glutamate-Induced Oxidative Toxicity through Prevention of Mitochondrial Dysfunction and Suppression of MAPK Activation in SH-SY5Y Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2017-01-01

    Full Text Available Glutamate excitotoxicity is associated with many neurological diseases, including cerebral ischemia and neurodegenerative diseases. Tanshinone IIA, a diterpenoid naphthoquinone from Salvia miltiorrhiza, has been shown to suppress presynaptic glutamate release, but its protective mechanism against glutamate-induced neurotoxicity is lacking. Using SH-SY5Y human neuroblastoma cells, we show here that excessive glutamate exposure decreases cell viability and proliferation and increases LDH release. Pretreatment with tanshinone IIA, however, prevents the decrease in cell viability and proliferation and the increase in LDH release induced by glutamate. Tanshinone IIA also attenuates glutamate-induced oxidative stress by reducing reactive oxygen species level and malondialdehyde and protein carbonyl contents and by enhancing activities and protein levels of superoxide dismutase and catalase. We then show that tanshinone IIA prevents glutamate-induced mitochondrial dysfunction by increasing mitochondrial membrane potential and ATP content and by reducing mitochondrial protein carbonyl content. Moreover, tanshinone IIA can inhibit glutamate-induced apoptosis through regulation of apoptosis-related protein expression and MAPK activation, including elevation of Bcl-2 protein level, decrease in Bax and cleaved caspase-3 levels, and suppression of JNK and p38 MAPK activation. Collectively, our findings demonstrate that tanshinone IIA protects SH-SY5Y cells against glutamate toxicity by reducing oxidative stress and regulating apoptosis and MAPK pathways.

  16. Lipoxin A₄ prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E₂ production and estrogen signaling.

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    Full Text Available Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA₄, an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA₄ treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA₄ also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E₂ (PGE₂ levels. Besides its anti-inflammatory effects, LXA₄ differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP-9 as well as modulating transforming growth factor (TGF-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA₄ attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA₄ was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA₄ on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways.

  17. Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long-Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Hossain A

    2015-01-01

    Full Text Available Akram Hossain,1,2 Fuminori Yamaguchi,1 Kayoko Hirose,1 Toru Matsunaga,3 Li Sui,1 Yuko Hirata,1 Chisato Noguchi,1 Ayako Katagi,1 Kazuyo Kamitori,1 Youyi Dong,1 Ikuko Tsukamoto,4 Masaaki Tokuda11Department of Cell Physiology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan; 2Research and Development, Matsutani Chemical Industry Co., Ltd., Kitaitami, Itami-shi, Hyogo, Japan; 3Division of Hospital Pathology, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, Japan; 4Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Ikenobe, Miki, Kagawa, JapanBackground: The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, D-psicose (D-allulose, a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects.Aim: Above mentioned efficacy of D-psicose (D-allulose has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM model Otsuka Long-Evans Tokushima Fatty (OLETF rats with short-term treatment. In this study we investigated the long-term effect of D-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic β-cells in OLETF rats.Methods: Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO, were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests.Results: D-Psicose prevented the commencement and progression of T2DM till 60 weeks through the

  18. NF-κB pathway inhibition by anthrocyclic glycoside aloin is key event in preventing osteoclastogenesis in RAW264.7 cells.

    Science.gov (United States)

    Pengjam, Yutthana; Madhyastha, Harishkumar; Madhyastha, Radha; Yamaguchi, Yuya; Nakajima, Yuichi; Maruyama, Masugi

