WorldWideScience

Sample records for inhibition counteracts multiple

  1. Antihypertensive efficacy of angiotensin converting enzyme inhibition and aspirin counteraction.

    Science.gov (United States)

    Guazzi, M D; Campodonico, J; Celeste, F; Guazzi, M; Santambrogio, G; Rossi, M; Trabattoni, D; Alimento, M

    1998-01-01

    Blockade of bradykinin breakdown and enhancement of prostaglandin release probably participate in the antihypertensive activity of angiotensin converting enzyme (ACE) inhibitors. Cyclooxygenase blockers may attenuate the efficacy of ACE inhibitors by interfering with prostaglandin synthesis, and patients taking aspirin may not benefit from ACE inhibition. This study was designed to evaluate the incidence of the counteractive phenomenon and to define minimal aspirin dosage that causes an antagonistic effect. These were 26 patients with mild to moderate hypertension (group 1) and 26 patients with severe untreated primary hypertension (group 2). Enalapril (20 mg twice a day) was used as a single drug in group 1 and was added to the combination of long-acting nifedipine (30 mg/day) and atenolol (50 mg/day) in group 2. Aspirin was tested at doses of 100 and 300 mg/day, and an attenuation of more than 20% of the mean blood pressure decrease produced by enalapril was the criteria that defined antagonism. The 100 mg dose was ineffective. However, 300 mg aspirin had an antagonistic effect in 57% of patients in group 1 and 50% of patients in group 2: mean arterial pressure was lowered by 63% and 91% less, respectively. Results were independent of the drug administration order. In "responders," aspirin significantly attenuated the renin rise associated with ACE inhibition. These findings suggest that a number of ACE-inhibited patients are susceptible to 300 mg/day aspirin, regardless of hypertension severity. Antagonism may be mediated through prostaglandin inhibition according to predominance, in an individual patient, of prostaglandin activation (also as a renin secretory stimulus) or angiotensin blockade by enalapril.

  2. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation.

    Science.gov (United States)

    Lin, Juan; Kumari, Snehlata; Kim, Chun; Van, Trieu-My; Wachsmuth, Laurens; Polykratis, Apostolos; Pasparakis, Manolis

    2016-12-01

    Receptor-interacting protein kinase 1 (RIPK1) regulates cell death and inflammation through kinase-dependent and -independent functions. RIPK1 kinase activity induces caspase-8-dependent apoptosis and RIPK3 and mixed lineage kinase like (MLKL)-dependent necroptosis. In addition, RIPK1 inhibits apoptosis and necroptosis through kinase-independent functions, which are important for late embryonic development and the prevention of inflammation in epithelial barriers. The mechanism by which RIPK1 counteracts RIPK3-MLKL-mediated necroptosis has remained unknown. Here we show that RIPK1 prevents skin inflammation by inhibiting activation of RIPK3-MLKL-dependent necroptosis mediated by Z-DNA binding protein 1 (ZBP1, also known as DAI or DLM1). ZBP1 deficiency inhibited keratinocyte necroptosis and skin inflammation in mice with epidermis-specific RIPK1 knockout. Moreover, mutation of the conserved RIP homotypic interaction motif (RHIM) of endogenous mouse RIPK1 (RIPK1(mRHIM)) caused perinatal lethality that was prevented by RIPK3, MLKL or ZBP1 deficiency. Furthermore, mice expressing only RIPK1(mRHIM) in keratinocytes developed skin inflammation that was abrogated by MLKL or ZBP1 deficiency. Mechanistically, ZBP1 interacted strongly with phosphorylated RIPK3 in cells expressing RIPK1(mRHIM), suggesting that the RIPK1 RHIM prevents ZBP1 from binding and activating RIPK3. Collectively, these results show that RIPK1 prevents perinatal death as well as skin inflammation in adult mice by inhibiting ZBP1-induced necroptosis. Furthermore, these findings identify ZBP1 as a critical mediator of inflammation beyond its previously known role in antiviral defence and suggest that ZBP1 might be implicated in the pathogenesis of necroptosis-associated inflammatory diseases.

  3. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...

  4. A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila.

    Science.gov (United States)

    Xu, Li; He, Jianzheng; Kaiser, Andrea; Gräber, Nikolas; Schläger, Laura; Ritze, Yvonne; Scholz, Henrike

    2016-01-01

    Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling-the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.

  5. RA-RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression.

    Science.gov (United States)

    Puttagunta, Radhika; Schmandke, André; Floriddia, Elisa; Gaub, Perrine; Fomin, Natalie; Ghyselinck, Norbert B; Di Giovanni, Simone

    2011-06-27

    After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal through the neuronal membrane-bound Nogo receptor (NgR) complex. In this paper, we show that a neuronal transcriptional pathway can interfere with extrinsic inhibitory myelin-dependent signaling, thereby promoting neurite outgrowth. Specifically, retinoic acid (RA), acting through the RA receptor β (RAR-β), inhibited myelin-activated NgR signaling through the transcriptional repression of the NgR complex member Lingo-1. We show that suppression of Lingo-1 was required for RA-RAR-β to counteract extrinsic inhibition of neurite outgrowth. Furthermore, we confirm in vivo that RA treatment after a dorsal column overhemisection injury inhibited Lingo-1 expression, specifically through RAR-β. Our findings identify a novel link between RA-RAR-β-dependent proaxonal outgrowth and inhibitory NgR complex-dependent signaling, potentially allowing for the development of molecular strategies to enhance axonal regeneration after a central nervous system injury.

  6. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-07-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues.

  7. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor.

    Science.gov (United States)

    Lauterböck, B; Ortner, M; Haider, R; Fuchs, W

    2012-10-01

    The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates.

  8. Carbon Monoxide Alleviates Wheat Seed Germination Inhibition and Counteracts Lipid Peroxidation Mediated by Salinity

    Institute of Scientific and Technical Information of China (English)

    Sheng Xu; Zhi-Sheng Sa; Ze-Yu Cao; Wei Xuan; Ben-Kai Huang; Teng-Fang Ling; Qiong-Ying Hu; Wen-Biao Shen

    2006-01-01

    Recently in animals, endogenous carbon monoxide (CO), like nitric oxide, was implicated as another important physiological messenger or bioactive molecule. However, little information is known about the physiological roles of CO in the whole plant. In the present study, we report that different concentrations of the CO donor hematin (0.1,1.0 and 10.0μmol/L) alleviated wheat (Triticum aestivum L. Yangmai 158) seed germination inhibition caused by 250 mmol/L NaCl stress in a dose-dependent manner. These responses were also proved by the addition of different gaseous CO aqueous solutions from 0.1% to 100.0% of saturation.Among these treatments, the effect of 1.0 μmol/L hematin and 1.0% saturation of CO aqueous solution were the most obvious. Furthermore, compared with non-hematin treatment, the degradation of storage reserves In wheat seeds was also accelerated. Time-course analyses showed that application of hematin dose-dependently increased the activities of superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase activities, thus decreasing the lipid peroxidation in germinating wheat seed subjected to saltstress. Meanwhile, the responses of hematin were specific for CO because the addition of the CO scavenger hemoglobin (0.2 g/L) blocked the various actions of 1.0 μ mol/L hematin. Taken together, the results of the present study demonstrate that CO, at a Iow concentration, is able to attenuate the seed germination inhibition produced by salinity stress and counteract the lipid peroxidation in germinating wheat seeds.

  9. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    V. Marrocco

    2017-02-01

    Research in context: Duchenne muscular dystrophy (DMD is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a “cure” for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology, which may eventually converge, may be successful. In this context, we previously showed that genetic ablation of Protein Kinase C θ (PKCθ, an enzyme known to be involved in immune response, in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20. We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease.

  10. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Marrocco, V; Fiore, P; Benedetti, A; Pisu, S; Rizzuto, E; Musarò, A; Madaro, L; Lozanoska-Ochser, B; Bouché, M

    2017-02-01

    Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology

  11. N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis

    Science.gov (United States)

    Alhouayek, Mireille; Bottemanne, Pauline; Subramanian, Kumar V.; Lambert, Didier M.; Makriyannis, Alexandros; Cani, Patrice D.; Muccioli, Giulio G.

    2015-01-01

    N-Palmitoylethanolamine or palmitoylethanolamide (PEA) is an anti-inflammatory compound that was recently shown to exert peroxisome proliferator-activated receptor-α-dependent beneficial effects on colon inflammation. The actions of PEA are terminated following hydrolysis by 2 enzymes: fatty acid amide hydrolase (FAAH), and the less-studied N-acylethanolamine-hydrolyzing acid amidase (NAAA). This study aims to investigate the effects of inhibiting the enzymes responsible for PEA hydrolysis in colon inflammation in order to propose a potential therapeutic target for inflammatory bowel diseases (IBDs). Two murine models of IBD were used to assess the effects of NAAA inhibition, FAAH inhibition, and PEA on macroscopic signs of colon inflammation, macrophage/neutrophil infiltration, and the expression of proinflammatory mediators in the colon, as well as on the colitis-related systemic inflammation. NAAA inhibition increases PEA levels in the colon and reduces colon inflammation and systemic inflammation, similarly to PEA. FAAH inhibition, however, does not increase PEA levels in the colon and does not affect the macroscopic signs of colon inflammation or immune cell infiltration. This is the first report of an anti-inflammatory effect of a systemically administered NAAA inhibitor. Because NAAA is the enzyme responsible for the control of PEA levels in the colon, we put forth this enzyme as a potential therapeutic target in chronic inflammation in general and IBD in particular.—Alhouayek, M., Bottemanne, P., Subramanian, K. V., Lambert, D. M., Makriyannis, A., Cani, P. D., and Muccioli, G. G. N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis. PMID:25384424

  12. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    NARCIS (Netherlands)

    Hanken, K.; Bosse, M.; Möhrke, K.; Eling, P.A.T.M.; Kastrup, A.; Antal, A.; Hildebrandt, H.

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS

  13. The counteracting effect of potassium cyanide in sodium azide-inhibited germination of Paulownia tomentosa  Steud. seeds

    Directory of Open Access Journals (Sweden)

    Živković Suzana

    2005-01-01

    Full Text Available The effect of some respiratory inhibitors on light-induced Paulownia tomentosa Steud. seed germination was studied. Millimolar solution of sodium azide was sufficient to completely prevent germination induced by a 5-min red light pulse. The inhibitory effect of azide was absent if seeds were rinsed before phytochrome activation by light. Sodium azide was effective only if present in the period of Pfr activity. The escape time from azide inhibition compared to the escape from far-red light action, was delayed for about 24 hours. When azide was applied after phytochrome activation, its effect depended on how long it was present in the incubation medium. The removal of azide allowed full restoration of germination by another red light pulse and the far-red escape time did not differ from the escape of untreated, i.e. water-imbibed seeds. Potassium cyanide alone did not produce any effect in light-stimulated germination of these seeds. However, it counteracted the inhibitory effect of azide in light-stimulated germination, if applied simultaneously at a concentration three times higher.

  14. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1

    Institute of Scientific and Technical Information of China (English)

    Rong ZENG; Yan CHEN; Shuai ZHAO; Guo-hui CUI

    2012-01-01

    To explore the mechanisms underlying the oridonin-induced apoptosis and autophagy in human multiple myeloma cells in vitro.Methods:Human multiple myeloma RPMI8266 cells were used.The cell viability was assessed using MTT assay.Morphological changes of apoptosis and autophagy were observed under transmission electron microscope.TUNEL and annexin V-FITC/PI dual staining assays were used to measure apoptosis.Autophagy was analyzed using Western blot analysis and immunofluorescence staining with a QDs605 nm-Anti-LC3 fluorescent probe.Intracellular ROS was estimated with flow cytometry using DCFH-DA fluorescent probe.Protein levels of active caspase 3,Beclin 1 and SIRT1 were determined with Western blot analysis.Results:Exposure to oridonin (1-64 μmol/L) inhibited the proliferation of RPMI8266 cells in a concentration-dependent manner with an IC50 value of 6.74 μmol/L.Exposure to oridonin (7 μmol/L) simultaneously induced caspase 3-mediated apoptosis and Beclin 1-dependent autophagy of RPMI8266 cells.Both the apoptosis and autophagy were time-dependent,and apoptosis was the main effector pathway of cell death.Exposure to oridonin (7 μmol/L) increased intracellular ROS and reduced SIRT1 nuclear protein in a time-dependent manner.The blockade of intracellular generation of ROS by NAC (5 mmol/L) abrogated apoptosis,autophagy and the decrease of SIRT1 in the cells exposed to oridonin (7 μmol/L).The inhibition of autophagy by 3-MA (5 mmol/L) sensitized the cells to oridonin-induced apoptosis,which was accompanied by increased intracellular ROS and decreased SlRT1.Conclusion:Oridonin simultaneously induces apoptosis and autophagy of human multiple myeloma RPMI8266 cells via regulation of intracellular ROS generation and SIRT1 nuclear protein.The cytotoxicity of oridonin is mainly mediated through the apoptotic pathway,whereas the autophagy protects the cells from apoptosis.

  15. Downregulation of Noxa by RAF/MEK inhibition counteracts cell death response in mutant B-RAF melanoma cells.

    Science.gov (United States)

    Basile, Kevin J; Aplin, Andrew E

    2012-01-01

    FDA approval of new therapies in 2011 has greatly expanded the treatment options for metastatic melanoma. Patients with V600 mutant v-raf murine sarcoma viral oncogene homolog B1 (B-RAF) positive metastatic melanoma are now treated with the RAF inhibitor, vemurafenib (Zelboraf) as a first line therapy. Vemurafenib decreases tumor size by at least 30% in approximately 50% of patients and increases progression-free survival and overall patient survival compared to the previous standard-of-care, dacarbazine. However, some patients treated with vemurafenib fail to show significant tumor shrinkage, and most patients who initially respond to the drug eventually show disease progression. Therefore, there is a clinical need to improve efficacy and prevent resistance to vemurafenib. It has been previously shown that cell death resulting from RAF/mitogen-activated protein kinase kinase (MEK) inhibition is largely dependent on increased expression of pro-apoptotic, Bcl-2 homology domain (BH3)-only proteins, such as Bcl-2-like 11 (Bim-EL) and Bcl-2 modifying factor (Bmf). Here, we show that contrary to expression of Bim-EL and Bmf, the pro-apoptotic, BH3-only protein, phorbol-12-myristate-13-acetate-induced protein 1 (Noxa), is strongly downregulated after RAF/MEK inhibition. This downregulation occurs at both the protein and mRNA level of expression and is associated with the inhibition of cell cycle progression. Restoring expression of Noxa in combination with RAF/MEK inhibition enhances cell death. Co-expression of the pro-survival, B-cell CLL/lymphoma 2 (Bcl-2) family member, myeloid cell leukemia sequence 1 (Mcl-1), with Noxa fully mitigates the enhanced cell death associated with increased Noxa expression. These data indicate that manipulating the Noxa/Mcl-1 axis may enhance the efficacy of RAF/MEK inhibitors.

  16. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.

    Science.gov (United States)

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V; Herr, Ingrid

    2014-07-15

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.

  17. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine

    OpenAIRE

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C.; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank

    2014-01-01

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patien...

  18. Dihydroartemisinin counteracts fibrotic portal hypertension via farnesoid X receptor-dependent inhibition of hepatic stellate cell contraction.

    Science.gov (United States)

    Xu, Wenxuan; Lu, Chunfeng; Zhang, Feng; Shao, Jiangjuan; Yao, Shunyu; Zheng, Shizhong

    2017-01-01

    Portal hypertension is a frequent pathological symptom occurring especially in hepatic fibrosis and cirrhosis. Current paradigms indicate that inhibition of hepatic stellate cell (HSC) activation and contraction is anticipated to be an attractive therapeutic strategy, because activated HSC dominantly facilitates an increase in intrahepatic vein pressure through secreting extracellular matrix and contracting. Our previous in vitro study indicated that dihydroartemisinin (DHA) inhibited contractility of cultured HSC by activating intracellular farnesoid X receptor (FXR). However, the effect of DHA on fibrosis-related portal hypertension still requires clarification. In this study, gain- and loss-of-function models of FXR in HSC were established to investigate the mechanisms underlying DHA protection against chronic CCl4 -caused hepatic fibrosis and portal hypertension. Immunofluorescence staining visually showed a decrease in FXR expression in CCl4 -administrated rat HSC but an increase in that in DHA-treated rat HSC. Serum diagnostics and morphological analyses consistently indicated that DHA exhibited hepatoprotective effects on CCl4 -induced liver injury. DHA also reduced CCl4 -caused inflammatory mediator expression and inflammatory cell infiltration. These improvements were further enhanced by INT-747 but weakened by Z-guggulsterone. Noteworthily, DHA, analogous to INT-747, significantly lowered portal vein pressure and suppressed fibrogenesis. Experiments on mice using FXR shRNA lentivirus consolidated the results above. Mechanistically, inhibition of HSC activation and contraction was found as a cellular basis for DHA to relieve portal hypertension. These findings demonstrated that DHA attenuated portal hypertension in fibrotic rodents possibly by targeting HSC contraction via a FXR activation-dependent mechanism. FXR could be a target molecule for reducing portal hypertension during hepatic fibrosis.

  19. Brain catechol-O-methyltransferase (COMT) inhibition by tolcapone counteracts recognition memory deficits in normal and chronic phencyclidine-treated rats and in COMT-Val transgenic mice.

    Science.gov (United States)

    Detrait, Eric R; Carr, Greg V; Weinberger, Daniel R; Lamberty, Yves

    2016-08-01

    The critical involvement of dopamine in cognitive processes has been well established, suggesting that therapies targeting dopamine metabolism may alleviate cognitive dysfunction. Catechol-O-methyl transferase (COMT) is a catecholamine-degrading enzyme, the substrates of which include dopamine, epinephrine, and norepinephrine. The present work illustrates the potential therapeutic efficacy of COMT inhibition in alleviating cognitive impairment. A brain-penetrant COMT inhibitor, tolcapone, was tested in normal and phencyclidine-treated rats and COMT-Val transgenic mice. In a novel object recognition procedure, tolcapone counteracted a 24-h-dependent forgetting of a familiar object as well as phencyclidine-induced recognition deficits in the rats at doses ranging from 7.5 to 30 mg/kg. In contrast, entacapone, a COMT inhibitor that does not readily cross the blood-brain barrier, failed to show efficacy at doses up to 30 mg/kg. Tolcapone at a dose of 30 mg/kg also improved novel object recognition performance in transgenic mice, which showed clear recognition deficits. Complementing earlier studies, our results indicate that central inhibition of COMT positively impacts recognition memory processes and might constitute an appealing treatment for cognitive dysfunction related to neuropsychiatric disorders.

  20. Targeted Inhibition of Multiple Receptor Tyrosine Kinases in Mesothelioma

    Directory of Open Access Journals (Sweden)

    Wen-Bin Ou

    2011-01-01

    Full Text Available The receptor tyrosine kinases (RTKs epidermal growth factor receptor (EGFR and MET are activated in subsets of mesothelioma, suggesting that these kinases might represent novel therapeutic targets in this notoriously chemotherapy-resistant cancer. However, clinical trials have shown little activity for EGFR inhibitors in mesothelioma. Despite the evidence for RTK activation in mesothelioma pathogenesis, it is unclear whether transforming activity is dependent on an individual kinase oncoprotein or the coordinated activity of multiple kinases. Using phospho-RTK and immunoblot assays, we herein demonstrate activation of multiple RTKs (EGFR, MET, AXL, and ERBB3 in individual mesothelioma cell lines but not in normal mesothelioma cells. Inhibition of mesothelioma multi-RTK signaling was accomplished using combinations of RTK direct inhibitors or by inhibition of the RTK chaperone, heat shock protein 90 (HSP90. Multi-RTK inhibition by the HSP90 inhibitor 17-allyloamino-17demethoxygeldanamycin (17-AAG had a substantially greater effect on mesothelioma proliferation and survival compared with inhibition of individual activated RTKs. HSP90 inhibition also suppressed phosphorylation of down-stream signaling intermediates (AKT, mitogen-activated protein kinase, and S6; upregulated the p53, p21, and p27 cell cycle checkpoints; induced G2 phase arrest; induced caspase 3/7 activity; and led to an increase in the sub-G1 apoptotic population. These compelling proapoptotic and antiproliferative responses indicate that HSP90 inhibition warrants clinical evaluation as a novel therapeutic strategy in mesothelioma.

  1. Mechanism of Arsenic Trioxide Inhibiting Angiogenesis in Multiple Myeloma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to explore the molecular mechanism of arsenic trioxide treating multiple myeloma (MM) via inhibition of angiogenesis, the expression of brain derived neurotrophic factor (BD-NF) and its specific receptor TrkB in human MM cell line KM3 and endothelial cell line ECV304 was detected by Western blotting. The angiogenic activity was evaluated by wound migration assay and tubule formation assay in vitro. The results showed that BDNF was detected in the MM cells and TrkB in the endothelial cells. Furthermore, 100 ng/mL BDNF could significantly induced endo thelial cell tubule formation and wound migration. As2 O3 depressed the expression of BDNF and TrkB in the dose- and time-dependent manner. As2O3 inhibited BDNF-induced wound migration and capillary tube formation. It was concluded that BDNF is a novel angiogenic protein as well as VEGF and has a relation with the pathogenesis of MM. As2O3 interrupts a paracrine loop between MM cells and endothelial cells by down-regulating the TrkB expression in endothelial cells and inhibiting BDNF production in MM cells, finally resulting in inhibition of MM angiogenesis. This is probably one part of the mechanisms of the As2O3 treating MM via the inhibition of angiogenesis.

  2. Fucoidan inhibits angiogenesis induced by multiple myeloma cells.

    Science.gov (United States)

    Liu, Fen; Luo, Guoping; Xiao, Qing; Chen, Liping; Luo, Xiaohua; Lv, Jinglong; Chen, Lixue

    2016-10-01

    Multiple myeloma (MM) remains an incurable hematological neoplasms. Our previous studies showed that Fucoidan possessed anti-myeloma effect by inducing apoptosis and inhibiting invasion of myeloma cells. In this study, we evaluated the effect of Fucoidan on angiogenesis induced by human myeloma cells and elucidated its possible mechanisms. Multiple myeloma cells were treated with Fucoidan at different concentrations, then the conditioned medium (CM) was collected. The levels of VEGF in the CM were tested by ELISA. The results showed that Fucoidan significantly decreased VEGF secretion by RPMI-8226 and U266 cells. The tube formation assay and migration test on human umbilical vein endothelial cells (HUVECs) were used to examine the effect of Fucoidan on angiogenesis induced by human myeloma cells. The results showed that Fucoidan decreased HUVECs formed tube structures and inhibited HUVECs migration, and suppressed the angiogenic ability of multiple myeloma RPMI-8226 and U266 cells in a dose-dependent manner. The study also showed that Fucoidan downregulated the expression of several kinds of proteins, which may be correlated with the reduction of angiogenesis induced by myeloma cells. Moreover, results were compared from normoxic and hypoxic conditions, they showed that Fucoidan had anti-angiogenic activity. Furthermore, in a multiple myeloma xenograft mouse model, it indicated that Fucoidan negatively affected tumor growth and angiogenesis in vivo. In conclusion, our results demonstrate that Fucoidan was able to interfere with angiogenesis of multiple myeloma cells both in vitro and in vivo and may have a substantial potential in the treatment of MM.

  3. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells

    OpenAIRE

    Drel, Viktor R.; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G.

    2006-01-01

    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with...

  4. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3

    OpenAIRE

    2008-01-01

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Ni...

  5. Inhibition of CD34+ cell migration by matrix metalloproteinase-2 during acute myocardial ischemia, counteracted by ischemic preconditioning [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dominika Lukovic

    2017-02-01

    Full Text Available Background. Mobilization of bone marrow-origin CD34+ cells was investigated 3 days (3d after acute myocardial infarction (AMI with/without ischemic preconditioning (IP in relation to stromal-derived factor-1 (SDF-1α/ chemokine receptor type 4 (CXCR4 axis, to search for possible mechanisms behind insufficient cardiac repair in the first days post-AMI. Methods. Closed-chest reperfused AMI was performed by percutaneous balloon occlusion of the mid-left anterior descending (LAD coronary artery for 90min, followed by reperfusion in pigs. Animals were randomized to receive either IP initiated by 3x5min cycles of re-occlusion/re-flow prior to AMI (n=6 or control AMI (n=12. Blood samples were collected at baseline, 3d post-AMI, and at 1-month follow-up to analyse chemokines and mobilized CD34+ cells. To investigate the effect of acute hypoxia, SDF-1α and matrix metalloproteinase (MMP-2 in vitro were assessed, and a migration assay of CD34+ cells toward cardiomyocytes was performed. Results. Reperfused AMI induced significant mobilisation of CD34+ cells (baseline: 260±75 vs. 3d: 668±180; P<0.001 and secretion of MMP-2 (baseline: 291.83±53.40 vs. 3d: 369.64±72.89; P=0.011 into plasma, without affecting the SDF-1α concentration. IP led to the inhibition of MMP-2 (IP: 165.67±47.99 vs. AMI: 369.64±72.89; P=0.004 3d post-AMI, accompanied by increased release of SDF-1α (baseline: 23.80±12.36 vs. 3d: 45.29±11.31; P=0.05 and CXCR4 (baseline: 0.59±0.16 vs. 3d: 2.06±1.42; P=0.034, with a parallel higher level of mobilisation of CD34+ cells (IP: 881±126 vs. AMI: 668±180; P=0.026, compared to non-conditioned AMI. In vitro, CD34+ cell migration toward cardiomyocytes was enhanced by SDF-1α, which was completely abolished by 90min hypoxia and co-incubation with MMP-2. Conclusions. Non-conditioned AMI induces MMP-2 release, hampering the ischemia-induced increase in SDF-1α and CXCR4 by cleaving the SDF-1α/CXCR4 axis, with diminished mobilization of

  6. CyPPA, a positive SK3/SK2 modulator, reduces activity of dopaminergic neurons, inhibits dopamine release, and counteracts hyperdopaminergic behaviors induced by methylphenidate

    Directory of Open Access Journals (Sweden)

    Kjartan F. Herrik

    2012-02-01

    Full Text Available Dopamine (DA containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder (ADHD, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson’s disease. Pharmacological modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca2+-activated K+ channels (SK channels, in particular the SK3 subtype, are important in the physiology of DA neurons, and agents modifying SK channel activity could potentially affect DA-signaling and DA-related behaviors. Here we show that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine, a subtype-selective positive modulator of SK channels (SK3 > SK2 >>> SK1, IK, decreased spontaneous firing rate, increased the duration of the apamin-sensitive, medium duration afterhyperpolarization (mAHP, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both mouse and rat midbrain slices. Using a immunohistochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo studies revealed that systemic administration of CyPPA attenuated methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together, the data accentuate the important role played by SK3 channels in the physiology of DA neurons, and indicate that their facilitation by CyPPA profoundly influences physiological as well as pharmacologically induced hyperdopaminergic behavior.

  7. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells.

    Science.gov (United States)

    Drel, Viktor R; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G

    2006-04-15

    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with/without the AR inhibitor fidarestat (F, 16 mg kg(-1) day(-1)) for 6 weeks starting from induction of diabetes. Glucose, sorbitol, and fructose concentrations were significantly increased in the renal cortex of D vs C (p diabetes-induced increase in kidney weight as well as nitrotyrosine (NT, a marker of peroxynitrite-induced injury and nitrosative stress), and poly(ADP-ribose) (a marker of PARP activation) accumulation, assessed by both immunohistochemistry and Western blot analysis, in glomerular and tubular compartments of the renal cortex. In vitro studies revealed the presence of both AR and PARP-1 in human mesangial cells, and none of these two variables were affected by high glucose or F treatment. Nitrosylated and poly(ADP-ribosyl)ated proteins (Western blot analysis) accumulated in cells cultured in 30 mM D-glucose (vs 5.55 mM glucose, p diabetic renal cortex and high-glucose-exposed human mesangial cells. These findings reveal new beneficial properties of the AR inhibitor F and provide the rationale for detailed studies of F on diabetic nephropathy.

  8. Quantitative phosphoproteomics of proteasome inhibition in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Feng Ge

    Full Text Available BACKGROUND: The proteasome inhibitor bortezomib represents an important advance in the treatment of multiple myeloma (MM. Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the differential phosphoproteome upon proteasome inhibition by using stable isotope labeling by amino acids in cell culture (SILAC in combination with phosphoprotein enrichment and LC-MS/MS analysis. In total 233 phosphoproteins were identified and 72 phosphoproteins showed a 1.5-fold or greater change upon bortezomib treatment. The phosphoproteins with expression alterations encompass all major protein classes, including a large number of nucleic acid binding proteins. Site-specific phosphopeptide quantitation revealed that Ser38 phosphorylation on stathmin increased upon bortezomib treatment, suggesting new mechanisms associated to bortezomib-induced apoptosis in MM cells. Further studies demonstrated that stathmin phosphorylation profile was modified in response to bortezomib treatment and the regulation of stathmin by phosphorylation at specific Ser/Thr residues participated in the cellular response induced by bortezomib. CONCLUSIONS/SIGNIFICANCE: Our systematic profiling of phosphorylation changes in response to bortezomib treatment not only advanced the global mechanistic understanding of the action of bortezomib on myeloma cells but also identified previously uncharacterized signaling proteins in myeloma cells.

  9. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes.

    Science.gov (United States)

    Negi, Geeta; Kumar, Ashutosh; Sharma, Shyam S

    2011-11-01

    High glucose driven reactive oxygen intermediates production and inflammatory damage are recognized contributors of nerve dysfunction and subsequent damage in diabetic neuropathy. Sulforaphane, a known chemotherapeutic agent holds a promise for diabetic neuropathy because of its dual antioxidant and anti-inflammatory activities. The present study investigated the effect of sulforaphane in streptozotocin (STZ) induced diabetic neuropathy in rats. For in vitro experiments neuro2a cells were incubated with sulforaphane in the presence of normal (5.5 mM) and high glucose (30 mM). For in vivo studies, sulforaphane (0.5 and 1 mg/kg) was administered six weeks post diabetes induction for two weeks. Motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and pain behavior were improved and malondialdehyde (MDA) level was reduced by sulforaphane. Antioxidant effect of sulforaphane is derived from nuclear erythroid 2-related factor 2 (Nrf2) activation as demonstrated by increased expression of Nrf2 and downstream targets hemeoxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1) in neuro2a cells and sciatic nerve of diabetic animals. Nuclear factor-kappa B (NF-κB) inhibition seemed to be responsible for antiinflammatory activity of sulforaphane as there was reduction in NF-κB expression and IκB kinase (IKK) phosphorylation along with abrogation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6) levels. Here in this study we provide an evidence that sulforaphane is effective in reversing the various deficits in experimental diabetic neuropathy. This study supports the defensive role of Nrf2 in neurons under conditions of oxidative stress and also suggests that the NF-κB pathway is an important modulator of inflammatory damage in diabetic neuropathy.

  10. Bruceantin inhibits multiple myeloma cancer stem cell proliferation.

    Science.gov (United States)

    Issa, Mark E; Berndt, Sarah; Carpentier, Gilles; Pezzuto, John M; Cuendet, Muriel

    2016-09-01

    Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.

  11. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    Science.gov (United States)

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival.

  12. The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl betulinic acid (DSB is counteracted by Vif and requires its Zinc-binding domain

    Directory of Open Access Journals (Sweden)

    Bouaziz Serge

    2008-12-01

    Full Text Available Abstract Background DSB, the 3-O-(3',3'dimethylsuccinyl derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag, which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9, DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP. In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium. Results Wild-type Vif (Vifwt restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone. Conclusion The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.

  13. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism.

    Science.gov (United States)

    Greaney, Allison J; Maier, Nolan K; Leppla, Stephen H; Moayeri, Mahtab

    2016-01-01

    The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to

  14. Inhibition of Th17 Cell Differentiation as a Treatment for Multiple Sclerosis

    Science.gov (United States)

    2013-10-01

    0736 TITLE: Inhibition of Th17 Cell Differentiation as a Treatment for Multiple Sclerosis PRINCIPAL INVESTIGATOR: Annalisa D’Andrea, PhD...29September2013 4. TITLE AND SUBTITLE Inhibition of Th17 Cell Differentiation as a Treatment for Multiple Sclerosis 5a. CONTRACT NUMBER 5b...were not able to screen compounds. Additionally, experiments aimed to reproduce data showing an association of miR-326 with Th17 cells failed to

  15. Suramin inhibits chikungunya virus replication through multiple mechanisms.

    Science.gov (United States)

    Albulescu, Irina C; van Hoolwerff, Marcella; Wolters, Laura A; Bottaro, Elisabetta; Nastruzzi, Claudio; Yang, Shih Chi; Tsay, Shwu-Chen; Hwu, Jih Ru; Snijder, Eric J; van Hemert, Martijn J

    2015-09-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes severe and often persistent arthritis. In recent years, millions of people have been infected with this virus for which registered antivirals are still lacking. Using our recently established in vitro assay, we discovered that the approved anti-parasitic drug suramin inhibits CHIKV RNA synthesis (IC50 of ∼5μM). The compound inhibited replication of various CHIKV isolates in cell culture with an EC50 of ∼80μM (CC50>5mM) and was also active against Sindbis virus and Semliki Forest virus. In vitro studies hinted that suramin interferes with (re)initiation of RNA synthesis, whereas time-of-addition studies suggested it to also interfere with a post-attachment early step in infection, possibly entry. CHIKV (nsP4) mutants resistant against favipiravir or ribavirin, which target the viral RNA polymerase, did not exhibit cross-resistance to suramin, suggesting a different mode of action. The assessment of the activity of a variety of suramin-related compounds in cell culture and the in vitro assay for RNA synthesis provided more insight into the moieties required for antiviral activity. The antiviral effect of suramin-containing liposomes was also analyzed. Its approved status makes it worthwhile to explore the use of suramin to prevent and/or treat CHIKV infections.

  16. Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan.

    Science.gov (United States)

    Mellegård, Hilde; From, Cecilie; Christensen, Bjørn E; Granum, Per E

    2011-10-03

    Bacillus cereus is an endospore-forming bacterium able to cause food-associated illness. Different treatment processes are used in the food industry to reduce the number of spores and thereby the potential of foodborne disease. Chitosan is a polysaccharide with well-documented antibacterial activity towards vegetative cells. The activity against bacterial spores, spore germination and subsequent outgrowth and growth (the latter two events hereafter denoted (out)growth), however, is poorly documented. By using six different chitosans with defined macromolecular properties, we evaluated the effect of chitosan on Bacillus cereus spore germination and (out)growth using optical density assays and a dipicolinic acid release assay. (Out)growth was inhibited by chitosan, but germination was not. The action of chitosan was found to be concentration-dependent and also closely related to weight average molecular weight (M(w)) and fraction of acetylation (F(A)) of the biopolymer. Chitosans of low acetylation (F(A)=0.01 or 0.16) inhibited (out)growth more effectively than higher acetylated chitosans (F(A)=0.48). For the F(A)=0.16 chitosans with medium (56.8kDa) and higher M(w) (98.3kDa), a better (out)growth inhibition was observed compared to low M(w) (10.6kDa) chitosan. The same trend was not evident with chitosans of 0.48 acetylation, where the difference in activity between the low (19.6kDa) and high M(w) (163.0kDa) chitosans was only minor. In a spore test concentration corresponding to 10(2)-10(3)CFU/ml (spore numbers relevant to food), less chitosan was needed to suppress (out)growth compared to higher spore numbers (equivalent to 10(8)CFU/ml), as expected. No major differences in chitosan susceptibility between three different strains of B. cereus were detected. Our results contribute to a better understanding of chitosan activity towards bacterial spore germination and (out)growth.

  17. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  18. A study for multiple steady states of biochemical reactions under substrate and product inhibition.

    Science.gov (United States)

    Chien

    2000-08-01

    This paper combines Sturm's method with the tangent analysis method to solve a biochemical reaction involving multiplicity. This method can easily derive the necessary conditions for multiplicity. In addition, we find a starting bifurcation point for multiplicity which cannot be obtained by the tangent method alone. Moreover, a start-up strategy is suggested to obtain a high conversion and unique steady state in four selected kinetic models of biochemical reactions, with inhibition.

  19. A phthalimide derivative that inhibits centrosomal clustering is effective on multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Hirokazu Shiheido

    Full Text Available Despite the introduction of newly developed drugs such as lenalidomide and bortezomib, patients with multiple myeloma are still difficult to treat and have a poor prognosis. In order to find novel drugs that are effective for multiple myeloma, we tested the antitumor activity of 29 phthalimide derivatives against several multiple myeloma cell lines. Among these derivatives, 2-(2,6-diisopropylphenyl-5-amino-1H-isoindole-1,3- dione (TC11 was found to be a potent inhibitor of tumor cell proliferation and an inducer of apoptosis via activation of caspase-3, 8 and 9. This compound also showed in vivo activity against multiple myeloma cell line KMS34 tumor xenografts in ICR/SCID mice. By means of mRNA display selection on a microfluidic chip, the target protein of TC11 was identified as nucleophosmin 1 (NPM. Binding of TC11 and NPM monomer was confirmed by surface plasmon resonance. Immunofluorescence and NPM knockdown studies in HeLa cells suggested that TC11 inhibits centrosomal clustering by inhibiting the centrosomal-regulatory function of NPM, thereby inducing multipolar mitotic cells, which undergo apoptosis. NPM may become a novel target for development of antitumor drugs active against multiple myeloma.

  20. The impact of multiple irrelevant visual events at the same spatial location on inhibition.

    Science.gov (United States)

    Visser, Troy A W; Barnes, Daniel

    2009-02-01

    If an irrelevant visual event, such as a nonpredictive cue, is presented prior to a target, performance is impaired when the target appears at the cued location relative to when it is presented at an uncued location. This phenomenon, referred to as inhibition of return, can be found at multiple spatial locations when each is cued in succession. The present study examined the effect of successively cuing the same spatial location. Results suggested that additional inhibition occurred when more than one cue appeared at a single location at longer intercue intervals, but not at shorter intervals. These findings suggest that total inhibition to respond to targets at a spatial location reflects a summation of facilitatory and inhibitory factors generated by the presentation of each cue.

  1. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  2. Sulindac and its metabolites inhibit multiple transport proteins in rat and human hepatocytes.

    Science.gov (United States)

    Lee, Jin Kyung; Paine, Mary F; Brouwer, Kim L R

    2010-08-01

    Sulindac is a commonly used nonsteroidal anti-inflammatory drug. This study tested the hypothesis that sulindac-mediated drug-drug interactions and/or hepatotoxicity may be caused, in part, by inhibition of proteins responsible for the hepatic transport of drugs and/or bile acids by sulindac and/or sulindac metabolites [sulindac sulfone (S-sulfone) and sulindac sulfide (S-sulfide)]. The uptake and excretion of model substrates, [(3)H]taurocholate (TC), [(3)H]estradiol 17-beta-glucuronide (E217G), and nitrofurantoin (NF), were investigated in rat and human suspended and sandwich-cultured hepatocytes (SCH). In suspended rat hepatocytes, S-sulfone and S-sulfide inhibited Na(+)-dependent TC initial uptake (IC(50) of 24.9 +/- 6.4 and 12.5 +/- 1.8 microM, respectively) and Na(+)-independent E217G initial uptake (IC(50) of 12.1 +/- 1.6 and 6.3 +/- 0.3 microM, respectively). In rat SCH, sulindac metabolites (100 microM) decreased the in vitro biliary clearance (Cl(biliary)) of TC, E217G, and NF by 38 to 83%, 81 to 97%, and 33 to 57%, respectively; S-sulfone and S-sulfide also decreased the TC and NF biliary excretion index by 39 to 55%. In suspended human hepatocytes, S-sulfone and S-sulfide inhibited Na(+)-dependent TC initial uptake (IC(50) of 42.2 and 3.1 microM, respectively); S-sulfide also inhibited the TC Cl(biliary) in human SCH. Sulindac/metabolites markedly inhibited hepatic uptake and biliary excretion of E217G by 51 to 100% in human SCH. In conclusion, sulindac and metabolites are potent inhibitors of the uptake and biliary clearance of bile acids in rat and human hepatocytes and also inhibit substrates of rat breast cancer resistance protein, rat and human organic anion-transporting polypeptides, and human multidrug resistance-associated protein 2. Inhibition of multiple hepatic transport proteins by sulindac/metabolites may play an important role in clinically significant sulindac-mediated drug-drug interactions and/or liver injury.

  3. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis*

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M.; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I.; Chan, A. W. Edith; Towers, Greg J.; Coker, Alun R.; Duchen, Michael R.; Szabadkai, Gyorgy; Baker, David; Selwood, David L.

    2016-01-01

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use. PMID:26679998

  4. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis.

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I; Chan, A W Edith; Towers, Greg J; Coker, Alun R; Duchen, Michael R; Szabadkai, Gyorgy; Baker, David; Selwood, David L

    2016-02-26

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.

  5. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zengyan [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China); Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Zhang, Guoqiang [Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Yu, Wenzheng; Gao, Na [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Peng, Jun, E-mail: junpeng885@sina.com [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China)

    2016-01-15

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  6. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer.

    Science.gov (United States)

    Harding, Thomas C; Long, Li; Palencia, Servando; Zhang, Hongbing; Sadra, Ali; Hestir, Kevin; Patil, Namrata; Levin, Anita; Hsu, Amy W; Charych, Deborah; Brennan, Thomas; Zanghi, James; Halenbeck, Robert; Marshall, Shannon A; Qin, Minmin; Doberstein, Stephen K; Hollenbaugh, Diane; Kavanaugh, W Michael; Williams, Lewis T; Baker, Kevin P

    2013-03-27

    The fibroblast growth factor (FGF) pathway promotes tumor growth and angiogenesis in many solid tumors. Although there has long been interest in FGF pathway inhibitors, development has been complicated: An effective FGF inhibitor must block the activity of multiple mitogenic FGF ligands but must spare the metabolic hormone FGFs (FGF-19, FGF-21, and FGF-23) to avoid unacceptable toxicity. To achieve these design requirements, we engineered a soluble FGF receptor 1 Fc fusion protein, FP-1039. FP-1039 binds tightly to all of the mitogenic FGF ligands, inhibits FGF-stimulated cell proliferation in vitro, blocks FGF- and vascular endothelial growth factor (VEGF)-induced angiogenesis in vivo, and inhibits in vivo growth of a broad range of tumor types. FP-1039 antitumor response is positively correlated with RNA levels of FGF2, FGF18, FGFR1c, FGFR3c, and ETV4; models with genetic aberrations in the FGF pathway, including FGFR1-amplified lung cancer and FGFR2-mutated endometrial cancer, are particularly sensitive to FP-1039-mediated tumor inhibition. FP-1039 does not appreciably bind the hormonal FGFs, because these ligands require a cell surface co-receptor, klotho or β-klotho, for high-affinity binding and signaling. Serum calcium and phosphate levels, which are regulated by FGF-23, are not altered by administration of FP-1039. By selectively blocking nonhormonal FGFs, FP-1039 treatment confers antitumor efficacy without the toxicities associated with other FGF pathway inhibitors.

  7. Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation.

    Science.gov (United States)

    Zhang, Huifang M; Wang, Fengping; Qiu, Ye; Ye, Xin; Hanson, Paul; Shen, Hongxing; Yang, Decheng

    2016-02-15

    CVB3 (coxsackievirus 3) is a primary causal agent of viral myocarditis. Emodin is a natural compound isolated from certain plant roots. In the present study, we found that emodin inhibited CVB3 replication in vitro and in mice, and now we report an unrecognized mechanism by which emodin inhibits CVB3 replication through suppression of viral protein translation via multiple pathways. On one hand, emodin treatment inhibited Akt/mTOR (mammalian target of rapamycin) signalling and activated 4EBP1 (eukaryotic initiation factor 4R-binding protein 1), leading to suppression of translation initiation of ribosomal protein L32 encoded by a 5'-TOP (terminal oligopyrimidine) mRNA. On the other hand, emodin treatment differentially regulated multiple signal cascades, including Akt/mTORC1/p70(S6K) (p70 S6 kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2)/p90(RSK) (p90 ribosomal S6 kinase) and Ca(2+)/calmodulin, leading to activation of eEF2K (eukaryotic elongation factor 2 kinase) and subsequent inactivation of eEF2 (eukaryotic elongation factor 2), resulting in inhibition of CVB3 VP1 (viral protein 1) synthesis. These data imply that eEF2K is a major factor mediating cross-talk of different arms of signalling cascades in this signal network. This notion was verified by either overexpressing eEF2K or treating the cells with siRNAs or eEF2K inhibitor A484954. We showed further that the emodin-induced decrease in p70(S6K) phosphorylation plays a dominant positive role in activation of eEF2K and in turn in conferring the antiviral effect of emodin. This finding was further solidified by expressing constitutively active and dominant-negative Akt. Collectively, our data reveal that emodin inhibits viral replication through impairing translational machinery and suppression of viral translation elongation. © 2016 Authors; published by Portland Press Limited.

  8. P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages.

    Science.gov (United States)

    Burdick, Ryan; Smith, Jessica L; Chaipan, Chawaree; Friew, Yeshitila; Chen, Jianbo; Venkatachari, Narasimhan J; Delviks-Frankenberry, Krista A; Hu, Wei-Shau; Pathak, Vinay K

    2010-10-01

    Recent studies have shown that APOBEC3G (A3G), a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, is localized to cytoplasmic mRNA-processing bodies (P bodies). However, the functional relevance of A3G colocalization with P body marker proteins has not been established. To explore the relationship between HIV-1, A3G, and P bodies, we analyzed the effects of overexpression of P body marker proteins Mov10, DCP1a, and DCP2 on HIV-1 replication. Our results show that overexpression of Mov10, a putative RNA helicase that was previously reported to belong to the DExD superfamily and was recently reported to belong to the Upf1-like group of helicases, but not the decapping enzymes DCP1a and DCP2, leads to potent inhibition of HIV-1 replication at multiple stages. Mov10 overexpression in the virus producer cells resulted in reductions in the steady-state levels of the HIV-1 Gag protein and virus production; Mov10 was efficiently incorporated into virions and reduced virus infectivity, in part by inhibiting reverse transcription. In addition, A3G and Mov10 overexpression reduced proteolytic processing of HIV-1 Gag. The inhibitory effects of A3G and Mov10 were additive, implying a lack of functional interaction between the two inhibitors. Small interfering RNA (siRNA)-mediated knockdown of endogenous Mov10 by 80% resulted in a 2-fold reduction in virus production but no discernible impact on the infectivity of the viruses after normalization for the p24 input, suggesting that endogenous Mov10 was not required for viral infectivity. Overall, these results show that Mov10 can potently inhibit HIV-1 replication at multiple stages.

  9. Gamma ray irradiation inhibits Plasmodium falciparum multiplication in in vitro culture supplemented with tritium labeled hypoxanthine

    Directory of Open Access Journals (Sweden)

    HARRY NUGROHO EKO SURNIYANTORO

    2016-04-01

    Full Text Available Abstract. Surniyantoro HNE, Darlina, Nurhayati S, Tetriana D, Syaifudin M. 2015. Gamma ray irradiation inhibits Plasmodium falciparum multiplication in in vitro culture supplemented with tritium labeled hypoxanthine. Nusantara Bioscience 8: 8-13. Malaria remains a major public health threat in the world. Therefore an attempt to create malaria vaccine for supporting the control of disease was taken by attenuating parasites with gamma rays and it was proven effective based on microscopic observation. Objective of this research was to assess the effectiveness of gamma rays to attenuate malaria parasites based on isotopic method. A laboratory strain of P. falciparum (3D7 was in vitro cultured with standard procedure and it was irradiated with gamma rays at doses of 150-250 Gy and unirradiated parasites served as control. Twenty four hours after 1-2 µCi of 3H-hypoxanthine was added into culture 100 µl of medium was taken and was repeated at various times, then hypoxanthine incorporation was measured with beta counter. Microscopic observation of parasitemia in culture was also done. The results showed that there was a fluctuation in multiplication of parasites post irradiation mainly in higher dose (more than150 Gy. Irradiated of parasites were more active in incorporate with purine precursor up to 48 hours. Parasites returned to their highest activity at 116 hours after hypoxanthine addition. No significant difference was found among doses of irradiation with p of 0.05. This was quite different with the finding from microscopic observation. It was known that dose of 150 Gy was the most effective dose for inhibiting of the parasite multiplication where some factors affecting these facts.

  10. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Sarah K Brennan

    Full Text Available BACKGROUND: Plasma cells constitute the majority of tumor cells in multiple myeloma (MM but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC. These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities. METHODOLOGY/PRINCIPAL FINDINGS: Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1 as revealed by quantitative real-time PCR. CONCLUSIONS: Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.

  11. Piracetam inhibits ethanol (EtOH)-induced memory deficit by mediating multiple pathways.

    Science.gov (United States)

    Yang, Yifan; Feng, Jian; Xu, Fangyuan; Wang, Jianglin

    2017-09-11

    Excessive ethanol (EtOH) intake, especially to prenatal exposure, can significantly affect cognitive function and cause permanent learning and memory injures in children. As a result, how to protect children from EtOH neurotoxicity has gained increasing attention in recent years. Piracetam (Pir) is a nootropic drug derived from c-aminobutyric acid and can manage cognition impairments in multiple neurological disorders. Studies have shown that Pir can exert therapeutic effects on EtOH-induced memory impairments, but the underlying mechanism is still unknown. In this study, we found that Pir inhibited ethanol-induced memory deficit by mediating multiple pathways. Treatment with EtOH could cause cognitive deficit in juvenile rats, and triggered the alteration of synaptic plasticity. Administration with Pir significantly increased long-term potentiation and protected hippocampus neurons from EtOH neurotoxicity. Pir intervention ameliorated EtOH-induced cell apoptosis and inhibited the activation of Caspase-3 in vitro, suggesting that Pir protected neurons by anti-apoptotic effects. Pir could decrease the expression of LC3-II and Beclin-1 induced by EtOH, and increase the phosphorylation of mTOR and reduce the phosphorylation of Akt, which suggested that the protective effect of Pir was involved in regulation of autophagic process and mTOR/Akt pathways. In conclusion, we speculate that Pir reduces EtOH-induced neuronal damage by regulation of apoptotic action and autophagic action, and our research offers preclinical evidence for the application of Pir in ethanol toxicity. Copyright © 2017. Published by Elsevier B.V.

  12. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  13. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  14. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    Science.gov (United States)

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  15. Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis.

    Directory of Open Access Journals (Sweden)

    Nicolas Doyon

    2011-09-01

    Full Text Available Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABA(A receptors (GABA(ARs. The impact of changes in steady state Cl(- gradient is relatively straightforward to understand, but how dynamic interplay between Cl(- influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl(- load on a fast time scale, whereas Cl(-extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl(- gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABA(AR-mediated inhibition, but increasing GABA(AR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl(-. Furthermore, if spiking persisted despite the presence of GABA(AR input, Cl(- accumulation became accelerated because of the large Cl(- driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl(- and pH regulation. Several model predictions were tested and confirmed by [Cl(-](i imaging experiments. Our study has thus uncovered how Cl(- regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K(- accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention.

  16. INHIBITION OF HSV-1 MULTIPLICATION BY FIVE SPECIES OF MEDICINAL PLANTS

    Directory of Open Access Journals (Sweden)

    Maliheh Farahani

    2013-08-01

    Full Text Available Medicinal plants have been traditionally used for different kinds of ailments including infectious diseases. As viral resistance to available chemical drugs causes problems in the treatment of herpes simplex virus type 1 infection, there is an evolving need for new antiherpes drugs. Therefore in the present study 5 species of medicinal plants with ethno-medical background were screened for antiherpes effect against HSV-1in Hep-2(Human epithelial type 2 cells. Different parts of the plants were collected and aqueous extract of them were prepared. These extracts were screened for their cytotoxicity against Hep-2 cell line by cytopathic effect (CPE assay at concentrations 50-1000 μg/ml. Antiherpes properties of the extracts were determined by cytopathic effect inhibition assay. Four plants extract; Thymus kotschyanus, Echinacea purpurea, Camellia sinensis and Echium amoenum L exhibited significant antiherpes effect against HSV-1 at nontoxic concentrations to the cell lines used. The extracts of Thymus kotschyanus and Camellia sinensis showed highest antiherpes activity against HSV-1 at most concentrations. Our findings indicated that Camellia sinensis extract has inhibit HSV-1 multiplication at concentrations 50-1000 μg/ml while this figure for Thymus kotschyanus is 100-800 μg/ml and for Echinacea purpurea and Echium amoenum L are >400 μg/ml. Four plants extract of assay exhibited significant antiherpes activity at a concentration nontoxic to the cell line used. EC50 of Camellia sinensis extract was best sample and findings showed Camellia sinensis has most selectivity indices. Further research is needed to elucidate the active constituents of these plants which may be useful in the development of new antiviral drugs.

  17. [Non-indicated cesarean section--does the "Golem" counteract?].

    Science.gov (United States)

    Herman, Arie

    2011-11-01

    Cesarean section rate is steadily increasing and in Israel it has risen to 20%. MultipLe and different reasons have led to this phenomenon, among them are non-indicated cesarean sections. Although health care providers disagree whether this development is medically, ethically and publically justified, national associations allow it, while respecting those obstetricians who decline to do so. In Israel there are some hospitals which allow non-indicated cesarean sections, whereas others reject them. When discussing this issue with the patients, documentation is advised concerning the reasons for approval or rejection of the patients' request in order to avoid future complaints in the case of adverse outcome. Low risk vaginal delivery should be regarded as a natural process and not as a medical treatment and keeping balanced and reasonable decisions may help to contain the phenomenon and avoid a situation in which the "Golem" created by the medical system, counteracts.

