WorldWideScience

Sample records for inhabiting thermally stressed

  1. effect of thermal stress of short duration on the red blood cell

    African Journals Online (AJOL)

    Dr Ivanc

    2013-05-01

    May 1, 2013 ... an acute increase of temperature and metabolic rate on basic blood parameters as oxygen transport system. The effect of thermal stress was studied on the Barbus balcanicus, a species inhabiting smaller water bodies often exposed to temperature fluctuatiation. During the experiment, the fish were ...

  2. Ecology of anuran populations inhabiting thermally stressed aquatic ecosystems, with emphasis on larval Rana pipiens and Bufo terrestris

    International Nuclear Information System (INIS)

    Nelson, D.H.

    1974-01-01

    Field and laboratory studies were conducted to determine the responses of anuran populations to thermally stressed aquatic ecosystems. Adult and larval amphibians were sampled in and around a cool arm of a 67 ha reservoir that receives high temperature effluent from a nuclear production reactor on the Savannah River Plant (SRP) in South Carolina. Patterns for some species were compared with data from nearby unheated areas and analyzed in terms of the thermal gradient (16-45 C) extending the length of the reservoir's cool arm. The adaptation to breeding during nocturnal rainfall fortuitously confers a double advantage especially to anurans breeding in thermally stressed waters. (U.S.)

  3. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  4. Fish diversity in adjacent ambient, thermal, and post-thermal freshwater streams

    International Nuclear Information System (INIS)

    McFarlane, R.W.

    1976-01-01

    The Savannah River Plant area is drained by five streams of various sizes and thermal histories. One has never been thermally stressed, two presently receive thermal effluent, and two formerly received thermal effluent from nuclear production reactors. Sixty-four species of fishes are known to inhabit these streams; 55 species is the highest number obtained from any one stream. Thermal effluent in small streams excludes fish during periods of high temperatures, but the streams are rapidly reinvaded when temperatures subside below lethal limits. Some cyprinids become extinct in nonthermal tributaries upstream from the thermal effluents after extended periods of thermal stress. This extinction is similar to that which follows stream impoundment. Post-thermal streams rapidly recover their fish diversity and abundance. The alteration of the streambed and removal of overhead canopy may change the stream characteristics and modify the post-thermal fish fauna

  5. Thermal stress and seismogenesis

    International Nuclear Information System (INIS)

    Zhou Huilan; Wei Dongping

    1989-05-01

    In this paper, the Fourier stress method was applied to deal with the problem of plane thermal stress, and a computing formula was given. As an example, we set up a variate temperature field to describe the uplifted upper mantle in Bozhong area of China, and the computing results shows that the maximum value of thermal plane shear stress is up to nearly 7x10 7 P α in two regions of this area. Since the Bohai earthquake (18 July, 1969, M s = 7.4) occurred at the edge of one of them and Tangshan earthquake (28 July, 1976, M s = 7.8) within another, their occurrences can be related reasonably to the thermal stress. (author). 15 refs, 7 figs

  6. Thermal Stress Limit Rafting Migration of Seahorses: Prediction Based on Physiological and Behavioral Responses to Thermal Stress

    Science.gov (United States)

    Qin, G.; Li, C.; Lin, Q.

    2017-12-01

    Marine fish species escape from harmful environment by migration. Seahorses, with upright posture and low mobility, could migrate from unfavorable environment by rafting with their prehensile tail. The present study was designed to examine the tolerance of lined seahorse Hippocampus erectus to thermal stress and evaluate the effects of temperature on seahorse migration. The results figured that seahorses' tolerance to thermal stress was time dependent. Acute thermal stress (30°C) increased breathing rate and HSP genes expression significantly, but didn't affect seahorse feeding behavior. Chronic thermal treatment lead to persistent high expression of HSP genes, higher breathing rate, and decreasing feeding, and final higher mortality, suggesting that seahorse cannot adapt to thermal stress by acclimation. No significant negative effects were found in seahorse reproduction in response to chronic thermal stress. Given that seahorses make much slower migration by rafting on sea surface compared to other fishes, we suggest that thermal stress might limit seahorse migration range. and the influence might be magnified by global warming in future.

  7. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  8. Evaluation of properties and thermal stress field for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    王良; 齐红宇; 杨晓光; 李旭

    2008-01-01

    In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.

  9. Transient thermal stresses and stress intensity factors induced by thermal stratification in feedwater lines

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Pardo, E.

    1985-01-01

    General analytical solutions for the thermal stresses and circumferential crack propagation in piping branches of nuclear power plants, that connect two circuits of the same fluid at different temperatures, are presented in this paper. Under certain conditions, two regions of the fluid possessing both temperatures with a separating layer of small thickness are formed ('flow stratification'). Dimensionless analytical expressions for the steady state temperature distribution in the pipe wall and the corresponding thermal stress are here derived, in terms of the basic geometrical and physical parameters. The position and thickness of the separating layer are considered as data of the model. Stress intensity ranges at any point of the tube wall are then determined. Finally, thermally induced stress intensity factors are calculated for hipothetically inside surface cracks. (orig.)

  10. Short-term effects of air quality and thermal stress on non-accidental morbidity-a multivariate meta-analysis comparing indices to single measures.

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2018-01-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  11. Short-term effects of air quality and thermal stress on non-accidental morbidity—a multivariate meta-analysis comparing indices to single measures

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2018-01-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  12. Thermal Stress Awareness, Self-Study #18649

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-15

    Thermal stresses can expose individuals to a variety of health hazards at work, home, and play. Every year thermal stresses cause severe injuries and death to a large range of people, from elderly people in cities during summer heat waves to young people engaged in winter mountaineering. Awareness is the key to preventing the health hazards associated with thermal stresses. This course is designed for personnel at Los Alamos National Laboratory (LANL). It addresses both heat and cold stresses and discusses their factors, signs and symptoms, treatments, and controls.

  13. Thermoregulation and temperature relations of alligators and other large ectotherms inhabiting thermally stressed habitats. Annual progress report, 1 July 1976--30 September 1977

    International Nuclear Information System (INIS)

    Spotila, J.R.

    1977-06-01

    Progress is reported on studies of the biophysical and thermal relationships between large ectotherms and their aquatic environment. Data are reported from laboratory and field studies on alligators, turtles, and fish. Mathematical models of the effect of body size and physical characteristics on temperature regulation of ectotherms and of thermal stress in aquatic organisms were developed. Results are included of field studies on the physiological and behavioral adjustments of turtles in response to changes in water temperature produced by thermal effluents in PAR Pond at the Savannah River Ecology Laboratory

  14. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  15. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    thermally-induced stress distributions in a hollow steel sphere heated by a moving uniform ... models to evaluate temperatures according to the frictional heat generation, ... of these thermal effects include thermal stress, strain and deformation.

  16. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10...

  17. Thermal stresses in long prisms by relaxation methods

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1959-07-01

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  18. Thermal stresses in long prisms by relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1959-07-15

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  19. Thermal stress analysis of a planar SOFC stack

    Science.gov (United States)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  20. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  1. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  2. Thermal stress-dependent dilation of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.

    1984-01-01

    Recent studies in nuclear fast reactor safety consider the possibility of concrete containment being subjected to extremely severe environmental conditions. Certain safety scenarios subject the concrete to very high temperatures hence raising the concern of containment integrity. Some of the main detrimental effects of high temperature on concrete are: reduction of strength, redistribution of moisture and etc. Consequently, analytical prediction of concrete response under the high temperature conditions becomes very complex. A rather simple but important experiment of concrete at high temperatures was conducted by Anderberg and Thelandersson. The test samples were small so that moisture was free to evaporate with no appreciable gradient as the temperature increased. Their results revealed that good correlation with analysis could be obtained if thermal expansion was made a function of both temperature and stress. The method of relating the thermal strain to temperature and stress has been integrated into the TEMP-STRESS code. Thus, high temperature concrete computational capability is now available for thermal-stress calculations

  3. Theory of thermal stresses

    CERN Document Server

    Boley, Bruno A

    1997-01-01

    Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.

  4. Adaptive Responses to Thermal Stress in Mammals

    OpenAIRE

    Yasser Lenis Sanin; Angélica María Zuluaga Cabrera; Ariel Marcel Tarazona Morales

    2015-01-01

    The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated...

  5. Thermally developing forced convection and the corresponding thermal stresses in a porous plate channel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao; LIU Xuemei

    2007-01-01

    Based on the Darcy fluid model, by considering the effects of viscous dissipation due to the interaction between solid skeleton and pore fluid flow and thermal conduction in the direction of the fluid flow, the thermally developing forced convection of the local thermal equili- brium and the corresponding thermal stresses in a semi- infmite saturated porous plate channel are investigated in this paper. The expressions of temperature, local Nusselt number and corresponding thermal stresses are obtained by means of the Fourier series, and the distributions of the same are also shown. Furthermore, influences of the Péclet number (Pe) and Brinkman number (Br) on temperature, Nusselt number (Nu) and thermal stress are revealed numerically.

  6. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  7. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2008-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigenfunction series and the simple approximate one by the temperature profile method. Furthermore, thermal stress shell solutions were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay coefficient. The thermal stress shell solutions are described by two parameters. One is the ratio between the temperature decay coefficient and the load decay coefficient. Another is the nondimensional width of stratification. These solutions are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  8. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2007-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigen-function series and the simple approximate one by the temperature profile method. Furthermore, shell solutions of thermal stress were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay factor. The shell solutions of thermal stress are described by two parameters. One is the ratio between the temperature decay factor and the local decay factor. Another is the non-dimensional width of stratification. These solution are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  9. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  10. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b) Evaluation...

  11. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...

  12. Thermal stress ratcheting analysis of a time-hardening structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1999-01-01

    Thermal stress ratcheting and shakedown is analyzed for a time-hardening structure: the yield stress increases as time goes on under exposure to neutron irradiation or thermal aging. New three modes of ratcheting and shakedown are identified as transition to other deformation modes. Stress regimes and thermal ratchet strains are formulated as a function of time-increasing yield stress. Moreover, a new model of trouble occurrence frequency as a modification to a bath-tube curve is proposed for calculating a time period of a thermal cycle. Application of the proposed formulation tells us a benefit of taking into account the time hardening due to neutron irradiation. (author)

  13. Calculation of the thermal stress and thermal resistance of anisotropic materials. II

    Energy Technology Data Exchange (ETDEWEB)

    Krivko, A I; Epishin, A I; Svetlov, I L; Samoilov, A I; Sukhanov, N N

    1989-04-01

    The stressed state in a wedge and in a family of plates cut from single-crystal ingots of 40 axial orientations is analyzed. It is shown that, in contrast to the case of the wedge, the value of the thermal stress tensor components in the plates depends substantially not only on the axial crystallographic orientation but also on the azimuthal orientation. Requirements on the crystallographic orientation of simple single-crystal parts of plate or wedge type are formulated with the aim of decreasing the detrimental effects of thermal stresses. The correctness of the calculations is confirmed by results of thermal fatigue tests of hollow prismatic specimens, i.e., blade simulators with 001, 011, and 111 axial orientations.

  14. Transient stress control of aeroengine disks based on active thermal management

    International Nuclear Information System (INIS)

    Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu

    2016-01-01

    Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.

  15. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  16. SLAC divertor channel entrance thermal stress analysis

    International Nuclear Information System (INIS)

    Johnson, G.L.; Stein, W.; Lu, S.C.; Riddle, R.A.

    1985-01-01

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) impinge on the entrance to tangential divertor channels causing highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. These parts are cooled with water flowing axially over them at 30 0 C. The current design and operating conditions should result in the entrance to the new divertor channel operating at a peak temperature of 123 0 C with a peak thermal stress at 91% of yield. Any micro-cracks that form due to thermally-induced stresses should not propagate to the coolant wall nor form a path for the coolant to leak into the storage ring vacuum. 34 figs., 4 tabs

  17. Adaptive Responses to Thermal Stress in Mammals

    Directory of Open Access Journals (Sweden)

    Yasser Lenis Sanin

    2015-12-01

    Full Text Available The environment animals have to cope with is a combination of natural factors such as temperature. Extreme changes in these factors can alter homeostasis, which can lead to thermal stress. This stress can be due to either high temperatures or low temperatures. Energy transference for thermoregulation in homoeothermic animals occurs through several mechanisms: conduction, convection, radiation and evaporation. When animals are subjected to thermal stress, physiological mechanisms are activated which may include endocrine, neuroendocrine and behavioral responses. Activation of the neuroendocrine system affects the secretion of hormones and neurotransmitters which act collectively as response mechanisms that allow them to adapt to stress. Mechanisms which have developed through evolution to allow animals to adapt to high environmental temperatures and to achieve thermo tolerance include physiological and physical changes in order to reduce food intake and metabolic heat production, to increase surface area of skin to dissipate heat, to increase blood flow to take heat from the body core to the skin and extremities to dissipate the heat, to increase numbers and activity of sweat glands, panting, water intake and color adaptation of integument system to reflect heat. Chronic exposure to thermal stress can cause disease, reduce growth, decrease productive and reproductive performance and, in extreme cases, lead to death. This paper aims to briefly explain the physical and physiological responses of mammals to thermal stress, like a tool for biological environment adaptation, emphasizing knowledge gaps and offering some recommendations to stress control for the animal production system.

  18. An analytical study on the thermal stress of mass concrete

    International Nuclear Information System (INIS)

    Yoshida, H.; Sawada, T.; Yamazaki, M.; Miyashita, T.; Morikawa, H.; Hayami, Y.; Shibata, K.

    1983-01-01

    The thermal stress in mass concrete occurs as a result of the effect associated with the heat of hydration of the cement. Sometimes, the excessive stresses cause the cracking or other tensile failure in concrete. Therefore it is becoming necessary in the design and construction of mass concrete to predict the thermal stress. The thermal stress analysis of mass concrete requires to take account of the dependence of the elastic modulus on the age of concrete as well as the stress relaxation by creep effect. The studies of those phenomena and the analytical methods have been reported so far. The paper presents the analytical method and discusses its reliability through the application of the method to the actual structure, measuring the temperatures and the thermal stresses. The method is the time dependent thermal stress analysis based on the finite element method, which takes account of creep effect, the aging of concrete and the effect of temperature variation in time. (orig./HP)

  19. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  20. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  1. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  2. Temperature and Thermal Stress Analysis of Refractory Products

    Directory of Open Access Journals (Sweden)

    Shaoyang Shi

    2013-05-01

    Full Text Available Firstly current status of temperature and thermal stress research of refractory product at home and aboard are analyzed. Finite element model of two classical refractory products is building by using APDL language. Distribution law of temperature and thermal stress of two typical refractory products-ladles and tundish are analyzed and their structures are optimized. Stress of optimal structure is dropped obviously, and operation life is increased effectively.

  3. An anisotropic thermal-stress model for through-silicon via

    Science.gov (United States)

    Liu, Song; Shan, Guangbao

    2018-02-01

    A two-dimensional thermal-stress model of through-silicon via (TSV) is proposed considering the anisotropic elastic property of the silicon substrate. By using the complex variable approach, the distribution of thermal-stress in the substrate can be characterized more accurately. TCAD 3-D simulations are used to verify the model accuracy and well agree with analytical results (model can be integrated into stress-driven design flow for 3-D IC , leading to the more accurate timing analysis considering the thermal-stress effect. Project supported by the Aerospace Advanced Manufacturing Technology Research Joint Fund (No. U1537208).

  4. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  5. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  6. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  7. Calculation of thermal stresses in graphite fuel blocks

    International Nuclear Information System (INIS)

    Lejeail, Y.; Cabrillat, M.T.

    2005-01-01

    This paper presents a parametric study of temperature and thermal stress calculations inside a HTGR core graphite block, taking into account the effect of fluence on the thermal and mechanical properties, up to 4. 10 21 n/cm 2 . The Finite Element model, realized with Cast3M CEA code, includes the effects of irradiation creep, which tends to produce secondary stress relaxation. Then, the Weibull weakest link theory is recalled, evaluating the possible effects of volume, stress field distribution (loading factor), and multiaxiality for graphite-type materials, and giving the methodology to compare the stress to rupture for the structure to the one obtained from characterization, in the general case. The maximum of the Weibull stress in Finite Element calculations is compared to the value for tensile specimens. It is found that the maximum of the stress corresponds to the end of the irradiation cycle, after reactor shutdown, since both thermal conductivity and Young's modulus increase with time. However, this behaviour is partly counterbalanced by the increase of material strength with irradiation. (authors)

  8. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces

    Science.gov (United States)

    Pearlmutter, David; Jiao, Dixin; Garb, Yaakov

    2014-12-01

    Outdoor thermal comfort has important implications for urban planning and energy consumption in the built environment. To better understand the relation of subjective thermal experience to bioclimatic thermal stress in such contexts, this study compares micrometeorological and perceptual data from urban spaces in the hot-arid Negev region of Israel. Pedestrians reported on their thermal sensation in these spaces, whereas radiation and convection-related data were used to compute the Index of Thermal Stress (ITS) and physiologically equivalent temperature (PET). The former is a straightforward characterization of energy exchanges between the human body and its surroundings, without any conversion to an "equivalent temperature." Although the relation of ITS to subjective thermal sensation has been analyzed in the past under controlled indoor conditions, this paper offers the first analysis of this relation in an outdoor setting. ITS alone can account for nearly 60 % of the variance in pedestrians' thermal sensation under outdoor conditions, somewhat more than PET. A series of regressions with individual contextual variables and ITS identified those factors which accounted for additional variance in thermal sensation, whereas multivariate analyses indicated the considerable predictive power ( R-square = 0.74) of models including multiple contextual variables in addition to ITS. Our findings indicate that pedestrians experiencing variable outdoor conditions have a greater tolerance for incremental changes in thermal stress than has been shown previously under controlled indoor conditions, with a tapering of responses at high values of ITS. However, the thresholds of ITS corresponding to thermal "neutrality" and thermal "acceptability" are quite consistent regardless of context.

  9. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  10. Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary).