    2016-04-15

    Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. As current treatments can exhibit deleterious side effects, the use of phyto-compounds with therapeutic and preventive activities against orthopaedic related problems represents a promising alternative. We investigated the effect of aloin, an anthrocyclic compound, on inhibition of osteoclastogenesis using receptor of the nuclear factor κB (NF-κB) ligand (RANKL)-induced RAW264.7 macrophage cells. The inhibitory effect of aloin on in vitro osteoclastogenesis was evaluated by reduction in tartrate-resistant acid phosphatase (TRAP) content and expression levels of osteoclast-specific gene, cathepsin K. Multinuclear formation of osteoclast was assessed with haematoxylin and eosin staining. F4/80 content the marker of the murine monocyte/macrophage cells, was evaluated by immunocytochemistry. The underlining mechanisms were assessed by Western blots and EMSA. Effect of aloin on generation of intracellular reactive oxygen species (ROS) was estimated by dichlorofluorescein diacetate (DCFH-DA). Bone degradation effect was evaluated by bone pit assay. The bone pit culture supernatant was studied by Fluorescein assay. We demonstrated that aloin reduced TRAP content and levels of osteoclast-specific gene and protein, cathepsin K. Treatment with aloin (0.75 µM) prevented multinuclear formation (haematoxylin and eosin staining), reduced intracellular TRAP content (TRAP Staining) and increased F4/80 content (F4/80 immunohistochemistry) in RANKL (20 ng/ml) treated RAW cells. Treatment of the RAW cells with aloin suppressed RANKL-induced NF-κB pathway components like IKKα, IKKβ, Phospho.IKK α/β, NF-κB-p65, Phospho NF-κB-p65 and IκBα. EMSA studies showed aloin dose dependently reduced DNA binding activity of NF-κB. Additionally, in vitro bone pit assay revealed that aloin prevented bone degradation and also decreased the fluorescence content in cells, thus

  19. PARP Inhibition Prevents Ethanol-Induced Neuroinflammatory Signaling and Neurodegeneration in Rat Adult-Age Brain Slice Cultures

    Science.gov (United States)

    Tajuddin, Nuzhath; Kim, Hee-Yong

    2018-01-01

    Using rat adult-age hippocampal-entorhinal cortical (HEC) slice cultures, we examined the role of poly [ADP-ribose] polymerase (PARP) in binge ethanol’s brain inflammatory and neurodegenerative mechanisms. Activated by DNA strand breaks, PARP (principally PARP1 in the brain) promotes DNA repair via poly [ADP-ribose] (PAR) products, but PARP overactivation triggers regulated neuronal necrosis (e.g., parthanatos). Previously, we found that brain PARP1 levels were upregulated by neurotoxic ethanol binges in adult rats and HEC slices, and PARP inhibitor PJ34 abrogated slice neurodegeneration. Binged HEC slices also exhibited increased Ca+2-dependent phospholipase A2 (PLA2) isoenzymes (cPLA2 IVA and sPLA2 IIA) that mobilize proinflammatory ω6 arachidonic acid (ARA). We now find in 4-day–binged HEC slice cultures (100 mM ethanol) that PARP1 elevations after two overnight binges precede PAR, cPLA2, and sPLA2 enhancements by 1 day and high-mobility group box-1 (HMGB1), an ethanol-responsive alarmin that augments proinflammatory cytokines via toll-like receptor-4 (TLR4), by 2 days. After verifying that PJ34 effectively blocks PARP activity (↑PAR), we demonstrated that, like PJ34, three other PARP inhibitors—olaparib, veliparib, and 4-aminobenzamide—provided neuroprotection from ethanol. Importantly, PJ34 and olaparib also prevented ethanol’s amplification of the PLA2 isoenzymes, and two PLA2 inhibitors were neuroprotective—thus coupling PARP to PLA2, with PLA2 activity promoting neurodegeneration. Also, PJ34 and olaparib blocked ethanol-induced HMGB1 elevations, linking brain PARP induction to TLR4 activation. The results provide evidence in adult brains that induction of PARP1 may mediate dual neuroinflammatory pathways (PLA2→phospholipid→ARA and HMGB1→TLR4→proinflammatory cytokines) that are complicit in binge ethanol-induced neurodegeneration. PMID:29339456

  20. Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers.

    Directory of Open Access Journals (Sweden)

    Stuart David Greenhill

    Full Text Available The entorhinal cortex (EC controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2 and V (L5. Here, we add comparative studies in layer III (L3. Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.