  18. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  19. Inhibition of West Nile virus multiplication in cell culture by anti-parkinsonian drugs

    Directory of Open Access Journals (Sweden)

    Ana Belen Blazquez

    2016-03-01

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus maintained in a transmission cycle between mosquitoes and birds, but it can also infect other vertebrates, including humans, in which it can cause neuroinvasive diseases. To date, no licensed vaccine or therapy for human use against this pathogen is yet available. A recent approach to search for new antiviral agent candidates is the assessment of long-used drugs commonly administered by clinicians to treat human disorders in drug antiviral development. In this regard, as patients with West Nile encephalitis frequently develop symptoms and features of parkinsonism, and cellular factors altered in parkinsonism, such as alpha-synuclein, have been shown to play a role on WNV infection, we have assessed the effect of four drugs (L-dopa, Selegiline, Isatin and Amantadine, that are used as therapy for Parkinson´s disease in the inhibition of WNV multiplication. L-dopa, Isatin, and Amantadine treatments significantly reduced the production of infectious virus in all cell types tested, but only Amantadine reduced viral RNA levels. These results point to antiparkinsonian drugs as possible therapeutic candidates for the development of antiviral strategies against WNV infection.

  20. Novel antagonists of alcohol inhibition of l1-mediated cell adhesion: multiple mechanisms of action.

    Science.gov (United States)

    Wilkemeyer, Michael F; Menkari, Carrie E; Charness, Michael E

    2002-11-01

    1-Octanol antagonizes ethanol inhibition of L1-mediated cell adhesion and prevents ethanol teratogenesis in mouse whole embryo culture. Herein, we identify a new series of alcohol antagonists and study their mechanism of action. Cell aggregation assays were carried out in ethanol-sensitive, human L1-transfected NIH/3T3 cells in the absence and presence of 100 mM ethanol or 2 mM 1-butanol and candidate antagonists. Antagonist potency for 1-alcohols increased progressively over 5 log orders from 1-pentanol (C5) to 1-dodecanol (C12). Antagonist potency declined from 1-dodecanol (C12) to 1-tridecanol (C13), and 1-tetradecanol (C14) and 1-pentadecanol (C15) were inactive. The presence and position of a double bond in the 1-butanol molecule determined whether a compound was a full agonist (1-butanol), a mixed agonist-antagonist (2-buten-1-ol), or an antagonist (3-buten-1-ol). Increasing the concentration of agonist (1-butanol or ethanol) overcame the antagonism of 3-buten-1-ol, benzyl alcohol, cyclopentanol, and 3-pentanol, but not that of 4-methyl-1-pentanol, 2-methyl-2-pentanol, 1-pentanol, 2-pentanol, 1-octanol, and 2,6-di-isopropylphenol (propofol), suggesting that the mechanisms of antagonism may differ between these groups of compounds. These findings suggest that selective straight, branched, and cyclic alcohols may act at multiple, discrete sites to antagonize the actions of ethanol and 1-butanol on L1-mediated cell-cell adhesion.

  1. Targeting of the Virulence Factor Acetohydroxyacid Synthase by Sulfonylureas Results in Inhibition of Intramacrophagic Multiplication of Brucella suis

    OpenAIRE

    Boigegrain, Rose-Anne; Liautard, Jean-Pierre; Köhler, Stephan

    2005-01-01

    The acetohydroxyacid synthase (AHAS) of Brucella suis can be effectively targeted by the sulfonylureas chlorimuron ethyl and metsulfuron methyl. Growth in minimal medium was inhibited, and multiplication in human macrophages was totally abolished with 100 μM of sulfonylureas. Metsulfuron methyl-resistant mutants showed reduced viability in macrophages and reduced AHAS activity.

  2. Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways : in vivo evidence from a Pkd1-deletion model

    NARCIS (Netherlands)

    Leonhard, Wouter N.; van der Wal, Annemieke; Novalic, Zlata; Kunnen, Steven J.; Gansevoort, Ron T.; Breuning, Martijn H.; de Heer, Emile; Peters, Dorien J. M.

    2011-01-01

    Leonhard WN, van der Wal A, Novalic Z, Kunnen SJ, Gansevoort RT, Breuning MH, de Heer E, Peters DJ. Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am J Physiol Renal Physiol 300: F1193-F1202, 2011. First publis

  3. Inhibition of dengue virus entry and multiplication into monocytes using RNA interference.

    Directory of Open Access Journals (Sweden)

    Mohammed Abdelfatah Alhoot

    2011-11-01

    Full Text Available BACKGROUND: Dengue infection ranks as one of the most significant viral diseases of the globe. Currently, there is no specific vaccine or antiviral therapy for prevention or treatment. Monocytes/macrophages are the principal target cells for dengue virus and are responsible for disseminating the virus after its transmission. Dengue virus enters target cells via receptor-mediated endocytosis after the viral envelope protein E attaches to the cell surface receptor. This study aimed to investigate the effect of silencing the CD-14 associated molecule and clathrin-mediated endocytosis using siRNA on dengue virus entry into monocytes. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression analysis showed a significant down-regulation of the target genes (82.7%, 84.9 and 76.3% for CD-14 associated molecule, CLTC and DNM2 respectively in transfected monocytes. The effect of silencing of target genes on dengue virus entry into monocytes was investigated by infecting silenced and non-silenced monocytes with DENV-2. Results showed a significant reduction of infected cells (85.2%, intracellular viral RNA load (73.0%, and extracellular viral RNA load (63.0% in silenced monocytes as compared to non-silenced monocytes. CONCLUSIONS/SIGNIFICANCE: Silencing the cell surface receptor and clathrin mediated endocytosis using RNA interference resulted in inhibition of the dengue virus entry and subsequently multiplication of the virus in the monocytes. This might serve as a novel promising therapeutic target to attenuate dengue infection and thus reduce transmission as well as progression to severe dengue hemorrhagic fever.

  4. Discourse on corruption counteraction in network trade

    Directory of Open Access Journals (Sweden)

    Leonid A. Zhigun

    2015-12-01

    Full Text Available Objective to determine the specific forms of corruption and promising methods to counteract corruption in network trade. Methods the combination of inductive observations comparisons generalizations facts and trends of corruption in network trade with a logical analytical deduction of economic theories and the corruption concept are the basis of the study and provide an opportunity on the one hand to assess the level of compliance of theoretical concepts of corruption with the practice and on the other handnbsp to determine their applicability to organize opposition and create conditions to prevent its occurrence to summarize the features of corruption in the form of a kickback the discourse method was applied in this work. Results on the basis of theoretical provisions and facts of corruption in trade it is proved that it has typical characteristics of corruption in commercial and nonprofit organizations. The key reasons are identified why corruption occurs in trade. Among them supply of poor quality goods at inflated prices leading to bribery in the form of laquopersonal bonusraquo to administrator of the trading organization when selling goods by an unscrupulous supplier and also supply goods to the trade organizations which will not buy without kickback. Most of these corrupt deals are carried out by natural monopolies in the form of state and municipal procurement. In some cases the kickback is the argument stimulating the decision to introduce new and advanced technologies. The factors that lead to corruption in trade are listed and reasonable methods to counteract it are grounded allowing to create conditions for its eradication in other branches of business as well. Scientific novelty for the first time a generalization has been made about the deficit as the driving force in the mechanism when the bribegivers and bribetakers change places. Practical significance the main provisions and conclusions of the article can be used in the

  5. The effect of hydrogen ion on the steady-state multiplicity of substrate-inhibited enzymatic reactions. II. Transient behavior.

    Science.gov (United States)

    Elnashaie, S S; Elrifaie, M A; Ibrahim, G; Badra, G

    1983-12-01

    In this paper we concentrate our attention on the stability and transient behavior of the isothermal system (CSTR) with a substrate-inhibited enzyme reaction producing hydrogen ions. Our investigation covers the region of multiple steady states uncovered previously (1) (ordinary hysteresis and isola). We investigate the local stability characteristics of the different steady states, the effect of the initial condition on the transient behavior and the response of the system to feed disturbances of various magnitudes and durations.

  6. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    Science.gov (United States)

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  7. Electrical stimulation counteracts muscle decline in seniors.

    Science.gov (United States)

    Kern, Helmut; Barberi, Laura; Löfler, Stefan; Sbardella, Simona; Burggraf, Samantha; Fruhmann, Hannah; Carraro, Ugo; Mosole, Simone; Sarabon, Nejc; Vogelauer, Michael; Mayr, Winfried; Krenn, Matthias; Cvecka, Jan; Romanello, Vanina; Pietrangelo, Laura; Protasi, Feliciano; Sandri, Marco; Zampieri, Sandra; Musaro, Antonio

    2014-01-01

    The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise. We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function. We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity. ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF-1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis. Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.

  8. ISG15 counteracts Listeria monocytogenes infection

    Science.gov (United States)

    Radoshevich, Lilliana; Impens, Francis; Ribet, David; Quereda, Juan J; Nam Tham, To; Nahori, Marie-Anne; Bierne, Hélène; Dussurget, Olivier; Pizarro-Cerdá, Javier; Knobeloch, Klaus-Peter; Cossart, Pascale

    2015-01-01

    ISG15 is an interferon-stimulated, linear di-ubiquitin-like protein, with anti-viral activity. The role of ISG15 during bacterial infection remains elusive. We show that ISG15 expression in nonphagocytic cells is dramatically induced upon Listeria infection. Surprisingly this induction can be type I interferon independent and depends on the cytosolic surveillance pathway, which senses bacterial DNA and signals through STING, TBK1, IRF3 and IRF7. Most importantly, we observed that ISG15 expression restricts Listeria infection in vitro and in vivo. We made use of stable isotope labeling in tissue culture (SILAC) to identify ISGylated proteins that could be responsible for the protective effect. Strikingly, infection or overexpression of ISG15 leads to ISGylation of ER and Golgi proteins, which correlates with increased secretion of cytokines known to counteract infection. Together, our data reveal a previously uncharacterized ISG15-dependent restriction of Listeria infection, reinforcing the view that ISG15 is a key component of the innate immune response. DOI: http://dx.doi.org/10.7554/eLife.06848.001 PMID:26259872

  9. Multiplicity distributions in the binary fragmenting with inhibition at the transition line

    Energy Technology Data Exchange (ETDEWEB)

    Botet, R. [Paris-11 Univ., 91 - Orsay (France); Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1996-03-01

    Properties of the fragment multiplicity distribution obtained in the sequential binary fragmentation process at the transition line are investigated. It is shown that the multifragment cumulant correlation functions have the hierarchical, linked-pair structure. Several distinct classes of multiplicity domains are clearly identified, and the asymptotic appearance of the Koba - Nielsen - Olesen scaling is discussed. (author). 36 refs.

  10. Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX and Sirtuin1 (SIRT1

    Directory of Open Access Journals (Sweden)

    Ming-Hung Lin

    2016-06-01

    Full Text Available Bladder cancer is one of the most frequent cancers among males, and its poor survival rate reflects problems with aggressiveness and chemo-resistance. Recent interest has focused on the use of chemopreventatives (nontoxic natural agents that may suppress cancer progression to induce targeted apoptosis for cancer therapy. Capsaicin, which has anti-cancer properties, is one such agent. It is known to preferentially inhibit a tumor-associated NADH oxidase (tNOX that is preferentially expressed in cancer/transformed cells. Here, we set out to elucidate the correlation between tNOX expression and the inhibitory effects of capsaicin in human bladder cancer cells. We showed that capsaicin downregulates tNOX expression and decreases bladder cancer cell growth by enhancing apoptosis. Moreover, capsaicin was found to reduce the expression levels of several proteins involved in cell cycle progression, in association with increases in the cell doubling time and enhanced cell cycle arrest. Capsaicin was also shown to inhibit the activation of ERK, thereby reducing the phosphorylation of paxillin and FAK, which leads to decreased cell migration. Finally, our results indicate that RNA interference-mediated tNOX depletion enhances spontaneous apoptosis, prolongs cell cycle progression, and reduces cell migration and the epithelial-mesenchymal transition. We also observed a downregulation of sirtuin 1 (SIRT1 in these tNOX-knockdown cells, a deacetylase that is important in multiple cellular functions. Taken together, our results indicate that capsaicin inhibits the growth of bladder cancer cells by inhibiting tNOX and SIRT1 and thereby reducing proliferation, attenuating migration, and prolonging cell cycle progression.

  11. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.

    2003-01-01

    Prokaryotic chromosomes encode toxin-antitoxin loci, often in multiple copies. In most cases, the function of these genes is not known. The chpA (mazEF) locus of Escherichia coli has been described as a cell killing module that induces bacterial apoptosis during nutritional stress. However, we...... found recently that ChpAK (MazF) does not confer cell killing but rather, induces a bacteriostatic condition from which the cells could be resuscitated. Results presented here yield a mechanistic explanation for the detrimental effect on cell growth exerted by ChpAK and the homologous ChpBK protein of E....... coli. We show that both proteins inhibit translation by inducing cleavage of translated mRNAs. Consistently, the inhibitory effect of the proteins was counteracted by tmRNA. Amino acid starvation induced strong transcription of chpA that depended on Lon protease but not on ppGpp. Simultaneously, Chp...

  12. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis.

    Science.gov (United States)

    Pandey, Manoj K; Gowda, Krishne; Sung, Shen-Shu; Abraham, Thomas; Budak-Alpdogan, Tulin; Talamo, Giampolo; Dovat, Sinisa; Amin, Shantu

    2017-09-01

    Bruton's tyrosine kinase (BTK) regulates many vital signaling pathways and plays a critical role in cell proliferation, survival, migration, and resistance. Previously, we reported that a small molecule, KS99, is an inhibitor of tubulin polymerization. In the present study, we explored whether KS99 is a dual inhibitor of BTK and tubulin polymerization. Although it is known that BTK is required for clonogenic growth and resistance, and microtubules are essential for cancer cell growth, dual targeting of these two components has not been explored previously. Through docking studies, we predicted that KS99 interacts directly with the catalytic domain of BTK and inhibits phosphorylation at the Y223 residue and kinase activities. Treatment of KS99 reduces the cell viability of multiple myeloma (MM) and CD138(+) cells, with an IC50 of between 0.5 and 1.0 μmol/L. We found that KS99 is able to induce apoptosis in MM cells in a caspase-dependent manner. KS99 suppressed the receptor activator of NF-κB ligand (RANKL)-induced differentiation of macrophages to osteoclasts in a dose-dependent manner and, importantly, inhibited the expression of cytokines associated with bone loss. Finally, we found that KS99 inhibits the in vivo tumor growth of MM cells through the inhibition of BTK and tubulin. Overall, our results show that dual inhibition of BTK and tubulin polymerization by KS99 is a viable option in MM treatment, particularly in the inhibition of refraction and relapse. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  13. Restraint and Cancellation: Multiple Inhibition Deficits in Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Schachar, Russell; Logan, Gordon D.; Robaey, Philippe; Chen, Shirley; Ickowicz, Abel; Barr, Cathy

    2007-01-01

    We used variations of the stop signal task to study two components of motor response inhibition--the ability to withhold a strong response tendency (restraint) and the ability to cancel an ongoing action (cancellation)--in children with a diagnosis of attention deficit hyperactivity disorder (ADHD) and in non-ADHD controls of similar age (ages…

  14. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Graduate School of Anhui Medical University, Hefei (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yang, Yang [Department of Hematology, General Hospital of Air Force, Beijing (China); Wang, Lu; Gao, Chun-Ji [Department of Hematology, PLA General Hospital, Beijing (China); Guo, Zi-Kuan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wu, Chu-Tse [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Wang, Li-Sheng, E-mail: Wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China)

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  15. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    Science.gov (United States)

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.

  16. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer's disease-related sites.

    Directory of Open Access Journals (Sweden)

    Danielle Frost

    Full Text Available Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheimer's disease (AD. Pharmacological inhibition of this kinase may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in AD. Here we test the ability of harmine, and numerous additional β-carboline compounds, to inhibit the DYRK1A dependent phosphorylation of tau protein on serine 396, serine 262/serine 356 (12E8 epitope, and threonine 231 in cell culture assays and in vitro phosphorylation assays. Results demonstrate that the β-carboline compounds (1 potently reduce the expression of all three phosphorylated forms of tau protein, and (2 inhibit the DYRK1A catalyzed direct phosphorylation of tau protein on serine 396. By assaying several β-carboline compounds, we define certain chemical groups that modulate the affinity of this class of compounds for inhibition of tau phosphorylation.

  17. Subarray-based FDA radar to counteract deceptive ECM signals

    Science.gov (United States)

    Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang

    2016-12-01

    In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.

  18. DL-alpha-difluoromethylarginine inhibits intracellular Trypanosoma cruzi multiplication by affecting cell division but not trypomastigote-amastigote transformation.

    Science.gov (United States)

    Yakubu, M A; Basso, B; Kierszenbaum, F

    1992-06-01

    DL-alpha-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), decreases the capacity of Trypanosoma cruzi to invade and multiply within different types of mammalian host cells in vitro. In this work we found that inhibition of intracellular growth results from selective impairment of amastigote division without appreciable alteration of the capacity of the invading trypomastigotes to transform into the replicative amastigote form. Addition of agmatine, the product of arginine decarboxylation, reversed the inhibitory effect of DFMA. Inhibition of ornithine decarboxylase activity by DL-alpha-difluoromethylornithine present in the medium prior to and during infection did not affect trypomastigote transformation or amastigote replication and did not change the magnitude of the inhibitory effect of DFMA on parasite multiplication. Hence, neither polyamine synthesis via the ornithine decarboxylase pathway nor salvage of host cell polyamines by T. cruzi appeared to be a likely explanation for the normal rate of parasite transformation that was seen in the presence of DFMA. Two clones of T. cruzi, TMSU-1 and TMSU-2, were tested for their degrees of sensitivity to the inhibitory effects of DFMA. Both trypomastigote association with (i.e., binding to and penetration of) myoblasts, and intracellular amastigote multiplication by either clone were found to be significantly (P less than 0.05) but not completely inhibited by DFMA. Therefore, the partial inhibition of T. cruzi infectivity and replication caused by DFMA is unlikely to represent a composite of effects of the drug on DFMA-sensitive and insensitive clones.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    Directory of Open Access Journals (Sweden)

    Eugene B. Chang

    2013-01-01

    Full Text Available Compound K (20-O-beta-D-glucopyranosyl-20(S-protopanaxadiol, CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC. A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.

  20. Multiple AMPK activators inhibit l-carnitine uptake in C2C12 skeletal muscle myotubes.

    Science.gov (United States)

    Shaw, Andy; Jeromson, Stewart; Watterson, Kenneth R; Pediani, John D; Gallagher, Iain J; Whalley, Tim; Dreczkowski, Gillian; Brooks, Naomi; Galloway, Stuart D; Hamilton, D Lee

    2017-06-01

    Mutations in the gene that encodes the principal l-carnitine transporter, OCTN2, can lead to a reduced intracellular l-carnitine pool and the disease Primary Carnitine Deficiency. l-Carnitine supplementation is used therapeutically to increase intracellular l-carnitine. As AMPK and insulin regulate fat metabolism and substrate uptake, we hypothesized that AMPK-activating compounds and insulin would increase l-carnitine uptake in C2C12 myotubes. The cells express all three OCTN transporters at the mRNA level, and immunohistochemistry confirmed expression at the protein level. Contrary to our hypothesis, despite significant activation of PKB and 2DG uptake, insulin did not increase l-carnitine uptake at 100 nM. However, l-carnitine uptake was modestly increased at a dose of 150 nM insulin. A range of AMPK activators that increase intracellular calcium content [caffeine (10 mM, 5 mM, 1 mM, 0.5 mM), A23187 (10 μM)], inhibit mitochondrial function [sodium azide (75 μM), rotenone (1 μM), berberine (100 μM), DNP (500 μM)], or directly activate AMPK [AICAR (250 μM)] were assessed for their ability to regulate l-carnitine uptake. All compounds tested significantly inhibited l-carnitine uptake. Inhibition by caffeine was not dantrolene (10 μM) sensitive despite dantrolene inhibiting caffeine-mediated calcium release. Saturation curve analysis suggested that caffeine did not competitively inhibit l-carnitine transport. To assess the potential role of AMPK in this process, we assessed the ability of the AMPK inhibitor Compound C (10 μM) to rescue the effect of caffeine. Compound C offered a partial rescue of l-carnitine uptake with 0.5 mM caffeine, suggesting that AMPK may play a role in the inhibitory effects of caffeine. However, caffeine likely inhibits l-carnitine uptake by alternative mechanisms independently of calcium release. PKA activation or direct interference with transporter function may play a role. Copyright © 2017 the American Physiological Society.

  1. Cuprizone inhibits demyelinating leukomyelitis by reducing immune responses without virus exacerbation in an infectious model of multiple sclerosis.

    Science.gov (United States)

    Herder, Vanessa; Hansmann, Florian; Stangel, Martin; Schaudien, Dirk; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2012-03-01

    Multiple sclerosis is one of the most common demyelinating central nervous system diseases in young adults. Theiler's murine encephalomyelitis (TME) is a widely used virus-induced murine model for human myelin disorders. Immunosuppressive approaches generally reduce antiviral immunity and therefore increase virus dissemination with clinical worsening. In the present study, the progressive course of TME was significantly delayed due to a five-week cuprizone feeding period. Cuprizone was able to minimize demyelinating leukomyelitis without virus exacerbation. This phenomenon is supposed to be a consequence of selective inhibition of detrimental inflammatory responses with maintained protective immunity against the virus.

  2. The anticancer agent PB-100, selectively active on malignant cells, inhibits multiplication of sixteen malignant cell lines, even multidrug resistant

    Directory of Open Access Journals (Sweden)

    Beljanski Mirko

    2000-01-01

    Full Text Available The plant-derived anticancer agent PB-100 selectively destroys cancer cells, even when multidrug resistant; yet, it does not inhibit normal (non-malignant cell multiplication. Testing of PB-100 on sixteen malignant cell lines, several multidrug resistant, as well as on five normal cell lines, confirmed our previous results. Flavopereirine and dihydroflavopereirine, the active principles of PB-100, were chemically synthesized and displayed the same selectivity for tumor cells as the purified plant extract, being active at even lower concentrations.

  3. Allitridi inhibits multiple cardiac potassium channels expressed in HEK 293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Xu

    Full Text Available Allitridi (diallyl trisulfide is an active compound (volatile oil from garlic. The previous studies reported that allitridi had anti-arrhythmic effect. The potential ionic mechanisms are, however, not understood. The present study was designed to determine the effects of allitridi on cardiac potassium channels expressed in HEK 293 cells using a whole-cell patch voltage-clamp technique and mutagenesis. It was found that allitridi inhibited hKv4.3 channels (IC(50 = 11.4 µM by binding to the open channel, shifting availability potential to hyperpolarization, and accelerating closed-state inactivation of the channel. The hKv4.3 mutants T366A, T367A, V392A, and I395A showed a reduced response to allitridi with IC(50s of 35.5 µM, 44.7 µM, 23.7 µM, and 42.4 µM. In addition, allitridi decreased hKv1.5, hERG, hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells with IC(50s of 40.2 µM, 19.6 µM and 17.7 µM. However, it slightly inhibited hKir2.1 current (100 µM, inhibited by 9.8% at -120 mV. Our results demonstrate for the first time that allitridi preferably blocks hKv4.3 current by binding to the open channel at T366 and T367 of P-loop helix, and at V392 and I395 of S6 domain. It has a weak inhibition of hKv1.5, hERG, and hKCNQ1/hKCNE1 currents. These effects may account for its anti-arrhythmic effect observed in experimental animal models.

  4. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.

    Science.gov (United States)

    Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R

    2015-10-01

    The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.

  5. Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination

    DEFF Research Database (Denmark)

    Al Nimer, Faiez; Elliott, Christina; Bergman, Joakim

    2016-01-01

    OBJECTIVE: We aimed to examine the regulation of lipocalin-2 (LCN2) in multiple sclerosis (MS) and its potential functional relevance with regard to myelination and neurodegeneration. METHODS: We determined LCN2 levels in 3 different studies: (1) in CSF and plasma from a case-control study compar...

  6. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation

    NARCIS (Netherlands)

    Groen, R.W.J.; de Rooij, M.F.M.; Kocemba, K.A.; Reijmers, R.M.; de Haan-Kramer, A.; Overdijk, M.B.; Aalders, L.; Rozemuller, H.; Martens, A.C.M.; Bergsagel, P.L.; Kersten, M.J.; Pals, S.T.; Spaargaren, M.

    2011-01-01

    Background Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow

  7. Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways.

    Science.gov (United States)

    Lin, Y; Jia, R; Liu, Y; Gao, Y; Zeng, X; Kou, J; Yu, B

    2014-12-01

    Diosgenin possesses anti-inflammatory and anticancer properties. Activated neutrophils produce high concentrations of the superoxide anion which is involved in the pathophysiology of inflammation-related diseases and cancer. In the present study, the inhibitory effect and possible mechanisms of diosgenin on superoxide generation were investigated in mouse bone marrow neutrophils. Diosgenin potently and concentration-dependently inhibited the extracellular and intracellular superoxide anion generation in Formyl-Met-Leu-Phe (FMLP)- activated neutrophils, with IC50 values of 0.50 ± 0.08 μM and 0.66 ± 0.13 μM, respectively. Such inhibition was not mediated by scavenging the superoxide anion or by a cytotoxic effect. Diosgenin inhibited the phosphorylation of p47phox and membrane translocation of p47phox and p67phox, and thus blocking the assembly of nicotinamide adenine dinucleotide phosphate oxidase. Moreover, cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were also effectively increased by diosgenin. It attenuated FMLP-induced increase of phosphorylation of cytosolic phospholipase A (cPLA2), p21-activated kinase (PAK), Akt, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK). Our data indicate that diosgenin exhibits inhibitory effects on superoxide anion production through the blockade of cAMP, PKA, cPLA2, PAK, Akt and MAPKs signaling pathways. The results may explain the clinical implications of diosgenin in the treatment of inflammation-related disorders.

  8. Grape extracts inhibit multiple events in the cell biology of cholera intoxication.

    Directory of Open Access Journals (Sweden)

    Srikar Reddy

    Full Text Available Vibrio cholerae produces cholera toxin (CT, an AB5 protein toxin that is primarily responsible for the profuse watery diarrhea of cholera. CT is secreted into the extracellular milieu, but the toxin attacks its Gsα target within the cytosol of a host cell. Thus, CT must cross a cellular membrane barrier in order to function. This event only occurs after the toxin travels by retrograde vesicular transport from the cell surface to the endoplasmic reticulum (ER. The catalytic A1 polypeptide then dissociates from the rest of the toxin and assumes an unfolded conformation that facilitates its transfer to the cytosol by a process involving the quality control system of ER-associated degradation. Productive intoxication is blocked by alterations to the vesicular transport of CT and/or the ER-to-cytosol translocation of CTA1. Various plant compounds have been reported to inhibit the cytopathic activity of CT, so in this work we evaluated the potential anti-CT properties of grape extract. Two grape extracts currently sold as nutritional supplements inhibited CT and Escherichia coli heat-labile toxin activity against cultured cells and intestinal loops. CT intoxication was blocked even when the extracts were added an hour after the initial toxin exposure. A specific subset of host-toxin interactions involving both the catalytic CTA1 subunit and the cell-binding CTB pentamer were affected. The extracts blocked toxin binding to the cell surface, prevented unfolding of the isolated CTA1 subunit, inhibited CTA1 translocation to the cytosol, and disrupted the catalytic activity of CTA1. Grape extract could thus potentially serve as a novel therapeutic to prevent or possibly treat cholera.

  9. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  10. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens

    Science.gov (United States)

    Rumah, Kareem R.; Vartanian, Timothy K.; Fischetti, Vincent A.

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs. PMID:28180112

  11. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens.

    Science.gov (United States)

    Rumah, Kareem R; Vartanian, Timothy K; Fischetti, Vincent A

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs.

  12. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth.

    Science.gov (United States)

    Beider, Katia; Begin, Michal; Abraham, Michal; Wald, Hanna; Weiss, Ido D; Wald, Ori; Pikarsky, Eli; Zeira, Evelyne; Eizenberg, Orly; Galun, Eithan; Hardan, Izhar; Engelhard, Dan; Nagler, Arnon; Peled, Amnon

    2011-03-01

    The chemokine receptor CXCR4 and its ligand CXCL12 are involved in the progression and dissemination of a diverse number of solid and hematological malignancies. Binding CXCL12 to CXCR4 activates a variety of intracellular signal transduction pathways that regulate cell chemotaxis, adhesion, survival, proliferation, and apoptosis. Here, we demonstrate that the CXCR4 antagonist, 4F-benzoyl-TN14003 (BKT140), but not AMD3100, exhibits a CXCR4-dependent preferential cytotoxicity toward malignant cells of hematopoietic origin. BKT140 significantly and preferentially stimulated multiple myeloma apoptotic cell death. BKT140 treatment induced morphological changes, phosphatidylserine externalization, decreased mitochondrial membrane potential, caspase-3 activation, sub-G1 arrest, and DNA double-stranded breaks. In vivo, subcutaneous injections of BKT140 significantly reduced, in a dose-dependent manner, the growth of human acute myeloid leukemia and multiple myeloma xenografts. Tumors from animals treated with BKT140 were smaller in size and weights, had larger necrotic areas and high apoptotic scores. Taken together, these results suggest a potential therapeutic use for BKT140 in multiple myeloma and leukemia patients. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  13. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production.

  14. In COS cells Vpu can both stabilize tetherin expression and counteract its antiviral activity.

    Science.gov (United States)

    Waheed, Abdul A; Kuruppu, Nishani D; Felton, Kathryn L; D'Souza, Darren; Freed, Eric O

    2014-01-01

    The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.

  15. Angiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells.

    Science.gov (United States)

    Crajoinas, Renato O; Polidoro, Juliano Z; Carneiro de Morais, Carla P A; Castelo-Branco, Regiane C; Girardi, Adriana C C

    2016-11-01

    Binding of angiotensin II (ANG II) to the AT1 receptor (AT1R) in the proximal tubule stimulates Na(+)/H(+) exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/AT1R-induced inihibitory G protein (Gi) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II reduces cAMP/PKA-mediated phosphorylation of NHE3 on serine 552 and, in doing so, stimulates NHE3 activity. Under basal conditions, ANG II stimulated NHE3 activity but did not affect PKA-mediated NHE3 phosphorylation at serine 552 in opossum kidney (OKP) cells. However, in the presence of the cAMP-elevating agent forskolin (FSK), ANG II blocked FSK-induced NHE3 inhibition, reduced intracellular cAMP concentrations, lowered PKA activity, and prevented the FSK-mediated increase in NHE3 serine 552 phosphorylation. All effects of ANG II were blocked by pretreating OKP cells with the AT1R antagonist losartan, highlighting the contribution of the AT1R/Gi pathway in ANG II-mediated NHE3 upregulation under cAMP-elevating conditions. Accordingly, Gi inhibition by pertussis toxin treatment decreased NHE3 activity both in vitro and in vivo and, more importantly, prevented the stimulatory effect of ANG II on NHE3 activity in rat proximal tubules. Collectively, our results suggest that ANG II counteracts the effects of cAMP/PKA on NHE3 phosphorylation and inhibition by activating the AT1R/Gi pathway. Moreover, these findings support the notion that NHE3 dephosphorylation at serine 552 may represent a key event in the regulation of renal proximal tubule sodium handling by ANG II in the presence of natriuretic hormones that promote cAMP accumulation and transporter phosphorylation.

  16. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Guo, Dong [Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Dong, Zhongqi [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Zhang, Wei [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Zhang, Lei; Huang, Shiew-Mei [Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD (United States); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2013-11-15

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic

  17. Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules.

    Science.gov (United States)

    Farrar, Christine E; Siu, Karen K W; Howell, P Lynne; Jarrett, Joseph T

    2010-11-23

    Biotin synthase (BS) is a member of the "SAM radical" superfamily of enzymes, which catalyze reactions in which the reversible or irreversible oxidation of various substrates is coupled to the reduction of the S-adenosyl-l-methionine (AdoMet) sulfonium to generate methionine and 5'-deoxyadenosine (dAH). Prior studies have demonstrated that these products are modest inhibitors of BS and other members of this enzyme family. In addition, the in vivo catalytic activity of Escherichia coli BS requires expression of 5'-methylthioadenosine/S-adenosyl-l-homocysteine nucleosidase, which hydrolyzes 5'-methylthioadenosine (MTA), S-adenosyl-l-homocysteine (AdoHcy), and dAH. In the present work, we confirm that dAH is a modest inhibitor of BS (K(i) = 20 μM) and show that cooperative binding of dAH with excess methionine results in a 3-fold enhancement of this inhibition. However, with regard to the other substrates of MTA/AdoHcy nucleosidase, we demonstrate that AdoHcy is a potent inhibitor of BS (K(i) ≤ 650 nM) while MTA is not an inhibitor. Inhibition by both dAH and AdoHcy likely accounts for the in vivo requirement for MTA/AdoHcy nucleosidase and may help to explain some of the experimental disparities between various laboratories studying BS. In addition, we examine possible inhibition by other AdoMet-related biomolecules present as common contaminants in commercial AdoMet preparations and/or generated during an assay, as well as by sinefungin, a natural product that is a known inhibitor of several AdoMet-dependent enzymes. Finally, we examine the catalytic activity of BS with highly purified AdoMet in the presence of MTAN to relieve product inhibition and present evidence suggesting that the enzyme is half-site active and capable of undergoing multiple turnovers in vitro.

  18. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

    Directory of Open Access Journals (Sweden)

    Charles J Shoemaker

    Full Text Available Ebola virus (EBOV is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50 1.6 to 8.0 µM at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1, a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.

  19. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

    Science.gov (United States)

    Shoemaker, Charles J; Schornberg, Kathryn L; Delos, Sue E; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G; Johansen, Lisa M; White, Judith M

    2013-01-01

    Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50) 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.

  20. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Directory of Open Access Journals (Sweden)

    Emmanuelle eCoque

    2014-08-01

    Full Text Available Spinal muscular atrophy (SMA is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the surviving motor neuron 1 (SMN1 gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK, which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myocytes, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.

  1. Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms.

    Science.gov (United States)

    Cheng, You-Hong; Utsunomiya, Hiroki; Pavone, Mary Ellen; Yin, Ping; Bulun, Serdar E

    2011-04-01

    Previous studies have indicated that retinoic acid (RA) may be therapeutic for endometrial cancer. However, the downstream target genes and pathways triggered by ligand-activated RA receptor α (RARα) in endometrial cancer cells are largely unknown. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and immunoblotting assays were used to assess the roles of RA and the RA agonist (AM580) in the growth of endometrial cancer cells. Illumina-based microarray expression profiling of endometrial Ishikawa cells incubated with and without AM580 for 1, 3, and 6 h was performed. We found that both RA and AM580 markedly inhibited endometrial cancer cell proliferation, while knockdown of RARα could block AM580 inhibition. Knockdown of RARα significantly increased proliferating cell nuclear antigen and BCL2 protein levels. Incubation of Ishikawa cells with or without AM580 followed by microarray expression profiling showed that 12 768 genes out of 47 296 gene probes were differentially expressed with significant P values. We found that 90 genes were the most regulated genes with the most significant P value (PAM580 highly regulated these genes, whereas chromatin immunoprecipitation-PCR assay demonstrated that ligand-activated RARα interacted with the promoter of these genes in intact endometrial cancer cells. AM580 also significantly altered 18 pathways including those related to cell growth, differentiation, and apoptosis. In conclusion, AM580 treatment of Ishikawa cells causes the differential expression of a number of RARα target genes and activation of signaling pathways. These pathways could, therefore, mediate the carcinogenesis of human endometrial cancer.

  2. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets.

    Science.gov (United States)

    Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa

    2014-01-01

    Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.

  3. Multiple sevoflurane anesthesia in pregnant mice inhibits neurogenesis of fetal hippocampus via repressing transcription factor Pax6.

    Science.gov (United States)

    Fang, Fang; Song, Ruixue; Ling, Xiaomim; Peng, Mengyuan; Xue, Zhanggang; Cang, Jing

    2017-03-06

    Sevoflurane is widely used in non-obstetric surgeries of pregnant women, but its influences on fetal brain are still not fully known. We set out to assess the effects of multiple maternal sevoflurane exposure on neurogenesis and cognitive dysfunction in fetus and offspring. Pregnant mice (gestational day 15.5) and cultured mouse neural stem cells (NSCs) received daily sevoflurane exposure (2.5%×2h and 4.1%×2h respectively) for three consecutive days. Cognitive function of the offspring was determined with the Morris water maze. The expression of Ccnd1 and Pax6 in fetal brains and NSCs were analyzed by immunofluorescence, Western blot and qPCR. The neurogenesis was evaluated by BrdU staining. Results showed that multiple sevoflurane exposure in pregnant mice caused the decrease of Pax6 and Ccnd1 expression, the inhibition of NSCs proliferation and fetal hippocampus neurogenesis, which may contribute to the impaired learning and memory in offspring at P28. Moreover, lithium mitigated the sevoflurane-induced reduction in Pax6, Ccnd1 and neurogenesis. All these results suggest that multiple sevoflurane exposure may induce detrimental effects in the developing brains of fetus and offspring by the depression of neurogenesis through Pax6 pathway.

  4. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva

    Directory of Open Access Journals (Sweden)

    Natalia Cadaxo Rochael

    2013-09-01

    Full Text Available Leishmania parasites expose phosphatidylserine (PS on their surface, a process that has been associated with regulation of host's immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.

  5. Tissue inhibitor of metalloproteinase-1 counteracts glucolipotoxicity in the pancreatic β-cell line INS-1

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong-wei; ZHU Han-yu; WANG Jian-zhong; FU Bo; L(U) Yang; HONG Quan; XIE Yuan-sheng; CHEN Xiang-mei

    2011-01-01

    Background Glucolipotoxicity might play an important role in the β cell decompensation stage during the development of obesity-associated type 2 diabetes.Tissue inhibitor of metalloproteinase-1 (TIMP-1) inhibits matrix metalloproteinase (MMP) activity and regulates proliferation and apoptosis of a variety of cell types,including pancreatic β-cells.In the present study,we investigated whether TIMP-1 counteracts glucolipotoxicity in the pancreatic β-cell line INS-1.Methods INS-1 cells were incubated in normal or high glucose,with or without palmitate (0.4 mmol/L),in the presence of TIMP-1 or MMP inhibitor GM60001.In some experiments,cells were pretreated with phosphatidylinositol-3 (Pl-3) kinase inhibitor,LY294002 or wortmannin.The amount of dead INS-1 cells was determined by HO342 and propidium iodide staining.Akt phosphorylation was evaluated by Western blotting analysis to investigate a possible mechanism of TIMP-1's action.Results TIMP-1 protected INS-1 cells from glucolipotoxicity independent of MMP inhibition.TIMP-1 stimulated Akt phosphorylation.Inhibition of the PI-3 kinase pathway abolished the survival effect of TIMP-1.Conclusion TIMP-1 may counteract glucolipotoxicity induced β-cell death via a PI-3 kinase pathway.

  6. Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41.

    Science.gov (United States)

    Shen, Guanghui; Wang, Kezhen; Wang, Shuai; Cai, Mingsheng; Li, Mei-li; Zheng, Chunfu

    2014-10-01

    The interferon (IFN)-inducible viperin protein restricts a broad range of viruses. However, whether viperin plays a role during herpes simplex virus 1 (HSV-1) infection is poorly understood. In the present study, it was shown for the first time that wild-type (WT) HSV-1 infection couldn't induce viperin production, and ectopically expressed viperin inhibited the replication of UL41-null HSV-1 but not WT viruses. The underlying molecular mechanism is that UL41 counteracts viperin's antiviral activity by reducing its mRNA accumulation.

  7. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  8. Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies.

    Science.gov (United States)

    Podar, Klaus; Anderson, Kenneth C

    2007-03-01

    Due to its direct effects on endothelial cells, circulatory endothelial progenitor cells, hematopoietic stem cells, immune cells, osteoclasts, osteoblasts and neurons, vascular endothelial growth factor (VEGF) is linked to tumor cell development, progression, metastatic osteolysis and drug resistance, as well as clinical features such as metastatic osteolysis. Importantly, recent advances in the understanding of mechanisms of action of antiangiogenic drugs/VEGF-inhibitors have fundamentally changed treatment regimens in cancer. VEGF plays a key role not only in solid tumors but also in hematologic malignancies, including multiple myeloma (MM). Despite recent advances in our understanding of MM pathogenesis and novel therapies (bortezomib and lenalidomide), it remains incurable. Our own and others' work suggest that VEGF-inhibitors e.g., the small molecule VEGF receptor inhibitor pazopanib, may also improve patient outcome in MM.

  9. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition.

    Science.gov (United States)

    Trejo-Solís, Cristina; Pedraza-Chaverrí, Jose; Torres-Ramos, Mónica; Jiménez-Farfán, Dolores; Cruz Salgado, Arturo; Serrano-García, Norma; Osorio-Rico, Laura; Sotelo, Julio

    2013-01-01

    Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

  10. Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2013-01-01

    Full Text Available Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

  11. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import.

    Directory of Open Access Journals (Sweden)

    Chong He

    2014-12-01

    Full Text Available The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS, but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.

  12. Negative priming 1985 to 2015: a measure of inhibition, the emergence of alternative accounts, and the multiple process challenge.

    Science.gov (United States)

    D'Angelo, Maria C; Thomson, David R; Tipper, Steven P; Milliken, Bruce

    2016-10-01

    In this article, three generations of authors describe the background to the original article; the subsequent emergence of vigorous debates concerning what negative priming actually reflects, where radically different accounts based on memory retrieval were proposed; and a re-casting of the conceptual issues underlying studies of negative priming. What started as a simple observation (slowed reaction times) and mechanism (distractor inhibition) appears now to be best explained by a multiple mechanism account involving both episodic binding and retrieval processes as well as an inhibitory process. Emerging evidence from converging techniques such as functional magnetic resonance imaging (fMRI), and especially electroencephalography (EEG), is beginning to identify these different processes. The past 30 years of negative priming experiments has revealed the dynamic and complex cognitive processes that mediate what appear to be apparently simple behavioural effects.

  13. Acute Toxicity Prediction in Multiple Species by Leveraging Mechanistic ToxCast Mitochondrial Inhibition Data and Simulation of Oral Bioavailability.

    Science.gov (United States)

    Bhhatarai, Barun; Wilson, Daniel M; Bartels, Michael J; Chaudhuri, Shubhra; Price, Paul S; Carney, Edward W

    2015-10-01

    There is great interest in assessing the in vivo toxicity of chemicals using nonanimal alternatives. However, acute mammalian toxicity is not adequately predicted by current in silico or in vitro approaches. Mechanisms of acute toxicity are likely conserved across invertebrate, aquatic, and mammalian species, suggesting that dose-response concordance would be high and in vitro mechanistic data could predict responses in multiple species under conditions of similar bioavailability. We tested this hypothesis by comparing acute toxicity between rat, daphnia, and fish and by comparing their respective acute data to inhibition of mitochondria membrane potential (MMP) using U.S. Environmental Protection Agency ToxCast in vitro high-throughput screening data. Logarithmic scatter plots of acute toxicity data showed a clear relationship between fish, daphnia, and intravenous rat but not oral rat data. Similar plots versus MMP showed a well-delineated upper boundary for fish, daphnia, and intravenous data but were scattered without an upper boundary for rat oral data. Adjustments of acute oral rat toxicity values by simulating fractional absorption and CYP-based metabolism as well as removing compounds with hydrolyzable linkages or flagged as substrates for glucuronidation delineated an upper boundary for rat oral toxicity versus MMP. Mitochondrial inhibition at low concentrations predicted highly acutely toxic chemicals for fish and daphnia but not the rat where toxicity was often attenuated. This use of a single high-throughput screening assay to predict acute toxicity in multiple species represents a milestone and highlights the promise of such approaches but also the need for refined tools to address systemic bioavailability and the impact of limited absorption and first pass metabolism.

  14. Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα

    Science.gov (United States)

    Hu, Yani; O’Boyle, Kaitlin; Auer, Jim; You, Fuping; Wang, Penghua; Fikrig, Erol

    2017-01-01

    UBXN proteins likely participate in the global regulation of protein turnover, and we have shown that UBXN1 interferes with RIG-I-like receptor (RLR) signaling by interacting with MAVS and impeding its downstream effector functions. Here we demonstrate that over-expression of multiple UBXN family members decreased lentivirus and retrovirus production by several orders-of-magnitude in single cycle assays, at the level of long terminal repeat-driven transcription, and three family members, UBXN1, N9, and N11 blocked the canonical NFκB pathway by binding to Cullin1 (Cul1), inhibiting IκBα degradation. Multiple regions of UBXN1, including its UBA domain, were critical for its activity. Elimination of UBXN1 resulted in early murine embryonic lethality. shRNA-mediated knockdown of UBXN1 enhanced human immunodeficiency virus type 1 (HIV) production up to 10-fold in single cycle assays. In primary human fibroblasts, knockdown of UBXN1 caused prolonged degradation of IκBα and enhanced NFκB signaling, which was also observed after CRISPR-mediated knockout of UBXN1 in mouse embryo fibroblasts. Knockout of UBXN1 significantly up- and down-regulated hundreds of genes, notably those of several cell adhesion and immune signaling pathways. Reduction in UBXN1 gene expression in Jurkat T cells latently infected with HIV resulted in enhanced HIV gene expression, consistent with the role of UBXN1 in modulating the NFκB pathway. Based upon co-immunoprecipitation studies with host factors known to bind Cul1, models are presented as to how UBXN1 could be inhibiting Cul1 activity. The ability of UBXN1 and other family members to negatively regulate the NFκB pathway may be important for dampening the host immune response in disease processes and also re-activating quiescent HIV from latent viral reservoirs in chronically infected individuals. PMID:28152074

  15. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression.

    Science.gov (United States)

    Robb, Ellen L; Stuart, Jeffrey A

    2014-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. As data on phytoestrogens continues to accumulate, it is clear that there is significant overlap in the cellular effects elicited by these various compounds. Here, we show that one mechanism by which a number of phytoestrogens achieve their growth inhibitory and cytoprotective effects is via induction of the mitochondrial manganese superoxide dismutase (MnSOD). Eight phytoestrogens, including resveratrol, coumestrol, kaempferol, genistein, daidzein, apigenin, isoliquirtigenin and glycitin, were tested for their ability to induce MnSOD expression in mouse C2C12 and primary myoblasts. Five of these, resveratrol, coumestrol, kaempferol, genistein and daidzein, significantly increased MnSOD expression, slowed proliferative growth and enhanced stress resistance (hydrogen peroxide LD50) . When siRNA was used to prevent the MnSOD induction by genistein, coumestrol or daidzein, none of these compounds exerted any effect on proliferative growth, and only the effect of coumestrol on stress resistance persisted. The estrogen antagonist ICI182780 prevented the increased MnSOD expression and also the changes in cell growth and stress resistance, indicating that these effects are mediated by estrogen receptors (ER). The absence of effects of resveratrol or coumestrol, but not genistein, in ERβ-null cells further indicated that this ER in particular is important in mediating these effects. Thus, an ER-mediated induction of MnSOD expression appears to underlie the growth inhibitory and cytoprotective activities of multiple phytoestrogens.

  16. Cultivable gut bacteria of scarabs (Coleoptera: Scarabaeidae) inhibit Bacillus thuringiensis multiplication.

    Science.gov (United States)

    Shan, Yueming; Shu, Changlong; Crickmore, Neil; Liu, Chunqin; Xiang, Wensheng; Song, Fuping; Zhang, Jie

    2014-06-01

    The entomopathogen Bacillus thuringiensis is used to control various pest species of scarab beetle but is not particularly effective. Gut bacteria have diverse ecological and evolutionary effects on their hosts, but whether gut bacteria can protect scarabs from B. thuringiensis infection remains poorly understood. To investigate this, we isolated 32 cultivable gut bacteria from Holotrichia oblita Faldermann, Holotrichia parallela Motschulsky, and Anomala corpulenta Motschulsky, and analyzed their effect on B. thuringiensis multiplication and Cry toxin stability. 16S rDNA analysis indicated that these gut bacteria belong to the Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phyla. A confrontation culture analyses of the 32 isolates against three scarab-specific B. thuringiensis strains showed that the majority of the scarab gut bacteria had antibacterial activity against the B. thuringiensis strains. The Cry toxin stability analysis results showed that while several strains produced proteases capable of processing the scarab-specific toxin Cry8Ea, none were able to completely degrade it. These results suggest that gut bacteria can potentially affect the susceptibility of scarabs to B. thuringiensis and that this should be considered when considering future control measures.

  17. Target enhancement and distractor inhibition affect transitory surround suppression in dual tasks using multiple rapid serial visual presentation streams.

    Science.gov (United States)

    Wu, Xia; Greenwood, Pamela; Fu, Shimin

    2016-01-01

    Few studies have investigated the interaction between temporal and spatial dimensions on selective attention using dual tasks in the multiple rapid serial visual presentation (RSVP) paradigm. A phenomenon that the surround suppression in space changes over time (termed transitory surround suppression, TSS, in the present study) has been observed, suggesting the existence of this time-space interaction. However, it is still unclear whether target enhancement or distractor inhibition modulates TSS. Four behavioural experiments were conducted to investigate the mechanism of TSS by manipulating the temporal lag and spatial distance factors between two targets embedded in six RSVP streams. The TSS effect was replicated in a study that eliminated confounds of perceptual effects and attentional switch (Experiment 1). However, the TSS disappeared when two targets shared the same colour in a between-subjects design (Experiment 2a) and a within-subject design (Experiment 2b), suggesting the impact of target enhancement on TSS. Moreover, the TSS was larger for within-category than for between-category distractors (Experiment 3), indicating the impact of distractor inhibition on TSS. These two influences on TSS under different processing demands of target and distractor processing were further confirmed in a skeletal design (Experiment 4). Overall, combinative effects of target enhancement and distractor suppression contribute to the mechanisms of time-space interaction in selective attention during visual search.

  18. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition.

    Science.gov (United States)

    Katagiri, Daisuke; Hamasaki, Yoshifumi; Doi, Kent; Negishi, Kousuke; Sugaya, Takeshi; Nangaku, Masaomi; Noiri, Eisei

    2016-02-01

    Elucidation of acute kidney diseases and disorders (AKD), including acute kidney injury (AKI), is important to prevent their progression to chronic kidney disease. Current animal AKI models are often too severe for use in evaluating human AKI. Therefore, new animal models of mild kidney injury are needed. Here a new clinically relevant animal model using multiple low doses of cisplatin (CP) was used to evaluate AKD. When 10 mg/kg CP was administered intraperitoneally once weekly for three times to L-type fatty acid-binding protein (L-FABP) transgenic mice, moderate renal interstitial fibrosis and tubule dilatation occurred, accompanied by brush-border loss. Urinary L-FABP, a promising biomarker of AKI, changed more drastically than blood urea nitrogen or creatinine. Preventing fibrosis in organs was also studied. Oral administration of a recently reported selective semicarbazide-sensitive amine oxidase inhibitor, PXS-4728A, for 1 week attenuated kidney injury and interstitial fibrosis compared with vehicle. Inhibition of renal lipid accumulation in semicarbazide-sensitive amine oxidase inhibitor-treated mice, together with reduced oxidative stress and L-FABP suppression in proximal tubules, suggested an antifibrotic effect of semicarbazide-sensitive amine oxidase inhibition in this CP-AKD model, a representative onco-nephrology. Thus, semicarbazide-sensitive amine oxidase inhibitors may be promising candidates for the prevention of chronic kidney disease in patients using CP to treat malignancy.

  19. Counteracting inflammation: a promising therapy in cachexia.

    Science.gov (United States)

    Argiles, Josep M; Lopez-Soriano, Francisco J; Busquets, Silvia

    2012-01-01

    Disease progression in cancer is dependent on the complex interaction between the tumor and the host inflammatory response. Indeed, both the tumor and the patient produce cytokines that act on multiple target sites such as bone marrow, myocytes, hepatocytes, adipocytes, endothelial cells, and neurons, where they produce a complex cascade of biological responses leading to the wasting associated with cachexia. The cytokines that have been involved in this cachectic response are TNF-α, IL-1, IL-6, and interferon-gamma. Interestingly, these cytokines share the same metabolic effects, and their activities are closely interrelated. In many cases these cytokines exhibit synergic effects when administered together. Therefore, therapeutic strategies- either nutritional or pharmacological-have been based on either blocking their synthesis or their action.

  20. Sustainability and Counteracting Factors to Profit Rate Decline

    DEFF Research Database (Denmark)

    Ougaard, Morten

    2014-01-01

    This paper discusses sustainability implications of barriers to growth as specified in the theory of the long-term falling rate of profit but focusing on the counteracting factors (CFs) specified by Marx. These depend much on political processes and are important in state theory for understanding...... policies of national and international institutions. Fourteen partly overlapping factors are identified and grouped in five categories: increased pressure on labor, geographical expansion, resource efficiency, technological progress, and destruction or devaluation of capital. It is suggested...... which implies a destruction of capital that will counteract the falling rate of profit. This will require sustained political intervention....

  1. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution.

    Science.gov (United States)

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C

    2017-01-27

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca(2+)-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor.