    Science.gov (United States)

    Anda, Dóra; Büki, Gabriella; Krett, Gergely; Makk, Judit; Márialigeti, Károly; Erőss, Anita; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2014-09-01

    The Buda Thermal Karst System is an active hypogenic karst area that offers possibility for the analysis of biogenic cave formation. The aim of the present study was to gain information about morphological structure and genetic diversity of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (DHTS). Using scanning electron microscopy, metal accumulating and unusual reticulated filaments were detected in large numbers in the DHTS biofilm samples. The phyla Actinobacteria, Firmicutes and Proteobacteria were represented by both bacterial strains and molecular clones but phyla Acidobacteria, Chlorobi, Chlorofexi, Gemmatimonadetes, Nitrospirae and Thermotogae only by molecular clones which showed the highest similarity to uncultured clone sequences originating from different environmental sources. The biofilm bacterial community proved to be somewhat more diverse than that of the water sample and the distribution of the dominant bacterial clones was different between biofilm and water samples. The majority of biofilm clones was affiliated with Deltaproteobacteria and Nitrospirae while the largest group of water clones was related to Betaproteobacteria. Considering the metabolic properties of known species related to the strains and molecular clones from DHTS, it can be assumed that these bacterial communities may participate in the local sulphur and iron cycles, and contribute to biogenic cave formation.

  11. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  12. Modelling of thermal stress in vapor generator supports

    International Nuclear Information System (INIS)

    Halpert, S.; Vazquez, L.

    1997-01-01

    To assure safety and availability of a nuclear power plant components or equipment stress analysis are done. When thermal loads are involved it's necessary to know the temperature field of the component or equipment. This paper describes the structural analysis of a steam generator lug with thermal load including the model used for computer simulation and presents the evolution of the temperature profile, the stress intensity and principal stress during start up and shut down of a nuclear power reactor. Temperature field obtained from code calculation show good agreement with the experimental data while stress analysis results are in agreement with a preview estimation. (author) [es

  13. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  14. Thermal properties of graphene under tensile stress

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-05-01

    Thermal properties of graphene display peculiar characteristics associated to the two-dimensional nature of this crystalline membrane. These properties can be changed and tuned in the presence of applied stresses, both tensile and compressive. Here, we study graphene monolayers under tensile stress by using path-integral molecular dynamics (PIMD) simulations, which allows one to take into account quantization of vibrational modes and analyze the effect of anharmonicity on physical observables. The influence of the elastic energy due to strain in the crystalline membrane is studied for increasing tensile stress and for rising temperature (thermal expansion). We analyze the internal energy, enthalpy, and specific heat of graphene, and compare the results obtained from PIMD simulations with those given by a harmonic approximation for the vibrational modes. This approximation turns out to be precise at low temperatures, and deteriorates as temperature and pressure are increased. At low temperature, the specific heat changes as cp˜T for stress-free graphene, and evolves to a dependence cp˜T2 as the tensile stress is increased. Structural and thermodynamic properties display non-negligible quantum effects, even at temperatures higher than 300 K. Moreover, differences in the behavior of the in-plane and real areas of graphene are discussed, along with their associated properties. These differences show up clearly in the corresponding compressibility and thermal expansion coefficient.

  15. Thermal mechanical stress modeling of GCtM seals

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  16. A numerical analysis method on thermal and shrinkage stress of concrete

    International Nuclear Information System (INIS)

    Takiguchi, Katsuki; Hotta, Hisato

    1991-01-01

    Thermal stress often causes cracks in large scale concrete such as that for dam construction. The drying shrinkage of concrete causes cracks in concrete structures. These thermal stress and drying shrinkage stress may be the main reasons cracks occur in concrete, however there is few research which dealt with both stresses together. The problems on the thermal stress and the drying shrinkage are not independent, and should be dealt with together, because both temperature and water content of concrete affect hydration reaction, and the degree of hydration determines all the characteristics of concrete at early age. In this study, the degree of hydration is formulated experimentally, and a numerical stress analysis method taking the hydration reaction in consideration is presented. The formulation of the rate of hydration reaction, the method of analyzing thermal and drying shrinkage stresses, the analytical results for a concrete column and the influence that continuous load exerted to the tensile strength of concrete are reported. The relatively high stress nearly equal to the tensile strength of concrete arises near the surface. (K.I.)

  17. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  18. Mitigation method of thermal transient stress by thermalhydraulic-structure total analysis

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Jinbo, Masakazu; Hosogai, Hiromi

    2003-01-01

    This study proposes a rational evaluation and mitigation method of thermal transient loads in fast reactor components by utilizing relationships among plant system parameters and stresses induced by thermal transients of plants. A thermalhydraulic-structure total analysis procedure helps us to grasp relationship among system parameters and thermal stresses. Furthermore, it enables mitigation of thermal transient loads by adjusting system parameters. In order to overcome huge computations, a thermalhydraulic-structure total analysis code and the Design of Experiments methodology are utilized. The efficiency of the proposed mitigation method is validated through thermal stress evaluation of an intermediate heat exchanger in Japanese demonstration fast reactor. (author)

  19. Thermal stresses in composite tubes using complementary virtual work

    Science.gov (United States)

    Hyer, M. W.; Cooper, D. E.

    1988-01-01

    This paper addresses the computation of thermally induced stresses in layered, fiber-reinforced composite tubes subjected to a circumferential gradient. The paper focuses on using the principle of complementary virtual work, in conjunction with a Ritz approximation to the stress field, to study the influence on the predicted stresses of including temperature-dependent material properties. Results indicate that the computed values of stress are sensitive to the temperature dependence of the matrix-direction compliance and matrix-direction thermal expansion in the plane of the lamina. There is less sensitivity to the temperature dependence of the other material properties.

  20. Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress

    KAUST Repository

    Kneeland, J.

    2013-08-30

    Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response. © 2013 Springer-Verlag Berlin Heidelberg.

  1. Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates

    Science.gov (United States)

    Yoon, Sean J.; Kim, Jung Woong; Kim, Hyun Chan; Kang, Jinmo; Kim, Jaehwan

    2017-12-01

    Thermal stress in flexible interdigital transducers a reliability concern in the development of flexible devices, which may lead to interface delamination, stress voiding and plastic deformation. In this paper, a mathematical model is presented to investigate the effect of material selections on the thermal stress in interdigital transducers. We modified the linear relationships in the composite materials theory with the effect of high curvature, anisotropic substrate and small substrate thickness. We evaluated the thermal stresses of interdigital transducers, fabricated with various electrodes, insulators and substrate materials for the comparison. The results show that, among various insulators, organic polymer developed the highest stress level while oxide showed the lowest stress level. Aluminium shows a higher stress level and curvature as an electrode than gold. As substrate materials, polyimide and electroactive cellulose show similar stress levels except the opposite sign convention to each other. Polyimide shows positive curvatures while electroactive cellulose shows negative curvatures, which is attributed to the stress and thermal expansion state of the metal/insulator composite. The results show that the insulator is found to be responsible for the confinement across the metal lines while the substrate is responsible for the confinement along the metal lines.

  2. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  3. Thermal Stress Analysis of Medium-Voltage Converters for Smart Transformers

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; De Carne, Giovanni

    2017-01-01

    . To address this concern, this work conducts thermal stress analysis for a modular multilevel converter (MMC), which is a promising solution for the medium voltage stage of the ST. The focus is put on the mission profiles of the transformer and the impact on the thermal stress of power semiconductor devices......A smart transformer (ST) can take over an important managing role in the future electrical distribution grid system and can provide many advanced grid services compared to the traditional transformer. However, the risk is that the advanced functionality is balanced out by a lower reliability....... Normal operation at different power levels and medium voltage grid faults in a feeder fed by a traditional transformer are considered as well as the electrical and the thermal stress of the disconnection and the reconnection procedures. For the validation, the thermal stress of one MMC cell is reproduced...

  4. Thermal stresses in hexagonal materials - heat treatment influence on their mechanical behaviour

    International Nuclear Information System (INIS)

    Gloaguen, D.; Freour, S.; Guillen, R.; Royer, J.; Francois, M.

    2004-01-01

    Internal stresses due to anisotropic thermal and plastic properties were investigated in rolled zirconium and titanium. The thermal stresses induced by a cooling process were predicted using a self-consistent model and compared with experimental results obtained by X-ray diffraction. The study of the elastoplastic response during uniaxial loading was performed along the rolling and the transverse direction of the sheet, considering the influence of the texture and the thermal stresses on the mechanical behaviour. An approach in order to determine the thermal behaviour of phases embedded in two-phase materials is also presented. For zirconium, the residual stresses due to thermal anisotropy are rather important (equivalent to 35% of the yield stress) and consequently they play an important role on the elastoplastic transition contrary to titanium. The study of two-phase material shows the influence and the interaction of the second phase on the thermal behaviour in the studied phase

  5. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  6. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  7. Thermal stresses investigation of a gas turbine blade

    Science.gov (United States)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  8. Predicted thermal and stress environments in the vicinity of repository openings

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Lin, M.

    1991-01-01

    An understanding of the thermal and stress environment in the vicinity of repository openings is important for preclosure performance considerations and worker health and safety considerations for the proposed high-level radioactive waste repository at Yucca Mountain. This paper presents the results of two and three dimensional numerical analyses which have determined the thermal and stress environments for typical repository openings. In general, it is predicted that openings close to heat sources attain high temperatures and experience a significant stress increase. Openings away from heat sources experience more uniform temperature changes and experience a stress change which results in part from a far-field thermal loading

  9. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  10. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation.

    Science.gov (United States)

    Qin, Geng; Johnson, Cara; Zhang, Yuan; Zhang, Huixian; Yin, Jianping; Miller, Glen; Turingan, Ralph G; Guisbert, Eric; Lin, Qiang

    2018-05-15

    Inshore-offshore migration occurs frequently in seahorse species either because of prey opportunities or because it is driven by reproduction, and variations in water temperature may dramatically change migratory seahorse behavior and physiology. The present study investigated the behavioral and physiological responses of the lined seahorse Hippocampus erectus under thermal stress and evaluated the potential effects of different temperatures on its reproduction. The results showed that the thermal tolerance of the seahorses was time dependent. Acute thermal stress (30°C, 2-10 hours) increased the basal metabolic rate (breathing rate) and the expression of stress response genes ( Hsp genes) significantly and further stimulated seahorse appetite. Chronic thermal treatment (30°C, 4 weeks) led to a persistently higher basal metabolic rate, higher stress response gene expression, and higher mortality, indicating that the seahorses could not acclimate to chronic thermal stress and might experience massive mortality due to excessive basal metabolic rates and stress damage. Additionally, no significant negative effects on gonad development or reproductive endocrine regulation genes were observed in response to chronic thermal stress, suggesting that seahorse reproductive behavior could adapt to higher-temperature conditions during migration and within seahorse breeding grounds. In conclusion, this simulation experiment indicated that temperature variations during inshore-offshore migration have no effect on reproduction but promote basal metabolic rates and stress responses significantly. Therefore, we suggest that the high observed tolerance of seahorse reproduction was in line with the inshore-offshore reproductive migration pattern of lined seahorse. © 2018. Published by The Company of Biologists Ltd.

  11. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  12. Effect of Thermal Stresses on the Failure Criteria of Fiber Composites

    DEFF Research Database (Denmark)

    Leong, Martin Klitgaard; Sankar, Bhavani V.

    2010-01-01

    , the latter, called micro-thermal stresses, has not been given much attention. In this paper the Direct Micromechanics Method is used to investigate the effects of micro-thermal stresses on the failure envelope of composites. Using FEA the unit-cell of the composite is analyzed. Assuming the failure criteria...... for the fiber and matrix are known, the exact failure envelope is developed. Using the micromechanics results, the Tsai-Wu failure envelope is modified to account for the micro-thermal stresses. The approach is demonstrated using two example structures at cryogenic temperature....

  13. Thermal Super-Pixels for Bimodal Stress Recognition

    DEFF Research Database (Denmark)

    Irani, Ramin; Nasrollahi, Kamal; Dhall, Abhinav

    2016-01-01

    to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1, 2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress......Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor...

  14. Concrete creep and thermal stresses:new creep models and their effects on stress development

    OpenAIRE

    Westman, Gustaf

    1999-01-01

    This thesis deals with the problem of creep in concrete and its influence on thermal stress development. New test frames were developed for creep of high performance concrete and for measurements of thermal stress development. Tests were performed on both normal strength and high performance concretes. Two new models for concrete creep are proposed. Firstly, a viscoelastic model, the triple power law, is supplemented with two additional functions for an improved modelling of the early age cre...

  15. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  16. Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading

    Science.gov (United States)

    2017-09-07

    ARL-TR-8121 ● SEP 2017 US Army Research Laboratory Stress and Displacement Analysis of Microreactors during Thermal and Vacuum...is no longer needed. Do not return it to the originator. ARL-TR-8121 ● SEP 2017 US Army Research Laboratory Stress and...TITLE AND SUBTITLE Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  17. Thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion

    International Nuclear Information System (INIS)

    Sumi, N.

    1981-01-01

    On the basis of the complex variable method for determining the stationary two-dimensional thermal stresses, the thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion under a steady state temperature field is considered. The solution is found by the analytic continuation argument and the modified mapping-collocation technique. Numerical results indicate a dependence of the orthotropic stress intensity factors on the thermal, elastic and geometrical constants over a certain parameter range. (orig.)

  18. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  19. Thermal stress analysis of gravity support system for ITER based on ANSYS

    International Nuclear Information System (INIS)

    Liang Shangming; Yan Xijiang; Huang Yufeng; Wang Xianzhou; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin

    2009-01-01

    A method for building the finite element model of the gravity support system for International Thermonuclear Experimental Reactor (ITER) was proposed according to the characteristics of the gravity support system with the cyclic symmetry. A mesh dividing method, which has high precision and an acceptable calculating scale, was used, and a three dimensional finite element model for the toroidal 20 degree sector of the gravity support system was built by using ANSYS. Meantime, the steady-state thermal analysis and thermal-structural coupling analysis of the gravity support system were performed. The thermal stress distributions and the maximal thermal stress values of all parts of the gravity support system were obtained, and the stress intensity of parts of the gravity support system was analyzed. The results of thermal stress analysis lay the solid foundation for design and improvement for gravity supports system for ITER. (authors)

  20. Development of thermal stress screening method. Application of green function method

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Shibamoto, Hiroshi; Kasahara, Naoto

    2004-01-01

    This work was achieved for the development of the screening method of thermal transient stresses in FBR components. We proposed an approximation method for evaluations of thermal stress under variable heat transfer coefficients (non-linear problems) using the Green functions of thermal stresses with constant heat transfer coefficients (linear problems). Detailed thermal stress analyses provided Green functions for a skirt structure and a tube-sheet of Intermediate Heat Exchanger. The upper bound Green functions were obtained by the analyses using those upper bound heat transfer coefficients. The medium and the lower bound Green functions were got by the analyses of those under medium and the lower bound heat transfer coefficients. Conventional evaluations utilized the upper bound Green functions. On the other hand, we proposed a new evaluation method by using the upper bound, medium and the lower bound Green functions. The comparison of above results gave the results as follows. The conventional evaluations were conservative and appropriate for the cases under one fluid thermal transient structure such as the skirt. The conventional evaluations were generally conservative for the complicated structures under two or more fluids thermal transients such as the tube-sheet. But the danger locations could exists for the complicated structures under two or more fluids transients, namely the conventional evaluations were non-conservative. The proposed evaluations gave good estimations for these complicated structures. Though above results, we have made the basic documents of the screening method of thermal transient stresses using the conventional method and the new method. (author)

  1. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  2. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  3. Simplified calculation of thermal stresses - on the reduction of effort in the stress analysis of reactor components

    International Nuclear Information System (INIS)

    Karow, K.

    1984-01-01

    The fatigue behaviour of reactor components is predominantly determined from the in-service thermal stresses. The calculation of such stresses for a number of temperature transients in the adjacent fluid may be expensive, particularly with complicated structures. Under certain conditions this expense can be reduced considerably with the aid of a rule, which permits interpolation of thermal stresses from known reference values instead of calculation. This paper presents the derivation and method of application of this interpolation rule. The derivation procedure is based on well-known proportionalities between thermal stress range Δsigma in the structure and temperature change ΔT and rate of change T of the fluid in the extreme cases of an ideal thermal shock and quasi-steady-state conditions, respectively. For the real transients in between the relationship Δsigma proportional (ΔT)sup(x) Tsup(1-x)αsup(y) is proposed, where x is the shock-degree and lies between 0 and 1, and, additionally, y designates the influence of the heat transfer coefficient α. This formula yields the interpolation rule. The rule permits interpolation of stress ranges for additional thermal transients from at least 3 reference stresses via x and y. The procedure is applicable to any metallic structure, reduces fatigue analysis effort considerably and yields excellent results. The paper is split up into 2 parts. In the following the derivation of the rule is presented. The second part describes its application and will be published shortly. (orig.)

  4. Heat transfer and thermal stress analysis in fluid-structure coupled field

    International Nuclear Information System (INIS)

    Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei

    2015-01-01

    In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out

  5. Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device

    Science.gov (United States)

    Pan, Tao; Gong, Tingrui; Yang, Wei; Wu, Yongjia

    2018-06-01

    The strong thermo-mechanical stress is one of the most critical failure mechanisms that affect the durability of thermoelectric devices. In this study, numerical simulations on the formation mechanism of the maximum thermal stress inside the thermoelectric device have been performed by using finite element method. The influences of the material properties and the thermal radiation on the thermal stress have been examined. The results indicate that the maximum thermal stress was located at the contact position between the two materials and occurred due to differential thermal expansions and displacement constraints of the materials. The difference in the calculated thermal stress value between the constant and the variable material properties was between 3% and 4%. At a heat flux of 1 W·cm-2 and an emissivity of 0.5, the influence of the radiation heat transfer on the thermal stress was only about 5%; however, when the heat flux was 20 W·cm-2 and the emissivity was 0.7, the influence of the radiation heat transfer was more than 30%.