  1. The Novel Compound Sul-121 Preserves Endothelial Function and Inhibits Progression of Kidney Damage in Type 2 Diabetes Mellitus in Mice

    NARCIS (Netherlands)

    Lambooy, S P H; Bidadkosh, A; Nakladal, D; van Buiten, A; Girgis, R A T; van der Graaf, A C; Wiedenmann, T J; Koster, R A; Vogelaar, P; Buikema, H; Henning, R H; Deelman, L E

    2017-01-01

    Diabetic nephropathy is still a common complication of type 2 diabetes mellitus (T2DM) and improvement of endothelial dysfunction (ED) and inhibition of reactive oxygen species (ROS) are considered important targets for new therapies. Recently, we developed a new class of compounds (Sul compounds)

  2. Salvianolic Acid a prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Qiang, Guifen; Yang, Xiuying; Xuan, Qi; Shi, Lili; Zhang, Hengai; Chen, Bainian; Li, Xiaoxiu; Zu, Mian; Zhou, Dan; Guo, Jing; Yang, Haiguang; Zhang, Li; Du, Guanhua

    2014-01-01

    Type 2 diabetes patients have an increased risk of developing hepatic fibrosis. Salvianolic acid A (SalA) has been reported to be a strong polyphenolic anti-oxidant and free radical scavenger. The aim of the present study was to evaluate the effect of SalA on the pathological progression of hepatic fibrosis in high-fat diet (HFD)-fed and streptozotocin (STZ)-induced diabetic rats and to clarify the underlying mechanisms. Type 2 diabetic animal model with hepatic fibrosis was developed by a high-sucrose, HFD and low-dose STZ injection (i.p.). Diabetic rats were randomly divided into SalA group (0.3 mg/kg/day) and diabetic control groups fed with a HFD. After administration for four months, SalA reversed the hyperlipidemia and reduced hepatic triglyceride (TG). Hematoxylin-Eosin (HE) and Picro acid-Sirius red staining results indicated that SalA significantly alleviated the lesions of hepatic steatosis and fibrosis, with the reduction of type I and III collagens. The expression of α-smooth-muscle-actin (α-SMA) and transforming growth factor β1 (TGF-β1) in the liver were markedly down-regulated by SalA treatment. TUNEL staining showed that SalA reduced apoptosis in hepatocytes. In addition, SalA improved hepatic mitochondrial respiratory function in diabetic rats. Taken together, these findings demonstrated that SalA could prevent the pathological progression of hepatic fibrosis in HFD-fed and STZ-induced diabetic rats. The underlying mechanisms may be involved in reducing oxidative stress, suppressing α-SMA and TGF-β1 expression, as well as exerting anti-apoptotic and mitochondria-protective effects.

  3. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-01-01

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G 1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21 Waf1/Cip1 and p27 Kip1 ; and knockdown of p27 kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  4. Supplementation with Phycocyanobilin, Citrulline, Taurine, and Supranutritional Doses of Folic Acid and Biotin—Potential for Preventing or Slowing the Progression of Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty

    2017-03-01

    Full Text Available Oxidative stress, the resulting uncoupling of endothelial nitric oxide synthase (eNOS, and loss of nitric oxide (NO bioactivity, are key mediators of the vascular and microvascular complications of diabetes. Much of this oxidative stress arises from up-regulated nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity. Phycocyanobilin (PhyCB, the light-harvesting chromophore in edible cyanobacteria such as spirulina, is a biliverdin derivative that shares the ability of free bilirubin to inhibit certain isoforms of NADPH oxidase. Epidemiological studies reveal that diabetics with relatively elevated serum bilirubin are less likely to develop coronary disease or microvascular complications; this may reflect the ability of bilirubin to ward off these complications via inhibition of NADPH oxidase. Oral PhyCB may likewise have potential in this regard, and has been shown to protect diabetic mice from glomerulosclerosis. With respect to oxidant-mediated uncoupling of eNOS, high-dose folate can help to reverse this by modulating the oxidation status of the eNOS cofactor tetrahydrobiopterin (BH4. Oxidation of BH4 yields dihydrobiopterin (BH2, which competes with BH4 for binding to eNOS and promotes its uncoupling. The reduced intracellular metabolites of folate have versatile oxidant-scavenging activity that can prevent oxidation of BH4; concurrently, these metabolites promote induction of dihydrofolate reductase, which functions to reconvert BH2 to BH4, and hence alleviate the uncoupling of eNOS. The arginine metabolite asymmetric dimethylarginine (ADMA, typically elevated in diabetics, also uncouples eNOS by competitively inhibiting binding of arginine to eNOS; this effect is exacerbated by the increased expression of arginase that accompanies diabetes. These effects can be countered via supplementation with citrulline, which efficiently enhances tissue levels of arginine. With respect to the loss of NO bioactivity that contributes to

