WorldWideScience

Sample records for inhaled human insulin

  1. The effect of exercise on the absorption of inhaled human insulin in healthy volunteers

    DEFF Research Database (Denmark)

    Petersen, Astrid Heide; Kohler, Gerd; Korsatko, Stefan

    2008-01-01

    overall absorption. Aims To investigate the effect of moderate exercise on the absorption of inhaled insulin. Methods A single-centre, randomized, open-label, three-period cross-over trial was carried out in 12 nonsmoking healthy subjects. A dose of 3.5 mg inhaled human insulin was administered via...

  2. The impact of large tidal volume ventilation on the absorption of inhaled insulin in rabbits

    DEFF Research Database (Denmark)

    Petersen, Astrid Heide; Laursen, Torben; Ahrén, Bo

    2007-01-01

    Previous studies have shown that ventilation patterns affect absorption of inhaled compounds. Thus, the aim of this study was to investigate the effect of large tidal volume ventilation (LTVV) on the absorption of inhaled insulin in rabbits. Mechanically ventilated rabbits were given human insulin...

  3. Insulin inhalation for diabetic patients: Nursing considerations

    Directory of Open Access Journals (Sweden)

    Hanan Mohammed Mohammed

    2016-04-01

    Full Text Available Scientific knowledge has advanced to enable the development of inhaled insulin. It is a form of diabetes medication administered via the pulmonary system that studies have shown to be efficacious in the treatment of both type 1 and type 2 diabetes. Inhaled insulin is a new, safe means to deliver insulin that may increase patient compliance with insulin therapy, helping them to achieve optimal glycemic control and possibly reducing their risk of developing cardiovascular complications. However, diabetes is a chronic illness requiring lifetime intervention. Empowering patients with the knowledge of the diabetes disease process may give them the confidence to be more autonomous in managing their diabetes. HIIP gives nurse practitioners a new option that may improve their patients’ acceptance of insulin therapy, and improve glycemic control.

  4. The effect of exercise on the absorption of inhaled human insulin via the AERx(R) iDMS in people with type 1 diabetes

    DEFF Research Database (Denmark)

    Petersen, Astrid Heide; Kohler, G; Korsatko, S

    2007-01-01

    OBJECTIVE - This study investigated the effect of moderate exercise on the absorption of inhaled insulin via the AERx(R) insulin Diabetes Management System (iDMS). RESEARCH DESIGN AND METHODS - In this randomized, open-label, 4-period cross-over, glucose clamp study 23 non-smoking subjects...... with type 1 diabetes received a dose of 0.19 units/kg inhaled human insulin followed in random order by either 1) no exercise (NOEX), or 30 min exercise starting 2) 30 min after dosing (EX30), 3) 120 min after dosing (EX120), or 4) 240 min after dosing (EX240). RESULTS - Exercise changed the shape...... of the free plasma insulin curves, but compared to NOEX the AUC(ins) for the first 2 hours after start of exercise was unchanged for EX30 and EX240, while 15% decreased for EX120 (p

  5. Will availability of inhaled human insulin (Exubera® improve management of type 2 diabetes? The design of the Real World trial

    Directory of Open Access Journals (Sweden)

    Freemantle Nick

    2006-08-01

    Full Text Available Abstract Background Common deterrents to insulin therapy for both physicians and patients are the complexity and burden of daily injections. In January 2006, the first inhaled human insulin (INH, Exubera® (insulinhuman [rDNA origin]InhalationPowder was approved for use in adult patients with type 1 diabetes mellitus (T1DM or type 2 diabetes mellitus (T2DM in the United States and European Union. Results from the INH clinical trial program have shown comparable efficacy of INH to subcutaneous (SC insulin and superior efficacy versus oral antidiabetic agents; thus providing effective glycemic control in adult patients with T2DM without the requirement for preprandial injections. However, because subjects in those trials were randomized to either INH or an alternative, the studies could not estimate the effect of INH on patient acceptance of insulin therapy. Therefore, traditional study designs cannot provide answers to important and practical questions regarding real world effectiveness, which is influenced by psychological and other access barriers. Methods To overcome these limitations, the Real World Trial was designed to estimate the effect of the availability of INH as a treatment option for glycemic control. A total of approximately 700 patients from Canada, France, Germany, Italy, Spain, United Kingdom, and the United States with T2DM poorly controlled by oral agent therapy will be randomized to two different treatment settings. Patients and clinicians in both groups (A & B may choose from all licensed therapies for diabetes including SC insulin delivered by pens; INH will be an additional treatment option only available in Group A. The Real World Trial (Protocol A2171018 has been registered with ClincalTrials.gov, registration id NCT00134147. Results The primary outcome for the trial will be the difference in mean glycosylated hemoglobin (HbA1c at 6 months between groups. The design was based on a preceding feasibility study examining the

  6. Psychological insulin resistance in type 2 diabetes patients regarding oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin.

    Science.gov (United States)

    Petrak, Frank; Herpertz, Stephan; Stridde, Elmar; Pfützner, Andreas

    2013-08-01

    "Psychological insulin resistance" (PIR) is an obstacle to insulin treatment in type 2 diabetes, and patients' expectations regarding alternative ways of insulin delivery are poorly understood. PIR and beliefs regarding treatment alternatives were analyzed in patients with type 2 diabetes (n=532; mean glycated hemoglobin, 68±12 mmol/mol [8.34±1.5%]) comparing oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin. Questionnaires were used to assess barriers to insulin treatment (BIT), generic and diabetes-specific quality of life (Short Form 36 and Problem Areas in Diabetes, German version), diabetes knowledge, locus of control (Questionnaire for the Assessment of Diabetes-Specific Locus of Control, in German), coping styles (Freiburg Questionnaire of Illness Coping, 15-Items Short Form), self-esteem (Rosenberg Self-Esteem Scale, German version), and mental disorders (Patient Health Questionnaire, German version). Patients discussed treatment optimization options with a physician and were asked to make a choice about future diabetes therapy options in a two-step treatment choice scenario. Step 1 included oral antidiabetes drugs or subcutaneous insulin injection (SCI). Step 2 included an additional treatment alternative of inhaled insulin (INH). Subgroups were analyzed according to their treatment choice. Most patients perceived their own diabetes-related behavior as active, problem-focused, internally controlled, and oriented toward their doctors' recommendations, although their diabetes knowledge was limited. In Step 1, rejection of the recommended insulin was 82%, and in Step 2, it was 57%. Fear of hypoglycemia was the most important barrier to insulin treatment. Patients choosing INH (versus SCI) scored higher regarding fear of injection, expected hardship from insulin therapy, and BIT-Sumscore. The acceptance of insulin is very low in type 2 diabetes patients. The option to inhale insulin increases the acceptability for some but

  7. Long-term tolerability of inhaled human insulin (Exubera) in patients with poorly controlled type 2 diabetes

    DEFF Research Database (Denmark)

    Barnett, A H; Lange, P; Dreyer, M

    2007-01-01

    OBJECTIVE: Inhaled human insulin (Exubera; EXU) has shown encouraging tolerability in short-term trials. We evaluated the safety profile of EXU after long-term exposure. DESIGN: In two, open-label, 2-year studies patients poorly controlled on a sulphonylurea were randomised to adjunctive EXU...... or metformin (study 1) and patients poorly controlled on metformin were randomised to adjunctive EXU or the sulphonylurea, glibenclamide (study 2). PATIENTS: The studies included 446 (study 1) and 476 (study 2) patients with type 2 diabetes, no clinically significant respiratory disease and glycosylated....... There was no discernable effect of long-term EXU therapy on pulmonary gas exchange. Insulin antibody binding reached a plateau at 6 months and did not correlate with HbA(1c) or lung function changes. Glycaemic control was maintained over 2 years. CONCLUSIONS: Exubera was well tolerated during long-term use. Pulmonary...

  8. Inhaled insulin for controlling blood glucose in patients with diabetes

    Directory of Open Access Journals (Sweden)

    Bernard L Silverman

    2008-01-01

    Full Text Available Bernard L Silverman1, Christopher J Barnes2, Barbara N Campaigne3, Douglas B Muchmore31Alkermes, Inc, Cambridge, MA, USA; 2i3 Statprobe, Ann Arbor, MI; 3Eli Lilly and Company, Indianapolis, IN, USAAbstract: Diabetes mellitus is a significant worldwide health problem, with the incidence of type 2 diabetes increasing at alarming rates. Insulin resistance and dysregulated blood glucose control are established risk factors for microvascular complications and cardiovascular disease. Despite the recognition of diabetes as a major health issue and the availability of a growing number of medications designed to counteract its detrimental effects, real and perceived barriers remain that prevent patients from achieving optimal blood glucose control. The development and utilization of inhaled insulin as a novel insulin delivery system may positively influence patient treatment adherence and optimal glycemic control, potentially leading to a reduction in cardiovascular complications in patients with diabetes.Keywords: diabetes, inhaled insulin, cardiovascular disease, blood glucose

  9. A randomized clinical trial comparing the effect of basal insulin and inhaled mealtime insulin on glucose variability and oxidative stress

    NARCIS (Netherlands)

    Siegelaar, S. E.; Kulik, W.; van Lenthe, H.; Mukherjee, R.; Hoekstra, J. B. L.; DeVries, J. H.

    2009-01-01

    To assess the effect of three times daily mealtime inhaled insulin therapy compared with once daily basal insulin glargine therapy on 72-h glucose profiles, glucose variability and oxidative stress in type 2 diabetes patients. In an inpatient crossover study, 40 subjects with type 2 diabetes were

  10. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.

    Science.gov (United States)

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2009-02-01

    Growing attentions have been paid to the pulmonary route for systemic delivery of peptide and protein drugs, such as insulin. Advantages of this non-injective route include rapid drug deposition in the target organ, fewer systemic side effects and avoiding first pass metabolism. However, sustained release formulations for pulmonary delivery have not been fully exploited till now. In our study, a novel dry powder inhalation (DPI) system of insulin loaded solid lipid nanoparticles (Ins-SLNs) was investigated for prolonged drug release, improved stability and effective inhalation. Firstly, the drug was incorporated into the lipid carriers for a maximum entrapment efficiency as high as 69.47 +/- 3.27% (n = 3). Secondly, DPI formulation was prepared by spray freeze drying of Ins-SLNs suspension, with optimized lyoprotectant and technique parameters in this procedure. The properties of DPI particles were characterized for their pulmonary delivery potency. Thirdly, the in vivo study of intratracheal instillation of Ins-SLNs to diabetic rats showed prolonged hypoglycemic effect and a relative pharmacological bioavailability of 44.40% could be achieved in the group of 8 IU/kg dosage. These results indicated that SLNs have shown increasing potential as an efficient and non-toxic lipophilic colloidal drug carrier for enhanced pulmonary delivery of insulin.

  11. Comparison of standard (self-directed) versus intensive patient training for the human insulin inhalation powder (HIIP) delivery system in patients with type 2 diabetes: efficacy, safety, and training measures.

    Science.gov (United States)

    Rosenstock, Julio; Nakano, Masako; Silverman, Bernard L; Sun, Bin; de la Peña, Amparo; Suri, Ajit; Muchmore, Douglas B

    2007-02-01

    The Lilly/Alkermes human insulin inhalation powder (HIIP) delivery system [AIR (a registered trademark of Alkermes, Inc., Cambridge, MA) Inhaled Insulin System] was designed to be easy to use. Training methods were compared in insulin-naive patients with type 2 diabetes. Patients (n = 102) were randomized to standard or intensive training. With standard training, patients learned how to use the HIIP delivery system by reading directions for use (DFU) and trying on their own. Intensive training included orientation to the HIIP delivery system with individual coaching and inspiratory flow rate training. Both groups received preprandial HIIP + metformin with or without a thiazolidinedione for 4 weeks. Overall 2-h postprandial blood glucose (PPBG) excursion was the primary measure. Noninferiority was defined as the upper limit of the two-sided 95% confidence interval of the mean difference between groups being 1.2 training) and 0.23 +/- 0.36 (intensive training) mmol/L. The mean difference (standard minus intensive training) and two-sided 95% confidence interval were -0.35 (-1.02, 0.33) mmol/L. No statistically or clinically significant differences were observed between training methods in premeal, postmeal, or bedtime blood glucose values, HIIP doses at endpoint, or blood glucose values after a test meal. No discontinuations occurred because of difficulty of use or dislike of the HIIP system. DFU compliance was >90% in both training groups. There were no significant differences between training methods in safety measures. The HIIP delivery system is easy to use, and most patients can learn to use it by reading the DFU without assistance from health care professionals.

  12. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  13. An open, randomized, parallel-group study to compare the efficacy and safety profile of inhaled human insulin (Exubera) with glibenclamide as adjunctive therapy in patients with type 2 diabetes poorly controlled on metformin

    DEFF Research Database (Denmark)

    Barnett, AH; Dreyer, M; Lange, Peter

    2006-01-01

    OBJECTIVE: To compare the efficacy and safety profile of adding inhaled human insulin (INH) (Exubera) or glibenclamide to metformin monotherapy in patients with poorly controlled type 2 diabetes. RESEARCH DESIGN AND METHODS: We conducted an open-label, parallel, 24-week multicenter trial. Patients...... associated clinical manifestations. CONCLUSIONS: In patients with type 2 diabetes poorly controlled on metformin, adding INH or glibenclamide was similarly effective in improving glycemic control, and both were well tolerated. A predefined subgroup with very high A1C (>9.5%) was more effectively treated...

  14. The insulin-like growth factor axis and collagen turnover in asthmatic children treated with inhaled budesonide

    DEFF Research Database (Denmark)

    Wolthers, O D; Juul, A; Hansen, M

    1995-01-01

    Serum concentrations of growth hormone-dependent insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3), the carboxy terminal propeptide of type I procollagen (PICP), the carboxy terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP......) and the amino terminal propeptide of type III procollagen (PIIINP) were studied in 14 prepubertal children with asthma (mean age 9.7 years) during treatment with inhaled budesonide. The study design was a randomized, crossover trial with two double-blind treatment periods (200 and 800 micrograms) and one open...

  15. An open, randomized, parallel-group study to compare the efficacy and safety profile of inhaled human insulin (exubera) with meformin as adjunctive therapy in patients with type 2 diabetes poorly controlled on a sulfonylurea: response to mikhail and cope

    DEFF Research Database (Denmark)

    Barnett, Anthony H.; Dreyer, Manfred; Lange, Peter

    2006-01-01

    OBJECTIVE: To compare the efficacy and safety profile of adding inhaled human insulin (INH; Exubera) or metformin to sulfonylurea monotherapy in patients with poorly controlled type 2 diabetes. RESEARCH DESIGN AND METHODS: We performed an open-label, parallel, 24-week, multicenter trial. At week -1......: In patients with type 2 diabetes poorly controlled on a sulfonylurea (A1C >9.5%), the addition of premeal INH significantly improves glycemic control compared with adjunctive metformin and is well tolerated....

  16. Protein Crystal Recombinant Human Insulin

    Science.gov (United States)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  17. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans.

    Science.gov (United States)

    Heni, Martin; Schöpfer, Patricia; Peter, Andreas; Sartorius, Tina; Fritsche, Andreas; Synofzik, Matthis; Häring, Hans-Ulrich; Maetzler, Walter; Hennige, Anita M

    2014-08-01

    Eating behavior, body weight regulation, peripheral glucose metabolism, and cognitive function depend on adequate insulin action in the brain, and recent studies in humans suggested that impaired insulin action in the brain emerges upon fat intake, obesity, and genetic variants. As insulin enters into the brain in a receptor-mediated fashion, we hypothesized that whole-body insulin sensitivity might affect the transport of insulin into the brain and contribute to the aversive effect of insulin resistance in the central nervous system. In this study, we aimed to determine the ratio of insulin in the cerebrospinal fluid and serum to whole-body insulin sensitivity. Healthy human subjects participated in an oral glucose tolerance test to determine whole-body insulin sensitivity and underwent lumbar puncture. Blood and CSF concentrations of insulin were significantly correlated. The CSF/serum ratio for insulin was significantly associated with whole body insulin sensitivity with reduced insulin transported into the CSF in insulin-resistant subjects. Together, our data suggest that transport of insulin into the CSF relates to peripheral insulin sensitivity and impairs insulin action in the brain. This underlines the need for sensitizing measures in insulin-resistant subjects.

  18. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin Aspart or human soluble insulin

    DEFF Research Database (Denmark)

    Brock Jacobsen, I; Vind, B F; Korsholm, Lars

    2011-01-01

    examined in a randomized, double-blinded cross-over study for two periods of 8 weeks. Sixteen patients with type 1 diabetes were subjected to three daily injections of human soluble insulin or Aspart in addition to Neutral Protamine Hagedorn (NPH) insulin twice daily. Each intervention period was followed......-regulatory responses regarding growth hormone, glucagon and ghrelin whereas no differences were found in relation to free fatty acid, cortisol, insulin-like growth factor (IGF)-I, IGF-II and IGF-binding proteins 1 and 2. Treatment with insulin Aspart resulted in well-defined peaks in serum insulin concentrations...... elicited a slightly different physiological response to spontaneous hypoglycaemia compared with human insulin. Keywords hypoglycaemia counter-regulation, insulin Aspart, type 1 diabetes....

  19. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    Science.gov (United States)

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  20. Insulin Human Inhalation

    Science.gov (United States)

    ... manage your diabetes and improve your health. This therapy may also decrease your chances of having a heart attack, stroke, or other diabetes-related complications such as kidney failure, nerve damage (numb, cold legs or feet; decreased sexual ability in men and women), eye ...

  1. In vivo response of Mesocestoides vogae to human insulin.

    Science.gov (United States)

    Canclini, L; Esteves, A

    2009-02-01

    Successful host invasion by parasitic helminths involves detection and appropriate response to a range of host-derived signals. Insulin signal response pathways are ancient and highly-conserved throughout the metazoans. However, very little is known about helminth insulin signalling and the potential role it may play in host-parasite interactions. The response of Mesocestoides vogae (Cestoda: Cyclophyllidea) larvae to human insulin was investigated, focusing on tyrosine-phosphorylation status, glucose content, survival and asexual reproduction rate. Parasite larvae were challenged with different levels of insulin for variable periods. The parameters tested were influenced by human insulin, and suggested a host-parasite molecular dialogue.

  2. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    Science.gov (United States)

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  3. MCF-7 human mammary adenocarcinoma cells exhibit augmented responses to human insulin on a collagen IV surface

    DEFF Research Database (Denmark)

    Listov-Saabye, Nicolai; Jensen, Marianne Blirup; Kiehr, Benedicte

    2009-01-01

    Human mammary cell lines are extensively used for preclinical safety assessment of insulin analogs. However, it is essentially unknown how mitogenic responses can be optimized in mammary cell-based systems. We developed an insulin mitogenicity assay in MCF-7 human mammary adenocarcinoma cells......, under low serum (0.1% FCS) and phenol red-free conditions, with 3H thymidine incorporation as endpoint. Based on EC50 values determined from 10-fold dilution series, beta-estradiol was the most potent mitogen, followed by human IGF-1, human AspB10 insulin and native human insulin. AspB10 insulin...... was significantly more mitogenic than native insulin, validating the ability of the assay to identify hypermitogenic human insulin analogs. With MCF-7 cells on a collagen IV surface, the ranking of mitogens was maintained, but fold mitogenic responses and dynamic range and steepness of dose-response curves were...

  4. Insulin induces airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, R.; Ris, J. M.; Zaagsma, J.; Meurs, H.; Nelemans, S. A.

    Background and purpose: Recently, the use of inhaled insulin formulations for the treatment of type I and type II diabetes has been approved in Europe and in the United States. For regular use, it is critical that airway function remains unimpaired in response to insulin exposure. Experimental

  5. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers

    DEFF Research Database (Denmark)

    Øzbay, Aygen; Møller, Niels; Juhl, Claus

    2012-01-01

    and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS: This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses...... of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction...... of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development...

  6. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin.

    Science.gov (United States)

    Andrade, Fernanda; das Neves, José; Gener, Petra; Schwartz, Simó; Ferreira, Domingos; Oliva, Mireia; Sarmento, Bruno

    2015-10-01

    Pulmonary delivery of drugs for both local and systemic action has gained new attention over the last decades. In this work, different amphiphilic polymers (Soluplus®, Pluronic® F68, Pluronic® F108 and Pluronic® F127) were used to produce lyophilized formulations for inhalation of insulin. Development of stimuli-responsive, namely glucose-sensitive, formulations was also attempted with the addition of phenylboronic acid (PBA). Despite influencing the in vitro release of insulin from micelles, PBA did not confer glucose-sensitive properties to formulations. Lyophilized powders with aerodynamic diameter (<6 μm) compatible with good deposition in the lungs did not present significant in vitro toxicity for respiratory cell lines. Additionally, some formulations, in particular Pluronic® F127-based formulations, enhanced the permeation of insulin through pulmonary epithelial models and underwent minimal internalization by macrophages in vitro. Overall, formulations based on polymeric micelles presenting promising characteristics were developed for the delivery of insulin by inhalation. The ability to deliver other systemic drugs via inhalation has received renewed interests in the clinical setting. This is especially true for drugs which usually require injections for delivery, like insulin. In this article, the authors investigated their previously developed amphiphilic polymers for inhalation of insulin in an in vitro model. The results should provide basis for future in vivo studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. FACTORS AFFECTING THE DEPOSITION OF AEROSOLIZED INSULIN

    Science.gov (United States)

    AbstractBackground The inhalation of insulin for absorption into the bloodstream via the lung seems to be a promising technique for the treatment of diabetes mellitus. A fundamental issue to be resolved in the development of such insulin aerosol delivery systems is their...

  8. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    Directory of Open Access Journals (Sweden)

    Mohammed N. Baeshen

    2016-01-01

    Full Text Available Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.

  9. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  10. Solution of human respiratory tract model for chronic inhalation intake

    International Nuclear Information System (INIS)

    Nadar, Minal Y.; Singh, I.S.; Rao, D.D.; Pradeepkumar, K.S.

    2014-01-01

    For the radiation workers of fuel reprocessing and fuel fabrication plants, inhalation is one of the major routes of intake of internal contamination. In case of routine monitoring which would result in lung activity above detection limit, it is assumed that intake has occurred at the midpoint of monitoring interval so that underestimation introduced by the unknown time of intake is less than a factor of three. In the plants, chronic intakes of 239 Pu are possible if low levels of 239 Pu activities remain undetected. In ICRP-78, the retention values are given as a function of time for continuous chronic inhalation of 239 Pu at 1.71 Bq/day that would result in Committed Effective Dose (CED) of 20 mSv. Retention values (R) are not given for inhalation intake at any other rate. Therefore, Human Respiratory Tract Model (HRTM) is solved for continuous chronic inhalation at 1 Bq/day rate for type M compounds of 239 Pu to estimate R as a function of time. These values will be useful in estimating intake from lung activity measurements in case of chronic intakes

  11. Assessing human exposure risk to cadmium through inhalation and seafood consumption

    International Nuclear Information System (INIS)

    Ju, Yun-Ru; Chen, Wei-Yu; Liao, Chung-Min

    2012-01-01

    Highlights: ► Trophically available fraction in seafood and bioaccessibility is linked. ► Human health risk to Cd can via inhalation and seafood consumption. ► Female had the higher Cd accumulation in urine and blood than male. ► Cigarette smoking is a major determinant of human Cd intake. - Abstract: The role of cadmium (Cd) bioaccessibility in risk assessment is less well studied. The aim of this study was to assess human health risk to Cd through inhalation and seafood consumption by incorporating bioaccessibility. The relationships between trophically available Cd and bioaccessibility were constructed based on available experimental data. We estimated Cd concentrations in human urine and blood via daily intake from seafood consumption and inhalation based on a physiologically-based pharmacokinetic (PBPK) model. A Hill-based dose–response model was used to assess human renal dysfunction and peripheral arterial disease risks for long-term Cd exposure. Here we showed that fish had higher bioaccessibility (∼83.7%) than that of shellfish (∼73.2%) for human ingestion. Our results indicated that glomerular and tubular damage among different genders and smokers ranged from 18.03 to 18.18%. Our analysis showed that nonsmokers had 50% probability of peripheral arterial disease level exceeding from 3.28 to 8.80%. Smoking populations had 2–3 folds higher morbidity risk of peripheral arterial disease than those of nonsmokers. Our study concluded that the adverse effects of Cd exposure are exacerbated when high seafood consumption coincides with cigarette smoking. Our work provides a framework that could more accurately address risk dose dependency of Cd hazard.

  12. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  13. Hydrazine inhalation hepatotoxicity.

    Science.gov (United States)

    Kao, Yung Hsiang; Chong, C H; Ng, W T; Lim, D

    2007-10-01

    Abstract Hydrazine is a hazardous chemical commonly used as a reactant in rocket and jet fuel cells. Animal studies have demonstrated hepatic changes after hydrazine inhalation. Human case reports of hydrazine inhalation hepatotoxicity are rare. We report a case of mild hepatotoxicity following brief hydrazine vapour inhalation in a healthy young man, which resolved completely on expectant management.

  14. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  15. Effects of exercise on insulin binding to human muscle

    International Nuclear Information System (INIS)

    Bonen, A.; Tan, M.H.; Clune, P.; Kirby, R.L.

    1985-01-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O 2 consumption (VO 2 max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO 2 max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO 2 max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO 2 max but that a marked decrement occurs when exercise is greater than or equal to 69% VO 2 max

  16. Comparing effects of insulin analogues and human insulin on nocturnal glycaemia in hypoglycaemia-prone people with Type 1 diabetes

    DEFF Research Database (Denmark)

    Kristensen, P. L.; Tarnow, L.; Bay, C.

    2017-01-01

    . Conclusions: Treatment with insulin analogue reduces the occurrence of nocturnal hypoglycaemia assessed by nocturnal glucose profiles in people with Type 1 diabetes prone to severe hypoglycaemia. Nocturnal glucose profiles provide a more comprehensive assessment of clinical benefit of insulin regimens......Aims: To assess the difference between analogue and human insulin with regard to nocturnal glucose profiles and risk of hypoglycaemia in people with recurrent severe hypoglycaemia. Methods: A total of 72 people [46 men, mean ± sd age 54 ± 12 years, mean ± sd HbA1c 65 ± 12 mmol/mol (8.1 ± 1.1......%), mean ± sd duration of diabetes 30 ± 14 years], who participated in a 2-year randomized, crossover trial of basal-bolus therapy with insulin detemir/insulin aspart or human NPH insulin/human regular insulin (the HypoAna trial) were studied for 2 nights during each treatment. Venous blood was drawn...

  17. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin......-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus...

  18. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  19. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study.

    Science.gov (United States)

    But, Anna; De Bruin, Marie L; Bazelier, Marloes T; Hjellvik, Vidar; Andersen, Morten; Auvinen, Anssi; Starup-Linde, Jakob; Schmidt, Marjanka K; Furu, Kari; de Vries, Frank; Karlstad, Øystein; Ekström, Nils; Haukka, Jari

    2017-09-01

    The aim of this work was to investigate the relationship between use of certain insulins and risk for cancer, when addressing the limitations and biases involved in previous studies. National Health Registries from Denmark (1996-2010), Finland (1996-2011), Norway (2005-2010) and Sweden (2007-2012) and the UK Clinical Practice Research Datalink database (1987-2013) were used to conduct a cohort study on new insulin users (N = 327,112). By using a common data model and semi-aggregate approach, we pooled individual-level records from five cohorts and applied Poisson regression models. For each of ten cancer sites studied, we estimated the rate ratios (RRs) by duration (≤0.5, 0.5-1, 1-2, 2-3, 3-4, 4-5, 5-6 and >6 years) of cumulative exposure to insulin glargine or insulin detemir relative to that of human insulin. A total of 21,390 cancer cases occurred during a mean follow-up of 4.6 years. No trend with cumulative treatment time for insulin glargine relative to human insulin was observed in risk for any of the ten studied cancer types. Of the 136 associations tested in the main analysis, only a few increased and decreased risks were found: among women, a higher risk was observed for colorectal (RR 1.54, 95% CI 1.06, 2.25) and endometrial cancer (RR 1.78, 95% CI 1.07, 2.94) for ≤0.5 years of treatment and for malignant melanoma for 2-3 years (RR 1.92, 95% CI 1.02, 3.61) and 4-5 years (RR 3.55, 95% CI 1.68, 7.47]); among men, a lower risk was observed for pancreatic cancer for 2-3 years (RR 0.34, 95% CI 0.17, 0.66) and for liver cancer for 3-4 years (RR 0.36, 95% CI 0.14, 0.94) and >6 years (RR 0.22, 95% CI 0.05, 0.92). Comparisons of insulin detemir with human insulin also showed no consistent differences. The present multi-country study found no evidence of consistent differences in risk for ten cancers for insulin glargine or insulin detemir use compared with human insulin, at follow-up exceeding 5 years.

  20. Comparison of insulin analogue B9AspB27Glu and soluble human insulin in insulin-treated diabetes.

    Science.gov (United States)

    Kang, S; Owens, D R; Vora, J P; Brange, J

    1990-02-10

    Postprandial plasma glucose excursions and plasma levels of free insulin after subcutaneous bolus injection of a rapidly absorbed monomeric insulin analogue (B9AspB27Glu) or soluble human insulin ('Actrapid HM' U100) were studied in six insulin-treated diabetic subjects. 10 U actrapid or an equimolar amount of the analogue were injected, in random order with an interval of 1 week, immediately before a 500 kcal test meal. Basal insulin levels were similar on the 2 study days (mean 74.1 [SE 5.1] pmol/l, actrapid; 79.7 [13.0] pmol/l, analogue). After injection of actrapid plasma free insulin levels rose slowly, reaching a plateau by 105 min at 222 (19) pmol/l. Injection of the analogue resulted in a rapid early peak at 30 min (798 [112] pmol/l), and levels were significantly higher than those after actrapid between 15 and 210 min. The more physiological plasma insulin levels achieved with the analogue were accompanied by a substantial reduction in postprandial plasma glucose excursions; the integrated area under the incremental plasma glucose curve was 45% lower after the analogue than after actrapid.

  1. New ways of insulin delivery.

    Science.gov (United States)

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  2. Comparison of predicted with observed biokinetics of inhaled plutonium nitrate and gadolinium oxide in humans

    International Nuclear Information System (INIS)

    Hodgson, A.; Shutt, A.L.; Etherington, G.; Hodgson, S.A.; Rance, E.; Stradling, G.N.; Youngman, M.J.; Ziesenis, A.; Kreyling, W.G.

    2003-01-01

    The absorption kinetics to blood of plutonium and gadolinium after inhalation as nitrate and oxide in humans and animals has been studied. For each material, values describing the time dependence of absorption were derived from the studies in animals and used with the ICRP human respiratory tract model to predict lung retention and cumulative amounts to blood for the volunteers inhaling the same materials. Comparison with the observed behaviour in the volunteers suggests that absorption of plutonium and gadolinium is reasonably species independent, and that data obtained from animal studies can be used to assess their biokinetic behaviour in humans. (author)

  3. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  4. Fetal and perinatal outcomes in type 1 diabetes pregnancy: a randomized study comparing insulin aspart with human insulin in 322 subjects

    DEFF Research Database (Denmark)

    Hod, Moshe; Damm, Peter; Kaaja, Risto

    2008-01-01

    The objective of the study was a comparison of insulin aspart (IAsp) with human insulin (HI) in basal-bolus therapy with neutral protamine Hagedorn for fetal and perinatal outcomes of type 1 diabetes in pregnancy.......The objective of the study was a comparison of insulin aspart (IAsp) with human insulin (HI) in basal-bolus therapy with neutral protamine Hagedorn for fetal and perinatal outcomes of type 1 diabetes in pregnancy....

  5. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  6. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    Science.gov (United States)

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  7. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  8. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies

    Directory of Open Access Journals (Sweden)

    David A. Bulger

    2017-01-01

    Full Text Available Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2. CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways.

  9. Hematological responses after inhaling 238PuO2: An extrapolation from beagle dogs to humans

    International Nuclear Information System (INIS)

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.

    1994-01-01

    The alpha emitter plutonium-238 ( 238 Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to 238 PuO 2 have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of 238 Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled 238 PuO 2 on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting 238 PuO 2 particles and to extrapolate results to humans

  10. [The effect of a single inhalation of mineral water on the blood hormonal status in healthy volunteers].

    Science.gov (United States)

    Khinchagov, B P; Polushina, N D; Frolkov, V K

    1998-01-01

    Concentrations of ACTH, TTH, STH, LH, PSH, hydrocortisone, insulin, glucagone, triiodthyronine, thyroxine, aldosterone, glucose and unesterified fatty acids (NEFA) were measured in the blood of 23 healthy male volunteers aged 18 to 35 years 15, 30 and 60 min after a single nose inhalation and oral intake of mineral water Essentuki No. 17. Inhalation of Essentuki No. 17 stimulated secretion of the hormones and some parameters of metabolic reactions: the levels of glucose, NEFA, hydrocortisone, aldosterone, TTH, PSH and LH rose while those of insulin and growth hormone decreased. Oral intake of this water brought about the same changes in the hormone status except blood insulin the levels of which went up.

  11. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies.

    Science.gov (United States)

    Bulger, David A; Fukushige, Tetsunari; Yun, Sijung; Semple, Robert K; Hanover, John A; Krause, Michael W

    2017-01-05

    Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP) and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2 CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways. Copyright © 2017 Bulger et al.

  12. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  13. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  14. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC adipocytes.

    Directory of Open Access Journals (Sweden)

    Darwin V Lee

    Full Text Available Fibroblast growth factor 21 (FGF21 has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR, insulin receptor substrate-1 (IRS-1, and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway.

  15. Bovine and human insulin adsorption at lipid monolayers: a comparison

    Science.gov (United States)

    Mauri, Sergio; Pandey, Ravindra; Rzeznicka, Izabela; Lu, Hao; Bonn, Mischa; Weidner, Tobias

    2015-07-01

    Insulin is a widely used peptide in protein research and it is utilised as a model peptide to understand the mechanics of fibril formation, which is believed to be the cause of diseases such as Alzheimer and Creutzfeld-Jakob syndrome. Insulin has been used as a model system due to its biomedical relevance, small size and relatively simple tertiary structure. The adsorption of insu lin on a variety of surfaces has become the focus of numerous studies lately. These works have helped in elucidating the consequence of surface/protein hydrophilic/hydrophobic interaction in terms of protein refolding and aggregation. Unfortunately, such model surfaces differ significantly from physiological surfaces. Here we spectroscopically investigate the adsorption of insulin at lipid monolayers, to further our understanding of the interaction of insulin with biological surfaces. In particular we study the effect of minor mutations of insulin’s primary amino acid sequence on its interaction with 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) model lipid layers. We probe the structure of bovine and human insulin at the lipid/water interface using sum frequency generation spectroscopy (SFG). The SFG experiments are complemented with XPS analysis of Langmuir-Schaefer deposited lipid/insulin films. We find that bovine and human insulin, even though very similar in sequence, show a substantially different behavior when interacting with lipid films.

  16. Treating Type 1 Diabetes Mellitus with a Rapid-Acting Analog Insulin Regimen vs. Regular Human Insulin in Germany: A Long-Term Cost-Effectiveness Evaluation.