  6. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    International Nuclear Information System (INIS)

    Zhang, Bo; Li, Yueming; Lu, Wei Zhen

    2016-01-01

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape

  7. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Li, Yueming [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace, Xi' an Jiaotong UniversityXi' an (China); Lu, Wei Zhen [Dept. of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong (China)

    2016-09-15

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape.

  8. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    ANSYS (1997) computer code has been used to analyse the thermal ... The numerical method is used succesfully to solve the governing equations ... thermal stress is an important criterion for consideration in the design of new compact heat.

  9. Stress in film/substrate system due to diffusion and thermal misfit effects

    International Nuclear Information System (INIS)

    Shao Shanshan; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2009-01-01

    The stress in film/substrate systems has been analysed taking into consideration the coupling effects of diffusion and thermal misfit within the framework of Fick's second law. The solution of diffusion-induced stress in a film/substrate system involving the thermal misfit stress feedback is developed. The effects of modulus ratios, diffusivity ratios, thickness ratios of the substrate and the film and the partial molar volume of the diffusing component on the stress distribution in the film/substrate system are then discussed with the help of the finite difference method. Results indicate that the stresses in the film/substrate system vary with diffusion time. Diffusion enhances the magnitudes of film stress when the thermal misfit stress is compressive in the film. Furthermore, the absolute values of stress in the film increase with the increasing modulus ratios of the substrate and film, while they reduce with the increasing partial molar volume of the diffusing component and the diffusivity ratio of the substrate and the film.

  10. Effects of location, thermal stress and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    McLean, J.L.; Cohen, L.M.; Besuner, P.M.

    1979-01-01

    The stress intensity factors (K 1 ) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure and a fluid quench in the nozzle. Conditions both with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute K 1 values from the uncracked stress distribution. For each type of loading K 1 values are given for cracks at 15 nozzle locations and for 6 crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced K 1 values. Comparisons are made to determine the effect on K 1 of crack location, thermal stress and residual stress, as compared with pressure stress. For the thermal transient it is shown that K 1 for small crack depths is maximised early in the transient, while K 1 for large cracks is maximised later under steady state conditions. Computation should, therefore, be made for several transient time points and the maximum K 1 for a given crack depth should be used for design analysis. It is concluded that the effects on K 1 of location, thermal stresses and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The utilised combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (author)

  11. Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury.

    Science.gov (United States)

    Nyland, Jennifer E; McLean, Samuel A; Averitt, Dayna L

    2015-12-01

    Thermal burns among individuals working in highly stressful environments, such as firefighters and military Service Members, are common. Evidence suggests that pre-injury stress may exaggerate pain following thermal injury; however current animal models of burn have not evaluated the potential influence of pre-burn stress. This sham-controlled study evaluated the influence of prior stress exposure on post-burn thermal and mechanical sensitivity in male Sprague-Dawley rats. Rats were exposed to 20 min of inescapable swim stress or sham stress once per day for three days. Exposure to inescapable swim stress (1) increased the intensity and duration of thermal hyperalgesia after subsequent burn and (2) accelerated the onset of thermal hyperalgesia and mechanical allodynia after subsequent burn. This stress-induced exacerbation of pain sensitivity was reversed by pretreatment and concurrent treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. These data suggest a better understanding of mechanisms by which prior stress augments pain after thermal burn may lead to improved pain treatments for burn survivors. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  12. Universal treatment of plumes and stresses for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Angelini, S.; Yan, H.

    1991-01-01

    Thermally-induced stresses in a reactor pressure vessel wall, as a result of high-pressure safety injection, are an essential component of integrated risk analyses of pressurized thermal shock transients. Limiting cooldowns arise when this injection occurs under stagnated loop conditions which, in turn, correspond to a rather narrow range (in size) of small-break loss-of-coolant accidents. Moreover, at these conditions, the flow is thermally stratified, and in addition to the global cooldown, one must be concerned about the additional cooling potential due to the downcomer plumes formed by the cold streams pouring out of the cold legs. In the Nuclear Regulatory Commission's Integrated Pressurized Thermal Shock (IPTS) study, this stratification was calculated with the codes REMIX/NEWMIX. A comprehensive comparison with all available experimental data has currently been compiled. The stress analysis using this input was carried out at Oak Ridge National Laboratory using a one-dimensional approximation with the intent to conservatively bound the magnitude of thermal stresses

  13. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1981-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt % niobium, uranium - 2.0 wt % molybdenum, and uranium - 0.75 wt % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed

  14. Thermal stress evaluation of the Viking RTG heat shield

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-03-01

    Thermal stress analyses of the Viking RTG heat shield are presented. The primary purpose of the analyses was to determine the effects of the end cap and the finite length of the heat shield on the peak tensile stress in the barrel wall. The SAAS III computer code was used to calculate the thermal stresses; axisymmetric and plane section analyses were performed for a variety of temperature distributions. The study consisted of three parts. In the first phase, the influence of the end cap on the barrel wall stresses was examined by parametrically varying the modulus of elasticity of the contact zone between the end cap and the barrel. The second phase was concerned with stresses occurring as a result of an orbital decay reentry trajectory, and the effects of the magnitude and shape of the axial temperature gradient. The final part of the study was concerned with the circumferentially nonuniform temperature distribution which develops during a side-on stable reentry. The last part includes a comparison of stresses generated for a hexagonal cross section with those generated for a circular cross section

  15. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    Science.gov (United States)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  16. Effect of thermal stress on the performance of HgCdTe/Si diodes and FPAs

    International Nuclear Information System (INIS)

    Zhang, Shan; Hu, Xiao-Ning

    2012-01-01

    As a typical hetero-epitaxial material, the HgCdTe film which directly grows on the Si substrate possesses great residual stress for the large lattice and thermal expansion mismatch. Thermal stress caused by the thermal expansion mismatch dominates the stress mechanism after growth and seriously affects the device performance. In this paper, the performance of the HgCdTe/Si material, diodes and focal plane arrays under different thermal stress condition was studied. The experimental results indicate that the performance regularly changes with the thermal stress and all the results can be duplicated and recoverable. By analyzing the changes of the energy band under different stress conditions, it was found that the stress in the HgCdTe film impacts the film's characteristics. The HgCdTe film with tensile stress exhibits higher electron mobility, while with the compressive stress, the film exhibits higher hole mobility than that of the bulk HgCdTe crystal. Finally, the theoretical analysis can explain the experimental results well. (paper)

  17. Thermal stress measurement in continuous welded rails using the hole-drilling method

    Science.gov (United States)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2016-04-01

    The absence of expansion joints in Continuous Welded Rail (CWR) has created the need for the railroad industry to determine the in-situ level of thermal stresses so as to prevent train accidents caused by rail buckling in hot weather and by rail breakage in cold weather. The development of non-destructive or semi-destructive methods for determining the level of thermal stresses in rails is today a high research priority. This study explores the known hole-drilling method as a possible solution to this problem. A new set of calibration coefficients to compute the relieved stress field with the finer hole depth increments was determined by a 3D Finite Element Analysis that modeled the entire hole geometry, including the mechanics of the hole bottom and walls. To compensate the residual stress components, a linear relationship was experimentally established between the longitudinal and the vertical residual stresses of two common sizes of rails, the 136RE and the 141RE, with statistical significance. This result was then utilized to isolate the longitudinal thermal stress component in hole-drilling tests conducted on the 136RE and 141RE thermally-loaded rails at the Large-scale CWR Test-bed of UCSD's Powell Research Laboratories. The results from the Test-bed showed that the hole-drilling procedure, with the appropriate residual stress compensation, can indeed estimate the in-situ thermal stresses to achieve a +/-5°F accuracy of Neutral Temperature determination with a 90% statistical confidence, which is the desired industry gold standard.

  18. Numerical Study of Thermal Stresses for the Semiconductor CdZnTe in Vertical Bridgman

    OpenAIRE

    Jamai , Hanen; El Ganaoui , M.; Sammouda , Habib; Pateyron , Bernard

    2015-01-01

    International audience; The aim of this work is to present a numerical simulation of thermal stress in directional solidification of CdZnTe in vertical Bridgman apparatus. Especial attention will be attributed to show the importance of cooling temperature and time's growth affecting the thermal stress. Furthermore, we will focus on investigating the thermal stress' components and their distribution in crystal, which gives a detailed about the stress distribution and consequently on the distri...

  19. Numerical evaluation of stress intensity factor for vessel and pipe subjected to thermal shock

    International Nuclear Information System (INIS)

    Kim, Y.W.; Lee, H.Y.; Yoo, B.

    1994-01-01

    The thermal weight function method and the finite element method were employed in the numerical computation of the stress intensity factor for a cracked vessel and the cracked pipe subjected to thermal shock. A wall subjected to thermal shock was analyzed, and it has been shown that the effect of thermal shock on the stress intensity factor is dominant for the crack with small crack length to thickness ratio. Convection at the crack face had an influence on the stress intensity factor in the early stage of thermal shock. (Author)

  20. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator

    International Nuclear Information System (INIS)

    Wu, Yongjia; Ming, Tingzhen; Li, Xiaohua; Pan, Tao; Peng, Keyuan; Luo, Xiaobing

    2014-01-01

    Highlights: • An appropriate ceramic plate thickness is effective in alleviating the thermal stress. • A smaller distance between thermo-pins can help prolong lifecycle of the TE module. • Either a thicker or a thinner copper conducting strip effectively reduces thermal stress. • A suitable tin soldering thickness will alleviate thermal stress intensity and increase thermal efficiency. - Abstract: Thermoelectric generator is a device taking advantage of the temperature difference in thermoelectric material to generate electric power, where the higher the temperature difference of the hot-cold ends, the higher the efficiency will be. However, higher temperature or higher heat flux upon the hot end will cause strong thermal stress which will negatively influence the lifecycle of the thermoelectric module. This phenomenon is very common in industrial applications but seldom has research work been reported. In this paper, numerical analysis on the thermodynamics and thermal stress performance of the thermoelectric module has been performed, considering the variation on the thickness of materials; the influence of high heat flux on thermal efficiency, power output, and thermal stress has been examined. It is found that under high heat flux imposing upon the hot end, the thermal stress is so strong that it has a decisive effect on the life expectation of the device. To improve the module’s working condition, different geometrical configurations are tested and the optimum sizes are achieved. Besides, the side effects on the efficiency, power output, and open circuit voltage output of the thermoelectric module are taken into consideration

  1. Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine

    Institute of Scientific and Technical Information of China (English)

    Ali; Akbar; Partoaa; Morteza; Abdolzadeh; Masoud; Rezaeizadeh

    2017-01-01

    The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.

  2. Investigation of effective factors of transient thermal stress of the MONJU-System components

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masaaki; Hirayama, Hiroshi; Kimura, Kimitaka; Jinbo, M. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-03-01

    Transient thermal stress of each system Component in the fast breeder reactor is an uncertain factor on it's structural design. The temperature distribution in a system component changes over a wide range in time and in space. An unified evaluation technique of thermal, hydraulic, and structural analysis, in which includes thermal striping, temperature stratification, transient thermal stress and the integrity of the system components, is required for the optimum design of tho fast reactor plant. Thermal boundary conditions should be set up by both the transient thermal stress analysis and the structural integrity evaluation of each system component. The reasonable thermal boundary conditions for the design of the MONJU and a demonstration fast reactor, are investigated. The temperature distribution analysis models and the thermal boundary conditions on the Y-piece structural parts of each system component, such as reactor vessel, intermediate heat exchanger, primary main circulation pump, steam generator, superheater and upper structure of reactor core, are illustrated in the report. (M. Suetake)

  3. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  4. Coupled transient thermo-fluid/thermal-stress analysis approach in a VTBM setting

    International Nuclear Information System (INIS)

    Ying, A.; Narula, M.; Zhang, H.; Abdou, M.

    2008-01-01

    A virtual test blanket module (VTBM) has been envisioned as a utility to aid in streamlining and optimizing the US ITER TBM design effort by providing an integrated multi-code, multi-physics modeling environment. Within this effort, an integrated simulation approach is being developed for TBM design calculations and performance evaluation. Particularly, integrated thermo-fluid/thermal-stress analysis is important for enabling TBM design and performance calculations. In this paper, procedures involved in transient coupled thermo-fluid/thermal-stress analysis are investigated. The established procedure is applied to study the impact of pulsed operational phenomenon on the thermal-stress response of the TBM first wall. A two-way coupling between the thermal strain and temperature field is also studied, in the context of a change in thermal conductivity of the beryllium pebble bed in a solid breeder blanket TBM due to thermal strain. The temperature field determines the thermal strain in beryllium, which in turn changes the temperature field. Iterative thermo-fluid/thermal strain calculations have been applied to both steady-state and pulsed operation conditions. All calculations have been carried out in three dimensions with representative MCAD models, including all the TBM components in their entirety

  5. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute Ksub(I) values from the uncracked structure's stress distribution. For each type of loading Ksub(I) values are given for cracks at 15 nozzle locations and for six crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced Ksub(I) values. Comparisons are made to determine the effect on Ksub(I) of crack location, thermal stress, and residual stress as compared to pressure stress. For the thermal transient it is shown that Ksub(I) for small crack depths is maximized early in the transient while Ksub(I) for large cracks is maximized later, under steady state conditions. Ksub(I) computations should, therefore, be made for several transient time points and the maximum Ksub(I) for a given crack depth should be used for design analysis. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evalute without advanced numerical procedures. The utilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated

  6. Thermal stress analysis and operational characteristics of a bellows-seal globe valve

    International Nuclear Information System (INIS)

    Kim, Kwang Su; Kim, Youn Jae

    2005-01-01

    Because of design and manufacturing costs, it is important to predict an expected life of bellows with component stresses of bellows as its design factors and material characteristics. In this study, numerical analyses are carried out to elucidate the thermal and flow characteristics with 0.1 m (4 inch) bellows-seal globe valve for high temperature (max. 600 .deg. C) and for high pressure (max. 104 kgf/cm 2 , 10.2 MPa) conditions. Using commercial codes, FLUENT, which uses FVM and SIMPLE algorithm, and ANSYS, which uses FEM, the pressure and temperature fields are calculated and the results are graphically depicted. In addition, when bellows have an axial displacement, thermal stress affecting bellows life is studied. The pressure and temperature values obtained from the flow analyses are adopted as the boundary conditions for thermal stress analyses. As the result of this study, we get the reasonable coefficients for valve and thermal stress for bellows, compared with existing coefficients and calculated values

  7. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  8. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  9. Analytical method for thermal stress analysis of plasma facing materials

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed

  10. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  11. Thermal stress relieving of dilute uranium alloys

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-01-01

    The kinetics of thermal stress relieving of uranium - 2.3 wt. % niobium, uranium - 2.0 wt. % molybdenum, and uranium - 0.75 wt. % titanium are reported and discussed. Two temperature regimes of stress relieving are observed. In the low temperature regime (T 0 C) the process appears to be controlled by an athermal microplasticity mechanism which can be completely suppressed by prior age hardening. In the high temperature regime (300 0 C 0 C) the process appears to be controlled by a classical diffusional creep mechanism which is strongly dependent on temperature and time. Stress relieving is accelerated in cases where it occurs simultaneously with age hardening. The potential danger of residual stress induced stress corrosion cracking of uranium alloys is discussed. It is shown that the residual stress relief which accompanies age hardening of uranium - 0.75% titanium more than compensates for the reduction in K/sub ISCC/ caused by aging. As a result, age hardening actually decreases the susceptibility of this alloy to residual stress induced stress corrosion cracking

  12. Pipe cracking due to thermal stresses produced by valve opening

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1982-01-01

    The thermal stresses produced in a tube whose internal surface is abrupt cooled during a valve opening so that the water volume increases linearly with time are studied. A general solution for these stresses and its stress intensity factors in terms of non-dimensional parameters is presented. (E.G.) [pt

  13. Temperature and thermal stress analysis of a switching tube anode

    International Nuclear Information System (INIS)

    Sutton, S.B.

    1979-01-01

    In the design of high power density switching tubes which are subjected to cyclic thermal loads, the temperature induced stresses must be minimized in order to maximize the life expectancy of the tube. Following are details of an analysis performed for the Magnetic Fusion Program at the Lawrence Livermore Laboratory on a proposed tube. The tube configuration is given. The problem was simplified to one-dimensional approximations for both the thermal and stress analyses. The underlying assumptions and their implications are discussed

  14. Combined thermal and herbicide stress in functionally diverse coral symbionts

    International Nuclear Information System (INIS)

    Dam, J.W. van; Uthicke, S.; Beltran, V.H.; Mueller, J.F.; Negri, A.P.

    2015-01-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. - Highlights: • Water quality influences thermal stress thresholds in different Symbiodinium types. • Photosystem of clade D tested more sensitive than C1 to a common herbicide. • Increased thermal tolerance quickly countered in presence of herbicide. • Mixture toxicity approach demonstrated response additivity for combined stressors. • Symbiotic partnership may be compromised in areas subjected to terrestrial runoff. - Thermal-tolerant Symbiodinium type D tested especially vulnerable to a common herbicide, emphasizing the significance of cumulative stressors in ecological risk management

  15. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  16. First wall thermal stress analysis for suddenly applied heat fluxes

    International Nuclear Information System (INIS)

    Dalessandro, J.A.

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) β-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ν) sigma/E α kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably

  17. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  18. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    Science.gov (United States)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  19. Thermal stresses at nozzles of nuclear steel containments under LOCA-conditions

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Bergmann, A.N.

    1986-01-01

    During a loss of coolant accident (LOCA) of a PWR-nuclear power plant, a considerable heating of the containment atmosphere is expected to occur. Transient thermal stresses will appear at the containment as a consequence of a non-uniform rise of its temperature. Applying computer codes based on the finite element method, dimensionless general thermal stresses at nozzles of spherical steel containment have been calculated, varying the principal geometrical parameters and the Biot number for the containment internal surface. Atmosphere temperature and Biot number are assumed constant after the accident. Several plots of the maximum principal stresses are provided, which constitute general results applicable to stress analysis of any particular containment of this kind. (orig.)