  5. Preventive effects of physical exercise on the inhibition of creatine kinase in the cerebral cortex of mice exposed to cigarette smoke. DOI: 10.5007/1980-0037.2011v13n2p106

    Directory of Open Access Journals (Sweden)

    Daiane Bittencourt Fraga

    2011-03-01

    Full Text Available Recent studies have shown the health benefits of physical exercise, increasing the oxidative response of muscle. However, the effects of exercise on the brain are poorly understood and contradictory. The inhibition of creatine kinase (CK activity has been associated with the pathogenesis of a large number of diseases, especially in the brain. The objective of this study was to determine the preventive effects of physical exercise in the hippocampus and cerebral cortex of mice after chronic cigarette smoke exposure. Eight to 10-week-old male mice (C57BL-6 were divided into four groups and submitted to an exercise program (swimming, 5 times a week, for 8 weeks. After this period, the animals were passively exposed to cigarette smoke for 60 consecutive days, 3 times a day (4 Marlboro red cigarettes per session, for a total of 12 cigarettes. CK activity was measured in cerebral cortex and hippocampal homogenates. Enzyme activity was inhibited in the cerebral cortex of animals submitted to the inhalation of cigarette smoke. However, exercise prevented this inhibition. In contrast, CK activity remained unchanged in the hippocampus. This inhibition of CK by inhalation of cigarette smoke might be related to the process of cell death. Physical exercise played a preventive role in the inhibition of CK activity caused by exposure to cigarette smoke.

  6. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?

    Directory of Open Access Journals (Sweden)

    Sotgia Federica

    2011-05-01

    Full Text Available Abstract The functional role of oxidative stress in cancer pathogenesis has long been a hotly debated topic. A study published this month in BMC Cancer by Goh et al., directly addresses this issue by using a molecular genetic approach, via an established mouse animal model of human breast cancer. More specifically, alleviation of mitochondrial oxidative stress, via transgenic over-expression of catalase (an anti-oxidant enzyme targeted to mitochondria, was sufficient to lower tumor grade (from high-to-low and to dramatically reduce metastatic tumor burden by >12-fold. Here, we discuss these new findings and place them in the context of several other recent studies showing that oxidative stress directly contributes to tumor progression and metastasis. These results have important clinical and translational significance, as most current chemo-therapeutic agents and radiation therapy increase oxidative stress, and, therefore, could help drive tumor recurrence and metastasis. Similarly, chemo- and radiation-therapy both increase the risk for developing a secondary malignancy, such as leukemia and/or lymphoma. To effectively reduce mitochondrial oxidative stress, medical oncologists should now re-consider the use of powerful anti-oxidants as a key component of patient therapy and cancer prevention. Please see related research article: http://www.biomedcentral.com/1471-2407/11/191

  7. 6-Bromoisatin Found in Muricid Mollusc Extracts Inhibits Colon Cancer Cell Proliferation and Induces Apoptosis, Preventing Early Stage Tumor Formation in a Colorectal Cancer Rodent Model

    Directory of Open Access Journals (Sweden)