    Science.gov (United States)

    Iwasaki, Yusaku; Dezaki, Katsuya; Kumari, Parmila; Kakei, Masafumi; Yada, Toshihiko

    2015-08-01

    Vagal afferent nerves sense meal-related gastrointestinal and pancreatic hormones and convey their information to the brain, thereby regulating brain functions including feeding. We have recently demonstrated that postprandial insulin directly acts on the vagal afferent neurons. Plasma concentrations of orexigenic ghrelin and anorexigenic insulin show reciprocal dynamics before and after meals. The present study examined interactive effects of ghrelin and insulin on vagal afferent nerves. Cytosolic Ca(2+) concentration ([Ca(2+)]i) in isolated nodose ganglion (NG) neurons was measured to monitor their activity. Insulin at 10(-7)M increased [Ca(2+)]i in NG neurons, and the insulin-induced [Ca(2+)]i increase was inhibited by treatment with ghrelin at 10(-8)M. This inhibitory effect of ghrelin was attenuated by [D-Lys(3)]-GHRP-6, an antagonist of growth hormone-secretagogue receptor (GHSR). Des-acyl ghrelin had little effect on insulin-induced [Ca(2+)]i increases in NG neurons. Ghrelin did not affect [Ca(2+)]i increases in response to cholecystokinin (CCK), a hormone that inhibits feeding via vagal afferent neurons, indicating that ghrelin selectively counteracts the insulin action. These results demonstrate that ghrelin via GHSR suppresses insulin-induced activation of NG neurons. The action of ghrelin to counteract insulin effects on NG might serve to efficiently inform the brain of the systemic change between fasting-associated ghrelin-dominant and fed-associated insulin-dominant states for the homeostatic central regulation of feeding and metabolism.

  3. Counteracting Age Stereotypes: A Self-Awareness Manipulation

    Science.gov (United States)

    Chen, Yiwei; Pethtel, Olivia; Ma, Xiaodong

    2010-01-01

    The major goals of the present study were to (a) examine age differences in susceptibility to age stereotypes and (b) test a self-awareness manipulation in counteracting age stereotypes. Young and older adults read two sets of descriptors that only differed in the to-be-ignored age-related information. In the high self-awareness condition,…

  4. To what extent can cirrus seeding counteract global warming?

    Science.gov (United States)

    Gasparini, Blaz; Lohmann, Ulrike

    2017-04-01

    The idea of modifying cirrus clouds to directly counteract greenhouse gas warming has gained a lot of momentum in recent years, despite large disputes over its physical feasibility. We use the ECHAM-HAM general circulation model to evaluate the temperature and precipitation responses to cirrus thinning by seeding with efficient ice nucleating particles and increasing ice crystal sedimentation velocities in a 1.5xCO2 world. The seeding scenario can counteract about 40% of the warming and precipitation increase induced by 1.5 x CO2 concentrations with respect to present day values. The idealized ice crystal sedimentation velocity increase scenario on the other hand fully restores the global annual temperature but counteracts only half of the precipitation increase. Moreover, we define a climate damage function, quadratic in temperature and precipitation anomalies to calculate the damage of the different scenarios in 21 selected land regions. Seeding can decrease about 55% of the CO2 induced damage, while the sedimentation velocity increase can counteract about 95% of the damage. A regional analysis shows the negative responses of seeding are minimal both in terms of precipitation and temperature, which makes cirrus seeding an attractive geoengineering method.

  5. Inhibition of IκB kinase reduces the multiple organ dysfunction caused by sepsis in the mouse

    Directory of Open Access Journals (Sweden)

    Sina M. Coldewey

    2013-07-01

    Nuclear factor κB (NF-κB plays a pivotal role in sepsis. Activation of NF-κB is initiated by the signal-induced ubiquitylation and subsequent degradation of inhibitors of kappa B (IκBs primarily via activation of the IκB kinase (IKK. This study was designed to investigate the effects of IKK inhibition on sepsis-associated multiple organ dysfunction and/or injury (MOD and to elucidate underlying signaling mechanisms in two different in vivo models: male C57BL/6 mice were subjected to either bacterial cell wall components [lipopolysaccharide and peptidoglycan (LPS/PepG] or underwent cecal ligation and puncture (CLP to induce sepsis-associated MOD. At 1 hour after LPS/PepG or CLP, mice were treated with the IKK inhibitor IKK 16 (1 mg/kg body weight. At 24 hours, parameters of organ dysfunction and/or injury were assessed in both models. Mice developed a significant impairment in systolic contractility (echocardiography, and significant increases in serum creatinine, serum alanine aminotransferase and lung myeloperoxidase activity, thus indicating cardiac dysfunction, renal dysfunction, hepatocellular injury and lung inflammation, respectively. Treatment with IKK 16 attenuated the impairment in systolic contractility, renal dysfunction, hepatocellular injury and lung inflammation in LPS/PepG-induced MOD and in polymicrobial sepsis. Compared with mice that were injected with LPS/PepG or underwent CLP, immunoblot analyses of heart and liver tissues from mice that were injected with LPS/PepG or underwent CLP and were also treated with IKK 16 revealed: (1 significant attenuation of the increased phosphorylation of IκBα; (2 significant attenuation of the increased nuclear translocation of the NF-κB subunit p65; (3 significant attenuation of the increase in inducible nitric oxide synthase (iNOS expression; and (4 a significant increase in the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS. Here, we report for the first time that delayed IKK

  6. Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chee Man [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Chow, Annie W.S. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Department of Haematology, SA Pathology, Adelaide 5000, SA (Australia); Fitter, Stephen [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Hewett, Duncan R. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); School of Medicine, University of Adelaide, Adelaide 5005, SA (Australia); Martin, Sally K. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); Department of Haematology, SA Pathology, Adelaide 5000, SA (Australia); School of Medicine, University of Adelaide, Adelaide 5005, SA (Australia); Williams, Sharon A. [Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA (Australia); To, L. Bik [Department of Haematology, SA Pathology, Adelaide 5000, SA (Australia); and others

    2015-03-01

    Background: Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. Methods: We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. Results: TSPAN7 was found to be highly expressed at the RNA and protein level in CD138{sup +} MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. Conclusion: These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients. - Highlights: • TSPAN7 expression is upregulated in newly-diagnosed patients with active multiple myeloma. • Overexpression of TSPAN7 inhibits myeloma tumour development in vivo. • TSPAN7 interacts with calnexin at the plasma membrane in a myeloma cell line.

  7. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.;

    2003-01-01

    . coli. We show that both proteins inhibit translation by inducing cleavage of translated mRNAs. Consistently, the inhibitory effect of the proteins was counteracted by tmRNA. Amino acid starvation induced strong transcription of chpA that depended on Lon protease but not on ppGpp. Simultaneously, Chp...

  8. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    Science.gov (United States)

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  9. Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Gamal Badr

    Full Text Available In multiple myeloma (MM, malignant plasma cells reside in the bone marrow, where they accumulate in close contact with stromal cells. The mechanisms responsible for the chemotaxis of malignant plasma cells are still poorly understood. Thus, we investigated the mechanisms involved in the chemotaxis of MDN and XG2 MM cell lines. Both cell lines strongly expressed CCR9, CXCR3 and CXCR4 chemokine receptors but only migrated toward CXCL12. Activation of CXCR4 by CXCL12 resulted in the association of CXCR4 with CD45 and activation of PLCβ3, AKT, RhoA, IκBα and ERK1/2. Using siRNA-silencing techniques, we showed CD45/CXCR4 association is essential for CXCL12-induced migration of MM cells. Thymoquinone (TQ, the major active component of the medicinal herb Nigella sativa Linn, has been described as a chemopreventive and chemotherapeutic compound. TQ treatment strongly inhibited CXCL12-mediated chemotaxis in MM cell lines as well as primary cells isolated from MM patients, but not normal PBMCs. Moreover, TQ significantly down-regulated CXCR4 expression and CXCL12-mediated CXCR4/CD45 association in MM cells. Finally, TQ also induced the relocalization of cytoplasmic Fas/CD95 to the membrane of MM cells and increased CD95-mediated apoptosis by 80%. In conclusion, we demonstrate the potent anti-myeloma activity of TQ, providing a rationale for further clinical evaluation.

  10. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets.

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2015-02-01

    Full Text Available Targeted therapy based on adjustment of microRNA (miRNAs activity takes great promise due to the ability of these small RNAs to modulate cellular behavior. However, the efficacy of miR-101 replacement therapy to hepatocellular carcinoma (HCC remains unclear. In the current study, we first observed that plasma levels of miR-101 were significantly lower in distant metastatic HCC patients than in HCCs without distant metastasis, and down-regulation of plasma miR-101 predicted a worse disease-free survival (DFS, P<0.05. In an animal model of HCC, we demonstrated that systemic delivery of lentivirus-mediated miR-101 abrogated HCC growth in the liver, intrahepatic metastasis and distant metastasis to the lung and to the mediastinum, resulting in a dramatic suppression of HCC development and metastasis in mice without toxicity and extending life expectancy. Furthermore, enforced overexpression of miR-101 in HCC cells not only decreased EZH2, COX2 and STMN1, but also directly down-regulated a novel target ROCK2, inhibited Rho/Rac GTPase activation, and blocked HCC cells epithelial-mesenchymal transition (EMT and angiogenesis, inducing a strong abrogation of HCC tumorigenesis and aggressiveness both in vitro and in vivo. These results provide proof-of-concept support for systemic delivery of lentivirus-mediated miR-101 as a powerful anti-HCC therapeutic modality by repressing multiple molecular targets.

  11. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  12. HDL inhibits the effects of oxidized phospholipids on endothelial cell gene expression via multiple mechanisms[S

    Science.gov (United States)

    Emert, Benjamin; Hasin-Brumshtein, Yehudit; Springstead, James R.; Vakili, Ladan; Berliner, Judith A.; Lusis, Aldons J.

    2014-01-01

    Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phospholcholine (OxPAPC) and its component phospholipids accumulate in atherosclerotic lesions and regulate the expression of >1,000 genes, many proatherogenic, in human aortic endothelial cells (HAECs). In contrast, there is evidence in the literature that HDL protects the vasculature from inflammatory insult. We have previously shown that in HAECs, HDL attenuates the expression of several proatherogenic genes regulated by OxPAPC and 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. We now demonstrate that HDL reverses >50% of the OxPAPC transcriptional response. Genes reversed by HDL are enriched for inflammatory and vascular development pathways, while genes not affected by HDL are enriched for oxidative stress response pathways. The protective effect of HDL is partially mimicked by cholesterol repletion and treatment with apoA1 but does not require signaling through scavenger receptor class B type I. Furthermore, our data demonstrate that HDL protection requires direct interaction with OxPAPC. HDL-associated platelet-activating factor acetylhydrolase (PAF-AH) hydrolyzes short-chain bioactive phospholipids in OxPAPC; however, inhibiting PAF-AH activity does not prevent HDL protection. Our results are consistent with HDL sequestering specific bioactive lipids in OxPAPC, thereby preventing their regulation of select target genes. Overall, this work implicates HDL as a major regulator of OxPAPC action in endothelial cells via multiple mechanisms. PMID:24859737

  13. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  14. Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma

    Science.gov (United States)

    Conery, Andrew R; Centore, Richard C; Neiss, Adrianne; Keller, Patricia J; Joshi, Shivangi; Spillane, Kerry L; Sandy, Peter; Hatton, Charlie; Pardo, Eneida; Zawadzke, Laura; Bommi-Reddy, Archana; Gascoigne, Karen E; Bryant, Barbara M; Mertz, Jennifer A; Sims, Robert J

    2016-01-01

    Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network. DOI: http://dx.doi.org/10.7554/eLife.10483.001 PMID:26731516

  15. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yao; Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Li, Ying-Yi [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Furukawa, Kaoru; Tanabe, Yamato [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Matsugo, Seiichi [School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Sasaki, Soichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Mukaida, Naofumi, E-mail: mukaida@staff.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  16. Using Misperception to Counteract Noise in the Iterated Prisoner's Dilemma

    Science.gov (United States)

    Brumley, Lachlan; Korb, Kevin B.; Kopp, Carlo

    The Iterated Prisoner's Dilemma is a game-theoretical model which can be identified in many repeated real-world interactions between competing entities. The Tit for Tat strategy has been identified as a successful strategy which reinforces mutual cooperation, however, it is sensitive to environmental noise which disrupts continued cooperation between players to their detriment. This paper explores whether a population of Tit for Tat players may evolve specialised individual-based noise to counteract environmental noise. We have found that when the individual-based noise acts similarly to forgiveness it can counteract the environmental noise, although excessive forgiveness invites the evolution of exploitative individual-based noise, which is highly detrimental to the population when widespread.

  17. A concept of a space hazard counteraction system: Astronomical aspects

    Science.gov (United States)

    Shustov, B. M.; Rykhlova, L. V.; Kuleshov, Yu. P.; Dubov, Yu. N.; Elkin, K. S.; Veniaminov, S. S.; Borovin, G. K.; Molotov, I. E.; Naroenkov, S. A.; Barabanov, S. I.; Emel'yanenko, V. V.; Devyatkin, A. V.; Medvedev, Yu. D.; Shor, V. A.; Kholshevnikov, K. V.

    2013-07-01

    The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.

  18. Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s.

    Science.gov (United States)

    Gu, Qinyong; Zhang, Zeli; Cano Ortiz, Lucía; Franco, Ana Cláudia; Häussinger, Dieter; Münk, Carsten

    2016-12-01

    Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain.

  19. GITR gene deletion and GITR-FC soluble protein administration inhibit multiple organ failure induced by zymosan.

    Science.gov (United States)

    Galuppo, Maria; Nocentini, Giuseppe; Mazzon, Emanuela; Ronchetti, Simona; Esposito, Emanuela; Riccardi, Luisa; Di Paola, Rosanna; Bruscoli, Stefano; Riccardi, Carlo; Cuzzocrea, Salvatore

    2011-09-01

    Multiple organ dysfunction syndrome (MODS) is a systemic inflammatory event that can result in organ damage, failure, and high risk of mortality. The aim of this study was to evaluate the possible role of glucocorticoid-induced TNFR-related (GITR) on zymosan-induced MODS. Mice were allocated into one GITR knockout (GITR-KO) and two GITR wild-type (GITR-WT) experimental groups. All the animals were treated with zymosan (500 mg/kg, suspended in saline solution, i.p.), and animals of one GITR-WT group received GITR-Fc (6.25 μg/mouse; 3 h after zymosan injection) by mini-osmotic pump. Moreover, three control groups were performed (one GITR-KO and two GITR-WT experimental groups), administering saline instead of zymosan and treating one of the GITR-WT group with GITR-Fc (6.25 μg/mouse; 3 h after saline injection) by mini-osmotic pump. A number of inflammatory parameters such as edema formation, histological damage, adhesion molecules expression, neutrophil infiltration, proinflammatory cytokines, nitrotyrosine, and iNOS production are significantly reduced in GITR-KO as compared with GITR-WT mice as well as in GITR-WT mice treated with GITR-Fc. We here show that GITR plays a role in the modulation of experimental MODS. In particular, we show that genetic inhibition of GITR expression, in GITR-KO mice, or administration of soluble GITR-Fc receptor in GITR-WT mice, reduces inflammation, organ tissue damage, and mortality. Results, while confirming the proinflammatory role of GITR, extend our observations indicating that GITR plays a role in zymosan-induced inflammation and MODS.

  20. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.

    Science.gov (United States)

    Ostadhadi, Sattar; Rahmatollahi, Mahdieh; Dehpour, Ahmad-Reza; Rahimian, Reza

    2015-03-01

    Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed.

  1. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  2. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways.

    Science.gov (United States)

    Taylor, Ruth D T; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.

  3. Spatial warping by oriented line detectors can counteract neural delays

    Directory of Open Access Journals (Sweden)

    Don eVaughn

    2013-11-01

    Full Text Available The slow speed of neural transmission necessitates that cortical visual information from dynamic scenes will lag reality. The perceiving the present (PTP hypothesis suggests that the visual system can mitigate the effect of such delays by spatially warping scenes to look as they will in ~100 ms from now (Changizi, 2001. We here show that the Hering illusion, in which straight lines appear bowed, can be induced by a background of optic flow, consistent with the PTP hypothesis. However, importantly, the bowing direction is the same whether the flow is inward or outward. This suggests that if the warping is meant to counteract latencies, it is accomplished by a simple strategy that is insensitive to motion direction, and that works only under typical (forward-moving circumstances. We also find that the illusion strengthens with longer pulses of optic flow, demonstrating motion integration over ~80 ms. The illusion is identical whether optic flow precedes or follows the flashing of bars, exposing the spatial warping to be equally postdictive and predictive, i.e., peri-dictive. Additionally, the illusion is diminished by cues which suggest the bars are independent of the background movement. Collectively, our findings are consistent with a role for networks of visual orientation-tuned neurons (e.g., simple cells in primary visual cortex in spatial warping. We conclude that under the common condition of forward ego-motion, spatial warping counteracts the disadvantage of neural latencies. It is not possible to prove that this is the purpose of spatial warping, but our findings at minimum place constraints on the PTP hypothesis, demonstrating that any spatial warping for the purpose of counteracting neural delays is not a precise, on-the-fly computation, but instead a heuristic achieved by a simple mechanism that succeeds under normal circumstances.

  4. Leptin Acts via Lateral Hypothalamic Area Neurotensin Neurons to Inhibit Orexin Neurons by Multiple GABA-Independent Mechanisms

    Science.gov (United States)

    Goforth, Paulette B.; Leinninger, Gina M.; Patterson, Christa M.

    2014-01-01

    The adipocyte-derived hormone leptin modulates neural systems appropriately for the status of body energy stores. Leptin inhibits lateral hypothalamic area (LHA) orexin (OX; also known as hypocretin)-producing neurons, which control feeding, activity, and energy expenditure, among other parameters. Our previous results suggest that GABAergic LHA leptin receptor (LepRb)-containing and neurotensin (Nts)-containing (LepRbNts) neurons lie in close apposition with OX neurons and control Ox mRNA expression. Here, we show that, similar to leptin, activation of LHA Nts neurons by the excitatory hM3Dq DREADD (designer receptor exclusively activated by designer drugs) hyperpolarizes membrane potential and suppresses action potential firing in OX neurons in mouse hypothalamic slices. Furthermore, ablation of LepRb from Nts neurons abrogated the leptin-mediated inhibition, demonstrating that LepRbNts neurons mediate the inhibition of OX neurons by leptin. Leptin did not significantly enhance GABAA-mediated inhibitory synaptic transmission, and GABA receptor antagonists did not block leptin-mediated inhibition of OX neuron activity. Rather, leptin diminished the frequency of spontaneous EPSCs onto OX neurons. Furthermore, leptin indirectly activated an ATP-sensitive potassium (KATP) channel in OX neurons, which was required for the hyperpolarization of OX neurons by leptin. Although Nts did not alter OX activity, galanin, which is coexpressed in LepRbNts neurons, inhibited OX neurons, whereas the galanin receptor antagonist M40 (galanin-(1–12)-Pro3-(Ala-Leu)2-Ala amide) prevented the leptin-induced hyperpolarization of OX cells. These findings demonstrate that leptin indirectly inhibits OX neurons by acting on LHA LepRbNts neurons to mediate two distinct GABA-independent mechanisms of inhibition: the presynaptic inhibition of excitatory neurotransmission and the opening of KATP channels. PMID:25143620

  5. Perifosine inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via regulation multiple signaling pathways: new implication for Kawasaki disease (KD) treatment.

    Science.gov (United States)

    Shen, Jie; Liang, Li; Wang, Chunlin

    2013-07-26

    Kawasaki disease (KD) is a multisystem vasculitis of unknown etiology, with coronary artery aneurysms occurring in majority of untreated cases. Tumor necrosis factor (TNF)-α is the pleiotropic inflammatory cytokine elevated during the acute phase of KD, which induces damage to vascular endothelial cells to cause systemic vasculitis. We here investigated the potential role of perifosine, a novel Akt inhibitor, on TNFα expression in LPS-stimulated macrophages and in ex-vivo cultured peripheral blood mononuclear cells (PBMCs) of acute KD patients. Here, we found that perifosine inhibited LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, perifosine administration down-regulated TNFα production in PBMCs isolated from acute KD patients. For the mechanism study, we found that perifosine significantly inhibited Akt and ERK/mitogen-activated protein kinases (MAPK) signaling, while activating AMP-activated protein kinase (AMPK) signaling in both patients' PBMCs and LPS-stimulated macrophages. Interestingly, although perifosine is generally known as an Akt inhibitor, our data suggested that ERK inhibition and AMPK activation, but not Akt inactivation were possibly involved in perifosine-mediated inhibition against TNFα production in monocytes. In conclusion, our data suggested that perifosine significantly inhibited TNFα production via regulation multiple signaling pathways. The results of this study should have significant translational relevance in managing this devastating disease.

  6. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hao eTan

    2016-03-01

    Full Text Available Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis (CF patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM.

  7. Counteractive effect of antacid suspensions on intrinsic dental erosion.

    Science.gov (United States)

    Turssi, Cecilia P; Vianna, Lídia M F F; Hara, Anderson T; do Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T

    2012-08-01

    This in vitro study aimed to investigate the anti-erosive effect of antacid suspensions applied to enamel after exposure to hydrochloric acid (HCl). Ninety bovine enamel slabs were embedded, flattened, and polished. Reference areas were created and specimens were divided into six groups. They were exposed to 0.01 M HCl (pH 2) for 2 min, followed by immersion for 1 min in one of the following test suspensions: magnesium hydroxide, aluminum hydroxide, magnesium hydroxide/aluminum hydroxide, sodium alginate/sodium bicarbonate/calcium carbonate, or hydrated magnesium aluminate. Artificial saliva was used as a negative control. Specimens were subjected to a total of five cycles of erosion/antacid treatment. Enamel surface loss was measured (in micrometers) by optical profilometry. In addition, baseline and final surface microhardness (SMH) values of enamel were obtained. It was found that antacid suspensions significantly reduced enamel loss, and that similar protection was afforded by all formulations. No differences were observed between the final enamel SMH values among groups. Antacid suspensions counteracted HCl-induced enamel loss, although they were not effective in reducing enamel softening. Mouth rinsing with antacid suspensions after vomiting can potentially represent a promising strategy to counteract enamel loss caused by erosion.

  8. Robo 4 Counteracts Angiogenesis in Herpetic Stromal Keratitis.

    Directory of Open Access Journals (Sweden)

    Fernanda Gimenez

    Full Text Available The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1 causes the immunoinflammatory lesion stromal keratitis (SK. Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4, which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT controls. Moreover, providing additional soluble R4 (sR4 protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.

  9. Topical legal aspects of corruption counteraction in public procurement

    Directory of Open Access Journals (Sweden)

    Aleksandr Igorevich Zemlin

    2015-03-01

    Full Text Available Objective to analyze the current developments in the Russian legislation on corruption counteraction and the legislation on public procurement system on this basis to study legal conflicts and gaps and to develop proposals under the provisions of the National AntiCorruption Plan for 2014ndash2015. Methods historical formallegal logical and systemicfunctional structural and contextual approach to the study of law and theoretical propositions concerning the definition nature and characteristics of legal relations arising in the process of and relating to the corruption counteraction in the public procurement system. Results аn aggregate of theoretical conclusions and proposals aimed at perfection of anticorruption legislation and legislation on the contractual public procurement system is presented. Scientific novelty the results of the author39s interpretation of changes in the Russian anticorruption legislation and legislation on the contractual public procurement system existing legal conflicts and gaps. Practical significance developing proposals for improving the standards of anticorruption legislation and legislation on public procurement system under the provisions of the National AntiCorruption Plan for 2014ndash2015. nbsp

  10. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  11. Success Counteracting Tobacco Company Interference in Thailand: An Example of FCTC Implementation for Low- and Middle-income Countries

    Directory of Open Access Journals (Sweden)

    Stephen L. Hamann

    2012-03-01

    Full Text Available Transnational tobacco companies (TTCs interfere regularly in policymaking in low- and middle-income countries (LMICs. The WHO Framework Convention for Tobacco Control provides mechanisms and guidance for dealing with TTC interference, but many countries still face ‘how to’ challenges of implementation. For more than two decades, Thailand’s public health community has been developing a system for identifying and counteracting strategies TTCs use to derail, delay and undermine tobacco control policymaking. Consequently, Thailand has already implemented most of the FCTC guidelines for counteracting TTC interference. In this study, our aims are to describe strategies TTCs have used in Thailand to interfere in policymaking, and to examine how the public health community in Thailand has counteracted TTC interference. We analyzed information reported by three groups with a stake in tobacco control policies: Thai tobacco control advocates, TTCs, and international tobacco control experts. To identify TTC viewpoints and strategies, we also extracted information from internal tobacco industry documents. We synthesized these data and identified six core strategies TTCs use to interfere in tobacco control policymaking: (1 doing business with ‘two faces’, (2 seeking to influence people in high places, (3 ‘buying’ advocates in grassroots organizations, (4 putting up a deceptive front, (5 intimidation, and (6 undermining controls on tobacco advertising, promotion and sponsorship. We present three case examples showing where TTCs have employed multiple interference strategies simultaneously, and showing how Thai tobacco control advocates have successfully counteracted those strategies by: (1 conducting vigilant surveillance, (2 excluding tobacco companies from policymaking, (3 restricting tobacco company sales, (4 sustaining pressure, and (5 dedicating resources to the effective enforcement of regulations. Policy implications from this study are

  12. Success counteracting tobacco company interference in Thailand: an example of FCTC implementation for low- and middle-income countries.

    Science.gov (United States)

    Charoenca, Naowarut; Mock, Jeremiah; Kungskulniti, Nipapun; Preechawong, Sunida; Kojetin, Nicholas; Hamann, Stephen L

    2012-04-01

    Transnational tobacco companies (TTCs) interfere regularly in policymaking in low- and middle-income countries (LMICs). The WHO Framework Convention for Tobacco Control provides mechanisms and guidance for dealing with TTC interference, but many countries still face 'how to' challenges of implementation. For more than two decades, Thailand's public health community has been developing a system for identifying and counteracting strategies TTCs use to derail, delay and undermine tobacco control policymaking. Consequently, Thailand has already implemented most of the FCTC guidelines for counteracting TTC interference. In this study, our aims are to describe strategies TTCs have used in Thailand to interfere in policymaking, and to examine how the public health community in Thailand has counteracted TTC interference. We analyzed information reported by three groups with a stake in tobacco control policies: Thai tobacco control advocates, TTCs, and international tobacco control experts. To identify TTC viewpoints and strategies, we also extracted information from internal tobacco industry documents. We synthesized these data and identified six core strategies TTCs use to interfere in tobacco control policymaking: (1) doing business with 'two faces', (2) seeking to influence people in high places, (3) 'buying' advocates in grassroots organizations, (4) putting up a deceptive front, (5) intimidation, and (6) undermining controls on tobacco advertising, promotion and sponsorship. We present three case examples showing where TTCs have employed multiple interference strategies simultaneously, and showing how Thai tobacco control advocates have successfully counteracted those strategies by: (1) conducting vigilant surveillance, (2) excluding tobacco companies from policymaking, (3) restricting tobacco company sales, (4) sustaining pressure, and (5) dedicating resources to the effective enforcement of regulations. Policy implications from this study are that tobacco control

  13. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry

    Directory of Open Access Journals (Sweden)

    Lorenz Reinhard

    2010-05-01

    Full Text Available Abstract Background Poor platelet inhibition by aspirin or clopidogrel has been associated with adverse outcomes in patients with cardiovascular diseases. A reliable and facile assay to measure platelet inhibition after treatment with aspirin and a P2Y12 antagonist is lacking. Multiple electrode aggregometry (MEA, which is being increasingly used in clinical studies, is sensitive to platelet inhibition by aspirin and clopidogrel, but a critical evaluation of MEA monitoring of dual anti-platelet therapy with aspirin and P2Y12 antagonists is missing. Design and Methods By performing in vitro and ex vivo experiments, we evaluated in healthy subjects the feasibility of using MEA to monitor platelet inhibition of P2Y12 antagonists (clopidogrel in vivo, cangrelor in vitro and aspirin (100 mg per day in vivo, and 1 mM or 5.4 mM in vitro alone, and in combination. Statistical analyses were performed by the Mann-Whitney rank sum test, student' t-test, analysis of variance followed by the Holm-Sidak test, where appropriate. Results ADP-induced platelet aggregation in hirudin-anticoagulated blood was inhibited by 99.3 ± 1.4% by in vitro addition of cangrelor (100 nM; p 95% and 100 ± 3.2%, respectively (p in vitro or ex vivo. Oral intake of clopidogrel did not significantly reduce AA-induced aggregation, but P2Y12 blockade by cangrelor (100 nM in vitro diminished AA-stimulated aggregation by 53 ± 26% (p Conclusions Selective platelet inhibition by aspirin and P2Y12 antagonists alone and in combination can be rapidly measured by MEA. We suggest that dual anti-platelet therapy with these two types of anti-platelet drugs can be optimized individually by measuring platelet responsiveness to ADP and AA with MEA before and after drug intake.

  14. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries

    Directory of Open Access Journals (Sweden)

    Fröbert Ole

    2011-05-01

    Full Text Available Abstract Background The systemic vascular response to hypoxia is vasodilation. However, reports suggest that the potent vasoconstrictor endothelin-1 (ET-1 is released from the vasculature during hypoxia. ET-1 is reported to augment superoxide anion generation and may counteract nitric oxide (NO vasodilation. Moreover, ET-1 was proposed to contribute to increased vascular resistance in heart failure by increasing the production of asymmetric dimethylarginine (ADMA. We investigated the role of ET-1, the NO pathway, the potassium channels and radical oxygen species in hypoxia-induced vasodilation of large coronary arteries. Results In prostaglandin F2α (PGF2α, 10 μM-contracted segments with endothelium, gradual lowering of oxygen tension from 95 to 1% O2 resulted in vasodilation. The vasodilation to O2 lowering was rightward shifted in segments without endothelium at all O2 concentrations except at 1% O2. The endothelin receptor antagonist SB217242 (10 μM markedly increased hypoxic dilation despite the free tissue ET-1 concentration in the arterial wall was unchanged in 1% O2 versus 95% O2. Exogenous ET-1 reversed hypoxic dilation in segments with and without endothelium, and the hypoxic arteries showed an increased sensitivity towards ET-1 compared to the normoxic controls. Without affecting basal NO, hypoxia increased NO concentration in PGF2α-contracted arteries, and an NO synthase inhibitor, L-NOARG,(300 μM, NG-nitro-L-Arginine reduced hypoxic vasodilation. NO-induced vasodilation was reduced in endothelin-contracted preparations. Arterial wall ADMA concentrations were unchanged by hypoxia. Blocking of potassium channels with TEA (tetraethylammounium chloride(10 μM inhibited vasodilation to O2 lowering as well as to NO. The superoxide scavenger tiron (10 μM and the putative NADPH oxidase inhibitor apocynin (10 μM leftward shifted concentration-response curves for O2 lowering without changing vasodilation to 1% O2. PEG (polyethylene

  15. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2015-12-01

    enhancer mediated pro-inflammatory signal dependent transduction (Brown et al., 2014), that translocations of the IgH enhancer to the MYC locus in...MMexpose both enhancer driven and MYC /E2F driven regulatory programs to BET bromodomain inhibition (Fulciniti et al., in preparation), and that master

  16. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing.

    Directory of Open Access Journals (Sweden)

    Michael I Dishowitz

    Full Text Available The Notch signaling pathway is an important regulator of embryological bone development, and many aspects of development are recapitulated during bone repair. We have previously reported that Notch signaling components are upregulated during bone fracture healing. However, the significance of the Notch pathway in bone regeneration has not been described. Therefore, the objective of this study was to determine the importance of Notch signaling in regulating bone fracture healing by using a temporally controlled inducible transgenic mouse model (Mx1-Cre;dnMAML(f/- to impair RBPjκ-mediated canonical Notch signaling. The Mx1 promoter was synthetically activated resulting in temporally regulated systemic dnMAML expression just prior to creation of bilateral tibial fractures. This allowed for mice to undergo unaltered embryological and post-natal skeletal development. Results showed that systemic Notch inhibition prolonged expression of inflammatory cytokines and neutrophil cell inflammation, and reduced the proportion of cartilage formation within the callus at 10 days-post-fracture (dpf Notch inhibition did not affect early bone formation at 10dpf, but significantly altered bone maturation and remodeling at 20dpf. Increased bone volume fraction in dnMAML fractures, which was due to a moderate decrease in callus size with no change in bone mass, coincided with increased trabecular thickness but decreased connectivity density, indicating that patterning of bone was altered. Notch inhibition decreased total osteogenic cell density, which was comprised of more osteocytes rather than osteoblasts. dnMAML also decreased osteoclast density, suggesting that osteoclast activity may also be important for altered fracture healing. It is likely that systemic Notch inhibition had both direct effects within cell types as well as indirect effects initiated by temporally upstream events in the fracture healing cascade. Surprisingly, Notch inhibition did not alter

  17. Acidification counteracts negative effects of warming on diatom silicification

    KAUST Repository

    Coello-Camba, Alexandra

    2016-10-24

    Diatoms are a significant group contributing up to 40 % of annual primary production in the oceans. They have a special siliceous cell wall that, acting as a ballast, plays a key role in the sequestration of global carbon and silica. Diatoms dominate primary production in the Arctic Ocean, where global climate change is causing increases in water temperature and in the partial pressure of CO2 (pCO2). Here we show that as water temperature increases diatoms become stressed, grow to smaller sizes, and decrease their silicification rates. But at higher pCO2, as the pH of seawater decreases, silica incorporation rates are increased. In a future warmer Arctic ocean diatoms may have a competitive advantage under increased ocean acidification, as increased pCO2 counteracts the adverse effects of increasing temperature on silicification and buffers its consequences in the biogeochemical cycles of carbon and silica.

  18. Counteracting age-related loss of skeletal muscle mass

    DEFF Research Database (Denmark)

    Bechshøft, Rasmus; Reitelseder, Søren; Højfeldt, Grith;

    2016-01-01

    at both societal and individual levels. Only a few longitudinal studies have been reported, but whey protein supplementation seems to improve muscle mass and function, and its combination with heavy strength training appears even more effective. However, heavy resistance training may reduce adherence...... to training, thereby attenuating the overall benefits of training. We hypothesize that light load resistance training is more efficient when both adherence and physical improvement are considered longitudinally. We launched the interdisciplinary project on Counteracting Age-related Loss of Skeletal Muscle....... Moreover, we will evaluate changes in physical performance, muscle fiber type and acute anabolic response to whey protein ingestion, sensory adaptation, gut microbiome, and a range of other measures, combined with questionnaires on life quality and qualitative interviews with selected subjects. The CALM...

  19. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    Science.gov (United States)

    Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage.

  20. Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME.

    Science.gov (United States)

    Drmic, Domagoj; Kolenc, Danijela; Ilic, Spomenko; Bauk, Lara; Sever, Marko; Zenko Sever, Anita; Luetic, Kresimir; Suran, Jelena; Seiwerth, Sven; Sikiric, Predrag

    2017-08-07

    To counteract/reveal celecoxib-induced toxicity and NO system involvement. Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs' post-surgery application and NO system involvement.

  1. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Yang, Chengwei [Department of Spinal Surgery, Lanzhou General Hospital, Lanzhou Military Area Command, 333 Nanbinhe Road, Lanzhou 730050 (China); Qian, Yu [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Fu, Qiang, E-mail: chyygklwq@hotmail.com [Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  2. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-03-01

    Full Text Available AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP or uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  3. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5'-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    Science.gov (United States)

    Kim, Ju-Hyun; Kwon, Soon-Sang; Kong, Tae Yeon; Cheong, Jae Chul; Kim, Hee Seung; In, Moon Kyo; Lee, Hye Suk

    2017-03-10

    AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography-tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  4. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways.

    Science.gov (United States)

    Doucette, Carolyn D; Greenshields, Anna L; Liwski, Robert S; Hoskin, David W

    2015-04-02

    Piperine, a pungent alkaloid found in the fruits of black pepper plants, has diverse physiological effects, including the ability to inhibit immune cell-mediated inflammation. Since the cytokine interleukin-2 (IL-2) is essential for the clonal expansion and differentiation of T lymphocytes, we investigated the effect of piperine on IL-2 signaling in IL-2-dependent mouse CTLL-2 T lymphocytes. Tritiated-thymidine incorporation assays and flow cytometric analysis of Oregon Green 488-stained cells showed that piperine inhibited IL-2-driven T lymphocyte proliferation; however, piperine did not cause T lymphocytes to die or decrease their expression of the high affinity IL-2 receptor, as determined by flow cytometry. Western blot analysis showed that piperine blocked the IL-2-induced phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5 without affecting the upstream phosphorylation of Janus kinase (JAK) 1 and JAK3. In addition, piperine inhibited the IL-2-induced phosphorylation of extracellular signal-regulated kinase 1/2 and Akt, which are signaling molecules that regulate cell cycle progression. Piperine also suppressed the expression of cyclin-dependent kinase (Cdk) 1, Cdk4, Cdk6, cyclin B, cyclin D2, and Cdc25c protein phosphatase by IL-2-stimulated T lymphocytes, indicating G0/G1 and G2/M cell cycle arrest. Piperine-mediated inhibition of IL-2 signaling and cell cycle progression in CTLL-2 T lymphocytes suggests that piperine should be further investigated in animal models as a possible natural source treatment for T lymphocyte-mediated transplant rejection and autoimmune disease.

  5. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    Science.gov (United States)

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  6. Oxidation-induced loss of the ability of HDL to counteract the inhibitory effect of oxidized LDL on vasorelaxation.

    Science.gov (United States)

    Perségol, Laurence; Brindisi, Marie-Claude; Rageot, David; Pais de Barros, Jean-Paul; Monier, Serge; Vergès, Bruno; Duvillard, Laurence

    2015-11-01

    Several current diseases are associated with an increase in the oxidation of HDL, which is likely to impair their functionality. Our aim was to identify whether oxidation could change the protective effect of HDL against the deleterious effect on vasoreactivity induced by oxidative stress. HDL from healthy subjects were oxidized in vitro by Cu(2+), and the ability of oxidized HDL to counteract the inhibitory effect of oxidized LDL on acetylcholine-induced vasodilation was tested on isolated rabbit aorta rings. Oxidation of HDL was evidenced by the increase in the 7-oxysterols/cholesterol ratio (3.20 ± 1.12 vs 0.02 ± 0.01 % in native HDL, p HDL counteracted this inhibition (E max = 72.4 ± 4.8 vs 50.2 ± 5.0 % p HDL had no effect on oxidized LDL-induced inhibition on endothelium-dependent vasorelaxation (E max = 53.7 ± 4.8 vs 50.2 ± 5.0 %, NS). HDL oxidation is associated with a decreased ability of HDL to remove 7-oxysterols from oxidized LDL. In conclusion, these results show that oxidation of HDL induces the loss of their protective effect against endothelial dysfunction, which could promote atherosclerosis in diseases associated with increased oxidative stress.

  7. Multiple ascending dose study with the new renin inhibitor VTP-27999: nephrocentric consequences of too much renin inhibition.

    Science.gov (United States)

    Balcarek, Joanna; Sevá Pessôa, Bruno; Bryson, Catherine; Azizi, Michel; Ménard, Joël; Garrelds, Ingrid M; McGeehan, Gerard; Reeves, Richard A; Griffith, Sue G; Danser, A H Jan; Gregg, Richard

    2014-05-01

    This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit.

  8. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication

    Science.gov (United States)

    Zhang, Yiyao; Isayev, Orkhan; Heilmann, Katharina; Schoensiegel, Frank; Liu, Li; Nessling, Michelle; Richter, Karsten; Labsch, Sabrina; Nwaeburu, Clifford C.; Mattern, Juergen; Gladkich, Jury; Giese, Nathalia; Werner, Jens; Schemmer, Peter; Gross, Wolfgang; Gebhard, Martha M.; Gerhauser, Clarissa; Schaefer, Michael; Herr, Ingrid

    2014-01-01

    The extreme aggressiveness of pancreatic ductal adenocarcinoma (PDA) has been associated with blocked gap junctional intercellular communication (GJIC) and the presence of cancer stem cells (CSCs). We examined whether disturbed GJIC is responsible for a CSC phenotype in established and primary cancer cells and patient tissue of PDA using interdisciplinary methods based in physiology, cell and molecular biology, histology and epigenetics. Flux of fluorescent dyes and gemcitabine through gap junctions (GJs) was intact in less aggressive cells but not in highly malignant cells with morphological dysfunctional GJs. Among several connexins, only Cx43 was expressed on the cell surface of less aggressive and GJIC-competent cells, whereas Cx43 surface expression was absent in highly malignant, E-cadherin-negative and GJIC-incompetent cells. The levels of total Cx43 protein and Cx43 phosphorylated at Ser368 and Ser279/282 were high in normal tissue but low to absent in malignant tissue. si-RNA-mediated inhibition of Cx43 expression in GJIC-competent cells prevented GJIC and induced colony formation and the expression of stem cell-related factors. The bioactive substance sulforaphane enhanced Cx43 and E-cadherin levels, inhibited the CSC markers c-Met and CD133, improved the functional morphology of GJs and enhanced GJIC. Sulforaphane altered the phosphorylation of several kinases and their substrates and inhibition of GSK3, JNK and PKC prevented sulforaphane-induced CX43 expression. The sulforaphane-mediated expression of Cx43 was not correlated with enhanced Cx43 RNA expression, acetylated histone binding and Cx43 promoter de-methylation, suggesting that posttranslational phosphorylation is the dominant regulatory mechanism. Together, the absence of Cx43 prevents GJIC and enhances aggressiveness, whereas sulforaphane counteracts this process, and our findings highlight dietary co-treatment as a viable treatment option for PDA. PMID:24742583

  9. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China.

    Science.gov (United States)

    Bi, Yaling; Liu, Weitang; Guo, Wenlei; Li, Lingxu; Yuan, Guohui; Du, Long; Wang, Jinxin

    2016-01-01

    Fenoxaprop-P-ethyl-resistant Alopecurus japonicus has become a recurring problem in winter wheat fields in eastern China. Growers have resorted to using mesosulfuron-methyl, an acetolactate synthase (ALS)-inhibiting herbicide, to control this weed. A single A. japonicus population (AH-15) resistant to fenoxaprop-P-ethyl and mesosulfuron-methyl was found in Anhui Province, China. The results of whole-plant dose-response experiments showed that AH-15 has evolved high-level resistance to fenoxaprop-P-ethyl (95.96-fold) and mesosulfuron-methyl (39.87-fold). It was shown via molecular analysis that resistance to both fenoxaprop-P-ethyl and mesosulfuron-methyl was due to an amino acid substitution of Ile1781 to Leu in acetyl-CoA carboxylase (ACCase) and a substitution of Trp 574 to Leu in ALS, respectively. Whole-plant bioassays indicated that the AH-15 population was resistant to the ACCase herbicides clodinafop-propargyl, clethodim, sethoxydim and pinoxaden as well as the ALS herbicides pyroxsulam, flucarbazone-Na and imazethapyr, but susceptible to the ACCase herbicide haloxyfop-R-methyl. This work reports for the first time that A. japonicus has developed resistance to ACCase- and ALS-inhibiting herbicides due to target site mutations in the ACCase and ALS genes.

  10. RNA Polymerase I Inhibition with CX-5461 as a Novel Therapeutic Strategy to Target MYC in Multiple Myeloma.

    Science.gov (United States)

    Lee, Hans C; Wang, Hua; Baladandayuthapani, Veerabhadran; Lin, Heather; He, Jin; Jones, Richard J; Kuiatse, Isere; Gu, Dongmin; Wang, Zhiqiang; Ma, Wencai; Lim, John; O'Brien, Sean; Keats, Jonathan; Yang, Jing; Davis, Richard E; Orlowski, Robert Z

    2017-04-01

    Dysregulation of MYC is frequently implicated in both early and late myeloma progression events, yet its therapeutic targeting has remained a challenge. Among key MYC downstream targets is ribosomal biogenesis, enabling increases in protein translational capacity necessary to support the growth and self-renewal programmes of malignant cells. We therefore explored the selective targeting of ribosomal biogenesis with the small molecule RNA polymerase (pol) I inhibitor CX-5461 in myeloma. CX-5461 induced significant growth inhibition in wild-type (WT) and mutant TP53 myeloma cell lines and primary samples, in association with increases in downstream markers of apoptosis. Moreover, Pol I inhibition overcame adhesion-mediated drug resistance and resistance to conventional and novel agents. To probe the TP53-independent mechanisms of CX-5461, gene expression profiling was performed on isogenic TP53 WT and knockout cell lines and revealed reduction of MYC downstream targets. Mechanistic studies confirmed that CX-5461 rapidly suppressed both MYC protein and MYC mRNA levels. The latter was associated with an increased binding of the RNA-induced silencing complex (RISC) subunits TARBP2 and AGO2, the ribosomal protein RPL5, and MYC mRNA, resulting in increased MYC transcript degradation. Collectively, these studies provide a rationale for the clinical translation of CX-5461 as a novel therapeutic approach to target MYC in myeloma.

  11. Andrographolide inhibits intracellular Chlamydia trachomatis multiplication and reduces secretion of proinflammatory mediators produced by human epithelial cells.

    Science.gov (United States)

    Hua, Ziyu; Frohlich, Kyla M; Zhang, Yan; Feng, Xiaogeng; Zhang, Jiaxing; Shen, Li

    2015-02-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial disease worldwide. Untreated C. trachomatis infections may cause inflammation and ultimately damage tissues. Here, we evaluated the ability of Andrographolide (Andro), a natural diterpenoid lactone component of Andrographis paniculata, to inhibit C. trachomatis infection in cultured human cervical epithelial cells. We found that Andro exposure inhibited C. trachomatis growth in a dose- and time-dependent manner. The greatest inhibitory effect was observed when exponentially growing C. trachomatis was exposed to Andro. Electron micrographs demonstrated the accumulation of unusual, structurally deficient chlamydial organisms, correlated with a decrease in levels of OmcB expressed at the late stage of infection. Additionally, Andro significantly reduced the secretion of interleukin6, CXCL8 and interferon-γ-induced protein10 produced by host cells infected with C. trachomatis. These results indicate the efficacy of Andro to perturb C. trachomatis transition from the metabolically active reticulate body to the infectious elementary body and concurrently reduce the production of a proinflammatory mediator by epithelial cells in vitro. Further dissection of Andro's anti-Chlamydia action may provide identification of novel therapeutic targets.

  12. DMPD: An arms race: innate antiviral responses and counteracting viral strategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031256 An arms race: innate antiviral responses and counteracting viral strategie...s. Schroder M, Bowie AG. Biochem Soc Trans. 2007 Dec;35(Pt 6):1512-4. (.png) (.svg) (.html) (.csml) Show An arms race...: innate antiviral responses and counteracting viral strategies. PubmedID 18031256 Title An arms race

  13. Rem, a member of the RGK GTPases, inhibits recombinant CaV1.2 channels using multiple mechanisms that require distinct conformations of the GTPase.

    Science.gov (United States)

    Yang, Tingting; Xu, Xianghua; Kernan, Timothy; Wu, Vincent; Colecraft, Henry M

    2010-05-15

    Rad/Rem/Gem/Kir (RGK) GTPases potently inhibit Ca(V)1 and Ca(V)2 (Ca(V)1-2) channels, a paradigm of ion channel regulation by monomeric G-proteins with significant physiological ramifications and potential biotechnology applications. The mechanism(s) underlying how RGK proteins inhibit I(Ca) is unknown, and it is unclear how key structural and regulatory properties of these GTPases (such as the role of GTP binding to the nucleotide binding domain (NBD), and the C-terminus which contains a membrane-targeting motif) feature in this effect. Here, we show that Rem inhibits Ca(V)1.2 channels by three independent mechanisms that rely on distinct configurations of the GTPase: (1) a reduction in surface density of channels is accomplished by enhancing dynamin-dependent endocytosis, (2) a diminution of channel open probability (P(o)) that occurs without impacting on voltage sensor movement, and (3) an immobilization of Ca(V) channel voltage sensors. The presence of both the Rem NBD and C-terminus (whether membrane-targeted or not) in one molecule is sufficient to reconstitute all three mechanisms. However, membrane localization of the NBD by a generic membrane-targeting module reconstitutes only the decreased P(o) function (mechanism 2). A point mutation that prevents GTP binding to the NBD selectively eliminates the capacity to immobilize voltage sensors (mechanism 3). The results reveal an uncommon multiplicity in the mechanisms Rem uses to inhibit I(Ca), predict new physiological dimensions of the RGK GTPase-Ca(V) channel crosstalk, and suggest original approaches for developing novel Ca(V) channel blockers.

  14. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  15. Electrical stimulation (ES counteracts muscle decline in seniors

    Directory of Open Access Journals (Sweden)

    Helmut eKern

    2014-07-01

    Full Text Available The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are all marks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise.We addressed whether electrical stimulation (ES is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function.We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity.ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis.Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.

  16. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Shreesh Ojha

    2016-01-01

    Full Text Available Cisplatin (CSP is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage.

  17. Molecular chaperones as therapeutic targets to counteract proteostasis defects.

    Science.gov (United States)

    Cattaneo, Monica; Dominici, Roberto; Cardano, Marina; Diaferia, Giuseppe; Rovida, Ermanna; Biunno, Ida

    2012-03-01

    The health of cells is preserved by the levels and correct folding states of the proteome, which is generated and maintained by the proteostasis network, an integrated biological system consisting of several cytoprotective and degradative pathways. Indeed, the health conditions of the proteostasis network is a fundamental prerequisite to life as the inability to cope with the mismanagement of protein folding arising from genetic, epigenetic, and micro-environment stress appears to trigger a whole spectrum of unrelated diseases. Here we describe the potential functional role of the proteostasis network in tumor biology and in conformational diseases debating on how the signaling branches of this biological system may be manipulated to develop more efficacious and selective therapeutic strategies. We discuss the dual strategy of these processes in modulating the folding activity of molecular chaperones in order to counteract the antithetic proteostasis deficiencies occurring in cancer and loss/gain of function diseases. Finally, we provide perspectives on how to improve the outcome of these disorders by taking advantage of proteostasis modeling.

  18. Sweet delusion. Glucose drinks fail to counteract ego depletion.

    Science.gov (United States)

    Lange, Florian; Eggert, Frank

    2014-04-01

    Initial acts of self-control have repeatedly been shown to reduce individuals' performance on a consecutive self-control task. In addition, sugar containing drinks have been demonstrated to counteract this so-called ego-depletion effect, both when being ingested and when merely being sensed in the oral cavity. However, since the underlying evidence is less compelling than suggested, replications are crucially required. In Experiment 1, 70 participants consumed a drink containing either sugar or a non-caloric sweetener between two administrations of delay-discounting tasks. Experiment 2 (N=115) was designed to unravel the psychological function of oral glucose sensing by manipulating the temporal delay between a glucose mouth rinse and the administration of the consecutive self-control task. Despite applying powerful research designs, no effect of sugar sensing or ingestion on ego depletion could be detected. These findings add to previous challenges of the glucose model of self-control and highlight the need for independent replications.

  19. The beneficial effects of taurine to counteract sarcopenia.

    Science.gov (United States)

    Scicchitano, Bianca M; Sica, Gigliola

    2016-11-22

    Aging is a multifactorial process characterized by several features including low-grade inflammation, increased oxidative stress and reduced regenerative capacity, which ultimately lead to alteration in morpho-functional properties of skeletal muscle, thus promoting sarcopenia. This condition is characterized by a gradual loss of muscle mass due to an unbalance between protein synthesis and degradation, finally conveying in functional decline and disability. The development of specific therapeutic approaches able to block or reverse this condition may represent an invaluable tool for the promotion of a healthy aging among elderly. It is well established that changes in the quantity and the quality of dietary proteins, as well as the intake of specific amino acids, are able to counteract some of the physiopathological processes related to the progression of the loss of muscle mass and may have beneficial effects in improving the anabolic response of muscle in the elderly. Taurine is a non-essential amino acid expressed in high concentration in several mammalian tissues and particularly in skeletal muscle where it is involved in the modulation of intracellular calcium concentration and ion channel regulation and where it also acts as an antioxidant and anti-inflammatory factor. The aim of this review is to summarize the pleiotropic effects of taurine on specific muscle targets and to discuss its role in regulating signaling pathways involved in the maintenance of muscle homeostasis. We also highlight the potential use of taurine as a therapeutic molecule for the amelioration of skeletal muscle function and performance severely compromised during aging.

  20. Targeting species D adenoviruses replication to counteract the epidemic keratoconjunctivitis.

    Science.gov (United States)

    Nikitenko, Natalia A; Speiseder, Thomas; Groitl, Peter; Spirin, Pavel V; Prokofjeva, Maria M; Lebedev, Timofey D; Rubtsov, Petr M; Lam, Elena; Riecken, Kristoffer; Fehse, Boris; Dobner, Thomas; Prassolov, Vladimir S

    2015-06-01

    Human adenoviruses are non-enveloped DNA viruses causing various infections; their pathogenicity varies dependent on virus species and type. Although acute infections can sometimes take severe courses, they are rarely fatal in immune-competent individuals. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are hyperacute and highly contagious infections of the eye caused by human adenovirus types within species D. Currently there is no causal treatment available to counteract these diseases effectively. The E2B region of the adenovirus genome encodes for the viral DNA polymerase, which is required for adenoviral DNA replication. Here we propose novel model systems to test this viral key factor, DNA polymerase, as a putative target for the development of efficient antiviral therapy based on RNA interference. Using our model cell lines we found that different small interfering RNAs mediate significant suppression (up to 90%) of expression levels of viral DNA polymerase upon transfection. Moreover, permanent expression of short hairpin RNA based on the most effective small interfering RNA led to a highly significant, more than tenfold reduction in replication for different human group D adenoviruses involved in ocular infections.

  1. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    Science.gov (United States)

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  2. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity.

    Science.gov (United States)

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe

    2016-06-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels. Copyright © 2016 the American Physiological Society.

  3. Circumvention of Mcl-1-Dependent Drug Resistance by Simultaneous Chk1 and MEK1/2 Inhibition in Human Multiple Myeloma Cells

    Science.gov (United States)

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E.; Sanderson, Michael W.; Bodie, Wesley W.; Kramer, Lora B.; Orlowski, Robert Z.; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM. PMID:24594907

  4. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yan Pei

    Full Text Available The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  5. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly.