    Science.gov (United States)

    Valentine, William J; Van Brunt, Kate; Boye, Kristina S; Pollock, Richard F

    2018-06-01

    The aim of the present study was to evaluate the cost effectiveness of rapid-acting analog insulin relative to regular human insulin in adults with type 1 diabetes mellitus in Germany. The PRIME Diabetes Model, a patient-level, discrete event simulation model, was used to project long-term clinical and cost outcomes for patients with type 1 diabetes from the perspective of a German healthcare payer. Simulated patients had a mean age of 21.5 years, duration of diabetes of 8.6 years, and baseline glycosylated hemoglobin of 7.39%. Regular human insulin and rapid-acting analog insulin regimens reduced glycosylated hemoglobin by 0.312 and 0.402%, respectively. Compared with human insulin, hypoglycemia rate ratios with rapid-acting analog insulin were 0.51 (non-severe nocturnal) and 0.80 (severe). No differences in non-severe diurnal hypoglycemia were modeled. Discount rates of 3% were applied to future costs and clinical benefits accrued over the 50-year time horizon. In the base-case analysis, rapid-acting analog insulin was associated with an improvement in quality-adjusted life expectancy of 1.01 quality-adjusted life-years per patient (12.54 vs. 11.53 quality-adjusted life-years). Rapid-acting analog insulin was also associated with an increase in direct costs of €4490, resulting in an incremental cost-effectiveness ratio of €4427 per quality-adjusted life-year gained vs. human insulin. Sensitivity analyses showed that the base case was driven predominantly by differences in hypoglycemia; abolishing these differences reduced incremental quality-adjusted life expectancy to 0.07 quality-adjusted life-years, yielding an incremental cost-effectiveness ratio of €74,622 per quality-adjusted life-year gained. Rapid-acting analog insulin is associated with beneficial outcomes in patients with type 1 diabetes and is likely to be considered cost effective in the German setting vs. regular human insulin.

  17. A study of the comparison between human and animal excretion data following inhalation exposure to plutonium 238 oxide aerosols

    International Nuclear Information System (INIS)

    Moss, W.D.; Martinez, G.; Gautier, M.A.

    1985-01-01

    Bioassay urine samples obtained since 1971 from eight Los Alamos employees, accidentally exposed by inhalation to high-fired plutonium-238 oxide aerosols, were studied and compared with excretion data obtained from Beagle dogs exposed to /sup 238/PuO/sub 2/ aerosols. The early period Pu human excretion data from the inhalation exposure were unexpected and were unlike previously studied occupational exposure urinary data obtained at Los Alamos. The initial urine samples collected on day one were below the detection limits of the analytical method (0.01 pCi). Within thirty days, however, detectible concentrations of Pu were measured in the urine for several of the exposed personnel. The amounts of Pu excreted continued to increase in each of the cases throughout the first year and the individual patterns of Pu excretion were similar. The human urinary excretion data was compared with similar excretion data obtained from an animal study conducted by the Inhalation Toxicology Research Institute (Me81). In the animal study, Beagle dogs received inhalation exposure to one of three sizes of monodisperse of polydisperse aerosol of /sup 238/PuO/sub 2/. Periodic sacrifice of pairs of dogs during the 4 years after the inhalation exposure provided data on the retention, translocation and mode of excretion of /sup 238/Pu. The comparison of human and animal /sup 238/Pu excretion data supported the observation that the excretion data were similar between the two species and that the animal excretion models can be applied to predict the human /sup 238/Pu excretion following inhalation exposure to high-fired oxides of /sup 238/Pu

  18. Effects of pasteurization on adiponectin and insulin concentrations in donor human milk.

    Science.gov (United States)

    Ley, Sylvia H; Hanley, Anthony J; Stone, Debbie; O'Connor, Deborah L

    2011-09-01

    Although pasteurization is recommended before distributing donor human milk in North America, limited data are available on its impact on metabolic hormones in milk. We aimed to investigate the effects of pasteurization on adiponectin and insulin concentrations in donor human milk. The study investigates concentrations of components in donor human milk before and after Holder pasteurization. After the guidelines of the Human Milk Bank Association of North America, human milk samples were pooled to produce 17 distinct batches (4 individuals per batch) and pasteurized at 62.5°C for 30 min. Adiponectin, insulin, energy, fat, total protein, and glucose concentrations were measured pre- and postpasteurization. Pasteurization reduced milk adiponectin and insulin by 32.8 and 46.1%, respectively (both p Pasteurization effects on milk hormone concentrations remained significant after adjusting for fat and energy (beta ± SEE: -4.11 ± 1.27, p = 0.003 for adiponectin; -70.0 ± 15.0, p pasteurization reduced adiponectin and insulin concentrations in donor human milk. In view of emerging knowledge on the importance of milk components, continued work to find the optimal pasteurization process that mitigates risks but promotes retention of bioactive components is needed.

  19. Insulin in human milk and the use of hormones in infant formulas.

    Science.gov (United States)

    Shamir, Raanan; Shehadeh, Naim

    2013-01-01

    Human milk contains a substantial number of hormones and growth factors. Studies in animal models show that some of these peptides (e.g. insulin, insulin-like growth factor 1, IGF-1, epidermal growth factors) have an effect on the small intestine after orogastric administration. Recently, two efforts were made to incorporate growth factors into infant formulas. One of these efforts included the incorporation of IGF-1, and the second is an ongoing effort to evaluate the safety and efficacy of incorporating insulin into infant formulas. The rational and current evidence for adding insulin to infant formulas (presence in human milk, effects of orally administrated insulin on gut maturation, intestinal permeability, systemic effects and preliminary encouraging results of supplementing insulin to a preterm infant formula) is detailed in this review. If the addition of insulin to preterm infant formulas indeed results in better growth and accelerated intestinal maturation, future studies will need to address the supplementation of insulin in term infants and assess the efficacy of such supplementation in enhancing gut maturation and prevention of later noncommunicable diseases such as allergy, autoimmune diseases and obesity. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  20. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions.

    Science.gov (United States)

    Heni, M; Kullmann, S; Ketterer, C; Guthoff, M; Linder, K; Wagner, R; Stingl, K T; Veit, R; Staiger, H; Häring, H-U; Preissl, H; Fritsche, A

    2012-06-01

    Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved. Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity. Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray. Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.

  1. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    Science.gov (United States)

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, PInsulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, Pinsulin-glycerol product (r=-0.467, PInsulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, PInsulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, Pinsulin resistance (area under the curve ⩾0.801, Pinsulin sensitivity (that is, the antilipolytic action of insulin) can be reliably quantified in overweight and obese humans by simplified index methods. The sensitivity and specificity of the Adipo-IR index and the fasting plasma insulin-glycerol product, combined with their simplicity and acceptable agreement, suggest that these may be most useful in clinical practice.

  2. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  3. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  4. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  5. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  6. Proposed retention model for human inhalation exposure to 241AmO2

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Griffith, W.C.; Muggenburg, B.A.

    1980-01-01

    A dosimetry model based on a four-year study in Beagle dogs was developed to predict patterns of absorbed radiation doses for people exposed by inhalation to 241 AmO 2 . Following a single inhalation exposure to one of three sizes of monodisperse or a polydisperse aerosol of 241 AmO 2 , pairs of dogs were sacrificed at 8, 32, 64 and 256 days, and 2 and 4 years. For about 80% of the initial lung burden, the retention halftimes were 11, 18, 26 and 27 days for the 0.75, 1.5 and 3.0 μm aerodynamic diameter and the 1.8 μm activity median aerodynamic diameter aerosols, respectively. For the remaining 20% of the initial lung burden, the retention halftimes were between 200 to 300 days with no apparent particle size influence. Additional 241 Am metabolic studies reported in the literature using inhalation exposure or injection of the citrate complex were synthesized in the model as were eleven reported cases of human inhalation exposure. This model is compared to the ICRP II and TGLD lung models, both developed by analogy to Pu metabolism. The proposed model differs from these latter models in two important areas: (a) lung retention of 241 AmO 2 could not be adapted to the classifications used in these models, and (b) the fractional translocation from lung to other organs is 2 to 8 times larger. These factors considerably alter the predicted radiation dose distribution among organs and lead to the conclusion that derived radiation protection standards for 241 AmO 2 inhalation exposure should be modified. (author)

  7. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  8. Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    NARCIS (Netherlands)

    van Golen, L.W.; Veltman, D.J.; IJzerman, R.G.; Deijen, J.B.; Heijboer, A.C.; Barkhof, F.; Drent, M.L.; Diamant, M.

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard

  9. Effects of insulin detemir and NPH insulin on body weight and appetite-regulating brain regions in human type 1 diabetes: a randomized controlled trial

    NARCIS (Netherlands)

    van Golen, Larissa W.; Veltman, Dick J.; IJzerman, Richard G.; Deijen, Jan Berend; Heijboer, Annemieke C.; Barkhof, Frederik; Drent, Madeleine L.; Diamant, Michaela

    2014-01-01

    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard

  10. Insulin resistance in human subjects having impaired glucose regulation

    International Nuclear Information System (INIS)

    Khan, S.H.; Khan, F.A.; Ijaz, A.

    2007-01-01

    To determine insulin resistance in human subjects having impaired glucose regulation (IGR) by Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). A total of 100 subjects with impaired glucose regulation were selected for evaluation of metabolic syndrome as per the criteria of National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III), along with 47 healthy age and gender-matched controls. Physical examination to determine blood pressure and waist circumference was carried out and so was sampling for plasma glucose, serum triglycerides, HDL-cholesterol and insulin. Insulin resistance was calculated by the HOMA-IR. Finally, subjects with and without metabolic syndrome were compared with controls (n=47), using one-way ANOVA for studying insulin resistance between groups, with Tukey's post-hoc comparison. The frequency of finding metabolic syndrome in cases of IGR remained 47%. The insulin resistance demonstrated stepwise worsening from control population (mean=1.54, 95 % CI: 1.77 - 2.37) to subjects suffering from only IGR (mean=2.07, 95 % CI: 1.77- 2.37) to metabolic syndrome (mean=2.67, 95 %, CI: 2.34 - 3.00) (p < 0.001). Patients with impaired glucose regulation may have significant insulin resistance. It is, thus, recommended that a vigorous search be made to measure insulin resistance in all cases diagnosed to have impaired glucose regulation. (author)

  11. Hematological responses after inhaling {sup 238}PuO{sub 2}: An extrapolation from beagle dogs to humans

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.

    1994-11-01

    The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.

  12. A role for SPARC in the moderation of human insulin secretion.

    Directory of Open Access Journals (Sweden)

    Lorna W Harries

    Full Text Available AIMS/HYPOTHESIS: We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. METHODS: We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. RESULTS: SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05. SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01. Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01. CONCLUSIONS: Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC's modulation of obesity-induced insulin resistance in adipose tissue.

  13. Heterogeneity of human plasma insulin: techniques for separating immunoreactive components and their determination by radioimmunoassay

    International Nuclear Information System (INIS)

    Souza, Iracelia Torres de Toledo e

    1977-01-01

    When human plasma is filtered on Sephadex G-SO fine, insulin immunoreactivity is recovered in two peaks: 'big insulin', the higher molecular weight component and 'little insulin', the lower molecular component, having elution volumes that correspond to those of porcine proinsulin 125 I and porcine insulin 125 I respectively. The presence of another form of immunoreactive insulin 'big big insulin' was detected from an insuloma suspect and its elution pattern corresponding to serum albumin. The eluates correspondent to 'big' and 'little' insulin as well as 'big big' component were assayed by radioimmunoassay using crystalline human insulin as a standard, porcine insulin 125 tracer and anti insulin serum. The antibody, raised in guinea-pigs, was sensitive and potent being adequate for the assay. The reactivity of insulin and proinsulin was tested against the antibody. The relative proportions of several components of total immunoreactive insulin in plasma were studied in basal conditions in five normal subjects and in the patient JSC with pancreatic insulin-secreting tumor as well as after glucose stimuli in all tolbutamide in JSC. (author)

  14. [Teratologic cranio-encephalic effects of chronic thinner inhalation in progenitors, in rats and humans].

    Science.gov (United States)

    Barroso-Moguel, R; Villeda-Hernández, J; Méndez-Armenta, M

    1991-01-01

    Inhalation of thinner by youngsters and adolescents is an increasing drug abuse problem in Mexico. It presents serious repercussions upon socio-economic, cultural, legal and health (neurologic and psychiatric) problems. We report a comparative study in humans and rats which demonstrate the embryotoxic and craneo encephalic teratologic effects in the children and brood of progenitors who have chronically inhaled thinner (in the case of pregnant women, before, at the beginning and throughout pregnancy). Inhaled thinner passes directly to the blood stream and crosses the placentary barrier freely reaching the embryo. It may cause craneal bone and partial or total encephalon agenesia, added to macro and microscopic lesions secondary to direct aggression to the neuroepithelial germ cells. Abortions and premature labor with weight and size underdeveloped products and placentary hemorrhages occur. Usually these die, but if they survive they show trascendental mental retardation, as well as neurologic and psychiatric sequels.

  15. Toxicological perspectives of inhaled therapeutics and nanoparticles.

    Science.gov (United States)

    Hayes, Amanda J; Bakand, Shahnaz

    2014-07-01

    The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges. This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface. Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.

  16. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  17. Human milk insulin is related to maternal plasma insulin and BMI: but other components of human milk do not differ by BMI.

    Science.gov (United States)

    Young, B E; Patinkin, Z; Palmer, C; de la Houssaye, B; Barbour, L A; Hernandez, T; Friedman, J E; Krebs, N F

    2017-09-01

    The impact of maternal BMI and insulin sensitivity on bioactive components of human milk (HM) is not well understood. As the prevalence of obesity and diabetes rises, it is increasingly critical that we understand how maternal BMI and hormones associated with metabolic disease relate to concentrations of bioactive components in HM. This longitudinal cohort design followed 48 breastfeeding mothers through the first four months of lactation, collecting fasting morning HM samples at 2-weeks and 1, 2, 3 and 4-months, and fasting maternal blood at 2-weeks and 4-months. Insulin, glucose, adipokines leptin and adiponectin, appetite regulating hormone ghrelin, marker of oxidative stress 8OHdG and inflammatory cytokines (IL-6, IL-8, and TNF-a) were measured in HM and maternal plasma. A total of 26 normal weight (NW) (BMI=21.4±2.0 kg/m 2 ) and 22 overweight/obese (OW/Ob) (BMI=30.4±4.2 kg/m 2 ) were followed. Of all HM analytes measured, only insulin and leptin were different between groups - consistently higher in the OW/Ob group (leptin: P<0.001; insulin: P<0.03). HM insulin was 98% higher than maternal plasma insulin at 2-weeks and 32% higher at 4-months (P<0.001). Maternal fasting plasma insulin and HOMA-IR were positively related to HM insulin at 2-weeks (P<0.001, R 2 ⩾0.38, n=31), and 4-months (P⩽0.005, R 2 ⩾0.20, n=38). The concentrations of insulin in HM are higher than in maternal plasma and are related to maternal BMI and insulin sensitivity. With the exception of leptin, there were minimal other differences observed in HM composition across a wide range in maternal BMI.

  18. Expression of insulin signalling components in the sensory epithelium of the human saccule

    DEFF Research Database (Denmark)

    Degerman, Eva; Rauch, Uwe; Lindberg, Sven

    2013-01-01

    signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also...

  19. Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation

    Directory of Open Access Journals (Sweden)

    Camby M.K. Se

    2010-12-01

    Full Text Available The present study investigates the deposition efficiency during the unsteady inhalation cycle by using Computational Fluid Dynamics (CFD. The unsteady inhalation profile was applied at the outlet of nasopharynx, which had a maximum flow rate of 40.3L/min which corresponds to an equivalent steady inhalation tidal volume flow rate of 24.6L/min. Aerodynamic particle sizes of 5μm and 20μm were studied in order to reflect contrasting Stokes numbered particle behaviour. Two particle deposition efficiencies in the nasal cavity versus time are presented. In general, the deposition of 5μm particles was much less than 20μm particles. The first 0.2 second of the inhalation cycle was found to be significant to the particle transport, since the majority of particles were deposited during this period (i.e. its residence time. Comparisons were also made with its equivalent steady inhalation flow rate which found that the unsteady inhalation produced lower deposition efficiency for both particle sizes.

  20. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    Science.gov (United States)

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  1. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    Science.gov (United States)

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  2. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Laura L Gathercole

    Full Text Available Patients with glucocorticoid (GC excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc and omental (om adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.

  3. A biokinetic model of inhaled Cm compounds in dogs: Application to human exposure data

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Mewhinney, J.A.

    1989-01-01

    Curium isotopes are major by-products in irradiated nuclear reactor fuel and comprise a significant fraction of the alpha-emitting radionuclide inventory. Although little use is currently being made of purified Cm sources, such usage is possible if reprocessing of spent fuel becomes feasible. Because little information is available on the biokinetics and dosimetry of inhaled Cm compounds, a study was conducted in which adult beagle dogs received a single inhalation exposure to either a monodisperse aerosol of 244Cm2O3 (1.4 micron activity median aerodynamic diameter [AMAD]; sigma g = 1.16) or a polydisperse aerosol of 244Cm (NO3)3 (1.1 micron AMAD; sigma g = 1.74). At times ranging from 4 h to 2 y after exposure, animals were sacrificed and their tissues analyzed for Cm content. The data describing the uptake and retention of 244Cm in the different organs and tissues and the measured rates of excretion of these dogs formed the basis on which a biokinetic model of Cm metabolism was constructed. This Cm model was based on a previously published model of the biokinetics of 241Am that was shown to be applicable to data from human cases of inhalation exposure to 241Am aerosols. This Cm model was found to be adequate to describe the biological distribution of Cm in dogs and was also applied to the sparse data from humans. Reasonable agreement was found between the model predictions for lung retention of Cm and for urinary excretion patterns in humans

  4. A physiologically based toxicokinetic model for inhaled ethylene and ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Filser, Johannes Georg; Klein, Dominik

    2018-04-01

    Ethylene (ET) is the largest volume organic chemical. Mammals metabolize the olefin to ethylene oxide (EO), another important industrial chemical. The epoxide alkylates macromolecules and has mutagenic and carcinogenic properties. In order to estimate the EO burden in mice, rats, and humans resulting from inhalation exposure to gaseous ET or EO, a physiological toxicokinetic model was developed. It consists of the compartments lung, richly perfused tissues, kidneys, muscle, fat, arterial blood, venous blood, and liver containing the sub-compartment endoplasmic reticulum. Modeled ET metabolism is mediated by hepatic cytochrome P450 2E1, EO metabolism by hepatic microsomal epoxide hydrolase or cytosolic glutathione S-transferase in various tissues. EO is also spontaneously hydrolyzed or conjugated with glutathione. The model was validated on experimental data collected in mice, rats, and humans. Modeled were uptake by inhalation, wash-in-wash-out effect in the upper respiratory airways, distribution into tissues and organs, elimination via exhalation and metabolism, and formation of 2-hydroxyethyl adducts with hemoglobin and DNA. Simulated concentration-time courses of ET or EO in inhaled (gas uptake studies) or exhaled air, and of EO in blood during exposures to ET or EO agreed excellently with measured data. Predicted levels of adducts with DNA and hemoglobin, induced by ET or EO, agreed with reported levels. Exposures to 10000 ppm ET were predicted to induce the same adduct levels as EO exposures to 3.95 (mice), 5.67 (rats), or 0.313 ppm (humans). The model is concluded to be applicable for assessing health risks from inhalation exposure to ET or EO. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-01-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125 I-IGF-1, 125 I-IGF-2, and 125 I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  6. Serological analysis of human IgG and IgE anti-insulin antibodies by solid-phase radioimmunoassays

    International Nuclear Information System (INIS)

    Hamilton, R.G.; Rendell, M.; Adkinson, N.F. Jr.

    1980-01-01

    A single solid-phase assay system which is useful for quantitative measurement of both IgG and IgE anti-insulin antibodies in human serum has been developed. Insulin-specific immunoglobulins are absorbed from human serum by excess quantities of insulin-agarose. After washes to remove unbound immunoglobulins, radioiodinated Staph A or rabbit anti-human IgE is added to detect bound IgG or IgE anbitodies, respectively

  7. Expression profiling of insulin action in human myotubes

    DEFF Research Database (Denmark)

    Hansen, L.; Gaster, Michael; Oakeley, E.J.

    2004-01-01

    Myotube cultures from patients with type 2 diabetes mellitus (T2DM) represent an experimental in vitro model of T2DM that offers a possibility to perform gene expression studies under standardized conditions. During a time-course of insulin stimulation (1 microM) at 5.5 mM glucose for 0 (no insulin......, metabolic enzymes, and finally cell cycle regulating genes. One-hundred-forty-four genes were differentially expressed in myotubes from donors with type 2 diabetes compared with control subjects, including HSP70, apolipoprotein D/E, tropomyosin, myosin, and actin previously reported from in vivo studies...... of diabetic skeletal muscle. We conclude, (i) that insulin induces a time-dependent inflammatory and pro-angiogenic transcriptional response in cultured human myotubes, (ii) that myotubes in vitro retain a gene expression pattern specific for type 2 diabetes and sharing five genes with that of type 2 diabetic...

  8. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  9. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  10. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  11. Exubera. Inhale therapeutic systems.

    Science.gov (United States)

    Bindra, Sanjit; Cefalu, William T

    2002-05-01

    Inhale, in colaboration with Pfizer and Aventis Pharma (formerly Hoechst Marion Roussel; HMR), is developing an insulin formulation utilizing its pulmonary delivery technology for macromolecules for the potential treatment of type I and II diabetes. By July 2001, the phase III program had been completed and the companies had begun to assemble data for MAA and NDA filings; however, it was already clear at this time that additional data might be required for filing. By December 2001, it had been decided that the NDA should include an increased level of controlled, long-term pulmonary safety data in diabetic patients and a major study was planned to be completed in 2002, with the NDA filed thereafter (during 2002). US-05997848 was issued to Inhale Therapeutic Systems in December 1999, and corresponds to WO-09524183, filed in February 1995. Equivalent applications have appeared to date in Australia, Brazil, Canada, China, Czech Republic, Europe, Finland, Hungary, Japan, Norway, New Zealand, Poland and South Africa. This family of applications is specific to pulmonary delivery of insulin. In February 1999, Lehman Brothers gave this inhaled insulin a 60% probability of reaching market, with a possible launch date of 2001. The analysts estimated peak sales at $3 billion in 2011. In May 2000, Aventis predicted that estimated peak sales would be in excess of $1 billion. In February 2000, Merrill Lynch expected product launch in 2002 and predicted that it would be a multibillion-dollar product. Analysts Merril Lynch predicted, in September and November 2000, that the product would be launched by 2002, with sales in that year of e75 million, rising to euro 500 million in 2004. In April 2001, Merrill Lynch predicted that filing for this drug would occur in 2001. Following the report of the potential delay in regulatory filing, issued in July 2001, Deutsche Banc Alex Brown predicted a filing would take place in the fourth quarter of 2002 and launch would take place in the first

  12. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-125I-Tyr-A14-insulin preparation

    International Nuclear Information System (INIS)

    Marttinen, A.; Pasternack, A.; Koivula, T.; Jokela, H.; Lehtinen, M.

    1984-01-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono- 125 I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected. (author)

  13. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  14. Structure, antihyperglycemic activity and cellular actions of a novel diglycated human insulin

    DEFF Research Database (Denmark)

    O'Harte, F P; Boyd, A C; McKillop, A M

    2000-01-01

    Human insulin was glycated under hyperglycemic reducing conditions and a novel diglycated form (M(r) 6135.1 Da) was purified by RP-HPLC. Endoproteinase Glu-C digestion combined with mass spectrometry and automated Edman degradation localized glycation to Gly(1) and Phe(1) of the insulin A- and B-...

  15. Short-acting insulin analogues versus regular human insulin for adults with type 1 diabetes mellitus.

    Science.gov (United States)

    Fullerton, Birgit; Siebenhofer, Andrea; Jeitler, Klaus; Horvath, Karl; Semlitsch, Thomas; Berghold, Andrea; Plank, Johannes; Pieber, Thomas R; Gerlach, Ferdinand M

    2016-06-30

    Short-acting insulin analogue use for people with diabetes is still controversial, as reflected in many scientific debates. To assess the effects of short-acting insulin analogues versus regular human insulin in adults with type 1 diabetes. We carried out the electronic searches through Ovid simultaneously searching the following databases: Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R) (1946 to 14 April 2015), EMBASE (1988 to 2015, week 15), the Cochrane Central Register of Controlled Trials (CENTRAL; March 2015), ClinicalTrials.gov and the European (EU) Clinical Trials register (both March 2015). We included all randomised controlled trials with an intervention duration of at least 24 weeks that compared short-acting insulin analogues with regular human insulins in the treatment of adults with type 1 diabetes who were not pregnant. Two review authors independently extracted data and assessed trials for risk of bias, and resolved differences by consensus. We graded overall study quality using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) instrument. We used random-effects models for the main analyses and presented the results as odds ratios (OR) with 95% confidence intervals (CI) for dichotomous outcomes. We identified nine trials that fulfilled the inclusion criteria including 2693 participants. The duration of interventions ranged from 24 to 52 weeks with a mean of about 37 weeks. The participants showed some diversity, mainly with regard to diabetes duration and inclusion/exclusion criteria. The majority of the trials were carried out in the 1990s and participants were recruited from Europe, North America, Africa and Asia. None of the trials was carried out in a blinded manner so that the risk of performance bias, especially for subjective outcomes such as hypoglycaemia, was present in all of the trials. Furthermore, several trials showed inconsistencies in

  16. Lipid content and response to insulin are not invariably linked in human muscle cells

    OpenAIRE

    Aguer , Céline; Mercier , Jacques; Kitzmann , Magali

    2009-01-01

    Abstract In type 2 diabetes, a strong correlation between intramyocellular lipid accumulation and insulin resistance exists but whether intramyocellular accumulation is a cause or a consequence of insulin resistance is not clear. Lipid accumulation and response to insulin were evaluated in primary human myotubes derived from non-diabetic subjects and type 2 diabetic patients. Myotubes derived from type 2 diabetic patients had a defective response to insulin without showing a signif...

  17. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  18. Palmitate and insulin synergistically induce IL-6 expression in human monocytes

    Directory of Open Access Journals (Sweden)

    Lumpkin Charles K

    2010-11-01

    Full Text Available Abstract Background Insulin resistance is associated with a proinflammatory state that promotes the development of complications such as type 2 diabetes mellitus (T2DM and atherosclerosis. The metabolic stimuli that initiate and propagate proinflammatory cytokine production and the cellular origin of proinflammatory cytokines in insulin resistance have not been fully elucidated. Circulating proinflammatory monocytes show signs of enhanced inflammation in obese, insulin resistant subjects and are thus a potential source of proinflammatory cytokine production. The specific, circulating metabolic factors that might stimulate monocyte inflammation in insulin resistant subjects are poorly characterized. We have examined whether saturated nonesterified fatty acids (NEFA and insulin, which increase in concentration with developing insulin resistance, can trigger the production of interleukin (IL-6 and tumor necrosis factor (TNF-α in human monocytes. Methods Messenger RNA and protein levels of the proinflammatory cytokines IL-6 and TNF-α were measured by quantitative real-time PCR (qRT-PCR and Luminex bioassays. Student's t-test was used with a significance level of p Results Esterification of palmitate with coenzyme A (CoA was necessary, while β-oxidation and ceramide biosynthesis were not required, for the induction of IL-6 and TNF-α in THP-1 monocytes. Monocytes incubated with insulin and palmitate together produced more IL-6 mRNA and protein, and more TNF-α protein, compared to monocytes incubated with palmitate alone. Incubation of monocytes with insulin alone did not affect the production of IL-6 or TNF-α. Both PI3K-Akt and MEK/ERK signalling pathways are important for cytokine induction by palmitate. MEK/ERK signalling is necessary for synergistic induction of IL-6 by palmitate and insulin. Conclusions High levels of saturated NEFA, such as palmitate, when combined with hyperinsulinemia, may activate human monocytes to produce

  19. The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure

    DEFF Research Database (Denmark)

    Gaster, M; Schrøder, H D; Handberg, A

    2001-01-01

    results show that chronic exposure of human myotubes to high insulin with or without high glucose did not affect the basal kinetic parameters but abolished the reactivity of GS to acute insulin stimulation. We suggest that insulin induced insulin resistance of GS is caused by a failure of acute insulin......There is no consensus regarding the results from in vivo and in vitro studies on the impact of chronic high insulin and/or high glucose exposure on acute insulin stimulation of glycogen synthase (GS) kinetic parameters in human skeletal muscle. The aim of this study was to evaluate the kinetic...... parameters of glycogen synthase activity in human myotube cultures at conditions of chronic high insulin combined or not with high glucose exposure, before and after a subsequent acute insulin stimulation. Acute insulin stimulation significantly increased the fractional activity (FV(0.1)) of GS, increased...

  20. Trends in the use and cost of human and analogue insulins in a Colombian population, 2011-2015.

    Science.gov (United States)

    Torres, D R; Portilla, A; Machado-Duque, M E; Machado-Alba, J E

    2017-12-01

    Diabetes mellitus is a common disease among the general population and imposes considerable costs on health care systems. Insulin is used to treat type 1 diabetes mellitus and as an adjuvant to oral agents in advanced stages of type 2 diabetes mellitus. The objective was to describe the trends in use and cost of human and analogue insulins for Colombian patients. Descriptive retrospective analysis of prescriptions of human and analogue insulins on a monthly basis for the period from July 1, 2011 to February 2, 2015. Information was collected for the database population of two insurance companies. Frequencies and proportions were calculated; estimated economic impact was expressed as net cost and cost per thousand inhabitants per day. During the observation period, there was continuous growth in use of insulin, mainly in analogue forms (34.0% growth). At the start of the study, 10.4% of subjects were using an analogue insulin; this figure was 62.6% at the end of the study. In 2012, the average cost per 1000 inhabitants/day was US$1.7 for analogue and US$0.8 for human insulins. At the end of the observation period these costs had risen to US$9.2 for analogue (441.1% increase) and fallen to US$0.5 for human insulin (58.3% decrease). There has been an increase in the unit cost and frequency of use of insulin analogues for anti-diabetic therapy in Colombian patients. Moreover, there is controversy over whether insulin analogues are a more cost-effective treatment than human insulins for the general diabetic population. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  1. Is Insulin Action in the Brain Relevant in Regulating Blood Glucose in Humans?

    Science.gov (United States)

    Dash, Satya; Xiao, Changting; Morgantini, Cecilia; Koulajian, Khajag; Lewis, Gary F

    2015-07-01

    In addition to its direct action on the liver to lower hepatic glucose production, insulin action in the central nervous system (CNS) also lowers hepatic glucose production in rodents after 4 hours. Although CNS insulin action (CNSIA) modulates hepatic glycogen synthesis in dogs, it has no net effect on hepatic glucose output over a 4-hour period. The role of CNSIA in regulating plasma glucose has recently been examined in humans and is the focus of this review. Intransal insulin (INI) administration increases CNS insulin concentration. Hence, INI can address whether CNSIA regulates plasma glucose concentration in humans. We and three other groups have sought to answer this question, with differing conclusions. Here we will review the critical aspects of each study, including its design, which may explain these discordant conclusions. The early glucose-lowering effect of INI is likely due to spillover of insulin into the systemic circulation. In the presence of simultaneous portal and CNS hyperinsulinemia, portal insulin action is dominant. INI administration does lower plasma glucose independent of peripheral insulin concentration (between ∼3 and 6 h after administration), suggesting that CNSIA may play a role in glucose homeostasis in the late postprandial period when its action is likely greatest and portal insulin concentration is at baseline. The potential physiological role and purpose of this pathway are discussed in this review. Because the effects of INI are attenuated in patients with type 2 diabetes and obesity, this is unlikely to be of therapeutic utility.

  2. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  3. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  4. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers

    Directory of Open Access Journals (Sweden)

    Tongtong Zhang

    2018-05-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths. Traditional chemotherapy causes serious toxicity due to the wide bodily distribution of these drugs. Curcumin is a potential anticancer agent but its low water solubility, poor bioavailability and rapid metabolism significantly limits clinical applications. Here we developed a liposomal curcumin dry powder inhaler (LCD for inhalation treatment of primary lung cancer. LCDs were obtained from curcumin liposomes after freeze-drying. The LCDs had a mass mean aerodynamic diameter of 5.81 μm and a fine particle fraction of 46.71%, suitable for pulmonary delivery. The uptake of curcumin liposomes by human lung cancer A549 cells was markedly greater and faster than that of free curcumin. The high cytotoxicity on A549 cells and the low cytotoxicity of curcumin liposomes on normal human bronchial BEAS-2B epithelial cells yielded a high selection index partly due to increased cell apoptosis. Curcumin powders, LCDs and gemcitabine were directly sprayed into the lungs of rats with lung cancer through the trachea. LCDs showed higher anticancer effects than the other two medications with regard to pathology and the expression of many cancer-related markers including VEGF, malondialdehyde, TNF-α, caspase-3 and BCL-2. LCDs are a promising medication for inhalation treatment of lung cancer with high therapeutic efficiency. Key words: Curcumin, Dry powder inhaler, Liposome, Primary lung cancer, Pulmonary delivery

  5. Cancer hazard from inhaled plutonium

    International Nuclear Information System (INIS)

    Gofman, J.W.

    1975-01-01

    The best estimate of the lung cancer potential in humans for inhaled insoluble compounds of plutonium (such as PuO 2 particles) has been grossly underestimated by such authoritative bodies as the International Commission on Radiological Protection and the British Medical Research Council. Calculations are presented of lung cancer induction by 239 Pu as insoluble particles and for deposited reactor-grade Pu. The reason for the gross underestimate of the carcinogenic effects of Pu by ICRP or the British Medical Research Council (BMRC) is their use of a totally unrealistic idealized model for the clearance of deposited Pu from the lungs and bronchi plus their non-recognition of the bronchi as the true site for most human lung cancers. The erroneous model used by such organizations also fails totally to take into account the effect of cigarette-smoking upon the physiological function of human lungs. Plutonium nuclides, such as 239 Pu, or other alpha particle-emitting nuclides, in an insoluble form represent an inhalation cancer hazard in a class some 100,000 times more potent than the potent chemical carcinogens, weight for weight. The already-existing lung cancer data for beagle dogs inhaling insoluble PuO 2 particles is clearly in order of magnitude agreement with calculations for humans

  6. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    Science.gov (United States)

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  7. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-/sup 125/I-Tyr-A14-insulin preparation

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, A; Pasternack, A [Tampere Univ. (Finland). Dept. of Clinical Sciences; Koivula, T; Jokela, H; Lehtinen, M [Tampere Univ. Central Hospital (Finland). Dept. of Clinical Chemistry

    1984-09-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono-/sup 125/I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected.

  8. Glucose metabolism in pigs expressing human genes under an insulin promoter.

    Science.gov (United States)

    Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David

    2015-01-01

    Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a.

    Science.gov (United States)

    O'Toole, Timothy E; Abplanalp, Wesley; Li, Xiaohong; Cooper, Nigel; Conklin, Daniel J; Haberzettl, Petra; Bhatnagar, Aruni

    2014-08-01

    Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, β3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated β3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27; AspB10; AspB28) on meal-related plasma glucose excursions in type I diabetic subjects.

    Science.gov (United States)

    Kang, S; Creagh, F M; Peters, J R; Brange, J; Vølund, A; Owens, D R

    1991-07-01

    To compare postprandial glucose excursions and plasma free insulin-analogue levels after subcutaneous injection of three novel human insulin analogues (AspB10; AspB9, GluB27; and AspB28) with those after injection of soluble human insulin (Actrapid HM U-100). Six male subjects with insulin-dependent diabetes, at least 1 wk apart and after an overnight fast and basal insulin infusion, received 72 nmol (approximately 12 U) s.c. of soluble human insulin 30 min before, or 72 nmol of each of the three analogues immediately before, a standard 500-kcal meal. Mean basal glucoses were similar on the 4 study days. Compared to human insulin (6.3 +/- 0.8 mM), mean +/- SE peak incremental glucose rises were similar after analogues AspB10 (5.4 +/- 0.8 mM) and AspB9, GluB27 (5.4 +/- 0.7 mM) and significantly lower after analogue AspB28 (3.6 +/- 1.2 mM, P less than 0.02). Relative to soluble human insulin (100% +/- SE21), incremental areas under the glucose curve between 0 and 240 min were 79% +/- 34 (AspB10, NS), 70% +/- 29 (AspB9, GluB27, NS), and 43% +/- 23 (AspB28, P less than 0.02). Basal plasma free insulin levels were similar on the 4 study days. Plasma free insulin-analogue levels rose rapidly to peak 30 min after injection at 308 +/- 44 pM (AspB10); 1231 +/- 190 pM (AspB9, GluB27) and 414 +/- 42 pM (AspB28) and were significantly higher than corresponding (i.e., 30 min postmeal) plasma free insulin levels of 157 +/- 15 pM (P less than 0.02 in each case). Plasma profiles of the insulin analogues were more physiological than that of human insulin after subcutaneous injection. All three analogues given immediately before the meal are at least as effective as soluble human insulin given 30 min earlier. These analogues are promising potential candidates for short-acting insulins of the future.