    Babak Esmaeelian

    2013-12-01

    Full Text Available Muricid molluscs are a natural source of brominated isatin with anticancer activity. The aim of this study was to examine the safety and efficacy of synthetic 6-bromoisatin for reducing the risk of early stage colorectal tumor formation. The purity of 6-bromoisatin was confirmed by 1H NMR spectroscopy, then tested for in vitro and in vivo anticancer activity. A mouse model for colorectal cancer was utilized whereby colonic apoptosis and cell proliferation was measured 6 h after azoxymethane treatment by hematoxylin and immunohistochemical staining. Liver enzymes and other biochemistry parameters were measured in plasma and haematological assessment of the blood was conducted to assess potential toxic side-effects. 6-Bromoisatin inhibited proliferation of HT29 cells at IC50 223 μM (0.05 mg/mL and induced apoptosis without increasing caspase 3/7 activity. In vivo 6-bromoisatin (0.05 mg/g was found to significantly enhance the apoptotic index (p ≤ 0.001 and reduced cell proliferation (p ≤ 0.01 in the distal colon. There were no significant effects on mouse body weight, liver enzymes, biochemical factors or blood cells. However, 6-bromoisatin caused a decrease in the plasma level of potassium, suggesting a diuretic effect. In conclusion this study supports 6-bromoisatin in Muricidae extracts as a promising lead for prevention of colorectal cancer.

  8. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart.

    Science.gov (United States)

    Cong, Weitao; Ruan, Dandan; Xuan, Yuanhu; Niu, Chao; Tao, Youli; Wang, Yang; Zhan, Kungao; Cai, Lu; Jin, Litai; Tan, Yi

    2015-12-01

    Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS-Induced Parkinson’s Disease Models

    Directory of Open Access Journals (Sweden)

    Bingxu Huang

    2017-09-01

    Full Text Available The neuroprotective effects of Licochalcone A (Lico.A, a flavonoid isolated from the herb licorice, in Parkinson’s disease (PD have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2 and nuclear factor κB (NF-κB p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [3H] dopamine (DA uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  10. Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma.

    Science.gov (United States)

    Zhang, Guqin; Nie, Hanxiang; Yang, Jiong; Ding, Xuhong; Huang, Yi; Yu, Hongying; Li, Ruyou; Yuan, Zhuqing; Hu, Suping

    2011-12-01

    Asthma is a common chronic inflammatory disease involving many different cell types. Recently, type I natural killer T (NKT) cells have been demonstrated to play a crucial role in the development of asthma. However, the roles of type II NKT cells in asthma have not been investigated before. Interestingly, type I and type II NKT cells have been shown to have opposing roles in antitumor immunity, antiparasite immunity, and autoimmunity. We hypothesized that sulfatide-activated type II NKT cells could prevent allergic airway inflammation by inhibiting type I NKT cell function in asthma. Strikingly, in our mouse model, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells result in reduced-inflammation cell infiltration in the lung and bronchoalveolar lavage fluid, decreased levels of IL-4 and IL-5 in the BALF; and decreased serum levels of ovalbumin-specific IgE and IgG1. Furthermore, it is found that the activation of sulfatide-reactive type II NKT cells leads to the functional inactivation of type I NKT cells, including the proliferation and cytokine secretion. Our data reveal that type II NKT cells activated by glycolipids, such as sulfatide, may serve as a novel approach to treat allergic diseases and other disorders characterized by inappropriate type I NKT cell activation.

  11. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk.

    Science.gov (United States)

    Samelson, Elizabeth J; Miller, Paul D; Christiansen, Claus; Daizadeh, Nadia S; Grazette, Luanda; Anthony, Mary S; Egbuna, Ogo; Wang, Andrea; Siddhanti, Suresh R; Cheung, Angela M; Franchimont, Nathalie; Kiel, Douglas P

    2014-02-01

    Atherosclerosis and osteoporosis are chronic diseases that progress with age, and studies suggest aortic calcification, an indicator of atherosclerosis, is inversely associated with bone mineral density (BMD). The osteoprot