    Science.gov (United States)

    Tanenbaum, Marvin E; Macůrek, Libor; Galjart, Niels; Medema, René H

    2008-12-17

    Bipolar spindle assembly critically depends on the microtubule plus-end-directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition of this antiparallel sliding activity results in the formation of monopolar spindles. Here, we show that upon depletion of the minus-end-directed motor dynein, or the dynein-binding protein Lis1, bipolar spindles can form in human cells with substantially less Eg5 activity, suggesting that dynein and Lis1 produce an inward force that counteracts the Eg5-dependent outward force. Interestingly, we also observe restoration of spindle bipolarity upon depletion of the microtubule plus-end-tracking protein CLIP-170. This function of CLIP-170 in spindle bipolarity seems to be mediated through its interaction with dynein, as loss of CLIP-115, a highly homologous protein that lacks the dynein-dynactin interaction domain, does not restore spindle bipolarity. Taken together, these results suggest that complexes of dynein, Lis1 and CLIP-170 crosslink and slide microtubules within the spindle, thereby producing an inward force that pulls centrosomes together.

  6. Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy.

    Science.gov (United States)

    Gineste, Charlotte; Hernandez, Andres; Ivarsson, Niklas; Cheng, Arthur J; Naess, Karin; Wibom, Rolf; Lesko, Nicole; Bruhn, Helene; Wedell, Anna; Freyer, Christoph; Zhang, Shi-Jin; Carlström, Mattias; Lanner, Johanna T; Andersson, Daniel C; Bruton, Joseph D; Wredenberg, Anna; Westerblad, Håkan

    2015-12-01

    Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.

  7. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis

    Science.gov (United States)

    Liu, Liang; Zhang, Qin; Cai, Yulong; Sun, Dayu; He, Xie; Wang, Lian; Yu, Dan; Li, Xin; Xiong, Xiaoyi; Xu, Haiwei; Yang, Qingwu; Fan, Xiaotang

    2016-01-01

    Radial glial-like cells (RGLs) in the adult dentate gyrus (DG) function as progenitor cells for adult hippocampal neurogenesis, a process involved in the stress-related pathophysiology and treatment efficiency of depression. Resveratrol (RSV) has been demonstrated to be a potent activator of neurogenesis. The present study investigated whether chronic RSV treatment has antidepressant potential in relation to hippocampal neurogenesis. Mice received two weeks of RSV (20 mg/kg) or dimethylsulfoxide (DMSO) treatment, followed by lipopolysaccharide (LPS; 1 mg/kg) or saline injections for 5 days. We found that RSV treatment abrogated the increased immobility in the forced swimming test and tail suspension test induced by LPS. Immunohistochemical staining revealed that RSV treatment reversed the increase in microglial activation and the inhibition in DG neurogenesis. RSV treatment also attenuated LPS-induced defects in the expanding of RGLs through promoting symmetric division. In addition, RSV ameliorated LPS-induced NF-κB activation in the hippocampus coincides with the up-regulation levels of Sirt1 and Hes1. Taken together, these data indicated that RSV-induced Sirt1 activation counteracts LPS-induced depression-like behaviors via a neurogenic mechanism. A new model to understand the role of RSV in treating depression may result from these findings. PMID:27517628

  8. Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    Ulf Tiemann

    2014-03-01

    Full Text Available Differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs after overexpressing four transcription factors, of which Oct4 is essential. To elucidate the role of Oct4 during reprogramming, we investigated the immediate transcriptional response to inducible Oct4 overexpression in various somatic murine cell types using microarray analysis. By downregulating somatic-specific genes, Oct4 induction influenced each transcriptional program in a unique manner. A significant upregulation of pluripotent markers could not be detected. Therefore, OCT4 facilitates reprogramming by interfering with the somatic transcriptional network rather than by directly initiating a pluripotent gene-expression program. Finally, Oct4 overexpression upregulated the gene Mgarp in all the analyzed cell types. Strikingly, Mgarp expression decreases during the first steps of reprogramming due to a KLF4-dependent inhibition. At later stages, OCT4 counteracts the repressive activity of KLF4, thereby enhancing Mgarp expression. We show that this temporal expression pattern is crucial for the efficient generation of iPSCs.

  9. Magnetite nanoparticles induced adaptive mechanisms counteract cell death in human pulmonary fibroblasts.

    Science.gov (United States)

    Radu, Mihaela; Dinu, Diana; Sima, Cornelia; Burlacu, Radu; Hermenean, Anca; Ardelean, Aurel; Dinischiotu, Anca

    2015-10-01

    Magnetite nanoparticles (MNP) have attracted great interest for biomedical applications due to their unique chemical and physical properties, but the MNP impact on human health is not fully known. Consequently, our study proposes to highlight the biochemical mechanisms that underline the toxic effects of MNP on a human lung fibroblast cell line (MRC-5). The cytotoxicity generated by MNP in MRC-5 cells was dose and time-dependent. MNP-treated MRC-5 cells accumulated large amount of iron and reactive oxygen species (ROS) and exhibited elevated antioxidant scavenger enzymes. Reduced glutathione (GSH) depletion and enhanced lipid peroxidation (LPO) processes were also observed. The cellular capacity to counteract the oxidative damage was sustained by high levels of heat shock protein 60 (Hsp60), a protein that confers resistance against ROS attack and inhibition of cell death. While significant augmentations in nitric oxide (NO) and prostaglandine E2 (PGE2) levels were detected after 72 h of MNP-exposure only, caspase-1 was activated earlier starting with 24h post-treatment. Taken together, our results suggest that MRC-5 cells have the capacity to develop cell protection mechanisms against MNP. Detailed knowledge of the mechanisms induced by MNP in cell culture could be essential for their prospective use in various in vivo biochemical applications.

  10. P-cadherin counteracts myosin II-B function: implications in melanoma progression

    Directory of Open Access Journals (Sweden)

    De Wever Olivier

    2010-09-01

    Full Text Available Abstract Background Malignant transformation of melanocytes is frequently attended by a switch in cadherin expression profile as shown for E- and N-cadherin. For P-cadherin, downregulation in metastasizing melanoma has been demonstrated, and over-expression of P-cadherin in melanoma cell lines has been shown to inhibit invasion. The strong invasive and metastatic nature of cutaneous melanoma implies a deregulated interplay between intercellular adhesion and migration-related molecules Results In this study we performed a microarray analysis to compare the mRNA expression profile of an invasive BLM melanoma cell line (BLM LIE and the non-invasive P-cadherin over-expression variant (BLM P-cad. Results indicate that nonmuscle myosin II-B is downregulated in BLM P-cad. Moreover, myosin II-B plays a major role in melanoma migration and invasiveness by retracting the tail during the migratory cycle, as shown by the localization of myosin II-B stress fibers relative to Golgi and the higher levels of phosphorylated myosin light chain. Analysis of P-cadherin and myosin II-B in nodular melanoma sections and in a panel of melanoma cell lines further confirmed that there is an inverse relationship between both molecules. Conclusions Therefore, we conclude that P-cadherin counteracts the expression and function of myosin II-B, resulting in the suppression of the invasive and migratory behaviour of BLM melanoma cells

  11. Construction of an Artificial MicroRNA Expression Vector for Simultaneous Inhibition of Multiple Genes in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Deyin Guo

    2009-05-01

    Full Text Available Recently, artificial microRNA (amiRNA has become a promising RNA interference (RNAi technology. Here, we describe a flexible and reliable method for constructing both single- and multi-amiRNA expression vectors. Two universal primers, together with two specific primers carrying the encoding sequence of amiRNA were designed and utilized to synthesize the functional amiRNA cassette through a one-step PCR. With appropriate restriction sites, the synthesized amiRNA cassettes can be cloned into any site of different destination vectors. Using the method, we constructed both single- and multi-amiRNA expression vectors to target three reporter genes, which code firefly luciferase (Fluc, enhanced green fluorescent protein (EGFP and β-galactosidase (LacZ, respectively. The expressions of three genes were all specifically inhibited by either the corresponding single- or the multi-amiRNA expression vector in 293T cells. And the RNAi efficiency of each amiRNA produced by both single- and multi-amiRNA expression vectors was comparable.

  12. The kinase-inhibitor sorafenib inhibits multiple steps of the Hepatitis C Virus infectious cycle in vitro.

    Science.gov (United States)

    Descamps, Véronique; Helle, François; Louandre, Christophe; Martin, Elodie; Brochot, Etienne; Izquierdo, Laure; Fournier, Carole; Hoffmann, Thomas W; Castelain, Sandrine; Duverlie, Gilles; Galmiche, Antoine; François, Catherine

    2015-06-01

    Hepatitis C Virus (HCV) chronic infection is a major cause of hepatocellular carcinoma. Sorafenib is the only medical treatment that has been approved for the treatment of this cancer. It is a multikinase inhibitor with anti-tumor activity against a wide variety of cancers. Sorafenib blocks angiogenesis and tumor cell proliferation through inhibition of kinases, such as VEGFR2, PDGFR, or the serine/threonine kinases RAF. Previous studies have reported an anti-HCV effect of sorafenib in vitro, but various mechanisms of action have been described. The aim of this study was to clarify the action of sorafenib on the complete HCV infectious cycle. In order to examine the action of sorafenib on all steps of the HCV infectious cycle, we used a combination of validated cell culture models, based on the HuH-7 reference cell line and primary human hepatocytes. We found that sorafenib blocks HCV infection by altering the viral entry step and the production of viral particles. Moreover, we observed that treatment with sorafenib lead to a modification of Claudin-1 expression and localization, which could partly be responsible for the anti-HCV effect. Collectively, our findings confirm the anti-HCV effect of sorafenib in vitro, while highlighting the complexity of the action of sorafenib on the HCV infectious cycle.

  13. An Anti-apoE4 Specific Monoclonal Antibody Counteracts the Pathological Effects of apoE4 In Vivo.

    Science.gov (United States)

    Luz, Ishai; Liraz, Ori; Michaelson, Daniel M

    2016-06-02

    ApolipoproteinE4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and as such is a promising therapeutic target. This study examined the extent to which the pathological effects of apoE4 can be counteracted in vivo utilizing an immunological approach in which anti-apoE4 antibodies are applied peripherally by i.p. injections into apoE4-targeted replacement mice. Prerequisites for the successful pursuit of this objective are the availability of antibodies that specifically bind brain apoE4 and not apoE3, and demonstrating that direct application of these antibodies into the brain can counteract the effects of apoE4. Accordingly, it was shown that the antiapoE4 monoclonal antibody (mAb) 9D11 binds specifically to brain apoE4 and not apoE3. Direct i.c.v. application of mAb 9D11 prevented the apoE4-driven accumulation of Aβ in hippocampal neurons following activation of the amyloid cascade by inhibiting the Aβ-degrading enzyme neprilysin. These findings provide a proof-of-concept that anti-apoE4 mAb 9D11, when introduced into the brain, can counteract the apoE4 effects in vivo. Subsequent experiments, utilizing repeated i.p. injections of mAb 9D11, resulted in the formation of apoE/IgG complexes specifically in apoE4 mice. This was associated with reversal of the cognitive impairments of apoE4 in the Morris water maze and the novel object recognition test as well as with reversal of key apoE4-driven pathologies including the hyperphosphorylated tau and the reduced levels of the apoER2 receptor. These results indicate that anti-apoE4 immunotherapy counteracts the cognitive and brain pathological effects of apoE4, and suggest that such an approach could also benefit human apoE4 carriers.

  14. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum.

    Science.gov (United States)

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-09-11

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.

  15. Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Bingqian Xie

    2016-11-01

    Full Text Available Multiple myeloma (MM is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK 1/2 and c-Jun N-terminal kinase (JNK signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients.

  16. Cotinine inhibits the pro-inflammatory response initiated by multiple cell surface Toll-like receptors in monocytic THP cells

    Directory of Open Access Journals (Sweden)

    Bagaitkar Juhi

    2012-11-01

    Full Text Available Abstract Background The primary, stable metabolite of nicotine [(S-3-(1-methyl-2-pyrrolidinyl pyridine] in humans is cotinine [(S-1-methyl-5-(3-pyridinyl-2-pyrrolidinone]. We have previously shown that cotinine exposure induces convergence and amplification of the GSK3β-dependent PI3 kinase and cholinergic anti-inflammatory systems. The consequence is reduced pro-inflammatory cytokine secretion by human monocytes responding to bacteria or LPS, a TLR4 agonist. Findings Here we show that cotinine-induced inflammatory suppression may not be restricted to individual Toll-like receptors (TLRs. Indeed, in monocytic cells, cotinine suppresses the cytokine production that is normally resultant upon agonist-specific engagement of all of the major surface exposed TLRs (TLR 2/1; 2/6; 4 and 5, although the degree of suppression varies by TLR. Conclusions These results provide further mechanistic insight into the increased susceptibility to multiple bacterial infections known to occur in smokers. They also establish THP-1 cells as a potentially suitable model with which to study the influence of tobacco components and metabolites on TLR-initiated inflammatory events.

  17. Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum.

    Science.gov (United States)

    Kumar, Sunil; Dubey, Ashvini Kumar; Karmakar, Ruma; Kini, Kukkundoor Ramachandra; Mathew, Mathew Kuriyan; Prakash, Harischandra Sripathy

    2012-12-01

    The host proteins TOM1 and TOM3 associated with tonoplast membrane are shown to be required for efficient multiplication of Tobamoviruses. In this study, homologous of TOM1 and TOM3 genes were identified in pepper (Capsicum annuum) using specific primers. Their gene sequences have similarity to Nicotiana tabacum NtTOM1 and NtTOM3. Sequence alignment showed that CaTOM1 and CaTOM3 are closely related to TOM1 and TOM3 of N. tabacum and Solanum lycopersicum with 90% and 70% nucleotide sequence identities, respectively. RNA interference approach was used to suppress the TOM1 and TOM3 gene expression which in turn prevented Tobacco mosaic virus replication in tobacco. Nicotiana plants agro-infiltrated with siRNA constructs of TOM1 or TOM3 showed no mosaic or necrotic infection symptoms upon inoculation with TMV. The results indicated that silencing of TOM1 and TOM3 of pepper using the siRNA constructs is an efficient method for generating TMV-resistant plants. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  18. Inhibition of peptidyl-arginine deiminases reverses protein-hypercitrullination and disease in mouse models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mario A. Moscarello

    2013-03-01

    Multiple sclerosis (MS is the most common CNS-demyelinating disease of humans, showing clinical and pathological heterogeneity and a general resistance to therapy. We first discovered that abnormal myelin hypercitrullination, even in normal-appearing white matter, by peptidylarginine deiminases (PADs correlates strongly with disease severity and might have an important role in MS progression. Hypercitrullination is known to promote focal demyelination through reduced myelin compaction. Here we report that 2-chloroacetamidine (2CA, a small-molecule, PAD active-site inhibitor, dramatically attenuates disease at any stage in independent neurodegenerative as well as autoimmune MS mouse models. 2CA reduced PAD activity and protein citrullination to pre-disease status. In the autoimmune models, disease induction uniformly induced spontaneous hypercitrullination with citrulline+ epitopes targeted frequently. 2CA rapidly suppressed T cell autoreactivity, clearing brain and spinal cord infiltrates, through selective removal of newly activated T cells. 2CA essentially prevented disease when administered before disease onset or before autoimmune induction, making hypercitrullination, and specifically PAD enzymes, a therapeutic target in MS models and thus possibly in MS.

  19. Benzimidazole derivative, BMT-1, induces apoptosis in multiple myeloma cells via a mitochondrial-mediated pathway involving H+/K+-ATPase inhibition.

    Science.gov (United States)

    Yang, Tai; Li, Min-Hui; Liu, Jin; Huang, Ning; Li, Ning; Liu, Si-Nian; Liu, Yang; Zhang, Tao; Zou, Qiang; Li, Hua

    2014-06-01

    2-(1H-benzimidazol-2-yl)-4,5,6,7-tetrahydro-2H-indazol-3-ol (BMT-1), a bicyclic compound, belongs to the benzimidazole group and consists of the fusion of benzene and imidazole. The objective of the present study was to assess the effect of BMT-1 on the proliferation of multiple myeloma (MM) cells and identify whether BMT-1 induces apoptosis in MM cells. Our results showed a dose- and time-dependent decrease in the proliferation of MM cells treated with BMT-1. Further studies revealed that the antiproliferative effects of BMT-1 were caused by induction of apoptosis with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in MM cells. In addition, BMT-1 induced the loss of mitochondrial membrane potential resulting in the activation of caspase-8 and -9. Furthermore, the MM cells treated with BMT-1 showed a more acidic intracellular pH (pHi) as indicated by a lower FL1/FL2 ratio caused by inhibition of H+/K+-ATPase. Collectively, these findings demonstrated that a decrease in pHi, caused by H+/K+-ATPase inhibition induced by BMT-1, triggered the dysfunction of the mitochondria resulting in the apoptosis of MM cells. Therefore, BMT-1 may be used as a lead compound for the design and development of new agents with which to treat MM and other forms of cancer.

  20. Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib.

    Science.gov (United States)

    Muz, Barbara; Azab, Feda; de la Puente, Pilar; Rollins, Scott; Alvarez, Richard; Kawar, Ziad; Azab, Abdel Kareem

    2015-01-01

    Multiple myeloma (MM) is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interaction in vivo led to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment.

  1. Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib

    Directory of Open Access Journals (Sweden)

    Barbara Muz

    2015-01-01

    Full Text Available Multiple myeloma (MM is a plasma cell malignancy localized in the bone marrow. Despite the introduction of novel therapies majority of MM patients relapse. We have previously shown that inhibition of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1 play a key role in proliferation of MM and using small-molecule inhibitors of P-selectin/PSGL-1 sensitized MM cells to therapy. However, these small-molecule inhibitors had low specificity to P-selectin and showed poor pharmacokinetics. Therefore, we tested blocking of P-selectin and PSGL-1 using functional monoclonal antibodies in order to sensitize MM cells to therapy. We have demonstrated that inhibiting the interaction between MM cells and endothelial and stromal cells decreased proliferation in MM cells and in parallel induced loose-adhesion to the primary tumor site to facilitate egress. At the same time, blocking this interaction in vivo led to MM cells retention in the circulation and delayed homing to the bone marrow, thus exposing MM cells to bortezomib which contributed to reduced tumor growth and better mice survival. This study provides a better understanding of the biology of P-selectin and PSGL-1 and their roles in dissemination and resensitization of MM to treatment.

  2. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy.

    Science.gov (United States)

    Weinhaus, A J; Bhagroo, N V; Brelje, T C; Sorenson, R L

    2000-04-01

    Islets undergo a number of up-regulatory changes to meet the increased demand for insulin during pregnancy, including increased insulin secretion and beta-cell proliferation. It has been shown that elevated lactogenic hormone is directly responsible for these changes, which occur in a phasic pattern, peaking on day 15 of pregnancy and returning to control levels by day 20 (term). As placental lactogen levels remain elevated through late gestation, it was of interest to determine whether glucocorticoids (which increase during late gestation) could counteract the effects of lactogens on insulin secretion, beta-cell proliferation, and apoptosis. We found that insulin secretion measured over 24 h in culture and acute secretion measured over 1 h in response to high glucose were increased at least 2-fold by PRL treatment after 6 days in culture. Dexamethasone (DEX) treatment had a significant inhibitory effect on secretion in a dose-dependent manner at concentrations greater than 1 nM. At 100 nM, a concentration equivalent to the plasma corticosteroid level during late pregnancy, DEX inhibited secretion to below control levels. The addition of DEX (>1 nM) inhibited secretion from PRL-treated islets to levels similar to those produced by DEX treatment alone. Bromodeoxyuridine (10 microM) staining for the final 24 h of a 6-day culture showed that PRL treatment increased cell proliferation 6-fold over the control level. DEX treatment alone (1-1000 nM) did not reduce cell division below the control level, but significantly inhibited the rate of division in PRL-treated islets. YoYo-1, an ultrasensitive fluorescent nucleic acid stain, was added (1 microM; 8 h) to the medium after 1-3 days of culture to examine cell death. Islets examined under confocal microscopy showed that DEX treatment (100 nM) increased the number of cells with apoptotic nuclear morphologies. This was quantified by counting the number of YoYo-labeled nuclei per islet under conventional epifluorescence

  3. Discussing the undiscussable with the powerful: why and how faculty must learn to counteract organizational silence.

    Science.gov (United States)

    Dankoski, Mary E; Bickel, Janet; Gusic, Maryellen E

    2014-12-01

    Dialogue is essential for transforming institutions into learning organizations, yet many well-known characteristics of academic health centers (AHCs) interfere with open discussion. Rigid hierarchies, intense competition for resources, and the power of peer review in advancement processes all hamper difficult conversations, thereby contributing to organizational silence, and at great cost to the institution. Information necessary for critical decisions is not shared, individuals and the organization do not learn from mistakes, and diverse perspectives from those with less power are not entertained, or worse, are suppressed. When leaders become more skilled at inviting multiple perspectives and faculty more adept at broaching difficult conversations with those in power, differences are more effectively addressed and conflicts resolved. In this article, the authors frame why this skill is an essential competency for faculty and leaders alike and provide the following recommendations to institutions for increasing capacity in this area: (1) develop leaders to counteract organizational silence, (2) develop faculty members' skills in raising difficult issues with those in positions of power, and (3) train mentors to coach others in raising difficult conversations. The vitality of AHCs requires that faculty and institutional leaders develop relational communication skills and partner in learning through challenging conversations.

  4. Interleukin-35 administration counteracts established murine type 1 diabetes--possible involvement of regulatory T cells.

    Science.gov (United States)

    Singh, Kailash; Kadesjö, Erik; Lindroos, Julia; Hjort, Marcus; Lundberg, Marcus; Espes, Daniel; Carlsson, Per-Ola; Sandler, Stellan; Thorvaldson, Lina

    2015-07-30

    The anti-inflammatory cytokine IL-35 is produced by regulatory T (Treg) cells to suppress autoimmune and inflammatory responses. The role of IL-35 in type 1 diabetes (T1D) remains to be answered. To elucidate this, we investigated the kinetics of Treg cell response in the multiple low dose streptozotocin induced (MLDSTZ) T1D model and measured the levels of IL-35 in human T1D patients. We found that Treg cells were increased in MLDSTZ mice. However, the Treg cells showed a decreased production of anti-inflammatory (IL-10, IL-35, TGF-β) and increased pro-inflammatory (IFN-γ, IL-2, IL-17) cytokines, indicating a phenotypic shift of Treg cells under T1D condition. IL-35 administration effectively both prevented development of, and counteracted established MLDSTZ T1D, seemingly by induction of Eos expression and IL-35 production in Treg cells, thus reversing the phenotypic shift of the Treg cells. IL-35 administration reversed established hyperglycemia in NOD mouse model of T1D. Moreover, circulating IL-35 levels were decreased in human T1D patients compared to healthy controls. These findings suggest that insufficient IL-35 levels play a pivotal role in the development of T1D and that treatment with IL-35 should be investigated in treatment of T1D and other autoimmune diseases.

  5. MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis

    Directory of Open Access Journals (Sweden)

    Francisca F. Vasconcelos

    2016-10-01

    Full Text Available The generation of neurons from neural stem cells requires large-scale changes in gene expression that are controlled to a large extent by proneural transcription factors, such as Ascl1. While recent studies have characterized the differentiation genes activated by proneural factors, less is known on the mechanisms that suppress progenitor cell identity. Here, we show that Ascl1 induces the transcription factor MyT1 while promoting neuronal differentiation. We combined functional studies of MyT1 during neurogenesis with the characterization of its transcriptional program. MyT1 binding is associated with repression of gene transcription in neural progenitor cells. It promotes neuronal differentiation by counteracting the inhibitory activity of Notch signaling at multiple levels, targeting the Notch1 receptor and many of its downstream targets. These include regulators of the neural progenitor program, such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1 suppresses Notch signaling cell-autonomously via MyT1, coupling neuronal differentiation with repression of the progenitor fate.

  6. Microenvironmental influence on pre-clinical activity of polo-like kinase inhibition in multiple myeloma: implications for clinical translation.

    Directory of Open Access Journals (Sweden)

    Douglas W McMillin

    Full Text Available Polo-like kinases (PLKs play an important role in cell cycle progression, checkpoint control and mitosis. The high mitotic index and chromosomal instability of advanced cancers suggest that PLK inhibitors may be an attractive therapeutic option for presently incurable advanced neoplasias with systemic involvement, such as multiple myeloma (MM. We studied the PLK 1, 2, 3 inhibitor BI 2536 and observed potent (IC50<40 nM and rapid (commitment to cell death <24 hrs in vitro activity against MM cells in isolation, as well as in vivo activity against a traditional subcutaneous xenograft mouse model. Tumor cells in MM patients, however, don't exist in isolation, but reside in and interact with the bone microenvironment. Therefore conventional in vitro and in vivo preclinical assays don't take into account how interactions between MM cells and the bone microenvironment can potentially confer drug resistance. To probe this question, we performed tumor cell compartment-specific bioluminescence imaging assays to compare the preclinical anti-MM activity of BI 2536 in vitro in the presence vs. absence of stromal cells or osteoclasts. We observed that the presence of these bone marrow non-malignant cells led to decreased anti-MM activity of BI 2536. We further validated these results in an orthotopic in vivo mouse model of diffuse MM bone lesions where tumor cells interact with non-malignant cells of the bone microenvironment. We again observed that BI 2536 had decreased activity in this in vivo model of tumor-bone microenvironment interactions highlighting that, despite BI 2536's promising activity in conventional assays, its lack of activity in microenvironmental models raises concerns for its clinical development for MM. More broadly, preclinical drug testing in the absence of relevant tumor microenvironment interactions may overestimate potential clinical activity, thus explaining at least in part the gap between preclinical vs. clinical efficacy in MM

  7. Forest management could counteract distribution retractions forced by climate change.

    Science.gov (United States)

    Mair, Louise; Harrison, Philip J; Räty, Minna; Bärring, Lars; Strandberg, Gustav; Snäll, Tord

    2017-03-28

    Climate change is expected to drive the distribution retraction of northern species. However, particularly in regions with a history of intensive exploitation, changes in habitat management could facilitate distribution expansions counter to expectations under climate change. Here, we test the potential for future forest management to facilitate the southwards expansion of an old-forest species from the boreal region into the boreo-nemoral region, contrary to expectations under climate change. We used an ensemble of species distribution models based on citizen science data to project the response of Phellinus ferrugineofuscus, a red-listed old-growth indicator, wood-decaying fungus, to six forest management and climate change scenarios. We projected change in habitat suitability across the boreal and boreo-nemoral regions of Sweden for the period 2020-2100. Scenarios varied in the proportion of forest set-aside from production, the level of timber extraction, and the magnitude of climate change. Habitat suitabilities for the study species were projected to show larger relative increases over time in the boreo-nemoral region compared to the boreal region, under all scenarios. By 2100, mean suitabilities in set-aside forest in the boreo-nemoral region were similar to the suitabilities projected for set-aside forest in the boreal region in 2020, suggesting that occurrence in the boreo-nemoral region could be increased. However, across all scenarios, consistently higher projected suitabilities in set-aside forest in the boreal region indicated that the boreal region remained the species stronghold. Furthermore, negative effects of climate change were evident in the boreal region, and projections suggested that climatic changes may eventually counteract the positive effects of forest management in the boreo-nemoral region. Our results suggest that the current rarity of this old-growth indicator species in the boreo-nemoral region may be due to the history of intensive

  8. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90.

    Science.gov (United States)

    Zhao, Ming; Ma, Jian; Zhu, Hai-Yan; Zhang, Xu-Hui; Du, Zhi-Yan; Xu, Yuan-Ji; Yu, Xiao-Dan

    2011-08-29

    Multiple myeloma (MM) is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma.

  9. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90

    Directory of Open Access Journals (Sweden)

    Xu Yuan-Ji

    2011-08-01

    Full Text Available Abstract Background Multiple myeloma (MM is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. Results In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Conclusions Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma.

  10. A HUMAN RIGHTS-BASED APPROACH TO COUNTERACT ...

    African Journals Online (AJOL)

    milkii

    It is affecting hundreds of thousands of persons every year. ... While men are also exposed to trafficking, women and girls constitute a significant .... to explain the factors inhibiting the adoption of the human rights based approach to .... of the Missing Case: Examining the Civil Right of Action for Human Trafficking Victims',.

  11. Definition of singularity due to Newton’s second law counteracting gravity

    National Research Council Canada - National Science Library

    Arezu Jahanshir; Hossein Javadi; Farshid forouzbakhsh

    2013-01-01

    .... Regarding on review of Newton's second law in this paper, we have been attempted toenter to the sub-quantum space by crossing the border of quantum mechanics thento survey of counteracting Newton's...

  12. Telmisartan increases systemic exposure to rosuvastatin after single and multiple doses, and in vitro studies show telmisartan inhibits ABCG2-mediated transport of rosuvastatin.

    Science.gov (United States)

    Hu, Miao; Lee, Hon-Kit; To, Kenneth K W; Fok, Benny S P; Wo, Siu-Kwan; Ho, Chung-Shun; Wong, Chun-Kwok; Zuo, Zhong; Chan, Thomas Y K; Chan, Juliana C N; Tomlinson, Brian

    2016-12-01

    The ATP-binding cassette transporter G2 (ABCG2) plays an important role in the disposition of rosuvastatin. Telmisartan, a selective angiotension-II type 1 (AT1) receptor blocker, inhibits the transport capacity of ABCG2, which may result in drug interactions. This study investigated the pharmacokinetic interaction between rosuvastatin and telmisartan and the potential mechanism. In this two-phase fixed-order design study, healthy subjects received single doses of 10 mg rosuvastatin at baseline and after telmisartan 40 mg daily for 14 days. Patients with hyperlipidaemia who had been taking rosuvastatin 10 mg daily for at least 4 weeks were given telmisartan 40 mg daily for 14 days together with rosuvastatin. Plasma concentrations of rosuvastatin were measured over 24 h before and after telmisartan administration. In vitro experiments using a bidirectional transport assay were performed to investigate the involvement of ABCG2 in the interaction. Co-administration of telmisartan significantly increased the maximum plasma concentration (C max) and the area under the plasma concentration-time curve (AUC) of rosuvastatin by 71 and 26 %, respectively. The T max values were reduced after administration of telmisartan. There was no significant difference in the interaction of rosuvastatin with telmisartan between healthy volunteers and patients receiving long-term rosuvastatin therapy or among subjects with the different ABCG2 421 C>A genotypes. The in vitro experiment demonstrated that telmisartan inhibited ABCG2-mediated efflux of rosuvastatin. This study demonstrated that telmisartan significantly increased the systemic exposure to rosuvastatin after single and multiple doses.

  13. Genistein inhibits the proliferation of human multiple myeloma cells through suppression of nuclear factor-κB and upregulation of microRNA-29b.

    Science.gov (United States)

    Xie, Jie; Wang, Jianchao; Zhu, Bo

    2016-02-01

    Multiple myeloma (MM) is a malignant tumor and is the most common primary tumor of the bone marrow in the USA. Genistein is predominantly found in Leguminosae and various lines of evidence have indicated that it suppresses cell growth, induces programmed cell death and inhibits angiogenesis. As a result of these capabilities, genistein presents as a promising cancer chemopreventive agent. However, the effect of genistein on MM remains to be elucidated. The present study investigated the effect of genistein on the proliferation and apoptosis of MM cells through the regulation of nuclear factor-κB (NF-κB) and microRNA-29b (miR-29b). In the present study, cell proliferation was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, apoptosis was detected using an Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay and caspase-3 activation assay. The expression of NF-κB and miR-29b was analyzed using western blotting and reverse transcription quantitative polymerase chain reaction, respectively. Finally, miR-29b and anti-miR-29b plasmids were transfected into U266 cells to determine the effect of genistein on MM. In the present study, the results demonstrated that genistein could significantly reduce cell proliferation, induce apoptosis and increase the activity of caspase-3 in U266 cells. Furthermore, it was found that genistein could suppress the protein level of NF-κB and promote the expression of miR-29b in U266 cells. The results also indicated that miR-29b could alter the expression of NF-κB in U266 cells. These findings suggest that genistein inhibits the proliferation of human MM cells by upregulating miR-29b resulting in suppression of NF-κB.

  14. Salt Potentiates Methylamine Counteraction System to Offset the Deleterious Effects of Urea on Protein Stability and Function

    Science.gov (United States)

    Singh, Laishram R.; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali

    2015-01-01

    Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction. PMID:25793733

  15. Salt potentiates methylamine counteraction system to offset the deleterious effects of urea on protein stability and function.

    Directory of Open Access Journals (Sweden)

    Safikur Rahman

    Full Text Available Cellular methylamines are osmolytes (low molecular weight organic compounds believed to offset the urea's harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea's effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.

  16. Pathogen self defense: mechanisms to counteract microbial antagonism

    NARCIS (Netherlands)

    Duffy, B.K.; Schouten, A.; Raaijmakers, J.M.

    2003-01-01

    Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to

  17. Red Seaweed (Hypnea Bryodies and Melanothamnus Somalensis) Extracts Counteracting Azoxymethane-Induced Hepatotoxicity in Rats

    Science.gov (United States)

    Ibrahim Waly, Mostafa; Al Alawi, Ahmed Ali; Al Marhoobi, Insaaf Mohammad; Rahman, Mohammad Shafiur

    2016-12-01

    Background: Azoxymethane (AOM) is a well-known colon cancer-inducing agent in experimental animals via mechanisms that include oxidative stress in rat colon and liver tissue. Few studies have investigated AOM-induced oxidative stress in rat liver tissue. Red seaweeds of the genera Hypnea Bryodies and Melanothamnus Somalensis are rich in polyphenolic compounds that may suppress cancer through antioxidant properties, yet limited research has been carried out to investigate their anti-carcinogenic and antioxidant influence against AOM-induced oxidative stress in rat liver. Objective: This study aims to determine protective effects of red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts against AOM-induced hepatotoxicity and oxidative stress. Materials and Methods: Sprague–Dawley rats received intraperitoneal injections of AOM, 15 mg/kg body weight, once a week for two consecutive weeks and then orally administered red seaweed (100 mg/kg body-weight) extracts for sixteen weeks. At the end of the experiment all animals were overnight fasted then sacrificed and blood and liver tissues were collected. Results: AOM treatment significantly decreased serum liver markers and induced hepatic oxidative stress as evidenced by increased liver tissue homogenate levels of nitric oxide and malondialdehyde, decreased total antioxidant capacity and glutathione, and inhibition of antioxidant enzymes (catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase and superoxide dismutase). Both red seaweed extracts abolished the AOM-associated oxidative stress and protected against liver injury as evidenced by increased serum levels of liver function markers. In addition, histological findings confirmed protective effects of the two red seaweed extracts against AOM-induced liver injury. Conclusion: Our findings indicate that red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts counteracted oxidative stress-induced hepatotoxicity in a

  18. A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate.

    Science.gov (United States)

    Weber, Stephen; Stirnimann, Christian U; Wieser, Mara; Frey, Daniel; Meier, Roger; Engelhardt, Sabrina; Li, Xiaodan; Capitani, Guido; Kammerer, Richard A; Hilbi, Hubert

    2014-12-05

    The causative agent of Legionnaires' pneumonia, Legionella pneumophila, colonizes diverse environmental niches, including biofilms, plant material, and protozoa. In these habitats, myo-inositol hexakisphosphate (phytate) is prevalent and used as a phosphate storage compound or as a siderophore. L. pneumophila replicates in protozoa and mammalian phagocytes within a unique "Legionella-containing vacuole." The bacteria govern host cell interactions through the Icm/Dot type IV secretion system (T4SS) and ∼300 different "effector" proteins. Here we characterize a hitherto unrecognized Icm/Dot substrate, LppA, as a phytate phosphatase (phytase). Phytase activity of recombinant LppA required catalytically essential cysteine (Cys(231)) and arginine (Arg(237)) residues. The structure of LppA at 1.4 Å resolution revealed a mainly α-helical globular protein stabilized by four antiparallel β-sheets that binds two phosphate moieties. The phosphates localize to a P-loop active site characteristic of dual specificity phosphatases or to a non-catalytic site, respectively. Phytate reversibly abolished growth of L. pneumophila in broth, and growth inhibition was relieved by overproduction of LppA or by metal ion titration. L. pneumophila lacking lppA replicated less efficiently in phytate-loaded Acanthamoeba castellanii or Dictyostelium discoideum, and the intracellular growth defect was complemented by the phytase gene. These findings identify the chelator phytate as an intracellular bacteriostatic component of cell-autonomous host immunity and reveal a T4SS-translocated L. pneumophila phytase that counteracts intracellular bacterial growth restriction by phytate. Thus, bacterial phytases might represent therapeutic targets to combat intracellular pathogens.

  19. St. John's wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic β cells.

    Science.gov (United States)

    Novelli, Michela; Menegazzi, Marta; Beffy, Pascale; Porozov, Svetlana; Gregorelli, Alex; Giacopelli, Daniela; De Tata, Vincenzo; Masiello, Pellegrino

    2016-12-01

    The extract of the herbaceous plant St. John's wort (SJW) and its phloroglucinol component hyperforin (HPF) were previously shown to inhibit cytokine-induced STAT-1 and NF-κB activation and prevent damage in pancreatic β cells. To further clarify the mechanisms underlying their protective effects, we evaluated the phosphorylation state of various factors of cytokine signaling pathways and the expression of target genes involved in β-cell function, inflammatory response and apoptosis induction. In the INS-1E β-cell line, exposed to a cytokine mixture with/without SJW extract (2-5μg/ml) or HPF (1-5μM), protein phosphorylation was assessed by western blotting and expression of target genes by real-time quantitative PCR. SJW and HPF markedly inhibited, in a dose-dependent manner (from 60 to 100%), cytokine-induced activating phosphorylations of STAT-1, NF-κB p65 subunit and IKK (NF-κB inhibitory subunit IκBα kinase). MAPK and Akt pathways were also modulated by the vegetal compounds through hindrance of p38 MAPK, ERK1/2, JNK and Akt phosphorylations, each reduced by at least 65% up to 100% at the higher dose. Consistently, SJW and HPF a) abolished cytokine-induced mRNA expression of pro-inflammatory genes; b) avoided down-regulation of relevant β-cell functional/differentiation genes; c) corrected cytokine-driven imbalance between pro- and anti-apoptotic factors, by fully preventing up-regulation of pro-apoptotic genes and preserving expression or function of anti-apoptotic Bcl-2 family members; d) protected INS-1E cells against cytokine-induced apoptosis. In conclusion, SJW extract and HPF exert their protective effects through simultaneous inhibition of multiple phosphorylation steps along various cytokine signaling pathways and consequent restriction of inflammatory and apoptotic gene expression. Thus, they have a promising therapeutic potential for the prevention or limitation of immune-mediated β-cell dysfunction and damage leading to type 1 diabetes.

  20. FDTD Modeling and Counteraction to Scintillation Effects in the lonosphere

    Science.gov (United States)

    2014-04-05

    One commonality among all such transforms is their dependence on the surface equivalence theorem, which itself is a reformulation of Huygens’ principle...will depend on what computer language is used for the FDTD implementation. Ecosystems of many modern programming languages have sparse storage...support available in one form or another, such as sparse matrices and arrays, associative arrays and hash tables. Multiple language -agnostic storage

  1. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma.

    Science.gov (United States)

    Podar, Klaus; Raab, Marc S; Tonon, Giovanni; Sattler, Martin; Barilà, Daniela; Zhang, Jing; Tai, Yu-Tzu; Yasui, Hiroshi; Raje, Noopur; DePinho, Ronald A; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C

    2007-02-15

    Here we show the antimyeloma cytotoxicity of adaphostin and carried out expression profiling of adaphostin-treated multiple myeloma (MM) cells to identify its molecular targets. Surprisingly, c-Jun was the most up-regulated gene even at the earliest point of analysis (2 h). We also observed adaphostin-induced c-Abl cleavage in immunoblot analysis. Proteasome inhibitor bortezomib, but not melphalan or dexamethasone, induced similar effects, indicating unique agent-dependent mechanisms. Using caspase inhibitors, as well as caspase-resistant mutants of c-Abl (TM-c-Abl and D565A-Abl), we then showed that c-Abl cleavage in MM cells requires caspase activity. Importantly, both overexpression of the c-Abl fragment or c-Jun and knockdown of c-Abl and c-Jun expression by small interfering RNA confirmed that adaphostin-induced c-Jun up-regulation triggers downstream caspase-mediated c-Abl cleavage, inhibition of MM cell growth, and induction of apoptosis. Finally, our data suggest that this mechanism may not only be restricted to MM but may also be important in a broad range of malignancies including erythroleukemia and solid tumors.

  2. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis

    Science.gov (United States)

    Lecca, Davide; Marangon, Davide; Coppolino, Giusy T.; Méndez, Aida Menéndez; Finardi, Annamaria; Costa, Gloria Dalla; Martinelli, Vittorio; Furlan, Roberto; Abbracchio, Maria P.

    2016-01-01

    In the mature central nervous system (CNS), oligodendrocytes provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, oligodendroglial precursors (OPCs) follow a very precise differentiation program, which is finely orchestrated by transcription factors, epigenetic factors and microRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional regulation. Any alterations in this program can potentially contribute to dysregulated myelination, impaired remyelination and neurodegenerative conditions, as it happens in multiple sclerosis (MS). Here, we identify miR-125a-3p, a developmentally regulated miRNA, as a new actor of oligodendroglial maturation, that, in the mammalian CNS regulates the expression of myelin genes by simultaneously acting on several of its already validated targets. In cultured OPCs, over-expression of miR-125a-3p by mimic treatment impairs while its inhibition with an antago-miR stimulates oligodendroglial maturation. Moreover, we show that miR-125a-3p levels are abnormally high in the cerebrospinal fluid of MS patients bearing active demyelinating lesions, suggesting that its pathological upregulation may contribute to MS development, at least in part by blockade of OPC differentiation leading to impaired repair of demyelinated lesions. PMID:27698367

  3. SHP-1 phosphatase activity counteracts increased T cell receptor affinity.

    Science.gov (United States)

    Hebeisen, Michael; Baitsch, Lukas; Presotto, Danilo; Baumgaertner, Petra; Romero, Pedro; Michielin, Olivier; Speiser, Daniel E; Rufer, Nathalie

    2013-03-01

    Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.

  4. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina.

    Directory of Open Access Journals (Sweden)

    Nils Schallner

    Full Text Available PURPOSE: Ischemia and reperfusion injury (I/R of neuronal structures and organs is associated with increased morbidity and mortality due to neuronal cell death. We hypothesized that inhalation of carbon monoxide (CO after I/R injury ('postconditioning' would protect retinal ganglion cells (RGC. METHODS: Retinal I/R injury was performed in Sprague-Dawley rats (n = 8 by increasing ocular pressure (120 mmHg, 1 h. Rats inhaled room air or CO (250 ppm for 1 h immediately following ischemia or with 1.5 and 3 h latency. Retinal tissue was harvested to analyze Bcl-2, Bax, Caspase-3, HO-1 expression and phosphorylation of the nuclear transcription factor (NF-κB, p38 and ERK-1/2 MAPK. NF-κB activation was determined and inhibition of ERK-1/2 was performed using PD98059 (2 mg/kg. Densities of fluorogold prelabeled RGC were analyzed 7 days after injury. Microglia, macrophage and Müller cell activation and proliferation were evaluated by Iba-1, GFAP and Ki-67 staining. RESULTS: Inhalation of CO after I/R inhibited Bax and Caspase-3 expression (Bax: 1.9 ± 0.3 vs. 1.4 ± 0.2, p = 0.028; caspase-3: 2.0 ± 0.2 vs. 1.5 ± 0.1, p = 0.007; mean ± S.D., fold induction at 12 h, while expression of Bcl-2 was induced (1.2 ± 0.2 vs. 1.6 ± 0.2, p = 0.001; mean ± S.D., fold induction at 12 h. CO postconditioning suppressed retinal p38 phosphorylation (p = 0.023 at 24 h and induced the phosphorylation of ERK-1/2 (p<0.001 at 24 h. CO postconditioning inhibited the expression of HO-1. The activation of NF-κB, microglia and Müller cells was potently inhibited by CO as well as immigration of proliferative microglia and macrophages into the retina. CO protected I/R-injured RGC with a therapeutic window at least up to 3 h (n = 8; RGC/mm(2; mean ± S.D.: 1255 ± 327 I/R only vs. 1956 ± 157 immediate CO treatment, vs. 1830 ± 109 1.5 h time lag and vs. 1626 ± 122 3 h time lag; p<0.001. Inhibition of ERK-1/2 did not counteract the CO effects (RGC/mm(2: 1956 ± 157 vs

  5. Reactive species and diabetes: counteracting oxidative stress to improve health.

    Science.gov (United States)

    Pérez-Matute, Patricia; Zulet, M Angeles; Martínez, J Alfredo

    2009-12-01

    Oxidative stress is at the very core of metabolism. Reactive species behave as true second messengers that control important cellular functions. However, under pathological conditions, abnormally large concentrations of these species may lead to permanent changes in signal transduction and gene expression. Attenuation of oxidative stress as a way to improve several diseases such as diabetes has flourished as one of the main challenges of research. The lack of evidence to prove the benefits from antioxidant compounds has led to boost these strategies. Inhibition of reactive oxygen species (ROS) production through the development of inhibitors against NADPH oxidase and mitochondria offers an alternative approach to conventional antioxidant therapies. There is a need to understand oxidative stress process to implement health-disorder approaches.

  6. Counteracting Byzantine Adversaries with Network Coding: An Overhead Analysis

    CERN Document Server

    Kim, MinJi; Barros, Joao

    2008-01-01

    Network coding increases throughput and is robust against failures and erasures. However, since it allows mixing of information within the network, a single corrupted packet generated by a Byzantine attacker can easily contaminate the information to multiple destinations. In this paper, we study the transmission overhead associated with detecting Byzantine adversaries at a trusted node using network coding. We consider three different schemes: end-to-end error correction, packet-based Byzantine detection scheme, and generation-based Byzantine detection scheme. In end-to-end error correction, it is known that we can correct up to the min-cut between the source and destinations. However, if we use Byzantine detection schemes, we can detect polluted data, drop them, and therefore, only transmit valid data. For the dropped data, the destinations perform erasure correction, which is computationally lighter than error correction. We show that, with enough attackers present in the network, Byzantine detection scheme...

  7. Counteracting antibiotic resistance: breaking barriers among antibacterial strategies.

    Science.gov (United States)

    Baquero, Fernando; Coque, Teresa M; Cantón, Rafael

    2014-08-01

    To fight against antibiotic resistance, prevention-only is no longer an acceptable strategy. The old concept 'one-infection, one-bug, one-drug', genocentrism in antibiotic discovery, and lack of integration between different antimicrobial strategies have probably contributed to current weaknesses in confronting antibiotic resistance. Resistance should be combatted in all fronts simultaneously, in the patient (complex therapy), the group (where resistance is maintained), and the significant environment (polluted by resistance). This paper is reviewing why specific 'therapeutic' approaches are needed in each of these fronts, using different types of 'drugs' directed to a variety of targets, in the goal of inhibiting antibiotic resistant bacteria. Multi-target integrated combination strategies and therapies should be more extensively evaluated, not only in the infected patient (using novel formats for clinical trials), but as associations of 'therapeutic strategies' in the different compartments where antibiotic resistance emerges and flows (measuring global effects in resistance). Multi-targeted therapeutic approaches require a relaxation of barriers among the various compounds, including systemic and topic antibiotics, antiseptics, biocides, anti-resistant clones vaccination, phages, decontamination products, and in general eco-evo drugs acting on factors influencing ecology and evolution of resistant bacteria. The application of methods of systems biology will facilitate such a multi-lateral attack to antibiotic resistance. Such advances should be paralleled by a simultaneous progress in regulatory sciences and close coordination among all stakeholders.

  8. Counteraction between overshadowing and degraded contingency treatments: support for the extended comparator hypothesis.

    Science.gov (United States)

    Urcelay, Gonzalo P; Miller, Ralph R

    2006-01-01

    Four experiments using rats in a Pavlovian lick-suppression preparation investigated the effects of combining 2 treatments known for their response-decrementing effects, namely, overshadowing and degraded contingency. Contrary to most contemporary learning theories, the extended comparator hypothesis predicts that these 2 treatments will counteract each other, and therefore, less of a decrement in conditioned responding should be observed than with either treatment alone. Experiments 1 and 2 confirmed this prediction in first-order conditioning and sensory preconditioning preparations, respectively. Experiment 3 demonstrated that posttraining extinction of the training context resulted in a recovery from degraded contingency and reversed the counteractive effect on overshadowing. Finally, Experiment 4 demonstrated that posttraining extinction of the overshadowing stimulus resulted in recovery from simple overshadowing and also reversed the counteractive effect on degraded contingency. These results are consistent with the extended comparator hypothesis but not traditional or recent acquisition-focused models.

  9. (−)-Englerin A-evoked Cytotoxicity Is Mediated by Na+ Influx and Counteracted by Na+/K+-ATPase*

    Science.gov (United States)

    Ludlow, Melanie J.; Gaunt, Hannah J.; Rubaiy, Hussein N.; Musialowski, Katie E.; Blythe, Nicola M.; Vasudev, Naveen S.; Muraki, Katsuhiko; Beech, David J.

    2017-01-01

    (−)-Englerin A ((−)-EA) has a rapid and potent cytotoxic effect on several types of cancer cell that is mediated by plasma membrane ion channels containing transient receptor potential canonical 4 (TRPC4) protein. Because these channels are Ca2+-permeable, it was initially thought that the cytotoxicity arose as a consequence of Ca2+ overload. Here we show that this is not the case and that the effect of (−)-EA is mediated by a heteromer of TRPC4 and TRPC1 proteins. Both TRPC4 and TRPC1 were required for (−)-EA cytotoxicity; however, although TRPC4 was necessary for the (−)-EA-evoked Ca2+ elevation, TRPC1 was not. TRPC1 either had no role or was a negative regulator of Ca2+ entry. By contrast, both TRPC4 and TRPC1 were necessary for monovalent cation entry evoked by (−)-EA, and (−)-EA-evoked cell death was dependent upon entry of the monovalent cation Na+. We therefore hypothesized that Na+/K+-ATPase might act protectively by counteracting the Na+ load resulting from sustained Na+ entry. Indeed, inhibition of Na+/K+-ATPase by ouabain potently and strongly increased (−)-EA-evoked cytotoxicity. The data suggest that (−)-EA achieves cancer cell cytotoxicity by inducing sustained Na+ entry through heteromeric TRPC1/TRPC4 channels and that the cytotoxic effect of (−)-EA can be potentiated by Na+/K+-ATPase inhibition. PMID:27875305

  10. How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A.

    Science.gov (United States)

    Tan, S L; Katze, M G

    2001-05-25

    Interferons (IFNs) induce an antiviral state in the cell through complex and indirect mechanisms, which culminate in a direct inhibition of viral replication and stimulation of the host adaptive responses. Viruses often counteract with elaborate strategies to interfere with the induction as well as action of IFN effector molecules. This evolutionary battle between viruses and IFN components is a subject of intense research aimed at understanding the immunopathogenesis of viruses and the molecular basis of IFN signaling and action. In the case with hepatitis C virus (HCV), this may have profound implications for the therapeutic use of recombinant IFN in treating chronic hepatitis C. Depending on the subtype of HCV, current IFN-based treatment regimens are effective for only a small subset of chronic hepatitis C patients. Thus, one of the Holy Grails in HCV research is to understand the mechanisms by which the virus may evade IFN antiviral surveillance and establish persistent infection, which may eventually provide insights into new avenues for better antiviral therapy. Despite the lack of an efficient tissue culture system and an appropriate animal model for HCV infection, several mechanisms have been proposed based on clinical studies and in vitro experiments. This minireview focuses on the HCV NS5A nonstructural protein, which is implicated in playing a role in HCV tolerance to IFN treatment, possibly in part through its ability to inhibit the cellular IFN-induced PKR protein kinase.

  11. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells.

    Science.gov (United States)

    Manni, Sabrina; Brancalion, Alessandra; Mandato, Elisa; Tubi, Laura Quotti; Colpo, Anna; Pizzi, Marco; Cappellesso, Rocco; Zaffino, Fortunato; Di Maggio, Speranza Antonia; Cabrelle, Anna; Marino, Filippo; Zambello, Renato; Trentin, Livio; Adami, Fausto; Gurrieri, Carmela; Semenzato, Gianpietro; Piazza, Francesco

    2013-01-01

    CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27) in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site) and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies.

  12. Neurophysiological maturation in adolescence - vulnerability and counteracting addiction to alcohol.

    Science.gov (United States)

    Chwedorowicz, Roman; Skarżyński, Henryk; Pucek, Weronika; Studziński, Tadeusz

    2017-03-22

    The results of contemporary studies confirm the formation of two neural networks in the brain during the period of adolescence. The first is defined as emotional, located in the limbic system, develops earlier, quicker, and more intensively than the second one in the prefrontal cortex, called the judgement network, which fulfils the role of control and inhibition of emotional reactions. The domination of the emotional network in adolescence is manifested by hyperactivity of the limbic system, accompanied by intensified undertaking of courageous, reckless, risky, or even sometimes dangerous actions, so very characteristic in the maturation. The aim of the article is to present the state of the art in the field of latest achievements in experimental neurophysiology related to the maturation of the structural end functional processes in adolescents, and to alcohol vulnerability. Alcohol effect initiation starts in early adolescence, and therefore is connected with alcohol abuse and addiction in adulthood, which confirms the necessity for provision of an early prophylactic protection for juveniles, even before entering the phase of early adolescence. Some electrophysiological characteristics, such as low P3 amplitude of the Event-Related Potential (ERP) and Event-Related Oscillations (EROs), are manifested by their high risk offspring, and are considered to be biological markers (endophenotypes) of a predisposition to develop alcohol use disorders. Electroencephalographic oscillations induced within the range of the theta and delta waves (Event-Related Oscillation- ERO), considered as endophenotypes and markers of increased vulnerability for addiction, present three groups of genes and three types of neurotransmitters, with gamma aminobutyric acid, acetylcholine and glutamate as neurotransmitters in the central nervous system. A new research approach consisting in the application of electroencephalographic methods and techniques in developmental and genetic studies of

  13. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens.