  11. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans

    DEFF Research Database (Denmark)

    Bezy, Olivier; Tran, Thien T; Pihlajamäki, Jussi

    2011-01-01

    C57BL/6J and 129S6/Sv (B6 and 129) mice differ dramatically in their susceptibility to developing diabetes in response to diet- or genetically induced insulin resistance. A major locus contributing to this difference has been mapped to a region on mouse chromosome 14 that contains the gene encoding...... tolerance, and reduced hepatosteatosis with aging. Conversely, mice with liver-specific overexpression of PKCδ developed hepatic insulin resistance characterized by decreased insulin signaling, enhanced lipogenic gene expression, and hepatosteatosis. Therefore, changes in the expression and regulation...... of PKCδ between strains of mice and in obese humans play an important role in the genetic risk of hepatic insulin resistance, glucose intolerance, and hepatosteatosis; and thus PKCδ may be a potential target in the treatment of metabolic syndrome....

  12. Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2007-01-01

    In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain...... lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while......, at the level of glycogen synthesis, insulin resistance was only seen in lean myotubes. Primary insulin resistance in diabetic myotubes was significantly worsened at the level of glucose and lipid uptake. The present study is the first convincing data linking functional mitochondrial impairment per se...

  13. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Maria L. Mizgier

    2017-01-01

    Full Text Available Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines. We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS. In conditioned media from human myotubes incubated with/without insulin (100 nmol/L for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p<0.05. Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  14. ADAMTS13 expression in human chondrosarcoma cells induced by insulin

    Directory of Open Access Journals (Sweden)

    Rıdvan Fırat

    2014-06-01

    Full Text Available Objectives: A Disintegrin-like Metalloproteinase with Thrombospondin Motifs (ADAMTS proteins is a proteinase enzyme group that primarily located in the extracellular matrix (ECM. Insulin has been known to stimulate proteoglycan biosynthesis in chondrosarcoma chondrocytes and thereby the levels of ADAMTS proteins. The aim of this study is to evaluate the time-dependent effects of insulin on the ADAMTS13 expression in OUMS-27 human chondrosarcoma cell line to test the hypothesis that insulin diminishes ADAMTS13 expression because of its anabolic effects. Methods: To test this hypothesis OUMS-27 cells were cultured in Dulbecco’s modified Eagle’ medium (DMEM containing 10μg/mL insulin. The medium containing insulin was changed every other day up to 11th day. Cells were harvested at 1, 3, 7, and 11th days and protein and RNA isolations were performed at the proper times. The levels of RNA expression of ADAMTS13 was quantified by qRT-PCR using appropriate primers while protein levels was detected by Western blot technique using anti-ADAMTS13 antibody. Results: Although there was a decrease in both RNA and protein levels in insulin-applied groups compared to the control cells, it was not statistically significant. Conclusion: Under the light of our findings, it is suggested that insulin does not participate in regulation of ADAMTS13 in OUMS-27 chondrosarcoma cells. J Clin Exp Invest 2014; 5 (2: 226-232

  15. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    Science.gov (United States)

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (pPCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Influence of Binasal and Uninasal Inhalations of Essential Oil of Abies koreana Twigs on Electroencephalographic Activity of Human

    Directory of Open Access Journals (Sweden)

    Min Seo

    2016-01-01

    Full Text Available Objectives. The present work investigates the effect of essential oil from the twigs of Abies koreana on electroencephalographic (EEG activity of human brain in order to understand the influence of binasal and uninasal inhalations. Methods. To accomplish this study, the essential oil from the twigs of A. koreana (AEO was isolated by steam distillation and the EEG readings were recorded using QEEG-8 system from 8 grounding electrodes according to the International 10-20 System. Results. D-Limonene (25.29%, bornyl acetate (19.31%, camphene (12.48%, α-pinene (11.88%, β-pinene (6.45%, and eudesm-7(11-en-ol (5.38% were the major components in the essential oil. In the EEG study, the absolute alpha (left frontal and right parietal and absolute fast alpha (right parietal values significantly increased during the binasal inhalation of AEO. In the uninasal inhalation, absolute beta and theta values decreased significantly, especially in the right frontal and left and right parietal regions. The results revealed that the AEO produced different EEG power spectrum changes according to the nostril difference. Conclusion. The changes in EEG values due to the inhalation of AEO may contribute to the enhancement of relaxation (binasal inhalation and alertness/attention (right uninasal inhalation states of brain which could be used in aromatherapy treatments.

  17. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  18. Effect of alcohol on insulin secretion and viability of human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Nikolić Dragan

    2017-01-01

    Full Text Available Introduction/Objective. There are controversial data in the literature on the topic of effects of alcohol on insulin secretion, apoptosis, and necrosis of the endocrine and exocrine pancreas. The goal of this research was to determine how alcohol affects the insulin secretion and viability of human adult pancreatic islets in vitro during a seven-day incubation. Methods. Human pancreatic tissue was digested with Collagenase XI, using a non-automated method. Cultures were incubated in Roswell Park Memorial Institute (RPMI medium containing alcohol (10 μl of alcohol in 100 ml of medium. Insulin stimulation index (SI and viability of the islets were determined on the first, third, and seventh day of cultivation. Results. Analysis of the viability of the islets showed that there wasn’t significant difference between the control and the test group. In the test group, viability of the cultures declined with the time of incubation. SI of the test group was higher compared to the control group, by 50% and 25% on the first and third day of cultivation, respectively. On the seventh day, insulin secretion was reduced by 25%. The difference was not statistically significant (p > 0.05. In the test group, significant decline in insulin secretion was found on the third and seventh day of incubation (p ≤ 0.05. Conclusion. Alcohol can increase or decrease insulin secretion of islets cultures, which may result in an inadequate response of pancreatic β-cells to blood glucose, leading to insulin resistance, and increased risk of developing type 2 diabetes. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 41002

  19. Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    Science.gov (United States)

    Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats Authors: Gary E. Hatch, John McKee, James Brown, Bill McDonnell, Elston Seal, Joleen Soukup, Ralph Slade, Kay Crissman and Robert Devlin, National Health and Environmental...

  20. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  1. RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human β Cells

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    2014-12-01

    Full Text Available Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca2+-channel genes resulting in the reduction in L-type Ca2+-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca2+-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes.

  2. Alternate Phosphorylation/O-GlcNAc Modification on Human Insulin IRSs: A Road towards Impaired Insulin Signaling in Alzheimer and Diabetes

    Directory of Open Access Journals (Sweden)

    Zainab Jahangir

    2014-01-01

    Full Text Available Impaired insulin signaling has been thought of as important step in both Alzheimer’s disease (AD and type 2 diabetes mellitus (T2DM. Posttranslational modifications (PTMs regulate functions and interaction of insulin with insulin receptors substrates (IRSs and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser and threonine (Thr residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.

  3. Validation of methods for measurement of insulin secretion in humans in vivo

    DEFF Research Database (Denmark)

    Kjems, L L; Christiansen, E; Vølund, A

    2000-01-01

    To detect and understand the changes in beta-cell function in the pathogenesis of type 2 diabetes, an accurate and precise estimation of prehepatic insulin secretion rate (ISR) is essential. There are two common methods to assess ISR, the deconvolution method (by Eaton and Polonsky)-considered th......To detect and understand the changes in beta-cell function in the pathogenesis of type 2 diabetes, an accurate and precise estimation of prehepatic insulin secretion rate (ISR) is essential. There are two common methods to assess ISR, the deconvolution method (by Eaton and Polonsky...... of these mathematical techniques for quantification of insulin secretion have been tested in dogs, but not in humans. In the present studies, we examined the validity of both methods to recover the known infusion rates of insulin and C-peptide mimicking ISR during an oral glucose tolerance test. ISR from both......, and a close agreement was found for the results of an oral glucose tolerance test. We also studied whether C-peptide kinetics are influenced by somatostatin infusion. The decay curves after bolus injection of exogenous biosynthetic human C-peptide, the kinetic parameters, and the metabolic clearance rate were...

  4. Comments on the rat lung as a human surrogate in inhalation studies

    International Nuclear Information System (INIS)

    Koblinger, L.

    1988-01-01

    The laboratory rat is often used as a surrogate to estimate the hazard to human health following inhalation exposure to ambient aerosols. Extrapolation of rat deposition data to humans depends, however, on the similarities and differences between the morphometric structures of the two airway systems. The main structural difference between the lungs of the two species, aside from dimensions per se, is their respective airway branching pattern : while the human lung is a rather symmetrically, dichotomously dividing system, the rat network is a more monopodial branching structure. In our stochastic modelling approach to defining suitable morphologies for human and rat lung, we utilise measured morphometric dimensions as the data base upon which a rigorous statistical analysis is performed, instead of forcing them into a formalised, average pathway scheme. This stochastic approach allows us, therefore, to account for structural irregularities, such as asymmetric branching, monopodial structure, and inter and intra-subject variability

  5. Objective measurement of inhaler inhalation flow profile using acoustic methods

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, H.; Taylor, T.E.; Marco, S.; Reilly, R.B.

    2016-07-01

    Patients with asthma and chronic obstructive pulmonary diseases (COPD) are mostly treated with inhalers that deliver medication directly to their airways. Drug delivery from dry powder inhalers (DPIs) is very much reliant on the inhalation manoeuvre, specifically the peak inspiratory flow rate (PIFR), inspiratory capacity (IC) and inhalation rise time (IRT) of the inhalation. It has been widely reported that patients may not follow correct inhalation technique while using their inhaler. In this study, a novel acoustic method is proposed to accurately estimate inhalation flow profile using only one inhalation recording for calibration. An Ellipta DPI was placed inside an airtight container with a spirometer connected in order to measure inhalation flow parameters. An acoustic recording device (Inhaler Compliance Assessment (INCA)) was also attached to the DPI. Inhalation audio and flow signals were recorded simultaneously. The data were collected from 20 healthy subjects while performing inhaler inhalations at a range of inspiratory flow rates. A power law regression model was computed to obtain the relationship between the acoustic envelope of the inhalation and flow profile of each recording. Each model was tested on the remaining audio signals to estimate flow profile. The average estimation error was found to be 10.5±0.3% for estimating flow profile from audio signals. Inhalation flow profile parameters (PIFR, IC and IRT) could then be measured from the estimated flow profile with high accuracy giving information on user inhalation technique. This method may assist in improving patient inhaler adherence and overall disease control. (Author)

  6. Short-and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    OpenAIRE

    Gathercole, LL; Morgan, SA; Bujalska, IJ; Stewart, PM; Tomlinson, JW

    2011-01-01

    Background: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. Objectives: We have therefore compared the ...

  7. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene.

    Science.gov (United States)

    Hrytsenko, Olga; Pohajdak, Bill; Wright, James R

    2016-07-03

    Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.

  8. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  9. Risk Communication in EPA's Controlled Inhalation Exposure Studies and in Support.

    Science.gov (United States)

    Resnik, David

    2017-01-01

    On March 28, 2017, the National Academy of Sciences, Engineering, and Medicine (NASEM) released a much-anticipated report on the Environmental Protection Agency's controlled human inhalation exposure studies. This essay reviews the ethical controversies that led to the genesis of the report, summarizes its key findings, and comments on its approach to informing human subjects about the risks of inhalation exposure studies. NASEM's report makes a valuable contribution to our understanding of the scientific and ethical issues involved in conducting human inhalation exposure studies. Its definition of "reasonably foreseeable risks" provides useful guidance to investigators, research participants, and institutional review board members.

  10. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Heil, R.; Hofmann, W. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Hussain, M. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Higher Education Commission of Pakistan, Islamabad (Pakistan)

    2015-05-15

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM{sup -1}. If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas. (orig.)

  11. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  12. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple).

    Science.gov (United States)

    Das, Sromona; Bhattacharyya, Debasish

    2017-12-01

    Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial...... hyperglycemia with a tendency towards fewer episodes of severe hypoglycemia compared with human insulin. Treatment with insulin aspart was associated with a tendency toward fewer fetal losses and preterm deliveries than treatment with human insulin. Insulin aspart could not be detected in the fetal circulation...... and no increase in insulin antibodies was found. Thus, the use of insulin aspart in pregnancy is regarded safe....

  14. Neuromotor effects of acute ethanol inhalation exposure in humans: a preliminary study.

    Science.gov (United States)

    Nadeau, Véronique; Lamoureux, Daniel; Beuter, Anne; Charbonneau, Michel; Tardif, Robert

    2003-07-01

    Ethanol (ETOH) is added to unleaded gasoline to decrease environmental levels of carbon monoxide from automobiles emissions. Therefore, addition of ETOH in reformulated fuel will most likely increase and the involuntarily human exposure to this chemical will also increase. This preliminary study was undertaken to evaluate the possible neuromotor effects resulting from acute ETOH exposure by inhalation in humans. Five healthy non-smoking adult males, with no history of alcohol abuse, were exposed by inhalation, in a dynamic, controlled-environment exposure chamber, to various concentrations of ETOH (0, 250, 500 and 1,000 ppm in air) for six hours. Reaction time, body sway, hand tremor and rapid alternating movements were measured before and after each exposure session by using the CATSYS 7.0 system and a diadochokinesimeter. The concentrations of ETOH in blood and in alveolar air were also measured. ETOH was not detected in blood nor in alveolar air when volunteers were exposed to 250 and 500 ppm, but at the end of exposure to 1,000 ppm, blood and alveolar air concentrations were 0.443 mg/100ml and 253.1 ppm, respectively. The neuromotor tests did not show conclusively significant differences between the exposed and non-exposed conditions. In conclusion, this study suggests that acute exposure to ethanol at 1,000 ppm or lower or to concentrations that could be encountered upon refueling is not likely to cause any significant neuromotor alterations in healthy males.

  15. Positron emission tomography in human hemispheric infarction: a study with 150 continuous inhalation technique

    International Nuclear Information System (INIS)

    Castaigne, Paul; Baron, J.C.; Bousser, M.G.; Comar, D.; Kellershohn, C.; CEA, 91 - Orsay

    1979-01-01

    Non-invasive tomographic imaging of cerebral blood flow and oxygen metabolism has now become possible with the 15 O continuous inhalation technique coupled with positron emission tomography (PET). We have for the first time applied this procedure in a large scale study of human hemispheric infarction. From this study, it may be concluded that: various hitherto undescribed patterns of disturbances in the perfusion/metabolism couple that occur in cerebral infarction have been documented by PET imaging of CBF and EO 2 . The EO 2 appears as an important physiological parameter in the study of recent cerebral infarction, and specific patterns of the CBF/EO 2 relationship are now emerging that may have important pathophysiologic, prognostic and therapeutic implications. Despite some limitations, the non invasive 15 O inhalation technique has a number of major specific advantages that make it particularly suited for the study of ischemic brain disorders

  16. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  17. The Investigation of ADAMTS16 in Insulin-Induced Human Chondrosarcoma Cells.

    Science.gov (United States)

    Cakmak, Ozlem; Comertoglu, Ismail; Firat, Ridvan; Erdemli, Haci Kemal; Kursunlu, S Fatih; Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Adam, Bahattin; Demircan, Kadir

    2015-08-01

    A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not. Chondrosarcoma cells were cultured in Dulbecco's modified Eagle's medium having either 10 μg/mL insulin or not. While the experiment was going on, the medium containing insulin had been changed every other day. Cells were harvested at 1st, 3rd, 7th, and 11th days; subsequently, RNA and proteins were isolated in every experimental group according to their time interval. RNA expression of ADAMTS was estimated by quantitative real-time polymerase chain reaction (qRT-PCR) by using primers. Immunoreactive protein levels were encountered by the western blot protein detection technique by using proper anti-ADAMTS16 antibodies. ADAMTS16 mRNA expression level of chondrosarcoma cells was found to be insignificantly decreased in chondrosarcoma cells induced by insulin detected by the qRT-PCR instrument. On the other hand, there was a gradual decrease in immune-reactant ADAMTS16 protein amount by the time course in insulin-treated cell groups when compared with control cells. It has been suggested that insulin might possibly regulate ADAMTS16 levels/activities in OUMS-27 chondrosarcoma cells taking a role in extracellular matrix turnover.

  18. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  19. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    Science.gov (United States)

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (pprogesterone production by 13-18% (pprogesterone production by 17-20% (pprogesterone production by 20-30% (pprogesterone production by 40-60% (pprogesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  20. The effect of feeding frequency on insulin and ghrelin responses in human subjects

    DEFF Research Database (Denmark)

    Solomon, Thomas; Chambers, Edward S; Jeukendrup, Asker E

    2008-01-01

    Recent work shows that increased meal frequency reduces ghrelin responses in sheep. Human research suggests there is an interaction between insulin and ghrelin. The effect of meal frequency on this interaction is unknown. Therefore, we investigated the effect of feeding frequency on insulin...... and ghrelin responses in human subjects. Five healthy male volunteers were recruited from the general population: age 24 (SEM 2)years, body mass 75.7 (SEM 3.2) kg and BMI 23.8 (SEM 0.8) kg/m(2). Volunteers underwent three 8-h feeding regimens: fasting (FAST); low-frequency(two) meal ingestion (LOFREQ......(MEAL)); high-frequency (twelve) meal ingestion (HIFREQ(MEAL)). Meals were equi-energetic within trials,consisting of 64% carbohydrate, 23% fat and 13% protein. Total energy intake was equal between feeding trials. Total area under the curve for serum insulin and plasma ghrelin responses did not differ between...

  1. Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin.

    Science.gov (United States)

    Mecklenburg, M; Lindbladh, C; Li, H; Mosbach, K; Danielsson, B

    1993-08-01

    A flow-injected thermometric enzyme linked immunoassay for human insulin which employs the lactate dehydrogenase/lactate oxidase (LDH/LOD) substrate recycling system for signal amplification is described. The system is composed of two columns, an immunosorbent column containing immobilized anti-insulin antibodies for sensing and a recycling column containing immobilized LDH/LOD/Catalase for detection. The effect of flow rates, conjugate concentrations, and chromatographic support material upon the sensitivity of the assay are investigated. The assay has a detection limit of 0.025 microgram/ml and a linear range from 0.05 to 2 micrograms/ml. This corresponds to a 10-fold increase in sensitivity over the unamplified system. A recombinant human insulin-proinsulin conjugate was also tested. The results show that enzymatic amplification can be employed to increase the sensitivity and reproducibility of flow injection assay-based biosensors. The implications of these results upon on-line analysis are discussed.

  2. Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate, and porcine origin.

    Science.gov (United States)

    Mueller, Kate R; Balamurugan, A N; Cline, Gary W; Pongratz, Rebecca L; Hooper, Rebecca L; Weegman, Bradley P; Kitzmann, Jennifer P; Taylor, Michael J; Graham, Melanie L; Schuurman, Henk-Jan; Papas, Klearchos K

    2013-01-01

    Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remain a critical issue. Islets isolated from human (n = 3), NHP (n = 2), adult pig (AP, n = 3), and juvenile pig (JP, n = 4) pancreata were perifused with medium at basal glucose (2.5 mm) followed by high glucose (16.7 mm) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Nonhuman primate islets exhibited GSIS 3-fold higher than AP islets, while AP and JP islets exhibited GSIS 1/3 and 1/30 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/5 of human islets. Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation. Porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets. © 2013 John Wiley & Sons A/S.

  3. Analyses of insulin-potentiating fragments of human growth hormone by computative simulation; essential unit for insulin-involved biological responses.

    Science.gov (United States)

    Ohkura, K; Hori, H

    2000-07-01

    We analyzed the structural features of insulin-potentiating fragments of human growth hormone by computative simulations. The peptides were designated from the N-terminus sequences of the hormone positions at 1-15 (hGH(1-15); H2N-Phe1-Pro2-Thr3-Ile4-Pro5-Leu6-Ser7-Arg8-L eu9-Phe10-Asp11-Asn12-Ala13-Met14-Leu15 -COOH), 6-13 (hGH(6-13)), 7-13 (hGH(7-13)) and 8-13 (hGH(8-13)), which enhanced insulin-producing hypoglycemia. In these peptide molecules, ionic bonds were predicted to form between 8th-arginyl residue and 11th-aspartic residue, and this intramolecular interaction caused the formation of a macrocyclic structure containing a tetrapeptide Arg8-Leu9-Phe10-Asp11. The peptide positions at 6-10 (hGH(6-10)), 9-13 (hGH(9-13)) and 10-13 (hGH(10-13)) did not lead to a macrocyclic formation in the molecules, and had no effect on the insulin action. Although beta-Ala13hGH(1-15), in which the 13th-alanine was replaced by a beta-alanyl residue, had no effect on insulin-producing hypoglycemia, the macrocyclic region (Arg8-Leu9-Phe10-Asp11) was observed by the computative simulation. An isothermal vibration analysis of both of beta-Ala13hGH(1-15) and hGH(1-15) peptide suggested that beta-Ala13hGH(1-15) is molecule was more flexible than hGH(1-15); C-terminal carboxyl group of Leu15 easily accessed to Arg8 and inhibited the ionic bond formation between Arg8 and Asp11 in beta-Ala13hGH(1-15). The peptide of hGH(8-13) dose-dependently enhanced the insulin-involved fatty acid synthesis in rat white adipocytes, and stabilized the C6-NBD-PC (1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]-sn- glycero-3-phosphatidylcholine) model membranes. In contrast, hGH(9-13) had no effect both on the fatty acid synthesis and the membrane stability. In the same culture conditions as the fatty acid synthesis assay, hGH(8-13) had no effect on the transcript levels of glucose transporter isoforms (GLUT 1, 4) and hexokinase isozymes (HK I, II) in rat white adipocytes. Judging from

  4. Effect of iodination site on binding of radiolabeled ligand by insulin antibodies and insulin autoantibodies

    International Nuclear Information System (INIS)

    Diaz, J.L.; Wilkin, T.J.

    1988-01-01

    Four human insulins and four porcine insulins, each monoiodinated to the same specific activity at one of the four tyrosine residues (A14, A19, B16, B26) and purified by reversed-phase liquid chromatography, were tested in a radiobinding assay against a panel of insulin-antibody (IA)-positive sera from 10 insulin-treated diabetics and insulin-autoantibody-positive (IAA) sera from 10 nondiabetics. Of the 10 IAA-positive sera, five were fully cross reactive with both insulin species, and five were specific for human insulin. The rank order of binding of sera with the four ligands from each species was random for IA (mean rank values of 1.9 for A14, 2.0 for A19, 2.5 for B16, and 3.6 for B26 from a possible ranking range of 1 to 4), but more consistent for non-human-insulin-specific IAA (mean rank values 1.3 for A14, 3.8 for A19, 1.7 for B16, and 3.2 for B26 for labeled human insulins; 1.2 for A14, 4.0 for A19, 1.8 for B16, and 3.0 for B26 for labeled porcine insulins). The rank order of binding was virtually uniform for human-insulin-specific IAA (mean values 1.2 for A14, 3.0 for A19, 1.8 for B16, and 4.0 for B26). The influence of iodination site on the binding of labeled insulin appears to be dependent on the proximity of the labeled tyrosine to the antibody binding site and the clonal diversity, or restriction, of insulin-binding antibodies in the test serum. When IA and IAA are measured, the implications of this study regarding the choice of assay ligand may be important

  5. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  6. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-01-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10 6 receptors per cell. The cell line with the highest 125 I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10 6 receptors with a K/sub d/ of 10 -9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 10 7 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  7. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  8. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  9. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    Science.gov (United States)

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  10. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  11. Incidence of bone cancer in beagles after inhalation of 90SrCl2 or 238PuO2: Implications for estimation of risk to humans

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Griffith, W.C.; Hahn, F.F.; Snipes, M.B.; Boecker, B.B.; McClellan, R.O.

    1986-01-01

    Among the life-span studies conducted with beagle dogs, bone cancer has been in two studies the predominant effect at death. These studies involved dogs that inhaled 90 SrCl 2 , which is very soluble in body fluids; and dogs that inhaled 238 PuO 2 , which is initially insoluble but eventually becomes fragmented and more soluble. Both radionuclides were deposited in the skeleton after dissolution in the lung and absorption into the bloodstream. All dogs in the 90 Sr study are dead, and all living dogs in the 238 Pu study are at least 7 years postexposure. Results from these two studies were compared to determine the relative biological effectiveness (RBE) of chronic beta and alpha radiation delivered from these two radionuclides. These data also were used to estimate the risk of bone cancer in man by using comparisons with data from the 90 Sr-, 239 Pu-, and 226 Ra-injected dogs at the University of Utah and data on humans who ingested 226 Ra or were injected with 224 Ra. Such comparisons provided a link between studies in laboratory animals and the available human data. In this way risks of bone cancer in humans from inhaled plutonium or strontium were estimated, even though currently no human cases of bone cancer are known to have resulted from the inhalation of either of these radionuclides. 15 refs., 7 figs., 7 tabs

  12. mRNA related to insulin family in human placenta

    International Nuclear Information System (INIS)

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-01-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A + ) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A + ) RNA templates. Five hundred transformants were initially screened by colony hybridization using a 32 P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II

  13. mRNA related to insulin family in human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  14. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L.

    1990-01-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  15. Inhaled Steroids

    Science.gov (United States)

    ... considerations when your dosage changes. What about side effects and inhaled steroids? The most common side effects with inhaled steroids ... inhaled steroid has much less potential for side effects than steroid pills or syrups. There have been concerns regarding ...

  16. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges

    Directory of Open Access Journals (Sweden)

    Wing-Hin Lee

    2015-12-01

    Full Text Available Ever since the success of developing inhalable insulin, drug delivery via pulmonary administration has become an attractive route to treat chronic diseases. Pulmonary delivery system for nanotechnology is a relatively new concept especially when applicable to lung cancer therapy. Nano-based systems such as liposome, polymeric nanoparticles or micelles are strategically designed to enhance the therapeutic index of anti-cancer drugs through improvement of their bioavailability, stability and residency at targeted lung regions. Along with these benefits, nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening and drug tracking. Nevertheless, delivery of nano-based drugs via pulmonary administration for lung cancer therapy is still in its infancy and numerous challenges are expected. Pharmacology, immunology, toxicology and large-scale manufacturing (stability and activity of drugs are some aspects in nanotechnology that should be taken into consideration for the development of inhalable nano-based chemotherapeutic drugs. This review will focus on the current inhalable nano-based drugs for lung cancer treatment.

  17. Inhalant Abuse

    Science.gov (United States)

    ... is when you pour the product into a bag, hold it over your mouth and nose, and inhale. How is inhalant abuse diagnosed? If you think your child is abusing inhalants, talk to them. Be honest and open. Tell them ...

  18. Long-term tolerability of inhaled human insulin (Exubera) in patients with poorly controlled type 2 diabetes

    DEFF Research Database (Denmark)

    Barnett, A H; Lange, P; Dreyer, M

    2007-01-01

    or metformin (study 1) and patients poorly controlled on metformin were randomised to adjunctive EXU or the sulphonylurea, glibenclamide (study 2). PATIENTS: The studies included 446 (study 1) and 476 (study 2) patients with type 2 diabetes, no clinically significant respiratory disease and glycosylated....... There was no discernable effect of long-term EXU therapy on pulmonary gas exchange. Insulin antibody binding reached a plateau at 6 months and did not correlate with HbA(1c) or lung function changes. Glycaemic control was maintained over 2 years. CONCLUSIONS: Exubera was well tolerated during long-term use. Pulmonary...... function changes compared with comparator groups were small, non-progressive and reversed upon treatment discontinuation. Importantly, rates of lung function change were indistinguishable between EXU and comparator after 6 months of therapy. Udgivelsesdato: 2007-Oct...

  19. Hepatic Diacylglycerol-Associated Protein Kinase Cε Translocation Links Hepatic Steatosis to Hepatic Insulin Resistance in Humans

    NARCIS (Netherlands)

    ter Horst, Kasper W.; Gilijamse, Pim W.; Versteeg, Ruth I.; Ackermans, Mariette T.; Nederveen, Aart J.; la Fleur, Susanne E.; Romijn, Johannes A.; Nieuwdorp, Max; Zhang, Dongyan; Samuel, Varman T.; Vatner, Daniel F.; Petersen, Kitt F.; Shulman, Gerald I.; Serlie, Mireille J.

    2017-01-01

    Hepatic lipid accumulation has been implicated in the development of insulin resistance, but translational evidence in humans is limited. We investigated the relationship between liver fat and tissue-specific insulin sensitivity in 133 obese subjects. Although the presence of hepatic steatosis in

  20. Monoclonal antibodies directed to human insulin-like growth factor I (IGF I)

    International Nuclear Information System (INIS)

    Laubli, U.K.; Baier, W.; Celio, M.R.; Binz, H.; Humbel, R.E.

    1982-01-01

    Mouse hybridomas secreting antibodies to human insulin-like growth factor I (IGF I) were produced by fusion of spleen cells of hyperimmunised mice with FO mouse-myeloma cells. Eight clones producing antibodies against human IGF I have been isolated, two of which have been characterised. One was used in a radioimmunoassay, the other for immunopurification of IGF. (Auth.)

  1. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    Science.gov (United States)

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  2. Internalization and localization of basal insulin peglispro in cells.

    Science.gov (United States)

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than

  3. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  4. Dosage of DTPA administration by inhalation

    International Nuclear Information System (INIS)

    Koizumi, Akira; Fukuda, Satoshi; Yamada, Yuji; Iida, Haruzo; Shimo, Michikuni

    2000-01-01

    The administration of DTPA by inhalation was examined as an emergency medical treatment. In order to estimate the practical dosage to the human, an accurate model of the human air way was connected to a anesthetizer and respiration was simulated. Ca-DTPA, aerosolized by an ultra-sonic nebulizer, was administered by inhalation to the model. For the experiments, the respiratory volume (tidal volume) and the respiration rate was 12 per minute. Irrigation water from the model of larynx and mouth, and the air filter were collected and measured by chelate titration in order to determine the quantity of aerosolized DTPA and the amount deposited on the trachea and lang. The results indicated that the quantity of aerosolized DTPA varied with dilution of the DTPA solution in a ample. It was found that a 3 time dilution was the most practical and that 73 mg of DTPA per minute could be aerosolized. Furthermore, the results indicated that 46% of the aerosolized DTPA was taken in through inhalation and that 26% of DTPA was deposited in the trachea and lung. These results suggest that in practical application in the emergency medical treatment, 15 minutes of inhalation could delivered to approximately 500 mg of DTPA, and 130 mg could be delivered to the trachea and lung. It is considered that these quantity are enough amount to increase the effects of radioactive nuclides from the body, comparing with the recommended dosage for injection administration. (author)

  5. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  6. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells.

    NARCIS (Netherlands)

    Freund, C.M.A.H.; Ward-van Oostwaard, D.; Monshouwer-Kloots, J.; van den Brink, S.; van Rooijen, M.A.; Xu, X.; Zweigerdt, R.; Mummery, C.L.; Passier, R.

    2008-01-01

    Human embryonic stem cells (hESC) can proliferate indefinitely while retaining the capacity to form derivatives of all three germ layers. We have reported previously that hESC differentiate into cardiomyocytes when cocultured with a visceral endoderm-like cell line (END-2). Insulin/insulin-like

  7. Experiment of aerosol-release time for a novel automatic metered dose inhaler

    OpenAIRE

    Mingrong Zhang; Songhao Wang; Yu-Ching Yang

    2016-01-01

    The objective of this study was to evaluate the aerosol-release time in the development of a new automatic adapter for metered dose inhaler. With this device, regular manually operated metered dose inhalers become automatic. During the study, an inhalation simulator was designed and tested with the newly developed mechatronic system. By adjusting the volume and the pressure of the vacuum tank, most human inhalation waveforms were able to simulate. As an example, regular quick-deep and slow-de...

  8. Complete sequence-specific 1H NMR assignments for human insulin

    International Nuclear Information System (INIS)

    Kline, A.D.; Justice, R.M. Jr.

    1990-01-01

    Solvent conditions where human insulin could be studied by high-resolution NMR were determined. Both low pH and addition of acetonitrile were required to overcome the protein's self-association and to obtain useful spectra. Two hundred eighty-six 1 H resonances were located and assigned to specific sites on the protein by using two-dimensional NMR methods. The presence and position of numerous d NN sequential NOE's indicate that the insulin conformation seen in crystallographic studies is largely retained under these solution conditions. Slowly exchanging protons were observed for seven backbone amide protons and were assigned to positions A15 and A16 and to positions B15-B19. These amides all occur within helical regions of the protein

  9. Preparative isolation by high performance liquid chromatography of human insulin B chain produced in escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, N.; Antonio, S.; De Anda, R.; Gosset, G.; Bolivar, F. (Centro de Investigacion sobre Ingenieria Genetica y Biotecnologia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 510-3 Cuernavaca, Mor. 62271 (MX))

    1990-01-01

    This paper reports on a simple method developed for the analytical and preparative purification of human insulin B chain from recombinant origin. Three solvent systems: acetonitrile, isopropanol and methanol, were studied to determine their capacity to resolve the insulin B chain from a mixture of cyanogen bromide generated bacterial peptides. Using a {mu}Bondapak C18 column, it was possible to resolve the insulin B chain in all three systems. On a preparative scale, using a PrePak 500 C18 column with the isopropanol system, it was possible to purify insulin B chain and to obtain a 95% protein recovery.

  10. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  11. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    Science.gov (United States)

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  12. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea

    International Nuclear Information System (INIS)

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-01-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3–0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01–0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1–10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. - Highlights: • Size-dependent aerosol number was measured along the path of subway user. • Particles less than 0.4 μm were inhaled in outdoor but less so as deeper underground. • Coarse particles were inhaled significantly as users moved deeper underground. - We estimated the inhaled aerosol number concentration depending on particle size along the path of subway users.

  13. Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans.

    Science.gov (United States)

    Cooper, E Jane; Hudson, Alan L; Parker, Christine A; Morgan, Noel G

    2003-12-15

    It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.

  14. Inhalation Toxicology Research Institute annual report 1987-1988

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Mewhinney, J.A.; Bechtold, W.E.; Sun, J.D.; Coons, T.A.

    1988-12-01

    The mission of the Inhalation Toxicology Research Institute is to investigate the magnitude of human health effects that result from the inhalation of airborne materials at home, in the work place, or in the general environment. Diseases of the respiratory tract are major causes of suffering and death, and many of these diseases are directly related to the materials that people breath. The Institute's research is directed toward obtaining a better understanding of the basic biology of the respiratory tract and the mechanisms by which inhaled materials produce respiratory disease. Special attention is focused on studying the airborne materials released by various energy technologies, as well as those associated with national defense activities. The research uses a wide-ranging, comprehensive array of investigative approaches that are directed toward characterizing the source of the airborne material, following the material through its potential transformation in the air, identifying the mechanisms that govern its inhalation and deposition in the respiratory tract, and determining the fate of these inhaled materials in the body and the health effects they produce. The ultimate objectives are to determine the roles played by inhaled materials in the development of disease processes adn to estimate the risk they pose by inhaled materials in the development of disease processes and to estimate the risk they pose to humans who may be exposed to them. This report contains brief research papers that reflect the scope and recent findings of the Institute's research funded by the U.S. Department of Energy, principally through the Office of Health and Environmental Research. The papers are divided into topical sections. The first section, Characterization of Airborne Materials and Generation of Experimental Exposure Atmospheres, reflects the Institute's capabilities for fundamental aerosol research and the application of that expertise to toxicological studies. The second

  15. Inhalation Toxicology Research Institute annual report 1987-1988

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, J L; Mewhinney, J A; Bechtold, W E; Sun, J D; Coons, T A [eds.