  20. Rock properties and their effect on thermally-induced displacements and stresses

    International Nuclear Information System (INIS)

    Chan, T.; Hood, M.; Board, M.

    1980-02-01

    A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus

  1. Effects of thermal aging and stress triaxiality on PWSCC initiation susceptibility of nickel-based Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Tae Ho; Kim, Ji Hyun [Dept. of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    In present study, effects of thermal aging and triaxial stress were investigated in terms of primary water stress corrosion cracking susceptibility. The thermal aging was applied via heat treatment at 400°C and triaxial stress was applied via notched tensile test specimen. The crack initiation time of each specimen were then measured by direct current potential drop method during slow strain rate test at primary water environment. Alloys with 10 years thermal aging exhibited the highest susceptibility to stress corrosion cracking and asreceived specimen shows lowest susceptibility. The trend was different with triaxial stress applied; 20 years thermal aging specimen shows highest susceptibility and as-received specimen shows lowest. It would be owing to change of precipitate morphology during thermal aging and different activated slip system in triaxial stress state.

  2. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  3. Transient thermal stresses of work roll by coupled thermoelasticity

    Science.gov (United States)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  4. Time-dependent analytical thermal model to investigate thermally induced stresses in quasi-CW-pumped laser rods

    CSIR Research Space (South Africa)

    Bernhardi, EH

    2008-01-01

    Full Text Available that determines the temperature and the thermally induced stresses in isotropic rods is presented. Even though the model is developed for isotropic rods, it is shown that it can also be used to accurately estimate the thermal effects in anisotropic rods...

  5. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  6. Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I: characteristics of constraint and stress caused by thermal striation and stratification)

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2014-01-01

    Highlights: • The source of the membrane constraint due to local temperature fluctuation was shown. • Thermal fatigue that occurred at a mixing tee and branched elbow was analyzed. • Cracking occurrence was reasonably explained by the constraint and stress conditions. - Abstract: This study was aimed at identifying the constraint conditions under local temperature fluctuation by thermal striping at a mixing tee and by thermal stratification at an elbow pipe branched from the main pipe. Numerical and analytical approaches were made to derive the thermal stress and its fluctuation. It was shown that an inhomogeneous temperature distribution in a straight pipe caused thermal stress due to a membrane constraint even if an external membrane constraint did not act on the pipe. Although the membrane constraint increased the mean stress at the mixing tee, it did not contribute to fluctuation of the thermal stress. On the other hand, the membrane constraint played an important role in the fatigue damage accumulation near the stratification layer of the branched elbow. Based on the constraint and stress conditions analyzed, the characteristics of the cracking observed in actual nuclear power plants were reasonably explained. Namely, at the mixing tee, where thermal crazing has been found, the lack of contribution of the membrane constraint to stress fluctuation caused a stress gradient in the thickness direction and arrested crack growth. On the other hand, at the branched elbow, where axial through-wall cracks have been found, the relatively large hoop stress fluctuation was brought about by movement of the stratified layer together with the membrane constraint even under a relatively low frequency of stress fluctuation

  7. Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Taeho; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2016-01-01

    Highlights: • Effects of long-term thermal aging on the nickel-based Alloy 600 were investigated. • Heat treatments simulating thermal aging were conducted by considering Cr diffusion. • Nano-indentation test results show hardening of thermally aged materials. • Thermally aged materials are more susceptible to stress corrosion cracking. • The property changes are attributed to the formation and evolution of precipitates. - Abstract: To understand the effect of long-term thermal aging in power plant systems, representative thick-walled Alloy 600 was prepared and thermally aged at 400 °C to fabricate samples with thermal aging effects similar to service operating conditions. Changes of microstructures, mechanical properties, and stress corrosion cracking susceptibility were investigated mainly through electron backscatter diffraction, nanoindentation, and high-temperature slow strain rate test. The formation of abundant semi-continuous precipitates with chromium depletion at grain boundaries was observed after thermally aged for 10 equivalent years. Also, alloys thermally aged for 10 equivalent years of thermal aging exhibited the highest susceptibility to stress corrosion cracking.

  8. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium from Corals.

    Directory of Open Access Journals (Sweden)

    Lisa Fujise

    Full Text Available The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium. Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae in aquaria under non-thermal stress (27°C and moderate thermal stress conditions (30°C, and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  9. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals.

    Science.gov (United States)

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.

  10. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    Science.gov (United States)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.

  11. Thermal stress intensity factor for an axial crack in a clad cylinder

    International Nuclear Information System (INIS)

    Kuo, An Yu; Deardorf, A.F.; Riccardella, P.C.

    1993-01-01

    Many clad pressure vessels have been found to have cracks running through the inside surface cladding and into the base material. Although Young's moduli and Poisson's ratios of the clad and base materials are about the same for most of the industrial applications, coefficients of thermal expansion of the two dissimilar materials, clad and base materials, are usually quite different. For example, low alloy ferritic steel is a common base material for reactor pressure vessels (RPV) and the vessels are usually clad with austenitic stainless steel. Young's moduli for the low alloy steel and stainless steel at 350 F are 29,000 ksi and 28,000 ksi, respectively, while their coefficients of thermal expansion are 7.47x10 -6 in/in and 9.50x10 -6 in/in-degree F, respectively. The mismatch in coefficients of thermal expansion will cause high residual thermal stress even when the entire vessel is at a uniform temperature. This residual stress is one of the primary reasons why so many cracks have been found in the cladded components. In performing reactor pressure vessel integrity evaluation, such as computing probability of brittle fracture of the RPV, it is necessary to calculate stress intensity factors for cracks, which initiate from the clad material and run into the base metal. This paper presents a convenient method of calculating stress intensity factor for an axial crack emanating from the inside surface of a cladded cylinder under thermal loading. A J-integral like line integral was derived and used to calculate the stress intensity factors from finite element stress solutions of the problem

  12. Tasco®, a Product of Ascophyllum nodosum, Imparts Thermal Stress Tolerance in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Franklin Evans

    2011-11-01

    Full Text Available Tasco®, a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco® water extract (TWE at 300 µg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C treated with 300 µg/mL and 600 µg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco® imparted thermal stress

  13. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    Science.gov (United States)

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  14. Survival of juvenile fishes receiving thermal and mechanical stresses in a simulated power plant condenser

    International Nuclear Information System (INIS)

    Kedl, R.J.; Coutant, C.C.

    Experiments were conducted in a water-recirculating loop to determine the effects of fluid-induced stresses (e.g., turbulence, pressure, and vacuum) on six species of larval fish and one species each of frog tadpoles and zooplankton. These stresses simulate the insults developed in the condenser portion, but not including the pump, of a steam power plant. Some experiments were conducted with thermal stresses superimposed on fluid-induced stresses. Fluid-induced stresses of the magnitude developed in these experiments were generally not fatal to the larval fish within the precision of the experiments, although some sublethal effects were noted. When thermal stress was superimposed on the fluid-induced stresses, the mortalities were equivalent to those resulting from thermal stress alone. Fluid-induced stresses of low magnitude were not fatal to Daphnia magna, but fluid-induced stresses of higher magnitude were responsible for significant mortalities. (U.S.)

  15. Transient thermal stresses in composite hollow circular cylinder due to partial heat generation

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1979-01-01

    Clad materials are adopted for the machines and structures used in contact with high temperature, corrosive atmosphere in view of their strength and economy. Large thermal stress sometimes arises in clad cylinders due to uneaven temperature field and the difference in linear thermal expansion. Vessels are often heated uneavenly, and shearing stress occurs, which is not observed in uniform heating. In this study, infinitely long, concentric cylinders of two layers were analyzed, when the internal heat changing in stepped state is generated in cylindrical form. The unsteady thermal stress occurred was determined, using thermo-elastic potential and stress functions, and assuming the thermal properties and elastic modulus of materials as constant regardless of the temperature. Laplace transformation was used, and the basic equations for thermo-elastic displacement were employed as the basis of calculation. The analysis of the temperature distribution and stress is explained. Numerical calculation was carried out on the example of an internal cylinder of SUS 304 stainless steel and an external cylinder of mild steel. The maximum shearing stress occurred in the direction of 40 deg from the heat source, and was affected largely by the position of heat generation. The effect became remarkable as time elapsed. (Kako, I.)

  16. Effect of thermal stresses on the mechanism of tooth pain.

    Science.gov (United States)

    Oskui, Iman Z; Ashtiani, Mohammed N; Hashemi, Ata; Jafarzadeh, Hamid

    2014-11-01

    Daily hot and cold thermal loadings on teeth may result in structural deformation, mechanical stress, and pain signaling. The aim of this study was to compare the adverse effects of hot and cold beverages on an intact tooth and, then, to provide physical evidence to support the hydrodynamic theory of tooth pain sensation mechanism. Three-dimensional finite element analysis was performed on a premolar model subjected to hot and cold thermal loadings. Elapsed times for heat diffusion and stress detection at the pulp-dentin junction were calculated as measures of the pain sensation. Extreme tensile stress within the enamel resulted in damage in cold loadings. Also, extreme values of stress at the pulpal wall occurred 21.6 seconds earlier than extreme temperatures in hot and cold loadings. The intact tooth was remarkably vulnerable to cold loading. Earlier changes in mechanical stress rather than temperature at the pulp-dentin junction indicate that the dental pain caused by hot or cold beverages may be based on the hydrodynamic theory. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  18. Transient thermal stresses in multiple connected region exhibiting temperature dependence of material properties

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Maekawa, Toshiya.

    1983-01-01

    The examples of the analysis of thermal stress in multiple connection regions such as heat exchangers, nuclear reactor cores, ingot cases and polygonal region with elliptic holes are not few, but the temperature dependence of material constants was neglected in these researches because of the difficulty of analysis though the industrial problems related to thermal stress are apt to occur in the condition of relatively large temperature gradient. Also, the analysis of heat conduction problems taking the temperature dependence of material constants into account was limited to one-dimensional problems for which Kirchhoff's transmission can be used. The purpose of this study is to derive the equation of condition which assures the one-value property of rotation and displacement, taking the temperature dependence of material constants into account, and to complete the formulation of the plane thermal stress problems in multiple connection regions by stress function method. Also the method of numerical analysis using difference method is shown to examine the effectiveness of various formulated equations and the effect of the temperature dependence of material constants on temperature and thermal stress. The example of numerical calculation on a thin rectangular plate with a rectangular hole is shown. (Kako, I.)

  19. Coupling analysis of the target temperature and thermal stress due to pulsed ion beam

    International Nuclear Information System (INIS)

    Yan Jie; Liu Meng; Lin Jufang; An Li; Long Xinggui

    2013-01-01

    Background: Target temperature has an important effect on the target life for the sealed neutron generator without cooling system. Purpose: To carry out the thermal-mechanical coupling analysis of the film-substrate target bombarded by the pulsed ion beam. Methods: The indirect coupling Finite Element Method (FEM) with a 2-dimensional time-space Gaussian axisymmetric power density as heat source was used to simulate the target temperature and thermal stress fields. Results: The effects of the target temperature and thermal stress fields under difference pulse widths and beam sizes were analyzed in terms of the FEM results. Conclusions: Combining with the temperature requirement and the thermal stress inducing film thermal mechanical destruction effect of the sealed neutron generator film-substrate targets, an optimized pulsed ion beam work status was proposed. (authors)

  20. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  1. Transient thermal stresses in a transversely isotropic finite hollow circular cylinder due to arbitrary surface heat generations

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori.

    1980-01-01

    The materials macroscopically regarded as anisotropic materials such as fiber-reinforced composite materials have become to be used for the structural elements at elevated temperature, and the studies on the problem of thermal stress in anisotropic bodies are carried out actively. The unsteady thermal stress in anisotropic finite circular cylinders has not been analyzed so far. In this study, the problem of unsteady thermal stress in an anisotropic finite circular cylinder having arbitrary surface heat generation in axial direction on the internal and external surfaces, and emitting heat from both ends and the internal and external surfaces, was analyzed. For the analysis of temperature distribution, generalized finite Fourier transformation and finite Hankel transformation were used, and thermal stress and thermal displacement were analyzed by the use of the stress function of Singh. By adopting the function used for the transformation nucleus in generalized finite Fourier transformation as the stress function, the analysis was made without separating symmetric and opposite symmetric problems. Numerical calculation was carried out on the basis of the analytical results, and the effects of the anisotropy in thermal conductivity, Young's modulus and linear expansion on unsteady temperature distribution, thermal stress and thermal displacement were quantitatively examined. (Kako, I.)

  2. Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance

    Science.gov (United States)

    Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.

    2017-11-01

    In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.

  3. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    Science.gov (United States)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  4. Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites

    International Nuclear Information System (INIS)

    Nakamura, T.; Suresh, S.

    1993-01-01

    The combined effects of thermal residual stresses and fiber spatial distribution on the deformation of a 6061 aluminum alloy containing a fixed concentration unidirectional boron fibers have been analyzed using detailed finite element models. The geometrical structure includes perfectly periodic, uniformly space fiber arrangements in square and hexagonal cells, as well as different cells in which either 30 or 60 fibers are randomly placed in the ductile matrix. The model involves an elastic-plastic matrix, elastic fibers, and mechanically bonded interfaces. The results indicate that both fiber packing and thermal residual stresses can have a significant effect on the stress-strain characteristics of the composite. The thermal residual stresses cause pronounced matrix yielding which also influences the apparent overall stiffness of the composite during the initial stages of subsequent far-field loading along the axial and transverse direction. Furthermore, the thermal residual stresses apparently elevate the flow stress of the composite during transverse tension. Such effects can be traced back to the level of constraint imposed on the matrix by local fiber spacing. The implications of the present results to the processing of the composites are also briefly addressed

  5. Experiments and analysis of thermal stresses around the nozzle of the reactor vessel

    International Nuclear Information System (INIS)

    Song, D.H.; Oh, J.H.; Song, H.K.; Park, D.S.; Shon, K.H.

    1981-01-01

    This report describes the results of analysis and experiments on the thermal stress around the reactor vessel nozzle performed to establish a capability of thermal stress analysis of pressure vessel subjected to thermal loadings. Firstly, heat conduction analysis during reactor design transients and analysis on the experimental model were performed using computer code FETEM-1 for the purpose of verification of FETEM-1 which was developed in 1979 and will be used to obtain the temperature distribution in a solid body under the steady-state and the transient conditions. The results of the analysis was compared to the results in the Stress Report of Kori-1 reactor vessel and those from experiments on the model, respectively

  6. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    The temperature field, heat transfer rate and thermal stresses were investigated with numerical simulation models using FORTRAN FE (finite element) software. ...... specific heats, International Communications in Heat and Mass Transfer, Vol.

  7. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  8. Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna.

    Science.gov (United States)

    Cuenca Cambronero, Maria; Zeis, Bettina; Orsini, Luisa

    2018-01-01

    Anthropogenic global warming has become a major geological and environmental force driving drastic changes in natural ecosystems. Due to the high thermal conductivity of water and the effects of temperature on metabolic processes, freshwater ecosystems are among the most impacted by these changes. The ability to tolerate changes in temperature may determine species long-term survival and fitness. Therefore, it is critical to identify coping mechanisms to thermal and hyper-thermal stress in aquatic organisms. A central regulatory element compensating for changes in oxygen supply and ambient temperature is the respiratory protein haemoglobin (Hb). Here, we quantify Hb plastic and evolutionary response in Daphnia magna subpopulations resurrected from the sedimentary archive of a lake with known history of increase in average temperature and recurrence of heat waves. By measuring constitutive changes in crude Hb protein content among subpopulations, we assessed evolution of the Hb gene family in response to temperature increase. To quantify the contribution of plasticity in the response of this gene family to hyper-thermal stress, we quantified changes in Hb content in all subpopulations under hyper-thermal stress as compared to nonstressful temperature. Further, we tested competitive abilities of genotypes as a function of their Hb content, constitutive and induced. We found that Hb-rich genotypes have superior competitive abilities as compared to Hb-poor genotypes under hyper-thermal stress after a period of acclimation. These findings suggest that whereas long-term adjustment to higher occurrence of heat waves may require a combination of plasticity and genetic adaptation, plasticity is most likely the coping mechanism to hyper-thermal stress in the short term. Our study suggests that with higher occurrence of heat waves, Hb-rich genotypes may be favoured with potential long-term impact on population genetic diversity.

  9. Thermal-stress analysis and testing of DIII-D armor tiles

    International Nuclear Information System (INIS)

    Baxi, C.B.; Anderson, P.M.; Reis, E.E.; Smith, J.P.; Smith, P.D.; Croesmann, C.; Watkins, J.; Whitley, J.

    1987-10-01

    It is planned to install about 1500 new armor tiles in the DIII-D tokamak. The armor tiles currently installed in DIII-D are made by brazing Poco AXF-5Q graphite onto Inconel X-750 stock. A small percentage of these have failed by breakage of graphite. These failures were believed to be related to significant residual stress remaining in graphite after brazing. Hence, an effort was undertaken to improve the design with all-graphite tiles. Three criteria must be satisfied by the armor tiles and the hardware used to attach the tiles to the vessel walls: tiles should not structurally fail, peak tile temperature must be less than 2500 K, and peak vessel stresses must be below acceptable levels. A number of alternate design concepts were first analyzed with the two-dimensional finite element codes TOPAZ2D and NIKE2D. Promising designs were optimized for best parameters such as thicknesses, etc. The two best designs were further analyzed for thermal stresses with the three-dimensional codes P/THERMAL and P/STRESS. Prototype tiles of a number of materials were fabricated by GA and tested at the Plasma Materials Test Facility of the Sandia National Laboratory at Albuquerque. The tests simulated the heat flux and cooling conditions in DIII-D. This paper describes the 2-D and 3-D thermal stress analyses, the test results and logic which led to the selected design of the DIII-D armor tiles. 5 refs., 7 figs., 3 tabs

  10. Photothermoelastic investigation of transient thermal stresses in circular plates with a hole heated by fluid

    International Nuclear Information System (INIS)

    Tsuji, Masatoshi; Tsujimura, Soichi; Oda, Masanobu.