    Directory of Open Access Journals (Sweden)

    Ivan S Mettrop

    Full Text Available In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens ('rich fens'. This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3- concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3(- and NH4(+ dynamics showed no considerable changes either. In conclusion, short

  14. Maldistribution in air-water heat pump evaporators. Part 2: Economic analysis of counteracting technologies

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    In this study a methodology is applied to quantify the effect of evaporator maldistributionon operating costs of airewater heat pumps. The approach is used to investigate the cost-effectivenessof two technologies enabling to counteract maldistribution: a flash gasbypass setup and the individual...

  15. Adipose gene expression patterns of weight gain suggest counteracting steroid hormone synthesis

    NARCIS (Netherlands)

    Schothorst, van E.M.; Franssen-Hal, van N.L.W.; Schaap, M.M.; Pennings, J.; Hoebee, B.; Keijer, J.

    2005-01-01

    VAN SCHOTHORST, EVERT M., NICOLE FRANSSEN-VAN HAL, MIRJAM M. SCHAAP, JEROEN PENNINGS, BARBARA HOEBEE, AND JAAP KEIJER. Adipose gene expression patterns of weight gain suggest counteracting steroid hormone synthesis. Obes Res. 2005;13:1031-1041. Objective: To identify early molecular changes in weigh

  16. Allured or alarmed: Counteractive control responses to food temptations in the brain

    NARCIS (Netherlands)

    Smeets, P.A.M.; Kroese, F.M.; Evers, C.; Ridder, de D.T.D.

    2013-01-01

    Typically, it is believed that palatable, high caloric foods signal reward and trigger indulgent responses. However, Counteractive Control Theory suggests that, to the extent that people are concerned about their weight, a confrontation with palatable foods should also trigger ‘alarm bell responses’

  17. Inhibition of the virulence, antibiotic resistance, and fecal shedding of multiple antibiotic-resistant Salmonella Typhimurium in broilers fed Original XPC™.

    Science.gov (United States)

    Feye, K M; Anderson, K L; Scott, M F; McIntyre, D R; Carlson, S A

    2016-12-01

    Salmonella carriage is an insidious problem for the poultry industry. While most Salmonella serotypes are avirulent in poultry, these bacteria can contaminate chicken meat during processing, leading to one of the most important food safety hazards. In this study, we examined the anti-Salmonella effects of Diamond V Original XPC(™) (XPC) included in the finisher diet fed to commercial broilers. On 3 occasions between day one (D1) and D20, broilers were experimentally infected with multiple antibiotic-resistant Salmonella Typhimurium. After confirming that the chicks were shedding Salmonella in the feces on D21, broiler chicks were fed a diet containing XPC (n = 57 birds; 1.25 kg/MT) or an XPC-free control diet (CON) (n = 57 birds) to D49. Fecal samples were obtained weekly and subjected to selective culture for enumerating and determining the antibiotic resistance of the Salmonella Salmonella isolates were then subjected to an in vitro virulence assay, which predicts the ability of Salmonella to cause illness in a mammalian host. Broilers were euthanized on D49 and a segment of the large intestine was removed and subjected to the same assays used for the fecal samples. When compared to the birds fed the CON diet, Salmonella fecal shedding, virulence (invasion and invasion gene expression), and antibiotic resistance were significantly decreased in birds fed XPC (5-fold, 7.5-fold, 6-fold, and 5.3-fold decreases, respectively). Birds fed XPC exhibited heavier body weight (BW) and greater BW gains than those fed the CON diet. The decrease in virulence was associated with a decreased expression of a genetic regulator of Salmonella invasion into cells (hilA), while the decrease in antibiotic resistance was due to a loss of an integron (SGI1) from the input strain. This study revealed that Original XPC(™) inhibits the shedding, downstream virulence, and antibiotic resistance of Salmonella residing in broilers. © The Author 2016. Published by Oxford University Press

  18. Safety, pharmacokinetics and pharmacodynamics of BI 135585, a selective 11β-hydroxysteroid dehydrogenase-1 (HSD1) inhibitor in humans: liver and adipose tissue 11β-HSD1 inhibition after acute and multiple administrations over 2 weeks.

    Science.gov (United States)

    Freude, S; Heise, T; Woerle, H-J; Jungnik, A; Rauch, T; Hamilton, B; Schölch, C; Huang, F; Graefe-Mody, U

    2016-05-01

    To assess the safety and pharmacokinetic and pharmacodynamic characteristics of BI 135585, a selective 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitor, after single- and repeated-dose administration. The single-dose study included open-label administration of 200 mg BI 135585 in healthy volunteers, while in the multiple-dose study, we carried out randomized, double-blind administration of 5-200 mg BI 135585 or placebo once daily over 14 days in patients with type 2 diabetes (T2DM). Assessments included 11β-HSD1 inhibition in the liver (urinary tetrahydrocortisol (THF)/tetrahydrocotisone (THE) ratio) and in subcutaneous adipose tissue (AT) ex vivo and determination of hypothalamus-pituitary-adrenal (HPA) axis hormone levels. No major safety issues occurred with BI 135585 administration. The HPA axis was mildly activated with slightly increased, but still normal adrenocorticotropic hormone levels, increased total urinary corticoid excretion but unchanged plasma cortisol levels. After multiple doses of 5-200 mg BI 135585, exposure (area under the curve) increased dose-proportionally and half-life was 55-65 h. The urinary THF/THE ratio decreased, indicating liver 11β-HSD1 inhibition. Median 11β-HSD1 enzyme inhibition in the AT reached 90% after a single dose of BI 135585, but was low (31% or lower) after 14 days of continuous treatment. BI 135585 was safe and well tolerated over 14 days and can be dosed once daily. Future studies are required to clarify the therapeutic potential of BI 135585 in view of its effects on 11β-HSD1 inhibition in AT after single and multiple doses. Enzyme inhibition in the AT was not adequately predicted by the urinary THF/THE ratio. © 2016 John Wiley & Sons Ltd.

  19. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming.

    Science.gov (United States)

    Jeon, Eun Jin; Tadamura, Kazuki; Murakami, Taiki; Inaba, Jun-Ichi; Kim, Bo Min; Sato, Masako; Atsumi, Go; Kuchitsu, Kazuyuki; Masuta, Chikara; Nakahara, Kenji S

    2017-10-01

    Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca(2+) ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca(2+) influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses.IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole

  20. Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation.

    Science.gov (United States)

    Perségol, L; Vergès, B; Foissac, M; Gambert, P; Duvillard, L

    2006-06-01

    In healthy normolipidaemic and normoglycaemic control subjects, HDL are able to reverse the inhibition of vasodilation that is induced by oxidised LDL. In type 2 diabetic patients, HDL are glycated and more triglyceride-rich than in control subjects. These alterations are likely to modify the capacity of HDL to reverse the inhibition of vasodilation induced by oxidised LDL. Using rabbit aorta rings, we compared the ability of HDL from 16 type 2 diabetic patients and 13 control subjects to suppress the inhibition of vasodilation that is induced by oxidised LDL. Oxidised LDL inhibited endothelium-dependent vasodilation (maximal relaxation [Emax] = 58.2+/-14.6 vs 99.3+/-5.2% for incubation without any lipoprotein, p HDL from control subjects significantly reduced the inhibitory effect of oxidised LDL on vasodilatation (Emax = 77.6+/-12.9 vs 59.5+/-7.7%, p HDL from type 2 diabetic patients had no effect (Emax = 52.4+/-20.4 vs 57.2+/-18.7%, NS). HDL triglyceride content was significantly higher in type 2 diabetic patients than in control subjects (5.3+/-2.2 vs 3.1+/-1.4%, p HDL in type 2 diabetic patients (r = -0.71, p diabetes mellitus, the ability of HDL to counteract the inhibition of endothelium-dependent vasorelaxation induced by oxidised LDL is impaired and is inversely correlated with HDL triglyceride content. These findings suggest that HDL are less atheroprotective in type 2 diabetic patients than in control subjects.

  1. Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation.

    Directory of Open Access Journals (Sweden)

    Xin Yang

    Full Text Available Candida rugosa lipase (CRL has been widely used as a biocatalyst for non-aqueous synthesis in biotechnological applications, which, however, often suffers significant loss of activity in organic solvent. Experimental results show that trehalose could actively counteract the organic-solvent-induced protein denaturation, while the molecular mechanisms still don't unclear. Herein, CRL was used as a model enzyme to explore the effects of trehalose on the retention of enzymatic activity upon incubation in N,N-dimethylformamide (DMF. Results showed that both catalytic activity and conformation changes of CRL influenced by DMF solvent were inhibited by trehalose in a dose-dependent fashion. The simulations further indicated that the CRL protein unfolded in binary DMF solution, but retained the native state in the ternary DMF/trehalose system. Trehalose as the second osmolyte added into binary DMF solution decreased DMF-CRL hydrogen bonds efficiently, whereas increased the intermolecular hydrogen bondings between DMF and trehalose. Thus, the origin of its denaturing effects of DMF on protein is thought to be due to the preferential exclusion of trehalose as well as the intermolecular hydrogen bondings between trehalose and DMF. These findings suggest that trehalose protect the CRL protein from DMF-induced unfolding via both indirect and direct interactions.

  2. ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction.

    Science.gov (United States)

    Miyakawa, Kei; Matsunaga, Satoko; Kanou, Kazuhiko; Matsuzawa, Atsushi; Morishita, Ryo; Kudoh, Ayumi; Shindo, Keisuke; Yokoyama, Masaru; Sato, Hironori; Kimura, Hirokazu; Tamura, Tomohiko; Yamamoto, Naoki; Ichijo, Hidenori; Takaori-Kondo, Akifumi; Ryo, Akihide

    2015-04-22

    APOBEC3G (A3G) is an innate antiviral restriction factor that strongly inhibits the replication of human immunodeficiency virus type 1 (HIV-1). An HIV-1 accessory protein, Vif, hijacks the host ubiquitin-proteasome system to execute A3G degradation. Identification of the host pathways that obstruct the action of Vif could provide a new strategy for blocking viral replication. We demonstrate here that the host protein ASK1 (apoptosis signal-regulating kinase 1) interferes with the counteraction by Vif and revitalizes A3G-mediated viral restriction. ASK1 binds the BC-box of Vif, thereby disrupting the assembly of the Vif-ubiquitin ligase complex. Consequently, ASK1 stabilizes A3G and promotes its incorporation into viral particles, ultimately reducing viral infectivity. Furthermore, treatment with the antiretroviral drug AZT (zidovudine) induces ASK1 expression and restores the antiviral activity of A3G in HIV-1-infected cells. This study thus demonstrates a distinct function of ASK1 in restoring the host antiviral system that can be enhanced by AZT treatment.

  3. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Na; Zhu, Yongqun; Lu, Qiuhe; Hu, Liyan; Zheng, Yuqing; Shao, Feng (NIBS-China); (Zhejiang)

    2012-10-10

    Rab GTPases are frequent targets of vacuole-living bacterial pathogens for appropriate trafficking of the vacuole. Here we discover that bacterial effectors including VirA from nonvacuole Shigella flexneri and EspG from extracellular Enteropathogenic Escherichia coli (EPEC) harbor TBC-like dual-finger motifs and exhibits potent RabGAP activities. Specific inactivation of Rab1 by VirA/EspG disrupts ER-to-Golgi trafficking. S. flexneri intracellular persistence requires VirA TBC-like GAP activity that mediates bacterial escape from autophagy-mediated host defense. Rab1 inactivation by EspG severely blocks host secretory pathway, resulting in inhibited interleukin-8 secretion from infected cells. Crystal structures of VirA/EspG-Rab1-GDP-aluminum fluoride complexes highlight TBC-like catalytic role for the arginine and glutamine finger residues and reveal a 3D architecture distinct from that of the TBC domain. Structure of Arf6-EspG-Rab1 ternary complex illustrates a pathogenic signaling complex that rewires host Arf signaling to Rab1 inactivation. Structural distinctions of VirA/EspG further predict a possible extensive presence of TBC-like RabGAP effectors in counteracting various host defenses.

  4. Nature gives us strength: exposure to nature counteracts ego-depletion.

    Science.gov (United States)

    Chow, Jason T; Lau, Shun

    2015-01-01

    Previous research rarely investigated the role of physical environment in counteracting ego-depletion. In the present research, we hypothesized that exposure to natural environment counteracts ego-depletion. Three experiments were conducted to test this hypothesis. In Experiment 1, initially depleted participants who viewed pictures of nature scenes showed greater persistence on a subsequent anagram task than those who were given a rest period. Experiment 2 expanded upon this finding by showing that natural environment enhanced logical reasoning performance after ego-depleting task. Experiment 3 adopted a two- (depletion vs. no-depletion) -by-two (nature exposure vs. urban exposure) factorial design. We found that nature exposure moderated the effect of depletion on anagram task performance. Taken together, the present studies offer a viable and novel strategy to mitigate the negative impacts of ego-depletion.

  5. Improvement of alveolar-capillary membrane diffusing capacity with enalapril in chronic heart failure and counteracting effect of aspirin.

    Science.gov (United States)

    Guazzi, M; Marenzi, G; Alimento, M; Contini, M; Agostoni, P

    1997-04-01

    KII ACE, the enzyme that converts angiotensin I and inactivates bradykinin, is highly concentrated in the lungs; its blockade reduces exposure to angiotensin II and enhances exposure to prostaglandins generated by local kinin hyperconcentration. Our hypothesis is that ACE inhibitors improve pulmonary function in chronic heart failure (CHF) by readjusting lung vessel tone and permeability or alveolar-capillary membrane diffusion. In 16 CHF patients and 16 normal volunteers or mild untreated hypertensives, pulmonary function and exercise tests with respiratory gas analysis were assessed on placebo, enalapril (10 mg BID), enalapril plus aspirin (325 mg/d), or aspirin, in random order and double blind, for 15 days each. In CHF, enalapril increased pulmonary carbon monoxide diffusion (DLCO), oxygen consumption (VO2), and exercise tolerance and reduced the ratio of dead space to tidal volume (VD/VT) and the ventilatory equivalent for carbon dioxide production (VE/VCO2). On enalapril, VO2 (r = .80, P < .0001) and VD/VT (r = -.69, P = .003) changes from placebo correlated with those in DLCO. These effects were inhibited by aspirin and were absent in control subjects. In 8 additional patients, hydralazine-isosorbide dinitrate, as an alternative treatment for reducing pulmonary capillary wedge pressure (PCWP) and increasing exercise capacity, were more effective than enalapril for the PCWP but did not affect DLCO and VE/VCO2; amelioration in VO2 and VD/VT was unrelated to DLCO and was not modified by aspirin. ACE inhibition improved pulmonary diffusion in CHF. Hydralazine-isosorbide dinitrate failed to provide this result. Counteraction by aspirin, a prostaglandin inhibitor, bespeaks prostaglandin participation while on enalapril that might readjust capillary permeability or alveolar-capillary membrane diffusion.

  6. Shigella IpaH0722 E3 Ubiquitin Ligase Effector Targets TRAF2 to Inhibit PKC–NF-κB Activity in Invaded Epithelial Cells

    Science.gov (United States)

    Ashida, Hiroshi; Nakano, Hiroyasu; Sasakawa, Chihiro

    2013-01-01

    NF-κB plays a central role in modulating innate immune responses to bacterial infections. Therefore, many bacterial pathogens deploy multiple mechanisms to counteract NF-κB activation. The invasion of and subsequent replication of Shigella within epithelial cells is recognized by various pathogen recognition receptors as pathogen-associated molecular patterns. These receptors trigger innate defense mechanisms via the activation of the NF-κB signaling pathway. Here, we show the inhibition of the NF-κB activation by the delivery of the IpaH E3 ubiquitin ligase family member IpaH0722 using Shigella's type III secretion system. IpaH0722 dampens the acute inflammatory response by preferentially inhibiting the PKC-mediated activation of NF-κB by ubiquitinating TRAF2, a molecule downstream of PKC, and by promoting its proteasome-dependent degradation. PMID:23754945

  7. The University of the Third Age as an institution counteracting marginalization of older people

    Directory of Open Access Journals (Sweden)

    Aleksandra Marcinkiewicz

    2011-12-01

    Full Text Available The article presents the role of the University of the Third Age in counteracting the effects of marginalization of the elderly. The history of the University of the Third Age is presented and also different models of this institution are characterized. The paper presents new trends in research conducted by participants of the U3A and shown their relation to marginalization

  8. More reflectivity for the soil to counteract the global-warming of the Earth

    OpenAIRE

    Tejedor, A; Pacheco, A. F.

    2009-01-01

    It is argued that a dedicated effort to increase the reflectivity of the surface of our planet by means of, for example, metallic plates would induce an increase in the global albedo which would counteract in part the present global-warming process of the Earth. This could alleviate the urgency of reducing the CO2 emissions. The City of Zaragoza (Spain) is chosen to illustrate the likelihood of our arguments.

  9. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  10. [Inhibition of invasion and multiplication of Toxoplasma gondii in human colonic epithelial cells by a monoclonal antibody against protein SAG2].

    Science.gov (United States)

    Osorio, J C; Sánchez, R M; Iraola, R C; Pérez, J S

    2001-01-01

    By an bromodeoxyuridine (BrdU) incorporation assay, it was proved hat an IgG 1 subclass, murine monoclonal antibody to surface protein SAG2 of Toxoplasma gondii is capable of reducing the invasion and multiplication of the parasites in highly differentiated mucine secretory HT29-18N2 line cells from a human colon adenocarcinoma. This result shows the importance of surface protein SAG2 of T.gondii in invasion and further multiplication of parasites in the host cell.

  11. Ropizine concurrently enhances and inhibits ( sup 3 H) dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M. (N.Y.U. Medical Center, New York (USA))

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of ({sup 3}H) dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity ({sup 3}H)DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances ({sup 3}H)DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+){minus} pentazocine, has not been fully characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of ({sup 3}H)DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine.

  12. Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: kinetic analysis supporting a steady-state random sequential mechanism.

    Science.gov (United States)

    Jakobson, I; Warholm, M; Mannervik, B

    1979-01-01

    Glutathione derivatives inhibit glutathione S-transferase A [cf. Biochem. J. (1975) 147, 513--522]. The steady-state kinetics of this inhibition have been investigated in detail by using S-octyglutathione, glutathione disulphide and S-(2-chloro-4-nitrophenyl)glutathione: the last compound is a product of the enzyme-catalused reaction. Interpreted in terms of generalized denotations of inhibition patterns, the compounds were found to be competitive with the substrate glutathione. Double-inhibition experiments involving simultaneous use of two inhibitors indicated exclusive binding of the inhibitors to the enzyme. The discrimination between alternative rate equations has been based on the results of weighted non-linear regression analysis. The experimental error was determined by replicate measurements and was found to increase with velocity. The established error structure was used as a basis for weighting in the regression and to construct confidence levels for the judgement of goodness-of-fit of rate equations fitted to experimental data. The results obtained support a steady-state random model for the mechanism of action of glutathione S-transferase A and exclude a number of simple kinetic models. PMID:444209

  13. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Pedersen, Lise Mariager; Rø, Torstein Baade;

    2013-01-01

    OBJECTIVES: Decorin is a stromal-produced small leucine-rich proteoglycan known to attenuate tumour pro-survival, migration, proliferation and angiogenic signalling pathways. Recent studies have shown that decorin interacts with the hepatocyte growth factor (HGF) receptor c-Met, a potential key p...... of decorin to inhibit HGF-induced effects on MM cell lines were analysed in vitro using cell viability and Transwell migration assays. RESULTS: We found that decorin concentrations were significantly higher (p...

  14. Stable gastric pentadecapeptide BPC 157 heals cysteamine-colitis and colon-colon-anastomosis and counteracts cuprizone brain injuries and motor disability.

    Science.gov (United States)

    Klicek, R; Kolenc, D; Suran, J; Drmic, D; Brcic, L; Aralica, G; Sever, M; Holjevac, J; Radic, B; Turudic, T; Kokot, A; Patrlj, L; Rucman, R; Seiwerth, S; Sikiric, P

    2013-10-01

    Stable gastric pentadecapeptide BPC 157 was suggested to link inflammatory bowel disease and multiple sclerosis, and thereby, shown to equally counteract the models of both of those diseases. For colitis, cysteamine (400 mg/kg intrarectally (1 ml/rat)) and colon-colon anastomosis (sacrifice at day 3, 5, 7, and 14) were used. BPC 157 (10 μg/kg, 10 ng/kg) was applied either intraperitoneally once time daily (first application immediately after surgery, last at 24 hours before sacrifice) or per-orally in drinking water (0.16 μg/ml/12 ml/day till the sacrifice) while controls simultaneously received an equivolume of saline (5 ml/kg) intraperitoneally or drinking water only (12 ml/day). A multiple sclerosis suited toxic rat model, cuprizone (compared with standard, a several times higher regimen, 2.5% of diet regimen + 1 g/kg intragastrically/day) was combined with BPC 157 (in drinking water 0.16 μg or 0.16 ng/ml/12 ml/day/rat + 10 μg or 10 ng/kg intragastrically/day) till the sacrifice at day 4. In general, the controls could not heal cysteamine colitis and colon-colon anastomosis. BPC 157 induced an efficient healing of both at the same time. Likewise, cuprizone-controls clearly exhibited an exaggerated and accelerated damaging process; nerve damage appeared in various brain areas, with most prominent damage in corpus callosum, laterodorsal thalamus, nucleus reunions, anterior horn motor neurons. BPC 157-cuprizone rats had consistently less nerve damage in all damaged areas, especially in those areas that otherwise were most affected. Consistently, BPC 157 counteracted cerebellar ataxia and impaired forelimb function. Thereby, this experimental evidence advocates BPC 157 in both inflammatory bowel disease and multiple sclerosis therapy.

  15. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    OpenAIRE

    ZHANG, Zong-Kang; Li, Jie; Liu, Jin; Baosheng GUO; Leung, Albert; Zhang, Ge; Zhang, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment...

  16. PARP INHIBITION OR GENE DEFICIENCY COUNTERACT INTRAEPIDERMAL NERVE FIBER LOSS AND NEUROPATHIC PAIN IN ADVANCED DIABETIC NEUROPATHY

    Science.gov (United States)

    Obrosova, Irina G.; Xu, Weizheng; Lyzogubov, Valeriy V.; Ilnytska, Olga; Mashtalir, Nazar; Vareniuk, Igor; Pavlov, Ivan A.; Zhang, Jie; Slusher, Barbara; Drel, Viktor R.

    2011-01-01

    Evidence for important role of poly(ADP-ribose) polymerase (PARP) activation in diabetic complications is emerging. This study evaluated the role for PARP in rat and mouse models of advanced diabetic neuropathy. The orally active PARP inhibitor 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]anthracen-3-one(GPI-15427, formulated as mesilate salt, 30 mg kg−1d−1 in the drinking water, for 10 weeks after first 2 weeks without treatment) at least partially prevented PARP activation in peripheral nerve and DRG neurons, as well as thermal hypoalgesia, mechanical hyperalgesia, tactile allodynia, exaggerated response to formalin, and, the most important, intraepidermal nerve fiber degeneration in streptozotocin-diabetic rats. These findings are consistent with the lack of small sensory nerve fiber dysfunction in diabetic PARP−/− mice. Furthermore, whereas diabetic PARP+/+ mice displayed ~ 46% intraepidermal nerve fiber loss, diabetic PARP−/− preserved completely normal intraepidermal nerve fiber density. In conclusion, PARP activation is an important contributor to intraepidermal nerve fiber degeneration and functional changes associated with advanced Type 1 diabetic neuropathy. The results support the rationale for development of potent and low toxic PARP inhibitors and PARP inhibitor-containing combination therapies. PMID:17976390

  17. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways

    DEFF Research Database (Denmark)

    Karlsen, Allan Ertman; Heding, P E; Frobøse, H;

    2004-01-01

    The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback...... regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown....

  18. Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138–  CD34– tumor stem-like cells in multiple myeloma-bearing mice

    Directory of Open Access Journals (Sweden)

    Yang C

    2013-04-01

    Full Text Available Cuiping Yang,1,3,* Jing Wang,2,* Dengyu Chen,1,* Junsong Chen,1 Fei Xiong,4 Hongyi Zhang,1 Yunxia Zhang,2 Ning Gu,4 Jun Dou11Department of Pathogenic Biology and Immunology, Medical School, 2Department of Gynecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing, 3Department of Pathogenic Biology and Immunology, School of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 4School of Biological Science and Medical Engineering, Southeast University, Nanjing, People’s Republic of China*These authors contributed equally to this workBackground: There is growing evidence that CD138– CD34– cells may actually be tumor stem cells responsible for initiation and relapse of multiple myeloma. However, effective drugs targeted at CD138– CD34– tumor stem cells are yet to be developed. The purpose of this study was to investigate the inhibitory effect of paclitaxel-loaded Fe3O4 nanoparticles (PTX-NPs on CD138– CD34– tumor stem cells in multiple myeloma-bearing mice.Methods: CD138– CD34– cells were isolated from a human U266 multiple myeloma cell line using an immune magnetic bead sorting method and then subcutaneously injected into mice with nonobese diabetic/severe combined immunodeficiency to develop a multiple myeloma-bearing mouse model. The mice were treated with Fe3O4 nanoparticles 2 mg/kg, paclitaxel 4.8 mg/kg, and PTX-NPs 0.64 mg/kg for 2 weeks. Tumor growth, pathological changes, serum and urinary interleukin-6 levels, and molecular expression of caspase-3, caspase-8, and caspase-9 were evaluated.Results: CD138– CD34– cells were found to have tumor stem cell characteristics. All the mice developed tumors in 40 days after injection of 1 × 106 CD138– CD34– tumor stem cells. Tumor growth in mice treated with PTX-NPs was significantly inhibited compared with the controls (P <  0.005, and the groups that received nanoparticles alone (P < 0.005 or paclitaxel alone (P < 0.05. In addition

  19. A novel class of anti-HIV agents with multiple copies of enfuvirtide enhances inhibition of viral replication and cellular transmission in vitro.

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chang

    Full Text Available We constructed novel HIV-1 fusion inhibitors that may overcome the current limitations of enfuvirtide, the first such therapeutic in this class. The three prototypes generated by the Dock-and-Lock (DNL technology to comprise four copies of enfuvirtide tethered site-specifically to the Fc end of different humanized monoclonal antibodies potently neutralize primary isolates (both R5-tropic and X4-tropic, as well as T-cell-adapted strains of HIV-1 in vitro. All three prototypes show EC(50 values in the subnanomolar range, which are 10- to 100-fold lower than enfuvirtide and attainable whether or not the constitutive antibody targets HIV-1. The potential of such conjugates to purge latently infected cells was also demonstrated in a cell-to-cell viral inhibition assay by measuring their efficacy to inhibit the spread of HIV-1(LAI from infected human peripheral blood mononuclear cells to Jurkat T cells over a period of 30 days following viral activation with 100 nM SAHA (suberoylanilide hydroxamic acid. The IgG-like half-life was not significantly different from that of the parental antibody, as shown by the mean serum concentration of one prototype in mice at 72 h. These encouraging results provide a rationale to develop further novel anti-HIV agents by coupling additional antibodies of interest with alternative HIV-inhibitors via recombinantly-produced, self-assembling, modules.

  20. Semi-Supervised Learning Techniques in AO Applications: A Novel Approach To Drift Counteraction

    Science.gov (United States)

    De Vito, S.; Fattoruso, G.; Pardo, M.; Tortorella, F.; Di Francia, G.

    2011-11-01

    In this work we proposed and tested the use of SSL techniques in the AO domain. The SSL characteristics have been exploited to reduce the need for costly supervised samples and the effects of time dependant drift of state-of-the-art statistical learning approaches. For this purpose, an on-field recorded one year long atmospheric pollution dataset has been used. The semi-supervised approach benefitted from the use of updated unlabeled samples, adapting its knowledge to the slowly changing drift effects. We expect that semi-supervised learning can provide significant advantages to the performance of sensor fusion subsystems in artificial olfaction exhibiting an interesting drift counteraction effect.

  1. Alpha-Tocopherol Counteracts the Cytotoxicity Induced by Ochratoxin A in Primary Porcine Fibroblasts

    DEFF Research Database (Denmark)

    Fusi, Elenora; Rebucci, Raffaella; Pecorini, Chiara

    2010-01-01

    The aims of the current study were to determine the half-lethal concentration of ochratoxin A (OTA) as well as the levels of lactate dehydrogenase release and DNA fragmentation induced by OTA in primary porcine fibroblasts, and to examine the role of α-tocopherol in counteracting its toxicity....... Cells showed a dose-, time- and origin-dependent (ear vs. embryo) sensitivity to ochratoxin A. Pre-incubation for 3 h with 1 nM α-tocopherol significantly (P lactate dehydrogenase release and DNA damage in both fibroblast cultures. These findings indicate that α...

  2. Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention.

    Science.gov (United States)

    Paonessa, Joseph D; Ding, Yi; Randall, Kristen L; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng

    2011-06-01

    NF-E2-related factor 2 (Nrf2) is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. Although Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2(+/+) mice than in Nrf2(-/-) mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. Although glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, although higher liver UGT activity may protect the liver against ABP, it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further show that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues but does not seem to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2.

  3. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3.

    Science.gov (United States)

    Rabbani, M A G; Ribaudo, Michael; Guo, Ju-Tao; Barik, Sailen

    2016-12-15

    A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3.

  4. N-end rule pathway inhibition assists colon tumor regression via necroptosis

    Science.gov (United States)

    Agarwalla, Pritha; Banerjee, Rajkumar

    2016-01-01

    Recent study has shown that N-end rule pathway, an ubiquitin dependent proteolytic system, counteracts cell death by degrading many antisurvival protein fragments like BCLxL, BRCA1, RIPK1, etc. Inhibition of the N-end rule pathway can lead to metabolic stabilization of proapoptotic protein fragments like RIPK1, thereby sensitizing cells to programmed cell death. Receptor interacting serine-threonine protein kinase-1 (RIPK1) is one of the upstream regulators of programmed necrosis known as necroptosis. Necroptosis is particularly gaining attention of cancer biologists as it provides an alternate therapeutic modality to kill cancer cells, which often evolve multiple strategies to circumvent growth inhibition by apoptosis. Utilizing the over expression of biotin receptor in cancer cells, herein, we report that coadministration of synthetic hetero-bivalent N-end rule inhibitor RFC11 and anticancer drug shikonin solubilized in a stable biotin receptor-targeted liposome exhibited significant synergistic antitumor effect in both subcutaneous and orthotopic mouse colon tumor model through induction of necroptosis with distinctive upregulation of RIPK1. Besides developing a newly targeted formulation for necroptosis induction, this report is the first in vivo evidence demonstrating that potent inhibition of N-end rule pathway can enhance therapeutic efficacy of conventional chemotherapeutics. PMID:27556106

  5. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    Science.gov (United States)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  6. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    Science.gov (United States)

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects. © FASEB.

  7. Piracetam counteracts the effects of amitriptyline on inhibitory avoidance in CD1 mice.

    Science.gov (United States)

    Everss, Estrella; Arenas, M Carmen; Vinader-Caerols, Concepción; Monleón, Santiago; Parra, Andrés

    2005-04-30

    The purpose of the present work was to study the effects of amitriptyline on animal cognition in relation to some characteristics of its therapeutic effects. The modulation of acute and chronic effects of amitriptyline on inhibitory avoidance in male and female mice by piracetam was investigated. In Experiment 1, mice were subjected to the training phase of inhibitory avoidance conditioning 60 min after acute piracetam (100 mg/kg) or physiological saline administration. Immediately after the behavioural task, they received a single injection of the tricyclic antidepressant amitriptyline (30 mg/kg) or physiological saline. Twenty-four hours later, subjects were tested for avoidance. In Experiment 2, the same doses of amitriptyline and piracetam were chronically administered. Mice were subjected to the training phase of inhibitory avoidance on the 22nd day, and to the test phase 24 h later. Forty-five minutes after test, subjects explored the elevated plus-maze for 5 min in order to assess whether the effects of amitriptyline on avoidance performance may reflect general behavioural changes. Results obtained were that: (a) acute and chronic amitriptyline impaired inhibitory avoidance of male and female mice, (b) piracetam counteracted the effect of acutely administered amitriptyline on inhibitory avoidance, and (c) piracetam counteracted the effects of chronically administered amitriptyline in males but not females in the same learning task. These effects do not seem to be mediated by non-specific drug effects on spontaneous motor activity or anxiety.

  8. Effect of IR Laser on Myoblasts: Prospects of Application for Counteracting Microgravity-Induced Muscle Atrophy

    Science.gov (United States)

    Monici, Monica; Cialdai, Francesca; Romano, Giovanni; Corsetto, Paola Antonia; Rizzo, Angela Maria; Caselli, Anna; Ranaldi, Francesco

    2013-02-01

    Microgravity-induced muscle atrophy is a problem of utmost importance for the impact it may have on the health and performance of astronauts. Therefore, appropriate countermeasures are needed to prevent disuse atrophy and favour muscle recovery. Muscle atrophy is characterized by loss of muscle mass and strength, and a shift in substrate utilization from fat to glucose, that leads to a reduced metabolic efficiency and enhanced fatigability. Laser therapy is already used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of the research we present was to get insights on possible benefits deriving from the application of an advanced infrared laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of the hypotrophic tissue. The source used was a Multiwave Locked System (MLS) laser, which combines continuous and pulsed emissions at 808 nm and 905 nm, respectively. We studied the effect of MLS treatment on morphology and energy metabolism of C2C12 cells, a widely accepted myoblast model, previously exposed to microgravity conditions modelled by a Random Positioning Machine. The MLS laser treatment was able to restore basal levels of serine/threonine protein phosphatase activity and to counteract cytoskeletal alterations and increase in glycolytic enzymes activity that occurred following the exposure to modelled microgravity. In conclusion, the results provide interesting insights for the application of infrared laser in the treatment of muscle atrophy.

  9. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17..beta..-estradiol (E/sub 2/) at both low (0.1 ..mu..g/kg) and high (20 ..mu..g/kg) doses confirmed its ability to increase the number of striatal /sup 3/H-Spiperone (/sup 3/H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E/sub 2/, to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity.

  10. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts.

    Science.gov (United States)

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.

  11. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts

    Science.gov (United States)

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis. PMID:26751072

  12. Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma.

    Science.gov (United States)

    Amodio, Nicola; Stamato, Maria Angelica; Gullà, Anna Maria; Morelli, Eugenio; Romeo, Enrica; Raimondi, Lavinia; Pitari, Maria Rita; Ferrandino, Ida; Misso, Gabriella; Caraglia, Michele; Perrotta, Ida; Neri, Antonino; Fulciniti, Mariateresa; Rolfo, Christian; Anderson, Kenneth C; Munshi, Nikhil C; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2016-06-01

    Epigenetic abnormalities are common in hematologic malignancies, including multiple myeloma, and their effects can be efficiently counteracted by a class of tumor suppressor miRNAs, named epi-miRNAs. Given the oncogenic role of histone deacetylases (HDAC) in multiple myeloma, we investigated whether their activity could be antagonized by miR-29b, a well-established epi-miRNA. We demonstrated here that miR-29b specifically targets HDAC4 and highlighted that both molecules are involved in a functional loop. In fact, silencing of HDAC4 by shRNAs inhibited multiple myeloma cell survival and migration and triggered apoptosis and autophagy, along with the induction of miR-29b expression by promoter hyperacetylation, leading to the downregulation of prosurvival miR-29b targets (SP1, MCL-1). Moreover, treatment with the pan-HDAC inhibitor SAHA upregulated miR-29b, overcoming the negative control exerted by HDAC4. Importantly, overexpression or inhibition of miR-29b, respectively, potentiated or antagonized SAHA activity on multiple myeloma cells, as also shown in vivo by a strong synergism between miR-29b synthetic mimics and SAHA in a murine xenograft model of human multiple myeloma. Altogether, our results shed light on a novel epigenetic circuitry regulating multiple myeloma cell growth and survival and open new avenues for miR-29b-based epi-therapeutic approaches in the treatment of this malignancy. Mol Cancer Ther; 15(6); 1364-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Listening to Music during Warming-Up Counteracts the Negative Effects of Ramadan Observance on Short-Term Maximal Performance

    Science.gov (United States)

    Baklouti, Hana; Chtourou, Hamdi; Driss, Tarak; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar

    2015-01-01

    Aim The aim of the present study was to examine whether listening to music during warming-up might influence short-term maximal performance (STMP), cognitive anxiety, self-confidence, and enjoyment during Ramadan, and whether these affects might predict STMP. Methods Nine male physical education students (age: 21 ± 1.1 years; height: 1.8 ± 0.04 m; body mass: 83 ± 5 kg) volunteered to participate in the present study. A within-subjects design consisted of four experimental sessions: Two sessions occurred one week before Ramadan and two others took place during Ramadan. They were scheduled at 5 p.m. and were conducted as follows: After a 10-minute warm-up either with or without listening to music, each participant performed a 5-m multiple shuttle run test, after which he was asked to answer items intended to assess his affective state during the experimental task. Results Our findings revealed that STMP was lower during Ramadan than before Ramadan in the no-music condition. Additionally, it was found that STMP was higher in the music condition than in the no-music condition during Ramadan, and that STMP measured before Ramadan did not differ from that measured during Ramadan in the music condition. Regarding affects, the findings revealed that enjoyment was lower during Ramadan than before Ramadan in the music condition, and that cognitive anxiety was lower in the music condition than in the no-music condition before Ramadan. Self-confidence was not influenced by the experimental conditions. Conclusion This study showed that listening to music during warming-up not only would be beneficial for STMP in Ramadan fasters, but also would counteract the negative effects of Ramadan observance on STMP. PMID:26301508

  14. The role of physical activity in counteracting age-related sarcopenia and cancer cachexia: A brief literature review

    Directory of Open Access Journals (Sweden)

    Scalabrin Mattia

    2016-01-01

    Full Text Available Muscle tissue plays several important health functions . In addition to the important mechanical functions, it represents the biggest reserve of body proteins and it is also able to produce several myokines that are able to induce important beneficial effects, through the interaction with different organs. The loss of muscle mass has a tremendous impact on health and it is not surprising that a great interest has raised on two degenerative, irreversible and unstoppable conditions known as sarcopenia and cachexia. Sarcopenia, the age-related loss of muscle mass, is not a disease or a syndrome, it is not even a medical sign sometimes. Indeed, a general consensus among scientists does not exist regarding the definition and the identification criteria of this condition. On the other hand, cachexia is a wasting syndrome characterized by an uncontrolled and unstoppable loss of muscle mass, associated with fatigue and weakness. It is often associated with a disease like cancer, AIDS, Chronic Obstructive Pulmonary Disease (COPD, multiple sclerosis, tuberculosis etc. Given the complexity of these muscle conditions and considering that during aging and cancer there is an increased risk of comorbidities, regular physical activity might be a crucial point to be carefully evaluated on a single patient basis. The aim of this review is to highlight the impact on society and the etiology of sarcopenia and cancer cachexia, with particular regard to the role played by physical activity in preventing and counteracting these muscle-wasting conditions, focusing attention also on the limitation factors that must be considered during the prescription of physical activity to sarcopenic and cachectic patients.

  15. Listening to Music during Warming-Up Counteracts the Negative Effects of Ramadan Observance on Short-Term Maximal Performance.

    Science.gov (United States)

    Aloui, Asma; Briki, Walid; Baklouti, Hana; Chtourou, Hamdi; Driss, Tarak; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar

    2015-01-01

    The aim of the present study was to examine whether listening to music during warming-up might influence short-term maximal performance (STMP), cognitive anxiety, self-confidence, and enjoyment during Ramadan, and whether these affects might predict STMP. Nine male physical education students (age: 21 ± 1.1 years; height: 1.8 ± 0.04 m; body mass: 83 ± 5 kg) volunteered to participate in the present study. A within-subjects design consisted of four experimental sessions: Two sessions occurred one week before Ramadan and two others took place during Ramadan. They were scheduled at 5 p.m. and were conducted as follows: After a 10-minute warm-up either with or without listening to music, each participant performed a 5-m multiple shuttle run test, after which he was asked to answer items intended to assess his affective state during the experimental task. Our findings revealed that STMP was lower during Ramadan than before Ramadan in the no-music condition. Additionally, it was found that STMP was higher in the music condition than in the no-music condition during Ramadan, and that STMP measured before Ramadan did not differ from that measured during Ramadan in the music condition. Regarding affects, the findings revealed that enjoyment was lower during Ramadan than before Ramadan in the music condition, and that cognitive anxiety was lower in the music condition than in the no-music condition before Ramadan. Self-confidence was not influenced by the experimental conditions. This study showed that listening to music during warming-up not only would be beneficial for STMP in Ramadan fasters, but also would counteract the negative effects of Ramadan observance on STMP.

  16. Listening to Music during Warming-Up Counteracts the Negative Effects of Ramadan Observance on Short-Term Maximal Performance.

    Directory of Open Access Journals (Sweden)

    Asma Aloui

    Full Text Available The aim of the present study was to examine whether listening to music during warming-up might influence short-term maximal performance (STMP, cognitive anxiety, self-confidence, and enjoyment during Ramadan, and whether these affects might predict STMP.Nine male physical education students (age: 21 ± 1.1 years; height: 1.8 ± 0.04 m; body mass: 83 ± 5 kg volunteered to participate in the present study. A within-subjects design consisted of four experimental sessions: Two sessions occurred one week before Ramadan and two others took place during Ramadan. They were scheduled at 5 p.m. and were conducted as follows: After a 10-minute warm-up either with or without listening to music, each participant performed a 5-m multiple shuttle run test, after which he was asked to answer items intended to assess his affective state during the experimental task.Our findings revealed that STMP was lower during Ramadan than before Ramadan in the no-music condition. Additionally, it was found that STMP was higher in the music condition than in the no-music condition during Ramadan, and that STMP measured before Ramadan did not differ from that measured during Ramadan in the music condition. Regarding affects, the findings revealed that enjoyment was lower during Ramadan than before Ramadan in the music condition, and that cognitive anxiety was lower in the music condition than in the no-music condition before Ramadan. Self-confidence was not influenced by the experimental conditions.This study showed that listening to music during warming-up not only would be beneficial for STMP in Ramadan fasters, but also would counteract the negative effects of Ramadan observance on STMP.

  17. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.C.; Fasching, C.L.; Stanbridge, E.J. (Univ. of California, Irvine (United States)); Cho, K.; Levy, D.B.; Kinzler, K.W.; Vogelstein, B. (John Hopkins Univ. School of Medicine and Hospital, Baltimore, MD (United States)); Paraskeva, C. (Univ. of Bristol, University Walk, Bristol (United Kingdom))

    1992-03-01

    Colorectal cancer has been associated with the activation of ras oncogenes and with the deletion of multiple chromosomal regions including chromosomes 5q, 17p, and 18q. The candidate tumor suppressor genes from these regions are, respectively, MCC and/or APC, p53, and DCC. In order to further understanding of the molecular and genetic mechanisms involved in tumor progression and, thereby, of normal cell growth, it is important to determine whether defects in one or more of these loci contribute functionally in the progression to malignancy in colorectal cancer and whether correction of any of these defects restores normal growth control in vitro and in vivo. To address this question, the authors have utilized the technique of microcell-mediated chromosome transfer to introduce normal human chromosomes 5, 17, and 18 individually into recipient colorectal cancer cells. Additionally, chromosome 15 was introduced into SW480 cells as an irrelevant control chromosome. While the introduction of chromosome 17 into the tumorigenic colorectal cell line SW480 yielded no viable clones, cell lines were established after the introduction of chromosomes 15, 5, and 18. SW480-chromosome 5 hybrids are strongly suppressed for tumorigenicity, while SW480-chromosome 18 hybrids produce slowly growing tumors in some of the animals injected. Hybrids containing the introduced chromosome 5 express the APC gene present on that chromosome as well as the endogenous mutant transcript. Expression of the putative tumor suppressor gene, DCC, was seen in the clones containing the introduced chromosome 18 but was significantly reduced in several of the tumor reconstitute cell lines. Our findings indicate that while multiple defects in tumor suppressor genes seem to be required for progression to the malignant state in colorectal cancer, correction of only a single defect can have significant effects in vivo and/or in vitro.

  18. Synergistic Inhibition of Lactobacillus Rhamnosus and Cisplatin on the Multiplication of Tumoral Cells in BALB/c Mice with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ghaderi Pakdel

    2011-12-01

    Full Text Available Introduction: The probiotic strains of Lactic Acid Bacillus (LAB not only affect gastrointestinal tract microflora and stimulate local immune system of this tract but also modify and stimulate systemic immunity by influence on lymph nodes and spleen. Several studies have shown the anti-tumor effect of these kinds of bacteria. This study was designed to assess the probiotic effects of lactobacillus rhamnosus on cisplatin efficacy among Balb/c mice with breast cancer. Methods: L. rhamnosus strain was inoculated in MRS agar and cultivated for 24 h at 37 °C. Female BalbC mice (n=20 with invasive ductal carcinoma transplantation were divided into four groups: Control, L. rhamnosus, cisplatin and cisplatin plus L. rhamnosus. Cisplatin (5 mg/kg, i.p. was injected twice a week. Lr was administered daily by gastric intubation (3×10 8 CFU/day. The tumor size was measured every 3 days and mice were sacrificed 24 h after the last injection and tumor tissue was removed for more tests. Results: The results showed that oral administration of L. rhamnosus decreased the growth rate of tumor (p<0.05. One reason for antineoplastic effect of lactobacilli is immune system enhancement. The results of delayed-type hypersensitivity show the stimulation of immune system and inhibition of tumor growth by this mechanism. In pathologic assessments probiotic administration increased the antineoplastic effect of cisplatin. Conclusion: According to the findings of this study it can be expected that human studies also show the satisfactory effect of lactobacillus administration besides common therapeutic methods for cancer treatment.

  19. Evaluation of the Effects of Sativex (THC BDS: CBD BDS) on Inhibition of Spasticity in a Chronic Relapsing Experimental Allergic Autoimmune Encephalomyelitis: A Model of Multiple Sclerosis.

    Science.gov (United States)

    Hilliard, A; Stott, C; Wright, S; Guy, G; Pryce, G; Al-Izki, S; Bolton, C; Giovannoni, G

    2012-01-01

    This study investigated the antispasticity potential of Sativex in mice. Chronic relapsing experimental allergic encephalomyelitis was induced in adult ABH mice resulting in hind limb spasticity development. Vehicle, Sativex, and baclofen (as a positive control) were injected intravenously and the "stiffness" of limbs assessed by the resistance force against hind limb flexion. Vehicle alone caused no significant change in spasticity. Baclofen (5 mg/kg) induced approximately a 40% peak reduction in spasticity. Sativex dose dependently reduced spasticity; 5 mg/kg THC + 5 mg/kg CBD induced approximately a 20% peak reduction; 10 mg/kg THC + 10 mg/kg CBD produced approximately a 40% peak reduction in spasticity. Sativex has the potential to reduce spasticity in an experimental mouse model of multiple sclerosis (MS). Baclofen reduced spasticity and served as a positive control. Sativex (10 mg/kg) was just as effective as baclofen, providing supportive evidence for Sativex use in the treatment of spasticity in MS.

  20. Consistent Reduction in Periprocedural Myocardial Infarction With Cangrelor as Assessed by Multiple Definitions: Findings From CHAMPION PHOENIX (Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition).

    Science.gov (United States)

    Cavender, Matthew A; Bhatt, Deepak L; Stone, Gregg W; White, Harvey D; Steg, Ph Gabriel; Gibson, C Michael; Hamm, Christian W; Price, Matthew J; Leonardi, Sergio; Prats, Jayne; Deliargyris, Efthymios N; Mahaffey, Kenneth W; Harrington, Robert A

    2016-09-06

    Cangrelor is an intravenous P2Y12 inhibitor approved to reduce periprocedural ischemic events in patients undergoing percutaneous coronary intervention not pretreated with a P2Y12 inhibitor. A total of 11 145 patients were randomized to cangrelor or clopidogrel in the CHAMPION PHOENIX trial (Cangrelor versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition). We explored the effects of cangrelor on myocardial infarction (MI) using different definitions and performed sensitivity analyses on the primary end point of the trial. A total of 462 patients (4.2%) undergoing percutaneous coronary intervention had an MI as defined by the second universal definition. The majority of these MIs (n=433, 93.7%) were type 4a. Treatment with cangrelor reduced the incidence of MI at 48 hours (3.8% versus 4.7%; odds ratio [OR], 0.80; 95% confidence interval [CI], 0.67-0.97; P=0.02). When the Society of Coronary Angiography and Intervention definition of periprocedural MI was applied to potential ischemic events, there were fewer total MIs (n=134); however, the effects of cangrelor on MI remained significant (OR, 0.65; 95% CI, 0.46-0.92; P=0.01). Similar effects were seen in the evaluation of the effects of cangrelor on MIs with peak creatinine kinase-MB ≥10 times the upper limit of normal (OR, 0.64; 95% CI, 0.45-0.91) and those with peak creatinine kinase-MB ≥10 times the upper limit of normal, ischemic symptoms, or ECG changes (OR, 0.63; 95% CI, 0.48-0.84). MIs defined by any of these definitions were associated with increased risk of death at 30 days. Treatment with cangrelor reduced the composite end point of death, MI (Society of Coronary Angiography and Intervention definition), ischemia-driven revascularization, or Academic Research Consortium definite stent thrombosis (1.4% versus 2.1%; OR, 0.69; 95% CI, 0.51-0.92). MI in patients undergoing percutaneous coronary intervention, regardless of definition, remains associated with increased risk of death

  1. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    Science.gov (United States)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  2. In-vivo experimental demonstration that hyperhistaminism counteracts tumor-growth.

    Science.gov (United States)

    Dellarovere, F; Broccio, G; Granata, A; Fimiani, V

    1994-01-01

    Induction of hyperhistaminism in peritoneum of rats by daily intraperitoneal supply of 0.005 mu g of histamine, counteracts the growth of 10(3) Yoshida ascite sarcoma cells only if administration precedes inoculation of tumor cells and has a long duration. Treating animals for two weeks before tumor cell inoculation we observed significant 70% survival, that was increased to 80% continuing the supply for 20-days after the inoculation; treatment for 3 days before or 20 days after the inoculation did not show significant results. The condition created in rat peritoneum is similar to that in allergic people, and our data in animals confirm statistical data observed in allergic people showing decreased incidence of neoplastic disease due to histamine, that appears to be integrated in a highly potent immunoregulatory circuit.

  3. Malaysian adolescent students' needs for enhancing thinking skills, counteracting risk factors and demonstrating academic resilience

    Science.gov (United States)

    Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam

    2015-01-01

    The adolescence period of life comes along with changes and challenges in terms of physical and cognitive development. In this hectic period, many adolescents may suffer more from various risk factors such as low socioeconomic status, substance abuse, sexual abuse and teenage pregnancy. Findings indicate that such disadvantaged backgrounds of Malaysian adolescent students lead to failure or underachievement in their academic performance. This narrative review scrutinises how some of these students are able to demonstrate academic resilience, which is satisfactory performance in cognitive or academic tasks in spite of their disadvantaged backgrounds. The review stresses the need for developing a caregiving relationship model for at-risk adolescent students in Malaysia. Such a model would allow educators to meet the students' needs for enhancing thinking skills, counteracting risk factors and demonstrating academic resilience. PMID:25663734

  4. Malaysian adolescent students' needs for enhancing thinking skills, counteracting risk factors and demonstrating academic resilience.

    Science.gov (United States)

    Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam

    2015-01-02

    The adolescence period of life comes along with changes and challenges in terms of physical and cognitive development. In this hectic period, many adolescents may suffer more from various risk factors such as low socioeconomic status, substance abuse, sexual abuse and teenage pregnancy. Findings indicate that such disadvantaged backgrounds of Malaysian adolescent students lead to failure or underachievement in their academic performance. This narrative review scrutinises how some of these students are able to demonstrate academic resilience, which is satisfactory performance in cognitive or academic tasks in spite of their disadvantaged backgrounds. The review stresses the need for developing a caregiving relationship model for at-risk adolescent students in Malaysia. Such a model would allow educators to meet the students' needs for enhancing thinking skills, counteracting risk factors and demonstrating academic resilience.

  5. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid.

    Science.gov (United States)

    Hou, Tao; Liu, Weiwei; Shi, Wen; Ma, Zhili; He, Hui

    2017-03-15

    The structure of the desalted duck egg white peptides-calcium chelate was characterized by fluorescence spectroscopy, fourier transform infrared spectroscopy, and dynamic light scattering. Characterization results showed structural folding and aggregation of amino acids or oligopeptides during the chelation process. Desalted duck egg white peptides enhanced the calcium uptake in the presence of oxalate, phosphate and zinc ions in Caco-2 monolayers. Animal model indicated that desalted duck egg white peptides effectively enhanced the mineral absorption and counteracted the deleterious effects of phytic acid. These findings suggested that desalted duck egg white peptides might promote calcium uptake in three pathways: 1) desalted duck egg white peptides bind with calcium to form soluble chelate and avoid precipitate; 2) the chelate is absorbed as small peptides by enterocyte; and 3) desalted duck egg white peptides regulate the proliferation and differentiation of enterocytes through the interaction with transient receptor potential vanilloid 6 calcium channel.

  6. Disentangling the counteracting effects of water content and carbon mass on zooplankton growth

    DEFF Research Database (Denmark)

    Mcconville, Kristian; Atkinson, Angus; Fileman, Elaine S.