    1988-12-01

    The mission of the Inhalation Toxicology Research Institute is to investigate the magnitude of human health effects that result from the inhalation of airborne materials at home, in the work place, or in the general environment. Diseases of the respiratory tract are major causes of suffering and death, and many of these diseases are directly related to the materials that people breath. The Institute's research is directed toward obtaining a better understanding of the basic biology of the respiratory tract and the mechanisms by which inhaled materials produce respiratory disease. Special attention is focused on studying the airborne materials released by various energy technologies, as well as those associated with national defense activities. The research uses a wide-ranging, comprehensive array of investigative approaches that are directed toward characterizing the source of the airborne material, following the material through its potential transformation in the air, identifying the mechanisms that govern its inhalation and deposition in the respiratory tract, and determining the fate of these inhaled materials in the body and the health effects they produce. The ultimate objectives are to determine the roles played by inhaled materials in the development of disease processes adn to estimate the risk they pose by inhaled materials in the development of disease processes and to estimate the risk they pose to humans who may be exposed to them. This report contains brief research papers that reflect the scope and recent findings of the Institute's research funded by the U.S. Department of Energy, principally through the Office of Health and Environmental Research. The papers are divided into topical sections. The first section, Characterization of Airborne Materials and Generation of Experimental Exposure Atmospheres, reflects the Institute's capabilities for fundamental aerosol research and the application of that expertise to toxicological studies. The second

  16. Model for deposition and long-term disposition of 134Cs-labeled fused aluminosilicate particles inhaled by guinea pigs

    International Nuclear Information System (INIS)

    Snipes, M.B.; McClellan, R.O.

    1986-01-01

    When considering which laboratory animal species to use in inhalation studies, it is important to evaluate the similarities and differences in deposition and fate of the inhaled materials in various laboratory animals compared with humans. Beagle dogs have deposition and clearance patterns of inhaled particles similar to humans. However, some studies require smaller laboratory animals to be cost effective or to allow an adequate number of animals to address the scientific questions. This study evaluated the deposition and clearance of a relatively insoluble aerosol inhaled by guinea pigs. The test aerosol was monodisperse 134 Cs-labeled fused aluminosilicate particles inhaled during 75 minute inhalation exposure. The guinea pigs had deposition similar to rats but respiratory tract retention and clearance patterns were similar to dogs and humans. 5 references, 2 figures, 1 table

  17. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients.

    Science.gov (United States)

    Hu, Xiaolei; Chen, Fengling

    2018-01-01

    Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS. © 2018 The authors.

  18. Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method.

    Science.gov (United States)

    Shim, Ha Eun; Lee, Jae Young; Lee, Chang Heon; Mushtaq, Sajid; Song, Ha Yeon; Song, Lee; Choi, Seong-Jin; Lee, Kyuhong; Jeon, Jongho

    2018-05-25

    To assess the risk posed by a toxic chemical to human health, it is essential to quantify its uptake in a living subject. This study aims to investigate the biological distribution of inhaled polyhexamethylene guanidine (PHMG) aerosol particle, which is known to cause severe pulmonary damage. By labeling with indium-111 ( 111 In), we quantified the uptake of PHMG for up to 7 days after inhalation exposure in rats. The data demonstrate that PHMG is only slowly cleared, with approximately 74% of inhaled particles persisting in the lungs after 168 h. Approximately 5.3% of inhaled particles were also translocated to the liver after 168 h, although the level of redistribution to other tissues, including the kidneys and spleen, was minimal. These observations suggest that large uptake and slow clearance may underlie the fatal inhalation toxicity of PHMG in humans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bronchial effects of leukotriene D4 inhalation in normal human lung

    DEFF Research Database (Denmark)

    Bisgaard, H; Groth, S

    1987-01-01

    airways in asthmatic patients out of attack. LTD4 caused a dose-dependent obstruction of the airways as measured by partial flow-volume curves and volume of trapped gas, yet only minor changes in forced expiratory volume in 1 s (FEV1) and peak expiratory flow rate. LTD4 was 1900-7000 times more potent......The aim of the study was to investigate whether inhaled leukotriene (LT) D4 could mimic the characteristics of asthmatic patients after allergen-induced attack, i.e. a prolonged subclinical bronchial obstruction, an increased reactivity of the airways and a late reaction. The effects of LTD4 were...... than histamine. LTD4 inhalations were almost symptomless as opposed to the irritative and dyspnoeic symptoms seen after inhalation of histamine. The time duration for the induced change in partial flow-volume curves was the same for the two drugs. Approximately 30 min elapsed until the bronchial...

  20. Efficacy of Oritavancin in a Murine Model of Bacillus anthracis Spore Inhalation Anthrax

    National Research Council Canada - National Science Library

    Heine, H. S; Bassett, J; Miller, L; Bassett, A; Ivins, B. E; Lehous, D; Arhin, F. F; Parr, Jr., T. R; Moeck, G

    2008-01-01

    The inhaled form of Bacillus anthracis infection may be fatal to humans. The current standard of care for inhalational anthrax postexposure prophylaxis is ciprofloxacin therapy twice daily for 60 days...

  1. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air

    Science.gov (United States)

    Garrison, Virginia H.; Majewski, Michael S.; Konde, Lassana; Wolf, Ruth E.; Otto, Richard D.; Tsuneoka, Yutaka

    2014-01-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan–Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 – 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara–Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

  2. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence

    Science.gov (United States)

    Lacalle Muls, Helena; Costello, Richard W.; Reilly, Richard B.

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be

  3. Insulin and the PI3K/AKT Signaling Pathway Regulate Ribonuclease 7 Expression in the Human Urinary Tract

    Science.gov (United States)

    Eichler, Tad; Becknell, Brian; Easterling, Robert S.; Ingraham, Susan E.; Cohen, Daniel M.; Schwaderer, Andrew; Hains, David S.; Li, Birong; Cohen, Ariel; Metheny, Jackie; Trindandapani, Susheela; Spencer, John David

    2017-01-01

    Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site of infection. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. The impact of diabetes on RNase 7 expression and function are unknown. Here, we investigate the effects of insulin on RNase 7. Using human urine specimens, we measured urinary RNase 7 concentrations in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared to controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, we explored the mechanisms by which insulin induces RNase 7. Insulin induces RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, we show that uropathogenic E. coli suppresses PI3K/AKT and RNase 7. Together, these results indicate that insulin and PI3K/AKT signaling are essential for RNase 7 expression. They also suggest that increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. These data may provide unique insight into novel UTI therapeutic strategies in at risk populations. PMID:27401534

  4. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal.

    Directory of Open Access Journals (Sweden)

    Mimi Z Chen

    Full Text Available Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB, and compared this to lean volunteers.The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2 patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2. Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50 and maximal (GDR100 GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity.Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001. Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004 but not GDR100 (P=0.3. These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001. Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA, and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA, and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively.Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.

  5. Metabolism and dosimetry of 106Ru inhaled as 106RuO4 by beagle dogs

    International Nuclear Information System (INIS)

    Snipes, M.B.

    1981-01-01

    This report provides metabolism and dosimetry data for inhaled ruthenium developed from studies in Beagle dogs that were exposed by inhalation to 106 RuO 4 . Twenty-six dogs were exposed nose-only to 106 RuO 4 and sacrificed at times from 2 hr to 512 days after inhalation exposure. Ninety-nine percent of the initial body burden was retained with an effective half-time of 1.2 days, 0.7% with a half-time of 14 days and 0.3% with a half-time of 170 days. Initial deposition was primarily in the nasopharyngeal and tracheobronchial regions. Results for deposition and retention of 106 Ru inhaled as 106 RuO 4 in dogs were similar to what has been observed for humans. The data for dogs were used to develop a model to predict potential radiation exposure patterns for humans after inhalation exposure to 106 RuO 4 . The model indicates that for humans the nasopharyngeal region, lower large intestine, and tracheobronchial epithelium would receive approx. 36, 13 and 10 times, respectively, the dose to 500 days after inhalation exposure to 106 RuO 4 that the lung would receive. The nasopharyngeal region should be considered the critical region for inhalation exposures to 106 RuO 4 . (author)

  6. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Lechner, Andreas; Nolan, Anna L.; Blacken, Robyn A.; Habener, Joel F.

    2005-01-01

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  7. Is the human nasal cavity at risk from inhaled radionuclides?

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Cuddihy, R.G.; Snipes, M.B.; McClellan, R.O.

    1986-01-01

    In a series of three life-span studies in which beagle dogs inhaled relatively soluble forms of beta-emitting radionuclides, a number of cancers of the nasal cavity have arisen at long times after the inhalation exposure. No such cancers were observed in the control dogs. Data obtained in other studies involving serial sacrifice of dogs that received these radionuclides in similar forms have shown that high local concentrations of the radionuclides can persist in nasal turbinates for long periods of time, depending on the physical half-life of the radionuclide inhaled. Several nasal carcinomas have also been observed in dogs injected with 137 CsCl in which the relative concentrations of beta activity in the turbinate region were not as pronounced as in the above studies. Similar risks of sinonasal cancer were calculated for dogs in each of these studies regardless of differences in radionuclide, dosimetry, and route of administration. Since sinonasal cancers have occurred in people exposed to alpha-emitting radionuclides, it is reasonable to assume this could occur with beta emitters as well. Radiation protection guidelines should account for the sinonasal region being at risk. 23 refs., 1 fig., 6 tabs

  8. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    Science.gov (United States)

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  9. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea.

    Science.gov (United States)

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-12-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3-0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01-0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1-10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... endogenous insulin secretion, which was estimated by deconvolution of C-peptide concentrations. Hepatic extraction of insulin was calculated as 1 minus the ratio of fasting posthepatic insulin delivery rate to fasting endogenous insulin secretion rate. Compared with controls, LIPO displayed increased fasting...... insulin (130%, P Hepatic extraction of insulin was similar between groups (LIPO, 55%; controls, 57%; P > .8). In LIPO, HEXi and MCRi correlated inversely with fasting insulin (r = -0.56, P

  11. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2014-09-01

    This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

  12. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  13. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    Science.gov (United States)

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Exogenous insulin antibody syndrome (EIAS: a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients

    Directory of Open Access Journals (Sweden)

    Xiaolei Hu

    2018-01-01

    Full Text Available Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs. IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS. The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS.

  15. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C

    1992-01-01

    is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  16. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Inhalation Toxicology Research Institute annual report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Bice, D.E.; Hahn, F.F.; Hoover, M.D.; Neft, R.E.; Thornton-Manning, J.R.; Bradley, P.L.

    1995-12-01

    The mission of the Inhalation Toxicology Research Institute (ITRI) is to conduct basic and applied research to improve the understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the largest laboratory dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  18. Inhalation Toxicology Research Institute annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bice, D.E.; Hahn, F.F.; Hoover, M.D.; Neft, R.E.; Thornton-Manning, J.R.; Bradley, P.L. [eds.

    1995-12-01

    The mission of the Inhalation Toxicology Research Institute (ITRI) is to conduct basic and applied research to improve the understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the largest laboratory dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  20. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Binhai Ren

    2016-04-01

    Full Text Available Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone, H4IIE/ND (NeuroD1 gene alone, and H4IIEins/ND (insulin and NeuroD1 genes. The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes.

  1. Effect of training on insulin sensitivity of glucose uptake and lipolysis in human adipose tissue

    DEFF Research Database (Denmark)

    Stallknecht, B; Larsen, J J; Mikines, K J

    2000-01-01

    Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men...... (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration......-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis...

  2. Inhalation Therapy in Horses.

    Science.gov (United States)

    Cha, Mandy L; Costa, Lais R R

    2017-04-01

    This article discusses the benefits and limitations of inhalation therapy in horses. Inhalation drug therapy delivers the drug directly to the airways, thereby achieving maximal drug concentrations at the target site. Inhalation therapy has the additional advantage of decreasing systemic side effects. Inhalation therapy in horses is delivered by the use of nebulizers or pressured metered dose inhalers. It also requires the use of a muzzle or nasal mask in horses. Drugs most commonly delivered through inhalation drug therapy in horses include bronchodilators, antiinflammatories, and antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cephalic phase secretion of insulin and other enteropancreatic hormones in humans

    DEFF Research Database (Denmark)

    Veedfald, Simon; Plamboeck, Astrid; Deacon, Carolyn F

    2016-01-01

    Enteropancreatic hormone secretion is thought to include a cephalic phase, but the evidence in humans is ambiguous. We studied vagally induced gut hormone responses with and without muscarinic blockade in 10 glucose-clamped healthy men (age: 24.5 ± 0.6 yr, means ± SE; body mass index: 24.0 ± 0.5 kg...... and abolished the MSF response. Neither insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP), nor glucagon-like peptide-1 (GLP-1) levels changed in response to MSF or atropine. Glucagon and ghrelin levels were markedly attenuated by atropine prior to and during the clamp: at t = 105 min...... and 3.7 ± 21 pg/ml (means ± SE), P phase response was absent for insulin, glucagon, GLP-1, GIP, and ghrelin....

  4. Inhalation Toxicology Research Institute annual report, October 1, 1987--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Mewhinney, J.A.; Bechtold, W.E.; Sun, J.D.; Coons, T.A. (eds.)

    1988-12-01

    The mission of the Inhalation Toxicology Research Institute is to investigate the nature and magnitude of human health effects that result from the inhalation of airborne materials at home, in the work place, or in the general environment. Diseases of the respiratory tract are major causes of suffering and death, and many of these diseases are directly related to the materials that people breathe. The Institute's research is directed toward obtaining a better understanding of the basic biology of the respiratory tract and the mechanisms by which inhaled materials produce respiratory disease. Special attention is focused on studying the airborne materials released by various energy technologies, as well as those associated with national defense activities. The research uses a wide-ranging, comprehensive array of investigative approaches that are directed toward characterizing the source of the airborne material, following the material through its potential transformation in the air, identifying the mechanisms that govern its inhalation and deposition in the respiratory tract, and determining the fate of these inhaled materials in the body and the health effects they produce. The ultimate objectives are to determine the roles played by inhaled materials in the development of disease processes and to estimate the risk they pose to humans who may be exposed to them.

  5. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... > .1). Our data suggest that HEXi and MCRi are decreased in proportion to the degree of insulin resistance in nondiabetic HIV-infected patients with lipodystrophy....... insulin clearance rate was estimated as the ratio of posthepatic insulin appearance rate to steady-state plasma insulin concentration during a euglycemic hyperinsulinemic clamp (40 mU.m-2 .min-1). Posthepatic insulin appearance rate during the clamp was calculated, taking into account the remnant...

  6. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  7. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  8. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle.

    Science.gov (United States)

    Tran, Ha T; Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-01-01

    Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.

  9. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a levels in human subjects with rheumatoid diseases.

    Directory of Open Access Journals (Sweden)

    Olaf Schultz

    2010-12-01

    Full Text Available Interleukin-6 (IL-6 is a pro-inflammatory cytokine that has been found to be increased in type 2 diabetic subjects. However, it still remains unclear if these elevated IL-6 levels are co-incidental or if this cytokine is causally related to the development of insulin resistance and type 2 diabetes in humans. Therefore, in the present study we examined insulin sensitivity, serum adipokine levels and lipid parameters in human subjects before and after treatment with the IL-6 receptor antibody Tocilizumab.11 non-diabetic patients with rheumatoid disease were included in the study. HOMA-IR was calculated and serum levels for leptin, adiponectin, triglycerides, LDL-cholesterol, HDL-cholesterol and lipoprotein (a (Lp (a were measured before as well as one and three months after Tocilizumab treatment. The HOMA index for insulin resistance decreased significantly. While leptin concentrations were not altered by inhibition of IL-6 signalling, adiponectin concentrations significantly increased. Thus the leptin to adiponectin ratio, a novel marker for insulin resistance, exhibited a significant decrease. Serum triglycerides, LDL-cholesterol and HDL-cholesterol tended to be increased whereas Lp (a levels significantly decreased.Inhibition of IL-6 signalling improves insulin sensitivity in humans with immunological disease suggesting that elevated IL-6 levels in type 2 diabetic subjects might be causally involved in the pathogenesis of insulin resistance. Furthermore, our data indicate that inhibition of IL-6 signalling decreases Lp (a serum levels, which might reduce the cardiovascular risk of human subjects.

  10. Effect of starvation on human muscle protein metabolism and its response to insulin

    International Nuclear Information System (INIS)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A.

    1990-01-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using [3H]phenylalanine (Phe) and [14C]leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action

  11. Effect of starvation on human muscle protein metabolism and its response to insulin

    Energy Technology Data Exchange (ETDEWEB)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-10-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using (3H)phenylalanine (Phe) and (14C)leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action.

  12. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    Science.gov (United States)

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  13. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    Science.gov (United States)

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (pzinc alone. Insulin, as expected, increased glucose oxidation in mouse (pzinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  14. Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Roepstorff, Carsten; Brandt, Nina

    2009-01-01

    This study evaluated whether improved insulin-stimulated glucose uptake in recovery from acute exercise coincides with reduced malonyl-CoA (MCoA) content in human muscle. Furthermore, we investigated whether a high-fat diet [65 energy-% (Fat)] would alter the content of MCoA and insulin action...... to be compromised, although to a minor extent, by the Fat diet. Collectively, this study indicates that reduced muscle MCoA content in recovery from exercise may be part of the adaptive response leading to improved insulin action on glucose uptake after exercise in human muscle....

  15. Two Cases of Allergy to Insulin in Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Gi Jun Kim

    2015-09-01

    Full Text Available Allergic reaction to insulin is uncommon since the introduction of human recombinant insulin preparations and is more rare in pregnant than non-pregnant females due to altered immune reaction during pregnancy. Herein, we report two cases of allergic reaction to insulin in gestational diabetes that were successfully managed. One case was a 33-year-old female using isophane-neutral protamine Hagedorn human insulin and insulin lispro. She experienced dyspnea, cough, urticaria and itching sensation at the sites of insulin injection immediately after insulin administration. We discontinued insulin therapy and started oral hypoglycemic agents with metformin and glibenclamide. The other case was a 32-year-old female using insulin lispro and insulin detemer. She experienced pruritus and burning sensation and multiple nodules at the sites of insulin injection. We changed the insulin from insulin lispro to insulin aspart. Assessments including immunoglobulin E (IgE, IgG, eosinophil, insulin antibody level and skin biopsy were performed. In the two cases, the symptoms were resolved after changing the insulin to oral agents or other insulin preparations. We report two cases of allergic reaction to human insulin in gestational diabetes due to its rarity.

  16. Insulin analogues with improved absorption characteristics.

    Science.gov (United States)

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  17. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  18. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Ramasharma, K.; Li, C.H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  19. Insulin analogues: have they changed insulin treatment and improved glycaemic control?

    DEFF Research Database (Denmark)

    Madsbad, Sten

    2002-01-01

    To improve insulin therapy, new insulin analogues have been developed. Two fast-acting analogues with a more rapid onset of effect and a shorter duration of action combined with a low day-to-day variation in absorption rate are now available. Despite this favourable time-action profile most studies....... This is probably the main explanation for the absence of improvement in overall glycaemic control when compared with regular human insulin. A tendency to a reduction in hypoglycaemic events during treatment with fast-acting analogues has been observed in most studies. Recent studies have indicated that NPH insulin...... administered several times daily at mealtimes can improve glycaemic control without increasing the risk of hypoglycaemia. The fast-acting analogues are now also available as insulin mixed with NPH. Insulin glargine is a new long-acting insulin which is soluble and precipitates after injection, resulting...

  20. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus.

    Science.gov (United States)

    Nawaz, Muhammad Sarfraz; Shah, Kifayat Ullah; Khan, Tahir Mehmood; Rehman, Asim Ur; Rashid, Haroon Ur; Mahmood, Sajid; Khan, Shahzeb; Farrukh, Muhammad Junaid

    2017-12-01

    Diabetes mellitus is a major health problem in developing countries. There are various insulin therapies to manage diabetes mellitus. This systematic review evaluates various insulin therapies for management of diabetes mellitus worldwide. This review also focuses on recent developments being explored for better management of diabetes mellitus. We reviewed a number of published articles from 2002 to 2016 to find out the appropriate management of diabetes mellitus. The paramount parameters of the selected studies include the insulin type & its dose, type of diabetes, duration and comparison of different insulin protocols. In addition, various newly developed approaches for insulin delivery with potential output have also been evaluated. A great variability was observed in managing diabetes mellitus through insulin therapy and the important controlling factors found for this therapy include; dose titration, duration of insulin use, type of insulin used and combination therapy of different insulin. A range of research articles on current trends and recent advances in insulin has been summarized, which led us to the conclusion that multiple daily insulin injections or continuous subcutaneous insulin infusion (insulin pump) is the best method to manage diabetes mellitus. In future perspectives, development of the oral and inhalant insulin would be a tremendous breakthrough in Insulin therapy. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. Interacting with the Human Insulin Receptor

    DEFF Research Database (Denmark)

    Kidmose, Rune Thomas; Andersen, Gregers Rom

    2016-01-01

    Insulin is an essential regulator of glucose homeostasis. In this issue of Structure, Croll et al. (2016) reports a significantly improved model of the Fab-complexed IR ectodomain refined against a dataset extending to 3.3 Å.......Insulin is an essential regulator of glucose homeostasis. In this issue of Structure, Croll et al. (2016) reports a significantly improved model of the Fab-complexed IR ectodomain refined against a dataset extending to 3.3 Å....

  2. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    Science.gov (United States)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  3. DERMAL, ORAL, AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    Science.gov (United States)

    Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...

  4. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development....... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1...

  5. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  6. Inhalants in Peru.

    Science.gov (United States)

    Lerner, R; Ferrando, D

    1995-01-01

    In Peru, the prevalence and consequences of inhalant abuse appear to be low in the general population and high among marginalized children. Inhalant use ranks third in lifetime prevalence after alcohol and tobacco. Most of the use appears to be infrequent. Among marginalized children, that is, children working in the streets but living at home or children living in the street, the problem of inhalant abuse is a serious problem. Among children working in the streets but living at home, the lifetime prevalence rate for inhalant abuse is high, ranging from 15 to 45 percent depending on the study being cited. For children living in the streets, the use of inhalant is even more severe. As mentioned earlier in this chapter, most of these street children use inhalants on a daily basis. The lack of research on the problem of inhalant abuse is a serious impediment to development of intervention programs and strategies to address this problem in Peru. Epidemiologic and ethnographic research on the nature and extent of inhalant abuse are obvious prerequisites to targeted treatment and preventive intervention programs. The urgent need for current and valid data is underscored by the unique vulnerability of the youthful population at risk and the undisputed harm that results from chronic abuse of inhalants. Nonetheless, it is important to mention several programs that work with street children. Some, such as the Information and Education Center for the Prevention of Drug Abuse, Generation, and Centro Integracion de Menores en Abandono have shelters where street children are offered transition to a less marginal lifestyle. Teams of street educators provide the children with practical solutions and gain their confidence, as well as offer them alternative socialization experiences to help them survive the streets and avoid the often repressive and counterproductive environments typical of many institutions. Most of the children who go through these programs tend to abandon

  7. Ghrelin- and GH-induced insulin resistance

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Krag, Morten B; Poulsen, Morten M

    2013-01-01

    Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects.......Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects....

  8. Monomeric insulins and their experimental and clinical implications.

    Science.gov (United States)

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to self-association that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited approximately 100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier

  9. DERMAL, ORAL AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY-BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    Science.gov (United States)

    Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...

  10. Acute pain induces insulin resistance in humans

    DEFF Research Database (Denmark)

    Greisen, J.; Juhl, C.B.; Grøfte, Thorbjørn

    2001-01-01

    Background: Painful trauma results in a disturbed metabolic state with impaired insulin sensitivity, which is related to the magnitude of the trauma. The authors explored whether pain per se influences hepatic and extrahepatic actions of insulin. Methods: Ten healthy male volunteers underwent two...... randomly sequenced hyperinsulinemic–euglycemic (insulin infusion rate, 0.6 mU · kg-1 · min-1 for 180 min) clamp studies 4 weeks apart. Self-controlled painful electrical stimulation was applied to the abdominal skin for 30 min, to a pain intensity of 8 on a visual analog scale of 0–10, just before...... the clamp procedure (study P). In the other study, no pain was inflicted (study C). Results: Pain reduced whole-body insulin-stimulated glucose uptake from 6.37 ± 1.87 mg · kg-1 · min-1 (mean ± SD) in study C to 4.97 ± 1.38 mg · kg-1 · min-1 in study P (P

  11. 1H NMR spectrum of the native human insulin monomer. Evidence for conformational differences between the monomer and aggregated forms.

    Science.gov (United States)

    Roy, M; Lee, R W; Brange, J; Dunn, M F

    1990-04-05

    The effects of high dilution on the 1H Fourier transform NMR spectrum of native human insulin at pH* 8.0 and 9.3 have been examined at 500 MHz resolution. The dependence of the spectrum on concentration and comparison with the spectrum of a biologically highly potent monomeric insulin mutant (SerB9----Asp) establish that at 36 microM (pH* 9.3) or 18 microM (pH* 8) and no added buffer or salts, human insulin is monomeric. Under these conditions of dilution, ionic strength, and pH*, human insulin and the SerB9----Asp mutant exhibit nearly identical 1H NMR spectra. At higher concentrations (i.e. greater than 36 microM to 0.91 mM), native human insulin dimerizes, and this aggregation causes a change in insulin conformation. Although there are many changes in the spectrum, the TyrB26 ring H3,5 proton signals located at 6.63 ppm and the methyl signal located at 0.105 ppm (characteristics of monomeric insulin) are particularly distinct signatures of the conformation change that accompanies dimerization. Magnetization transfer experiments show that the 0.105 ppm methyl signal shifts downfield to a new position at 0.45 ppm. We conclude that the 0.105 ppm methyl signal is due to a conformation in which a Leu methyl group is centered over and in van der Waals contact with the ring of an aromatic side chain. Dimerization causes a conformation change that alters this interaction, thereby causing the downfield shift. Nuclear Overhauser studies indicate that the methyl group involved is located within a cluster of aromatic side chains and that the closest ring-methyl group interaction is with the ring of PheB24.

  12. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  13. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    DEFF Research Database (Denmark)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr

    2016-01-01

    identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we...

  14. Circulating ApoJ is closely associated with insulin resistance in human subjects.

    Science.gov (United States)

    Seo, Ji A; Kang, Min-Cheol; Ciaraldi, Theodore P; Kim, Sang Soo; Park, Kyong Soo; Choe, Charles; Hwang, Won Min; Lim, Dong Mee; Farr, Olivia; Mantzoros, Christos; Henry, Robert R; Kim, Young-Bum

    2018-01-01

    Insulin resistance is a major risk factor for type 2 diabetes. ApolipoproteinJ (ApoJ) has been implicated in altered pathophysiologic states including cardiovascular and Alzheimer's disease. However, the function of ApoJ in regulation of glucose homeostasis remains unclear. This study sought to determine whether serum ApoJ levels are associated with insulin resistance in human subjects and if they change after interventions that improve insulin sensitivity. Serum ApoJ levels and insulin resistance status were assessed in nondiabetic (ND) and type 2 diabetic (T2D) subjects. The impacts of rosiglitazone or metformin therapy on serum ApoJ levels and glucose disposal rate (GDR) during a hyperinsulinemic/euglycemic clamp were evaluated in a separate cohort of T2D subjects. Total ApoJ protein or that associated with the HDL and LDL fractions was measured by immunoblotting or ELISA. Fasting serum ApoJ levels were greatly elevated in T2D subjects (ND vs T2D; 100±8.3 vs. 150.6±8.5AU, Pinsulin, HOMA-IR, and BMI. ApoJ levels were significantly and independently associated with HOMA-IR, even after adjustment for age, sex, and BMI. Rosiglitazone treatment in T2D subjects resulted in a reduction in serum ApoJ levels (before vs. after treatment; 100±13.9 vs. 77±15.2AU, P=0.015), whereas metformin had no effect on ApoJ levels. The change in ApoJ levels during treatment was inversely associated with the change in GDR. Interestingly, ApoJ content in the LDL fraction was inversely associated with HOMA-IR. Serum ApoJ levels are closely correlated with the magnitude of insulin resistance regardless of obesity, and decrease along with improvement of insulin resistance in response only to rosiglitazone in type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Determination of human insulin in dog plasma by a selective liquid chromatography-tandem mass spectrometry method: Application to a pharmacokinetic study.

    Science.gov (United States)

    Dong, Shiqi; Zeng, Yong; Wei, Guangli; Si, Duanyun; Liu, Changxiao

    2018-03-01

    A simple, sensitive and selective LC-MS/MS method for quantitative analysis of human insulin was developed and validated in dog plasma. Insulin glargine was used as the internal standard. After a simple step of solid-phase extraction, the chromatographic separation of human insulin was achieved by using InertSustain Bio C18 column with a mobile phase of acetonitrile containing 1% formic acid (A)-water containing 1% formic acid (B). The detection was performed by positive ion electrospray ionization in multiple-reaction monitoring (MRM) mode. Good linearity was observed in the concentration range of 1-1000 μIU/mL (r 2  > 0.99), and the lower limit of quantification was 1 μIU/mL (equal to 38.46 pg/mL). The intra- and inter-day precision (expressed as relative standard deviation, RSD) of human insulin were ≤12.1% and ≤13.0%, respectively, and the accuracy (expressed as relative error, RE) was in the range of -7.23-11.9%. The recovery and matrix effect were both within acceptable limits. This method was successfully applied for the pharmacokinetic study of human insulin in dogs after subcutaneous administration. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Inhalation Toxicology Research Institute annual report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    1983-12-01

    The mission of the Inhalation Toxicology Research Institute (ITRI) is to investigate the nature and magnitude of human health effects that might result from inhalation of airborne materials encountered in the work place, special attention is directed toward airborne particulate and gaseous emissions released by various energy technologies or from national defense activities. Included are five papers on the physical and chemical characterization of energy technology aerosols, 10 papers on laboratory studies of aerosol generation and characterization, 11 papers on in vitro predictors of toxicity, 12 papers on disposition and fate of inhaled materials, 24 papers on dose-response relationships for inhaled radionuclides, 3 papers on dose-response relationships for inhaled chemical toxicants, 8 papers on biological factors that influence dose-response relationships, and 4 papers are concerned with risk assessment

  17. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  18. Health risks associated with inhaled nasal toxicants

    NARCIS (Netherlands)

    Feron, VJ; Arts, JHE; Kuper, CF; Slootweg, PJ; Woutersen, RA

    2001-01-01

    Health risks of inhaled nasal toxicants were reviewed with emphasis on chemically induced nasal lesions in humans, sensory irritation, olfactory and trigeminal nerve toxicity, nasal immunopathology and carcinogenesis, nasal responses to chemical mixtures, in vitro models, and nasal dosimetry- and

  19. Effect of insulin catheter wear-time on subcutaneous adipose tissue blood flow and insulin absorption in humans

    DEFF Research Database (Denmark)

    Clausen, Trine Schnedler; Kaastrup, Peter; Stallknecht, Bente

    2009-01-01

    blood flow (ATBF) and absorption of the rapid-acting insulin analog insulin aspart over a period of 4 days. METHODS: Teflon insulin catheters (Medtronic, Minneapolis, MN) were inserted into the abdominal SAT of 10 healthy men without diabetes (mean +/- SEM age, 23.0 +/- 1.1 years; body mass index, 22...... +/- 3 min on day 0 to 45 +/- 4 min on day 4 (P = 0.019). Neither peak plasma concentration nor area under the curve of insulin aspart changed significantly. CONCLUSIONS: Insertion of a Teflon insulin catheter into the SAT results in increased ATBF and faster absorption of insulin aspart in a period of 4...

  20. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Science.gov (United States)

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  1. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2 excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes

  2. Inhaled ciclesonide versus inhaled budesonide or inhaled beclomethasone or inhaled fluticasone for chronic asthma in adults: a systematic review

    Directory of Open Access Journals (Sweden)

    Halpin David MG

    2006-06-01

    Full Text Available Abstract Background Ciclesonide is a new inhaled corticosteroids licensed for the prophylactic treatment of persistent asthma in adults. Currently beclomethasone dipropionate, budesonide and fluticasone propionate are the most commonly prescribed inhaled corticosteroids for the treatment of asthma but there has been no systematic review comparing the effectiveness and safety ciclesonide to these agents. We therefore aimed to systematically review published randomised controlled trials of the effectiveness and safety of ciclesonide compared to alternative inhaled corticosteroids in people with asthma. Methods We performed literature searches on MEDLINE, EMBASE, PUBMED, the COCHRANE LIBRARY and various Internet evidence sources for randomised controlled trials or systematic reviews comparing ciclesonide to beclomethasone or budesonide or fluticasone in adult humans with persistent asthma. Data was extracted by one reviewer. Results Five studies met the inclusion criteria. Methodological quality was variable. There were no trials comparing ciclesonide to beclomethasone. There was no significant difference between ciclesonide and budesonide or fluticasone on the following outcomes: lung function, symptoms, quality of life, airway responsiveness to a provoking agent or inflammatory markers. However, the trials were very small in size, increasing the possibility of a type II error. One trial demonstrated that the combined deposition of ciclesonide (and its active metabolite in the oropharynx was 47% of that of budesonide while another trial demonstrated that the combined deposition of ciclesonide (and its active metabolite in the oropharynx was 53% of that of fluticasone. One trial demonstrated less suppression of cortisol in overnight urine collection after ciclesonide compared to fluticasone (geometric mean fold difference = 1.5, P Conclusion There is very little evidence comparing CIC to other ICS, restricted to very small, phase II studies of low

  3. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  4. A randomized trial of insulin aspart with intensified basal NPH insulin supplementation in people with Type 1 diabetes

    NARCIS (Netherlands)

    DeVries, J. H.; Lindholm, A.; Jacobsen, J. L.; Heine, R. J.; Home, P. D.

    2003-01-01

    Aims Insulin aspart has been shown to improve post-prandial and overall glycaemic control in people with Type 1 diabetes. We hypothesized that insulin aspart with intensified basal NPH insulin supplementation would result in better overall glycaemic control than human regular insulin with standard

  5. The effect of smoking status on burn inhalation injury mortality.

    Science.gov (United States)

    Knowlin, Laquanda; Stanford, Lindsay; Cairns, Bruce; Charles, Anthony

    2017-05-01

    Three factors that effect burn mortality are age, total body surface of burn (TBSA), and inhalation injury. Of the three, inhalation injury is the strongest predictor of mortality thus its inclusion in the revised Baux score (age+TBSA+17* (inhalation injury, 1=yes, 0=no)). However, the weighted contribution of specific comorbidities such as smoker status on mortality has traditionally not been accounted for nor studied in this subset of burn patients. We therefore sought to examine the impact of current tobacco and/or marijuana smoking in patients with inhalation injury. A retrospective analysis of patients admitted to a regional burn center from 2002 to 2012. Independent variables analyzed included basic demographics, burn mechanism, presence of inhalation injury, TBSA, pre-existing comorbidities, and smoker status. Bivariate analysis was performed and logistic regression modeling using significant variables was utilized to estimate odds of mortality. There were a total of 7640 patients over the study period. 7% (n=580) of the burn cohort with inhalation injury were included in this study. In-hospital burn mortality for inhalation injury patients was 23%. Current smokers (20%) included cigarette smokers and marijuana users, 19% and 3%, respectively. Preexisting respiratory disease (17%) was present in 36% of smokers compared to 13% of non-smokers (psmoke inhalation injury. Future prospective studies in human and/or animal models are needed to confirm these findings. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. The relative effectiveness of inhaled alpha- and beta-emitting radionuclides in producing lung cancer

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Muggenburg, B.A.; Guilmetter, R.A.; Griffith, W.C.; McClellan, R.O.

    1988-01-01

    Proper assessment of a long-term human health risks associated with inhaled radionuclides requires knowledge of dose to critical cells and tissues and relationships between dose and effect for different biological end points. Results from epidemiological studies of exposed human populations provided important information for such assessments. However, because the types of exposures are limited, these results need to be supplemented with more detailed information on dosimetry and biological effects available through studies in laboratory animals and in vitro systems. To provide health risk information for inhaled fission product and actinide aerosols, life-span studies are being conducted using beagle dogs and other species at the Lovelace Inhalation Toxicology Research Institute (ITRI). Results of two life-span studies in dogs involving inhalation of the beta emitter 91 Y in fused aluminosilicate particles or the alpha emitter 239 PuO 2 are reported here

  7. A New Method for Generating Insulin-Secreting Cells from Human Pancreatic Epithelial Cells After Islet Isolation Transformed by NeuroD1

    Science.gov (United States)

    Shimoda, Masayuki; Chen, Shuyuan; Noguchi, Hirofumi; Takita, Morihito; Sugimoto, Koji; Itoh, Takeshi; Chujo, Daisuke; Iwahashi, Shuichi; Naziruddin, Bashoo; Levy, Marlon F.