    1980-01-01

    In this study, the practical use of the method of measuring the unsteady thermal stress in a body subjected to the thermal load due to fluid by photoelastic method and the improvement of accuracy were attempted. The internal wall of a hollow disk was heated with high temperature fluid, and the external wall was cooled with low temperature fluid or thermally insulated. The photoelastic experiment on this hollow disk was carried out in a vacuum tank to given axisymmetric temperature distribution and to prevent heat dissipation due to the convection from both surfaces of the disk, and the temperature distribution and thermal stress were measured. The experimental values were compared with the theoretical values, and the accuracy of the experimental method and measurement was examined. Moreover, the disk with an eccentric hole was tested by the same method, and the effects of the eccentricity and hole diameter on the maximum thermal stress were examined. The experimental apparatus and method, and the experimental results are described. By this method, the condition of thermal loading with fluid was almost attained, and the experimental values of unsteady thermal stress were in good agreement with the theoretical values. (Kako, I.)

  11. Thermoregulation and temperature relations of alligators and other large ectotherms inhabiting thermally stressed habitats. Progress report, 1 October 1974--30 September 1977

    International Nuclear Information System (INIS)

    Spotila, J.R.

    1977-06-01

    Significant progress has been made in determining the mechanisms by which large ectotherms adjust to thermal stress in their natural environment. The effect of mouth gaping on head temperatures and the role of radiation, conduction and convection on body temperatures of alligators have been determined. The utility of energy budget modeling as a method for studying the thermoregulatory mechanisms of animals has been demonstrated. Steady state and time dependent models of body temperature have been tested. Convection coefficients and evaporative water loss rates have been measured for the turtle, Chysemys scripta. Climate space diagrams have been formulated and are being tested. Behavioral thermoregulation of turtles has been studied in PAR pond on the Savannah River Plant, Aiken, S.C. Steady state energy budget equations have been computed for largemouth bass. Experimental heat transfer coefficients indicate that most heat transfer is through the body wall and not via the gills. A time dependent model is being tested. It predicts the body temperature of a fish in a heterothermal environment. Theoretical calculations have been made of the effects of body size, color, and metabolism on the temperature regulation of ectotherms

  12. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations

    International Nuclear Information System (INIS)

    Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.

    2016-01-01

    Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.

  13. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  14. Thermal stresses in rectangular plates: variational and finite element solutions

    International Nuclear Information System (INIS)

    Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.

    1978-01-01

    This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)

  15. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    Science.gov (United States)

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  16. Three dimensional, thermal stress analysis of a welded plate

    International Nuclear Information System (INIS)

    Koening, H.A.; Lai, C.K.-F.; Morral, J.E.

    1985-01-01

    A general finite element thermal stress analysis has been developed. The analysis can be uncoupled to solve either the heat transfer problem or the stress problem independently and it can accommodate non-linear material behavior, initial states of stress and strain, and moving boundary conditions. A unique feature of the model it that it properly accounts for the latent heat effect during phase changes. Applying the moving heat flux boundary condition to simulate arc welding, the model has been used to predict the transient thermal mechanical response of a welded plate. It is the absorption and liberation of latent heat in the fusion zone of a weld which complicates numerical methods of treating welding. For pure materials and eutectic alloys the latent heat effect is less of a problem because phase changes take place at a specific temperature. But for most alloys, phase changes take place over a range of temperatures bounded by the solidus, T S , and liquidus, T L , and the latent heat effect occurs continuously over the temperature range. (author)

  17. Thermal stress in the edge cladding of Nova glass laser disks

    International Nuclear Information System (INIS)

    Pitts, J.H.; Kong, M.K.; Gerhard, M.A.

    1987-01-01

    We calculated thermal stresses in Nova glass laser disks having light-absorbing edge cladding glass attached to the periphery with an epoxy adhesive. Our closed-form solutions indicated that, because the epoxy adhesive is only 25 μm across, it does not significantly affect the thermal stress in the disk or cladding glass. Our numerical results showed a peak tensile stress in the cladding glass of 24 MPa when the cladding glass had a uniform absorption coefficient of 7.5 cm -1 . This peak value is reduced to 19 MPa if surface parasitic oscillation heating is eliminated by tilting the disk edges. The peak tensile stresses exceed the typical 7 to 14-MPa working stress for glass; however, we have not observed any disk or cladding glass failures at peak Nova fluences of 20 J/cm 2 . We have observed delamination of the epoxy adhesive bond at fluences several times that which would occur on Nova. Replacement laser disks will incorporate cladding with a reduced absorption coefficient of 4.5 cm -1 . Recent experiments show that this reduced absorption coefficient is satisfactory

  18. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  19. Thermal stress analysis of the SLAC moveable mask. Addendum 2

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1985-01-01

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) can impinge on the walls of tangential divertor channels. A moveable mask made of 6061-T6 aluminum is installed in the channel to limit wall heating. The mask is cooled with water flowing axially at 30 0 C. Beam strikes on the mask cause highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. The current design and operating conditions should result in the entrance to the moveable mask operating at a peak temperature of 88 0 C with a peak thermal stress at 19% of the yield of 6061-T6 aluminum

  20. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  1. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae to survive thermal stress and bleaching.

    Directory of Open Access Journals (Sweden)

    Hagit Kvitt

    Full Text Available Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like cloned in this study. In corals exposed to thermal stress (32 or 34°C, caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  2. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  3. Two-dimensional simulation of the thermal stress effect on static and dynamic VDMOS characteristics

    International Nuclear Information System (INIS)

    Alwan, M.; Beydoun, B.; Ketata, K.; Zoaeter, M.

    2005-01-01

    Using a two-dimensional simulator, the effect of the thermal stress on static and dynamic vertical double-diffusion metal oxide semiconductor (VDMOS) characteristics have been investigated. The use of the device under certain thermal stress conditions can produce modifications of its physical and electrical properties. Based on physics and 2D simulations, this paper proposes an analysis of this stress effect observed on the electrical characteristics of the device. Parameters responsible of these modifications are determined. Approximate expressions of the ionization coefficients and breakdown voltage in terms of temperature are proposed. Non-punch-through junction theory is used to express the breakdown voltage and the space charge extension with respect to the impurity concentration and the temperature. The capacitances of the device have been also studied. The effect of the stress on C-V characteristics is observed and analyzed. We notice that the drain-gate, drain-source and gate-source capacitances are shifted due to the degradation of device physical properties versus thermal stress

  4. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    Science.gov (United States)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  5. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress

    Science.gov (United States)

    Srikanth, Krishnamoorthy; Lee, Eunjin; Kwan, Anam; Lim, Youngjo; Lee, Junyep; Jang, Gulwon; Chung, Hoyoung

    2017-11-01

    RNA-Seq analysis was used to characterize transcriptome response of Holstein calves to thermal stress. A total of eight animals aged between 2 and 3 months were randomly selected and subjected to thermal stress corresponding to a temperature humidity index of 95 in an environmentally controlled house for 12 h consecutively for 3 days. A set of 15,787 unigenes were found to be expressed and after a threshold of threefold change, and a Q value physiological and metabolic processes to survive. Many of the genes identified in this study have not been previously reported to be involved in thermal stress response. The results of this study extend our understanding of the animal's response to thermal stress and some of the identified genes may prove useful in the efforts to breed Holstein cattle with superior thermotolerance, which might help in minimizing production loss due to thermal stress.

  6. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  7. Stochastic thermal stress analysis of clad cylindrical fuel elements

    International Nuclear Information System (INIS)

    Barrett, P.R.

    1975-01-01

    After a review of deterministic elastic thermal stress analysis by means of the displacement method for a cylindrical system in which the temperature distribution is not only radially variable but azimuthally and axially variable also, a method is shown for the determination of the statistical moments of the stress components when (a) the outer boundary of the cladding is a stochastic quantity, and (b) the uncertainties in the elastic and thermal constants of the materials and in the magnitude of the heat generation term are taken into account. A typical model is proposed for describing the statistics of the outer radius of the cladding which is a stochastic variable owing to uncertainties produced by the extrusion process. The theory is illustrated by means of a simple example by examining a meaningful reliability index and the relative importance of each of the uncertainties. (Auth.)

  8. Thermal stresses in the space shuttle orbiter: Analysis versus test

    International Nuclear Information System (INIS)

    Grooms, H.R.; Gibson, W.F. Jr.; Benson, P.L.

    1984-01-01

    Significant temperature differences occur between the internal structure and the outer skin of the Space Shuttle Orbiter as it returns from space. These temperature differences cause important thermal stresses. A finite element model containing thousands of degrees of freedom is used to predict these stresses. A ground test was performed to verify the prediction method. The analysis and test results compare favorably. (orig.)

  9. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    Science.gov (United States)

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  10. Influence of overelastic loading on the stress intensity factor under thermal fatigue conditions

    International Nuclear Information System (INIS)

    Stamm, H.; Munz, D.

    1983-10-01

    Thermal shock loading often creates high thermal stresses which may exceed yield strength of the material in a surface layer. In this report the application of the linear elastic ΔK-concept in the case of cyclic thermal loading within the shakedown region is discussed. To this K-factors for an edge crack in a linear elastic - perfectly plastic plate are calculated using the weight function method and are compared with results obtained with the Finite Element Method. It is shown, that rearrangement stresses during plastic flow in the first cycle must be taken into account developing conservative approximation procedures. (orig.) [de

  11. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Yijun Chai

    2016-09-01

    Full Text Available Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL, which grows between the thermally grown oxide (TGO and the bond coat (BC, is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

  12. Transient thermal stresses in an orthotropic rectangular plate with convective heat transfer at upper and lower surfaces

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.

    1982-01-01

    Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)

  13. Residual stress of particulate polymer composites with reduced thermal expansion

    International Nuclear Information System (INIS)

    Nishino, T; Kotera, M; Sugiura, Y

    2009-01-01

    Thermal expansion behavior was investigated for tangusten zirconium phosphate (Zr 2 (WO 4 )(PO 4 ) 2 (ZWP)) particulate filled poly(ether ether ketone) (PEEK) composite. ZWP is known as ceramic filler with a negative thermal expansion. By incorporating ZWP with 40 volume %, the linear thermal expansion coefficient of the PEEK composite was reduced to almost same value (2.53 X 10 -5 K -1 ) with that of aluminum. This decrease was found to be quite effective for the decrease of the residual stress at the interface between aluminum plate and the composite.

  14. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  15. How should work the thyroid monitoring for inhabitants of the destroyed area and its adjacent areas

    International Nuclear Information System (INIS)

    Nishizawa, Kunihide; Ito, Shigeki

    2011-01-01

    The general method of the exposure dose evaluation and the thyroid monitoring for it are explained and stressed. The vast area environmental contamination around the Fukushima Daiichi Nuclear Power Station accident brought about the anxiety of health risks for the inhabitants, especially probabilistic outbreak of cancer owing to radiation exposure. The report concludes that for the post traumatic stress disorder (PTSD) mental care and thyroid monitoring are necessary. (S. Ohno)

  16. Thermal Stress Analyses for a Multislug Beam NLC Positron Target(LCC-0090)

    International Nuclear Information System (INIS)

    Stein, W.

    2003-01-01

    The power deposition of an incident multislug electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into two parts, with each part impinging on a 4 radiation lengths thick target. Two targets are required to avoid excessive thermal stresses in the targets. Each of the two beam parts is assumed broken up into four slugs, each two microseconds apart. Energy deposition from each slug occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 1.6 mm and results in a maximum temperature jump of 438 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 78 ksi (5.3 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  17. Temperature field and thermal stress analysis of the HT-7U vacuum vessel

    International Nuclear Information System (INIS)

    Song Yuntao; Yao Damao; Wu Songtao; Weng Peide

    2000-01-01

    The HT-7U vacuum vessel is an all-metal-welded double-wall interconnected with toroidal and poloidal stiffening ribs. The channels formed between the ribs and walls are filled with boride water as a nuclear shielding. On the vessel surface facing the plasma are installed cable-based Ohmic heaters. Prior to plasma operation the vessel is to be baked out and discharge cleaned at about 250 degree C. During baking out the non-uniformity of temperature distribution on the vacuum vessel will bring about serious thermal stress that can damage the vessel. In order to determine and optimize the design of the HT-7U vacuum vessel, a three-dimensional finite element model was performed to analyse its temperature field and thermal stress. the maximal thermal stress appeared on the round of lower vertical port and maximal deformation located just on the region between the upper vertical port and the horizontal port. The results show that the reinforced structure has a good capability of withstanding the thermal loads

  18. Perceived Thermal Discomfort and Stress Behaviours Affecting Students’ Learning in Lecture Theatres in the Humid Tropics

    Directory of Open Access Journals (Sweden)

    Tamaraukuro Tammy Amasuomo

    2016-04-01

    Full Text Available The study investigated the relationship between students’ perceived thermal discomfort and stress behaviours affecting their learning in lecture theatres in the humid tropics. Two lecture theatres, LTH-2 and 3, at the Niger Delta University, Nigeria, were used for the study. Two groups of students from the Faculties of Agriculture and Engineering and the Department of Technology Education constituted the population. The sample size selected through random sampling for Groups A and B was 210 and 370 students, respectively. Objective and self-report instruments were used for data collection. The objective instrument involved physical measurement of the two lecture theatres and of the indoor temperature, relative humidity and air movement. The self-report instrument was a questionnaire that asked for the students perceived indoor thermal discomfort levels and the effect of indoor thermal comfort level on perceived stress behaviours affecting their learning. The objective indoor environmental data indicated thermal discomfort with an average temperature of 29–32 °C and relative humidity of 78% exceeding the ASHARE [1] and Olgyay [2].The students’ experienced a considerable level of thermal discomfort and also perceived that stress behaviours due to thermal discomfort affected their learning. Further, there were no significant differences in the perceived thermal discomfort levels of the two groups of students in LTH-2 and 3. Furthermore, stress behaviours affecting learning as perceived by the two groups of students did not differ significantly. In addition, no correlation existed between the perceived indoor thermal discomfort levels and stress behaviour levels affecting learning for students in LTH-2, because the arousal level of the students in the thermal environment was likely higher than the arousal level for optimal performance [3,4]. However, a correlation existed in the case of students in LTH-3, which was expected because it only

  19. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  1. Average thermal stress in the Al+SiC composite due to its manufacturing process

    International Nuclear Information System (INIS)

    Miranda, Carlos A.J.; Libardi, Rosani M.P.; Marcelino, Sergio; Boari, Zoroastro M.

    2013-01-01

    The numerical analyses framework to obtain the average thermal stress in the Al+SiC Composite due to its manufacturing process is presented along with the obtained results. The mixing of Aluminum and SiC powders is done at elevated temperature and the usage is at room temperature. A thermal stress state arises in the composite due to the different thermal expansion coefficients of the materials. Due to the particles size and randomness in the SiC distribution, some sets of models were analyzed and a statistical procedure used to evaluate the average stress state in the composite. In each model the particles position, form and size are randomly generated considering a volumetric ratio (VR) between 20% and 25%, close to an actual composite. The obtained stress field is represented by a certain number of iso stress curves, each one weighted by the area it represents. Systematically it was investigated the influence of: (a) the material behavior: linear x non-linear; (b) the carbide particles form: circular x quadrilateral; (c) the number of iso stress curves considered in each analysis; and (e) the model size (the number of particles). Each of above analyzed condition produced conclusions to guide the next step. Considering a confidence level of 95%, the average thermal stress value in the studied composite (20% ≤ VR ≤ 25%) is 175 MPa with a standard deviation of 10 MPa. Depending on its usage, this value should be taken into account when evaluating the material strength. (author)

  2. Coupled thermal stress analysis of a hollow circular cylinder with transversely isotropic properties

    International Nuclear Information System (INIS)

    Tanigawa, Y.; Ootao, Y.

    1987-01-01

    If we shall analyze the thermal stress problems exactly in a transient state in continuum media, discussed with both the coupling and inertia effect, it has be shown that the thermomechanical coupling term shows a significant role than the inertia term for the common commercial alloys. In the present paper, we have considered the continuum medium with transversely isotropic material property, which has an isotropic property in r-θ plane, and analyzed the transient thermal stress problem of an infinitely long hollow circular cylinder due to an axisymmetrical partial heating. In order to get the thermal and thermoelastic fundamental differential equations separated in each field, we have introduced a perturbation technique. And then, we have carried out numerical calculations for several values of thermal and thermoelastic orthotropical parameters. (orig./GL)

  3. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  4. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  5. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata

    Directory of Open Access Journals (Sweden)

    Sonny T.M. Lee

    2016-03-01

    Full Text Available It has been proposed that the chemical composition of a coral’s mucus can influence the associated bacterial community. However, information on this topic is rare, and non-existent for corals that are under thermal stress. This study therefore compared the carbohydrate composition of mucus in the coral Acropora muricata when subjected to increasing thermal stress from 26°C to 31°C, and determined whether this composition correlated with any changes in the bacterial community. Results showed that, at lower temperatures, the main components of mucus were N-acetyl glucosamine and C6 sugars, but these constituted a significantly lower proportion of the mucus in thermally-stressed corals. The change in the mucus composition coincided with a shift from a γ-Proteobacteria- to a Verrucomicrobiae- and α-Proteobacteria-dominated community in the coral mucus. Bacteria in the class Cyanobacteria also started to become prominent in the mucus when the coral was thermally stressed. The increase in the relative abundance of the Verrucomicrobiae at higher temperature was strongly associated with a change in the proportion of fucose, glucose and mannose in the mucus. Increase in the relative abundance of α-Proteobacteria were associated with GalNAc and glucose, while the drop in relative abundance of γ-Proteobacteria at high temperature coincided with changes in fucose and mannose. Cyanobacteria were highly associated with arabinose and xylose. Changes in mucus composition and the bacterial community in the mucus layer occurred at 29°C, which were prior to visual signs of coral bleaching at 31°C. A compositional change in the coral mucus, induced by thermal stress could therefore be a key factor leading to a shift in the associated bacterial community. This, in turn, has the potential to impact the physiological function of the coral holobiont.