    2017-01-01

    Zooplankton vary widely in carbon percentage (carbon mass as a percentage of wet mass), but are often described as either gelatinous or non-gelatinous. Here we update datasets of carbon percentage and growth rate to investigate whether carbon percentage is a continuous trait, and whether its...... time series at station L4 off Plymouth, UK. This showed separate biomass peaks for gelatinous and crustacean taxa, however, carbon percentage varied 8-fold within the gelatinous group. Species with high carbon mass had lower carbon percentage, allowing separation of the counteracting effects...... of these two variables on growth rate. Specific growth rates, g (d -1) were negatively related to carbon percentage and carbon mass, even in the gelatinous taxa alone, suggesting that the trend is not driven by a categorical difference between these groups. The addition of carbon percentage doubled...

  7. Sorbitol production in the lens: a means of counteracting glucose-derived osmotic stress.

    Science.gov (United States)

    Chylack, L T; Tung, W; Harding, R

    1986-01-01

    Heretofore, the intracellular accumulation of sorbitol has been associated exclusively with deleterious (cataractogenic) changes in the lens. This study demonstrates a beneficial role for the sorbitol pathway in the rabbit lens, namely that of counteracting extracellular, glucose-derived, osmotic stress with the intracellular production of osmotically active sorbitol. Large and sudden increases in the extracellular glucose concentration lead to dehydration of the lens, a response that can be diminished by intracellular sorbitol and fructose production. These results are discussed in light of the impact (beneficial/detrimental) of aldose reductase inhibitors on the lens. Sugar cataract formation appears to result from continuous, rather than cyclical, activity of a pathway which normally may have a protective function in the lens.

  8. Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter.

    Science.gov (United States)

    Misgeld, Thomas; Kummer, Terrance T; Lichtman, Jeff W; Sanes, Joshua R

    2005-08-02

    Synaptic organizing molecules and neurotransmission regulate synapse development. Here, we use the skeletal neuromuscular junction to assess the interdependence of effects evoked by an essential synaptic organizing protein, agrin, and the neuromuscular transmitter, acetylcholine (ACh). Mice lacking agrin fail to maintain neuromuscular junctions, whereas neuromuscular synapses differentiate extensively in the absence of ACh. We now demonstrate that agrin's action in vivo depends critically on cholinergic neurotransmission. Using double-mutant mice, we show that synapses do form in the absence of agrin provided that ACh is also absent. We provide evidence that ACh destabilizes nascent postsynaptic sites, and that one major physiological role of agrin is to counteract this "antisynaptogenic" influence. Similar interactions between neurotransmitters and synaptic organizing molecules may operate at synapses in the central nervous system.

  9. Stevioside counteracts the alpha-cell hypersecretion caused by long-term palmitate exposure

    DEFF Research Database (Denmark)

    Hong, J; Chen, L; Jeppesen, P B;

    2006-01-01

    Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We......-activated receptor-gamma, and stearoyl-CoA desaturase gene expressions in the presence of palmitate (Pacids leads to a hypersecretion of glucagon and an accumulation of TG content in clonal alpha-TC1-6 cells. Stevioside was able to counteract the alpha......-cell hypersecretion caused by palmitate and enhanced the expression of genes involved in fatty acid metabolism. This indicates that stevioside may be a promising antidiabetic agent in treatment of type 2 diabetes....

  10. Voluntary exercise counteracts Aβ25-35-induced memory impairment in mice.

    Science.gov (United States)

    Wang, Qin; Xu, Zhiqiang; Tang, Jinrong; Sun, Jianguo; Gao, Junying; Wu, Ting; Xiao, Ming

    2013-11-01

    Exercise has been shown to enhance hippocampus-related cognition and slow the progression of Alzheimer's disease (AD). However, whether voluntary exercise directly decreases the neurotoxicity of amyloid peptide (Aβ) needs to be determined. In the present study, two-month old male C57bl/6 mice were intracerebroventricularly injected with Aβ25-35, and then allowed for voluntary exercise for 12 days. Y-maze test revealed that voluntary exercise mitigated spatial memory impairment induced by Aβ25-35. Consistently, Aβ25-35 treated mice with exercise showed reduced neuronal degeneration and synaptic protein loss in the hippocampus compared with sedentary controls. Moreover, voluntary exercise significantly ameliorated oxidative stress markers and increased vessel branches in the hippocampus of Aβ25-35 treated mice. Our results suggest that voluntary exercise counteracts the neurotoxicity of Aβ by reducing oxidative stress and increasing angiogenesis, which may underlie the beneficial effect of exercise on AD.

  11. Extending the GMR Current Measurement Range with a Counteracting Magnetic Field

    Directory of Open Access Journals (Sweden)

    Tin Yan Poon

    2013-06-01

    Full Text Available Traditionally, current transformers are often used for current measurement in low voltage (LV electrical networks. They have a large physical size and are not designed for use with power electronic circuits. Semiconductor-based current sensing devices such as the Hall sensor and Giant Magnetoresistive (GMR sensor are advantageous in terms of small size, high sensitivity, wide frequency range, low power consumption, and relatively low cost. Nevertheless, the operational characteristics of these devices limit their current measurement range. In this paper, a design based on using counteracting magnetic field is introduced for extending the GMR current measurement range from 9 A (unipolar to ±45 A. A prototype has been implemented to verify the design and the linear operation of the circuit is demonstrated by experimental results. A microcontroller unit (MCU is used to provide an automatic scaling function to optimize the performance of the proposed current sensor.

  12. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks.

    Science.gov (United States)

    Wang, Zonghua; Yan, Zhiyong; Wang, Feng; Cai, Jibao; Guo, Lei; Su, Jiakun; Liu, Yang

    2017-11-15

    A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy)3](2+) photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO2/ITO electrode through the chelation between the Zr(4+) defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy)3](2+) adsorbed in the pores of UiO-66 injected into the TiO2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy)3](2+) that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL(-1) (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity.

    Science.gov (United States)

    Weygandt, Martin; Mai, Knut; Dommes, Esther; Ritter, Kerstin; Leupelt, Verena; Spranger, Joachim; Haynes, John-Dylan

    2015-04-01

    A variety of studies suggest that efficient treatments to induce short-term dietary success in obesity exist. However, sustained maintenance of reduced weight is rare as a large proportion of patients start to regain weight when treatment is discontinued. Thus, from a clinical perspective, it would be desirable to identify factors that counteract post-diet weight regain across longer time-scales. To address this question, we extended our previous work on neural impulse control mechanisms of short-term dietary success in obesity and now investigated the mechanisms counteracting long-term weight regain after a diet. Specifically, we measured neural impulse control during a delay discounting task with fMRI at two time points, i.e. the beginning ('T0') and the end ('T12') of a one-year follow-up interval after a 12-week diet. Then, we tested whether activity in the dorsolateral prefrontal cortex (DLPFC) at T0 and whether activity changes across the follow-up period (T0-T12) are linked to success in weight maintenance. The analyses conducted show that control-related DLPFC activity at T0 was coupled to the degree of success in weight maintenance. Consistently, also behavioral measures of control were linked to the degree of success in maintenance. A direct comparison of neural and behavioral control parameters for prognostic weight change modeling revealed that neural signals were more informative. Taken together, neural impulse control in the DLPFC measured with fMRI directly after a diet predicts real-world diet success in obese patients across extended time periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Postactivation potentiation can counteract declines in force and power that occur after stretching.

    Science.gov (United States)

    Kümmel, J; Kramer, A; Cronin, N J; Gruber, M

    2016-12-09

    Stretching can decrease a muscle's maximal force, whereas short but intense muscle contractions can increase it. We hypothesized that when combined, postactivation potentiation induced by reactive jumps would counteract stretch-induced decrements in drop jump (DJ) performance. Moreover, we measured changes in muscle twitch forces and ankle joint stiffness (KAnkle ) to examine underlying mechanisms. Twenty subjects completed three DJs and 10 electrically evoked muscle twitches of the triceps surae subsequent to four different conditioning activities and control. The conditioning activities were 10 hops, 20s of static stretching of the triceps surae muscle, 20s of stretching followed by 10 hops, and vice versa. After 10 hops, twitch peak torque (TPT) was 20% and jump height 5% higher compared with control with no differences in KAnkle . After stretching, TPT and jump height were both 9% and KAnkle 6% lower. When hops and stretching were combined as conditioning activities, jump height was not different compared with control but significantly higher (11% and 8%) compared with stretching. TPTs were 16% higher compared with control when the hops were performed after stretching and 9% higher compared with the reverse order. KAnkle was significantly lower when stretching was performed after the hops (6%) compared with control, but no significant difference was observed when hops were performed after stretching. These results demonstrate that conditioning hops can counteract stretch-related declines in DJ performance. Furthermore, the differences in TPTs and KAnkle between combined conditioning protocols indicate that the order of conditioning tasks might play an important role at the muscle-tendon level. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Arsenic-induced micronuclei formation in mammalian cells and its counteraction by tea.

    Science.gov (United States)

    Sinha, Dona; Roy, Madhumita; Siddiqi, Maqsood; Bhattacharya, Rathin K

    2005-01-01

    The Gangetic plain of West Bengal, India, has been engulfed by a disastrous environmental calamity of arsenic contamination of the ground water. Chronic arsenic toxicity caused by drinking arsenic-contaminated water has been one of the worst health hazards gradually affecting nine districts of West Bengal since the early 1980s. Over and above hyperpigmentation and keratosis,weakness, burning sensation of the eyes, swelling of the legs, liver fibrosis, chronic lung disease, gangrene of the toes, neuropathy, and skin cancer are other manifestations. Induction of cancer is frequently associated with DNA damage, changes in ploidy of cells, and non-random chromosome aberrations. Counteraction of these genotoxic and cytogenetic abnormalities with natural dietary polyphenols could be a useful strategy to combat arsenic-induced DNA damage and thereby cancer. A review of the literature showed that it is the antioxidant property of tea polyphenols that affords protection against various types of cancer. The present study was conducted to investigate whether the extracts of green tea and black tea (Darjeeling and Assam) as well as their polyphenols could ameliorate this arsenic-induced genotoxicity. The normal mammalian cell culture derived from male Chinese hamster lung fibroblast cells (V79) was used as the test system to assess the genotoxicity by micronucleus assay. The results showed that both green tea and black tea extracts have equal potential in modulating the arsenic-induced genotoxicity. This effect was perhaps induced by the constituent polyphenols present in green and black tea. In addition, the repair activity of the damaged cells was enhanced when treated with these tea extracts and their polyphenols. Thus, tea and its polyphenols may have a promising role in counteracting the devastating effects of arsenic.

  16. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Randall [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States); Lanni, Lydia; Jen, K.-L. Catherine [Department of Nutrition and Food Science, Wayne State University, Detroit MI (United States); McCabe, Michael J. [Department of Environmental Medicine, University of Rochester, Rochester NY (United States); Rosenspire, Allen, E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States)

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  17. Influence of Agathi grandiflora active principles inhibit viral multiplication and stimulate immune system in Indian white shrimp Fenneropenaeus indicus against white spot syndrome virus infection.

    Science.gov (United States)

    Bindhu, Francis; Velmurugan, Subramanian; Donio, Mariathason Birdilla Selva; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-12-01

    Five herbs including Adathoda vasica, Agathi grandiflora, Leucas aspera, Psoralea corylifolia, and Quercus infectoria were selected to screen the antiviral and immunostimulant activity against white spot syndrome virus (WSSV) and Vibrio harveyi respectively using different organic polar and non-polar solvents. Based on the initial screening results, ethyl acetate and methanolic extracts of A. grandiflora had strong antiviral and immunostimulant activities. Those extracts incubated with WSSV injected Fenneropenaeus indicus got only 20% mortality and no PCR positive signals were seen in two step PCR amplification. The methanolic extracts of A. grandiflora were further purified through silica column chromatography and the fractions screened again for antiviral and immunostimulant activity. The secondary screening results revealed that, the fractions of F5 to F7 had effectively controlled the WSSV multiplication and V. harveyi growth. The pooled fractions (F5 to F7) was structurally characterized by gas chromatograph-mass spectrometry (GC-MS) analysis and few compounds were identified including 3,7.11,15-Tetramethyl-2-Hexane-1-ol, pytol and 1,2-Benzenedicarboxylic acid, diisooctyl ester. The pooled fractions were mixed with the basal feed ingredients at the concentration of 100 (D-1), 200 (D-2), 300 (D-3) and 400 (D-4) mg kg(-1) and the diets fed to the F. indicus (9.0 ± 0.5 g) for 30 days. After the completion of feeding trail, they were challenged with virulent WSSV and studied the cumulative mortality, molecular diagnosis by quantitative real time PCR (qRT-PCR), biochemical, haematological and immunological parameters. The control diet fed F. indicus succumbed to death 100% within 3 days whereas the D-3 and D-4 helped to reduced the cumulative mortality of 60-80% respectively. The qRT-PCR revealed that, the WSSV copy number was gradually decreased when increasing concentration of A. grandiflora extract active fraction in the diets. The diets D-3 and D-4 helped to

  18. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  19. Multiple System Atrophy. Using Clinical Pharmacology to Reveal Pathophysiology

    Science.gov (United States)

    Jordan, Jens; Shibao, Cyndya; Biaggioni, Italo

    2015-01-01

    Despite similarities in their clinical presentation, patients with multiple system atrophy (MSA) have residual sympathetic tone and intact post-ganglionic noradrenergic fibers, whereas patients with pure autonomic failure (PAF) and Parkinson’s disease (PD) have efferent post-ganglionic autonomic denervation. These differences are apparent biochemically, with near normal plasma norepinephrine in MSA but very low levels in PAF, and in neurophysiological testing. These differences are also reflected in the response patients have to drugs that interact with the autonomic nervous system. E.g., the ganglionic blocker trimethaphan reduce residual sympathetic tone and lower blood pressure in MSA but less so in PAF. Conversely, the α2-antagonist yohimbine produces a greater increase in blood pressure in MSA compared to PAF, although significant overlap exists. In normal subjects the norepinephrine reuptake (NET) inhibitor atomoxetine has little effect on blood pressure because the peripheral effects of NET inhibition that result in noradrenergic vasoconstriction, are counteracted by the increase in brain norepinephrine which reduces sympathetic outflow (a clonidine-like effect). In patients with autonomic failure and intact peripheral noradrenergic fibers only the peripheral vasoconstriction is apparent. This translates to a significant pressor effect of atomoxetine in MSA, but not in PAF patients. Thus, pharmacological probes can be used to understand the pathophysiology of the different forms of autonomic failure, assist in the diagnosis, and aid in the management of orthostatic hypotension. PMID:25757803

  20. Multiple Pregnancy

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Multiple Pregnancy Home For Patients Search FAQs Multiple Pregnancy Page ... Multiple Pregnancy FAQ188, July 2015 PDF Format Multiple Pregnancy Pregnancy How does multiple pregnancy occur? What are ...

  1. Histamine H3 receptor activation counteracts adenosine A2A receptor-mediated enhancement of depolarization-evoked [3H]-GABA release from rat globus pallidus synaptosomes.

    Science.gov (United States)

    Morales-Figueroa, Guadalupe-Elide; Márquez-Gómez, Ricardo; González-Pantoja, Raúl; Escamilla-Sánchez, Juan; Arias-Montaño, José-Antonio

    2014-08-20

    High levels of histamine H3 receptors (H3Rs) are found in the globus pallidus (GP), a neuronal nucleus in the basal ganglia involved in the control of motor behavior. By using rat GP isolated nerve terminals (synaptosomes), we studied whether H3R activation modified the previously reported enhancing action of adenosine A2A receptor (A2AR) stimulation on depolarization-evoked [(3)H]-GABA release. At 3 and 10 nM, the A2AR agonist CGS-21680 enhanced [(3)H]-GABA release induced by high K(+) (20 mM) and the effect of 3 nM CGS-21680 was prevented by the A2AR antagonist ZM-241385 (100 nM). The presence of presynaptic H3Rs was confirmed by the specific binding of N-α-[methyl-(3)H]-histamine to membranes from GP synaptosomes (maximum binding, Bmax, 1327 ± 79 fmol/mg protein; dissociation constant, Kd, 0.74 nM), which was inhibited by the H3R ligands immepip, clobenpropit, and A-331440 (inhibition constants, Ki, 0.28, 8.53, and 316 nM, respectively). Perfusion of synaptosomes with the H3R agonist immepip (100 nM) had no effect on K(+)-evoked [(3)H]-GABA release, but inhibited the stimulatory action of A2AR activation. In turn, the effect of immepip was blocked by the H3R antagonist clobenpropit, which had no significant effect of its own on K(+)-induced [(3)H]-GABA release. These data indicate that H3R activation selectively counteracts the facilitatory action of A2AR stimulation on GABA release from striato-pallidal projections.

  2. Multiple sclerosis; Multiple Sklerose

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, I.Q.; Kuehn, A.L.; Backens, M.; Papanagiotou, P. [Universitaet des Saarlandes, Abteilung fuer Diagnostische und Interventionelle Neuroradiologie, Radiologische Klinik, Homburg/Saar (Germany); Shariat, K. [Universitaet des Saarlandes, Klinik fuer Neurochirurgie, Homburg/Saar (Germany); Kostopoulos, P. [Universitaet des Saarlandes, Klinik fuer Neurologie, Homburg/Saar (Germany)

    2008-06-15

    Multiple sclerosis is the most common chronic inflammatory disease of myelin with interspersed lesions in the white matter of the central nervous system. Magnetic resonance imaging (MRI) plays a key role in the diagnosis and monitoring of white matter diseases. This article focuses on key findings in multiple sclerosis as detected by MRI. (orig.) [German] Die Multiple Sklerose (MS) ist die haeufigste chronisch-entzuendliche Erkrankung des Myelins mit eingesprengten Laesionen im Bereich der weissen Substanz des zentralen Nervensystems. Die Magnetresonanztomographie (MRT) hat bei der Diagnosestellung und Verlaufskontrolle eine Schluesselrolle. Dieser Artikel befasst sich mit Hauptcharakteristika der MR-Bildbebung. (orig.)

  3. Stimulation of NTS A1 adenosine receptors evokes counteracting effects on hindlimb vasculature.

    Science.gov (United States)

    McClure, Joseph M; O'Leary, Donal S; Scislo, Tadeusz J

    2005-12-01

    Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the

  4. Probiotics to counteract biofilm-associated infections:promising and conflicting data

    Institute of Scientific and Technical Information of China (English)

    Claudia Vuotto; Francesca Longo; Gianfranco Donelli

    2014-01-01

    Altered bowel flora is currently thought to play a role in a variety of disease conditions, and the use of Bifidobacterium spp. and Lactobacillus spp. as probiotics has been demonstrated to be health-promoting, even if the success of their administration depends on the applied bacterial strain(s) and the targeted disease. In the last few decades, specific probiotics have been shown to be effective in the treatment or the prevention of acute viral gastroenteritis, pediatric post-antibiotic-associated diarrhea, some pediatric allergic disorders, necrotizing enterocolitis in preterm infants, inflammatory bowel diseases and postsurgical pouchitis. The potential application of probiotics is continuously widening, with new evidence accumulating to support their effect on the prevention and treatment of other disease conditions, including several oral diseases, such as dental caries, periodontal diseases and oral malodor, as well as genitourinary and wound infections. Considering the increasingly widespread ability of pathogens to generate persistent biofilm-related infections, an even more attractive proposal is to administer probiotics to prevent or counteract biofilm development. The response of biofilm-based oral, intestinal, vaginal and wound infections to probiotics treatment will be reviewed here in light of the most recent results obtained in this field.

  5. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  6. Personal values that support and counteract utilization of a screening test for prostate cancer.

    Science.gov (United States)

    Aavik, Toivo; Aavik, Anu; Punab, Margus

    2014-01-01

    The main aim of the current research was to discover the personal values that may support men's prostate cancer screening decisions in the future. We asked for participants' past behavior and future behavioral intentions, and also considered their real-life behavior. The sample consisted of 371 men, of which 93 were first-time patients at the Andrology Unit. The results show that Security value was related to past participation, while Achievement, Stimulation, and Traditions counteracted this. Present prostate-testing behavior was related only to higher Security values. Predictors of future behavioral intentions were Security, Self-direction, and Benevolence, which described 21% of the total variability. Considering informed decision-making processes, our results suggest that men who hold Security, Self-direction, and Benevolence values are more likely to participate in office-based initial screening. The study indicates the need to offer office-based initial screening to those age-eligible men whose values do not support participation.

  7. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Directory of Open Access Journals (Sweden)

    G. Langer

    2014-08-01

    Full Text Available Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells and outside (pHn-shells a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.

  8. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    Science.gov (United States)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J. M.; Bijma, J.

    2014-12-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

  9. Counteracting Rotor Imbalance in a Bearingless Motor System with Feedforward Control

    Science.gov (United States)

    Kascak, Peter Eugene; Jansen, Ralph H.; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2012-01-01

    In standard motor applications, traditional mechanical bearings represent the most economical approach to rotor suspension. However, in certain high performance applications, rotor suspension without bearing contact is either required or highly beneficial. Such applications include very high speed, extreme environment, or limited maintenance access applications. This paper extends upon a novel bearingless motor concept, in which full five-axis levitation and rotation of the rotor is achieved using two motors with opposing conical air-gaps. By leaving the motors' pole-pairs unconnected, different d-axis flux in each pole-pair is created, generating a flux imbalance which creates lateral force. Note this is approach is different than that used in previous bearingless motors, which use separate windings for levitation and rotation. This paper will examine the use of feedforward control to counteract synchronous whirl caused by rotor imbalance. Experimental results will be presented showing the performance of a prototype bearingless system, which was sized for a high speed flywheel energy storage application, with and without feedforward control.

  10. VEGF receptor-2 (Flk-1 overexpression in mice counteracts focal epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Litsa Nikitidou

    Full Text Available Vascular endothelial growth factor (VEGF was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1. VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg(2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity.

  11. Counteracting geometrical attacks on robust image watermarking by constructing a deformable pyramid transform

    Science.gov (United States)

    Wang, Chuntao; Ni, Jiangqun; Zhang, Dong

    2013-12-01

    Counteracting geometrical attacks remains one of the most challenging problems in robust watermarking. In this paper, we resist rotation, scaling, and translation (RST) by constructing a kind of deformable pyramid transform (DPT) that is shift-invariant, steerable, and scalable. The DPT is extended from a closed-form polar-separable steerable pyramid transform (SPT). The radial component of the SPT's basis filters is taken as the kernel of the scalable basis filters, and the angular component is used for the steerable basis filters. The shift-invariance is inherited from the SPT by retaining undecimated high-pass and band-pass subbands. Based on the designed DPT, we theoretically derive interpolation functions for steerability and scalability and synchronization mechanisms for translation, rotation, and scaling. By exploiting the preferable characteristics of DPT, we develop a new template-based robust image watermarking scheme that is resilient to RST. Translation invariance is achieved by taking the Fourier magnitude of the cover image as the DPT's input. The resilience to rotation and scaling is obtained using the synchronization mechanisms for rotation and scaling, for which an efficient template-matching algorithm has been devised. Extensive simulations show that the proposed scheme is highly robust to geometrical attacks, such as RST, cropping, and row/column line removal, as well as common signal processing attacks such as JPEG compression, additive white Gaussian noise, and median filtering.

  12. Protein Phosphatase 1 Recruitment by Rif1 Regulates DNA Replication Origin Firing by Counteracting DDK Activity

    Directory of Open Access Journals (Sweden)

    Anoushka Davé

    2014-04-01

    Full Text Available The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing.

  13. Coumestrol Counteracts Interleukin-1β-Induced Catabolic Effects by Suppressing Inflammation in Primary Rat Chondrocytes.

    Science.gov (United States)

    You, Jae-Seek; Cho, In-A; Kang, Kyeong-Rok; Oh, Ji-Su; Yu, Sang-Joun; Lee, Gyeong-Je; Seo, Yo-Seob; Kim, Su-Gwan; Kim, Chun Sung; Kim, Do Kyung; Im, Hee-Jeong; Kim, Jae-Sung

    2017-02-01

    In the present study, we investigated the anti-catabolic effects of coumestrol, a phytoestrogen derived from herbal plants, against interleukin-1β-induced cartilage degeneration in primary rat chondrocytes and articular cartilage. Coumestrol did not affect the viability of human normal oral keratinocytes and primary rat chondrocytes treated for 24 h and 21 days, respectively. Although coumestrol did not significantly increase the proteoglycan contents in long-term culture, it abolished the interleukin-1β-induced loss of proteoglycans in primary rat chondrocytes and knee articular cartilage. Furthermore, coumestrol suppressed the expression of matrix-degrading enzymes such as matrix metalloproteinase-13, -3, and -1 in primary rat chondrocytes stimulated with interleukin-1β. Moreover, the expression of catabolic factors such as nitric oxide synthase, cyclooxygenase-2, prostaglandin E2, and inflammatory cytokines in interleukin-1β-stimulated primary rat chondrocytes was suppressed by coumestrol. In summary, these results indicate that coumestrol counteracts the catabolic effects induced by interleukin-1β through the suppression of inflammation. Therefore, based on its biological activity and safety profile, coumestrol could be used as a potential anti-catabolic biomaterial for osteoarthritis.

  14. URGENT DESTABILIZERS OF PUBLIC AND STATE SECURITY, TACTICS OF COUNTERACTION TO IT

    Directory of Open Access Journals (Sweden)

    D. N. Marinkin

    2016-01-01

    Full Text Available At creation of civil society in any constitutional state there is a crime counteraction problem. In the modern Russian Federation safety problems from the negative social phenomena and processes force scientists, public agents and ordinary citizens to investigate constantly such determinants and the reasons (destabilizers of safety of society and the constitutional state, to eliminate their consequences. Such problems as are urgent now: increase in information on ways and consequences of violence in the mass media (MM, the Internet, computer games, traditional physical abuse. The number of questions and assessment by citizens of consequences of the conducted terrorist attacks and infringement of life of citizens causes. The accounting of the specified problems and versions of decisions in law-enforcement practice, will allow to promote as a result efficiency of prevention of offenses and crimes and will bring closer modern Russia to ideal model of the constitutional state with real civil society. In article the author designates a number of the legal and social destabilizers of safety existing now in the Russian society and the state, proposes the solution of their negative impact on society within tactics of crime control.

  15. PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation

    Science.gov (United States)

    Kolodziej, Stephan; Kuvardina, Olga N.; Oellerich, Thomas; Herglotz, Julia; Backert, Ingo; Kohrs, Nicole; Buscató, Estel. La; Wittmann, Sandra K.; Salinas-Riester, Gabriela; Bonig, Halvard; Karas, Michael; Serve, Hubert; Proschak, Ewgenij; Lausen, Jörn

    2014-05-01

    The transcription factor Tal1 is a critical activator or repressor of gene expression in hematopoiesis and leukaemia. The mechanism by which Tal1 differentially influences transcription of distinct genes is not fully understood. Here we show that Tal1 interacts with the peptidylarginine deiminase IV (PADI4). We demonstrate that PADI4 can act as an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by PRMT6 is counteracted by PADI4, which augments the active H3K4me3 mark and thus increases IL6ST expression. In contrast, at the CTCF promoter PADI4 acts as a repressor. We propose that the influence of PADI4 on IL6ST transcription plays a role in the control of IL6ST expression during lineage differentiation of hematopoietic stem/progenitor cells. These results open the possibility to pharmacologically influence Tal1 in leukaemia.

  16. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Positive Alpha and Negative Beta (A Strategy for Counteracting Systematic Risk

    Directory of Open Access Journals (Sweden)

    Erik Sonne Noddeboe

    2015-09-01

    Full Text Available Undiversifiable (or systematic risk has long been an enemy of investors. Many countercyclical strategies have been developed to counter this. However, like all insurance types, these strategies are generally costly to implement, and over time can significantly reduce portfolio returns in long and extended bull markets. In this paper, we discuss an alternative technique, founded on the premise of physiological bias and risk-aversion. We take a behavioral discussion in order to contextualize the insurance like characteristics of option pricing and discuss how this can lead to a mispricing of the asymmetric relationship between the VIX and the S&P 500. To test this, we perform studies in which we find statistical inefficiencies, thereby making it possible to implement a method of hedging index option premium in a way that has displayed no monthly drawdowns in bullish periods, while still providing large returns in major sell-offs. The three versions of the strategy discussed have negative betas to the S&P 500, while exhibiting similar risk-adjusted excess returns over both bull and bear markets. Further, the performance generated over the entire period, for all three strategies, is highly statistically significant. The results challenge the weak form of the Efficient Market Hypothesis and provide evidence that the methods of hedging could be a valuable addition to an equity rich portfolio for the purpose of counteracting systematic risk.

  18. Midazolam 12 mg is moderately counteracted by 250 mg caffeine in man.

    Science.gov (United States)

    Mattila, M J; Vainio, P; Nurminen, M L; Vanakoski, J; Seppälä, T

    2000-12-01

    Caffeine (Caf) counteracts various effects of benzodiazepines (BZDs). Since the effects of zolpidem, a short-acting atypical GABA(A)-BZD agonist, were not antagonized by Caf, we studied an interaction between Caf and midazolam (Mid) in healthy volunteers. In Study 1, 108 healthy students divided to 6 parallel groups were given Mid 12 mg (capsule) and Caf 125 and 250 mg (in decaffeinated coffee), alone and in combinations in the double-blind placebo-controlled manner. Objective and subjective tests were done before and at 45 and 90 min after intake. Ranked delta-values (changes from baseline) were analyzed by one-way contrast ANOVA and Scheffe's tests. In Study 2, six healthy subjects took Mid 15 mg (tablet) with and without Caf 300 mg. The dynamic effects were analyzed as in Study 1 and the plasma concentrations were assayed. In Study 1, learn effects after placebo (ad + 15%) were seen for letter cancellation and digit symbol substitution tests. Midazolam alone significantly (p 0.05). In conclusion, in a parallel group study, sedative effects of Mid 12 mg were only moderately antagonized by Caf 250 mg but not by Caf 125 mg. In a cross-over study, a weak interaction was found subjectively but not in objective measures.

  19. Developing Tools to Counteract and Prevent Suicide Bomber Incidents: A Case Study in Value Sensitive Design.

    Science.gov (United States)

    Royakkers, Lambèr; Steen, Marc

    2017-08-01

    Developers and designers make all sorts of moral decisions throughout an innovation project. In this article, we describe how teams of developers and designers engaged with ethics in the early phases of innovation based on case studies in the SUBCOP project (SUBCOP stands for 'SUicide Bomber COunteraction and Prevention'). For that purpose, Value Sensitive Design (VSD) will be used as a reference. Specifically, we focus on the following two research questions: How can researchers/developers learn about users' perspectives and values during the innovation process? and How can researchers/developers take into account these values, and related design criteria, in their decision-making during the innovation process? Based on a case study of several innovation processes in this project, we conclude the researchers/developers involved are able to do something similar to VSD (without them knowing about VSD or calling it 'VSD'), supported by relatively simple exercises in the project, e.g., meetings with potential end-users and discussions with members of the Ethical Advisory Board of the project. Furthermore, we also found-possibly somewhat counterintuitively-that a commercial, with its focus on understanding and satisfying customers' needs, can promote VSD.

  20. MiR-298 Counteracts Mutant Androgen Receptor Toxicity in Spinal and Bulbar Muscular Atrophy.

    Science.gov (United States)

    Pourshafie, Naemeh; Lee, Philip R; Chen, Ke-Lian; Harmison, George G; Bott, Laura C; Katsuno, Masahisa; Sobue, Gen; Burnett, Barrington G; Fischbeck, Kenneth H; Rinaldi, Carlo

    2016-05-01

    Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression. From a list of predicted miRNAs that target human AR, we selected microRNA-298 (miR-298) for its ability to downregulate AR mRNA and protein levels when transfected in cells overexpressing wild-type and mutant AR and in SBMA patient-derived fibroblasts. We showed that miR-298 directly binds to the 3'-untranslated region of the human AR transcript, and counteracts AR toxicity in vitro. Intravenous delivery of miR-298 with adeno-associated virus serotype 9 vector resulted in efficient transduction of muscle and spinal cord and amelioration of the disease phenotype in SBMA mice. Our findings support the development of miRNAs as a therapeutic strategy for SBMA and other neurodegenerative disorders caused by toxic proteins.

  1. Protective role of malvidin-3-glucoside on peroxynitrite-induced damage in endothelial cells by counteracting reactive species formation and apoptotic mitochondrial pathway.

    Science.gov (United States)

    Paixão, Joana; Dinis, Teresa C P; Almeida, Leonor M

    2012-01-01

    The health-promoted benefits of anthocyanins, including vascular protective effects and antiatherogenic properties, have now been recognized, but the involved molecular mechanisms have not been well elucidated. Following our previous work on cytoprotective mechanisms of some anthocyanins against apoptosis triggered by peroxynitrite in endothelial cells, here we investigated the protective role of malvidin-3-glucoside, a major dietary anthocyanin, on such deleterious process, by exploring the interference on cellular reactive species formation and on apoptotic mitochondrial pathway. Preincubation of cells with 25 μM malvidin-3-glucoside protected efficiently endothelial cells from peroxynitrite-promoted apoptotic death, an effect which may be partially mediated by its ability to decrease the formation of reactive species after cell aggression, as assessed by the dichlorodihydrofluorescein diacetate assay and by carbonyl groups formation. Moreover, malvidin-3-glucoside inhibited mitochondrial apoptotic signaling pathways induced by peroxynitrite, by counteracting mitochondrial membrane depolarization, the activation of caspase-3 and -9, and the increase in the expression of the proapoptotic Bax protein. Altogether, our data expands our knowledge about the molecular mechanisms underlying the vascular protection afforded by malvidin-3-glucoside, and anthocyanins in general, in the context of prevention of endothelial dysfunction and atherosclerosis.

  2. Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the Rho GTPase activating toxin CNF1 during bacteremia.

    Directory of Open Access Journals (Sweden)

    Mamady Diabate

    2015-03-01

    Full Text Available The detection of the activities of pathogen-encoded virulence factors by the innate immune system has emerged as a new paradigm of pathogen recognition. Much remains to be determined with regard to the molecular and cellular components contributing to this defense mechanism in mammals and importance during infection. Here, we reveal the central role of the IL-1β signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1. Consistently, this innate immune response is abrogated in caspase-1/11-impaired mice or following the treatment of infected mice with an IL-1β antagonist. In vitro experiments further revealed the synergistic effects of CNF1 and LPS in promoting the maturation/secretion of IL-1β and establishing the roles of Rac, ASC and caspase-1 in this pathway. Furthermore, we found that the α-hemolysin toxin inhibits IL-1β secretion without affecting the recruitment of Gr1+ cells. Here, we report the first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia.

  3. Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Fabian Grammes

    Full Text Available Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE. In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM, a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU, Kluyveromyces marxianus (KM, Saccharomyces cerevisiae (SC or the microalgae Chlorella vulgaris (CV. Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects.

  4. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    Directory of Open Access Journals (Sweden)

    M. Surekha Bhat

    2007-01-01

    Full Text Available The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC housed in home cage and left in the laboratory; restrained rats (with three subgroups subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC having their restrainers kept in the laboratory; restrained pyramid rats (RP being kept in the pyramid; and restrained square box rats (RS in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH levels, erythrocyte glutathione peroxidase (GSH-Px and superoxide dismutase (SOD activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  5. MECHANISMS OF COUNTERACTING FLAP-VALVE BRONCHIAL OBSTRUCTION IN CASE OF OBSTRUCTIVE PULMONARY EMPHYSEMA

    Directory of Open Access Journals (Sweden)

    K. F. Tetenev

    2015-01-01

    Full Text Available The research goal was to formulate and substantiate the hypothesis explaining support for an expiratory air flow in case of pulmonary emphysema. The research method consisted in comparing the mechanical properties of lungs in practically healthy individuals (37 individuals, mean age – (30.4 ± 1.7 y.o. and COPD patients with pronounced lung emphysema (30 patients, mean age – (52.1 ± 2.3 y.o. as well as those of isolated normal lungs (n = 14 and isolated lungs of patients who died of COPD (n = 5. Pulmo-nary mechanics was studied via the simultaneous measurement of transpulmonary pressure and lung ven-tilation volume. General lung hysteresis and elastic lung hysteresis were calculated. The mechanical properties of isolated lungs were studied using passive ventilation under the Donders bell. The air flow was interrupted in order to measure alveolar pressure and develop an elastic lung hysteresis curve. Pres-sure in the Donders bell was changed by means of a special pump in automatic and manual modes. The research has not revealed any fundamental differences between the mechanical properties of the normal and emphysematous lungs. A minimum increase in the pressure inside the Donders bell over atmospheric pressure used to stop air ejection in both normal and the emphysematous lungs as the result of flap-valve bronchial obstruction. In living beings, air is ejected from lungs with an increase in pressure under the conditions of forced expiration. Pressure increases up to (38.6 ± 2.71 cm H2O in healthy individuals and up to (20.5 ± 1.86 cm H2O in COPD patients. Probably, an expiratory air flow is supported by active expiratory bronchial dilatation that counteracts flap-valve bronchial obstruction. The hypothesis is based on the confirmed ability of the lungs to perform inspiratory actions (in addition to the action of respiratory muscles and the theory of mechanical lung activity.

  6. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    Science.gov (United States)

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  7. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    Science.gov (United States)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased

  8. Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues

    Science.gov (United States)

    Baoguo, Wang; Dahuan, Zhu; Rui, Ding; Junling, Chen

    2017-02-01

    Tungsten monoblock type tiles with ITER dimensions along with supporting cassette components were installed at EAST’s upper diverter during 2014 and EAST’s lower diverter will also be upgraded in the future. These cassette structures pose critical issues on the high cumulative incident heat flux due to the leading edges and misalignments (0 ˜ 1.5 mm), which may result in the destruction or even melting of the tungsten tile. The present work summarizes the thermal analysis using ANSYS multiphysics software 15.0 performed on the actively cooled W tiles to evaluate the shaping effect on surface temperature. In the current heat flux conditions (Q|| ˜ 100 MW m-2), the adopted chamfer shaping (1 × 1 mm) can only reduce the maximum temperature by about 14%, but it also has a melting risk at the maximum misalignment of 1.5 mm. The candidate shaping solutions elliptical (round) edge, dome and fish-scale are analyzed for comparison and are identified not as good as the dual chamfer structure. A relatively good dual chamfer (2 × 13 mm) shaping forming a symmetrical sloping roof structure can effectively counteract the 1.5 mm misalignment, reducing the maximum temperature by up to 50%. However, in the future heat flux conditions (Q|| ˜ 287 MW m-2), it may only endure about 0.5 mm misalignment. Moreover, no proper shaping solution has been found that can avoid melting at the maximum misalignment of 1.5 mm. Thus, the engineering misalignment has to be limited to an acceptable level. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003) and National Natural Science Foundation of China (No. 11405209).

  9. Housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

    Science.gov (United States)

    Bhat, M Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2007-03-01

    The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  10. Definition of singularity due to Newton’s second law counteracting gravity

    Directory of Open Access Journals (Sweden)

    Arezu Jahanshir

    2013-03-01

    Full Text Available With several issuesbeing raised in the late twentieth century, modern physics was challenged andwhile quantum mechanics and relativity did not have the ability to respond andresolve issues also they cannot do it todays.Despite such problems, physicists are trying to find an appropriate andconvincing response only on the scope of quantum physics and relativity and inthis respect need topay attention to the classical mechanics.Series of failures exist in some categories of these theories, that prior totheir use, they should be clarified and resolved. Regarding on review of Newton's second law in this paper, we have been attempted toenter to the sub-quantum space by crossing the border of quantum mechanics thento survey of counteracting Newton's second law and the universal gravitationlaw and finally we can be analyzed and investigated the results. Insub-quantum space, we passed across the black hole and reach the formation ofthe absolute black hole (a new term that has been presented for the first time in astrophysics by the authors by specifying the limits of Newton's second lawand gravitation law, then the singularity will be explained in the explosion of an absolute black hole. In thisreview we will be forced to change their attitude towards the singularity andthe general conclusion in the singularity state is: volume will not be zero, densitywill be limited, the time is not a physical quantity (absolute or relative anda human as an observer (who is not neutral has invented the time just forusing it to the explain the ticking clock. We use the time just for the clockticking and in different physical situations we can only examine the working of the clocks or compare them to each other.

  11. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity.

    Science.gov (United States)

    Straniero, S; Rosqvist, F; Edholm, D; Ahlström, H; Kullberg, J; Sundbom, M; Risérus, U; Rudling, M

    2017-05-01

    Bile acid (BA) synthesis is regulated by BA signalling in the liver and by fibroblast growth factor 19 (FGF19), synthesized and released from the intestine. In morbid obesity, faecal excretion and hepatic synthesis of BAs and cholesterol are strongly induced and caloric restriction reduces their faecal excretion considerably. We hypothesized that the high intestinal food mass in morbidly obese subjects promotes faecal excretion of BAs and cholesterol, thereby creating a shortage of both BAs and cholesterol in the liver. Ten morbidly obese women (BMI 42 ± 2.6 kg m(-2) ) were monitored on days 0, 3, 7, 14 and 28 after beginning a low-calorie diet (800-1100 kcal day(-1) ). Serum was collected and liver size and fat content determined. Synthesis of BAs and cholesterol was evaluated from serum markers, and the serum levels of lipoproteins, BAs, proprotein convertase subtilisin/kexin type 9 (PCSK9), insulin, glucose and FGF19 were monitored. Fifty-four nonobese women (BMI cholesterol and serum levels of BAs and PCSK9 were elevated in the obese group compared to controls. Already after 3 days on a low-calorie diet, BA and cholesterol synthesis and serum BA and PCSK9 levels normalized, whereas LDL cholesterol increased. FGF19 and triglyceride levels were unchanged, and liver volume was reduced by 10%. The results suggest that hepatic BAs and cholesterol are deficient in morbid obesity. Caloric restriction rapidly counteracts these deficiencies, normalizing BA and cholesterol synthesis and circulating PCSK9 levels, indicating that overproduction of cholesterol in enlarged peripheral tissues cannot explain this phenotype. We propose that excessive food intake promotes faecal loss of BAs and cholesterol contributing to their hepatic deficiencies. © 2017 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  12. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Voltarelli Fabrício A

    2010-10-01

    Full Text Available Abstract Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD, insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G and a fructose-rich diet group (60% fructose. The animals were tested for maximal lactate-steady state (MLSS in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol. Another third were submitted to the training from 90 to 120 days (late protocol, and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.

  13. S100b Counteracts Neurodegeneration of Rat Cholinergic Neurons in Brain Slices after Oxygen-Glucose Deprivation

    Directory of Open Access Journals (Sweden)

    Daniela Serbinek

    2010-01-01

    Full Text Available Alzheimer's disease is a severe chronic neurodegenerative disorder characterized by beta-amyloid plaques, tau pathology, cerebrovascular damage, inflammation, reactive gliosis, and cell death of cholinergic neurons. The aim of the present study is to test whether the glia-derived molecule S100b can counteract neurodegeneration of cholinergic neurons after oxygen-glucose deprivation (OGD in organotypic brain slices of basal nucleus of Meynert. Our data showed that 3 days of OGD induced a marked decrease of cholinergic neurons (60% of control, which could be counteracted by 50 μg/mL recombinant S100b. The effect was dose and time dependent. Application of nerve growth factor or fibroblast growth factor-2 was less protective. C-fos-like immunoreactivity was enhanced 3 hours after OGD indicating metabolic stress. We conclude that S100b is a potent neuroprotective factor for cholinergic neurons during ischemic events.

  14. The angiotensin-(1-7/Mas axis counteracts angiotensin II-dependent and –independent pro-inflammatory signaling in human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Laura A Villalobos

    2016-12-01

    Full Text Available Background and aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7 is a member of the renin-angiotensin system (RAS that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7 to counteract human aortic smooth muscle cell (HASMC inflammation triggered by RAS-dependent and –independent stimuli, such as Ang II or interleukin (IL-1.Methods and Results: In cultured HASMC, the expression of iNOS and the release of nitric oxide were stimulated by both Ang II and IL-1, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7 in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7, suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and NF-B. Indeed, Ang-(1-7 markedly inhibited the activation of the NADPH oxidase and subsequently of NF-B, as determined by lucigenin-derived chemiluminiscence and electromobility shift assay, respectively.Conclusion: Ang-(1-7 can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  15. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Villalobos, Laura A; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro(7)-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  16. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dang; Fang, Liurong; Luo, Rui; Ye, Rui; Fang, Ying; Xie, Lilan; Chen, Huanchun [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); Xiao, Shaobo, E-mail: shaoboxiao@yahoo.com [Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China)

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.

  17. Influence of Mn and Fe Counteraction on Rice (Oryza Sativa L.) Oranging Physiological Disease

    Institute of Scientific and Technical Information of China (English)

    LIAOZHONG-WEN; LINDONG-JIAO; 等

    1994-01-01

    Mn and Fe are two important micronutrients of paddy soils derived from red earths.Rice(Oryza sativa L.)oranging physiological diease in newly reclaimed red rarths is related to Fe toxicity.There have been considerable studies on Mn and Fe counteraction,but influence of Mn and Fe counteration on rice oranging physiological disease still remains unknown.This paper is to study,using two soils from USA and China respectively,the relationship between Nn and Fe counteraction and the physiological disease.Analysis for water soluble and extractable Fe and Mn showed that Mn/Fe ratios of the red earths were lower than those of the paddy soils.Fertilizing with Mn raised Mn/Fe and reduced oranging leaves,improved growth and increased yields.Analysis with electron probe showed that Mn treatment had less Fe deposit in root epidermis and more Ca and Si in roots.The results indicated that fertilizing with Mn could correct Fe toxicity.How to apply Mn and Fe counteraction in practice is worth further studying.

  18. Adaptive brain shut-down counteracts neuroinflammation in the near-term ovine fetus

    Directory of Open Access Journals (Sweden)

    Alex eXU

    2014-06-01

    Full Text Available Objective: Repetitive umbilical cord occlusions (UCOs in ovine fetus leading to severe acidemia result in adaptive shut-down of electrocortical activity (ECOG as well as systemic and brain inflammation. We hypothesized that the fetuses with earlier ECOG shut-down as a neuroprotective mechanism in response to repetitive UCOs will show less brain inflammation and, moreover, that chronic hypoxia will impact this relationship.Methods: Near term fetal sheep were chronically instrumented with ECOG leads, vascular catheters and a cord occluder and then underwent repetitive UCOs for up to 4 hours or until fetal arterial pH was < 7.00. Eight animals, hypoxic prior to the UCOs (SaO2< 55%, were allowed to recover 24 hours post insult, while 14 animals, five of whom also were chronically hypoxic, were allowed to recover 48 hours post insult, after which brains were perfusion-fixed. Time of ECOG shut-down and corresponding pH were noted, as well as time to then reach pH<7.00 (ΔT. Microglia (MG were counted as a measure of inflammation in grey matter layers 4-6 (GM4-6 where most ECOG activity is generated. Results are reported as mean±SEM for p<0.05.Results: Repetitive UCOs resulted in worsening acidosis over 3 to 4 hours with arterial pH decreasing to 6.97±0.02 all UCO groups’ animals, recovering to baseline by 24 hours. ECOG shut-down occurred 52±7 min before reaching pH < 7.00 at pH 7.23±0.02 across the animal groups. MG counts were inversely correlated to ΔT in 24 hours recovery animals (R=-0.84, as expected. This was not the case in normoxic 48 hours recovery animals, and, surprisingly, in hypoxic 48 hours recovery animals this relationship was reversed (R=0.90.Conclusion: Adaptive brain shut-down during labour-like worsening acidemia counteracts neuroinflammation in a hypoxia- and time-dependent manner.

  19. By counteracting gravity, triceps surae sets both kinematics and kinetics of gait.

    Science.gov (United States)

    Honeine, Jean-Louis; Schieppati, Marco; Gagey, Oliver; Do, Manh-Cuong

    2014-02-01

    In the single-stance phase of gait, gravity acting on the center of mass (CoM) causes a disequilibrium torque, which generates propulsive force. Triceps surae activity resists gravity by restraining forward tibial rotation thereby tuning CoM momentum. We hypothesized that time and amplitude modulation of triceps surae activity determines the kinematics (step length and cadence) and kinetics of gait. Nineteen young subjects participated in two experiments. In the gait initiation (GI) protocol, subjects deliberately initiated walking at different velocities for the same step length. In the balance-recovery (BR) protocol, subjects executed steps of different length after being unexpectedly released from an inclined posture. Ground reaction force was recorded by a large force platform and electromyography of soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles was collected by wireless surface electrodes. In both protocols, the duration of triceps activity was highly correlated with single-stance duration (GI, R (2) = 0.68; BR, R (2) = 0.91). In turn, step length was highly correlated with single-stance duration (BR, R (2) = 0.70). Control of CoM momentum was obtained by decelerating the CoM fall via modulation of amplitude of triceps activity. By modulation of triceps activity, the central nervous system (CNS) varied the position of CoM with respect to the center of pressure (CoP). The CoM-CoP gap in the sagittal plane was determinant for setting the disequilibrium torque and thus walking velocity. Thus, by controlling the gap, CNS-modified walking velocity (GI, R (2) = 0.86; BR, R (2) = 0.92). This study is the first to highlight that by merely counteracting gravity, triceps activity sets the kinematics and kinetics of gait. It also provides evidence that the surge in triceps activity during fast walking is due to the increased requirement of braking the fall of CoM in late stance in order to perform a smoother step-to-step transition.

  20. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    Science.gov (United States)

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  1. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  2. Influenza C virus NS1 protein counteracts RIG-I-mediated IFN signalling

    Directory of Open Access Journals (Sweden)

    Vlasak Reinhard

    2011-02-01

    Full Text Available Abstract The nonstructural proteins 1 (NS1 from influenza A and B viruses are known as the main viral factors antagonising the cellular interferon (IFN response, inter alia by inhibiting the retinoic acid-inducible gene I (RIG-I signalling. The cytosolic pattern-recognition receptor RIG-I senses double-stranded RNA and 5'-triphosphate RNA produced during RNA virus infections. Binding to these ligands activates RIG-I and in turn the IFN signalling. We now report that the influenza C virus NS1 protein also inhibits the RIG-I-mediated IFN signalling. Employing luciferase-reporter assays, we show that expression of NS1-C proteins of virus strains C/JJ/50 and C/JHB/1/66 considerably reduced the IFN-β promoter activity. Mapping of the regions from NS1-C of both strains involved in IFN-β promoter inhibition showed that the N-terminal 49 amino acids are dispensable, while the C-terminus is required for proper modulation of the IFN response. When a mutant RIG-I, which is constitutively active without ligand binding, was employed, NS1-C still inhibited the downstream signalling, indicating that IFN inhibitory properties of NS1-C are not necessarily linked to an RNA binding mechanism.

  3. Diacylglycerol kinase counteracts protein kinase C-mediated inactivation of the EGF receptor

    NARCIS (Netherlands)

    Baal, van J.; Widt, de J.; Divecha, N.; Blitterswijk, van W.J.

    2012-01-01

    Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC)signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed b

  4. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly

    NARCIS (Netherlands)

    M.E. Tanenbaum (Marvin); L. Macůrek (Libor); N.J. Galjart (Niels); R.H. Medema (Rene)

    2008-01-01

    textabstractBipolar spindle assembly critically depends on the microtubule plus-end-directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition

  5. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Sak, Ali, E-mail: ali.sak@uni-due.de [Department of Radiotherapy, West German Cancer Centre (WTZ), University Hospital Essen, University Duisburg-Essen, Essen (Germany); Stuschke, Martin; Groneberg, Michael; Kuebler, Dennis; Poettgen, Christoph [Department of Radiotherapy, West German Cancer Centre (WTZ), University Hospital Essen, University Duisburg-Essen, Essen (Germany); Eberhardt, Wilfried E.E. [Department of Medicine (Cancer Research), West German Cancer Centre (WTZ), University Hospital Essen, University Duisburg-Essen, Essen (Germany)

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of the plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation during

  6. CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity.

    Science.gov (United States)

    Zucchini, C; Manara, M C; Pinca, R S; De Sanctis, P; Guerzoni, C; Sciandra, M; Lollini, P-L; Cenacchi, G; Picci, P; Valvassori, L; Scotlandi, K

    2014-04-10

    CD99, a transmembrane protein encoded by MIC2 gene is involved in multiple cellular events including cell adhesion and migration, apoptosis, cell differentiation and regulation of protein trafficking either in physiological or pathological conditions. In osteosarcoma, CD99 is expressed at low levels and functions as a tumour suppressor. The full-length protein (CD99wt) and the short-form harbouring a deletion in the intracytoplasmic domain (CD99sh) have been associated with distinct functional outcomes with respect to tumour malignancy. In this study, we especially evaluated modulation of cell-cell contacts, reorganisation of the actin cytoskeleton and modulation of signalling pathways by comparing osteosarcoma cells characterised by different metastasis capabilities and CD99 expression, to identify molecular mechanisms responsible for metastasis. Our data indicate that forced expression of CD99wt induces recruitment of N-cadherin and β-catenin to adherens junctions. In addition, transfection of CD99wt inhibits the expression of several molecules crucial to the remodelling of the actin cytoskeleton, such as ACTR2, ARPC1A, Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) as well as ezrin, an ezrin/radixin/moesin family member that has been clearly associated with tumour progression and metastatic spread in osteosarcoma. Functional studies point to ROCK2 as a crucial intracellular mediator regulating osteosarcoma migration. By maintaining c-Src in an inactive conformation, CD99wt inhibits ROCK2 signalling and this leads to ezrin decrease at cell membrane while N-cadherin and β-catenin translocate to the plasma membrane and function as main molecular bridges for actin cytoskeleton. Taken together, we propose that the re-expression of CD99wt, which is generally present in osteoblasts but lost in osteosarcoma, through inhibition of c-Src and ROCK2 activity, manages to increase contact strength and reactivate stop-migration signals that counteract the

  7. Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology.