    2014-01-01

    Abstract The generation of insulin-secreting cells from nonendocrine pancreatic epithelial cells (NEPEC) has been demonstrated for potential clinical use in the treatment of diabetes. However, previous methods either had limited efficacy or required viral vectors, which hinder clinical application. In this study, we aimed to establish an efficient method of insulin-secreting cell generation from NEPEC without viral vectors. We used nonislet fractions from both research-grade human pancreata from brain-dead donors and clinical pancreata after total pancreatectomy with autologous islet transplantation to treat chronic pancreatitis. It is of note that a few islets could be mingled in the nonislet fractions, but their influence could be limited. The NeuroD1 gene was induced into NEPEC using an effective triple lipofection method without viral vectors to generate insulin-secreting cells. The differentiation was promoted by adding a growth factor cocktail into the culture medium. Using the research-grade human pancreata, the effective method showed high efficacy in the differentiation of NEPEC into insulin-positive cells that secreted insulin in response to a glucose challenge and improved diabetes after being transplanted into diabetic athymic mice. Using the clinical pancreata, similar efficacy was obtained, even though those pancreata suffered chronic pancreatitis. In conclusion, our effective differentiation protocol with triple lipofection method enabled us to achieve very efficient insulin-secreting cell generation from human NEPEC without viral vectors. This method offers the potential for supplemental insulin-secreting cell transplantation for both allogeneic and autologous islet transplantation. PMID:24845703

  8. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    Science.gov (United States)

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  9. Human hemispheric infarction studied by positron emission tomography and the 150 continuous inhalation technique

    International Nuclear Information System (INIS)

    Baron, J.-C.; Bousser, M.G.; Comar, D.; Kellershohn, C.

    1979-01-01

    Positron emission tomography (PET) offers an entirely new approach to the study of the pathophysiology of cerebral ischemic disorders. This is so because for the first time it is possible to obtain functional tomographic images that represent cerebral perfusion and metabolism in a regional basis. We report here a study of cerebral blood flow and oxygen extraction by means of the 15 O inhalation technique in a large number of human hemispheric infarctions. PET imaging with this non-invasive technique has permitted the description of hitherto unreported focal patterns of changes in the CBF/EO2 couple that may have important pathophysiologic and prognostic implications

  10. Report of the panel on inhaled actinides

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Some topics discussed are as follows: assessment of risks to man of inhaling actinides; use of estimates for developing protection standards; epidemiology of lung cancer in exposed human populations; development of respiratory tract models; and effects in animals: dose- and effect-modifying factors

  11. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  12. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Kjeldsen, Thomas B.; Jensen, Knud Jørgen

    2015-01-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin...... variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We...... addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs...

  13. Early detection of degraded A14-125I-insulin in human fibroblasts by the use of high performance liquid chromatography

    International Nuclear Information System (INIS)

    Stentz, F.B.; Harris, H.L.; Kitabchi, A.E.

    1983-01-01

    We studied the metabolism of A14-125I-insulin in intact human fibroblasts using high performance liquid chromatography (HPLC) to detect and separate its early degradation products. The high resolving power of HPLC enabled us to separate what has been considered ''intact insulin'' by Sephadex G-50 chromatography or TCA precipitability into two additional peaks that had decreased biochemical properties with respect to immunoprecipitability and receptor binding but not decreased TCA precipitability. We conclude that human fibroblast is capable of metabolizing insulin within 2 min at 37 degrees C into intermediate molecules that can be detected by HPLC but not by TCA precipitability or molecular sieve chromatography

  14. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  15. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    Science.gov (United States)

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  16. Understanding the structural differences between spherical and rod-shaped human insulin nanoparticles produced by supercritical fluids precipitation.

    Science.gov (United States)

    Park, Yeonju; Seo, Yongil; Chae, Boknam; Pyo, Dongjin; Chung, Hoeil; Hwang, Hyonseok; Jung, Young Mee

    2015-02-02

    In this study, the thermal denaturation mechanism and secondary structures of two types of human insulin nanoparticles produced by a process of solution-enhanced dispersion by supercritical fluids using dimethyl sulfoxide (DMSO) and ethanol (EtOH) solutions of insulin are investigated using spectroscopic approaches and molecular dynamics calculations. First, the temperature-dependent IR spectra of spherical and rod-shaped insulin nanoparticles prepared from DMSO and EtOH solution, respectively, are analyzed using principal component analysis (PCA) and 2D correlation spectroscopy to obtain a deeper understanding of the molecular structures and thermal behavior of the two insulin particle shapes. All-atom molecular dynamics (AAMD) calculations are performed to investigate the influence of the solvent molecules on the production of the insulin nanoparticles and to elucidate the geometric differences between the two types of nanoparticles. The results of the PCA, the 2D correlation spectroscopic analysis, and the AAMD calculations clearly reveal that the thermal denaturation mechanisms and the degrees of hydrogen bonding in the spherical and rod-shaped insulin nanoparticles are different. The polarity of the solvent might not alter the structure or function of the insulin produced, but the solvent polarity does influence the synthesis of different shapes of insulin nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  18. Effect of magnesium supplementation on insulin resistance in humans: A systematic review.

    Science.gov (United States)

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; de Alencar, Geórgia Rosa Reis; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; Marreiro, Dilina do Nascimento; Freitas, Betânia de Jesus E Silva de Almendra; de Carvalho, Cecília Maria Resende; Martins, Maria do Carmo de Carvalho E; Frota, Karoline de Macedo Gonçalves

    2017-06-01

    Recent studies have demonstrated that minerals play a role in glucose metabolism disorders in humans. Magnesium, in particular, is an extensively studied mineral that has been shown to function in the management of hyperglycemia, hyperinsulinemia, and insulin resistance (IR) action. The aim of this study was to investigate the effect of magnesium supplementation on IR in humans via systematic review of the available clinical trials. This review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. A survey was conducted to select clinical trials related to the effects of this mineral in insulin sensitivity using the following databases: PubMed, SciVerse Scopus, ScienceDirect, and SciVerse Cochrane. After the selection process, 12 articles were identified as eligible, representing different clinical conditions and being free of restriction with regard to sex, age, ethnicity, and differential dosing/shape of magnesium. The results of eight clinical trials showed that supplementation with magnesium influences serum fasting glucose concentrations, and five trials determined an effect on fasting insulin levels. The results of seven studies demonstrated that mineral supplementation reduced homeostasis model assessment for IR values. The data of this systematic review provide evidence as to the benefits of magnesium supplementation in reducing IR in patients with hypomagnesemia presenting IR. However, new intervention studies are needed to elucidate the role of the nutrient in protection against this metabolic disorder, as well as the standardization of the type, dose, and time of magnesium supplementation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Studies on insulin receptor, 1

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  20. Experiment of aerosol-release time for a novel automatic metered dose inhaler

    Directory of Open Access Journals (Sweden)

    Mingrong Zhang

    2016-05-01

    Full Text Available The objective of this study was to evaluate the aerosol-release time in the development of a new automatic adapter for metered dose inhaler. With this device, regular manually operated metered dose inhalers become automatic. During the study, an inhalation simulator was designed and tested with the newly developed mechatronic system. By adjusting the volume and the pressure of the vacuum tank, most human inhalation waveforms were able to simulate. As an example, regular quick-deep and slow-deep waveforms were matched within reasonable accuracy. Finally, with the help of dynamic image processing, the aerosol-release time (Tr was carefully measured and fully discussed, including the switch-on time (Ts, the mechatronics-hysteresis (Tm and the intentional-delay (Ti. Under slow-deep inhalation condition which is suitable for metered dose inhaler medicine delivery, the switch-on flow-rate could reach as low as 10 L/min, and the corresponding switch-on time was approximately 0.20 s. While the mechatronics-hysteresis depended on the brand of metered dose inhaler, assuming there was no intentional-delay, the aerosol-release time could be as low as 0.40 and 0.60 s, respectively, for two commercially available metered dose inhalers studied in this article. Therefore, this newly developed mechatronic adapter system could ensure aerosol-release time (Tr within satisfactory range for metered dose inhalers.

  1. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells

    DEFF Research Database (Denmark)

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani

    2015-01-01

    on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins...... and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2.......Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge...

  2. Design of insulin analogues for meal-related therapy.

    Science.gov (United States)

    Brange, J

    1993-01-01

    The human insulin in replacement therapy has a hexameric structure. Hexamerization of the insulin molecule facilitates biosynthesis and beta-cell storage of insulin, but is unnecessary for biologic activity and appears to contribute to delayed absorption of exogenous insulin from the subcutis. Insulin analogues with reduced self-association that are produced through recombinant DNA techniques have been shown to have in vivo activity comparable to that of human insulin and absorption kinetics characterized by higher and more constant rates of disappearance from the subcutaneous injection site. In preliminary studies in patients receiving insulin therapy, monomeric insulin analogues have been found to provide glycemic control in the postprandial period that is at least equivalent to that of human insulin. Findings in these studies suggest that the use of such analogues may provide meal-related insulin effects closer to those observed in the physiologic state by limiting excessive postprandial glucose excursions and decreasing the risk of late hypoglycemia. Banting and Best revolutionized diabetes therapy 70 years ago with the extraction of insulin from animal pancreas glands (J Lab Clin Med 7:464-472, 1922). Since that time, many refinements of the therapeutic properties of pharmaceutical preparations of the hormone have been introduced. Until recently, however, such advances have been limited to improvements in insulin purity, insulin species, and adjustment of the composition of the vehicle with respect to auxiliary substances and other additives. With the advent of recombinant DNA techniques, it has become possible to optimize the insulin molecule itself for purposes of replacement therapy.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A Health Threat to Bystanders Living in the Homes of Smokers: How Smoke Toxins Deposited on Surfaces Can Cause Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Neema Adhami

    Full Text Available Thirdhand smoke (THS is the accumulation of secondhand smoke on environmental surfaces. THS is found on the clothing and hair of smokers as well as on surfaces in homes and cars of smokers. Exposure occurs by ingestion, inhalation and dermal absorption. Children living in homes of smokers are at highest risk because they crawl on the floor, touch parents' clothing/hair and household objects. Using mice exposed to THS under conditions that mimic exposure of humans, we show that THS increases cellular oxidative stress by increasing superoxide dismutase (SOD activity and hydrogen peroxide (H2O2 levels while reducing the activity of antioxidant enzymes catalase and glutathione peroxidase (GPx that break down H2O2 into H2O and O2. This results in lipid peroxidation, protein nitrosylation and DNA damage. Consequences of these cell and molecular changes are hyperglycemia and insulinemia. Indeed, we found reduced levels of insulin receptor, PI3K, AKT, all important molecules in insulin signaling and glucose uptake by cells. To determine whether these effects on THS-induced insulin resistance are due to increase in oxidative stress, we treated mice exposed to THS with the antioxidants N-acetyl cysteine (NAC and alpha-tocopherol (alpha-toc and showed that the oxidative stress, the molecular damage, and the insulin resistance, were significantly reversed. Conversely, feeding the mice with chow that mimics "western diet", which is known to increase oxidative stress, while exposing the mice to THS, further increased the oxidative stress and aggravated hyperglycemia and insulinemia. In conclusion, THS exposure results in insulin resistance in the form of non-obese type II diabetes (NODII through oxidative stress. If confirmed in humans, these studies could have a major impact on how people view exposure to environmental tobacco toxins, in particular to children, elderly and workers in environments where tobacco smoke has taken place.

  4. Thermodynamic and kinetic studies of As2O3 toxicological effects on human insulin in generation diabetes mellitus

    Science.gov (United States)

    Mohsennia, Mohsen; Motaharinejad, Atieh; Rafiee-Pour, Hossain-Ali; Torabbeigi, Marzieh

    2017-12-01

    The interaction of arsenic trioxide with human insulin was investigated by circular dichroism (CD), cyclic voltammetry and electrophoresis techniques. The interfacial behavior of insulin in presence of As2O3 onto the Ag electrode surface was studied at 310 K in phosphate buffer solution (PBS). According to Far-UV CD spectroscopy results, As2O3 caused to decrease in structural compactness and variety of alpha helix into beta structures. Near-UV CD indicated that As2O3 dissociates disulfide linkage in insulin structure. The kinetic parameters, including charge-transfer coefficient and apparent heterogeneous electron transfer rate constant were also determined. The thermodynamic parameters of insulin denaturation in presence of arsenic trioxide were calculated and reported. The obtained results indicated strong adsorption of insulin in presence of arsenic trioxide onto the Ag surface via chemisorptions.

  5. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.

    Science.gov (United States)

    Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I

    2015-09-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.

  6. Long-term clearance of accidentally inhaled 60Co aerosols in humans

    International Nuclear Information System (INIS)

    Beleznay, E.; Osvay, M.

    1993-03-01

    Long-term body retention was measured on six workers inhaling 60 Co aerosols incidentally during manipulation with a high activity 60 Co source. An improved whole body counter technique and calibration provided good conditions to follow the body clearance over 4 years. A two-detector profile scanning arrangement was used to measure the activity distribution 'in vivo' over the lung region. The observed whole body retention followed a two-exponential time function between 10-1500 days. The consistency of the measured retention pattern with ICRP inhalation model was investigated assuming different aerosol size distributions. A possible extension of ICRP lung model is proposed to take into account the actual pulmonary lung clearance determined individually. (R.P.) 29 refs.; 15 figs.; 6 tabs

  7. Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: Effect of insulin

    International Nuclear Information System (INIS)

    el Boustani, S.; Causse, J.E.; Descomps, B.; Monnier, L.; Mendy, F.; Crastes de Paulet, A.

    1989-01-01

    The conversion of dihomogamma linolenic acid (DHLA) into arachidonic acid (AA) was compared in normal subjects and diabetic patients before and after treatment with insulin. The kinetics of the incorporation of deuterium-labeled DHLA and its conversion product, deuterium-labeled AA, was determined in plasma triglycerides, plasma phospholipids, and platelet lipids of subjects after ingestion of 2 g of the labeled precursor. Analysis was performed by gas liquid chromatography-mass spectrometry using multiple ion detection. In normal subjects, the deuterium-labeled DHLA concentration rose to 24 to 69 mg/L in plasma triglycerides four to nine hours after ingestion and to 20 to 34 mg/L in plasma phospholipids about four hours later. Deuterium-labeled AA appeared at 12 hours, rose to 2.4 to 3.8 mg/L between 48 and 72 hours in plasma phospholipids, but remained at the limit of detection in plasma triglycerides and was undetectable in platelet lipids. In diabetic patients both before and after insulin treatment, the deuterium-labeled DHLA concentration in plasma triglycerides and in plasma phospholipids followed the same pattern as in normal subjects. However, the deuterium-labeled arachidonic acid concentration was below 1 mg/L in plasma phospholipids before insulin. After insulin treatment the patients recovered normal DHLA metabolism because deuterium-labeled AA rose in phospholipids to a mean value of 3.5 mg/L, which is in the same range as that observed in normal subjects (3.2 mg/L). The present data provide direct evidence for the conversion of DHLA into AA in humans. The effect of insulin and the data from the literature of animal studies suggest insulin dependence of delta 5 desaturase in humans

  8. Insulin-like activity in the retina

    International Nuclear Information System (INIS)

    Das, A.

    1986-01-01

    A number of studies have recently demonstrated that insulin or a homologous peptide may be synthesized outside the pancreas also. The present study was designed to investigate whether insulin-like activity exists in the retina, and if it exists, whether it is due to local synthesis of insulin or a similar peptide in the retina. To determine whether the insulin-like immunoreactivity in retinal glial cells is due to binding and uptake or local synthesis of insulin, a combined approach of immunocytochemistry and in situ DNA-RNA hybridization techniques was used on cultured rat retinal glial cells. Insulin-like immunoreactivity was demonstrated in the cytoplasma of these cells. In situ hybridization studies using labeled rat insulin cDNA indicated that these cells contain the mRNA necessary for de novo synthesis of insulin or a closely homologous peptide. Since human retinal cells have, as yet, not been conveniently grown in culture, an ocular tumor cell line, human Y79 retinoblastoma was used as a model to extend these investigations. The presence of insulin-like immunoreactivity as well as insulin-specific mRNA was demonstrated in this cell line. Light microscopic autoradiography following incubation of isolated rat retinal cells with 125 I-insulin showed the presence of insulin binding sites on the photoreceptors and amarcine cells. On the basis of these observations that rat retina glial cells, including Muller cells are sites of synthesis of insulin or a similar peptide, a model for the pathogenesis of dabetic retinopathy is proposed

  9. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  10. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.

    Science.gov (United States)

    Abbasi, Naveed A; Akan, Ozgur B

    2017-12-01

    Molecular communication is an important tool to understand biological communications with many promising applications in Internet of Bio-Nano Things (IoBNT). The insulin-glucose system is of key significance among the major intra-body nanonetworks, since it fulfills metabolic requirements of the body. The study of biological networks from information and communication theoretical (ICT) perspective is necessary for their introduction in the IoBNT framework. Therefore, the objective of this paper is to provide and analyze for the first time in the literature, a simple molecular communication model of the human insulin-glucose system from ICT perspective. The data rate, channel capacity, and the group propagation delay are analyzed for a two-cell network between a pancreatic beta cell and a muscle cell that are connected through a capillary. The results point out a correlation between an increase in insulin resistance and a decrease in the data rate and channel capacity, an increase in the insulin transmission rate, and an increase in the propagation delay. We also propose applications for the introduction of the system in the IoBNT framework. Multi-cell insulin glucose system models may be based on this simple model to help in the investigation, diagnosis, and treatment of insulin resistance by means of novel IoBNT applications.

  11. Fate of inhaled azodicarbonamide in rats

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Ayres, P.H.; Bechtold, W.E.; Dutcher, J.S.; Cheng, Y.S.; Bond, J.A.; Medinsky, M.A.; Henderson, R.F.; Birnbaum, L.S.

    1987-01-01

    Azodicarbonamide (ADA) is widely used as a blowing agent in the manufacture of expanded foam plastics, as an aging and bleaching agent in flour, and as a bread dough conditioner. Human exposures have been reported during manufacture as well as during use. Groups of male F344/N rats were administered ADA by gavage, by intratracheal instillation, and by inhalation exposure to determine the disposition and modes of excretion of ADA and its metabolites. At 72 hr following gavage, 30% of the administered ADA was absorbed whereas following intratracheal instillation, absorption was 90%. Comparison between groups of rats exposed by inhalation to ADA to achieve body burdens of 24 or 1230 micrograms showed no significant differences in modes or rates of excretion of [ 14 C]ADA equivalents. ADA was readily converted to biurea under physiological conditions and biurea was the only 14 C-labeled compound present in excreta. [ 14 C]ADA equivalents were present in all examined tissues immediately after inhalation exposure, and clearance half-times on the order of 1 day were evident for all tissues investigated. Storage depots for [ 14 C]ADA equivalents were not observed. The rate of buildup of [ 14 C]ADA equivalents in blood was linearly related to the lung content as measured from rats withdrawn at selected times during a 6-hr inhalation exposure at an aerosol concentration of 25 micrograms ADA/liter. In a study extending 102 days after exposure, retention of [ 14 C]ADA equivalents in tissues was described by a two-component negative exponential function. The results from this study indicate that upon inhalation, ADA is rapidly converted to biurea and that biurea is then eliminated rapidly from all tissues with the majority of the elimination via the urine

  12. Radiation dose estimates and hazard evaluations for inhaled airborne radionuclides: Final report

    International Nuclear Information System (INIS)

    Mewhinney, J.A.

    1987-09-01

    The project objective was to conduct confirmatory research on physical chemical characteristics of aerosols produced during manufacture of mixed plutonium and uranium oxide nuclear fuel, to determine the radiation dose distribution in tissues of animals after inhalation exposure to representative aerosols of these materials, and to provide estimates of the relationship of radiation dose and biological response in animals after such inhalation exposure. The first chapter summarizes the physical chemical characterization of samples of aerosols collected from gloveboxes at industrial facilities during normal operations. This chapter provides insights into key aerosol characteristics which are of potential importance in determining the biological fate of specific radionuclides contained in the particulates that would be inhaled by humans following accidental release. The second chapter describes the spatial and temporal distribution of radiation dose in tissues of three species of animals exposed to representative aerosols collected from the industrial facilities. These inhalation studies provide a basis for comparison of the influence of physical chemical form of the inhaled particulates and the variability among species of animal in the radiation dose to tissue. The third chapter details to relationship between radiation dose and biological response in rats exposed to two aerosol forms each at three levels of initial pulmonary burden. This study, conducted over the lifespan of the rats and assuming results to be applicable to humans, indicates that the hazard to health due to inhalation of these industrial aerosols is not different than previously determined for laboratory produced aerosol of PuO 2 . Each chapter is processed separately for the data base

  13. Insulin analogues in pregnancy and specific congenital anomalies

    DEFF Research Database (Denmark)

    de Jong, Josta; Garne, Ester; Wender-Ozegowska, Ewa

    2016-01-01

    Insulin analogues are commonly used in pregnant women with diabetes. It is not known if the use of insulin analogues in pregnancy is associated with any higher risk of congenital anomalies in the offspring compared with use of human insulin. We performed a literature search for studies of pregnant...... women with pregestational diabetes using insulin analogues in the first trimester and information on congenital anomalies. The studies were analysed to compare the congenital anomaly rate among foetuses of mothers using insulin analogues with foetuses of mothers using human insulin. Of 29 studies, we...... samples in the included studies provided insufficient statistical power to identify a moderate increased risk of specific congenital anomalies. Copyright © 2015 John Wiley & Sons, Ltd....

  14. Toxicity of inhaled Ca-DTPA in the beagle dog

    International Nuclear Information System (INIS)

    Smith, V.H.; Ragan, H.A.; Lund, J.E.; Hackett, P.L.

    1975-01-01

    There are several advantages to the administration of Ca- DTPA by inhalation rather than intravenous drip for the decorporation of certain radionuclides. Among these are the possibility of treating very promptly following an accidental incorporation to achieve maximum treatment effectiveness and convenince for medical management, even to the extent that treatment can be self-administered. The present investigational New Drug permit allows treatment of humans only by the intravenous route and animal studies are required to justify the new route. Earlier work in rats and hamsters showed five successive daily inhalations of Ca-DTPA aerosols (dose 1 to 4 times human i.v. dose) produced a transitory emphysema in 17/40 rats serially sacrificed up to 3 weeks following the last exposure and in 10/20 hamsters up to 1 week after exposure. No emphysema was seen in rats sacrificed after 3 weeks and in hamsters after 1 week following the exposures. Results of tests in dogs administered DTPA by inhalation showed hyperplasia of the gastric submucosal lymphoid follicles observed 1 week following the last exposure may be treatment-related, but other observed changes were considered unrelated. (U.S.)

  15. The toxicity of inhaled particles of 238PuO2 in dogs

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Griffith, W.C. Jr.; Hahn, F.F.; Boecker, B.B.

    1991-01-01

    This study was conducted to determine the toxicity of inhaled 238 PuO 2 in the dog. Inhalation was selected because it is the mostly likely route of human exposure in the event of an accidental airborne release. Of 166 dog in the study, 72 inhaled 1.5μm and 72 inhaled 3.0 μm activity median aerodynamic diameter particles of 238 PuO 2 . Another 24 dogs inhaled the aerosol vector without plutonium. The aerosol exposures resulted in initial pulmonary burdens ranging from 37 to 0.11 and 55.5 to 0.37 kBq of 238 Pu/kg body mass, of 1.5 μm and 3.0 μ, particles, respectively. The particles dissolved slowly resulting in translocation of the Pu to liver, bone and other sites. The dogs were observed for biological effects over their life span. Necropsies were performed at death, and tissues were examined microscopically. The principal late-occurring effects were tumors of the lung, skeleton, and liver. Risk factors estimated for these cancers were 2800 lung cancers/10 4 Gy, 800 liver cancers/10 4 Gy, and 6200 bone cancers/10 4 Gy for dogs. The potential hazard from 238 Pu to humans may include tumors of the lung, bone and liver because of the likelihood of similarity of the dose patterns for the two species. 10 refs., 1 fig., 3 tabs

  16. Lung dosimetry for inhaled radon progeny

    International Nuclear Information System (INIS)

    Hofmann, W.

    1986-01-01

    Lung cancer risk assessment for inhaled radon progeny requires a detailed knowledge of the dose distribution pattern throughout the human respiratory tract. Current lung dosimetry models take into acocunt aerosol deposition in a formalized airway structrue, modification of the initial deposition pattern by clearance mechanisms, and the energy deposited by alpha particles in sensitive cells of the bronchial epithelium. The resulting dose distribution pattern depends on the characteristics of the inhaled aerosol and the breathing pattern. Special emphasis has been laid on the age dependency of the anatomical structure of the human lung and the resulting doses, as well as on the rediological significance of enhanced aerosol deposition at bronchial bifuraction. The biological variability inherent in all morphometric, physiological and histological parameters involved in lung dosimetry suggests the application of stochastic modelling techniques. Examples for the use of Monte Carlo methods presented here are the random walk of inhaled particles through a random airway geometry, and the influence of the intra-subject variability of radiation doses on radiation protection standards. At the cellular level the concept of absorbed dose loses its significance and has to be replaced by microdosimetric concepts, such as internal microdosimtry or track structure theory. An image-analysis model allows us to construct specific energy distributions in sensitive lung cells. Application of a track structure model of alpha particle interaction with bronchial epithelial cells permits the calculation of probabilities for inactivation, transformation, and tumor induction. The latter has been used to analyse lung cancer risk at low doses in Chinese high background areas

  17. Carbon monoxide inhalation induces headache in a human headache model

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik Winther; Britze, Josefine

    2018-01-01

    , double-blind, placebo-controlled crossover design, 12 healthy volunteers were allocated to inhalation of CO (carboxyhemoglobin 22%) or placebo on two separate days. Headache was scored on a verbal rating scale from 0-10. We recorded mean blood velocity in the middle cerebral artery (VMCA) by transcranial...

  18. Ciclesonide Oral Inhalation

    Science.gov (United States)

    ... use ciclesonide inhalation.Ciclesonide inhalation helps to prevent asthma attacks (sudden episodes of shortness of breath, wheezing, and coughing) but will not stop an asthma attack that has already started. Do not use ciclesonide ...

  19. Flunisolide Oral Inhalation

    Science.gov (United States)

    ... use flunisolide inhalation.Flunisolide inhalation helps to prevent asthma attacks (sudden episodes of shortness of breath, wheezing, and coughing) but will not stop an asthma attack that has already started. Do not use flunisolide ...

  20. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions

    NARCIS (Netherlands)

    Hiemstra, P.S.; Grootaers, G.G.; Does, A.M. van der; Krul, C.A.M.; Kooter, I.M.

    2018-01-01

    The epithelium that covers the conducting airways and alveoli is a primary target for inhaled toxic substances, and therefore a focus in inhalation toxicology. The increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the

  1. Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells

    OpenAIRE

    Zhang, Yingpei; Katakura, Yoshinori; Seto, Perry; Shirahata, Sanetaka

    1997-01-01

    The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinas...

  2. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women.

    Science.gov (United States)

    Kullmann, Stephanie; Frank, Sabine; Heni, Martin; Ketterer, Caroline; Veit, Ralf; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2013-01-01

    There is accumulating evidence that food consumption is controlled by a wide range of brain circuits outside of the homeostatic system. Activation in these brain circuits may override the homeostatic system and also contribute to the enormous increase of obesity. However, little is known about the influence of hormonal signals on the brain's non-homeostatic system. Thus, selective insulin action in the brain was investigated by using intranasal application. We performed 'resting-state' functional magnetic resonance imaging in 17 healthy lean female subjects to assess intrinsic brain activity by fractional amplitude of low-frequency fluctuations (fALFF) before, 30 and 90 min after application of intranasal insulin. Here, we showed that insulin modulates intrinsic brain activity in the hypothalamus and orbitofrontal cortex. Furthermore, we could show that the prefrontal and anterior cingulate cortex response to insulin is associated with body mass index. This demonstrates that hormonal signals as insulin may reduce food intake by modifying the reward and prefrontal circuitry of the human brain, thereby potentially decreasing the rewarding properties of food. Due to the alarming increase in obesity worldwide, it is of great importance to identify neural mechanisms of interaction between the homeostatic and non-homeostatic system to generate new targets for obesity therapy. Copyright © 2012 S. Karger AG, Basel.

  3. Critical appraisal of cerebral blood flow measured from brain stem and cerebellar regions after 133 Xe inhalation in humans

    International Nuclear Information System (INIS)

    Juge, O.; Meyer, J.S.; Sakai, F.; Yamaguchi, F.; Yamamoto, M.; Shaw, T.

    1979-01-01

    Validity of regional blood flow (rCBF) measurements recorded over the human posterior fossa after 133Xe inhalation was tested. Recording of counts from both brain stem and cerebellum (BSC) was reproducible and contamination by counts derived from surrounding anatomical structures was low and no greater than that found over hemispheres. BSC flow values showed significant correlation with the state of awareness as judged by clinical and EEG evaluation

  4. Steam inhalation therapy: severe scalds as an adverse side effect

    Science.gov (United States)

    Baartmans, Martin; Kerkhof, Evelien; Vloemans, Jos; Dokter, Jan; Nijman, Susanne; Tibboel, Dick; Nieuwenhuis, Marianne

    2012-01-01

    Background Steam inhalation therapy is often recommended in the treatment of a common cold. However, it has no proven benefit and may in fact have serious adverse side effects in terms of burn injuries. Aim To quantify the human and economic costs of steam inhalation therapy in terms of burn injury. Design and setting A prospective database study of all patients admitted to the burn centres (Beverwijk, Groningen, Rotterdam) and the hospital emergency departments in the Netherlands. Method Number and extent of burn injuries as a result of steam inhalation therapy were analysed, as well as an approximation made of the direct costs for their medical treatment. Results Annually, on average three people are admitted to in one of the Dutch burn centres for burns resulting from steam inhalation therapy. Most victims were children, and they needed skin grafting more often than adults. The total direct medical costs for burn centre and emergency department treatment were €115 500 (£93 000), emotional costs are not reflected. Conclusion As steam inhalation therapy has no proven benefit and the number and extent of complications of this therapy in terms of burn injury are significant, especially in children, steam inhalation therapy should be considered a dangerous procedure and not recommended anymore in professional guidelines and patient brochures. PMID:22781995

  5. Insulin analogues and cancer: a note of caution

    Directory of Open Access Journals (Sweden)

    Joseph A.M.J.L. eJanssen

    2014-05-01

    Full Text Available Abstract In view of the lifelong exposure and large patient populations involved, insulin analogues with an increased mitogenic effect in comparison to human insulin may potentially constitute a major health problem, since these analogues may possibly induce the growth of pre-existing neoplasms. At present, the available data suggest that insulin analogues are safe. In line with these findings, we observed that serum of diabetic patients treated with insulin analogues, compared to that of diabetic patients treated with human insulin, did not induce an increased phosphorylation of tyrosine residues of the insulin-like growth factor-I receptor (IGF-IR. However, the classical model of the IGF-IR signaling may be insufficient to explain (all mitogenic effects of insulin analogues since also non-canonical signaling pathways of the IGF-IR may play a major role in this respect. Although phosphorylation of tyrosine residues of the IGF-IR is generally considered to be the initial activation step within the intracellular IGF-IR signaling pathway, it has been found that cells undergo a signaling switch under hyperglycemic conditions. After this switch, a completely different mechanism is utilized to activate the mitogenic (mitogen-activated protein kinase (MAPK pathways of the IGF-IR that is independent from tyrosine phosphorylation of the IGF-IR. At present it is unknown whether activation of this alternative intracellular pathway of the IGF-IR occurs during hyperglycemia in vivo and whether it is stronger in patients treated with (some insulin analogues than in patients treated with human insulin. In addition, it is unknown whether the insulin receptors (IRs also undergo a signaling switch during hyperglycemia. This should be investigated in future studies. Finally, relative overexpression of IR isoform A (IR-A in (pre cancer tissues may play a key role in the development and progression of human cancers during treatment with insulin (analogues. Further

  6. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  7. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    Science.gov (United States)

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  8. Update on insulin treatment for dogs and cats: insulin dosing pens and more

    Directory of Open Access Journals (Sweden)

    Thompson A

    2015-04-01

    Full Text Available Ann Thompson,1 Patty Lathan,2 Linda Fleeman3 1School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia; 2College of Veterinary Medicine Mississippi State University, Starkville, MS, USA; 3Animal Diabetes Australia, Melbourne, VIC, Australia Abstract: Insulin therapy is still the primary therapy for all diabetic dogs and cats. Several insulin options are available for each species, including veterinary registered products and human insulin preparations. The insulin chosen depends on the individual patient's requirements. Intermediate-acting insulin is usually the first choice for dogs, and longer-acting insulin is the first choice for cats. Once the insulin type is chosen, the best method of insulin administration should be considered. Traditionally, insulin vials and syringes have been used, but insulin pen devices have recently entered the veterinary market. Pens have different handling requirements when compared with standard insulin vials including: storage out of the refrigerator for some insulin preparations once pen cartridges are in use; priming of the pen to ensure a full dose of insulin is administered; and holding the pen device in place for several seconds during the injection. Many different types of pen devices are available, with features such as half-unit dosing, large dials for visually impaired people, and memory that can display the last time and dose of insulin administered. Insulin pens come in both reusable and disposable options. Pens have several benefits over syringes, including improved dose accuracy, especially for low insulin doses. Keywords: diabetes, mellitus, canine, feline, NPH, glargine, porcine lente

  9. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle

    DEFF Research Database (Denmark)

    D'Hulst, Gommaar; Sylow, Lykke; Hespel, Peter

    2015-01-01

    PURPOSE: To investigate how acute environmental hypoxia regulates blood glucose and downstream intramuscular insulin signaling after a meal in healthy humans. METHODS: Fifteen subjects were exposed for 4 h to normoxia (NOR) or to normobaric hypoxia (HYP, FiO2 = 0.11) in a randomized order 40 min ...... insulin intolerance developed independently of defects in conventional insulin signaling in skeletal muscle....

  10. Estimation of chloroform inhalation dose by other routes based on the relationship of area under the blood concentration-time curve (AUC)-inhalation dose to chloroform distribution in the blood of rats.

    Science.gov (United States)

    Take, Makoto; Takeuchi, Tetsuya; Haresaku, Mitsuru; Matsumoto, Michiharu; Nagano, Kasuke; Yamamoto, Seigo; Takamura-Enya, Takeji; Fukushima, Shoji

    2014-01-01

    The present study investigated the time-course changes of concentration of chloroform (CHCl3) in the blood during and after exposure of male rats to CHCl3 by inhalation. Increasing the dose of CHCl3 in the inhalation exposed groups caused a commensurate increase in the concentration of CHCl3 in the blood and the area under the blood concentration-time curve (AUC). There was good correlation (r = 0.988) between the inhalation dose and the AUC/kg body weight. Based on the AUC/kg body weight-inhalation dose curve and the AUC/kg body weight after oral administration, inhalation equivalent doses of orally administered CHCl3 were calculated. Calculation of inhalation equivalent doses allows the body burden due to CHCl3 by inhalation exposure and oral exposure to be directly compared. This type of comparison facilitates risk assessment in humans exposed to CHCl3 by different routes. Our results indicate that when calculating inhalation equivalent doses of CHCl3, it is critical to include the AUC from the exposure period in addition to the AUC after the end of the exposure period. Thus, studies which measure the concentration of volatile organic compounds in the blood during the inhalation exposure period are crucial. The data reported here makes an important contribution to the physiologically based pharmacokinetic (PBPK) database of CHCl3 in rodents.