  6. Thermal residual stresses in amorphous thermoplastic polymers

    Science.gov (United States)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    An attempt to calculate the internal stresses in a cylindrically shaped polycarbonate (LEXAN-GE) component, subjected to an arbitrary cooling rate, will be described. The differential volume relaxation arising as a result of the different thermal history suffered by each body point was considered as the primary source of stresses build up [1-3]. A numerical routine was developed accounting for the simultaneous stress and structural relaxation processes and implemented within an Ansys® environment. The volume relaxation kinetics was modeled by coupling the KAHR (Kovacs, Aklonis, Hutchinson, Ramos) phenomenological theory [4] with the linear viscoelastic theory [5-7]. The numerical algorithm translates the specific volume theoretical predictions at each body point as applied non-mechanical loads acting on the component. The viscoelastic functions were obtained from two simple experimental data, namely the linear viscoelastic response in shear and the PVT (pressure volume temperature) behavior. The dimensionless bulk compliance was extracted from PVT data since it coincides with the memory function appearing in the KAHR phenomenological theory [7]. It is showed that the residual stress scales linearly with the logarithm of the Biot's number.

  7. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  8. Finite element simulation of stress evolution in thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, P.

    2007-07-01

    Gas turbine materials exposed to extreme high temperature require protective coatings. To design reliable components, a better understanding of the coating failure mechanisms is required. Damage in Thermal Barrier Coating Systems (TBCs) is related to oxidation of the Bond Coat, sintering of the ceramic, thermal mismatch of the material constituents, complex shape of the BC/TGO/TBC interface, redistribution of stresses via creep and plastic deformation and crack resistance. In this work, experimental data of thermo-mechanical properties of CMSX-4, MCrAlY (Bond Coat) and APS-TBC (partially stabilized zirconia), were implemented into an FE-model in order to simulate the stress development at the metal/ceramic interface. The FE model reproduced the specimen geometry used in corresponding experiments. It comprises a periodic unit cell representing a slice of the cylindrical specimen, whereas the periodic length of the unit cell equals an idealized wavelength of the rough metal/ceramic interface. Experimental loading conditions in form of thermal cycling with a dwelltime at high temperature and consideration of continuous oxidation were simulated. By a stepwise consideration of various material properties and processes, a reference model was achieved which most realistically simulated the materials behavior. The influences of systematic parameter variations on the stress development and critical sites with respect to possible crack paths were shown. Additionally, crack initiation and propagation at the peak of asperity at BC/TGO interface was calculated. It can be concluded that a realistic modeling of stress development in TBCs requires at least reliable data of i) BC and TGO plasticity, ii) BC and TBC creep, iii) continuous oxidation including in particular lateral oxidation, and iv) critical energy release rate for interfaces (BC/TGO, TGO/TBC) and for each layer. The main results from the performed parametric studies of material property variations suggest that

  9. FEM thermal and stress analysis of bonded GaN-on-diamond substrate

    Science.gov (United States)

    Zhai, Wenbo; Zhang, Jingwen; Chen, Xudong; Bu, Renan; Wang, Hongxing; Hou, Xun

    2017-09-01

    A three-dimensional thermal and stress analysis of bonded GaN on diamond substrate is investigated using finite element method. The transition layer thickness, thermal conductivity of transition layer, diamond substrate thickness and the area ratio of diamond and GaN are considered and treated appropriately in the numerical simulation. The maximum channel temperature of GaN is set as a constant value and its corresponding heat power densities under different conditions are calculated to evaluate the influences that the diamond substrate and transition layer have on GaN. The results indicate the existence of transition layer will result in a decrease in the heat power density and the thickness and area of diamond substrate have certain impact on the magnitude of channel temperature and stress distribution. Channel temperature reduces with increasing diamond thickness but with a decreasing trend. The stress is reduced by increasing diamond thickness and the area ratio of diamond and GaN. The study of mechanical and thermal properties of bonded GaN on diamond substrate is useful for optimal designs of efficient heat spreader for GaN HEMT.

  10. Finite element formulation for thermal stress analysis of thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.

    1978-01-01

    This paper describes the formulation of a finite-element procedure for the thermal stress analysis of thin wall reactor components. A general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature-dependent yield surface. This form of constitutive relationship is applicable to problems of small strain. A similar form of a hypoelastic-plastic type is also developed for large strains. The variation of the yield surface with temperature is based upon a temperature-dependent, work-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal unaxial stress-strain data. The above constitutive relationships are incorporated into two computer codes and a previously developed numerical algorithm is used with minor modifications. A set of problems is presented validating the thermal analysis capability of the computer codes to a variety of problem types. (Auth.)

  11. Stress recovery and cyclic behaviour of an Fe-Mn-Si shape memory alloy after multiple thermal activation

    Science.gov (United States)

    Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.

    2018-02-01

    The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.

  12. Decision support handbook for recovery of contaminated inhabited areas

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Ammann, M. (STUK, Helsinki (Finland)); Backe, S. (IFE, Kjeller (Norway)); Rosen, K. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2008-07-15

    The handbook is aimed at providing Nordic decision-makers and their expert advisors with required background material for the development of an optimised, operational preparedness for situations where airborne radioactive matter has contaminated a Nordic inhabited area. The focus is on the mitigation of long-term problems. It should be stressed that the information given in the handbook is comprehensive, and many details require careful consideration well in time before implementation of countermeasures in a specific area. Training sessions are therefore recommended. The handbook describes the current relevant Nordic preparedness (dissemination routes) in detail, and suggests methods for measurement of contamination and prognoses of resultant doses, and data for evaluation of countermeasures and associated waste management options. A number of non-technical aspects of contamination in inhabited areas, and of countermeasures for its mitigation, are discussed, and a series of recommendations on the application of all the handbook data in a holistic countermeasure strategy are given. A part of the handbook development has been a dialogue with end-user representatives in each of the Nordic countries, to focus the work of the specific needs of the users. (au)

  13. Decision support handbook for recovery of contaminated inhabited areas

    International Nuclear Information System (INIS)

    Andersson, K.G.; Ammann, M.; Backe, S.; Rosen, K.

    2008-07-01

    The handbook is aimed at providing Nordic decision-makers and their expert advisors with required background material for the development of an optimised, operational preparedness for situations where airborne radioactive matter has contaminated a Nordic inhabited area. The focus is on the mitigation of long-term problems. It should be stressed that the information given in the handbook is comprehensive, and many details require careful consideration well in time before implementation of countermeasures in a specific area. Training sessions are therefore recommended. The handbook describes the current relevant Nordic preparedness (dissemination routes) in detail, and suggests methods for measurement of contamination and prognoses of resultant doses, and data for evaluation of countermeasures and associated waste management options. A number of non-technical aspects of contamination in inhabited areas, and of countermeasures for its mitigation, are discussed, and a series of recommendations on the application of all the handbook data in a holistic countermeasure strategy are given. A part of the handbook development has been a dialogue with end-user representatives in each of the Nordic countries, to focus the work of the specific needs of the users. (au)

  14. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    Science.gov (United States)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  15. Numerical methods for calculating thermal residual stresses and hydrogen diffusion

    International Nuclear Information System (INIS)

    Leblond, J.B.; Devaux, J.; Dubois, D.

    1983-01-01

    Thermal residual stresses and hydrogen concentrations are two major factors intervening in cracking phenomena. These parameters were numerically calculated by a computer programme (TITUS) using the FEM, during the deposition of a stainless clad on a low-alloy plate. The calculation was performed with a 2-dimensional option in four successive steps: thermal transient calculation, metallurgical transient calculation (determination of the metallurgical phase proportions), elastic-plastic transient (plain strain conditions), hydrogen diffusion transient. Temperature and phase dependence of hydrogen diffusion coefficient and solubility constant. The following results were obtained: thermal calculations are very consistent with experiments at higher temperatures (due to the introduction of fusion and solidification latent heats); the consistency is not as good (by 70 degrees) for lower temperatures (below 650 degrees C); this was attributed to the non-introduction of gamma-alpha transformation latent heat. The metallurgical phase calculation indicates that the heat affected zone is almost entirely transformed into bainite after cooling down (the martensite proportion does not exceed 5%). The elastic-plastic calculations indicate that the stresses in the heat affected zone are compressive or slightly tensile; on the other hand, higher tensile stresses develop on the boundary of the heat affected zone. The transformation plasticity has a definite influence on the final stress level. The return of hydrogen to the clad during the bainitic transformation is but an incomplete phenomenon and the hydrogen concentration in the heat affected zone after cooling down to room temperature is therefore sufficient to cause cold cracking (if no heat treatment is applied). Heat treatments are efficient in lowering the hydrogen concentration. These results enable us to draw preliminary conclusions on practical means to avoid cracking. (orig.)

  16. Thermal Stress Analysis for Ceramics Stalk in the Low Pressure Die Casting Machine

    Science.gov (United States)

    Noda, Nao-Aki; Hendra, Nao-Aki; Takase, Yasushi; Li, Wenbin

    Low pressure die casting (LPDC) is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The LPDC process is playing an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. The LPDC process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal by means of a pressurized gas in order to rise into a ceramic tube, which connects the die to the furnace. The ceramics tube called stalk has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk is dipped into the molten aluminum. It is important to develop the design of the stalk to reduce the risk of fracture because of low fracture toughness of ceramics. In this paper, therefore, the finite element method is applied to calculate the thermal stresses when the stalk is dipped into the crucible by varying the dipping speeds and dipping directions. It is found that the thermal stress can be reduced by dipping slowly if the stalk is dipped into the crucible vertically, while the thermal stress can be reduced by dipping fast if it is dipped horizontally.

  17. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  18. Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires.

    Science.gov (United States)

    Das, Suvankar; Moitra, Amitava; Bhattacharya, Mishreyee; Dutta, Amlan

    2015-01-01

    The present study employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young's modulus and the linear coefficient of thermal expansion through separate simulations. These two material parameters are combined to obtain the thermal stress on the nanowires. In addition, the thermally induced stress is perceived in the context of buckling instability. The analysis provides a trade-off between the geometrical and operational parameters of the nanostructures. The proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability.

  19. Rooting and early growth of red mangrove seedlings from thermally stressed trees

    International Nuclear Information System (INIS)

    Banus, M.D.; Kolehmainen, S.E.

    At Guayanilla on the south coast of Puerto Rico a fossil fueled electric generating station of 1100 MW(e) discharges its cooling water into a nearly enclosed lagoon of about 25 hectares area. The plume and lagoon typically have water temperatures 10 0 C and 8 0 C above ambient so that the winter and summer lagoon temperatures are 34 and 39 0 C, respectively. The north, east, and south shores of this lagoon have extensive stands of red and black mangrove trees which are visibly stressed by the elevated temperatures. Ripe red mangrove seedlings from the bearing trees are significantly smaller than those from trees in Guayanilla Bay not thermally stressed and in unpolluted bays from western Puerto Rico. Seedlings from thermally stressed trees developed negative buoyancy and initial roots faster but first pair of leaves slower than seedlings from control areas. This behavior will be discussed in relation to the propagation of seedlings from non-stressed areas. (U.S.)

  20. Study on application of green's function method in thermal stress rapid calculation

    International Nuclear Information System (INIS)

    Zhang Guihe; Duan Yuangang; Xu Xiao; Chen Rong

    2013-01-01

    This paper presents a quick and accuracy thermal stress calculation method, the Green's Function Method, which is a combination of finite element method and numerical algorithm method. Thermal stress calculation of Safe Injection Nozzle of Reactor Coolant Line of PWR plant is performed with Green's function method for heatup and cooldown thermal transients as a demonstration example, and the result is compared with finite element method to verify the rationality and accuracy of this method. The advantage and disadvantage of the Green's function method and the finite element method are also compared. (authors)

  1. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  2. A protocol for analysing thermal stress in insects using infrared thermography.

    Science.gov (United States)

    Gallego, Belén; Verdú, José R; Carrascal, Luis M; Lobo, Jorge M

    2016-02-01

    The study of insect responses to thermal stress has involved a variety of protocols and methodologies that hamper the ability to compare results between studies. For that reason, the development of a protocol to standardize thermal assays is necessary. In this sense, infrared thermography solves some of the problems allowing us to take continuous temperature measurements without handling the individuals, an important fact in cold-blooded organisms like insects. Here, we present a working protocol based on infrared thermography to estimate both cold and heat thermal stress in insects. We analyse both the change in the body temperature of individuals and their behavioural response. In addition, we used partial least squares regression for the statistical analysis of our data, a technique that solves the problem of having a large number of variables and few individuals, allowing us to work with rare or endemic species. To test our protocol, we chose two species of congeneric, narrowly distributed dung beetles that are endemic to the southeastern part of the Iberian Peninsula. With our protocol we have obtained five variables in the response to cold and twelve in the response to heat. With this methodology we discriminate between the two flightless species of Jekelius through their thermal response. In response to cold, Jekelius hernandezi showed a higher rate of cooling and reached higher temperatures of stupor and haemolymph freezing than Jekelius punctatolineatus. Both species displayed similar thermoregulation ranges before reaching lethal body temperature with heat stress. Overall, we have demonstrated that infrared thermography is a suitable method to assess insect thermal responses with a high degree of sensitivity, allowing for the discrimination between closely related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Science.gov (United States)

    Guest, James R.; Baird, Andrew H.; Maynard, Jeffrey A.; Muttaqin, Efin; Edwards, Alasdair J.; Campbell, Stuart J.; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Background Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Methodology/Principal Findings Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pSingapore, where only 5% and 12% of colonies died. Conclusions/Significance The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments. PMID:22428027

  4. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  5. Effect of Thermal Mechanical Behaviors of Cu on Stress Distribution in Cu-Filled Through-Silicon Vias Under Heat Treatment

    Science.gov (United States)

    Zhao, Xuewei; Ma, Limin; Wang, Yishu; Guo, Fu

    2018-01-01

    Through-silicon vias (TSV) are facing unexpected thermo-mechanical reliability problems due to the coefficient of thermal expansion (CTE) mismatch between various materials in TSVs. During applications, thermal stresses induced by CTE mismatch will have a negative impact on other devices connecting with TSVs, even leading to failure. Therefore, it is essential to investigate the stress distribution evolution in the TSV structure under thermal loads. In this report, TSVs were heated to 450°C at different heating rates, then cooled down to room temperature after a 30-min dwelling. After heating treatment, TSV samples exhibited different Cu deformation behaviors, including Cu intrusion and protrusion. Based on the different Cu deformation behaviors, stress in Si around Cu vias of these samples was measured and analyzed. Results analyzed by Raman spectrums showed that the stress distribution changes were associated with Cu deformation behaviors. In the area near the Cu via, Cu protrusion behavior might aggravate the stress in Si obtained from the Raman measurement, while Cu intrusion might alleviate the stress. The possible reason was that in this area, the compressive stress σ_{θ } induced by thermal loads might be the dominant stress. In the area far from the Cu via, thermal loads tended to result in a tensile stress state in Si.

  6. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  7. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis is employed to compute Ksub(I) values from the uncracked structure's stress distribution. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The ulilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (Auth.)

  8. A study on the bonding residual thermal stress analysis of dissimilar materials using boundary element method

    International Nuclear Information System (INIS)

    Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho

    1995-01-01

    It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.

  9. FEM thermal and stress analysis of bonded GaN-on-diamond substrate

    Directory of Open Access Journals (Sweden)

    Wenbo Zhai

    2017-09-01

    Full Text Available A three-dimensional thermal and stress analysis of bonded GaN on diamond substrate is investigated using finite element method. The transition layer thickness, thermal conductivity of transition layer, diamond substrate thickness and the area ratio of diamond and GaN are considered and treated appropriately in the numerical simulation. The maximum channel temperature of GaN is set as a constant value and its corresponding heat power densities under different conditions are calculated to evaluate the influences that the diamond substrate and transition layer have on GaN. The results indicate the existence of transition layer will result in a decrease in the heat power density and the thickness and area of diamond substrate have certain impact on the magnitude of channel temperature and stress distribution. Channel temperature reduces with increasing diamond thickness but with a decreasing trend. The stress is reduced by increasing diamond thickness and the area ratio of diamond and GaN. The study of mechanical and thermal properties of bonded GaN on diamond substrate is useful for optimal designs of efficient heat spreader for GaN HEMT.

  10. Modeling of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2017-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution, which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  11. Prediction of Short-Circuit-Related Thermal Stress in Aged IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Uhrenfeldt, Christian

    2016-01-01

    In this paper, the thermal stress on bond wires of aged IGBT modules under short-circuit conditions has been studied with respect to different solder delamination levels. To ensure repeatable test conditions, ad-hoc DBC (direct bond copper) samples with delaminated solder layers have been purposely...... in the surface temperature distribution which confirms the hypothesis that short-circuit events produce significantly uneven stresses on bond wires....

  12. Thermal stress prediction in mirror and multilayer coatings.

    Science.gov (United States)

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  13. A method of solution of the elastic-plastic thermal stress problem

    International Nuclear Information System (INIS)

    Rafalski, P.

    1975-01-01

    The purpose of the work is an improvement of the numerical technique for calculating the thermal stress distribution in an elastic-plastic structural element. The work consists of two parts. In the first a new method of solution of the thermal stress problem for the elastic-plastic body is presented. In the second a particular numerical technique, based on the above method, for calculating the stress and strain fields is proposed. A new mathematical approach consists in treating the stress and strain fields as mathematical objects defined in the space-time domain. The methods commonly applied use the stress and strain fields defined in the space domain and establish the relations between them at a given instant t. They reduce the problem to the system of ordinary differential equations with respect to time, which are usually solved with a step-by-step technique. The new method reduces the problem to the system of nonlinear algebraic equations. In the work the Hilbert space of admissible tensor fields is constructed. This space is the orthogonal sum of two subspaces: of statically admissible and kinematically admissible fields. Two alternative orthogonality conditions, which correspond to the equilibrium and compatibility equations with the appropriate boundary conditions, are derived. The results of the work are to be used for construction of the computer program for calculation the stress and strain fields in the elastic-plastic body with a prescribed temperature field in the interior and appropriate displacement and force conditions on the boundary

  14. Initial assessment of the thermal stresses around a radioactive waste depository in hard rock

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Bourke, P.J.