    NARCIS (Netherlands)

    Schreibelt, G.; Horssen, J. van; Rossum, S. van; Dijkstra, C.D.; Drukarch, B.; Vries, H.E. de

    2007-01-01

    Reactive oxygen species contribute to the formation and persistence of multiple sclerosis (MS) lesions by acting on distinct pathological processes. To counteract the detrimental effects of ROS the central nervous system is endowed with a protective mechanism consisting of enzymatic and

  8. Drosophila PRL-1 is a growth inhibitor that counteracts the function of the Src oncogene.

    Science.gov (United States)

    Pagarigan, Krystle T; Bunn, Bryce W; Goodchild, Jake; Rahe, Travis K; Weis, Julie F; Saucedo, Leslie J

    2013-01-01

    Phosphatase of Regenerating Liver (PRL) family members have emerged as molecular markers that significantly correlate to the ability of many cancers to metastasize. However, contradictory cellular responses to PRL expression have been reported, including the inhibition of cell cycle progression. An obvious culprit for the discrepancy is the use of dozens of different cell lines, including many isolated from tumors or cultured cells selected for immortalization which may have missing or mutated modulators of PRL function. We created transgenic Drosophila to study the effects of PRL overexpression in a genetically controlled, organismal model. Our data support the paradigm that the normal cellular response to high levels of PRL is growth suppression and furthermore, that PRL can counter oncogenic activity of Src. The ability of PRL to inhibit growth under normal conditions is dependent on a CAAX motif that is required to localize PRL to the apical edge of the lateral membrane. However, PRL lacking the CAAX motif can still associate indiscriminately with the plasma membrane and retains its ability to inhibit Src function. We propose that PRL binds to other membrane-localized proteins that are effectors of Src or to Src itself. This first examination of PRL in a model organism demonstrates that PRL performs as a tumor suppressor and underscores the necessity of identifying the conditions that enable it to transform into an oncogene in cancer.

  9. Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation.

    Science.gov (United States)

    Shao, Diane D; Suresh, Rahul; Vakil, Varsha; Gomer, Richard H; Pilling, Darrell

    2008-06-01

    CD14+ peripheral blood monocytes can differentiate into fibroblast-like cells called fibrocytes, which are associated with and are at least partially responsible for wound healing and fibrosis in multiple organ systems. Signals regulating fibrocyte differentiation are poorly understood. In this study, we find that when added to human PBMCs cultured in serum-free medium, the profibrotic cytokines IL-4 and IL-13 promote fibrocyte differentiation without inducing fibrocyte or fibrocyte precursor proliferation. We also find that the potent, antifibrotic cytokines IFN-gamma and IL-12 inhibit fibrocyte differentiation. In our culture system, IL-1beta, IL-3, IL-6, IL-7, IL-16, GM-CSF, M-CSF, fetal liver tyrosine kinase 3, insulin growth factor 1, vascular endothelial growth factor, and TNF-alpha had no significant effect on fibrocyte differentiation. IL-4, IL-13, and IFN-gamma act directly on monocytes to regulate fibrocyte differentiation, and IL-12 acts indirectly, possibly through CD16-positive NK cells. We previously identified the plasma protein serum amyloid P (SAP) as a potent inhibitor of fibrocyte differentiation. When added together, the fibrocyte-inhibitory activity of SAP dominates the profibrocyte activities of IL-4 and IL-13. The profibrocyte activities of IL-4 and IL-13 and the fibrocyte-inhibitory activities of IFN-gamma and IL-12 counteract each other in a concentration-dependent manner. These results indicate that the complex mix of cytokines and plasma proteins present in inflammatory lesions, wounds, and fibrosis will influence fibrocyte differentiation.

  10. Chlorophyllin inhibits the multiplication of poliovirus in hep-2 cell cultures Clorofilina inibe a multiplicação de poliovírus em cultura de células hep-2

    Directory of Open Access Journals (Sweden)

    Rosa Elisa Carvalho Linhares

    2008-10-01

    Full Text Available Chlorophyllin (CHLN, a semisynthetic derivative of chlorophyll with antimutagenic properties, was assayed for its antiviral effect on the replication of poliovirus in cell culture. The drug was tested for the virucide, prophylactic and therapeutic activities on the replication of the poliovirus in HEp-2 cells cultures, at concentrations of 0.5 and 2.5 µg/mL. Virus titration and an indirect immunofluorescence test were used for the evaluation. The CHLN inhibited poliovirus replication in all treatment protocols; however, it was more effective on virucide treatment, with a 95.7% reduction in viral multiplication at concentration of 2.5 µg/mL. CHLN reduced the number of specifically fluorescent infected cells in both virucide and therapeutic treatments, 8h and 10h post-infection, at both concentrations (0.5 and 2.5 µg/ mL. It is suggested that CHLN either has a direct action on the virus particles or acts on the initial stage of the poliovirus replication. A clorofilina (CHLN, derivado sintético da clorofila com atividade antimutagênica, foi analisada quantoa sua atividade antiviral para o poliovírus em culturas de células HEp-2. A droga foi avaliada quanto às atividades virucida, profilática e terapêutica na multiplicação do poliovirus em culturas de células HEp-2, nas concentrações de 0,5 e 2,5 µg/mL. A inibição do título viral e a reação de imunofluorescência foram utilizadas para avaliação. A CHLN inibiu a multiplicação do poliovírus nos três protocolos de tratamento, porém foi mais efetiva no tratamento virucida inibindo em 95,7% a multiplicação viral na concentração de 2,5 µg/mL. A CHLN reduziu o número de células infectadas com fluorescência específica, nos tratamentos virucida, e terapêutico, 8h e 10h pós-infecção, nas duas concentrações (0,5 e 2,5 µg/mL . Sugere-se que a CHLN tem uma ação direta na partícula viral ou provavelmente age nos estágios iniciais da multiplicação do poliovirus.

  11. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline

    NARCIS (Netherlands)

    Seib, D.R.; Corsini, N.S.; Ellwanger, K.; Plaas, C.; Mateos, A.; Pitzer, C.; Niehrs, C.; Celikel, T.; Martin-Villalba, A.

    2013-01-01

    Memory impairment has been associated with age-related decline in adult hippocampal neurogenesis. Although Notch, bone morphogenetic protein, and Wnt signaling pathways are known to regulate multiple aspects of adult neural stem cell function, the molecular basis of declining neurogenesis in the agi

  12. A result on the acoustic characteristics of the Mixture of Counter-phase Counteract and Split-gas Rushing muffler

    Directory of Open Access Journals (Sweden)

    Shao Ying-li

    2016-01-01

    Full Text Available The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.

  13. Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: Role for omega-3 epoxides

    OpenAIRE

    López-Vicario, Cristina; Alcaraz-Quiles, José; García-Alonso, Verónica; Rius, Bibiana; Hwang, Sung H.; Titos, Esther; Lopategi, Aritz; Hammock, Bruce D.; Arroyo, Vicente; Clària, Joan

    2014-01-01

    Our study demonstrates that stabilization of cytochrome P-450 epoxides derived from omega-3 polyunsaturated fatty acids through inhibition of the inactivating enzyme soluble epoxide hydrolase (sEH) exerts beneficial actions in counteracting metabolic disorders associated with obesity. In addition, our study sheds more light on the role of sEH in cellular homeostasis by providing evidence that omega-3 epoxides and sEH inhibition regulate autophagy and endoplasmic reticulum stress in insulin-se...

  14. Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity.

    Science.gov (United States)

    Zenner, Helen L; Mauricio, Rui; Banting, George; Crump, Colin M

    2013-12-01

    The interferon-inducible membrane protein tetherin (Bst-2, or CD317) is an antiviral factor that inhibits enveloped virus release by cross-linking newly formed virus particles to the producing cell. The majority of viruses that are sensitive to tetherin restriction appear to be those that acquire their envelopes at the plasma membrane, although many viruses, including herpesviruses, envelope at intracellular membranes, and the effect of tetherin on such viruses has been less well studied. We investigated the tetherin sensitivity and possible countermeasures of herpes simplex virus 1 (HSV-1). We found that overexpression of tetherin inhibits HSV-1 release and that HSV-1 efficiently depletes tetherin from infected cells. We further show that the virion host shutoff protein (Vhs) is important for depletion of tetherin mRNA and protein and that removal of tetherin compensates for defects in replication and release of a Vhs-null virus. Vhs is known to be important for HSV-1 to evade the innate immune response in vivo. Taken together, our data suggest that tetherin has antiviral activity toward HSV-1 and that the removal of tetherin by Vhs is important for the efficient replication and dissemination of HSV-1.

  15. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function

    Science.gov (United States)

    Manzini, Claudia; Venè, Roberta; Cossu, Irene; Gualco, Marina; Zupo, Simonetta; Dono, Mariella; Spagnolo, Francesco; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina; Pietra, Gabriella

    2016-01-01

    Oncogene-targeted therapies based on mutated BRAF- and/or MEK-specific inhibitors have been developed for melanoma treatment. Although these drugs induce tumor regression in a high percentage of patients, clinical responses are frequently limited in time and tumors often recur. Recent studies suggested that the combination of BRAF/MEK inhibition with immunotherapy could represent a promising strategy for the cure of melanoma. NK cells are suitable effectors for tumor immunotherapy. Here we show that PLX4032 (a mutant BRAFV600 inhibitor) had no effect on the functional properties of NK cells cultured in the presence of IL-2 or IL-15. In contrast, PD0325901 (a MEK inhibitor) induced the down-regulation of the main activating NK receptors and inhibited NK cell function. Importantly, PD0325901 did not affect the anti-tumor activity of NK cells that had been exposed to a combination of IL-15 and IL-18. In addition, both PLX4032 and PD0325901 did not exert any inhibitory effect on in vitro IL-2 or IL-15 pre-activated NK cells. Our data may provide a rationale for future clinical protocols that combine IL-15/IL-18 cytokine administration with MEK inhibitors. In addition, they suggest that oncogene-targeting drugs are compatible with NK-based adoptive therapy. PMID:27563819

  16. Subthreshold α2-Adrenergic Activation Counteracts Glucagon-Like Peptide-1 Potentiation of Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Minglin Pan

    2011-01-01

    Full Text Available The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1 receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX- sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  17. Confrontation of Major Counteracting Forces in the Globalized Market as a Process of Resolving / Intensifying its Contradictions

    Directory of Open Access Journals (Sweden)

    Deyneka Tetyana A.

    2016-11-01

    Full Text Available The aim of the article is to study the process of resolving/intensifying the contradictions of the contemporary globalized market by means of identifying the counteracting forces that are critical for the period of the formation of post-industrial relations. It is proved that in the context of globalization and gradual establishment of principles of the post-industrial economy, the confrontation of major counteracting market forces is undergoing changes, which is manifested through the processes of resolving/ intensifying the market contradictions. There identified the content of these changes, in particular: if at early stages of the market development the confrontation «state—market» was of decisive importance, at the present time it is the confrontation «civil society – TNCs». There described a multivariate character of the interaction between the major market forces — states, international organizations, TNCs, civil society (both with the effect of achieving community of their interests and with the effect of their disunity. It is proved that the confrontation between the civil society and international corporations objectifies in the globalized economy a new form of contradiction between labor and capital that corresponds to the post-industrial content of economic relations and, in particular the content of property relations

  18. Multiple Sclerosis

    Science.gov (United States)

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the ... attacks healthy cells in your body by mistake. Multiple sclerosis affects women more than men. It often begins ...

  19. Multiple Myeloma

    Science.gov (United States)

    Multiple myeloma is a cancer that begins in plasma cells, a type of white blood cell. These cells ... bones. No one knows the exact causes of multiple myeloma, but it is more common in older people ...

  20. Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology.

    Science.gov (United States)

    Schreibelt, Gerty; van Horssen, Jack; van Rossum, Saskia; Dijkstra, Christine D; Drukarch, Benjamin; de Vries, Helga E

    2007-12-01

    Reactive oxygen species contribute to the formation and persistence of multiple sclerosis (MS) lesions by acting on distinct pathological processes. To counteract the detrimental effects of ROS the central nervous system is endowed with a protective mechanism consisting of enzymatic and non-enzymatic antioxidants. Expression of most antioxidant enzymes is regulated through the transcription factor nuclear factor-E2-related factor (Nrf2) and antioxidant response elements (ARE) in the genes encoding enzymatic antioxidants and is induced by oxidative stress. In brain tissue of MS patients, enhanced expression of Nrf2/ARE-regulated antioxidants is suggestive of the occurrence of oxidative stress in these lesions. Antioxidant therapy may therefore represent an attractive treatment of MS. Several studies have shown that antioxidant therapy is beneficial in vitro and in vivo in animal models for MS. However, the use of exogenous antioxidants for MS treatment has drawbacks, as large amounts of antioxidants are required to achieve functional antioxidant levels in the central nervous system. Therefore, the induction of endogenous antioxidant enzymes by activators of the Nrf2/ARE pathway may be an interesting approach to obtain sufficient levels of antioxidants to interfere with pathological processes underlying MS lesion formation. In this review we summarize and discuss the biological role, regulation and potential therapeutic effects of endogenous antioxidant enzymes in MS. We propose that antioxidants may inhibit the development and progression of MS lesions and may therefore represent an attractive therapeutic target for the treatment of MS and other oxidative stress-related neurological diseases.

  1. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis.

    Science.gov (United States)

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-02-18

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression.

  2. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver.

    Directory of Open Access Journals (Sweden)

    Miguel A Lanaspa

    Full Text Available Fatty liver (hepatic steatosis is associated with nucleotide turnover, loss of ATP and generation of adenosine monophosphate (AMP. It is well known that in fatty liver, activity of the AMP-activated kinase (AMPK is reduced and that its stimulation can prevent hepatic steatosis by both enhancing fat oxidation and reducing lipogenesis. Here we show that another AMP dependent enzyme, AMPD2, has opposing effects on fatty acid oxidation when compared to AMPK. In human hepatocytres, AMPD2 activation -either by overexpression or by lowering intracellular phosphate levels with fructose- is associated with a significant reduction in AMPK activity. Likewise, silencing of AMPK spontaneously increases AMPD activity, demonstrating that these enzymes counter-regulate each other. Furthermore, we show that a downstream product of AMP metabolism through AMPD2, uric acid, can inhibit AMPK activity in human hepatocytes. Finally, we show that fructose-induced fat accumulation in hepatocytes is due to a dominant stimulation of AMPD2 despite stimulating AMPK. In this regard, AMPD2-deficient hepatocytes demonstrate a further activation of AMPK after fructose exposure in association with increased fatty acid oxidation, and conversely silencing AMPK enhances AMPD-dependent fat accumulation. In vivo, we show that sucrose fed rats also develop fatty liver that is blocked by metformin in association with both a reduction in AMPD activity and an increase in AMPK activity. In summary, AMPD and AMPK are both important in hepatic fat accumulation and counter-regulate each other. We present the novel finding that uric acid inhibits AMPK kinase activity in fructose-fed hepatocytes thus providing new insights into the pathogenesis of fatty liver.

  3. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression.

    Science.gov (United States)

    Kim, Dong Young; Kwon, Eunju; Hartley, Paul D; Crosby, David C; Mann, Sumanjit; Krogan, Nevan J; Gross, John D

    2013-02-21

    The HIV-1 accessory protein Vif hijacks a cellular Cullin-RING ubiquitin ligase, CRL5, to promote degradation of the APOBEC3 (A3) family of restriction factors. Recently, the cellular transcription cofactor CBFβ was shown to form a complex with CRL5-Vif and to be essential for A3 degradation and viral infectivity. We now demonstrate that CBFβ is required for assembling a well-ordered CRL5-Vif complex by inhibiting Vif oligomerization and by activating CRL5-Vif via direct interaction. The CRL5-Vif-CBFβ holoenzyme forms a well-defined heterohexamer, indicating that Vif simultaneously hijacks CRL5 and CBFβ. Heterodimers of CBFβ and RUNX transcription factors contribute toward the regulation of genes, including those with immune system functions. We show that binding of Vif to CBFβ is mutually exclusive with RUNX heterodimerization and impacts the expression of genes whose regulatory domains are associated with RUNX1. Our results provide a mechanism by which a pathogen with limited coding capacity uses one factor to hijack multiple host pathways.

  4. Forms of the criminal environment counteraction to performing the function of state protection of participants in criminal proceedings and measures of its neutralization

    Directory of Open Access Journals (Sweden)

    Dubonosov E.S.

    2014-12-01

    Full Text Available Criminal environment’s counteraction is considered as purposeful, active and intentional influence of its representatives on participants in criminal proceedings. It is directed at persons who, due to their professional duties, are involved in detection and investigation of crimes as well as court proceedings, or who possess evidentiary information (witnesses, victims, etc.. Counteraction may be expressed in different ways: discrediting operatives, investigators and judges; pressure on persons involved in the investigation and the trial through bribery, blackmail, threats to life and health of themselves and their family, etc. The administration of justice becomes inefficient due to the variety of forms and purposes of counteraction. The importance of operational units’ awareness of the activities of criminal environment representatives is shown. The importance of revealing the facts of unlawful influence on witnesses and victims of crime, who subsequently acquire procedural status of witnesses and victims, in order to prevent such facts is also stressed. It is proposed to suppress the counteraction of criminal environment by following ways: 1 identifying (with the help of informants and by crime detection actions the persons attempting to influence the preliminary investigation; 2 documenting the suspects actions aimed at illegal influence on participants in criminal proceedings for the purpose of conducting the procedural actions and decision making; 3 “in cell” (using an agent crime detection actions against detainees and arrestees throughout the whole process of covert operation; 4 creating investigative team to develop a common mechanism to neutralize criminal environment’s counteraction to crime investigation.

  5. Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  6. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  7. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  8. Inhibition of lettuce seed germination and seedling growth by antimetabolites of nucleic acids, and reversal by nucleic acid precursors and gibberellic acid.

    Science.gov (United States)

    Khan, A A

    1966-03-01

    Germination of White Paris lettuce seeds is inhibited by 2-thiouracil up to 24 hours. This inhibition is reversed by RNA precursors only. Seedling growth of lettuce is inhibited by 2-thiouracil and 5-fluorouracil; and white the effect of 2-thiouracil is counteracted by RNA precursors, inhibition due to 5-fluorouracil is not reversed significantly by any nucleic acid precursors. Possibly 2-thiouracil controls germination and seedling growth by interfering with RNA synthesis, while the effect of 5-fluorouracil is non-specific.In the presence of gibberellic acid, 5-fluorouracil and 2-thiouracil are relatively ineffective in causing inhibition of hypocotyl growth. Mechanism of gibberellic acid action remains obscure.

  9. Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1

    Science.gov (United States)

    Rukkawattanakul, Thunchanok; Sookrung, Nitat; Seesuay, Watee; Onlamoon, Nattawat; Diraphat, Pornphan; Chaicumpa, Wanpen; Indrawattana, Nitaya

    2017-01-01

    Some Staphylococcus aureus isolates produced toxic shock syndrome toxin-1 (TSST-1) which is a pyrogenic toxin superantigen (PTSAg). The toxin activates a large fraction of peripheral blood T lymphocytes causing the cells to proliferate and release massive amounts of pro-inflammatory cytokines leading to a life-threatening multisystem disorder: toxic shock syndrome (TSS). PTSAg-mediated-T cell stimulation circumvents the conventional antigenic peptide presentation to T cell receptor (TCR) by the antigen-presenting cell (APC). Instead, intact PTSAg binds directly to MHC-II molecule outside peptide binding cleft and simultaneously cross-links TCR-Vβ region. Currently, there is neither specific TSS treatment nor drug that directly inactivates TSST-1. In this study, human single chain antibodies (HuscFvs) that bound to and neutralized bioactivities of the TSST-1 were generated using phage display technology. Three E. coli clones transfected with TSST-1-bound phages fished-out from the human scFv library using recombinant TSST-1 as bait expressed TSST-1-bound-HuscFvs that inhibited the TSST-1-mediated T cell activation and pro-inflammatory cytokine gene expressions and productions.Computerized simulation, verified by mutations of the residues of HuscFv complementarity determining regions (CDRs),predicted to involve in target binding indicated that the HuscFvs formed interface contact with the toxin residues important for immunopathogenesis. The HuscFvs have high potential for future therapeutic application. PMID:28218671

  10. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape.

    Directory of Open Access Journals (Sweden)

    Suraj P Parihar

    Full Text Available Statins are well-known cholesterol lowering drugs targeting HMG-CoA-reductase, reducing the risk of coronary disorders and hypercholesterolemia. Statins are also involved in immunomodulation, which might influence the outcome of bacterial infection. Hence, a possible effect of statin treatment on Listeriosis was explored in mice. Statin treatment prior to subsequent L. monocytogenes infection strikingly reduced bacterial burden in liver and spleen (up to 100-fold and reduced histopathological lesions. Statin-treatment in infected macrophages resulted in increased IL-12p40 and TNF-α and up to 4-fold reduced bacterial burden within 6 hours post infection, demonstrating a direct effect of statins on limiting bacterial growth in macrophages. Bacterial uptake was normal investigated in microbeads and GFP-expressing Listeria experiments by confocal microscopy. However, intracellular membrane-bound cholesterol level was decreased, as analyzed by cholesterol-dependent filipin staining and cellular lipid extraction. Mevalonate supplementation restored statin-inhibited cholesterol biosynthesis and reverted bacterial growth in Listeria monocytogenes but not in listeriolysin O (LLO-deficient Listeria. Together, these results suggest that statin pretreatment increases protection against L. monocytogenes infection by reducing membrane cholesterol in macrophages and thereby preventing effectivity of the cholesterol-dependent LLO-mediated phagosomal escape of bacteria.

  11. Fibrin/platelet plug counteracts cutaneous wound contraction: the hypothesis of "skipping stone".

    Science.gov (United States)

    Farahani, Ramin Mostofi Zadeh

    2007-01-01

    Cutaneous wound contraction and epithelialization act collaboratively to minimize the exposed wound surface. However excessive wound contraction is undesirable due to the resultant disfigurement and scarring. Fibrin clot has greater stiffness than surrounding tissue and mechanical strain further enhances its stiffness. On the contrary, skin exhibits diminished stiffness when affected by high strain rates. Therefore during early stages of wound healing, the contractile wound border is confronted by fibrin clot forming a high strain region in the interface of contractile tissue and fibrin clot--which is evidenced by computer simulation. Due to the stress relaxation property of skin, the contractile strain is partly neutralized. Meanwhile, gradually the stiffness of fibrin clot decreases which is followed by another cycle of wound contraction. This cyclic pattern of contraction resembles the movement of a stone over water or "skipping stone". The stone bounces repeatedly when thrown across the surface of water with reduction of jumping altitude with each bounce till the stone stops completely. This hypothesis is further supported by the observed initial delay in wound contraction and the chronological correlation of enhanced wound contraction with loss of superficial eschar and substitution of fibrin clot with granulation tissue. Also there is evidence that fibrin inhibits fibroblast-mediated contraction of collagen. Furthermore, modest increase in wound contraction rate in fibrinogen deficient mice and fibrin-mediated diminished wound contraction are agreement with the proposed hypothesis.

  12. L-theanine partially counteracts caffeine-induced sleep disturbances in rats.

    Science.gov (United States)

    Jang, Hwan-Soo; Jung, Ji Young; Jang, Il-Sung; Jang, Kwang-Ho; Kim, Sang-Hyun; Ha, Jeoung-Hee; Suk, Kyoungho; Lee, Maan-Gee

    2012-04-01

    L-theanine has been reported to inhibit the excitatory effects of caffeine. The present study examined the effects of L-theanine on caffeine-induced sleep disturbances in rats. Rats received the following drug pairings: saline and saline (Control), 7.5 mg/kg caffeine and saline, or 7.5 mg/kg of caffeine followed by various doses of L-theanine (22.5, 37.5, 75, or 150 mg/kg). Vigilance states were divided into: wakefulness (W), transition to slow-wave sleep (tSWS), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). Caffeine significantly increased the duration of W and decreased the duration of SWS and REMS compared to the Control. Although L-theanine failed to reverse the caffeine-induced W increase, at 22.5 and 37.5 mg/kg (but not at 75 and 150 mg/kg), it significantly reversed caffeine-induced decreases in SWS. In conclusion, low doses of L-theanine can partially reverse caffeine-induced reductions in SWS; however, effects of L-theanine on caffeine-induced insomnia do not appear to increase dose-dependently.

  13. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    Science.gov (United States)

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  14. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  15. Doxorubicin-induced oxidative stress in rats is efficiently counteracted by dietary anthocyanin differently enriched strawberry (Fragaria × ananassa Duch.).

    Science.gov (United States)

    Diamanti, Jacopo; Mezzetti, Bruno; Giampieri, Francesca; Alvarez-Suarez, José M; Quiles, José L; Gonzalez-Alonso, Adrian; Ramirez-Tortosa, Maria del Carmen; Granados-Principal, Sergio; Gonzáles-Paramás, Ana M; Santos-Buelga, Celestino; Battino, Maurizio

    2014-05-07

    This study investigated the effects of two different strawberry cultivars, Adria and Sveva, against doxorubicin (DOX)-induced toxicity in rats. A controlled dietary intervention was conducted over 16 weeks with four groups: (i) normal diet; (ii) normal diet + DOX injection; (iii) Adria supplementation + DOX injection; and (iv) Sveva supplementation + DOX injection. Sveva presented higher total antioxidant capacity value and phenol and and vitamin C levels than Adria, which in turn presented higher anthocyanin contents. DOX drastically increased lymphocyte DNA damage, liver biomarkers of protein and lipid oxidation, and mitochondrial ROS content and markedly decreased plasma retinol level, liver antioxidant enzymes, and mitochondrial functionality. After 2 months of strawberry supplementation, rats presented a significant reduction of DNA damage and ROS concentration and a significant improvement of oxidative stress biomarkers, antioxidant enzyme activities, and mitochondrial performance. These results suggest that strawberry supplementation can counteract DOX toxicity, confirming the potential health benefit of strawberry in vivo against oxidative stress.

  16. Haloperidol counteracts the ketamine-induced disruption of processing negativity, but not that of the P300 amplitude

    DEFF Research Database (Denmark)

    Oranje, Bob; Gispen-de Wied, Christine C; Westenberg, Herman G M

    2009-01-01

    Antagonists of the N-methyl-D-aspartate (NMDA) receptors such as ketamine, induce abnormalities in healthy subjects similar to those found in schizophrenia. However, recent evidence, suggests that most of the currently known NMDA antagonists have a broader receptor profile than originally thought....... Besides exerting an antagonistic effect on NMDA receptors, they have agonistic effects on dopamine D2 receptors. Can haloperidol (D2 antagonist) counteract the disruptive effects of ketamine on psychophysiological parameters of human attention? In a randomized, double-blind, placebo-controlled experiment...... 18 healthy male volunteers received placebo/placebo, placebo/ketamine (0.3 mg/kg i.v.) and haloperidol (2 mg)/ketamine (0.3 mg/kg i.v.) on three separate test days, after which they were tested in an auditory selective-attention paradigm. Haloperidol/ketamine reduced task performance compared...

  17. Multiple Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multiple gliomas are well-recognized but uncommon tumors. The incidence of multiple gliomas according to some reports ranges from 0.5% to 20% of all gliomas diagnosed. Multiple gliomas can be divided into two categories. One is by location of the lesions (multifocal and multicentric). The second type is by the time of the lesions occur (synchronous and metachronous). The lesions generally show hypo, or isodensity on CT; a hypo- or isointense signal on T1-weighted images, and a hyperintense signal on T2-weighted images. Glioblastoma is the most frequent histotype. The prognosis of multiple gliomas remains unfavorable. The treatment of multiple gliomas includes surgery, radiotherapy and chemotherapy. Distinction between multicentric and multifocal gliomas is difficult. This report reviews in detail the aspects of multiple gliomas mentioned above.

  18. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development.

    Science.gov (United States)

    Zhou, Lina; Dai, Huifang; Wu, Jian; Zhou, Mian; Yuan, Hua; Du, Juan; Yang, Lu; Wu, Xiwei; Xu, Hong; Hua, Yuejin; Xu, Jian; Zheng, Li; Shen, Binghui

    2017-01-01

    Flap endonuclease 1 (FEN1) phosphorylation is proposed to regulate the action of FEN1 in DNA repair as well as Okazaki fragment maturation. However, the biologic significance of FEN1 phosphorylation in response to DNA damage remains unknown. Here, we report an in vivo role for FEN1 phosphorylation, using a mouse line carrying S187A FEN1, which abolishes FEN1 phosphorylation. Although S187A mouse embryonic fibroblast cells showed normal proliferation under low oxygen levels (2%), the mutant cells accumulated oxidative DNA damage, activated DNA damage checkpoints, and showed G1-phase arrest at atmospheric oxygen levels (21%). This suggests an essential role for FEN1 phosphorylation in repairing oxygen-induced DNA damage and maintaining proper cell cycle progression. Consistently, the mutant cardiomyocytes showed G1-phase arrest due to activation of the p53-mediated DNA damage response at the neonatal stage, which reduces the proliferation potential of the cardiomyocytes and impairs heart development. Nearly 50% of newborns with the S187A mutant died in the first week due to failure to undergo the peroxisome proliferator-activated receptor signaling-dependent switch from glycolysis to fatty acid oxidation. The adult mutant mice developed dilated hearts and showed significantly shorter life spans. Altogether, our results reveal an important role of FEN1 phosphorylation to counteract oxygen-induced stress in the heart during the fetal-to-neonatal transition.-Zhou, L., Dai, H., Wu, J., Zhou, M., Yuan, H., Du, J., Yang, L., Wu, X., Xu, H., Hua, Y., Xu, J., Zheng, L., Shen, B. Role of FEN1 S187 phosphorylation in counteracting oxygen-induced stress and regulating postnatal heart development. © FASEB.

  19. Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract polycomb silencing.

    Directory of Open Access Journals (Sweden)

    Hitomi Miyazaki

    2013-11-01

    Full Text Available Molecular mechanisms for the establishment of transcriptional memory are poorly understood. 5,6-dichloro-1-D-ribofuranosyl-benzimidazole (DRB is a P-TEFb kinase inhibitor that artificially induces the poised RNA polymerase II (RNAPII, thereby manifesting intermediate steps for the establishment of transcriptional activation. Here, using genetics and DRB, we show that mammalian Absent, small, or homeotic discs 1-like (Ash1l, a member of the trithorax group proteins, methylates Lys36 of histone H3 to promote the establishment of Hox gene expression by counteracting Polycomb silencing. Importantly, we found that Ash1l-dependent Lys36 di-, tri-methylation of histone H3 in a coding region and exclusion of Polycomb group proteins occur independently of transcriptional elongation in embryonic stem (ES cells, although both were previously thought to be consequences of transcription. Genome-wide analyses of histone H3 Lys36 methylation under DRB treatment have suggested that binding of the retinoic acid receptor (RAR to a certain genomic region promotes trimethylation in the RAR-associated gene independent of its ongoing transcription. Moreover, DRB treatment unveils a parallel response between Lys36 methylation of histone H3 and occupancy of either Tip60 or Mof in a region-dependent manner. We also found that Brg1 is another key player involved in the response. Our results uncover a novel regulatory cascade orchestrated by Ash1l with RAR and provide insights into mechanisms underlying the establishment of the transcriptional activation that counteracts Polycomb silencing.

  20. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy.

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    Full Text Available BACKGROUND: Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18 in the large intestinal epithelia. AIMS: To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB, a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. METHODS: The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR and release of the CAP-18 peptide/protein in stool (Western blot. PRINCIPAL FINDINGS: Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. CONCLUSION: Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from

  1. Sexual stigma and symbolic violence experienced, enacted, and counteracted in young Africans' writing about same-sex attraction.

    Science.gov (United States)

    Winskell, Kate; Sabben, Gaëlle

    2016-07-01

    There is growing recognition of the health disparities faced by sexual minority populations and the critical role played by sexual stigma in increasing their vulnerability. Experienced, anticipated, and internalized, stigma based on sexual orientation reduces access to HIV/STI prevention and treatment services among African men who have sex with men and has been linked to compromised mental health, risk-taking, and HIV status. It is likely that similar processes undermine the health of sexual minority African women and transgender and non-binary people. There is a need for increased understanding of both the contextual factors and the cultural meanings, or symbolic violence, that inform sexual stigma and harmful stigma management strategies in contexts that are culturally and socio-politically oppressive for sexual and gender minorities. Using thematic data analysis and narrative-based methodologies, we analyzed narratives and essays on same-sex attraction contributed by young people aged 13-24 from ten African countries to a Spring 2013 scriptwriting competition on HIV, sexuality, and related themes. Submitted by 27 male and 29 female authors, the texts were written in response to a prompt inviting participants to "Tell a story about someone who is attracted to people of the same sex". We analyzed the ways in which sexual stigma and its effects are described, enacted, and counteracted in the texts. The data provide insights into the social and symbolic processes that create and sustain sexual stigma in the context of broader transnational discourses. The data shed light on psychosocial challenges faced by sexual minority youth and identify both rhetoric, stereotypes, and discourse that devalue them and representations that counteract this symbolic violence. We share our findings in the hope they may inform education and communication programming as part of multi-level efforts to improve the health and human rights of sexual minority populations in sub

  2. Epigenetic Drugs for Multiple Sclerosis

    OpenAIRE

    Peedicayil, Jacob

    2016-01-01

    There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the development of multiple sclerosis (MS). Advances in epigenetics have given rise to a new class of drugs, epigenetic drugs. Although many classes of epigenetic drugs are being investigated, at present most attention is being paid to two classes of epigenetic drugs: drugs that inhibit DNA methyltransferase (DNMTi) and drugs that inhibit histone deacetylase (HDACi). This paper discusses ...

  3. Role of silicon counteracting cadmium toxicity in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Ahmad H. Kabir

    2016-07-01

    Full Text Available Cadmium (Cd is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase and MsMT2 (metallothionein] and PC (phytochelatin accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter, MsNramp1 (metal transporter and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase (CAT, ascorbate peroxidase (APX and superoxide dismutase (SOD activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants.

  4. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Kabir, Ahmad H.; Hossain, Mohammad M.; Khatun, Most A.; Mandal, Abul; Haider, Syed A.

    2016-01-01

    Cadmium (Cd) is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si) ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)] and PC (phytochelatin) accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter), MsNramp1 (metal transporter) and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate) by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase, ascorbate peroxidase, and superoxide dismutase activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants. PMID:27512401

  5. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Kabir, Ahmad H; Hossain, Mohammad M; Khatun, Most A; Mandal, Abul; Haider, Syed A

    2016-01-01

    Cadmium (Cd) is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si) ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)] and PC (phytochelatin) accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter), MsNramp1 (metal transporter) and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate) by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase, ascorbate peroxidase, and superoxide dismutase activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants.

  6. CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate

    DEFF Research Database (Denmark)

    Herrik, Kjartan F; Redrobe, John P; Holst, Dorte

    2012-01-01

    Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological...... modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca(2...... mouse and rat midbrain slices. Using an immunocytochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo...

  7. Legacy of road salt: Apparent positive larval effects counteracted by negative postmetamorphic effects in wood frogs.

    Science.gov (United States)

    Dananay, Kacey L; Krynak, Katherine L; Krynak, Timothy J; Benard, Michael F

    2015-10-01

    Road salt runoff has potentially large effects on wetland communities, but is typically investigated in short-term laboratory trials. The authors investigated effects of road salt contamination on wood frogs (Rana sylvatica) by combining a field survey with 2 separate experiments. The field survey tested whether wood frog larval traits were associated with road salt contamination in natural wetlands. As conductivity increased, wood frog larvae were less abundant, but those found were larger. In the first experiment of the present study, the authors raised larvae in outdoor artificial ponds under 4 salt concentrations and measured larval vital rates, algal biomass, and zooplankton abundance. Salt significantly increased larval growth, algal biomass, and decreased zooplankton abundance. In the second experiment, the authors raised larvae to metamorphosis in the presence and absence of salt contamination and followed resulting juvenile frogs in terrestrial pens at high and low densities. Exposure to road salt as larvae caused juvenile frogs to have greater mortality in low-density terrestrial environments, possibly because of altered energy allocation, changes in behavior, or reduced immune defenses. The present study suggests that low concentrations of road salt can have positive effects on larval growth yet negative effects on juvenile survival. These results emphasize the importance of testing for effects of contaminants acting through food webs and across multiple life stages as well as the potential for population-level consequences in natural environments.

  8. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shu-Huei Wang

    Full Text Available Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.

  9. High dietary calcium intake does not counteract disuse-induced bone loss

    Science.gov (United States)

    Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.

    Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p

  10. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins.

    Directory of Open Access Journals (Sweden)

    Sheeza Khan

    Full Text Available Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o and functional activity parameters (K m and k cat of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea] ratio, (ii any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea] ratios for RNase-A, lysozyme and α-lactalbumin, respectively.

  11. Testing the Ability of Non-Methylamine Osmolytes Present in Kidney Cells to Counteract the Deleterious Effects of Urea on Structure, Stability and Function of Proteins

    Science.gov (United States)

    Khan, Sheeza; Bano, Zehra; Singh, Laishram R.; Hassan, Md. Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2013-01-01

    Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔGDo) and functional activity parameters (Km and kcat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively. PMID:24039776

  12. Multiple homicides.

    Science.gov (United States)

    Copeland, A R

    1989-09-01

    A study of multiple homicides or multiple deaths involving a solitary incident of violence by another individual was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade County in Miami, Florida, during 1983-1987. A total of 107 multiple homicides were studied: 88 double, 17 triple, one quadruple, and one quintuple. The 236 victims were analyzed regarding age, race, sex, cause of death, toxicologic data, perpetrator, locale of the incident, and reason for the incident. This article compares this type of slaying with other types of homicide including those perpetrated by serial killers. Suggestions for future research in this field are offered.

  13. Multiple myeloma.

    LENUS (Irish Health Repository)

    Collins, Conor D

    2012-02-01

    Advances in the imaging and treatment of multiple myeloma have occurred over the past decade. This article summarises the current status and highlights how an understanding of both is necessary for optimum management.

  14. Parenting Multiples

    Science.gov (United States)

    ... babies do. Though it can be difficult to let go of the thousand other things you need to do, ... tell multiple babies apart when they first come home, so don't feel guilty if you mix yours up at ...

  15. Equine viperin restricts equine infectious anemia virus replication by inhibiting the production and/or release of viral Gag, Env, and receptor via distortion of the endoplasmic reticulum.

    Science.gov (United States)

    Tang, Yan-Dong; Na, Lei; Zhu, Chun-Hui; Shen, Nan; Yang, Fei; Fu, Xian-Qiu; Wang, Yu-Hong; Fu, Li-Hua; Wang, Jia-Yi; Lin, Yue-Zhi; Wang, Xue-Feng; Wang, Xiaojun; Zhou, Jian-Hua; Li, Cheng-Yao

    2014-11-01

    Viperin is an endoplasmic reticulum (ER)-associated multifunctional protein that regulates virus replication and possesses broad antiviral activity. In many cases, viperin interferes with the trafficking and budding of viral structural proteins by distorting the membrane transportation system. The lentivirus equine infectious anemia virus (EIAV) has been studied extensively. In this study, we examined the restrictive effect of equine viperin (eViperin) on EIAV replication and investigated the possible molecular basis of this restriction to obtain insights into the effect of this cellular factor on retroviruses. We demonstrated that EIAV infection of primary equine monocyte-derived macrophages (eMDMs) upregulated the expression of eViperin. The overexpression of eViperin significantly inhibited the replication of EIAV in eMDMs, and knockdown of eViperin transcription enhanced the replication of EIAV in eMDMs by approximately 45.8%. Further experiments indicated that eViperin restricts EIAV at multiple steps of viral replication. The overexpression of eViperin inhibited EIAV Gag release. Both the α-helix domain and radical S-adenosylmethionine (SAM) domain were required for this activity. However, the essential motifs in SAM were different from those reported for the inhibition of HIV-1 Gag by human viperin. Furthermore, eViperin disrupted the synthesis of both EIAV Env and receptor, which consequently inhibited viral production and entry, respectively, and this disruption was dependent on the eViperin α-helix domain. Using immunofluorescence assays and electron microscopy, we demonstrated that the α-helix domain is responsible for the distortion of the endoplasmic reticulum (ER). Finally, EIAV did not exhibit counteracting eViperin at the protein level. In previous studies, viperin was indicated as restricting virus replications primarily by the inhibition of virus budding. Here, we show that viperin may have multiple antiviral mechanisms, including the reduction

  16. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats

    Directory of Open Access Journals (Sweden)

    Yeh C

    2016-10-01

    Full Text Available Chun Yeh,1 Ching-Heng Ting,2 Ming-Luen Doong,3 Chin-Wen Chi,4,5 Shou-Dong Lee,1 Chih-Yen Chen6–8 1Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital, 2Department of Pathology, Mackay Memorial Hospital, 3Institute of Physiology, 4Institute of Pharmacology, National Yang-Ming University School of Medicine, 5Department of Medical Research, Taipei Veterans General Hospital, 6Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 7Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, 8Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan Purpose: Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated.Methods: We examined the differential effects of central O-n-octanoylated ghrelin, des-Gln14-ghrelin, and urocortin 3 on food intake, as well as on charcoal nonnutrient semiliquid gastric emptying in conscious rats that were chronically implanted with intracerebroventricular (ICV catheters. The functional importance of corticotropin-releasing factor (CRF receptor 2 in urocortin 3-induced responses was examined by ICV injection of the selective CRF receptor 2 antagonist, astressin2-B.Results: ICV infusion of urocortin 3 opposed central acyl ghrelin-elicited hyperphagia via CRF receptor 2 in satiated rats. ICV injection of O-n-octanoylated ghrelin and des-Gln14-ghrelin were equally potent in accelerating gastric emptying in fasted rats, whereas ICV administration of urocortin 3 delayed gastric emptying. In addition, ICV infusion of urocortin 3 counteracted central acyl ghrelin-induced gastroprokinetic effects via CRF receptor 2

  17. Biosensors and multiple mycotoxin analysis

    NARCIS (Netherlands)

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin

  18. Biosensors and multiple mycotoxin analysis

    NARCIS (Netherlands)

    Gaag, B. van der; Spath, S.; Dietrich, H.; Stigter, E.; Boonzaaijer, G.; Osenbruggen, T. van; Koopal, K.

    2003-01-01

    An immunochemical biosensor assay for the detection of multiple mycotoxins in a sample is described.The inhibition assay is designed to measure four different mycotoxins in a single measurement, following extraction, sample clean-up and incubation with an appropriate cocktail of anti-mycotoxin antib

  19. Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23.

    Science.gov (United States)

    Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu

    2012-12-01

    Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.

  20. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam.

  1. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts delay-dependent and scopolamine-induced recognition memory deficits in rats.

    Science.gov (United States)

    Pitsikas, Nikolaos; Gravanis, Achille

    2017-04-01

    Experimental evidence indicates that the neurosteroids dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) are involved in cognition. BNN27 is a novel 17C spiroepoxy-DHEA derivative, which devoid of steroidogenic activity. The neuroprotective effects of BNN27 have been recently reported. The present study was designed to investigate the effects of BNN27 on recognition memory in rats. For this purpose, the novel object task (NOT), a procedure assessing non-spatial recognition memory and the novel location task (NLT), a procedure evaluating spatial recognition memory were used. Intraperitoneal (i.p.) administration of BNN27 (3 and 10mg/kg) antagonized delay-dependent deficits in the NOT in the normal rat, suggesting that this DHEA derivative affected acquisition, storage and retrieval of information. In addition, BNN27 (3 and 10mg/kg, i.p.) counteracted the scopolamine [0.2mg/kg, subcutaneously (s.c.)]-induced non-spatial and spatial recognition memory deficits. These findings suggest that BNN27 may modulate different aspects of recognition memory, potentially interacting with the cholinergic system, relevant to cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats.

    Science.gov (United States)

    Aoki, Hirotaka; Nakata, Masanori; Dezaki, Katsuya; Lu, Ming; Gantulga, Darambazar; Yamamoto, Keiji; Shimada, Kazuyuki; Kario, Kazuomi; Yada, Toshihiko

    2013-01-01

    Ghrelin is the endogenous ligand for the growth hormone-secretagogue receptor expressed in various tissues including the heart, blood vessels and kidney. This study sought to determine the effects of long-term treatment with ghrelin (10 nmol/kg, twice a day, intraperitoneally) on the hypertension induced by high salt (8.0% NaCl) diet in Dahl salt-sensitive hypertensive (DS) rats. Systolic blood pressure (SBP) was measured by a tail cuff method. During the treatment period for 3 weeks, high salt diet increased blood pressure compared to normal salt (0.3% NaCl) diet, and this hypertension was partly but significantly (P<0.01) attenuated by simultaneous treatment with ghrelin. Ghrelin significantly increased urine volume and tended to increase urine Na⁺ excretion. Furthermore, ghrelin increased urine nitric oxide (NO) excretion and tended to increase renal neuronal nitric oxide synthase (nNOS) mRNA expression. Ghrelin did not alter the plasma angiotensin II level and renin activity, nor urine catecholamine levels. Furthermore, ghrelin prevented the high salt-induced increases in heart thickness and plasma ANP mRNA expression. These results demonstrate that long-term ghrelin treatment counteracts salt-induced hypertension in DS rats primarily through diuretic action associated with increased renal NO production, thereby exerting cardio-protective effects.

  3. Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system.

    Science.gov (United States)

    De Graeve, Stijn; Marinelli, Sarah; Stolz, Frank; Hendrix, Jelle; Vandamme, Jurgen; Engelborghs, Yves; Van Dijck, Patrick; Thevelein, Johan M

    2013-11-01

    Accumulation of aggregated forms of αSyn (α-synuclein) into Lewy bodies is a known hallmark associated with neuronal cell death in Parkinson's disease. When expressed in the yeast Saccharomyces cerevisiae, αSyn interacts with the plasma membrane, forms inclusions and causes a concentration-dependent growth defect. We have used a yeast mutant, cog6Δ, which is particularly sensitive to moderate αSyn expression, for screening a mouse brain-specific cDNA library in order to identify mammalian proteins that counteract αSyn toxicity. The mouse ribosomal and chaperone protein RPS3A was identified as a suppressor of αSyn [WT (wild-type) and A53T] toxicity in yeast. We demonstrated that the 50 N-terminal amino acids are essential for this function. The yeast homologues of RPS3A were not effective in suppressing the αSyn-induced growth defect, illustrating the potential of our screening system to identify modifiers that would be missed using yeast gene overexpression as the first screening step. Co-expression of mouse RPS3A delayed the formation of αSyn-GFP inclusions in the yeast cells. The results of the present study suggest that the recently identified extraribosomal chaperonin function of RPS3A also acts on the neurodegeneration-related protein αSyn and reveal a new avenue for identifying promising candidate mammalian proteins involved in αSyn functioning.

  4. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.

    Science.gov (United States)

    Borgohain, Gargi; Paul, Sandip

    2016-03-10

    Classical molecular dynamics simulation of GB1 peptide (a 16-residue β-hairpin) in different osmotic environments is studied. Urea is used for denaturation of the peptide, and trimethylamine-N-oxide (TMAO) is used to offset the effect of urea. Protein-urea electrostatic interactions are found to play a major role in protein-denaturation. To emphasize on protein protecting action of TMAO against urea, two different models of TMAO are used, viz., the Kast model and the Osmotic model. We observe that the Osmotic model of TMAO gives the best protection to counteract urea's action when used in ratio 1:2 of urea:TMAO (i.e., reverse ratio). This is because the presence of TMAO makes urea-protein electrostatic interactions more unfavorable. Preferential solvation of TMAO molecules by urea (and water) molecules is also observed, which causes depletion in the number of urea molecules in the vicinity of the protein. The calculations of intraprotein hydrogen bonds between different residues of protein further reveal the breaking of backbone hydrogen bonds of residues 2 and 15 in the presence of urea, and the same is preserved in the presence of TMAO. Free energy landscapes show that the narrowest distribution is obtained for the osmotic TMAO model when used in reverse ratio.

  5. Can a reduction of solar irradiance counteract CO2-induced climate change? – Results from four Earth system models

    Directory of Open Access Journals (Sweden)

    M. Lawrence

    2012-01-01

    Full Text Available In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of the GeoMIP and IMPLICC model intercomparison projects. In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged, the meridional temperature gradient is reduced in all models compared to the control simulation. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. It is shown that this reduction is only partly compensated by a reduction in evaporation so that large continental regions are drier in the engineered climate. In comparison to the climate response to a quadrupling of CO2 alone the temperature responses are small in experiment G1. Precipitation responses are, however, of comparable magnitude but in many regions of opposite sign.

  6. Implications of sit-stand and active workstations to counteract the adverse effects of sedentary work: A comprehensive review.

    Science.gov (United States)

    Karol, Sohit; Robertson, Michelle M

    2015-01-01

    Sedentary work is associated with many adverse health outcomes, and sit-stand workstations in offices have emerged as a way to counteract sedentary work. This paper reviews the existing knowledge on sit-stand workstations, treadmill workstations and bicycle workstations. The inclusion/exclusion criteria were: 1) empirical research examining the effectiveness of sit-stand workstations in lab or field studies, 2) working adult population, 3) sit-stand workstation interventions where workers performed the same task from a seated or standing position, 4) outcomes measures of discomfort (comfort), performance, sit-stand behaviors, user satisfaction, kinematic and physiological measures. Search terms were: sit-stand, treadmill, bicycle, workstations, sedentary behavior, office ergonomics, and comfort. Many studies considered productivity, comfort and physiological measures as important outcomes to assess the efficacy of sit-stand workstations and the experimental design was variable. Preliminary data suggests that some amount of standing during an 8-hour workday could be beneficial without compromising user comfort or productivity; however, there is very little data on the efficacy of treadmill and bicycle workstations. Based on these preliminary data from 26 studies, conducting large scale randomized controlled trials with ergonomic training as their essential component is recommended to understand the benefits of sit-stand workstations for prevention of sedentary work.

  7. Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo.

    Science.gov (United States)

    Chien, Wenwen; Lee, Dhong Hyun; Zheng, Yun; Wuensche, Peer; Alvarez, Rosie; Wen, Ding Ling; Aribi, Ahmed M; Thean, Su Ming; Doan, Ngan B; Said, Jonathan W; Koeffler, H Phillip

    2014-09-01

    Pancreatic ductal adenocarcinoma is a devastating disease with few therapeutic options. Histone deacetylase inhibitors are a novel therapeutic approach to cancer treatment; and two new pan-histone deacetylase inhibitors (HDACi), belinostat and panobinostat, are undergoing clinical trials for advanced hematologic malignancies, non-small cell lung cancers and advanced ovarian epithelial cancers. We found that belinostat and panobinostat potently inhibited, in a dose-dependent manner, the growth of six (AsPc1, BxPc3, Panc0327, Panc0403, Panc1005, MiaPaCa2) of 14 human pancreatic cancer cell lines. Belinostat increased the percentage of apoptotic pancreatic cancer cells and caused prominent G2 /M growth arrest of most pancreatic cancer cells. Belinostat prominently inhibited PI3K-mTOR-4EBP1 signaling with a 50% suppression of phorphorylated 4EBP1 (AsPc1, BxPc3, Panc0327, Panc1005 cells). Surprisingly, belinostat profoundly blocked hypoxia signaling including the suppression of hypoxia response element reporter activity; as well as an approximately 10-fold decreased transcriptional expression of VEGF, adrenomedullin, and HIF1α at 1% compared to 20% O2 . Treatment with this HDACi decreased levels of thioredoxin mRNA associated with increased levels of its endogenous inhibitor thioredoxin binding protein-2. Also, belinostat alone and synergistically with gemcitabine significantly (P = 0.0044) decreased the size of human pancreatic tumors grown in immunodeficiency mice. Taken together, HDACi decreases growth, increases apoptosis, and is associated with blocking the AKT/mTOR pathway. Surprisingly, it blocked hypoxic growth related signals. Our studies of belinostat suggest it may be an effective drug for the treatment of pancreatic cancers when used in combination with other drugs such as gemcitabine. © 2014 Wiley Periodicals, Inc.

  8. Multiplicity in Early Stellar Evolution

    CERN Document Server

    Reipurth, Bo; Boss, Alan P; Goodwin, Simon P; Rodriguez, Luis Felipe; Stassun, Keivan G; Tokovinin, Andrei; Zinnecker, Hans

    2014-01-01

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of Class 0 protostars with mm interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of Class I protostars show a lower binary frequency relative to the Class 0 phase, a declining trend that continues through the Class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influenc...

  9. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, Egon; Stenager, E N; Knudsen, Lone

    1994-01-01

    In a cross-sectional study of 117 randomly selected patients (52 men, 65 women) with definite multiple sclerosis, it was found that 76 percent were married or cohabitant, 8 percent divorced. Social contacts remained unchanged for 70 percent, but outgoing social contacts were reduced for 45 percent...

  10. Multiple Sclerosis.

    Science.gov (United States)

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on multiple sclerosis is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  11. Multiple Pregnancy

    Science.gov (United States)

    ... more frequently and are likely to have their babies by cesarean delivery . How can multiple pregnancy affect my risk of ... the result of a recognized disease. Cesarean Delivery: Delivery of a baby through surgical incisions made in the mother’s abdomen ...

  12. Multiple Medicines

    Science.gov (United States)

    ... DOO \\RXU YLWDPLQV DQG VXSSOHPHQWV WRR Drug Safety: Managing Multiple Drugs When you review your drugs with your doctor, ask these ... you got similar drugs from different doctors. Or you may take a brand-name and a generic drug that do the ...