  11. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    Directory of Open Access Journals (Sweden)

    Darrah K. Sleeth

    2016-03-01

    Full Text Available Extrathoracic deposition of inhaled particles (i.e., in the head and throat is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling. However, the International Organization for Standardization (ISO has recently adopted particle deposition sampling conventions (ISO 13138, including conventions for extrathoracic (ET deposition into the anterior nasal passage (ET1 and the posterior nasal and oral passages (ET2. For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm were used as a test dust in a low speed (0.2 m/s wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  12. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    Science.gov (United States)

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-07

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  13. Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition.

    Science.gov (United States)

    Sørli, Jorid B; Huang, Yishi; Da Silva, Emilie; Hansen, Jitka S; Zuo, Yi Y; Frederiksen, Marie; Nørgaard, Asger W; Ebbehøj, Niels E; Larsen, Søren T; Hougaard, Karin S

    2018-01-01

    Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.

  14. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro.

    Science.gov (United States)

    He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.

  15. Inhalation of nanoplatelets - Theoretical deposition simulations.

    Science.gov (United States)

    Sturm, Robert

    2017-12-01

    Primary objective of the contribution was the theoretical prediction of nanoplatelet deposition in the human respiratory tract. Modeling was founded on the hypothetical inhalation of graphene nanoplatelets (GNP) measuring 0.01 and 0.1μm in thickness and adopting a projected area diameter of 1-30μm. Particle uptake was assumed to take place with inhalation flow rates of 250, 500, 750, and 1000cm 3 s -1 , respectively. For an appropriate description of pulmonary particle behavior, transport of GNP in a stochastic lung structure and deposition formulae based on analytical and numerical studies were presupposed. The results obtained from the theoretical approach clearly demonstrate that GNP with a thickness of 0.01μm deposit in the respiratory tract by 20-50%, whereas GNP with a thickness of 0.1μm exhibit a deposition of 20-90%. Larger platelets deposit with higher probability than small ones. Increase of inhalation flow rate is accompanied by decreased deposition in the case of thin GNP, whilst thicker GNP are preferably accumulated in the extrathoracic region. Generation-specific deposition ranges from 0.05 to 7% (0.01μm) and from 0.05 to 9%, with maximum values being obtained in airway generation 20. In proximal airway generations (0-10), deposition is increased with inhalation flow rate, whereas in intermediate to distal generations a reverse effect may be observed. Health consequences of GNP deposition in different lung compartments are subjected to an intense debate. Copyright © 2017. Published by Elsevier GmbH.

  16. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Inhalant allergies in children.

    Science.gov (United States)

    Mims, James W; Veling, Maria C

    2011-06-01

    Children with chronic or recurrent upper respiratory inflammatory disease (rhinitis) should be considered for inhalant allergies. Risk factors for inhalant allergies in children include a first-degree relative with allergies, food allergy in infancy, and atopic dermatitis. Although inhalant allergies are rare in infancy, inhalant allergies are common in older children and impair quality of life and productivity. Differentiating between viral and allergic rhinitis can be challenging in children, but the child's age, history, and risk factors can provide helpful information. Allergic rhinitis is a risk factor for asthma, and if one is present, medical consideration of the other is warranted. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Inhalant Abuse and Dextromethorphan.

    Science.gov (United States)

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inhaled Drug Delivery: A Practical Guide to Prescribing Inhaler Devices

    Directory of Open Access Journals (Sweden)

    Pierre Ernst

    1998-01-01

    Full Text Available Direct delivery of medication to the target organ results in a high ratio of local to systemic bioavailability and has made aerosol delivery of respiratory medication the route of choice for the treatment of obstructive lung diseases. The most commonly prescribed device is the pressurized metered dose inhaler (pMDI; its major drawback is the requirement that inspiration and actuation of the device be well coordinated. Other requirements for effective drug delivery include an optimal inspiratory flow, a full inspiration from functional residual capacity and a breath hold of at least 6 s. Available pMDIs are to be gradually phased out due to their use of atmospheric ozone-depleting chlorofluorocarbons (CFCs as propellants. Newer pMDI devices using non-CFC propellants are available; preliminary experience suggests these devices greatly increase systemic bioavailability of inhaled corticosteroids. The newer multidose dry powder inhalation devices (DPIs are breath actuated, thus facilitating coordination with inspiration, and contain fewer ingredients. Furthermore, drug delivery is adequate even at low inspired flows, making their use appropriate in almost all situations. Equivalence of dosing among different devices for inhaled corticosteroids will remain imprecise, requiring the physician to adjust the dose of medication to the lowest dose that provides adequate control of asthma. Asthma education will be needed to instruct patients on the effective use of the numerous inhalation devices available.

  20. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  1. Control of the Free Convective Flow around the Human Body for Enhanced Inhaled Air Quality: Application to a Seat-Incorporated Personalized Ventilation Unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, M.

    2010-01-01

    This paper reports on methods for control of the free convective flow around the human body, with the aim of improving inhaled air quality. The methods were studied with sea-incorporated personalized ventilation (PV)-two PV nozzles placed sideways at the head level of a seated occupant supplied...

  2. Coordinated defects in hepatic long chain fatty acid metabolism and triglyceride accumulation contribute to insulin resistance in non-human primates.

    Directory of Open Access Journals (Sweden)

    Subhash Kamath

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by accumulation of triglycerides (TG in hepatocytes, which may also trigger cirrhosis. The mechanisms of NAFLD are not fully understood, but insulin resistance has been proposed as a key determinant.To determine the TG content and long chain fatty acyl CoA composition profile in liver from obese non-diabetic insulin resistant (IR and lean insulin sensitive (IS baboons in relation with hepatic and peripheral insulin sensitivity.Twenty baboons with varying grades of adiposity were studied. Hepatic (liver and peripheral (mainly muscle insulin sensitivity was measured with a euglycemic clamp and QUICKI. Liver biopsies were performed at baseline for TG content and LCFA profile by mass spectrometry, and histological analysis. Findings were correlated with clinical and biochemical markers of adiposity and insulin resistance.Obese IR baboons had elevated liver TG content compared to IS. Furthermore, the concentration of unsaturated (LC-UFA was greater than saturated (LC-SFA fatty acyl CoA in the liver. Interestingly, LC-FA UFA and SFA correlated with waist, BMI, insulin, NEFA, TG, QUICKI, but not M/I. Histological findings of NAFLD ranging from focal to diffuse hepatic steatosis were found in obese IR baboons.Liver TG content is closely related with both hepatic and peripheral IR, whereas liver LC-UFA and LC-SFA are closely related only with hepatic IR in non-human primates. Mechanisms leading to the accumulation of TG, LC-UFA and an altered UFA: LC-SFA ratio may play an important role in the pathophysiology of fatty liver disease in humans.

  3. Effects of insulin detemir and NPH insulin on renal handling of sodium, fluid retention and weight in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Hendriksen, K V; Jensen, Tonny Joran; Oturai, P

    2012-01-01

    In type 2 diabetic patients, insulin detemir (B29Lys(ε-tetradecanoyl),desB30 human insulin) induces less weight gain than NPH insulin. Due to the proposed reduction of tubular action by insulin detemir, type 2 diabetic patients should have increased urinary sodium excretion, thereby reducing extr...

  4. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.

    Science.gov (United States)

    Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan

    2017-07-12

    Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive

  5. The insulin-like growth factor axis and collagen turnover in asthmatic children treated with inhaled budesonide

    DEFF Research Database (Denmark)

    Wolthers, O D; Juul, A; Hansen, M

    1995-01-01

    Serum concentrations of growth hormone-dependent insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3), the carboxy terminal propeptide of type I procollagen (PICP), the carboxy terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) and ...... the calculations (p reduced synthesis of type III collagen. A similar trend was observed in ICTP levels when the 400 micrograms period was excluded from the calculations (p = 0.05; z = -1.9). No other statistically significant variations were seen....

  6. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    Science.gov (United States)

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Adipokines and Hepatic Insulin Resistance

    Science.gov (United States)

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  8. Evaluation of a novel educational strategy, including inhaler-based reminder labels, to improve asthma inhaler technique.

    Science.gov (United States)

    Basheti, Iman A; Armour, Carol L; Bosnic-Anticevich, Sinthia Z; Reddel, Helen K

    2008-07-01

    To evaluate the feasibility, acceptability and effectiveness of a brief intervention about inhaler technique, delivered by community pharmacists to asthma patients. Thirty-one pharmacists received brief workshop education (Active: n=16, CONTROL: n=15). Active Group pharmacists were trained to assess and teach dry powder inhaler technique, using patient-centered educational tools including novel Inhaler Technique Labels. Interventions were delivered to patients at four visits over 6 months. At baseline, patients (Active: 53, CONTROL: 44) demonstrated poor inhaler technique (mean+/-S.D. score out of 9, 5.7+/-1.6). At 6 months, improvement in inhaler technique score was significantly greater in Active cf. CONTROL patients (2.8+/-1.6 cf. 0.9+/-1.4, p<0.001), and asthma severity was significantly improved (p=0.015). Qualitative responses from patients and pharmacists indicated a high level of satisfaction with the intervention and educational tools, both for their effectiveness and for their impact on the patient-pharmacist relationship. A simple feasible intervention in community pharmacies, incorporating daily reminders via Inhaler Technique Labels on inhalers, can lead to improvement in inhaler technique and asthma outcomes. Brief training modules and simple educational tools, such as Inhaler Technique Labels, can provide a low-cost and sustainable way of changing patient behavior in asthma, using community pharmacists as educators.

  9. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  10. Inhalant Dependence and its Medical Consequences

    Directory of Open Access Journals (Sweden)

    Mehmet Hamid Boztaş

    2010-12-01

    Full Text Available The term of inhalants is used for matters easily vapors. Inhalants are preferred for rapid, positive reinforcement and mild high effects. Products including inhalants are cheap, accessible, legal substances and are prevalently used in community. The prevalence of inhalant use in secondary schools in Turkey is about 5.1%. Inhalant substance dependence is generally observed within 14-15 age group. Age at first use could be as low as 5 to 6 years of age. Substance dependence is more probable in adults working in substance existing places. Inhalant usage is common in disadvantaged groups, children living in street, people with history of crimes, prison, depression, suicide, antisocial attitudes and conflict of family, history of abuse, violence and any other drug dependence and isolated populations. Inhalants are absorbed from lungs, after performing their quick and short effect metabolized by cytochrom P450 enzyme system except inhalant nitrites group which has a depressing effect like alcohol. In chronic use general atrophy, ventricular dilatation and wide sulcus were shown in cerebrum, cerebellum and pons by monitoring brain. Defects are mostly in periventricular, subcortical regions and in white matter. Demyelinization, hyperintensity, callosal slimming and wearing off in white and gray matter margins was also found. Ravages of brain shown by brain monitorisation are more and serious in inhalant dependence than in other dependences. It is important to decrease use of inhalants. Different approaches should be used for subcultures and groups in prevention. Prohibiting all the matters including inhalant is not practical as there are too many substances including inhalants. Etiquettes showing harmful materials can be used but this approach can also lead the children and adolescents recognize these substances easily.. Despite determintal effects of inhalant dependence, there are not yet sufficient number of studies conducted on prevention and

  11. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  12. Combined effects of inhalation of Radon daughter products and tobacco smoke

    International Nuclear Information System (INIS)

    Chameaud, J.; Perraud, R.; Chretien, J.; Masse, R.; Lafuma, J.

    1980-01-01

    Over the last 10 years, more than 500 lung cancers have been induced in rats by inhalations of radon daughter products at various concentrations and cumulated doses. These cancers were compared with human cancers. Another study examines the cocarcinogenic effect of tobacco smoke. In the first experiment, 100 rats were exposed to a 4000-WLM (working level month) cumulated dose of radon daughter products. Fifty animals were then administered tobacco smoke by inhalation in a fume box during 5 months (i.e., for a total of 352 hr). In the group inhaling radon only, 17 cancers appeared; in the radon-tobacco group, 32 cancers were observed, many of them larger and more invasive than those seen in animals exposed to radon only. Under the same conditions tobacco smoke was inhaled by rats previously exposed to lower doses of radon daughter products (two groups of 30 rats each, at 500 and 100 WLM, respectively). Again, the number of cancers observed was greater than the number of cancers expected if the rats had inhaled radon only. The carcinogenic and potentiating action of tobacco smoke was clearly demonstrated

  13. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression.

    Directory of Open Access Journals (Sweden)

    Rikard G Fred

    Full Text Available BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM or high glucose (20 mM. Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism

  14. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  15. Insulin analogs with improved pharmacokinetic profiles.

    Science.gov (United States)

    Brange; Vølund

    1999-02-01

    The aim of insulin replacement therapy is to normalize blood glucose in order to reduce the complications of diabetes. The pharmacokinetics of the traditional insulin preparations, however, do not match the profiles of physiological insulin secretion. The introduction of the rDNA technology 20 years ago opened new ways to create insulin analogs with altered properties. Fast-acting analogs are based on the idea that an insulin with less tendency to self-association than human insulin would be more readily absorbed into the systemic circulation. Protracted-acting analogs have been created to mimic the slow, steady rate of insulin secretion in the fasting state. The present paper provides a historical review of the efforts to change the physicochemical and pharmacological properties of insulin in order to improve insulin therapy. The available clinical studies of the new insulins are surveyed and show, together with modeling results, that new strategies for optimal basal-bolus treatment are required for utilization of the new fast-acting analogs.

  16. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: focus on insulin glulisine

    Directory of Open Access Journals (Sweden)

    Heather Ulrich

    2007-07-01

    Full Text Available Heather Ulrich1,4, Benjamin Snyder1,Satish K Garg1,2,31Barbara Davis Center for Childhood Diabetes; 2Department of Medicine; 3Pediatrics; 4Department of Clinical Pharmacy, School of Pharmacy, University of Colorado at Denver and Health Sciences Center, Denver, CO, USAAbstract: Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI. Insulin glulisine (Apidra® is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs. The safety and tolerability profile of insulin glulisine is also comparable to that of insulin

  17. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  18. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    International Nuclear Information System (INIS)

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk

    2006-01-01

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  19. Treatment of dwarfism with recombinant human insulin-like growth factor-1.

    Science.gov (United States)

    Ranke, Michael B; Wölfle, Joachim; Schnabel, Dirk; Bettendorf, Markus

    2009-10-01

    The growth hormone-IGF (insulin-like growth factor) system plays a central role in hormonal growth regulation. Recombinant human (rh) growth hormone (GH) has been available since the late 1980s for replacement therapy in GH-deficient patients and for the stimulation of growth in patients with short stature of various causes. Growth promotion by GH occurs in part indirectly through the induction of IGF-1 synthesis. In primary disturbances of IGF-1 production, short stature can only be treated with recombinant human IGF-1 (rhIGF-1). rhIGF-1 was recently approved for this indication but can also be used to treat other conditions. Selective review of the literature on IGF-1 therapy, based on a PubMed search. In children with severe primary IGF-1 deficiency (a rare condition whose prevalence is less than 1:10,000), the prognosis for final height is very poor (ca. 130 cm), and IGF-1 therapy is the appropriate form of pathophysiologically based treatment. There is no alternative treatment at present. The subcutaneous administration of IGF-1 twice daily in doses of 80 to 120 microg/kg accelerates growth and increases final height by 12 to 15 cm, according to current data. There is, however, a risk of hypoglycemia, as IGF-1 has an insulin-like effect. As treatment with IGF-1 is complex, this new medication should only be prescribed, for the time being, by experienced pediatric endocrinologists and diabetologists.

  20. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes

    DEFF Research Database (Denmark)

    Rosengren, Anders H; Braun, Matthias; Mahdi, Taman

    2012-01-01

    The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features ...

  1. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    Science.gov (United States)

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  2. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  3. Deposition of inhaled radionuclides in bronchial airways: Implications for extrapolation modeling

    International Nuclear Information System (INIS)

    Balashazy, I.; Hofmann, W.; Heistracher, T.

    1996-01-01

    The laboratory rat has frequently been used as a human surrogate to estimate potential health effects following the inhalation of radioactive aerosol particles. Interspecies differences in biological response are commonly related to interspecies differences in particle deposition efficiencies. In addition, the documented site selectivity of bronchial carcinomas suggests that localized particle deposition patterns within bronchial airway bifurcations may have important implications for inhalation risk assessments. Interspecies differences in particle deposition patterns may be related primarily to differences in airway morphometries. Thus the validity of extrapolating rat deposition data to human inhalation conditions depends on their morphometric similarities and differences. It is well known that there are significant structural differences between the human - rather symmetric - and the rat - monopodial - airway systems. In the present approach, we focus on localized deposition patterns and deposition efficiencies in selected asymmetric bronchial airway bifurcations, whose diameters, lengths and branching angles were derived from the stochastic airway models of human and rat lungs (Koblinger and Hofmann, 1985;1988), which are based on the morphometric data of Raabe et al. (1976). The effects of interspecies differences in particle deposition patterns are explored in this study for two asymmetric bifurcation geometries in segmental bronchi and terminal bronchioles of both the human and rat lungs at different particle sizes. In order to examine the effect of flow rate on particle deposition in the human lung, we selected two different minute volumes, i.e., 10 and 60 1 min -1 , which are representative of low and heavy physical activity breathing conditions. In the case of the rat we used a minute volume of 0.234 1 min -1 (Hofmann et al., 1993)

  4. Inhalative cadmium effects in pregnant and fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Prigge, E.

    1978-01-01

    Pregnant and non-pregnant rats were continuously exposed for 21 days to an aerosol containing 0.2, 0.4, and 0.6 mg cadmium/m/sup 3/ air. Pregnant and non-pregnant rats exposed to clean air served as controls. The aerosol was generated by an ultrasonic nebulizer and was carried into inhalation chambers. The median aerodynamic diameters were on the order of 0.6 ..mu..m. After inhalation of cadmium aerosols, serum iron levels were not lowered significantly in adult rats. A polycythaemic response of non-pregnant rats was observed due to a direct stimulatory effect of cadmium on erythropoiesis. Polycythaemia was less marked in pregnancy, presumably due to iron loss to placenta and fetus. Disturbances of pulmonary gas exchange or decreased plasma volumes were excluded as causative mechanisms of polycythaemia. In pregnant rats there was a marked dose dependent decrease of the activity of the alkaline phosphatase after cadmium inhalation, while there was no effect in exposed non-pregnant rats. This decreased enzyme activity, together with slowed growth rates and hemolytic effect indicate a higher sensitivity to cadmium in pregnancy. Proteinuria was not found in neither pregnant nor non-pregnant rats. Therefore, it is concluded that in this respect cadmium intoxication by inhalation does not resemble human toxemia of pregnancy, as discussed in the literature.

  5. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Treatment with insulin (analogues) and breast cancer risk in diabetics; a systematic review and meta-analysis of in vitro, animal and human evidence

    DEFF Research Database (Denmark)

    Bronsveld, Heleen K; ter Braak, Bas; Karlstad, Øystein

    2015-01-01

    INTRODUCTION: Several studies have suggested that anti-diabetic insulin analogue treatment might increase cancer risk. The aim of this study was to review the postulated association between insulin and insulin analogue treatment and breast cancer development, and plausible mechanisms. METHOD......: A systematic literature search was performed on breast cell-line, animal and human studies using the key words 'insulin analogue' and 'breast neoplasia' in MEDLINE at PubMed, EMBASE, and ISI Web of Science databases. A quantitative and qualitative review was performed on the epidemiological data; due...

  7. [Targeting the brain through the nose. Effects of intranasally administered insulin].

    Science.gov (United States)

    Brünner, Y F; Benedict, C; Freiherr, J

    2013-08-01

    The assumption that the human brain is an insulin-independent organ was disproved with the discovery of insulin receptors in the central nervous system in the year 1978. Evidence has been provided for a high density of insulin receptors in brain regions responsible for cognitive memory processes (hippocampus) and for the regulation of appetite (hypothalamus). Accordingly, in animal studies an increased insulin level in the central nervous system leads to an improvement of hippocampal memory function and a decrease of food intake. Similar results were obtained in humans using the method of intranasal administration of insulin. Intranasal insulin reaches the brain and the cerebrospinal fluid via the olfactory epithelium and olfactory nerve fiber bundles leading through the lamina cribrosa to the olfactory bulb. Thus, this method renders the investigation of specific insulin effects in humans possible. The therapeutic potential of an intranasal insulin administration for the treatment of diseases for which an imbalance of the central nervous insulin metabolism is discussed (e.g. Alzheimer's disease, diabetes mellitus and obesity) can only be estimated with the help of further clinical studies.

  8. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  9. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  10. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Belani, Muskaan, E-mail: muskaanbelani@gmail.com [Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India. (India); Shah, Preeti, E-mail: preeti.shah@novaivifertility.com [Nova IVI Fertility, Behind Xavier' s Ladies Hostel, 108, Swastik Society Rd., Navrangpura, Ahmedabad 390009, Gujarat, India. (India); Banker, Manish, E-mail: manish.banker@novaivifertility.com [Nova IVI Fertility, Behind Xavier' s Ladies Hostel, 108, Swastik Society Rd., Navrangpura, Ahmedabad 390009, Gujarat, India. (India); Gupta, Sarita, E-mail: saritagupta9@gmail.com [Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India. (India)

    2016-12-15

    Combined exposure of cadmium (Cd) and insulin resistance (IR) might be responsible for subfertility. In the present study, we investigated the effects of Cd in vitro in IR human granulosa cells. Isolated human granulosa cells from control and polycystic ovary syndrome (PCOS) follicular fluid samples were confirmed for IR by decrease in protein expression of insulin receptor-β. Control and IR human granulosa cells were then incubated with or without 32 μM Cd. The combined effect of IR with 32 μM Cd in granulosa cells demonstrated significant decrease in expression of StAR, CYP11A1, CYP19A1, 17β-HSD, 3β-HSD, FSH-R and LH-R. Decrease was also observed in progesterone and estradiol concentrations as compared to control. Additionally, increase in protein expression of cleaved PARP-F2, active caspase-3 and a positive staining for Annexin V and PI indicated apoptosis as the mode of increased cell death ultimately leading to decreased steroidogenesis, as observed through the combined exposure. Taken together the results suggest decrease in steroidogenesis ultimately leading to abnormal development of the follicle thus compromising fertility at the level of preconception. - Highlights: • Protein expression of INSR-β in granulosa cells to differentiate PCOS-IR and NIR • Cd and IR together decrease steroidogenesis in human granulosa cells in vitro. • Cd and IR increase human granulosa cell death by increase in apoptosis. • Environment and life style are set to hamper pregnancies at preconception level.

  11. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study

    International Nuclear Information System (INIS)

    Belani, Muskaan; Shah, Preeti; Banker, Manish; Gupta, Sarita

    2016-01-01

    Combined exposure of cadmium (Cd) and insulin resistance (IR) might be responsible for subfertility. In the present study, we investigated the effects of Cd in vitro in IR human granulosa cells. Isolated human granulosa cells from control and polycystic ovary syndrome (PCOS) follicular fluid samples were confirmed for IR by decrease in protein expression of insulin receptor-β. Control and IR human granulosa cells were then incubated with or without 32 μM Cd. The combined effect of IR with 32 μM Cd in granulosa cells demonstrated significant decrease in expression of StAR, CYP11A1, CYP19A1, 17β-HSD, 3β-HSD, FSH-R and LH-R. Decrease was also observed in progesterone and estradiol concentrations as compared to control. Additionally, increase in protein expression of cleaved PARP-F2, active caspase-3 and a positive staining for Annexin V and PI indicated apoptosis as the mode of increased cell death ultimately leading to decreased steroidogenesis, as observed through the combined exposure. Taken together the results suggest decrease in steroidogenesis ultimately leading to abnormal development of the follicle thus compromising fertility at the level of preconception. - Highlights: • Protein expression of INSR-β in granulosa cells to differentiate PCOS-IR and NIR • Cd and IR together decrease steroidogenesis in human granulosa cells in vitro. • Cd and IR increase human granulosa cell death by increase in apoptosis. • Environment and life style are set to hamper pregnancies at preconception level.

  12. Selective insulin resistance in hepatocyte senescence

    International Nuclear Information System (INIS)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-01-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance

  13. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  14. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  15. Transplanted human pancreatic islets after long-term insulin independence

    DEFF Research Database (Denmark)

    Muller, Y D; Gupta, Shashank; Morel, P

    2013-01-01

    Long-term insulin independence after islets of Langerhans transplantation is rarely achieved. The aims of this study were to identify the histological and immunological features of islets transplanted in a type 1 diabetic patient who died of a cerebral hemorrhage after >13 years insulin independe...

  16. Biological effects of inhaled 144CeCl3 in beagle dogs

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Griffith, W.C.; Muggenburg, B.A.

    1997-01-01

    Data on biological effects in humans exposed briefly to high levels of external X or gamma irradiation provide the foundation of protection guidelines for low linear energy transfer (LET) radiation. Unfortunately, the extrapolation of the risk of these biological effects to humans exposed to internally deposited radionuclides is complicated by the protracted exposure and differences in local doses to organs and tissues that result from internal irradiation. Therefore, data from humans exposed to external radiation may not provide all of the information necessary to understand the long-term health effects of internally deposited, beta-particle-emitting radionuclides. Because of these uncertainties, it is important to determine the spatial and temporal distribution of radionuclides such as radiocerium in the body and the relationship of their distribution to biological effects that result from acute inhalation exposure. The radiation effects of inhaled cerium 144 were studied in beagles

  17. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... KB] Using a metered dose inhaler (inhaler in mouth) Your browser does not support iframes Using a metered dose inhaler (inhaler in mouth) [PDF – 370 KB] Your browser does not support ...

  18. Novel and Reversible Mechanisms of Smoking-Induced Insulin Resistance in Humans

    OpenAIRE

    Bergman, Bryan C.; Perreault, Leigh; Hunerdosse, Devon; Kerege, Anna; Playdon, Mary; Samek, Ali M.; Eckel, Robert H.

    2012-01-01

    Smoking is the most common cause of preventable morbidity and mortality in the United States, in part because it is an independent risk factor for the development of insulin resistance and type 2 diabetes. However, mechanisms responsible for smoking-induced insulin resistance are unclear. In this study, we found smokers were less insulin sensitive compared with controls, which increased after either 1 or 2 weeks of smoking cessation. Improvements in insulin sensitivity after smoking cessation...

  19. Insulin action in human thighs after one-legged immobilization

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Mizuno, M.

    1989-01-01

    Insulin action was assessed in thighs of five healthy young males who had one knee immobilized for 7 days by a splint. The splint was not worn in bed. Subjects also used crutches to prevent weight bearing of the immobilized leg. Immobilization decreased the activity of citrate synthase and 3-OH......-acyl-CoA-dehydrogenase in the vastus lateralis muscle by 9 and 14%, respectively, and thigh volume by 5%. After 7 days of immobilization, a two-step euglycemic hyperinsulinemic clamp procedure combined with arterial and bilateral femoral venous catheterization was performed. Insulin action on glucose uptake and tyrosine release...... of the thighs at mean plasma insulin concentrations of 67 (clamp step I) and 447 microU/ml (clamp step II) was decreased by immobilization, whereas immobilization did not affect insulin action on thigh exchange of free fatty acids, glycerol, O2, or potassium. Before and during the clamp step I, lactate release...

  20. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Georgeta Crivat

    Full Text Available The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4, the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM. We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to

  1. Insulin Stimulates Translocation of Human GLUT4 to the Membrane in Fat Bodies of Transgenic Drosophila melanogaster

    Science.gov (United States)

    Crivat, Georgeta; Lizunov, Vladimir A.; Li, Caroline R.; Stenkula, Karin G.; Zimmerberg, Joshua; Cushman, Samuel W.; Pick, Leslie

    2013-01-01

    The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in ‘diabetic’ flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin

  2. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; El-Badri, Nagwa; Ghoneim, Mohamed A

    2014-01-01

    Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs) to form insulin-producing cells (IPCs). We compared the relative efficiency of three differentiation protocols. Human bone marrow-derived MSCs (HBM-MSCs) were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol), trichostatin-A-based (two-step protocol), and β -mercaptoethanol-based (three-step protocol). At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. By immunolabeling, the proportion of generated IPCs was modest ( ≃ 3%) in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  3. Insulin use and persistence in patients with type 2 diabetes adding mealtime insulin to a basal regimen: a retrospective database analysis

    Directory of Open Access Journals (Sweden)

    Torres Amelito M

    2011-01-01

    Full Text Available Abstract Background The objective of this study was to characterize insulin use and examine factors associated with persistence to mealtime insulin among patients with type 2 diabetes (T2D on stable basal insulin therapy initiating mealtime insulin therapy. Methods Insulin use among patients with T2D initiating mealtime insulin was investigated using Thomson Reuters MarketScan® research databases from July 2001 through September 2006. The first mealtime insulin claim preceded by 6 months with 2 claims for basal insulin was used as the index event. A total of 21 months of continuous health plan enrollment was required. Patients were required to have a second mealtime insulin claim during the 12-month follow-up period. Persistence measure 1 defined non-persistence as the presence of a 90-day gap in mealtime insulin claims, effective the date of the last claim prior to the gap. Persistence measure 2 required 1 claim per quarter to be persistent. Risk factors for non-persistence were assessed using logistic regression. Results Patients initiating mealtime insulin (n = 4752; 51% male, mean age = 60.3 years primarily used vial/syringe (87% and insulin analogs (60%. Patients filled a median of 2, 3, and 4 mealtime insulin claims at 3, 6, and 12 months, respectively, with a median time of 76 days between refills. According to measure 1, persistence to mealtime insulin was 40.7%, 30.2%, and 19.1% at 3, 6, and 12 months, respectively. Results for measure 2 were considerably higher: 74.3%, 55.3%, and 42.2% of patients were persistent at 3, 6, and 12 months, respectively. Initiating mealtime insulin with human insulin was a risk factor for non-persistence by both measures (OR Conclusions Mealtime insulin use and persistence were both considerably lower than expected, and were significantly lower for human insulin compared to analogs.

  4. Insulin-producing Cells from Adult Human Bone Marrow Mesenchymal Stromal Cells Could Control Chemically Induced Diabetes in Dogs: A Preliminary Study.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Ismail, Amani M; Khater, Sherry M; Ashamallah, Sylvia A; Azzam, Maha M; Ghoneim, Mohamed A

    2018-01-01

    Ten mongrel dogs were used in this study. Diabetes was chemically induced in 7 dogs, and 3 dogs served as normal controls. For each diabetic dog, 5 million human bone marrow-derived mesenchymal stem cells/kg were differentiated to form insulin-producing cells using a trichostatin-based protocol. Cells were then loaded in 2 TheraCyte capsules which were transplanted under the rectus sheath. One dog died 4 d postoperatively from pneumonia. Six dogs were followed up with for 6 to 18 mo. Euglycemia was achieved in 4 dogs. Their glucose tolerance curves exhibited a normal pattern demonstrating that the encapsulated cells were glucose sensitive and insulin responsive. In the remaining 2 dogs, the fasting blood sugar levels were reduced but did not reach normal values. The sera of all transplanted dogs contained human insulin and C-peptide with a negligible amount of canine insulin. Removal of the transplanted capsules was followed by prompt return of diabetes. Intracytoplasmic insulin granules were seen by immunofluorescence in cells from the harvested capsules. Furthermore, all pancreatic endocrine genes were expressed. This study demonstrated that the TheraCyte capsule or a similar device can provide adequate immunoisolation, an important issue when stem cells are considered for the treatment of type 1 diabetes mellitus.

  5. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  7. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats

    Directory of Open Access Journals (Sweden)

    Xiaoya Sun

    2017-11-01

    Full Text Available Abstract Background Insulin resistance is one of the most common and important pathological features of type 2 diabetes (T2D. Recently, insulin resistance is increasingly considered to be associated with systemic chronic inflammation. Elevated levels of tumor necrosis factor (TNF-α and interleukin (IL-1β in blood are predictive indicators of the development of T2D. Mesenchymal stem cell (MSC-based therapies have been proven to have potential immunomodulation and anti-inflammatory properties through their paracrine effects; however, the mechanism for the anti-inflammatory effect of MSCs in enhancing insulin sensitivity is still uncertain. Methods In the present experiment, we used HepG2 cells, a human hepatoma cell line, and a MSC-HepG2 transwell culturing system to investigate the anti-inflammatory mechanism of human umbilical cord-derived MSCs (UC-MSCs under palmitic acid (PA and lipopolysaccharide (LPS-induced insulin resistance in vitro. Insulin resistance was confirmed by glycogen assay kit and glucose assay kit. Inflammatory factor release was detected by ELISA, gene expression was tested by quantitative real-time PCR, and insulin signaling activation was determined by western blotting analysis. The changes of inflammatory factors and insulin signaling protein were also tested in T2D rats injected with UC-MSCs. Results Treating HepG2 cells with PA–LPS caused NLRP3 inflammation activation, including overexpression of NLRP3 and caspase-1, and overproduction of IL-1β and IL-18 as well as TNF-α from HepG2 cells. The elevated levels of these inflammatory cytokines impaired insulin receptor action and thereby prevented downstream signaling pathways, exacerbating insulin resistance in HepG2 cells. Importantly, UC-MSCs cocultured with HepG2 could effectively alleviate PA and LPS-induced insulin resistance by blocking the NLRP3 inflammasome activation and inflammatory agents. Furthermore, knockdown of NLRP3 or IL-1β partially improved PA and

  8. Deposition Pattern of Inhaled Thoron Progeny Size Distribution in Human Lung

    International Nuclear Information System (INIS)

    Mohamed, A.

    2005-01-01

    One of the important factors controlling the distribution of radiation dose to the different portions of the human respiratory tract is the deposition pattern of thoron progeny containing aerosol. Based on the activity size distribution parameters of thoron progeny, which were measured in El-Minia University, the deposition behavior of thoron progeny (attached and unattached) has been studied by using a stochastic deposition model. The measurements were performed with a wire screen diffusion battery and a low pressure cascade impactor (type Berner). The bronchial deposition efficiencies of particles in the size range of attached thoron progeny were found to be lower than those of unattached progeny. The effect of thoron progeny deposition by adult male has been also studied for various levels of physical exertion. An increase in the breathing rate was found to decrease the efficiencies with which inhaled progeny were deposited in the bronchi. As the ventilation rate increases from 0.54 to 1.5 m3 h-1, the average deposition efficiencies of airway generation 1 through 8 are expected to decrease by 22 % for 1.4 nm particles and by 38 % for 150 nm particles

  9. Electrostatic Properties of Particles for Inhalation

    OpenAIRE

    Rowland, Martin

    2015-01-01

    Dry powder inhalers (DPIs) and pressurised metered dose inhalers (pMDIs) aredevices used to deliver therapeutic agents to the lungs. Typically, inhaled activepharmaceutical ingredients (APIs) are electrically resistive materials and are prone toaccumulating electrostatic charge. The build-up of charge on inhaled therapeutics hastraditionally been viewed as a nuisance as it may result in problems such as weighingerrors, agglomeration, adhesion to surfaces and poor flow. Energetic processing st...

  10. Land use and air quality in urban environments: Human health risk assessment due to inhalation of airborne particles.

    Science.gov (United States)

    Mateos, A C; Amarillo, A C; Carreras, H A; González, C M

    2018-02-01

    Particle matter (PM) and its associated compounds are a serious problem for urban air quality and a threat to human health. In the present study, we assessed the intraurban variation of PM, and characterized the human health risk associated to the inhalation of particles measured on PM filters, considering different land use areas in the urban area of Cordoba city (Argentina) and different age groups. To assess the intraurban variation of PM, a biomonitoring network of T. capillaris was established in 15 sampling sites with different land use and the bioaccumulation of Co, Cu, Fe, Mn, Ni, Pb and Zn was quantified. After that, particles were collected by instrumental monitors placed at the most representative sampling sites of each land use category and an inhalation risk was calculated. A remarkable intraurban difference in the heavy metals content measured in the biomonitors was observed, in relation with the sampling site land use. The higher content was detected at industrial areas as well as in sites with intense vehicular traffic. Mean PM 10 levels exceeded the standard suggested by the U.S. EPA in all land use areas, except for the downtown. Hazard Index values were below EPA's safe limit in all land use areas and in the different age groups. In contrast, the carcinogenic risk analysis showed that all urban areas exceeded the acceptable limit (1 × 10 -6 ), while the industrial sampling sites and the elder group presented a carcinogenic risk higher that the unacceptable limit. These findings validate the use of T. capillaris to assess intraurban air quality and also show there is an important intraurban variation in human health risk associated to different land use. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhaled americium dioxide

    International Nuclear Information System (INIS)

    Park, J.F.