    1980-01-01

    The disposal of heat emitting radioactive waste into hard rock should result in temperature rises and thermal gradients over distances of several hundred metres for several centuries. The consequent constrained thermal expansion of the rock would induce stresses which have important implications for possible water-borne leakage of radionuclides and for depository design. These problems are assessed by considering a simplified mathematical model for which analytic solutions to the temperature and stress fields are derived. (author)

  15. Thermal stress microfracturing of crystalline and sedimentary rock. Final report, September 16, 1987--September 15, 1991

    International Nuclear Information System (INIS)

    Wang, H.

    1995-08-01

    Slow uniform heating of crustal rocks is both a pervasive geologic process and an anticipated by-product of radioactive waste disposal. Such heating generates microcracks which alter the strength, elastic moduli, and transport properties of the rock. The research program was to understand mechanisms of thermal cracking in rocks. It included development of a theoretical understanding of cracking due to thermal stresses, laboratory work to characterize crack strain in rocks thermally stressed under different conditions (including natural thermal histories), microscopic work to count and catalog crack occurrences, and geologic application to determine paleostress history of granites from the midcontinent

  16. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    it acts as an insulating medium and prevents the heat flow, hence the need of providing insulation coating on valves is ... geometry metal components (piston, liner and cylinder head) and found a satisfactory .... model. Step8: Find the radial thermal stress at all the nodal point with the use of temperature ..... Cast iron St. 70.

  17. The stress and stress intensity factors computation by BEM and FEM combination for nozzle junction under pressure and thermal loads

    International Nuclear Information System (INIS)

    Du, Q.; Cen, Z.; Zhu, H.

    1989-01-01

    This paper reports linear elastic fracture analysis based upon the stress intensity factor evaluation successfully applied to safety assessments of cracked structures. The nozzle junction are usually subjected to high pressure and thermal loads simultaneously. In validity of linear elastic fracture analysis, K can be decomposed into K P (caused by mechanic loads) and K τ (caused by thermal loads). Under thermal transient loading, explicit analysis (say by the FEM or BEM) of K tracing an entire history respectively for a range of crack depth may be much more time consuming. The techniques of weight function provide efficient means for transforming the problem into the stress computation of the uncracked structure and generation of influence function (for the given structure and size of crack). In this paper, a combination of BE-FEM has been used for the analysis of the cracked nozzle structure by techniques of weight function. The influence functions are obtained by coupled BE-FEM and the uncracked structure stress are computed by finite element methods

  18. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  19. Transient thermal stresses in a circular cylinder with constrained ends

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1986-01-01

    This paker deals with the transient thermal stresses in a finite circular cylinder constrained at both end surfaces and subjected to axisymmetric temperature distribution on the lateral surface. The thermoelastic problem is formulated in terms of a thermoelastic displacement potential and three harmonic stress functions. Numerical calculations are carried out for the case of the uniform temperature distribution on the lateral surface. The stress distributions on the constrained end and the free suface are shown graphically, and the singularity in stresses appearing at the circumferencial edge is considered. Moreover, the approximate solution based upon the plane strain theory is introduced in order to compare the rigorous one, and it is considered how the length of the cylinder and the time proceeds affect on the accuracy of the approximation. (author)

  20. Thermal and stress analysis of a fuel rod research project 277

    International Nuclear Information System (INIS)

    1975-04-01

    The purpose of this investigation was to perform an analytical evaluation of a postulated loss of coolant incident in a large pressurized water reactor. A coupled thermal and stress finite element analysis of a fuel rod subjected to a hypothetical blow-down transient was carried out. The effect of two gap conditions and two initial stress states on the response of the fuel rod was studied. Both one-dimensional and three-dimensional models were investigated. To study the heat transfer in the gap region one assumes a conductive mode of heat transfer in the gap characterized by an equivalent thermal conductivity, which is dependent on the current gap width. Accordingly, coupled analysis procedure and computational scheme were established. A mesh generation computer program was developed for the three-dimensional model

  1. Design of an RF window for L-band CW klystron based on thermal-stress analysis

    International Nuclear Information System (INIS)

    Yamaguchi, Seiya; Sato, Isamu; Konashi, Kenji; Ohshika, Junji.

    1993-01-01

    Design of klystron RF window has been performed based on a thermal-stress analysis for L-band CW electron linac for nuclear wastes transmutation. It was shown that the hoop stress for a modified disk is 46% of that of normal disk. Thermal load test has been done which indicated that the modified disk is proof against power twice as much as that for the normal disk. (author)

  2. Bandgap tuning with thermal residual stresses induced in a quantum dot.

    Science.gov (United States)

    Kong, Eui-Hyun; Joo, Soo-Hyun; Park, Hyun-Jin; Song, Seungwoo; Chang, Yong-June; Kim, Hyoung Seop; Jang, Hyun Myung

    2014-09-24

    Lattice distortion induced by residual stresses can alter electronic and mechanical properties of materials significantly. Herein, a novel way of the bandgap tuning in a quantum dot (QD) by lattice distortion is presented using 4-nm-sized CdS QDs grown on a TiO2 particle as an application example. The bandgap tuning (from 2.74 eV to 2.49 eV) of a CdS QD is achieved by suitably adjusting the degree of lattice distortion in a QD via the tensile residual stresses which arise from the difference in thermal expansion coefficients between CdS and TiO2. The idea of bandgap tuning is then applied to QD-sensitized solar cells, achieving ≈60% increase in the power conversion efficiency by controlling the degree of thermal residual stress. Since the present methodology is not limited to a specific QD system, it will potentially pave a way to unexplored quantum effects in various QD-based applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  4. Perturbation of baseline thermal stress in the Mound 9516 Shipping Package primary containment vessel

    International Nuclear Information System (INIS)

    Sansalone, K.H.F.

    1995-01-01

    Full-capacity loading of heat sources into the Mound 9516 Shipping Package primary containment vessel (PCV) results in temperature gradients which are symmetric, due to the axisymmetry of the package design. Concern over the change in thermal gradients (and therefore, stress) in the PCV due to sub-capacity loading led to the analytical examination of this phenomenon. The PCVs are cylindrical in shape and are loaded into the package such that they and all containment components are concentrically arranged along a common longitudinal axis. If the design full-capacity loading of the PCVs in this package assumes the axisymmetric (or more precisely, cyclicly symmetric) arrangement of its heat-producing contents, then sub-capacity loading implies that in many cases, the load arrangement could be asymmetric with respect to the longitudinal axis. It is then feasible that the departure from heat load axisymmetry could perturb the nominal thermal gradients so that thermally-induced stress within the PCV might increase to levels deemed unacceptable. This study applies Finite Element analysis (FEA) to the problem and demonstrates that no such unacceptable thermal stress increase occurs in the PCV material due to the asymmetric arrangement of contents. copyright 1995 American Institute of Physics

  5. Transient thermal stresses in circular cylinder under intermittently sudden heat generation

    International Nuclear Information System (INIS)

    Sugano, Y.; Saito, K.; Takeuti, Y.

    1975-01-01

    The thermal stresses associated with the transient temperature distribution arising in a circular cylinder under intermittently changing sudden heat generation over a finite band and with heat loss to a surrounding medium on the remainder of the cylinder surface are exactly analysed. For the first time the temperature field in a circular cylinder under sudden heat generation over a finite band of the cylinder surface is determined by combined use of Fourier cosine, Laplace transforms in axial position and time, respectively. Secondly it is assumed that the temperature fields in a circular cylinder subjected to heat generation Qsub(i) (i=0, 1, 2, ...) independently over a finite band are given by T 0 (r,z,t), T 1 (r,z,t), T 2 (r,z,t),... respectively. Tsub(i)(r,z,t) indicates the temperature field before the i-th heat generation Qsub(i). The thermal stresses associated with the temperature field described above are analysed by using the Hoyle stress functions. Numerical calculations are carried out for the extensive case of the ratio of the heat-generating length to the diameter of cylinder. It is found that the time in which the maximum stresses occur on the cylinder surface does not depend on the heat-generating length-to-diameter ratio

  6. Cemented carbide cutting tool: Laser processing and thermal stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)]. E-mail: bsyilbas@kfupm.edu.sa; Arif, A.F.M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia); Karatas, C. [Engineering Faculty, Hacettepe University, Ankara (Turkey); Ahsan, M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)

    2007-04-15

    Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO{sub 2} laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.

  7. Simulasi Thermal Stress Pada Tube Superheater Package Boiler

    OpenAIRE

    Hamdani

    2013-01-01

    This project investigates the thermal stress behavior and the mechanisms of superheater tube failure with experimental method and numerical analysis. First of all the procedures for failure analysis were applied to determine the root cause of them. A visual assessment of boiler critical pressure parts was carried out, and then the failed tube is examined by nondestructive evaluation. For the numerical domain, initially the elastic solution for a superheater tube subjected to an internal press...

  8. Effect of the Modification of the Start-Up Sequence on the Thermal Stresses for a Microgas Turbine

    Directory of Open Access Journals (Sweden)

    Oscar Tenango-Pirin

    2016-01-01

    Full Text Available Microgas turbines (MGT are an alternative for small-scale energy production; however, their small size becomes a drawback since it enhances the heat transfer among their components. Moreover, heat transfer drives to temperature gradients which become higher during transient cycles like start-up. The influence of different start-up curves on temperature and thermal stresses of a microgas turbine was investigated. Stationary and rotational blades of the turbine were numerically simulated using CFD and FEM commercial codes. Conjugated heat transfer cases were solved for obtaining heat transfer from fluid toward the blades. Changes of temperature gradients within the blades during the start-ups were calculated under transient state with boundary conditions according to each curve to assess accurate thermal stresses calculations. Results showed that the modification of the start-up curves had an impact on the thermal stresses levels and on the time when highest stresses appeared on each component. Furthermore, zones highly stressed were located near the constraints of blades where thermal strains are restricted. It was also found that the curve that had a warming period at the beginning of the start-up allowed reducing the peaks of stresses making it more feasible and safer for the turbine start-up operation.

  9. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  10. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  11. Heat Transfer and Thermal Stress Analysis of a Mandibular Molar Tooth Restored by Different Indirect Restorations Using a Three-Dimensional Finite Element Method.

    Science.gov (United States)

    Çelik Köycü, Berrak; İmirzalıoğlu, Pervin

    2017-07-01

    Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.

  12. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    International Nuclear Information System (INIS)

    Hall, M.M. Jr.

    1993-01-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates

  13. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  14. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  15. Study by X-ray diffraction and mechanical analysis of the residual stress generation during thermal spraying

    International Nuclear Information System (INIS)

    Pina, J.; Dias, A.; Lebrun, J.L.

    2003-01-01

    Thermally sprayed coatings are formed by the deposition of molten or partially molten particles, propelled onto a substrate where they impact, spread and solidify rapidly. Residual stresses are expected within the sprayed deposit as a consequence of the release of thermal and kinetic energies. A wide range of materials and two spraying techniques are considered in this study, namely atmospheric plasma spraying (APS) and high-velocity oxygen fuel. Stresses were determined by the X-ray diffraction (XRD) method. The results were compared with those calculated by mechanical analysis of stress relief in coatings detached from the substrate. Comparison of the results for adherent and free-standing coatings shows that the residual stress state can be resolved in terms of the components suggested by models that propose two stages of stress generation: quenching stresses and secondary-cooling stresses. The in-depth distribution of residual stresses, through the coating thickness, is discussed in terms of the nature of the coating system

  16. Development of residual thermal stress-relieving structure of CFC monoblock target for JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi

    2015-10-15

    Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.

  17. Crop water-stress assessment using an airborne thermal scanner

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  18. Proposal on the mitigation methods of thermal stress near the sodium

    International Nuclear Information System (INIS)

    Ando, Masanori; Kasahara, Naoto

    2003-09-01

    A Reactor vessel of fast rector plants contains high temperature liquid sodium in its inside and its upper end is supported by a low temperature structures. Therefore, a significant temperature gradient will arise at the vessel wall near the sodium surface. For this reason, a large thermal stress will be generated around this part. To lower this stress and to protect the vessel, a number of methods have been applied the plants. Generally, these mitigation methods by protection equipments for thermal stress also have some problems such as, increase a mount of materials or to be complicate for control, hard to maintenance and so on. In this research, authors suggested another simple methods for thermal stress, and evaluated their effects using computer analysis. The results obtained in this research are as follows. Authors suggested one method, circulate high temperature gas around outside of the vessel and evaluated the effects of this method by analysis. In case of using this method, Sn (one of index values of design) value might be getting lower about 45%. Authors also suggested another method by setting up a heat transfer plate outside of the vessel and evaluated the effects of this method by analysis. Effects of this method depend on material of the plate. In case of using Carbon as material of plate, Sn value might be 27% lower and in case of using 12Cr steel as material of plate, Sn value might be 15% lower. Authors also suggested another method by changing material of the guard vessel to be the one which has good ability of heat transfer and evaluated the effects of this method by analysis. In case of changing material of guard vessel to 12Cr steel, Sn value might be lower about 12%. (author)

  19. Investigations on the effect of creep stress on the thermal properties of metallic materials

    International Nuclear Information System (INIS)

    Radtke, U.; Crostack, H.A.; Winschuh, E.

    1995-01-01

    Using thermal wave analysis with front side infrared detection on sample material damaged by creep, one examines whether the creep stress has an effect on the thermal material properties and to what effect this can be used to estimate the remaining service life. (orig.) [de

  20. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  1. Quantifying Cyclic Thermal Stresses Due to Solar Exposure in Rock Fragments in Gale Crater, Mars

    Science.gov (United States)

    Hallet, B.; Mackenzie-Helnwein, P.; Sletten, R. S.

    2017-12-01

    Curiosity and earlier rovers on Mars have revealed in detail rocky landscapes with decaying outcrops, rubble, stone-littered regolith, and bedrock exposures that reflect the weathering processes operating on rock exposed to Mars' cold and hyperarid environment. Evidence from diverse sources points to the importance of thermal stresses driven by cyclic solar exposure in contributing to the mechanical weathering of exposed rock and generation of regolith in various settings on Earth [1,2,3], and even more so on extraterrestrial bodies where large, rapid cyclic temperature variations are frequent (e.g. Mars [4], as well as comets [5], asteroids [6] and other airless bodies [7]). To study these thermal stresses, we use a 3d finite element (FE) model constrained by ground-based surface temperature measurements from Curiosity's Environmental Monitoring Station (REMS). The numerical model couples radiation and conduction with elastic response to determine the temperature and stress fields in individual rocks on the surface of Mars based on rock size and thermo-mechanical properties. We provide specific quantitative results for boulder-size basalt rocks resting on the ground using a realistic thermal forcing that closely matches the REMS temperature observations, and related thermal inertia data. Moreover, we introduce analytical studies showing that these numerical results can readily be generalized. They are quite universal, informing us about thermal stresses due to cyclic solar exposure in general, for rock fragments of different sizes, lithologies, and fracture- thermal- and mechanical-properties. Using Earth-analogue studies to gain insight, we also consider how the shapes, fractures, and surface details of rock fragments imaged by Curiosity likely reflect the importance of rock breakdown due to thermal stresses relative to wind-driven rock erosion and other surface processes on Mars. References:[1] McFadden L et al. (2005) Geol. Soc.Am. Bull. 117(1-2): 161-173 [2

  2. Qinshan phase II extension nuclear power project thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong; Ai Honglei

    2010-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid brings on global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor, the loadings at connections of surge line to main pipe and RCP and the displacements of surge line at supports are obtained. (authors)

  3. A prediction method of temperature distribution and thermal stress for the throttle turbine rotor and its application

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available In this paper, a prediction method of the temperature distribution for the thermal stress for the throttle-regulated steam turbine rotor is proposed. The rotor thermal stress curve can be calculated according to the preset power requirement, the operation mode and the predicted critical parameters. The results of the 660 MW throttle turbine rotor show that the operators are able to predict the operation results and to adjust the operation parameters in advance with the help of the inertial element method. Meanwhile, it can also raise the operation level, thus providing the technical guarantee for the thermal stress optimization control and the safety of the steam turbine rotor under the variable load operation.

  4. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  5. Thermal Stress Analyses for an NLC Positron Target with a 3 mm Spot Radius Beam

    International Nuclear Information System (INIS)

    Stein, W.; Sunwoo, A.; Sheppard, J. C.; Bharadwaj, V.; Schultz, D.

    2002-01-01

    The power deposition of an incident electron beam in a tungsten-rhenium target and the resultant thermal shock stresses in the material have been modeled with a transient, dynamic, structural response finite element code. The Next Linear Collider electron beam is assumed split into three parts, with each part impinging on a 4 radiation lengths thick target. Three targets are required to avoid excessive thermal stresses in the targets. Energy deposition from each beam pulse occurs over 265 nanoseconds and results in heating of the target and pressure pulses straining the material. The rapid power deposition of the electron beam and the resultant temperature profile in the target generates stress and pressure waves in the material that are considerably larger than those calculated by a static analysis. The 6.22 GeV electron beam has a spot radius size of 3 mm and results in a maximum temperature jump of 147 C. Stress pressure pulses are induced in the material from the rapid thermal expansion of the hotter material with peak effective stresses reaching 83 ksi (5.77 x 10 8 Pa) on the back side of the target, which is less than one half of the yield strength of the tungsten/rhenium alloy and below the material fatigue limit

  6. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.

    Science.gov (United States)

    Guest, James R; Baird, Andrew H; Maynard, Jeffrey A; Muttaqin, Efin; Edwards, Alasdair J; Campbell, Stuart J; Yewdall, Katie; Affendi, Yang Amri; Chou, Loke Ming

    2012-01-01

    Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia. Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; pBleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died. The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.

  7. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    Science.gov (United States)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  8. A unified momentum equation approach for computing thermal residual stresses during melting and solidification

    Science.gov (United States)

    Yeo, Haram; Ki, Hyungson

    2018-03-01

    In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.