  13. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1988-01-01

    Forty-two (12%) of a total of 366 patients with multiple sclerosis (MS) had psychiatric admissions. Of these, 34 (81%) had their first psychiatric admission in conjunction with or after the onset of MS. Classification by psychiatric diagnosis showed that there was a significant positive correlation...

  14. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1990-01-01

    An investigation on the correlation between ability to read TV subtitles and the duration of visual evoked potential (VEP) latency in 14 patients with definite multiple sclerosis (MS), indicated that VEP latency in patients unable to read the TV subtitles was significantly delayed in comparison...

  15. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Knudsen, L; Jensen, K

    1991-01-01

    In a cross-sectional investigation of 116 patients with multiple sclerosis, the social and sparetime activities of the patient were assessed by both patient and his/her family. The assessments were correlated to physical disability which showed that particularly those who were moderately disabled...

  16. Multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Knudsen, L; Jensen, K

    1994-01-01

    In a cross-sectional study of 94 patients (42 males, 52 females) with definite multiple sclerosis (MS) in the age range 25-55 years, the correlation of neuropsychological tests with the ability to read TV-subtitles and with the use of sedatives is examined. A logistic regression analysis reveals...

  17. Counteracting Hypertension with weightlessness?

    DEFF Research Database (Denmark)

    Norsk, Peter

    2008-01-01

    Many of us have been told to lose weight to lower our blood pressure, but going weightless? Studies of astronauts show that gravity does contribute to cardiovascular stress......Many of us have been told to lose weight to lower our blood pressure, but going weightless? Studies of astronauts show that gravity does contribute to cardiovascular stress...

  18. Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models.

    Science.gov (United States)

    Marinelli, S; Luvisetto, S; Cobianchi, S; Makuch, W; Obara, I; Mezzaroma, E; Caruso, M; Straface, E; Przewlocka, B; Pavone, F

    2010-11-24

    A growing interest was recently focused on the use of Botulinum neurotoxin serotype A (BoNT/A) for fighting pain. The aim of this study was to investigate the effects of BoNT/A on neuropathic pain. It was observed that BoNT/A is able to counteract neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve both in mice and in rats. This effect is already present after a single intraplantar (i.pl.) or intrathecal (i.t.) neurotoxin administration that significantly reduces the sciatic nerve ligation-induced mechanical allodynia in mice and rats and thermal hyperalgesia in rats. This effect was evident starting 24 h after the administration of BoNT/A and it was long-lasting, being present 81 or 25 days after i.pl. injection of the higher dose in mice (15 pg/paw) and rats (75 pg/paw), respectively, and 35 days after i.t. injection in rats (75 pg/rat). Moreover, BoNT/A-injected mice showed a quicker recovery of the walking pattern and weight bearing compared to control groups. The behavioral improvement was accompanied by structural modifications, as revealed by the expression of cell division cycle 2 (Cdc2) and growth associated protein 43 (GAP-43) regeneration associated proteins, investigated by immunofluorescence and Western blotting in the sciatic nerve, and by the immunofluorescence expression of S100β and glial fibrillary acidic protein (GFAP) Schwann cells proteins. In conclusion, the present research demonstrate long-lasting anti-allodynic and anti-hyperalgesic effects of BoNT/A in animal models of neuropathic pain together with an acceleration of regenerative processes in the injured nerve, as evidenced by both behavioral and immunohistochemistry/blotting analysis. These results may have important implications in the therapy of neuropathic pain.

  19. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies.

    Science.gov (United States)

    Murugesan, G R; Ledoux, D R; Naehrer, K; Berthiller, F; Applegate, T J; Grenier, B; Phillips, T D; Schatzmayr, G

    2015-06-01

    Extensive research over the last couple of decades has made it obvious that mycotoxins are commonly prevalent in majority of feed ingredients. A worldwide mycotoxin survey in 2013 revealed 81% of around 3,000 grain and feed samples analyzed had at least 1 mycotoxin, which was higher than the 10-year average (from 2004 to 2013) of 76% in a total of 25,944 samples. The considerable increase in the number of positive samples in 2013 may be due to the improvements in detection methods and their sensitivity. The recently developed liquid chromatography coupled to (tandem) mass spectrometry allows the inclusion of a high number of analytes and is the most selective, sensitive, and accurate of all the mycotoxin analytical methods. Mycotoxins can affect the animals either individually or additively in the presence of more than 1 mycotoxin, and may affect various organs such as gastrointestinal tract, liver, and immune system, essentially resulting in reduced productivity of the birds and mortality in extreme cases. While the use of mycotoxin binding agents has been a commonly used counteracting strategy, considering the great diversity in the chemical structures of mycotoxins, it is very obvious that there is no single method that can be used to deactivate mycotoxins in feed. Therefore, different strategies have to be combined in order to specifically target individual mycotoxins without impacting the quality of feed. Enzymatic or microbial detoxification, referred to as "biotransformation" or "biodetoxification," utilizes microorganisms or purified enzymes thereof to catabolize the entire mycotoxin or transform or cleave it to less or non-toxic compounds. However, the awareness on the prevalence of mycotoxins, available modern techniques to analyze them, the effects of mycotoxicoses, and the recent developments in the ways to safely eliminate the mycotoxins from the feed are very minimal among the producers. This symposium review paper comprehensively discusses the above

  20. Metabolic adaptations may counteract ventilatory adaptations of intermittent hypoxic exposure during submaximal exercise at altitudes up to 4000 m.

    Directory of Open Access Journals (Sweden)

    Martin Faulhaber

    Full Text Available Intermittent hypoxic exposure (IHE has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7 × 1 hour at 4500 m. The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05. There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = -0.72, p<0.05. Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01 and minute ventilation (r = 0.54, p<0.01. Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.

  1. Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress.

    Science.gov (United States)

    Lohan, Silke B; Bauersachs, Sonja; Ahlberg, Sebastian; Baisaeng, Nuttakorn; Keck, Cornelia M; Müller, Rainer H; Witte, Ellen; Wolk, Kerstin; Hackbarth, Steffen; Röder, Beate; Lademann, Jürgen; Meinke, Martina C

    2015-01-01

    UV irradiation leads to the formation of reactive oxygen species (ROS). An imbalance between the antioxidant system and ROS can lead to cell damage, premature skin aging or skin cancer. To counteract these processes, antioxidants such as coenzyme Q10 (CoQ10) are contained in many cosmetics. To improve and optimize cell/tissue penetration properties of the lipophilic CoQ10, ultra-small lipid nanoparticles (usNLC) were developed. The antioxidant effectiveness of CoQ10-loaded usNLC compared to conventional nanocarriers was investigated in the human keratinocyte cell line HaCaT. Using confocal laser scanning microscopy investigations of the carriers additionally loaded with nile red showed a clear uptake into cells and their distribution within the cytoplasm. By use of the XTT cell viability test, CoQ10 concentrations of 10-50 μg/ml were shown to be non-toxic, and the antioxidant potential of 10 μg/ml CoQ10 loaded usNLC in the HaCaT cells was analyzed via electron paramagnetic resonance spectroscopy after cellular exposure to UVA (1J/cm(2)) and UVB (18 mJ/cm(2)) irradiation. In comparison with the CoQ10-loaded conventional carriers, usNLC-CoQ10 demonstrated the strongest reduction of the radical formation; reaching up to 23% compared to control cells without nanocarrier treatment. Therefore, usNLC-CoQ10 are very suitable to increase the antioxidant potential of skin.

  2. Prox1 regulates the notch1-mediated inhibition of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Valeria Kaltezioti

    Full Text Available Activation of Notch1 signaling in neural progenitor cells (NPCs induces self-renewal and inhibits neurogenesis. Upon neuronal differentiation, NPCs overcome this inhibition, express proneural genes to induce Notch ligands, and activate Notch1 in neighboring NPCs. The molecular mechanism that coordinates Notch1 inactivation with initiation of neurogenesis remains elusive. Here, we provide evidence that Prox1, a transcription repressor and downstream target of proneural genes, counteracts Notch1 signaling via direct suppression of Notch1 gene expression. By expression studies in the developing spinal cord of chick and mouse embryo, we showed that Prox1 is limited to neuronal precursors residing between the Notch1+ NPCs and post-mitotic neurons. Physiological levels of Prox1 in this tissue are sufficient to allow binding at Notch1 promoter and they are critical for proper Notch1 transcriptional regulation in vivo. Gain-of-function studies in the chick neural tube and mouse NPCs suggest that Prox1-mediated suppression of Notch1 relieves its inhibition on neurogenesis and allows NPCs to exit the cell cycle and differentiate. Moreover, loss-of-function in the chick neural tube shows that Prox1 is necessary for suppression of Notch1 outside the ventricular zone, inhibition of active Notch signaling, down-regulation of NPC markers, and completion of neuronal differentiation program. Together these data suggest that Prox1 inhibits Notch1 gene expression to control the balance between NPC self-renewal and neuronal differentiation.

  3. The intestinotrophic peptide, GLP-2, counteracts the gastrointestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, erlotinib, and cisplatin

    DEFF Research Database (Denmark)

    Rasmussen, Andreas Rosén; Viby, Niels-Erik; Hare, Kristine Juul;

    2010-01-01

    Erlotinib, an epidermal-growth-factor receptor inhibitor, belongs to a new generation of targeted cancer therapeutics. Gastrointestinal side-effects are common and have been markedly aggravated when erlotinib is combined with cytostatics. We examined the effects of erlotinib alone and combined wi...... with the cytostatic, cisplatin, on the gastrointestinal tract and examined whether glucagon-like peptide-2 (GLP-2), an intestinal hormone with potent intestinotrophic properties, might counteract the possible damaging effects of the treatments....

  4. Mangiferin reduces the inhibition of chondrogenic differentiation by IL-1β in mesenchymal stem cells from subchondral bone and targets multiple aspects of the Smad and SOX9 pathways.

    Science.gov (United States)

    Huh, Jeong-Eun; Koh, Pil-Seong; Seo, Byung-Kwan; Park, Yeon-Chul; Baek, Yong-Hyun; Lee, Jae-Dong; Park, Dong-Suk

    2014-09-11

    Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y-box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.

  5. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1β in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2014-09-01

    Full Text Available Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β. Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF-β, bone morphogenetic protein (BMP-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box containing gene 9 (SOX9, type 2α1 collagen (Col2α1, cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5. Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.

  6. Spin multiplicities

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, T.L., E-mail: curtright@miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); Van Kortryk, T.S., E-mail: vankortryk@gmail.com [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States); Zachos, C.K., E-mail: zachos@anl.gov [Department of Physics, University of Miami, Coral Gables, FL 33124-8046 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439-4815 (United States)

    2017-02-05

    The number of times spin s appears in the Kronecker product of n spin j representations is computed, and the large n asymptotic behavior of the result is obtained. Applications are briefly sketched. - Highlights: • We give a self-contained derivation of the spin multiplicities that occur in n-fold tensor products of spin-j representations. • We make use of group characters, properties of special functions, and asymptotic analysis of integrals. • We emphasize patterns that arise when comparing different values of j, and asymptotic behavior for large n. • Our methods and results should be useful for various statistical and quantum information theory calculations.

  7. The causes analysis of clinical blood transfusion adverse reactions and counteractions%临床输血不良反应原因分析及对策

    Institute of Scientific and Technical Information of China (English)

    常洪劲; 许静静; 李岩

    2016-01-01

    Objective To analyze the possible reasons of blood transfusion adverse reactions and consti-tute the counteractions for further reducing or preventing similar blood transfusion adverse reactions.Methods The fifty-nine cases of blood transfusion adverse reactions and all the 44983 person-time of blood transfu-sion were collected between January 2013 and December 2014.And then we analyzed the time-lag,the inci-dence rate of BTAR in different blood products,the harm of the body from BTAR,department and patients’ outcome.Results All the BTAR occurred in the 6 hours in the beginning of blood transfusion, which were called acute transfusion reactions.Skin allergy and fervescence were the major symptoms of acute transfusion reaction.The blood products of blood transfusion adverse reactions included virus inactivated frozen plasma, platelets,cryoprecipitate, and suspended leukocyte reduced red blood cells.Among the blood products of transfusion adverse reactions,the BTAR incidence rate of plasma occupy the multiple.The ICU were the ma-jor department.After treatment, the damage caused by adverse reactions were recovered.Conclusion The occurrence of blood transfusion adverse reactions were mainly patients themselves allergic to immunoglobu-lin within the plasma,or the patients had produced leucocyte antibody.By symptomatic treatment,it was to give antiallergic drug and febrifuge before blood transfusion routinely and the antigen in coordination with each other and leukocyte reduced blood products which could reduce or avoid the occurrence of blood trans-fusion adverse reactions.%目的:分析发生输血不良反应( blood transfusion adverse reactions,BTAR)的可能原因并制订应对措施,进一步减少或避免类似BTAR的发生。方法收集2013年1月至2014年12月期间发生的BTAR 59例及所有输血人次44983人次,分析发生BTAR的时滞、不同血制品的不良反应发生率、不良反应对机体的危害、科室分布及患者预

  8. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Liu; Zhigang Mei; Jingping Qian; Yongbao Zeng; Mingzhi Wang

    2013-01-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that an-ti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic an-ti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be in-volved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re-duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-αin brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observa-tions were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonistα-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re-sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be me-diated through the activation of the cholinergic anti-inflammatory pathway.

  9. 序列线索化条件下ADHD与普通儿童返回抑制对比%Inhibition of Return with Multiple Sequential Cues in ADHD and Normal Children

    Institute of Scientific and Technical Information of China (English)

    杨宇然

    2013-01-01

    Objective:To compare IOR effect of ADHD and normal children in detecting and distinguishing tasks with multiple sequential cues of IOR paradigm,and to analyse the characters of ADHD's selective visual attention.Methods:This research adopted a 2(participant type:normal/ADHD children)×5(cue-target positional relationship:the target appears at the 0-4th cued position)×2(response type:detection/discrimination)mixed design.Results:①The RT of ADHD was usually longer than that of normal children in the same condition,especially in distinguishing task; ②In the detecting task,facilitation was observed in the normal children group,when SOA was shorter than 300ms.If the SOA became longer than 300ms,IOR appeared; For the ADHD children,IOR could be observed when the SOA was longer than 600ms,but no facilitation appeared with the SOA shorter than 600ms; ③In the distinguishing task,the reaction speed of normal children was superior to ADHD children,with the change of SOA,IOR and facilitation both shown up,which couldn't been observed in the ADHD children group.Conclusion:There is visual attention deficit of IOR in ADHD children.%目的:对比ADHD儿童与普通儿童在序列线索化条件下返回抑制效应,分析ADHD儿童视觉选择性注意特征.方法:2(被试类型:普通儿童、ADHD儿童)×5(线索-靶子位置关系:靶子出现在第0-4次线索化位置)×2(反应类型:简单反应、辨别反应)三因素混合实验设计.结果:①在两类任务中,普通儿童反应速度显著优于ADHD儿童;②简单任务中,当SOA小于300ms时,普通儿童对靶刺激反应出现易化现象;反之出现IOR;当SOA大于600ms时,ADHD儿童出现IOR,但当SOA小于600ms,未出现明显易化;③复杂任务中,普通儿童反应速度优势明显,且随SOA改变,先出现易化,后转化为IOR,而ADHD儿童则末在任务中表现出IOR或易化效应.结论:ADHD儿童视觉注意返回抑制存在缺陷.

  10. [Multiple apheresis].

    Science.gov (United States)

    Coffe, C

    2007-05-01

    Multiple apheresis makes it possible to obtain at least two labile blood components from a single donor using a cell separator. It can be either multicomponent apheresis leading to the preparation of at least two different blood component types or red blood cell apheresis providing two identical red blood cell concentrates. These techniques available in addition to whole blood donation, are modifying collection strategies in many Etablissements Français du Sang and will contribute to improve stock logistics in the future. In areas with insufficient stock, these procedures will help achieve blood component self-sufficiency. The author first describes the principle underlying different--current or future--techniques as well as their advantages and drawbacks. He finally addresses the potential impact of these processes on the evolution of blood collection and the advantages to be gained.

  11. Collagen hydrolysate inhibits zymosan-induced inflammation.

    Science.gov (United States)

    Hartog, Anita; Cozijnsen, Miranda; de Vrij, Gerrit; Garssen, Johan

    2013-07-01

    During the past years, evidence accumulated showing that glycine comprises anti-inflammatory activities. These effects occur, at least in part, via the activation of glycine-gated chloride channels (GlyR). Glycine is one of the major structural units of collagen, making up about 30% of the amino acids. This study aims to investigate the anti-inflammatory potential of collagen hydrolysate (CH) using the zymosan-induced ear-skin inflammation mouse model. After oral intake of 12.5, 25 or 50 mg CH the plasma levels of glycine increased in a concentration-dependent manner. CH was able to counteract zymosan-induced ear-skin inflammation locally (ear swelling) as well as systemically (IL-6 production by lipopolysaccharide (LPS)-stimulated whole blood cells). The LPS-stimulated IL-6 production in whole blood correlated positively with the ear swelling response. This correlation was abolished by strychnine (a glycine receptor antagonist), indicating the involvement of GlyR. Collectively, these data show that CH is able to modulate inflammatory responses both locally as well as systemically. This effect might be constituted by inhibiting pro-inflammatory cytokine production via GlyR.

  12. Effect of tolvaptan on renal water and sodium excretion and blood pressure during nitric oxide inhibition

    DEFF Research Database (Denmark)

    Therwani, Safa Al; Rosenbæk, Jeppe Bakkestrøm; Mose, Frank Holden

    2017-01-01

    during 60 min. We measured urine output (UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma vasopressin (p-AVP) and central blood pressure (cBP). RESULTS: During baseline, FENa was unchanged...... in renal water and sodium excretion during NO-inhibition. Most likely, the lack of decrease in AQP2 excretion by tolvaptan could be attributed to a counteracting effect of the high level of p-AVP....

  13. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    Science.gov (United States)

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.

  14. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis.

    Science.gov (United States)

    Mizuno, Yuya; Suzuki, Takefumi; Nakagawa, Atsuo; Yoshida, Kazunari; Mimura, Masaru; Fleischhacker, Walter Wolfgang; Uchida, Hiroyuki

    2014-11-01

    Antipsychotic-induced metabolic adversities are often difficult to manage. Using concomitant medications to counteract these adversities may be a rational option. To systematically determine the effectiveness of medications to counteract antipsychotic-induced metabolic adversities in patients with schizophrenia. Published articles until November 2013 were searched using 5 electronic databases. Clinical trial registries were searched for unpublished trials. Double-blind randomized placebo-controlled trials focusing on patients with schizophrenia were included if they evaluated the effects of concomitant medications on antipsychotic-induced metabolic adversities as a primary outcome. Variables relating to participants, interventions, comparisons, outcomes, and study design were extracted. The primary outcome was change in body weight. Secondary outcomes included clinically relevant weight change, fasting glucose, hemoglobin A1c, fasting insulin, insulin resistance, cholesterol, and triglycerides. Forty trials representing 19 unique interventions were included in this meta-analysis. Metformin was the most extensively studied drug in regard to body weight, the mean difference amounting to -3.17 kg (95% CI: -4.44 to -1.90 kg) compared to placebo. Pooled effects for topiramate, sibutramine, aripiprazole, and reboxetine were also different from placebo. Furthermore, metformin and rosiglitazone improved insulin resistance, while aripiprazole, metformin, and sibutramine decreased blood lipids. When nonpharmacological strategies alone are insufficient, and switching antipsychotics to relatively weight-neutral agents is not feasible, the literature supports the use of concomitant metformin as first choice among pharmacological interventions to counteract antipsychotic-induced weight gain and other metabolic adversities in schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For

  15. Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue

    Directory of Open Access Journals (Sweden)

    Specht Anke

    2010-01-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 Vpu protein degrades CD4 and counteracts a restriction factor termed tetherin (CD317; Bst-2 to enhance virion release. It has been suggested that both functions can be genetically separated by mutation of a serine residue at position 52. However, recent data suggest that the S52 phosphorylation site is also important for the ability of Vpu to counteract tetherin. To clarify this issue, we performed a comprehensive analysis of HIV-1 with a mutated casein kinase-II phosphorylation site in Vpu in various cell lines, primary blood lymphocytes (PBL, monocyte-derived macrophages (MDM and ex vivo human lymphoid tissue (HLT. Results We show that mutation of serine 52 to alanine (S52A entirely disrupts Vpu-mediated degradation of CD4 and strongly impairs its ability to antagonize tetherin. Furthermore, casein-kinase II inhibitors blocked the ability of Vpu to degrade tetherin. Overall, Vpu S52A could only overcome low levels of tetherin, and its activity decreased in a manner dependent on the amount of transiently or endogenously expressed tetherin. As a consequence, the S52A Vpu mutant virus was unable to replicate in macrophages, which express high levels of this restriction factor. In contrast, HIV-1 Vpu S52A caused CD4+ T-cell depletion and spread efficiently in ex vivo human lymphoid tissue and PBL, most likely because these cells express comparably low levels of tetherin. Conclusion Our data explain why the effect of the S52A mutation in Vpu on virus release is cell-type dependent and suggest that a reduced ability of Vpu to counteract tetherin impairs HIV-1 replication in macrophages, but not in tissue CD4+ T cells.

  16. What patients do to counteract the symptoms of Willis-Ekbom disease (RLS/WED: Effect of gender and severity of illness

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2014-01-01

    Full Text Available Objectives: This study was carried out to assess different counteracting strategies used by patients with idiopathic Willis-Ekbom disease (RLS/WED. Whether these strategies were influenced by gender or disease severity was also assessed. Materials and Methods: A total of 173 patients of idiopathic RLS/WED were included in this study. Their demographic data was recorded. Details regarding the RLS/WED and strategies that they used to counteract the symptoms were asked. The severity of RLS/WED was measured with the help of the Hindi version of international restless legs syndrome severity rating scale. They were asked to provide the details regarding the relief obtained from all the strategies they used on three-point scale: no relief, some relief, and complete relief. Results: Of the patients, 72% were females. Mean age of the subjects in this study was 39.6 ± 12.6 years, and male subjects were older than females. Four common strategies were reported by the patients to counter the sensations of RLS/WED: moving legs while in bed (85.5%, asking somebody to massage their legs or massaging legs themselves (76.9%, walking (53.2%, and tying a cloth/rope tightly on the legs (39.3%. Of all the patients who moved their legs, 6.7% did not experience any relief, 64.2% reported some relief, and 28.4% reported complete relief. Similarly, of all the patients who used "walking" to counteract symptoms, 50% reported complete relief, 44.5% reported some relief, and the rest did not experience any relief. Many of these patients reported that massage and tying a cloth/rope on legs brought greater relief than any of these strategies. Tying cloth on the leg was more common among females as compared to males (45.9% females vs. 23.5% males; χ2 = 7.54; P = 0.006, while patients with moderately severe to severe RLS/WED reported "moving legs in bed" (79.3% in mild to moderate RLS/WED; 91.8% in severe to very severe RLS; χ2 = 5.36; P = 0.02. Conclusion: Patients with RLS

  17. What patients do to counteract the symptoms of Willis-Ekbom disease (RLS/WED): Effect of gender and severity of illness.

    Science.gov (United States)

    Gupta, Ravi; Goel, Deepak; Ahmed, Sohaib; Dhar, Minakshi; Lahan, Vivekananda

    2014-10-01

    This study was carried out to assess different counteracting strategies used by patients with idiopathic Willis-Ekbom disease (RLS/WED). Whether these strategies were influenced by gender or disease severity was also assessed. A total of 173 patients of idiopathic RLS/WED were included in this study. Their demographic data was recorded. Details regarding the RLS/WED and strategies that they used to counteract the symptoms were asked. The severity of RLS/WED was measured with the help of the Hindi version of international restless legs syndrome severity rating scale. They were asked to provide the details regarding the relief obtained from all the strategies they used on three-point scale: no relief, some relief, and complete relief. Of the patients, 72% were females. Mean age of the subjects in this study was 39.6 ± 12.6 years, and male subjects were older than females. Four common strategies were reported by the patients to counter the sensations of RLS/WED: moving legs while in bed (85.5%), asking somebody to massage their legs or massaging legs themselves (76.9%), walking (53.2%), and tying a cloth/rope tightly on the legs (39.3%). Of all the patients who moved their legs, 6.7% did not experience any relief, 64.2% reported some relief, and 28.4% reported complete relief. Similarly, of all the patients who used "walking" to counteract symptoms, 50% reported complete relief, 44.5% reported some relief, and the rest did not experience any relief. Many of these patients reported that massage and tying a cloth/rope on legs brought greater relief than any of these strategies. Tying cloth on the leg was more common among females as compared to males (45.9% females vs. 23.5% males; χ(2) = 7.54; P = 0.006), while patients with moderately severe to severe RLS/WED reported "moving legs in bed" (79.3% in mild to moderate RLS/WED; 91.8% in severe to very severe RLS; χ(2) = 5.36; P = 0.02). Patients with RLS/WED use a variety of strategies to counteract symptoms. These

  18. Multiple myeloma.

    Science.gov (United States)

    Anderson, Kenneth C; Shaughnessy, John D; Barlogie, Bart; Harousseau, Jean-Luc; Roodman, G David

    2002-01-01

    This update provides new insights into the biology, diagnosis, prognosis, and treatment of multiple myeloma (MM) and its complications. In Section I, Drs. John Shaughnessy, Jr., and Bart Barlogie first correlate global gene microarray expression profiling of patient MM samples with normal plasma cells to provide the basis for a developmental stage-based classification of MM. The powerful clinical utility of these analyses is illustrated in delineating mechanism of drug action, identifying novel therapeutic targets, and providing a molecular analysis not only of the tumor cell, but also of the tumor microenvironment, in MM. In Section II, Dr. Jean-Luc Harousseau reviews the rationale and current results of high dose therapy and autologous stem cell transplantation in MM, including optimal patient selection, prognostic factors, conditioning regimens, sources of stem cells, use of tandem transplantation, and maintenance therapy. He then provides an update on the results of allotransplantation approaches in MM, focusing on proposed methods to reduce toxicity and exploit the graft-versus-MM alloimmune effect by transplantation earlier in the disease course, T cell depletion, and nonmyeloablative transplantation. In Section III, Dr. G. David Roodman provides recent insights into the mechanisms of osteoclast activation, interactions between bone and MM cells, adhesive interactions in MM bone disease, and osteoblast suppression. These recent advances not only provide insights into pathogenesis of MM bone disease, but also form the framework for novel therapeutics. In Section IV, Dr. Kenneth Anderson provides an up-to-date discussion of the role of the bone marrow microenvironment in promoting growth, survival, drug resistance, and migration of MM cells and the signaling cascades mediating these sequelae. These studies provide the framework for evaluation of novel therapeutics targeting the MM cell-host interaction in vivo in animal models and in derived clinical trials.

  19. Multiple osteochondromas

    Directory of Open Access Journals (Sweden)

    Bovée Judith VMG

    2008-02-01

    Full Text Available Abstract Multiple osteochondromas (MO is characterised by development of two or more cartilage capped bony outgrowths (osteochondromas of the long bones. The prevalence is estimated at 1:50,000, and it seems to be higher in males (male-to-female ratio 1.5:1. Osteochondromas develop and increase in size in the first decade of life, ceasing to grow when the growth plates close at puberty. They are pedunculated or sessile (broad base and can vary widely in size. The number of osteochondromas may vary significantly within and between families, the mean number of locations is 15–18. The majority are asymptomatic and located in bones that develop from cartilage, especially the long bones of the extremities, predominantly around the knee. The facial bones are not affected. Osteochondromas may cause pain, functional problems and deformities, especially of the forearm, that may be reason for surgical removal. The most important complication is malignant transformation of osteochondroma towards secondary peripheral chondrosarcoma, which is estimated to occur in 0.5–5%. MO is an autosomal dominant disorder and is genetically heterogeneous. In almost 90% of MO patients germline mutations in the tumour suppressor genes EXT1 or EXT2 are found. The EXT genes encode glycosyltransferases, catalyzing heparan sulphate polymerization. The diagnosis is based on radiological and clinical documentation, supplemented with, if available, histological evaluation of osteochondromas. If the exact mutation is known antenatal diagnosis is technically possible. MO should be distinguished from metachondromatosis, dysplasia epiphysealis hemimelica and Ollier disease. Osteochondromas are benign lesions and do not affect life expectancy. Management includes removal of osteochondromas when they give complaints. Removed osteochondromas should be examined for malignant transformation towards secondary peripheral chondrosarcoma. Patients should be well instructed and regular

  20. Inhibition of autophagy enhances apoptosis involved with intracellular ROS generation in multiple myeloma cells exposed to Oridonin%抑制自噬促进冬凌草甲素诱导的多发性骨髓瘤细胞凋亡涉及胞内ROS产生

    Institute of Scientific and Technical Information of China (English)

    曾蓉; 陈燕; 崔国惠

    2011-01-01

    目的 本实验主要研究冬凌草甲素诱导多发性骨髓瘤发生自噬、凋亡,两者之间的关系以及所涉及的相关机制.方法 利用MTT比色法检测冬凌草甲素对多发性骨髓瘤RPMI8226细胞的增殖活性影响;透视电镜观察细胞内凋亡和自噬的形态学改变;TUNEL检测细胞凋亡;分别利用以下技术检测处理后的细胞内的自噬变化:使用QDs605nm-Anti-LC3荧光探针以及免疫荧光技术定位细胞胞内LC3Ⅰ和LC3Ⅱ蛋白,利用western blot免疫印记技术检测Beclin 1蛋白表达水平;利用DCFH-DA探针以及流式细胞术检测细胞胞内ROS水平.结果 冬凌草甲素能明显抑制RPMI8226细胞增殖,其抑制作用呈时间、剂量依赖性;冬凌草甲素能同时诱发细胞凋亡、自噬和胞内ROS产生;NAC完全抑制胞内ROS产生后冬凌草甲素诱导的细胞凋亡消失;3-MA抑制自噬后,冬凌草甲素诱导的胞内ROS产生进一步增多,凋亡增多.结论 冬凌草甲素能明显抑制RPMI8226细胞增殖;冬凌草甲素同时诱发细胞凋亡和自噬;胞内ROS产生介导冬凌草甲素诱导的凋亡;凋亡为细胞死亡的主要途径,而自噬通过下调胞内ROS产生抑制凋亡.%Objective To explore the oridonin-induced apoptosis and autophagy of multiple myelomacells the relationship between them, and the involved molecular mechanisms. Methods RPM18226 cell vitality was assessed by MTT assay. The morphology of apoptosis and autophagy was observed by TEM.TUNEL assay was used to determine apoptosis. The LC3 localization and the Beclinl protein level indicating autophagy level were analyzed by immunofluorescence analysis using the QDs605nm-AntiLC3 fluorescent probe and western blot assay. The intracellular ROS generation was estimated by FCM using the uorescent probe DCFH-DA. Results Oridonin inhibited the proliferation of RPM18226 cells dose- and time-dependently. Oridonin simultaneously induced apoptosis, autophagy and intracellular ROS generation

  1. Bone Health in Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Vit Zikan

    2011-01-01

    Full Text Available Multiple sclerosis (MS is a gait disorder characterized by acute episodes of neurological defects leading to progressive disability. Patients with MS have multiple risk factors for osteoporotic fractures, such as progressive immobilization, long-term glucocorticoids (GCs treatment or vitamin D deficiency. The duration of motor disability appears to be a major contributor to the reduction of bone strength. The long term immobilization causes a marked imbalance between bone formation and resorption with depressed bone formation and a marked disruption of mechanosensory network of tightly connected osteocytes due to increase of osteocyte apoptosis. Patients with higher level of disability have also higher risk of falls that combined with a bone loss increases the frequency of bone fractures. There are currently no recommendations how to best prevent and treat osteoporosis in patients with MS. However, devastating effect of immobilization on the skeleton in patients with MS underscores the importance of adequate mechanical stimuli for maintaining the bone structure and its mechanical competence. The physical as well as pharmacological interventions which can counteract the bone remodeling imbalance, particularly osteocyte apoptosis, will be promising for prevention and treatment of osteoporosis in patients with MS.

  2. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport.

    Science.gov (United States)

    Xu, L; Spinas, G A; Niessen, M

    2010-08-01

    The endoplasmic reticulum (ER) is the intra-cellular site, where secreted and membrane proteins are synthesized. ER stress and activation of the unfolded protein response (UPR) contribute to insulin resistance and the development of diabetes in obesity. It was shown previously in hepatocytes that the UPR activates c-jun N-terminal kinase (JNK), which phosphorylates insulin receptor substrate (IRS) proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signaling and the biological function of adipocytes. In addition to inhibition of IRS we found that ER stress downregulates the expression of the insulin receptor. Concomitantly, insulin-induced activation of Akt/PKB and of ERK1/2 was strongly inhibited. Ectopic expression of IRS1 or IRS2 strongly counteracted the inhibitory effect of ER stress on insulin signaling while pharmacological inhibition of JNK with SP600125 resulted only in a mild improvement. ER stress decreased the secretion of the adipokines adiponectin and leptin, but strongly increased secretion of IL-6. ER stress inhibited expression and insulin-induced phosphorylation of AS160, reduced lipolysis but did not inhibit glucose transport. Finally, supernatants collected from 3T3-L1 adipocytes undergoing ER stress improved or impaired proliferation when used to condition the culture medium of INS-1E beta-cells dependent on the degree of ER stress. It appears that ER stress in adipocytes might initially lead to changes resembling early prediabetic stages, which at least in part support the regulation of systemic energy homeostasis. Copyright Georg Thieme Verlag KG Stuttgart New York.

  3. Mescaline-induced changes of brain-cortex ribosomes. Role of sperimidine in counteracting the destabilizing effect of mescaline of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1971-11-01

    1. The effect of spermidine on the mescaline-induced changes of brain-cortex ribosomes was studied by adding spermidine during the treatment of goat brain-cortex slices with mescaline. 2. Mescaline treatment of brain-cortex slices removed a portion of the endogenous spermidine from ribosomes and this removal was significantly prevented when spermidine was present during mescaline treatment. 3. Spermidine present during mescaline treatment of brain-cortex slices counteracted, to some extent, the destabilizing effect of mescaline on ribosomes with respect to heat denaturation. 4. Mescaline treatment of brain-cortex slices made ribosomes more susceptible to breakdown, releasing protein and RNA, and resulting in loss of ribosomal enzymic activities. However, spermidine present during mescaline treatment counteracted moderately the mescaline-induced ribosomal susceptibility to breakdown and ribosomal loss of enzymic activities. 5. Ribosomes of mescaline-treated cortex slices were rapidly degraded by ribonuclease and trypsin. However, if spermidine was present during mescaline treatment of brain-cortex slices the rates of degradation diminished.

  4. Compensatory up-regulation of cardiac SR Ca2+-pump by heat-shock counteracts SR Ca2+-channel activation by ischemia/reperfusion.

    Science.gov (United States)

    O'Brien, P J; Li, G O; Locke, M; Klabunde, R E; Ianuzzo, C D

    1997-08-01

    We tested the hypothesis that heat-shock protected myocardial Ca2+-cycling by sarcoplasmic reticulum from ischemia and reperfusion (I/R) injury. Twenty-four hours after increasing body temperature to 42 degrees C for 15 min, rat hearts were isolated, Langendorff-perfused, and subjected to 30 min ischemia then 30 min reperfusion. Left ventricles were homogenized and their ionized Ca2+ concentration monitored with indo- during Ca2+-uptake in the presence and absence of the Ca2+-release channel (CRC) modulator ryanodine. Tissue content of heat-shock protein 72 (HSP 72) was analyzed. Exposure to I/R resulted in a 37% enhancement of CRC activity but no effect on Ca2+-pumping activity, resulting in 25% decreased net Ca2+-uptake activity. Pre-exposure to heat-shock resulted in a 10-fold increase in HSP 72, and a 25% enhancement of maximal Ca2+-pumping activity which counteracted the effect of I/R on CRC and net Ca2+-uptake activities. This protection of SR Ca2+-cycling was associated with partial protection of myocardial physiological performance. Net Ca2+-uptake activity was correlated with the left ventricular developed pressure and its rate of change. We conclude that one of the mechanisms by which heat-shock protects myocardium from I/R injury is to upregulate SR Ca2+-pumping activity to counteract the enhanced SR Ca2+-release produced by I/R.

  5. The Deubiquitinase USP47 Stabilizes MAPK by Counteracting the Function of the N-end Rule ligase POE/UBR4 in Drosophila.

    Science.gov (United States)

    Ashton-Beaucage, Dariel; Lemieux, Caroline; Udell, Christian M; Sahmi, Malha; Rochette, Samuel; Therrien, Marc

    2016-08-01

    RAS-induced MAPK signaling is a central driver of the cell proliferation apparatus. Disruption of this pathway is widely observed in cancer and other pathologies. Consequently, considerable effort has been devoted to understanding the mechanistic aspects of RAS-MAPK signal transmission and regulation. While much information has been garnered on the steps leading up to the activation and inactivation of core pathway components, comparatively little is known on the mechanisms controlling their expression and turnover. We recently identified several factors that dictate Drosophila MAPK levels. Here, we describe the function of one of these, the deubiquitinase (DUB) USP47. We found that USP47 acts post-translationally to counteract a proteasome-mediated event that reduces MAPK half-life and thereby dampens signaling output. Using an RNAi-based genetic interaction screening strategy, we identified UBC6, POE/UBR4, and UFD4, respectively, as E2 and E3 enzymes that oppose USP47 activity. Further characterization of POE-associated factors uncovered KCMF1 as another key component modulating MAPK levels. Together, these results identify a novel protein degradation module that governs MAPK levels. Given the role of UBR4 as an N-recognin ubiquitin ligase, our findings suggest that RAS-MAPK signaling in Drosophila is controlled by the N-end rule pathway and that USP47 counteracts its activity.

  6. Preparing for Multiple Births

    Science.gov (United States)

    ... Video Games, and the Internet Preparing for Multiple Births KidsHealth > For Parents > Preparing for Multiple Births Print ... a combination of both. The Risks of Multiple Births The most common risk involved with multiple births ...

  7. Multiple Myeloma Symptoms

    Science.gov (United States)

    ... Treatment Center Finder Home » About Multiple Myeloma » Symptoms Multiple Myeloma Symptoms Multiple myeloma symptoms may vary by patient, ... to be managed or prevented. The most common multiple myeloma symptoms may include: Bone pain or bone fractures ...

  8. Chemical components from Aloe and their inhibition of indoleamine 2, 3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun

    2017-01-01

    Abbreviation used: IDO: inhibit indoleamine 2, 3-dioxygenase, TMS: tetramethylsilane, HMQC: heteronuclear multiple quantum correlation, HMBC: heteronuclear multiple bond correlation, COSY: 1H-1H correlation spectroscopy, ESI-MS: Electrospray ionization mass spectrometry, DMSO: dimethyl sulfoxide

  9. Nilotinib counteracts P-glycoprotein-mediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Villar

    Full Text Available The therapeutic effect of doxorubicin (DXR in the treatment of soft tissue sarcomas (STS is limited by its toxicity and the development of multidrug resistance (MDR, the latter mainly induced by high expression of efflux pumps (e.g., P-glycoprotein [P-gp]. Therefore, the search for alternative therapies, which sensitize these tumors to chemotherapy while maintaining a low toxicity profile, is a rational approach. We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of the tyrosine kinase inhibitors, nilotinib and imatinib, as single agents or in combination with DXR, in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound nilotinib (1-10 µM was more potent than imatinib inhibiting the growth of SK-UT-1 and SW982 cells by 33.5-59.6%, respectively. Importantly, only nilotinib synergized the antitumoral effect of DXR (0.05-0.5 µM by at least 2-fold, which clearly surpassed the mere sum of effects according to isobolographic analysis. Moreover, nilotinib in combination with DXR had a sustained effect on cell number (-70.3±5.8% even 12 days after withdrawal of drugs compared to DXR alone. On the molecular level, only nilotinib fully blocked FBS-induced ERK1 and p38 MAPK activation, hence, reducing basal and DXR-induced up-regulation of P-gp levels. Moreover, efflux activity of the MDR-related proteins P-gp and MRP-1 was inhibited, altogether resulting in intracellular DXR retention. In high-risk STS tumors 53.8% and 15.4% were positive for P-gp and MRP-1 expression, respectively, with high incidence of P-gp in synovial sarcoma (72.7%. In summary, nilotinib exhibits antiproliferative effects on cellular models of STS and sensitizes them to DXR by reverting DXR-induced P-gp-mediated MDR and inhibiting MRP-1 activity, leading to a synergistic effect with potential for clinical treatment.

  10. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine.

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2008-06-01

    Full Text Available BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of

  11. Ethane 1-hydroxy-1, 1-diphosphonate (EHDP) counteracts the inhibitory effect of uranyl nitrate on bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Ubios, A.M.; Guglielmotti, M.B. (Univ. of Buenos Aires (Argentina)); Cabrini, R.L. (Univ. of Buenos Aires (Argentina) National Atomic Energy Commission, Buenos Aires (Argentina))

    The beneficial effect of ethane 1-hydroxy-1, 1-diphosphonate (EHDP) in restoring the inhibition of bone formation in cases of acute uranium intoxication is presented. Bone formation was studied histomorphometrically in a model of alveolar bone healing. After tooth extraction, 40 rats were divided into 4 groups that received (1) no further treatment, (2) 10 daily intraperitoneal injections of 7.5 mg/kg of body weight of EHDP, (3) an intraperitoneal injection of 2.0 mg/kg of body weight of uranyl nitrate, and (4) the same treatment as was provided rats in groups 2 and 3. The results showed that the healing of bone did not occur in exposed animals, whereas healing in EHDP-treated exposed animals did not differ from that of nonexposed controls. This effect might result from a blocking and/or competitive action of EHDP and/or the stimulation that EHDP elicits at the doses and in the administration period studied.

  12. The intestinotrophic peptide, glp-2, counteracts intestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, gefitinib

    DEFF Research Database (Denmark)

    Hare, Kristine Juul; Hartmann, Bolette; Kissow, Hannelouise;

    2007-01-01

    PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been introduced as antitumor agents in the treatment of cancers overexpressing the receptor. The treatment has gastrointestinal side effects which may decrease patient compliance and limit the efficacy. Glucagon...... and cross-sectional area were decreased. The same parameters were increased by GLP-2 treatment alone, and when GLP-2 was combined with the gefitinib treatment, the parameters remained unchanged. CONCLUSIONS: Treatment with an EGFR tyrosine kinase inhibitor in mice results in small-intestinal growth...... inhibition that can be completely prevented by simultaneous treatment with GLP-2. This suggests that the gastrointestinal side effects elicited by treatment with EGFR tyrosine kinase inhibitors can be circumvented by GLP-2 treatment....

  13. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

    Science.gov (United States)

    Giacoppo, Sabrina; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2017-01-01

    This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway. Although the PI3K/Akt/mTOR pathway was found to be activated by cannabinoids in several immune and non-immune cells, currently, there is no data about the effects of CBD in the PI3K/Akt/mTOR activity in MS. Experimental Autoimmune Encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55. After EAE onset, which occurs approximately 14days after disease induction, mice were daily intraperitoneally treated with CBD (10mg/kg mouse) and observed for clinical signs of EAE. At 28days from EAE-induction, mice were euthanized and spinal cord tissues were sampled to perform immunohistochemical evaluations and western blot analysis. Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway. In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases. These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management.

  14. Epigenetic Drugs for Multiple Sclerosis.

    Science.gov (United States)

    Peedicayil, Jacob

    2016-01-01

    There is increasing evidence that abnormalities in epigenetic mechanisms of gene expression contribute to the development of multiple sclerosis (MS). Advances in epigenetics have given rise to a new class of drugs, epigenetic drugs. Although many classes of epigenetic drugs are being investigated, at present most attention is being paid to two classes of epigenetic drugs: drugs that inhibit DNA methyltransferase (DNMTi) and drugs that inhibit histone deacetylase (HDACi). This paper discusses the potential use of epigenetic drugs in the treatment of MS, focusing on DNMTi and HDACi. Preclinical drug trials of DNMTi and HDACi for the treatment of MS are showing promising results. Epigenetic drugs could improve the clinical management of patients with MS.

  15. The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: Studies of enchytraeid communities in a dry heathland

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Krogh, Paul Henning; Linden, Leon;

    2010-01-01

    The potential impacts of interactions of multiple climate change factors in soil ecosystems have received little attention. Most studies have addressed effects of single factors such as increased temperature or atmospheric CO2 but little is known about how such environmental factors will interact....... In the present study we investigate the effects of in situ exposure to elevated atmospheric CO2 concentration, increased temperatures and prolonged drought episodes on field communities of Enchytraeidae (Oligochaeta) in a dry heathland (Brandbjerg, Denmark). Increased CO2 had a positive effect on enchytraeid...... biomass, whereas drought significantly reduced it. Elevated temperature did not result in any detectable effects. No interactions between the three factors were observed. Interestingly, the positive effect of increased CO2 and the negative effect of drought were cancelled out when applied in combination...

  16. HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1.

    Science.gov (United States)

    Qian, Shuiming; Zhong, Xuehua; Yu, Lianbo; Ding, Biao; de Haan, Peter; Boris-Lawrie, Kathleen

    2009-01-13

    The RNA silencing pathway is an intracellular innate response to virus infections and retro-transposons. Many plant viruses counter this host restriction by RNA silencing suppressor (RSS) activity of a double-stranded RNA-binding protein, e.g., tomato bushy stunt virus P19. Here, we demonstrate P19 and HIV-1 Tat function across the plant and animal kingdoms and suppress a common step in RNA silencing that is downstream of small RNA maturation. Our experiments reveal that RNA silencing in HIV-1 infected human cells severely attenuates the translational output of the unspliced HIV-1 gag mRNA, and possibly all HIV-1 transcripts. The attenuation in gag mRNA translation is exacerbated by K51A substitution in the Tat double-stranded RNA-binding domain. Tat, plant virus RSS, or Dicer downregulation rescues robust gag translation and bolsters HIV-1 virion production. The reversal of HIV-1 translation repression by plant RSS supports the recent finding in Arabidopsis that plant miRNAs operate by translational inhibition. Our results identify common features between RNA silencing suppression of plant and animal viruses. We suggest that RNA silencing-mediated translation repression plays a strategic role in determining the viral set-point in a newly HIV-1-infected patient.

  17. PGC-1/Spargel Counteracts High-Fat-Diet-Induced Obesity and Cardiac Lipotoxicity Downstream of TOR and Brummer ATGL Lipase

    Directory of Open Access Journals (Sweden)

    Soda Balla Diop

    2015-03-01

    Full Text Available Obesity and metabolic syndrome are associated with an increased risk for lipotoxic cardiomyopathy, which is strongly correlated with excessive accumulation of lipids in the heart. Obesity- and type-2-diabetes-related disorders have been linked to altered expression of the transcriptional cofactor PGC-1α, which regulates the expression of genes involved in energy metabolism. Using Drosophila, we identify PGC-1/spargel (PGC-1/srl as a key antagonist of high-fat diet (HFD-induced lipotoxic cardiomyopathy. We find that HFD-induced lipid accumulation and cardiac dysfunction are mimicked by reduced PGC-1/srl function and reversed by PGC-1/srl overexpression. Moreover, HFD feeding lowers PGC-1/srl expression by elevating TOR signaling and inhibiting expression of the Drosophila adipocyte triglyceride lipase (ATGL (Brummer, both of which function as upstream modulators of PGC-1/srl. The lipogenic transcription factor SREBP also contributes to HFD-induced cardiac lipotoxicity, likely in parallel with PGC-1/srl. These results suggest a regulatory network of key metabolic genes that modulates lipotoxic heart dysfunction.

  18. The influence of the time of antidotal treatment administration on the potency of newly developed oximes to counteract acute toxic effects of tabun in mice.

    Science.gov (United States)

    Kassa, Jirí

    2005-01-01

    (1) The influence of the time of administration of antidotal treatment consisting of anticholinergic drug (atropine) and newly developed oxime (K027 or K048) on its effectiveness to eliminate tabun-induced lethal toxic effects was studied in mice. (2) The therapeutic efficacy of antidotal treatment of tabun-induced acute poisoning depends on the time of its administration regardless of the choice of the oxime. (3) Our results show that both oximes studied (K027, K048) are able to sufficiently eliminate lethal effects of tabun. Nevertheless, their efficacy significantly decreases when they were administered 5 min after tabun poisoning. (4) The findings support the hypothesis that both newly developed oximes appear to be suitable oximes to counteract acute toxicity of tabun although their ability to eliminate lethal toxic effects of tabun significantly decreases with prolonged time interval between tabun challenge and antidotal treatment administration.

  19. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  20. Exogenous and endogenous ghrelin counteracts GLP-1 action to stimulate cAMP signaling and insulin secretion in islet β-cells.

    Science.gov (United States)

    Damdindorj, Boldbaatar; Dezaki, Katsuya; Kurashina, Tomoyuki; Sone, Hideyuki; Rita, Rauza; Kakei, Masafumi; Yada, Toshihiko

    2012-07-30

    We studied interactive effects of insulinotropic GLP-1 and insulinostatic ghrelin on rat pancreatic islets. GLP-1 potentiated glucose-induced insulin release and cAMP production in isolated islets and [Ca(2+)](i) increases in single β-cells, and these potentiations were attenuated by ghrelin. Ghrelin suppressed [Ca(2+)](i) responses to an adenylate cyclase activator forskolin. Moreover, GLP-1-induced insulin release and cAMP production were markedly enhanced by [D-lys(3)]-GHRP-6, a ghrelin receptor antagonist, in isolated islets. These results indicate that both exogenous and endogenous islet-derived ghrelin counteracts glucose-dependent GLP-1 action to increase cAMP production, [Ca(2+)](i) and insulin release in islet β-cells, positioning ghrelin as a modulator of insulinotropic GLP-1.

  1. 水下激光目标的统计对消分割法%Target Segmentation from Laser Underwater Images Based on Statistic Counteraction

    Institute of Scientific and Technical Information of China (English)

    费佩燕; 郭宝龙; 章正宇

    2004-01-01

    The recognition of laser underwater target is a new disquisitive field, in which many problems are open, and segmentation is the key problem. To recognize underwater target,segmentation must be performed efficiently because there is a lot of speckle noise in laser underwater images. According to the principle that noise with identically statistic characteristics can counteract noise in images, a new algorithm called target segmentation from laser underwater image based on statistic counteraction is proposed to remove speckle noise and extract targets with wavelet transform and statistics. Experiments demonstrate that this method is efficient and feasible.%水下激光目标的识别是一个崭新的研究领域,有许多问题需要解决,其中,目标分割是关键.水下激光图像中夹杂着严重的散斑噪声,受其影响,要识别水下激光目标,就要对图像进行有效的消噪,然后进行目标分割.本文依据具有相似统计特征的噪声可抵消图像中的相应噪声这一基理,结合小波变换和统计法,提出了一种水下激光目标的统计对消分割法,以去除噪声,提取目标.实验结果表明该方法是有效可行的.

  2. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia.

    Science.gov (United States)

    Galeano, Pablo; Blanco, Eduardo; Logica Tornatore, Tamara M A; Romero, Juan I; Holubiec, Mariana I; Rodríguez de Fonseca, Fernando; Capani, Francisco

    2014-01-01

    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.

  3. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    Directory of Open Access Journals (Sweden)

    Pablo eGaleano

    2015-01-01

    Full Text Available Continuous environmental stimulation induced by exposure to enriched environment (EE has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL, by cesarean section (C+, or by C+ following 19 min of asphyxia at birth (PA. At weaning, rats were assigned to standard (SE or enriched environment (EE for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM. Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.

  4. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    Science.gov (United States)

    Galeano, Pablo; Blanco, Eduardo; Logica Tornatore, Tamara M. A.; Romero, Juan I.; Holubiec, Mariana I.; Rodríguez de Fonseca, Fernando; Capani, Francisco

    2015-01-01

    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia. PMID:25601829

  5. BET bromodomain inhibition rescues erythropoietin differentiation of human erythroleukemia cell line UT7

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Lefevre, Carine; Granger, Marine; Kadri, Zahra [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Fucharoen, Suthat [Thalassemia Research Center and Department of Clinical Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University (Thailand); Maouche-Chretien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France); Genetics Division, Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chretien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses (France); UMR INSERM U.962, University Paris XI, CEA, Fontenay-aux-Roses (France)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer UT7 erythroleukemia cells are known to be refractory to differentiate. Black-Right-Pointing-Pointer Brief JQ1 treatment initiates the first steps of erythroid differentiation program. Black-Right-Pointing-Pointer Engaged UT7 cells then maturate in the presence of erythropoietin. Black-Right-Pointing-Pointer Sustained JQ1 treatment inhibits both proliferation and erythroid differentiation. -- Abstract: Malignant transformation is a multistep process requiring oncogenic activation, promoting cellular proliferation, frequently coupled to inhibition of terminal differentiation. Consequently, forcing the reengagement of terminal differentiation of transformed cells coupled or not with an inhibition of their proliferation is a putative therapeutic approach to counteracting tumorigenicity. UT7 is a human leukemic cell line able to grow in the presence of IL3, GM-CSF and Epo. This cell line has been widely used to study Epo-R/Epo signaling pathways but is a poor model for erythroid differentiation. We used the BET bromodomain inhibition drug JQ1 to target gene expression, including that of c-Myc. We have shown that only 2 days of JQ1 treatment was required to transitory inhibit Epo-induced UT7 proliferation and to restore terminal erythroid differentiation. This study highlights the importance of a cellular erythroid cycle break mediated by c-Myc inhibition before initiation of the erythropoiesis program and describes a new model for BET bromodomain inhibitor drug application.

  6. Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons.

    Science.gov (United States)

    Mann, Edward O; Mody, Istvan

    2010-02-01

    Gamma-frequency oscillations depend on phasic synaptic GABA(A) receptor (GABA(A)R)-mediated inhibition to synchronize spike timing. The spillover of synaptically released GABA can also activate extrasynaptic GABA(A)Rs, and