    1982-01-01

    This project includes experiments to determine the effects of Zn-DTPA therapy on the retention, translocation and biological effects of inhaled 241 AmO 2 . Beagle dogs that received inhalation exposure to 241 AmO 2 developed leukopenia, clincial chemistry changes associated with hepatocellular damage, and were euthanized due to respiratory insufficiency caused by radiation pneumonitis 120 to 131 days after pulmonary deposition of 22 to 65 μCi 241 Am. Another group of dogs that received inhalation exposure to 241 AmO 2 and were treated daily with Zn-DTPA had initial pulmonary deposition of 19 to 26 μCi 241 Am. These dogs did not develop respiratory insufficiency, and hematologic and clinical chemistry changes were less severe than in the non-DTPA-treated dogs

  12. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  13. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Background. The functions of insulin in mesenchymal stem cells (MSC remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM cultured in serum-free media (SFM with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.

  14. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  15. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  16. Label-free detection of insulin and glucagon within human islets of Langerhans using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Janneke Hilderink

    Full Text Available Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm(-1 band assigned to disulfide bridges in insulin, and the 1552 cm(-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1 of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans.

  17. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

    Science.gov (United States)

    Kolanjiyil, Arun V; Kleinstreuer, Clement; Sadikot, Ruxana T

    2017-05-01

    Pulmonary drug delivery is becoming a favored route for administering drugs to treat both lung and systemic diseases. Examples of lung diseases include asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD) as well as respiratory distress syndrome (ARDS) and pulmonary fibrosis. Special respiratory drugs are administered to the lungs, using an appropriate inhaler device. Next to the pressurized metered-dose inhaler (pMDI), the dry powder inhaler (DPI) is a frequently used device because of the good drug stability and a minimal need for patient coordination. Specific DPI-designs and operations greatly affect drug-aerosol formation and hence local lung deposition. Simulating the fluid-particle dynamics after use of a DPI allows for the assessment of drug-aerosol deposition and can also assist in improving the device configuration and operation. In Part I of this study a first-generation whole lung-airway model (WLAM) was introduced and discussed to analyze particle transport and deposition in a human respiratory tract model. In the present Part II the drug-aerosols are assumed to be injected into the lung airways from a DPI mouth-piece, forming the mouth-inlet. The total as well as regional particle depositions in the WLAM, as inhaled from a DPI, were successfully compared with experimental data sets reported in the open literature. The validated modeling methodology was then employed to study the delivery of curcumin aerosols into lung airways using a commercial DPI. Curcumin has been implicated to possess high therapeutic potential as an antioxidant, anti-inflammatory and anti-cancer agent. However, efficacy of curcumin treatment is limited because of the low bioavailability of curcumin when ingested. Hence, alternative drug administration techniques, e.g., using inhalable curcumin-aerosols, are under investigation. Based on the present results, it can be concluded that use of a DPI leads to low lung deposition efficiencies because large amounts of

  18. Acute effect of insulin on guinea pig airways and its amelioration by pre-treatment with salbutamol

    International Nuclear Information System (INIS)

    Sharif, M.; Khan, B. T.; Anwar, M. A.

    2014-01-01

    Objective: To study the magnitude of insulin-mediated airway hyper-reactivity and to explore the protective effects of salbutamol in inhibiting the insulin-induced airway hyper-responsiveness on tracheal smooth muscle of guinea pigs in vitro. Methods: The quasi-experimental study was conducted at the Pharmacology Department of Army Medical College, Rawalpindi, in collaboration with the Centre for Research in Experimental and Applied Medicine from December 2011 to July 2012. It used 18 healthy Dunkin Hartely guinea pigs of either gender. Effects of increasing concentrations of histamine (10-8-10-3M), insulin (10-8-10-3 M) and insulin pre-treated with salbutamol (10-6 M) were observed on isolated tracheal strip of guinea pig in vitro by constructing cumulative concentration response curves. The tracheal smooth muscle contractions were recorded with Transducer on Four Channel Oscillograph. Mean and standard error of mean were calculated. SPSS 16 was used for statistical analysis. Results: Histamine and insulin produced a concentration-dependent reversible contraction of isolated tracheal muscle of guinea pig. The mean of maximum amplitudes of contraction with histamine, insulin and insulin pre-treated with salbutamol were 92. 1.20 mm, 35+-1.13 mm and 14.55+-0.62 mm respectively. Salbutamol shifted the concentration response curve of insulin to the right and downwards. Conclusions: Salbutamol significantly reduced the insulin mediated airway hyper-reactivity in guinea pigs, suggesting that pre-treatment of inhaled insulin with salbutamol may have clinical implication in the amelioration of its potential respiratory adverse effects such as bronchoconstriction. (author)

  19. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  20. Animal Model Selection for Inhalational HCN Exposure

    Science.gov (United States)

    2016-08-01

    effects. Following acute inhalation exposure in humans and animals, cyanide is found in the lung, heart, blood , kidneys, and brain (Ballantyne, 1983...Pritchard, 2007). Other direct or secondary effects associated with CN are reacting with the ferric and carbonyl group of enzymes (e.g. catalase...mechanisms occurs before myocardial depression. Clinically, an initial period of bradycardia and hypertension may occur, followed by hypotension with reflex

  1. The Effect of Inhalation Volume and Breath-Hold Duration on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking

    Directory of Open Access Journals (Sweden)

    Armitage AK

    2014-12-01

    Full Text Available The influence of inhalation depth and breath-hold duration on the retention of nicotine and solanesol in the human respiratory tract and on nicotine uptake was studied in ten cigarette smokers. In a first series of experiments, the subjects took seven puffs from a 10 mg ‘tar’ yield, test cigarette and a fixed volume of air (0, 75, 250, 500 or 1000 mL, as required by the protocol was inhaled after each puff in order to give a controlled ‘depth’ of inhalation. The inhalation was drawn from a bag containing the required volume of air. Following a 2 s breath-hold, subjects exhaled normally, with the first exhalation after each puff passing through a single acidified filter pad for collection of the non-retained nicotine and solanesol. Blood samples were taken before and at intervals during and after smoking for the sessions with 0, 75 and 500 mL inhalation volumes for determination of plasma nicotine and carboxyhaemoglobin levels. Another series of experiments was conducted with a fixed inhalation volume (500 mL and two further breath-hold durations (0 and 10 s in addition to 2 s from above. Nicotine and solanesol retentions were measured for each breath-hold condition. The amounts of nicotine retained within the respiratory system, expressed as a percentage of the amount taken into the mouth, were consistently higher than the corresponding values for solanesol in all five inhalation conditions (0-1000 mL, 2 s breath-hold. Nicotine retention increased from 46.5% at zero inhalation to 99.5% at 1000 mL inhalation (2 s breath-hold and from 98.0% at zero breath-hold to 99.9% at 10 s breath-hold (500 mL inhalation. Solanesol retention increased from 34.2% at zero inhalation volume to 71.9% at 1000 mL inhalation (2 s breath-hold and from 51.8% at zero breath-hold to 87.6% at 10 s breath-hold (500 mL inhalation. Plasma nicotine decreased from pre-smoking levels after zero inhalation indicating that the nicotine retained within the mouth was poorly

  2. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  3. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  4. Bronchial effects of leukotriene D4 inhalation in normal human lung

    DEFF Research Database (Denmark)

    Bisgaard, H; Groth, S

    1987-01-01

    obstruction had decreased by 50% of the maximum effect, and no delayed reaction was observed within 10 h. The reactivity of the airways did not change during 10 h after inhalation of LTD4 as tested by repeated exercise challenges. Pretreatment with ipratropium bromide prevented the effect of LTD4 on FEV1, yet...

  5. Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo

    Directory of Open Access Journals (Sweden)

    Oei Gezina TML

    2012-09-01

    Full Text Available Abstract Background Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific “conditioning” protocols. Before widespread use of this “conditioning” agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Methods Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O2 or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline, T1 (25 min inhalation and T2-T5 (1, 2, 6, 24 h after inhalation and incubated with lipopolysaccharide (LPS, lipoteichoic acid (LTA, T-cell stimuli anti-CD3/ anti-CD28 (TCS or RPMI (as control for 2, 4 and 24 hours or not incubated (0 h. An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, interleukin-8 (IL-8, interferon-γ (IFN-γ and interleukin-2 (IL-2 was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Results Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. Conclusions We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Trial registration Dutch Trial Register: http://www.trialregister.nl/ NTR2152

  6. Procedure for the preparation of tritium-labelled insulins

    International Nuclear Information System (INIS)

    Bienert, M.; Haensicke, A.; Beyermann, M.; Kaufmann, K.D.; Oehlke, J.; Klauschenz, E.; Bespalowa, S.; Titov, M.; Pleiss, U.

    1986-01-01

    This invention is concerned with a procedure for the preparation of specific 3 H-labelled insulins with sequences of human, bovine or porcine insulins and without simultaneous chemical modifications of the insulin. On the basis of this procedure a 3 H 2 -Typ (B26)-insulin can be obtained in good yield and purity with a specific radioactivity appropriate to biopharmaceutical and pharmacokinetic purposes in medicine and pharmaceutical industry, resp

  7. Blueberries? Impact on Insulin Resistance and Glucose Intolerance

    OpenAIRE

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by hom...

  8. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance.

    Science.gov (United States)

    Błachnio-Zabielska, Agnieszka U; Baranowski, Marcin; Hirnle, Tomasz; Zabielski, Piotr; Lewczuk, Anna; Dmitruk, Iwona; Górski, Jan

    2012-12-01

    Obesity is a risk factor for metabolic diseases. Intramuscular lipid accumulation of ceramides, diacylglycerols, and long chain acyl-CoA is responsible for the induction of insulin resistance. These lipids are probably implicated in obesity-associated insulin resistance not only in skeletal muscle but also in fat tissue. Only few data are available about ceramide content in human subcutaneous adipose tissue. However, there are no data on DAG and LCACoA content in adipose tissue. The aim of our study was to measure the lipids content in human SAT and epicardial adipose tissue we sought to determine the bioactive lipids content by LC/MS/MS in fat tissue from lean non-diabetic, obese non-diabetic, and obese diabetic subjects and test whether the lipids correlate with HOMA-IR. We found, that total content of measured lipids was markedly higher in OND and OD subjects in both types of fat tissue (for all p lipids content is greater in subcutaneous and epicardial fat tissue and the particular lipids content positively correlates with HOMA-IR.

  9. Inhalants

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  10. Validation of the 133Xe inhalation method for measuring brain stem and cerebellar blood flow in human subjects and the baboon

    International Nuclear Information System (INIS)

    Sakai, F.; Meyer, J. St.; Yamaguchi, F.; Yamamoto, M.; Shaw, T.; Juge, O.

    1979-01-01

    Regional cerebral blood flow (rCBF) measurements recorded by probes placed over the posterior fossa after 133 Xe inhalation have been validated here in. After inhalation, 133 Xe gas is distributed via arterial blood of both carotid an vertebrobasilar systems, so that it should be possible to measure rCBF of the brain stem and cerebellum if appropriate collimation, probe placement and selection of activity are employed. Detectors placed over the suboccipital regions may be subject to distortion by radioactivity derived from extracerebral sources so that the following questions were asked: 1) What is the counting geometry for each probe looking at this area 2) What is the extent of contamination from surrounding tissues 3) Are the flow values reproducible and in accordance with values obtained by other techniques 4) Are the flow values able to show predictable changes under physiological and pathological conditions Animal and human experiments designed to answer these questions are reported. (Auth.)

  11. Racl Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Sylow, L.; Jensen, T. E.; Kleinert, M.

    2013-01-01

    The actin cytoskeleton-regulating GTPase Racl is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Racl and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been i...

  12. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    Science.gov (United States)

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  13. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  14. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  15. Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2014-01-01

    Full Text Available Introduction. Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs to form insulin-producing cells (IPCs. We compared the relative efficiency of three differentiation protocols. Methods. Human bone marrow-derived MSCs (HBM-MSCs were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol, trichostatin-A-based (two-step protocol, and β-mercaptoethanol-based (three-step protocol. At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. Results. By immunolabeling, the proportion of generated IPCs was modest (≃3% in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. Conclusion. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  16. Challenges constraining access to insulin in the private-sector market of Delhi, India.

    Science.gov (United States)

    Sharma, Abhishek; Kaplan, Warren A

    2016-01-01

    India's majority of patients-including those living with diabetes-seek healthcare in the private sector through out-of-pocket (OOP) payments. We studied access to insulin in the private-sector market of Delhi state, India. A modified World Health Organization/Health Action International (WHO/HAI) standard survey to assess insulin availability and prices, and qualitative interviews with insulin retailers (pharmacists) and wholesalers to understand insulin market dynamics. In 40 pharmacy outlets analysed, mean availability of the human and analogue insulins on the 2013 Delhi essential medicine list was 44.4% and 13.1%, respectively. 82% of pharmacies had domestically manufactured human insulin phials, primarily was made in India under licence to overseas pharmaceutical companies. Analogue insulin was only in cartridge and pen forms that were 4.42 and 5.81 times, respectively, the price of human insulin phials. Domestically manufactured human phial and cartridge insulin (produced for foreign and Indian companies) was less expensive than their imported counterparts. The lowest paid unskilled government worker in Delhi would work about 1.5 and 8.6 days, respectively, to be able to pay OOP for a monthly supply of human phial and analogue cartridge insulin. Interviews suggest that the Delhi insulin market is dominated by a few multinational companies that import and/or license in-country production. Several factors influence insulin uptake by patients, including doctor's prescribing preference. Wholesalers have negative perceptions about domestic insulin manufacturing. The Delhi insulin market is an oligopoly with limited market competition. Increasing competition from Indian companies is going to require some additional policies, not presently in place. As more Indian companies produce biosimilars, brand substitution policies are needed to be able to benefit from market competition.

  17. Challenges constraining access to insulin in the private-sector market of Delhi, India

    Science.gov (United States)

    Kaplan, Warren A

    2016-01-01

    Objective India's majority of patients—including those living with diabetes—seek healthcare in the private sector through out-of-pocket (OOP) payments. We studied access to insulin in the private-sector market of Delhi state, India. Methods A modified World Health Organization/Health Action International (WHO/HAI) standard survey to assess insulin availability and prices, and qualitative interviews with insulin retailers (pharmacists) and wholesalers to understand insulin market dynamics. Results In 40 pharmacy outlets analysed, mean availability of the human and analogue insulins on the 2013 Delhi essential medicine list was 44.4% and 13.1%, respectively. 82% of pharmacies had domestically manufactured human insulin phials, primarily was made in India under licence to overseas pharmaceutical companies. Analogue insulin was only in cartridge and pen forms that were 4.42 and 5.81 times, respectively, the price of human insulin phials. Domestically manufactured human phial and cartridge insulin (produced for foreign and Indian companies) was less expensive than their imported counterparts. The lowest paid unskilled government worker in Delhi would work about 1.5 and 8.6 days, respectively, to be able to pay OOP for a monthly supply of human phial and analogue cartridge insulin. Interviews suggest that the Delhi insulin market is dominated by a few multinational companies that import and/or license in-country production. Several factors influence insulin uptake by patients, including doctor's prescribing preference. Wholesalers have negative perceptions about domestic insulin manufacturing. Conclusions The Delhi insulin market is an oligopoly with limited market competition. Increasing competition from Indian companies is going to require some additional policies, not presently in place. As more Indian companies produce biosimilars, brand substitution policies are needed to be able to benefit from market competition. PMID:28588966

  18. Review of reports by J.W. Gofman on inhaled plutonium

    International Nuclear Information System (INIS)

    Bair, W.J.

    1975-01-01

    Two recent widely circulated reports on the subject of inhaled plutonium have provoked concern among the press and in Congress. These reports, The Cancer Hazard from Inhaled Plutonium, CNR Report 1975-1R, May 14, 1975, and Estimated Production of Human Lung Cancers by Plutonium from Worldwide Fallout, CNR Report 1975-2, July 10, 1975, were written by John W. Gofman and issued by the Committee for Nuclear Responsibility, P. O. Box 2329, Dublin, California 94566. Gofman's reports do not present an objective analysis of the hazard of inhaled plutonium; his arguments, in fact, contradict many conclusions drawn in the scientific literature and supported by experimental data. Because the reports are skillfully written, however, they could easily mislead readers who are not well versed in this area. The purpose of this review, therefore, is to examine Gofman's reports in the light of recent research studies and to identify errors of fact and logic in his arguments

  19. Insulin analogues and severe hypoglycaemia in type 1 diabetes

    DEFF Research Database (Denmark)

    Kristensen, P L; Hansen, L S; Jespersen, M J

    2012-01-01

    The effect of insulin analogues on glycaemic control is well-documented, whereas the effect on avoidance of severe hypoglycaemia remains tentative. We studied the frequency of severe hypoglycaemia in unselected patients with type 1 diabetes treated with insulin analogues, human insulin, or mixed...

  20. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Effects on humans elicited by inhaling the fragrance of essential oils: sensory test, multi-channel thermometric study and forehead surface potential wave measurement on basil and peppermint.

    Science.gov (United States)

    Satoh, Tomoko; Sugawara, Yoshiaki

    2003-01-01

    The effects on humans inhaling the fragrance of essential oils were examined in terms of a sensory test, a multi-channel skin thermometer study and a portable forehead surface electroencephalographic (IBVA-EEG) measurement. The essential oils examined in this study were those of basil and peppermint, because our previous sensory test had indicated an opposite effect of these essential oils when mental work was undertaken; the inhalation of basil produced a more favorable impression after work than before work, whereas peppermint produced an unfavorable impression under these circumstances. For subjects administered basil or peppermint before and after mental work using an inhalator, a series of multi-channel skin thermometer studies and IBVA-EEG measurements were conducted. Using such paired odorants, our results showed that when compared between before and after mental work assigned to subjects: (1) the inhalation of basil, in which a favorable impression was predominant on the whole in terms of the sensory evaluation spectrum, was shown to be associated upward tendency in finger-tip skin temperature; (2) whereas these situations were opposite in the case of peppermint, in which the reversed (unfavorable) feature in sensory profiling was accompanied by a decrease in the magnitude of beta waves and a decrease in the finger-tip skin temperature both based on Welch's method, even at p < 0.01, implying a decreasing propensity of the aroused state and of the arousal response. The elucidation of such sensory and physiological endpoints of paired odorants would be of primary importance for human chemoreception science, because these are only rarely recorded during the same experiments, and this paradigm is highly informative about non-verbal responses to odorants.

  2. Sequence of a New World primate insulin having low biological potency and immunoreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Seino, S.; Steiner, D.F.; Bell, G.I.

    1987-11-01

    The organization of the insulin gene of the owl or night monkey (Aotus trivirgatus), a New World primate, is similar to that of the human gene. The sequences of these two genes and flanking regions possess 84.3% homology. An unusual feature of the owl monkey gene is the partial duplication and insertion of a portion of the A-chain coding sequence into the 3' untranslated region. The insulin gene of this primate also lacks a region of tandem repeats that is present in the 5' flanking region of the human and chimpanzee genes. Owl monkey preproinsulin has 85.5% identity with the human insulin precursor and is the most divergent of the primate insulins/preproinsulins yet described. The differences between owl monkey and human preproinsulin include three substitutions in the signal peptide, two in the B chain, seven in the C peptide, and three in the A chain. One of these replacements is the conservative substitution of valine for isoleucine a position A2, an invariant site in all other vertebrate insulins and insulin-like growth factors. The substitutions in owl monkey insulin at B9, B27, A2, A4, and A17 alter its structure so that it has only 20% of the receptor-binding activity and 1% of the affinity with guinea pig anti-porcine insulin antibodies as compared to human insulin.

  3. Sequence of a New World primate insulin having low biological potency and immunoreactivity

    International Nuclear Information System (INIS)

    Seino, S.; Steiner, D.F.; Bell, G.I.

    1987-01-01

    The organization of the insulin gene of the owl or night monkey (Aotus trivirgatus), a New World primate, is similar to that of the human gene. The sequences of these two genes and flanking regions possess 84.3% homology. An unusual feature of the owl monkey gene is the partial duplication and insertion of a portion of the A-chain coding sequence into the 3' untranslated region. The insulin gene of this primate also lacks a region of tandem repeats that is present in the 5' flanking region of the human and chimpanzee genes. Owl monkey preproinsulin has 85.5% identity with the human insulin precursor and is the most divergent of the primate insulins/preproinsulins yet described. The differences between owl monkey and human preproinsulin include three substitutions in the signal peptide, two in the B chain, seven in the C peptide, and three in the A chain. One of these replacements is the conservative substitution of valine for isoleucine a position A2, an invariant site in all other vertebrate insulins and insulin-like growth factors. The substitutions in owl monkey insulin at B9, B27, A2, A4, and A17 alter its structure so that it has only 20% of the receptor-binding activity and 1% of the affinity with guinea pig anti-porcine insulin antibodies as compared to human insulin

  4. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    Science.gov (United States)

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  5. Nanoparticles: a review of particle toxicology following inhalation exposure.

    Science.gov (United States)

    Bakand, Shahnaz; Hayes, Amanda; Dechsakulthorn, Finance

    2012-01-01

    It is expected that the rapid expansion of nanotechnology will bring many potential benefits. However, initial investigations have demonstrated that nanomaterials may adversely affect human health and the environment. By increasing the application of nanoparticles, protection of the human respiratory system from exposure to airborne nanoparticles and ultrafine particulates has become an emerging health concern. Available research has demonstrated an association between exposure to ambient airborne particulates and ultrafine particles and various adverse heath effects including increased morbidity and mortality. Nanomaterial structures are more likely to be toxic than the same materials of conventional sized samples and can be inhaled more deeply into the lungs. While the respiratory tract is considered as the primary target organ for inhaled nanoparticles, recent research has demonstrated that extrapulmonary organs are also affected. The very small size distribution and large surface area of nanoparticles available to undergo reactions may play a significant role in nanotoxicity, yet very little is known about their interactions with biological systems. This review explores the possible underlying toxicity mechanisms of nanoparticles following inhalational exposure. Nanoparticles differ from the same conventional material at a larger scale in physical, chemical and biological characteristics; therefore it is critical to recognize the potential risk of nanoparticle exposure using appropriate toxicity test methods. Current advances and limitations of toxicity assessment methods of nanoparticles are discussed highlighting the recent improvements of in vitro screening tools for the safety evaluation of the rapidly expanding area of nanotechnology.

  6. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  7. Sidestream smoke inhalation decreases respiratory clearance of 99mTc-DTPA acutely

    International Nuclear Information System (INIS)

    Yates, D.H.; Havill, K.; Thompson, M.M.; Rittano, A.B.; Chu, J.; Glanville, A.R.

    1996-01-01

    The permeability of the alveolar-capillary barrier to an inhaled aerosol of technetium 99m labelled diethylenetriamine penta-acetate ( 99m Tc-DTPA is used as an index of alveolar epithelial injury. Permeability is greatly increased in active smokers. The aim of this study was to determine the effect of sidestream smoke inhalation on permeability as this has not been described previously. Lung clearance of inhaled 99m Tc-DTPA aerosol was measured in 20 normal non-smoking subjects before and after exposure to one hours sidestream smoke inhalation. Measured carbon monoxide (CO) levels rose to a maximum of 23.5 ±6.2 ppm from baseline values of 0.6±1.3 (p 99m Tc-DTPA clearance rose from baseline 69.1± 15.6 (mean ± to 77.4 ±17.8) after smoke exposure. No effect of 99m Tc-DTPA scanning of sidestream smoke was demonstrated on lung function. It was concluded that low level sidestream smoke inhalation decreases 99m Tc-DTPA clearance acutely in humans. The mechanism of this unexpected result is not established but may include differences in constituents between sidestream and mainstream smoke, alterations in pulmonary microvascular blood flow, or changes in surfactant due to an acute phase irritant response. 34 refs., 2 figs

  8. Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    Bice, D.E.; Hahn, F.F.; Henderson, R.F.

    1996-12-01

    The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a 'Single Program Laboratory' within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication, approximately 70% of the Institute's research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country's largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry

  9. Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bice, D.E.; Hahn, F.F.; Henderson, R.F. [eds.] [and others

    1996-12-01

    The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication, approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.

  10. Hypertrophic effect of inhaled beta -agonist with and without concurrent exercise training

    DEFF Research Database (Denmark)

    Jessen, Søren; Onslev, Johan; Lemminger, Anders

    2018-01-01

    INTRODUCTION: Due to a high prevalence of asthma and exercise-induced bronchoconstriction in elite athletes, there is a high use of beta2 -adrenoceptor agonists (beta2 -agonists) in the athletic population. While anabolic in rodents, no study has been able to detect hypertrophy in humans after...... chronic beta2 -agonist inhalation. METHODS: We investigated if inhaled beta2 -agonist, terbutaline, alters body composition and metabolic rate with and without concurrent exercise training in healthy young men. Sixty-seven participants completed a four-week intervention of daily terbutaline (8×0.5 mg...

  11. Influence of inhaled Ca-DTPA on the long-term effects of inhaled Pu nitrate

    International Nuclear Information System (INIS)

    Ballou, J.E.; Dagle, G.E.; McDonald, K.E.; Buschbom, R.L.

    1975-01-01

    Inhaled Ca-DTPA administered to rats in 6 weekly, one-hour treatments of 3 mg/rat did not affect weight gain or life-span compared to Pu burdened animals (78 nCi ILB) or nontreated controls. In addition, the drug did not appear to promote the development of malignant lung tumors and bone tumors in Pu burdened rats although one rat exposed only to Ca-DTPA aerosols did develop a malignant lung tumor. This single lung tumor can not be considered significant although the normal incidence of this lesion is quite low. Inhaled Ca-DTPA therapy administered 20 days after Pu inhalation showed little effect in reducing the lung burden of plutonium. Skeletal deposition was decreased possibly because Ca-DTPA was administered during a time of active translocation of the inhaled Pu when Pu may have been available for chelation in the blood. Inhaled Ca-DTPA therapy did not appear to be beneficial in reducing the number of malignant lung tumors or bone tumors in plutonium burdened rats but on the other hand the chelate did not appear to promote these lesions. (U.S.)

  12. Sulfate Anion Delays the Self-Assembly of Human Insulin by Modifying the Aggregation Pathway

    OpenAIRE

    Owczarz, Marta; Arosio, Paolo

    2014-01-01

    The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron mi...

  13. Biological and Clinical Study of 6-Deoxy-6-Iodo-D-Glucose: a iodinated tracer of glucose transport and of insulin-resistance in human

    International Nuclear Information System (INIS)

    Barone-Rochette, Gilles

    2013-01-01

    Insulin resistance (IR), characterized by a depressed cellular sensitivity to insulin in insulin-sensitive organs, is a central feature to obesity, the metabolic syndrome, and diabetes mellitus and leads to increase cardiovascular diseases, particularly heart failure. All these events are today serious public health problems. But actually, there is no simple tool to measure insulin resistance. The gold standard technique remains the hyperinsulinemic euglycemic clamp. However, the complexity and length of this technique render it unsuitable for routine clinical use. Many methods or index have been proposed to assess insulin resistance in human, but none have shown enough relevance to be used in clinical use. The U1039 INSERM unit previously has validated a new tracer of glucose transport, radiolabelled with 123 iodine and has developed a fast and simple imaging protocol with a small animal gamma camera, which allows the obtaining of an IR index for each organ, showing more discriminating for the heart. The project of my thesis was the human transfer of this measurement technique, perfectly validated in animal. The first part of this thesis evaluated to tolerance, in vivo kinetics, distribution and dosimetry of novel tracer of glucose transport, the [ 123 I]-6DIG. The safeties of new tracer and measurement technique were adequate. There were no adverse effects with excellent tolerance of the whole protocol. 6DIG eliminating was fast, primarily in the urine and complete within 72 h. The effective whole-body absorbed dose for a complete scan with injection of 92.5 * 2 MBq was between 3 to 4 mSv. The second part of this thesis evaluated in human feasibility and reproducibility of the measurement technique validated in animal. The third part showed techniques used to allow human transfer of this method. The study protocol was applied on 12 subjects (healthy volunteers (n=6) and type 2 diabetic patients (n=6)). With a method adapted to measure in humans, we determined an

  14. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  15. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Thomas Krusenstjerna-Hafstrøm

    2011-05-01

    Full Text Available GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1 after an intravenous GH bolus 2 after an intravenous GH bolus plus an oral glucose load (OGTT, and 3 after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA.GH increased AUC(glucose after an OGTT (p<0.05 without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473 and thr(308, and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1 A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2 Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3 The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.ClinicalTrials.gov NCT00477997.

  16. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  17. Human Dose-Response Data for Francisella tularensis and a Dose- and Time-Dependent Mathematical Model of Early-Phase Fever Associated with Tularemia After Inhalation Exposure.

    Science.gov (United States)

    McClellan, Gene; Coleman, Margaret; Crary, David; Thurman, Alec; Thran, Brandolyn

    2018-04-25

    Military health risk assessors, medical planners, operational planners, and defense system developers require knowledge of human responses to doses of biothreat agents to support force health protection and chemical, biological, radiological, nuclear (CBRN) defense missions. This article reviews extensive data from 118 human volunteers administered aerosols of the bacterial agent Francisella tularensis, strain Schu S4, which causes tularemia. The data set includes incidence of early-phase febrile illness following administration of well-characterized inhaled doses of F. tularensis. Supplemental data on human body temperature profiles over time available from de-identified case reports is also presented. A unified, logically consistent model of early-phase febrile illness is described as a lognormal dose-response function for febrile illness linked with a stochastic time profile of fever. Three parameters are estimated from the human data to describe the time profile: incubation period or onset time for fever; rise time of fever; and near-maximum body temperature. Inhaled dose-dependence and variability are characterized for each of the three parameters. These parameters enable a stochastic model for the response of an exposed population through incorporation of individual-by-individual variability by drawing random samples from the statistical distributions of these three parameters for each individual. This model provides risk assessors and medical decisionmakers reliable representations of the predicted health impacts of early-phase febrile illness for as long as one week after aerosol exposures of human populations to F. tularensis. © 2018 Society for Risk Analysis.

  18. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    Science.gov (United States)

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A model to estimate insulin sensitivity in dairy cows

    Directory of Open Access Journals (Sweden)

    Holtenius Kjell

    2007-10-01

    Full Text Available Abstract Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI is based on plasma concentrations of glucose, insulin and free fatty acids (FFA and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  20. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  1. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Brock, Birgitte; Perrild, Hans

    2008-01-01

    To assess the effect of liraglutide, a once-daily human glucagon-like peptide-1 analogue on pancreatic B-cell function. methods: Patients with Type 2 diabetes (n = 39) were randomized to treatment with 0.65, 1.25 or 1.9 mg/day liraglutide or placebo for 14 weeks. First- and second-phase insulin...... release were measured by means of the insulin-modified frequently sampled intravenous glucose tolerance test. Arginine-stimulated insulin secretion was measured during a hyperglycaemic clamp (20 mmol/l). Glucose effectiveness and insulin sensitivity were estimated by means of the insulin...

  3. Type 1 Ig-E mediated allergy to human insulin, insulin analogues and beta-lactam antibiotics Hipersensibilidade imediata a insulina humana, análogos de insulina e a antibióticos beta-lactâmicos

    Directory of Open Access Journals (Sweden)

    Pedro Andrade

    2012-12-01

    Full Text Available Insulin, a crucial therapeutic agent for diabetes mellitus, has been rarely associated with hypersensitivity events. We present a 69-year-old type-2 diabetic patient with urticariform lesions on the sites of subcutaneous injection of insulin. The patient denied any known allergies, except for an unspecific cutaneous reaction after intramuscular penicillin administration in childhood. Prick tests revealed positive reactions to all tested human insulins and insulin analogues. Serum IgE levels were above normal range and RAST tests were positive for human, bovine and porcine insulins, as well as beta-lactams. Type 1 IgEmediated allergy to insulin analogues demands a prompt diagnosis and represents a significant therapeutic challenge in diabetic patients.A insulina é um agente indispensável para o controlo da diabetes mellitus. Os efeitos adversos da sua administração, em particular fenómenos de hipersensibilidade, são raros. Apresentamos um doente de 69 anos, diabético do tipo 2, com episódios recorrentes de lesões urticariformes nos locais de administração subcutânea de insulina. Negava alergias medicamentosas, à excepção de reacção não especificada na infância após penicilina intramuscular. Foram realizados testes cutâneos por puntura (prick tests com diversos tipos de insulina humana e análogos, todos com reacções positivas, associando elevação dos níveis de IgE sérica e provas RAST positivas para as insulinas humana, bovina e porcina e para os antibióticos beta-lactâmicos. A alergia a análogos de insulina exige um diagnóstico precoce, originando um desafio terapêutico importante no doente diabético.

  4. Prediction of the health effects of inhaled transuranium elements from experimental animal data

    International Nuclear Information System (INIS)

    Bair, W.J.; Thomas, J.M.

    1976-01-01

    Although animal experiments are conducted to obtain data that can be used to predict the consequences of exposure to alpha-emitting elements on human health, scientists have been hesitant to project the results of animal experiments to man. However, since a human data base does not exist for inhaled transuranics, the animal data cannot be overlooked. The paper describes the derivation of linear non-threshold response relationships for lung cancer in rats after inhalation of alpha-emitting transuranium elements. These relationships were used to calculate risk estimates, which were then compared with a value calculated from the incidence of lung cancer in humans who had been exposed to sources of radiation other than the transuranics. Both estimates were compared with the estimated cancer risk associated with the annual whole-body dose limit of 5 rems for occupational exposure. The rat data suggest that the risk from a working lifetime exposure of 15 rem/a to the lungs from transuranium elements may be 5 times the risk incurred with a whole-body exposure of 5 rem/a, while the human data suggest the risk may be less. Since the histological type of plutonium-induced lung cancer that occurs in experimental animals is rare in man, the use of animal data to estimate risks may be conservative. Risk estimates calculated directly from the results of experiments in which animals actually inhaled transuranic particles circumvent such controversial issues as 'hot particles'. (author)

  5. Inhalation Injury: State of the Science 2016.

    Science.gov (United States)

    Foster, Kevin N; Holmes, James H

    This article summarizes research conducted over the last decade in the field of inhalation injury in thermally injured patients. This includes brief summaries of the findings of the 2006 State of the Science meeting with regard to inhalation injury, and of the subsequent 2007 Inhalation Injury Consensus Conference. The reviewed studies are categorized in to five general areas: diagnosis and grading; mechanical ventilation; systemic and inhalation therapy; mechanistic alterations; and outcomes.

  6. The insulin-like growth factor axis and collagen turnover in asthmatic children treated with inhaled budesonide

    DEFF Research Database (Denmark)

    Wolthers, O D; Juul, A; Hansen, M

    1995-01-01

    ) and the amino terminal propeptide of type III procollagen (PIIINP) were studied in 14 prepubertal children with asthma (mean age 9.7 years) during treatment with inhaled budesonide. The study design was a randomized, crossover trial with two double-blind treatment periods (200 and 800 micrograms) and one open......, non-randomized treatment period (400 micrograms). All periods were 18 days' duration. Budesonide treatment was associated with a dose-related suppressive trend in serum concentrations of PIIINP when the 400 micrograms period was included (p

  7. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... Controlling Tools for Control Triggers Indoors In the Workplace Outdoors Management Asthma Action Plan Flu Shots Inhalers ... inhaler with a spacer Your browser does not support iframes Using a metered dose inhaler with a ...

  8. Effects of exogenous human insulin dose adjustment on body mass ...

    African Journals Online (AJOL)

    glycaemic control by frequent exogenous insulin injections. To maintain fasting ... mass index in adult patients with type 1 diabetes mellitus at Kalafong Hospital ..... The Diabetes Control and Complications Trial cited in the review by Kaufman[2] also .... in obese insulin-resistant children: A randomized clinical trial. Diabetes ...

  9. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation.

    Science.gov (United States)

    Salmaso, Stefano; Bersani, Sara; Elvassore, Nicola; Bertucco, Alberto; Caliceti, Paolo

    2009-09-08

    Homogeneous dispersions of insulin and recombinant human growth hormone (rh-GH) in tristearin/phosphatidylcholine/PEG mixtures (1.3:1.3:0.25:0.15 w/w ratio) were processed by supercritical carbon dioxide gas micro-atomisation to produce protein-loaded lipid particles. The process yielded spherical particles, with a 197+/-94 nm mean diameter, and the insulin and rh-GH recovery in the final product was 57+/-8% and 48+/-5%, respectively. In vitro, the proteins were slowly released for about 70-80 h according to a diffusive mechanism. In vivo, the insulin and glucose profiles in plasma obtained by subcutaneous administration of a dose of particles containing 2 microg insulin to diabetic mice overlapped that obtained with 2 microg of insulin in solution. Administration of a dose of particles containing 5 microg insulin resulted in faster and longer glycaemia reduction. Oral administration of 20 and 50 microg insulin equivalent particles produced a significant hypoglycaemic effect. The glucose levels decreased since 2h after administration, reaching about 50% and 70% glucose reduction in 1-2h with the lower and higher dose, respectively. As compared to subcutaneous administration, the relative pharmacological bioavailability obtained with 20 and 50 microg equivalent insulin particles was 7.7% and 6.7%, respectively. Daily subcutaneous administration of 40 microg of rh-GH-loaded particles to hypophysectomised rats induced similar body weight increase as 40 microg rh-GH in solution. The daily oral administration of 400 microg rh-GH equivalent particles elicited a slight body weight increase, which corresponded to a relative pharmacological bioavailability of 3.4% compared to subcutaneous administration.

  10. Radioactive gas inhalator

    International Nuclear Information System (INIS)

    LeMon, D.E.

    1975-01-01

    An ''inhalator'', or more particularly an apparatus for permitting a patient to inhale a radioactive gas in order to provide a diagnostic test of the patient's lung area, is described. The disclosed apparatus provides a simple, trouble-free mechanism for achieving this result; and, furthermore, provides an improved testing method. Moreover, the disclosed apparatus has the capability of gradually introducing the test condition in a manner that makes it easy for the patient to become acclimated to it. (U.S.)

  11. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    Science.gov (United States)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  12. A Review of Basal-Bolus Therapy Using Insulin Glargine and Insulin Lispro in the Management of Diabetes Mellitus.

    Science.gov (United States)

    Candido, Riccardo; Wyne, Kathleen; Romoli, Ester

    2018-04-13

    Basal-bolus therapy (BBT) refers to the combination of a long-acting basal insulin with a rapid-acting insulin at mealtimes. Basal insulin glargine 100 U/mL and prandial insulin lispro have been available for many years and there is a substantial evidence base to support the efficacy and safety of these agents when they are used in BBT or basal-plus therapy for patients with type 1 or type 2 diabetes mellitus (T1DM, T2DM). With the growing availability of alternative insulins for use in such regimens, it seems timely to review the data regarding BBT with insulin glargine 100 U/mL and insulin lispro. In patients with T1DM, BBT with insulin glargine plus insulin lispro provides similar or better glycemic control and leads to less nocturnal hypoglycemia compared to BBT using human insulin as the basal and/or prandial component, and generally provides similar glycemic control and rates of severe hypoglycemia to those achieved with insulin lispro administered by continuous subcutaneous insulin infusion (CSII). Studies evaluating BBT with insulin glargine plus insulin lispro in patients with T2DM also demonstrate the efficacy and safety of these insulins. Available data suggest that BBT with insulin glargine and insulin lispro provides similar levels of efficacy and safety in pediatric and adult populations with T1DM and in adult patients and those aged more than 65 years with T2DM. These insulin preparations also appear to be safe and effective for controlling T2DM in people of different ethnicities and in patients with T1DM or T2DM and comorbidities. Eli Lilly and Company.

  13. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    Science.gov (United States)

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  14. The interplay between noncoding RNAs and insulin in diabetes.

    Science.gov (United States)

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... metered dose inhaler with a spacer [ PDF – 377 KB] Your browser does not support iframes Cómo usar ... inhalador de dosis fija con espaciador [PDF – 343 KB] Using a metered dose inhaler (inhaler in mouth) ...

  16. Thermal dissociation and unfolding of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2005-01-01

    The thermal stability of human insulin was studied by differential scanning microcalorimetry and near-UV circular dichroism as a function of zinc/protein ratio, to elucidate the dissociation and unfolding processes of insulin in different association states. Zinc-free insulin, which is primarily...... dimeric at room temperature, unfolded at approximately 70 degrees C. The two monomeric insulin mutants Asp(B28) and Asp(B9),Glu(B27) unfolded at higher temperatures, but with enthalpies of unfolding that were approximately 30% smaller. Small amounts of zinc caused a biphasic thermal denaturation pattern...... of insulin. The biphasic denaturation is caused by a redistribution of zinc ions during the heating process and results in two distinct transitions with T(m)'s of approximately 70 and approximately 87 degrees C corresponding to monomer/dimer and hexamer, respectively. At high zinc concentrations (>or=5 Zn(2...

  17. A mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I of the project: early effects of inhaled radionuclides

    International Nuclear Information System (INIS)

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.

    1980-06-01

    The report presents a mathematical model for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included

  18. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.; Cannon, W.C.; Ragan, H.A.; Watson, C.R.; Stevens, D.L.; Cross, F.T.; Dionne, P.J.; Harrington, T.P.

    1978-01-01

    Beagle dogs given a single inhalation exposure to 239 Pu(NO 3 ) 4 are being observed for life-span dose-effect relationships. Lymphopenia occurred at the two highest dosage levels as early as 1 mo following exposure and was associated with neutropenia and reduction in numbers of circulatory monocytes by 4 mo postexposure. Radiation pneumonitis developed in one dog at the highest dosage level at 14 mo postexposure. More rapid translocation to skeleton and liver occurred following inhalation of 238 Pu(NO 3 ) 4 than after 239 Pu(NO 3 ) 4 inhalation

  19. Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K.

    Science.gov (United States)

    Lisgarten, David R; Palmer, Rex A; Lobley, Carina M C; Naylor, Claire E; Chowdhry, Babur Z; Al-Kurdi, Zakieh I; Badwan, Adnan A; Howlin, Brendan J; Gibbons, Nicholas C J; Saldanha, José W; Lisgarten, John N; Basak, Ajit K

    2017-08-01

    The crystal structure of a commercially available form of human recombinant (HR) insulin, Insugen (I), used in the treatment of diabetes has been determined to 0.92 Å resolution using low temperature, 100 K, synchrotron X-ray data collected at 16,000 keV (λ = 0.77 Å). Refinement carried out with anisotropic displacement parameters, removal of main-chain stereochemical restraints, inclusion of H atoms in calculated positions, and 220 water molecules, converged to a final value of R = 0.1112 and R free  = 0.1466. The structure includes what is thought to be an ordered propanol molecule (POL) only in chain D(4) and a solvated acetate molecule (ACT) coordinated to the Zn atom only in chain B(2). Possible origins and consequences of the propanol and acetate molecules are discussed. Three types of amino acid representation in the electron density are examined in detail: (i) sharp with very clearly resolved features; (ii) well resolved but clearly divided into two conformations which are well behaved in the refinement, both having high quality geometry; (iii) poor density and difficult or impossible to model. An example of type (ii) is observed for the intra-chain disulphide bridge in chain C(3) between Sγ6-Sγ11 which has two clear conformations with relative refined occupancies of 0.8 and 0.2, respectively. In contrast the corresponding S-S bridge in chain A(1) shows one clearly defined conformation. A molecular dynamics study has provided a rational explanation of this difference between chains A and C. More generally, differences in the electron density features between corresponding residues in chains A and C and chains B and D is a common observation in the Insugen (I) structure and these effects are discussed in detail. The crystal structure, also at 0.92 Å and 100 K, of a second commercially available form of human recombinant insulin, Intergen (II), deposited in the Protein Data Bank as 3W7Y which remains otherwise unpublished is compared here

  20. Insulin Resistance Induced by Short term Fructose Feeding may not ...

    African Journals Online (AJOL)

    Fructose feeding causes insulin resistance and invariably Non-Insulin Dependent Diabetes Mellitus (NIDDM) in rats and genetically predisposed humans. The effect of insulin resistance induced by short term fructose feeding on fertility in female rats was investigated using the following parameters: oestrous phase and ...

  1. The relationship between bone turnover and insulin sensitivity and secretion

    DEFF Research Database (Denmark)

    Frost, Morten; Balkau, Beverley; Hatunic, Mensud

    2018-01-01

    Bone metabolism appears to influence insulin secretion and sensitivity, and insulin promotes bone formation in animals, but similar evidence in humans is limited. The objectives of this study are to explore if bone turnover markers were associated with insulin secretion and sensitivity and to det...

  2. Assessment of human exposure to environmental sources of nickel in Europe: Inhalation exposure.

    Science.gov (United States)

    Buekers, Jurgen; De Brouwere, Katleen; Lefebvre, Wouter; Willems, Hanny; Vandenbroele, Marleen; Van Sprang, Patrick; Eliat-Eliat, Maxime; Hicks, Keegan; Schlekat, Christian E; Oller, Adriana R

    2015-07-15

    The paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered. The value of 20ngNi/m(3) is the current EU air quality guidance value. The value of 60ngNi/m(3) is derived here based on recently published Ni data (Oller et al., 2014). Both values are protective for respiratory toxicity and carcinogenicity but differ in the application of toxicokinetic adjustments and cancer threshold considerations. Estimates of air Ni concentrations at the European regional scale were derived from the database of the European Environment Agency. The 50th and 90th percentile regional exposures were below both DNEL values. To assess REACH compliance at the local scale, measured ambient air data are preferred but are often unavailable. A tiered approach for the use of modelled ambient air concentrations was developed, starting with the application of the default EUSES model and progressing to more sophisticated models. As an example, the tiered approach was applied to 33 EU Ni sulphate producers' and downstream users' sites. Applying the EUSES model demonstrates compliance with a DNEL of 60ngNi/m(3) for the majority of sites, while the value of the refined modelling is demonstrated when a DNEL of 20ngNi/m(3) is considered. The proposed approach, applicable to metals in general, can be used in the context of REACH, for refining the risk characterisation and guiding the selection of risk management measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Chang, Steve W C; Barter, Joseph W; Ebitz, R Becket; Watson, Karli K; Platt, Michael L

    2012-01-17

    People attend not only to their own experiences, but also to the experiences of those around them. Such social awareness profoundly influences human behavior by enabling observational learning, as well as by motivating cooperation, charity, empathy, and spite. Oxytocin (OT), a neurosecretory hormone synthesized by hypothalamic neurons in the mammalian brain, can enhance affiliation or boost exclusion in different species in distinct contexts, belying any simple mechanistic neural model. Here we show that inhaled OT penetrates the CNS and subsequently enhances the sensitivity of rhesus macaques to rewards occurring to others as well as themselves. Roughly 2 h after inhaling OT, monkeys increased the frequency of prosocial choices associated with reward to another monkey when the alternative was to reward no one. OT also increased attention to the recipient monkey as well as the time it took to render such a decision. In contrast, within the first 2 h following inhalation, OT increased selfish choices associated with delivery of reward to self over a reward to the other monkey, without affecting attention or decision latency. Despite the differences in species typical social behavior, exogenous, inhaled OT causally promotes social donation behavior in rhesus monkeys, as it does in more egalitarian and monogamous ones, like prairie voles and humans, when there is no perceived cost to self. These findings potentially implicate shared neural mechanisms.

  4. Eccentric exercise decreases maximal insulin action in humans

    DEFF Research Database (Denmark)

    Asp, Svend; Daugaard, J R; Kristiansen, S

    1996-01-01

    subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake...... for all three clamp steps used (P maximal activity of glycogen synthase was identical in the two thighs for all clamp steps. 3. The glucose infusion rate (GIR......) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P maximal...

  5. Hypoglycemia in type 1 diabetic pregnancy: role of preconception insulin aspart treatment in a randomized study

    DEFF Research Database (Denmark)

    Heller, Simon; Damm, Peter; Mersebach, Henriette

    2010-01-01

    OBJECTIVE A recent randomized trial compared prandial insulin aspart (IAsp) with human insulin in type 1 diabetic pregnancy. The aim of this exploratory analysis was to investigate the incidence of severe hypoglycemia during pregnancy and compare women enrolled preconception with women enrolled...... during early pregnancy. RESEARCH DESIGN AND METHODS IAsp administered immediately before each meal was compared with human insulin administered 30 min before each meal in 99 subjects (44 to IAsp and 55 to human insulin) randomly assigned preconception and in 223 subjects (113 for IAsp and 110 for human...... insulin) randomly assigned in early pregnancy (...

  6. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  7. Nutritional Modulation of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Martin O. Weickert

    2012-01-01

    Full Text Available Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM. Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts.

  8. Teaching inhaler use in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Lareau, Suzanne C; Hodder, Richard

    2012-02-01

    To review barriers to the successful use of inhalers in patients with chronic obstructive pulmonary disease (COPD), and the role of the nurse practitioner (NP) in facilitating optimum inhaler use. Review of the national and international scientific literature. Pharmacologic treatment of COPD patients comprises mainly inhaled medications. Incorrect use of inhalers is very common in these individuals. Some of the consequences of poor inhaler technique include reduced therapeutic dosing, medication adherence, and disease stability, which can lead to increased morbidity, decreased quality of life, and a high burden on the healthcare system. Knowledgeable evaluation and frequent reassessment of inhaler use coupled with education of patients, caregivers, and healthcare professionals can significantly improve the benefits COPD patients derive from inhaled therapy. Patient education is vital for correct use of inhalers and to ensure the effectiveness of inhaled medications. The NP has a critical role in assessing potential barriers to successful learning by the patient and improving inhaler technique and medication management. The NP can also facilitate success with inhaled medications by providing up-to-date inhaler education for other healthcare team members, who may then act as patient educators. ©2011 The Author(s) Journal compilation ©2011 American Academy of Nurse Practitioners.

  9. Human placental growth hormone, insulin-like growth factor I and -II, and insulin requirements during pregnancy in type 1 diabetes

    DEFF Research Database (Denmark)

    Fuglsang, Jens; Lauszus, Finn; Flyvbjerg, Allan

    2003-01-01

    between hPGH and IGF-I in type 1 diabetes mellitus has not been investigated thoroughly. Furthermore, hPGH may be involved in the development of insulin resistance during pregnancy. In this prospective, longitudinal study, 51 type 1 diabetic subjects were followed with repeated blood sampling during...... pregnancy in type 1 diabetic subjects could not be related to hPGH levels.......Human placental GH (hPGH) replaces pituitary GH during pregnancy. hPGH is correlated to serum IGF-I in normal pregnancies and in pregnancies complicated by fetoplacental disorders. In gestational diabetes and type 2 diabetes no correlation between hPGH and IGF-I has been found. The relationship...

  10. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    Science.gov (United States)

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  12. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  13. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  14. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    Energy Technology Data Exchange (ETDEWEB)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2016-01-28

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  15. Experimental study of the combined effects of inhalation of radon daughter products and tobacco smoke

    International Nuclear Information System (INIS)

    Chameaud, J.; Perraud, R.; Chretien, J.; Masse, R.; Lafuma, J.

    1979-01-01

    For 10 years, over 500 lung cancers have been induced in rats by inhalations of radon daughter products at various concentrations and cumulated doses. Considering several points and the dose-effect relationship especially, such cancers can be compared with human cancers. This type of experiments, fully mastered, has made it possible to undertake under good conditions the study of the co-carcinogenic effect of various inhaled pollutants such as tobacco smoke. In a first experiment, 100 rats were exposed to a 4000WLM cumulated dose of radon daughter products, knowing that this level induces some 30% of lung cancers. 50 animals were then administered tobacco smoke by inhalation in a fume box during 5 months (350 h.) In the group inhaling radon only, 17 cancers appeared; in the radon -tobacco group 32 cancers bigger and more invasive were observed. Under the same conditions, tobacco smoke was inhaled by rats previously exposed to lower doses of radon daughter products (2 groups of 30 rats, 500 and 100 WLM respectively). Again, the number of cancers observed was higher that the number of cancers expected if the rats had inhaled radon only. This co-carcinogenic and potentiating action of tobacco was clearly demonstrated. Further experiments are considered in order to determine the processes involved

  16. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  17. Use of nitrite inhalants ("poppers") among American youth.

    Science.gov (United States)

    Wu, Li-Tzy; Schlenger, William E; Ringwalt, Chris L

    2005-07-01

    We examined the patterns and correlates of nitrite inhalant use among adolescents aged 12 to 17 years. Study data were drawn from the 2000 and 2001 National Household Surveys on Drug Abuse. Logistic regression was used to identify the characteristics associated with nitrite inhalant use. Among adolescents aged 12 to 17 years, 1.5% reported any lifetime use of nitrite inhalants. The prevalence of lifetime nitrite inhalant use increased to 12% and 14% among adolescents who were dependent on alcohol and any drug in the past year, respectively. Many nitrite inhalant users used at least three other types of inhalants (68%) and also met the criteria for alcohol (33%) and drug (35%) abuse or dependence. Increased odds of nitrite inhalant use were associated with residing in nonmetropolitan areas, recent utilization of mental health services, delinquent behaviors, past year alcohol and drug abuse and dependence, and multi-drug use. Adolescents who had used nitrite inhalants at least once in their lifetime tend to engage in delinquent activities and report co-occurring multiple drug abuse and mental health problems in the past year.

  18. Age dependent systemic exposure to inhaled salbutamol

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Jespersen, Jakob Jessing; Bisgaard, Hans

    2007-01-01

    AIMS: To determine the effect of age on systemic exposure to inhaled salbutamol in children. METHODS: Fifty-eight asthmatic children, aged 3-16 years, inhaled 400 microg of salbutamol from a pressurized metered dose inhaler with spacer. The 20 min serum profile was analyzed. RESULTS: Prescribing...

  19. Differential effects of prednisone and growth hormone on fuel metabolism and insulin antagonism in humans

    International Nuclear Information System (INIS)

    Horber, F.F.; Marsh, H.M.; Haymond, M.W.

    1991-01-01

    Human growth hormone (hGH) and prednisone cause insulin resistance and glucose intolerance. However, it is unknown whether hGH and prednisone antagonize insulin action on protein, fat, and carbohydrate metabolism by a common or independent mechanism. Therefore, protein, fat, and carbohydrate metabolism was assessed simultaneously in four groups of eight subjects each after 7 days of placebo, recombinant DNA hGH (rhGH; 0.1 mg.kg-1.day-1), prednisone (0.8 mg.kg-1.day-1), or rhGH and prednisone administration after an 18-h fast and during gut infusion of glucose and amino acids (fed state). Fasting plasma glucose concentrations were similar during placebo and rhGH but elevated (P less than 0.001) during combined treatment, whereas plasma insulin concentrations were higher (237 +/- 57 pmol/ml, P less than 0.001) during combined than during placebo, rhGH, or prednisone treatment (34, 52, and 91 pM, respectively). In the fed state, plasma glucose concentrations were elevated only during combined treatment (11.3 +/- 2.1 mM, P less than 0.001). Plasma insulin concentrations were elevated during therapy with prednisone alone and rhGH alone (667 +/- 72 and 564 +/- 65 pmol/ml, respectively, P less than 0.001) compared with placebo (226 +/- 44 pmol/ml) but lower than with the combined rhGH and prednisone treatment (1249 +/- 54 pmol/ml, P less than 0.01). Protein oxidation 14 C leucine increased (P less than 0.001) with prednisone therapy, decreased (P less than 0.001) with rhGH treatment, and was normal during the combined treatment

  20. Effect of novel inhaler technique reminder labels on the retention of inhaler technique skills in asthma: a single-blind randomized controlled trial.

    Science.gov (United States)

    Basheti, Iman A; Obeidat, Nathir M; Reddel, Helen K

    2017-02-09

    Inhaler technique can be corrected with training, but skills drop off quickly without repeated training. The aim of our study was to explore the effect of novel inhaler technique labels on the retention of correct inhaler technique. In this single-blind randomized parallel-group active-controlled study, clinical pharmacists enrolled asthma patients using controller medication by Accuhaler [Diskus] or Turbuhaler. Inhaler technique was assessed using published checklists (score 0-9). Symptom control was assessed by asthma control test. Patients were randomized into active (ACCa; THa) and control (ACCc; THc) groups. All patients received a "Show-and-Tell" inhaler technique counseling service. Active patients also received inhaler labels highlighting their initial errors. Baseline data were available for 95 patients, 68% females, mean age 44.9 (SD 15.2) years. Mean inhaler scores were ACCa:5.3 ± 1.0; THa:4.7 ± 0.9, ACCc:5.5 ± 1.1; THc:4.2 ± 1.0. Asthma was poorly controlled (mean ACT scores ACCa:13.9 ± 4.3; THa:12.1 ± 3.9; ACCc:12.7 ± 3.3; THc:14.3 ± 3.7). After training, all patients had correct technique (score 9/9). After 3 months, there was significantly less decline in inhaler technique scores for active than control groups (mean difference: Accuhaler -1.04 (95% confidence interval -1.92, -0.16, P = 0.022); Turbuhaler -1.61 (-2.63, -0.59, P = 0.003). Symptom control improved significantly, with no significant difference between active and control patients, but active patients used less reliever medication (active 2.19 (SD 1.78) vs. control 3.42 (1.83) puffs/day, P = 0.002). After inhaler training, novel inhaler technique labels improve retention of correct inhaler technique skills with dry powder inhalers. Inhaler technique labels represent a simple, scalable intervention that has the potential to extend the benefit of inhaler training on asthma outcomes. REMINDER LABELS IMPROVE INHALER TECHNIQUE: Personalized

  1. Cancer risk among insulin users

    DEFF Research Database (Denmark)

    But, Anna; De Bruin, Marie L.; Bazelier, Marloes T.

    2017-01-01

    Aims/hypothesis: The aim of this work was to investigate the relationship between use of certain insulins and risk for cancer, when addressing the limitations and biases involved in previous studies. Methods: National Health Registries from Denmark (1996–2010), Finland (1996–2011), Norway (2005......–2010) and Sweden (2007–2012) and the UK Clinical Practice Research Datalink database (1987–2013) were used to conduct a cohort study on new insulin users (N = 327,112). By using a common data model and semi-aggregate approach, we pooled individual-level records from five cohorts and applied Poisson regression...... models. For each of ten cancer sites studied, we estimated the rate ratios (RRs) by duration (≤0.5, 0.5–1, 1–2, 2–3, 3–4, 4–5, 5–6 and >6 years) of cumulative exposure to insulin glargine or insulin detemir relative to that of human insulin. Results: A total of 21,390 cancer cases occurred during a mean...

  2. Numerical modelling of local deposition patients, activity distributions and cellular hit probabilities of inhaled radon progenies in human airways

    International Nuclear Information System (INIS)

    Farkas, A.; Balashazy, I.; Szoeke, I.

    2003-01-01

    The general objective of our research is modelling the biophysical processes of the effects of inhaled radon progenies. This effort is related to the rejection or support of the linear no threshold (LNT) dose-effect hypothesis, which seems to be one of the most challenging tasks of current radiation protection. Our approximation and results may also serve as a useful tool for lung cancer models. In this study, deposition patterns, activity distributions and alpha-hit probabilities of inhaled radon progenies in the large airways of the human tracheobronchial tree are computed. The airflow fields and related particle deposition patterns strongly depend on the shape of airway geometry and breathing pattern. Computed deposition patterns of attached an unattached radon progenies are strongly inhomogeneous creating hot spots at the carinal regions and downstream of the inner sides of the daughter airways. The results suggest that in the vicinity of the carinal regions the multiple hit probabilities are quite high even at low average doses and increase exponentially in the low-dose range. Thus, even the so-called low doses may present high doses for large clusters of cells. The cell transformation probabilities are much higher in these regions and this phenomenon cannot be modeled with average burdens. (authors)

  3. Effects of heparin on insulin binding and biological activity

    International Nuclear Information System (INIS)

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-01-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and 125 I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells

  4. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.

    Science.gov (United States)

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; Defronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-06-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.

  5. In vitro and in vivo potency of insulin analogues designed for clinical use.

    Science.gov (United States)

    Vølund, A; Brange, J; Drejer, K; Jensen, I; Markussen, J; Ribel, U; Sørensen, A R; Schlichtkrull, J

    1991-11-01

    Analogues of human insulin designed to have improved absorption properties after subcutaneous injection have been prepared by recombinant DNA technology. Five rapidly absorbed analogues, being predominantly in mono- or di-meric states in the pharmaceutical preparation, and a hexameric analogue with very low solubility at neutral pH and slow absorption, were studied. Receptor binding assays with HEP-G2 cells showed overall agreement with mouse free adipocyte assays. Two analogues, B28Asp and A21Gly + B27Arg + B30Thr-NH2, had nearly the same molar in vitro potency as human insulin. Another two showed increased adipocyte potency and receptor binding, B10Asp 194% and 333% and A8His + B4His + B10Glu + B27His 575% and 511%, while B9Asp + B27Glu showed 29% and 18% and the B25Asp analogue only 0.12% and 0.05% potency. Bioassays in mice or rabbits of the analogues except B25Asp showed that they had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation in in vivo potency reflects the differences in receptor binding affinity. Relative to human insulin a low concentration is sufficient for a high affinity analogue to produce a given receptor complex formation and metabolic response. In conclusion, human insulin and analogues with markedly different in vitro potencies were equipotent in terms of hypoglycaemic effect. This is in agreement with the concept that elimination of insulin from blood and its subsequent degradation is mediated by insulin receptors.

  6. E-cigarette versus nicotine inhaler: comparing the perceptions and experiences of inhaled nicotine devices.

    Science.gov (United States)

    Steinberg, Michael B; Zimmermann, Mia Hanos; Delnevo, Cristine D; Lewis, M Jane; Shukla, Parth; Coups, Elliot J; Foulds, Jonathan

    2014-11-01

    Novel nicotine delivery products, such as electronic cigarettes (e-cigarettes), have dramatically grown in popularity despite limited data on safety and benefit. In contrast, the similar U.S. Food and Drug Administration (FDA)-approved nicotine inhaler is rarely utilized by smokers. Understanding this paradox could be helpful to determine the potential for e-cigarettes as an alternative to tobacco smoking. To compare the e-cigarette with the nicotine inhaler in terms of perceived benefits, harms, appeal, and role in assisting with smoking cessation. A cross-over trial was conducted from 2012 to 2013 PARTICIPANTS/INTERVENTIONS: Forty-one current smokers age 18 and older used the e-cigarette and nicotine inhaler each for 3 days, in random order, with a washout period in between. Thirty-eight participants provided data on product use, perceptions, and experiences. The Modified Cigarette Evaluation Questionnaire (mCEQ) measured satisfaction, reward, and aversion. Subjects were also asked about each product's helpfulness, similarity to cigarettes, acceptability, image, and effectiveness in quitting smoking. Cigarette use was also recorded during the product-use periods. The e-cigarette had a higher total satisfaction score (13.9 vs. 6.8 [p e-cigarette received higher ratings for helpfulness, acceptability, and "coolness." More subjects would use the e-cigarette to make a quit attempt (76 %) than the inhaler (24 %) (p e-cigarette vs. 10 % (4/38) using the inhaler (p = 0.18). The e-cigarette was more acceptable, provided more satisfaction, and had higher perceived benefit than the inhaler during this trial. E-cigarettes have the potential to be important nicotine delivery products owing to their high acceptance and perceived benefit, but more data are needed to evaluate their actual efficacy and safety. Providers should be aware of these issues, as patients will increasingly inquire about them.

  7. Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: A European consensus

    DEFF Research Database (Denmark)

    Heijerman, Harry; Westerman, Elsbeth; Conway, Steven

    2009-01-01

    , mucolytics/mucous mobilizers, anti-inflammatory drugs, bronchodilators and combinations of solutions. Additionally, we review the current knowledge on devices for inhalation therapy with regard to optimal particle sizes and characteristics of wet nebulisers, dry powder and metered dose inhalers. Finally, we...... review the current status of inhaled medication in CF, including the mechanisms of action of the various drugs, their modes of administration and indications, their effects on lung function, exacerbation rates, survival and quality of life, as well as side effects. Specifically we address antibiotics...

  8. Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes

    DEFF Research Database (Denmark)

    Kennedy, Arion; Martinez, Kristina; Chung, Soonkyu

    2010-01-01

    We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) induced inflammation and insulin resistance in primary human adipocytes by activating nuclear factor kappaB (NFkappaB) and extracellular signal-related kinase (ERK) signaling. In this study, we demonstrated...... that the initial increase in intracellular calcium ([Ca2+]i) mediated by 10,12 CLA was attenuated by TMB-8, an inhibitor of calcium release from the endoplasmic reticulum (ER), by BAPTA, an intracellular calcium chelator, and by D609, a phospholipase C (PLC) inhibitor. Moreover, BAPTA, TMB-8, and D609 attenuated......, and suppression of peroxisome proliferator activated receptor gamma protein levels and insulin-stimulated glucose uptake. These data suggest that 10,12 CLA increases inflammation and insulin resistance in human adipocytes, in part by increasing [Ca2+]i levels, particularly calcium from the ER....

  9. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells.

    Science.gov (United States)

    Ackerman, G A; Wolken, K W

    1981-10-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.

  10. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells

    International Nuclear Information System (INIS)

    Ackerman, G.A.; Wolken, K.W.

    1981-01-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites

  11. Two insulin-like growth factor I messenger RNAs are expressed in human liver

    International Nuclear Information System (INIS)

    Rotwein, P.

    1986-01-01

    Through use of a synthetic radiolabelled oligonucleotide probe, human insulin-like growth factor I (IGF-I) cDNA clones were isolated from a liver library. Two types of cDNAs were defined by restriction enzyme analysis and DNA sequencing. Both encode IGF-I precursors of either 195 or 153 amino acids. The two predicted protein precursors are identical from their amino terminus to a lysine residue 16 codons beyond the IGF-I sequence, and then they diverge. Both cDNAs predict additional unique carboxyl-terminal extension peptides. Since there is only one IGF-I gene in the human genome, the finding of two different cDNAs suggests that alternative RNA processing plays a role in IGF-I gene expression. The functions of the different extension peptides remain to be elucidates

  12. Environmental arsenic as a disruptor of insulin signaling

    OpenAIRE

    Paul, David S.; Devesa, Vicenta; Hernandez-Zavala, Araceli; Adair, Blakely M.; Walton, Felecia S.; Drobnâ, Zuzana; Thomas, David J.; Styblo, Miroslav

    2008-01-01

    Previous laboratory studies have shown that exposures to inorganic As (iAs) disrupt insulin production or glucose metabolism in cellular and animal models. Epidemiological evidence has also linked chronic human exposures to iAs to an increased risk of diabetes mellitus, a metabolic disease characterized by impaired glucose tolerance and insulin resistance. We have recently shown that arsenite and its methylated metabolites inhibit insulin-stimulated glucose uptake in cultured adipocytes by di...

  13. Human leukocyte antigen class II susceptibility conferring alleles among non-insulin dependent diabetes mellitus patients

    International Nuclear Information System (INIS)

    Tipu, H.N.; Ahmed, T.A.; Bashir, M.M.

    2010-01-01

    To determine the frequency of Human Leukocyte Antigen (HLA) class II susceptibility conferring alleles among type 2 Diabetes mellitus patients, in comparison with healthy controls. Cross-sectional comparative study. Patients with non-insulin dependent Diabetes mellitus meeting World Health Organization criteria were studied. These were compared with age and gender matched healthy control subjects. For each subject (patients as well as controls), DNA was extracted from ethylene diamine tetra-acetate sample and HLA class II DRB1 typing was carried out at allele group level (DRB1*01-DRB1*16) by sequence specific primers. Human leukocyte antigen DRB1 type was determined by agarose gel electrophoresis and results were recorded. Frequencies were determined as number of an allele divided by total number of alleles per group; p-value was computed using Pearson's chi-square test. Among the 100 patients, there were 63 males and 37 females with 68 controls. A total of 13 different HLA DRB1 alleles were detected, with DRB1*15 being the commonest in both the groups. The allele DRB1*13 had statistically significant higher frequency in patient group as compared to controls (p 0.005). HLA DRB1*13 was found with a significantly increased frequency in non-insulin dependent Diabetes mellitus. (author)

  14. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  15. The effect of 30 months of low-dose replacement therapy with recombinant human growth hormone (rhGH) on insulin and C-peptide kinetics, insulin secretion, insulin sensitivity, glucose effectiveness, and body composition in GH-deficient adults

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Maghsoudi, S; Fisker, S

    2000-01-01

    The aim of the present study was to evaluate the long-term (30 months) metabolic effects of recombinant human GH (rhGH) given in a mean dose of 6.7 microg/kg x day (= 1.6 IU/day), in 11 patients with adult GH deficiency. Glucose metabolism was evaluated by an oral glucose tolerance test and an iv...... (frequently sampled iv glucose tolerance test) glucose tolerance test, and body composition was estimated by dual-energy x-ray absorptiometry. Treatment with rhGH induced persistent favorable changes in body composition, with a 10% increase in lean body mass (P ... in glucose tolerance, beta-cell response was still inappropriate. Our conclusion is that long-term rhGH-replacement therapy in GH deficiency adults induced a significant deterioration in glucose tolerance, profound changes in kinetics of C-peptide, and insulin and prehepatic insulin secretion, despite...

  16. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology.

    Science.gov (United States)

    Nguyen, Jacques D; Aarde, Shawn M; Vandewater, Sophia A; Grant, Yanabel; Stouffer, David G; Parsons, Loren H; Cole, Maury; Taffe, Michael A

    2016-10-01

    Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  18. Inhalants

    Science.gov (United States)

    ... uses inhalants may be unable to learn new things or may have a hard time carrying on simple conversations. If the cerebral ... get drugs on the street, it is really hard to know what you get, Sometimes, ... put in, all sorts of things could happen. And other times, one might get ...

  19. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Science.gov (United States)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  20. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Directory of Open Access Journals (Sweden)

    Anna eMikulska

    2015-01-01

    Full Text Available Polymeric surfaces suitable for cell culture (DR/Pec were constructed from diazoresin (DR and pectin (Pec in a form of ultrathin films using the layer-by-layer (LbL technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2 to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  1. Hypoglycemia in type 1 diabetic pregnancy: role of preconception insulin aspart treatment in a randomized study

    DEFF Research Database (Denmark)

    Heller, Simon; Damm, Peter; Mersebach, Henriette

    2010-01-01

    OBJECTIVE A recent randomized trial compared prandial insulin aspart (IAsp) with human insulin in type 1 diabetic pregnancy. The aim of this exploratory analysis was to investigate the incidence of severe hypoglycemia during pregnancy and compare women enrolled preconception with women enrolled...... during early pregnancy. RESEARCH DESIGN AND METHODS IAsp administered immediately before each meal was compared with human insulin administered 30 min before each meal in 99 subjects (44 to IAsp and 55 to human insulin) randomly assigned preconception and in 223 subjects (113 for IAsp and 110 for human...

  2. Differential Effects of Camel Milk on Insulin Receptor Signaling – Towards Understanding the Insulin-like Properties of Camel Milk

    Directory of Open Access Journals (Sweden)

    Abdulrasheed O Abdulrahman

    2016-01-01

    Full Text Available Previous studies on the Arabian camel (Camelus dromedarius showed beneficial effects of its milk reported in diverse models of human diseases including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293 cells using bioluminescence resonance energy transfer (BRET technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1 and the growth factor receptor-bound protein 2 (Grb2. Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  3. Inhaled actinides: some safety issues and some research problems

    International Nuclear Information System (INIS)

    Bair, W.J.

    1978-01-01

    The following topics are discussed: limited research funds; risk coefficients for inhaled particles; the hot particle hypothesis; the Gofman-Martell contention; critical tissues for inhaled actinides inhalation hazards associated with future nuclear fuel cycles; and approach to be used by the inhalation panel

  4. Probing the mechanism of insulin fibril formation with insulin mutants.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were