  9. Stress in piezoelectric hollow sphere with thermal gradient

    International Nuclear Information System (INIS)

    Saadatfar, M.; Rastgoo, A.

    2008-01-01

    The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have led to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of a radially polarized, spherically isotropic piezoelectric hollow sphere. The sphere is subjected to uniform internal pressure, or uniform external pressure, or both and thermal gradient. There is a constant thermal difference between its inner and outer surfaces. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. Finally, the stress distributions in the sphere are obtained numerically for two piezoceramics

  10. Determination of the optimum temperature history of inlet water for minimizing thermal stresses in a pipe by the multiphysics inverse analysis

    International Nuclear Information System (INIS)

    Kubo, S; Uchida, K; Ishizaka, T; Ioka, S

    2008-01-01

    It is important to reduce the thermal stresses for managing and extending the lives of pipes in plants. In this problem, heat conduction, elastic deformation, heat transfer, liquid flow should be considered, and therefore the problem is of a multidisciplinary nature. An inverse method was proposed by the present authors for determining the optimum thermal load history which reduced transient thermal stress considering the multidisciplinary physics. But the obtained solution had a problem that the temperature increasing rate of inner surface of the pipe was discontinuous at the end time of heat up. In this study we introduce temperature history functions that ensure the continuity of the temperature increasing rate. The multidisciplinary complex problem is decomposed into a heat conduction problem, a heat transfer problem, and a thermal stress problem. An analytical solution of the temperature distribution of radial thickness and thermal hoop stress distribution is obtained. The maximum tensile and compressive hoop stresses are minimized for the case where inner surface temperature T s (t) is expressed in terms of the 4th order polynomial function of time t. Finally, from the temperature distributions, the optimum fluid temperature history is obtained for reducing the thermal stresses.

  11. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus

    Directory of Open Access Journals (Sweden)

    Saravanan Rajendiran

    2016-03-01

    Full Text Available The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of

  12. Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.

    Science.gov (United States)

    Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar

    2016-03-01

    The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the

  13. Magneto thermal convection in a compressible couple-stress fluid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahinder [Lovely School of Science, Dept. of Mathematics, Lovely Professional Univ., Phagwara (India); Kumar, Pardeep [Dept. of Mathematics, ICDEOL, H.P. Univ., Shimla (India)

    2010-03-15

    The problem of thermal instability of compressible, electrically conducting couple-stress fluids in the presence of a uniform magnetic field is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, couple-stress, and magnetic field postpone the onset of convection. Graphs have been plotted by giving numerical values of the parameters to depict the stability characteristics. The principle of exchange of stabilities is found to be satisfied. The magnetic field introduces oscillatory modes in the system that were non-existent in its absence. The case of overstability is also studied wherein a sufficient condition for the non-existence of overstability is obtained. (orig.)

  14. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new method for performing thermal stress analyses in structures with multiple penetrations was applied to these analyses. This method couples the development of an equivalent thermal conductivity for the blocks, a technique that has been used extensively for modeling the thermal characteristics of reactor cores, with the use of the equivalent solid plate method for stress analysis. Using this equivalent thermal conductivity, which models as one material the heat transfer characteristics of the fuel, coolant, and graphite two-dimensional, steady-state thermal analyses of the fuel and control rod fuel blocks were performed to establish all temperature boundaries required for the stress analyses. In applying the equivalent solid plate method, the region of penetrations being modeled was replaced by a pseudo material having the same dimensions but whose materials properties were adjusted to account for the penetration. The peak stresses and strains were determined by applying stress and strain intensification factors to the calculated distributions. The condition studied was where the blocks were located near the center of the furnace. In this position, the axial surface of the block is heated near one end and cooled near the other. The approximate axial surface temperatures ranged from 1521 0 C at both the heated and the cooled ends to a peak of 1800 0 C near the center. Five specific cases were analyzed: plane (two-dimensional thermal, plane stress strain) analyses of each end of a standard fuel block (2 cases), plane analyses of each end of a control rod fuel block (2 cases), and a two-dimensional analysis of a fuel block treated as an axisymmetric cylind

  15. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    Science.gov (United States)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling

  16. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  17. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  18. Thermal stress in UO2 during sintering as a possible cause of cracking

    International Nuclear Information System (INIS)

    Aragones, M.A.; Tobias, E.; Tulli, I.; Naquid, C.

    1980-01-01

    Thermal stresses arising during sintering of UO 2 pellets are evaluated numerically by the solution of coupled equations for heat transfer through the sample. Results are compared with those of a semiempirical approach reported in the literature. Better insight into the heat transfer process is obtained from the solution of the coupled equations rather than from the empirical approach. The two approaches give different results for the thermal stresses arising during sintering. The use of heating and cooling rates of approximately 0.5 0 Cs -1 is found to prevent the possibility of cracking in UO 2 pellets of radii varying from 0.6 cm to 1 cm during sintering in hydrogen or argon-hydrogen atmospheres. (author)

  19. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    Science.gov (United States)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  20. Verification of thermal-irradiation stress analytical code VIENUS of graphite block

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Shiozawa, Shusaku; Shirai, Hiroshi; Minato, Kazuo.

    1992-02-01

    The core graphite components of the High Temperature Engineering Test Reactor (HTTR) show both the dimensional change (irradiation shrinkage) and creep behavior due to fast neutron irradiation under the temperature and the fast neutron irradiation conditions of the HTTR. Therefore, thermal/irradiation stress analytical code, VIENUS, which treats these graphite irradiation behavior, is to be employed in order to design the core components such as fuel block etc. of the HTTR. The VIENUS is a two dimensional finite element viscoelastic stress analytical code to take account of changes in mechanical properties, thermal strain, irradiation-induced dimensional change and creep in the fast neutron irradiation environment. Verification analyses were carried out in order to prove the validity of this code based on the irradiation tests of the 8th OGL-1 fuel assembly and the fuel element of the Peach Bottom reactor. This report describes the outline of the VIENUS code and its verification analyses. (author)

  1. In situ thermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Renault, P.O., E-mail: Pierre.olivier.renault@univ-poitiers.fr [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Krauss, C.; Le Bourhis, E.; Geandier, G. [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Benedetto, A. [Saint-Gobain Recherche (SGR), 93303 Aubervilliers (France); Grachev, S.Y.; Barthel, E. [Lab. Surface du Verre et Interfaces (SVI), UMR-CNRS 125, 93303 Aubervilliers (France)

    2011-12-30

    Residual-stress evolution in sputtered encapsulated ZnO/Ag/ZnO stack has been studied in-situ by synchrotron x-ray diffraction when heat treated. The ZnO/Ag/ZnO stack encapsulated into Si{sub 3}N{sub 4} layers and deposited on (001) Si substrates was thermally heated from 25 Degree-Sign C to 600 Degree-Sign C and cooled down to 25 Degree-Sign C. X-ray diffraction 2D patterns captured continuously during the heat treatment allowed monitoring the diffraction peak shifts of both Ag (15 nm thick) and ZnO (10 nm and 50 nm thick) sublayers. Due to the mismatch between the coefficients of thermal expansion, the silicon substrate induced compressive thermal stresses in the films during heating. We first observed a linear increase of the compressive stress state in both Ag and ZnO films and then a more complex elastic-stress evolution starts to operate from about 100 Degree-Sign C for Ag and about 250 Degree-Sign C for ZnO. Thermal contraction upon cooling seems to dominate so that the initial compressive film stresses relax by about 300 and 700 MPa after thermal treatment for ZnO and Ag, respectively. The overall behavior is discussed in terms of structural changes induced by the heat treatment.

  2. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  3. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  4. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  5. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  6. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  7. Friendly Home and Inhabitants' Morality: Mutual Relationships

    Science.gov (United States)

    Nartova-Bochaver, Sofya K.; Kuznetsova, Valeriya B.

    2018-01-01

    The study is aimed at investigating the connection between the friendliness of the home environment and the moral motives' level. The friendliness of the home environment includes two aspects: the number of functions provided by home (functionality) and the congruence of these functions with inhabitants' needs (relevance). The theoretical framework of the study was formed by research and ideas emphasizing the interplay between people and their environments. We hypothesized that the friendliness of the home environment and inhabitants' moral motives would have a reciprocal relationship: the friendlier the home the higher the inhabitants' moral motives' level, and, vice versa, the higher the person's moral motives' level the more positive home image. The respondents were 550 students (25% male). The Home Environment Functionality Questionnaire, the Home Environment Relevance Questionnaire, and the Moral Motivation Model Scale were used. As expected, it was found that the friendliness of the home environment and the inhabitants' moral motives are in reciprocal synergetic relationships. Relevance formed more nuanced correlation patterns with moral motives than functionality did. Functionality predicted moral motives poorly whereas moral motives predicted functionality strongly. Finally, relevance and moral motives were found to be in mutual relationships whereas the perceived functionality was predicted by moral motives only. PMID:29375450

  8. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    International Nuclear Information System (INIS)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun; Zhu, Weidi; Dong, Chen; Lu, Liu; Ren, Fan; Holzworth, M. R.; Jones, Kevin S.; Pearton, Stephen J.; Smith, David J.; Kim, Jihyun; Zhang, Ming-Lan

    2015-01-01

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing

  9. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    Science.gov (United States)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  10. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    Science.gov (United States)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  11. The design of bonded reinforcement for thermal stresses in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Kotulla, B.; Hansson, V.

    1977-01-01

    This paper deals with examples of thermal loadings where instationary growth of tensile zones and redistribution of stresses by cracking are of importance. Temperatures produce, in addition to prestressing and internal pressure, the most important stresses in a prestressed concrete reactor pressure vessel. Characteristic of thermal stresses is that they are influenced to a large extent by creep of concrete and that they influence stress redistributions by temperature dependent creep data. Computations show that during the first instationary heating process of the vessel stresses are reduced by creep effects to about fifty percent of the values of the stationary elastic case at the hot face. With a following cooling, creep effects are generally much less, so this case may produce tensile stresses on the internal face of the wall which lead to cracking of the concrete. Tensile stresses first occur due to the instationary growth of the temperature field in a narrow zone near the liner. If outside this zone compressive stresses exist due to prestressing then crack spreading is limited and restraint by the parts of the wall under compression causes crack distribution even without reinforcement in this zone. Growth of cracks with the instationary spreading of tensile zones according to temperature development was calculated. These calculations take into account discrete cracks, reinforcement and different assumptions for tensile strength. Reinforcement of small diameter near the surface has the best influence on crack spacing. Calculations show that for the stationary state of cooling the forces in the reinforcement may be as low as twenty to thirty percent of the tensile force not taking into account cracking of the concrete

  12. A 1-D Analytical Model for the Thermally Induced Stresses in the Mould Surface During Die Casting

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1994-01-01

    This paper presents an anlytically based method for predicting the normal stresses in a die mold surface exposed to a thermal load. A example of application of the method is the high-pressure di casting process where the surface stresses in critical cases lead to cracks. Expressions for the normal...... stresses as afunction of the thermal and mechanical properties have been developed for a casting both without and with a coating. Finally, the resulting relationships are derived and evaluated, with particular emphasis on the effect of the heat transfer coefficient between the casting and the mold....

  13. A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions

    International Nuclear Information System (INIS)

    Botto, D.; Zucca, S.; Gola, M.M.

    2003-01-01

    In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions

  14. Numerical method for analysis of temperature rises and thermal stresses around high level radioactive waste repository in granite

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1982-01-01

    The disposal of high-level radioactive waste should result in temperature rises and thermal stresses which change the hydraulic conductivity of the rock around the repository. For safety analysis on disposal of high-level radioactive waste into hard rock, it is necessary to find the temperature rises and thermal stresses distributions around the repository. In this paper, these distribution changes are analyzed by the use of the finite difference method. In advance of numerical analysis, it is required to simplify the shapes and properties of the repository and the rock. Several kinds of numerical models are prepared, and the results of this analysis are examined. And, the waste disposal methods are discussed from the stand-points of the temperature rise and thermal stress analysis. (author)

  15. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  16. Prognostics Approach for Power MOSFET Under Thermal-Stress

    Science.gov (United States)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real

  17. Prediction of minimum UO2 particle size based on thermal stress initiated fracture model

    International Nuclear Information System (INIS)

    Corradini, M.

    1976-08-01

    An analytic study was employed to determine the minimum UO 2 particle size that could survive fragmentation induced by thermal stresses in a UO 2 -Na Fuel Coolant Interaction (FCI). A brittle fracture mechanics approach was the basis of the study whereby stress intensity factors K/sub I/ were compared to the fracture toughness K/sub IC/ to determine if the particle could fracture. Solid and liquid UO 2 droplets were considered each with two possible interface contact conditions; perfect wetting by the sodium or a finite heat transfer coefficient. The analysis indicated that particles below the range of 50 microns in radius could survive a UO 2 -Na fuel coolant interaction under the most severe temperature conditions without thermal stress fragmentation. Environmental conditions of the fuel-coolant interaction were varied to determine the effects upon K/sub I/ and possible fragmentation. The underlying assumptions of the analysis were investigated in light of the analytic results. It was concluded that the analytic study seemed to verify the experimental observations as to the range of the minimum particle size due to thermal stress fragmentation by FCI. However the method used when the results are viewed in light of the basic assumptions indicates that the analysis is crude at best, and can be viewed as only a rough order of magnitude analysis. The basic complexities in fracture mechanics make further investigation in this area interesting but not necessarily fruitful for the immediate future

  18. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    Science.gov (United States)

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (Plecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (plecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Baking system for ports of experimental advanced super-conducting tokamak vacuum vessel and thermal stress analysis

    International Nuclear Information System (INIS)

    Cheng Yali; Bao Liman; Song Yuntao; Yao Damao

    2006-01-01

    The baking system of Experimental Advanced Super-Conducting Toakamk (EAST) vacuum vessel is necessary to obtain the baking temperature of 150 degree C. In order to define suitable alloy heaters and achieve their reasonable layouts, thermal analysis was carried out with ANSYS code. The analysis results indicate that the temperature distribution and thermal stress of most parts of EAST vacuum vessel ports are uniform, satisfied for the requirement, and are safe based on ASME criterion. Feasible idea on reducing the stress focus is also considered. (authors)

  20. Development of intergranular thermal residual stresses in beryllium during cooling from processing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: dbrown@lanl.gov; Sisneros, T.A.; Clausen, B.; Abeln, S.; Bourke, M.A.M.; Smith, B.G.; Steinzig, M.L.; Tome, C.N.; Vogel, S.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    The intergranular thermal residual stresses in texture-free solid polycrystalline beryllium were determined by comparison of crystallographic lattice parameters in solid and powder samples measured by neutron diffraction during cooling from 800 deg. C. The internal stresses are not significantly different from zero >575 deg. C and increase nearly linearly <525 deg. C. At room temperature, the c axis of an average grain is under {approx}200 MPa of compressive internal stress, and the a axis is under 100 MPa of tensile stress. For comparison, the stresses have also been calculated using an Eshelby-type polycrystalline model. The measurements and calculations agree very well when temperature dependence of elastic constants is accounted for, and no plastic relaxation is allowed in the model.

  1. X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Renault, P.O., E-mail: pierre.olivier.renault@univ-poitiers.f [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Le Bourhis, E.; Krauss, C.; Goudeau, P. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Barthel, E.; Grachev, S. Yu.; Sondergard, E. [Lab. Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Rondeau, V.; Gy, R. [Lab. Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Lab. Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-12-30

    X-ray diffraction stress analyses have been performed on two different thin films deposited onto silicon substrate: ZnO and ZnO encapsulated into Si{sub 3}N{sub 4} layers. We showed that both as-deposited ZnO films are in a high compressive stress state. In situ X-ray diffraction measurements inside a furnace revealed a relaxation of the as-grown stresses at temperatures which vary with the atmosphere in the furnace and change with Si{sub 3}N{sub 4} encapsulation. The observations show that Si{sub 3}N{sub 4} films lying on both sides of the ZnO film play an important role in the mechanisms responsible for the stress relaxation during heat treatment. The different temperatures observed for relaxation in ambient and argon atmospheres suggest that the thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films. The present observations pave the way to fine tuning of the residual stresses through thermal treatment parameters.

  2. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  3. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  4. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M

    International Nuclear Information System (INIS)

    Cen Yishun; Li Qiang; Cai Lijun; Jiang Jiaming; Li Guangsheng; Liu Yi; Ding Yonghua

    2013-01-01

    A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequency range from DC to about 1 kHz. Stainless steel (SS) jacketed mineral insulated cables are proposed for the conductor of the coils. In-vessel coils must withstand large electromagnetic (EM) and thermal loads. The support, insulation and vacuum sealing in a very limited space are crucial issues for engineering design. Hence finite element calculations are performed to verify the design, optimize the support by minimizing stress caused by EM forces on the coil conductors and work out the temperature rise occurring on the coil in different working conditions, the corresponding thermal stress caused by the thermal expansion of materials is evaluated to be allowable. The techniques to develop the in-vessel RMP coils, such as support, insulation and cooling, are discussed

  5. Occurrence of root parsley pathogens inhabiting seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available The studies on root parsley pathogens inhabiting seeds were conducted during 1981-1988 and in 1993. Filter paper method with prefreezing and keeping under light was used. Each test sample comprised 500 seeds. Pathogenicity of collected fungal isolates was tested following two laboratory methods. 238 seed samples were studied. 18 fungal species were found but only 7 proved to be important pathogens of root parsley. The most common inhabitants of root parsley seeds were Alternaria spp. A.allernata occurred on 74,8% of seeds but only a few isolates showed to be slightly pathogenic while A.petroselini and A.radicina were higly pathogenic and inhabited 11,4 and 4,2% of seeds, respectively. The second group of important pathogens were species of Fusarium found on 3,9% of seeds. F.avenaceum dominated as it comprised 48% of Fusarium isolates, the next were as follow: F.culmorum - 20%, F.equiseti - 15%, F.solani - 8%, F.oxysporum - 7% and F.dimerum -2%. Some fungi like Botrytis cinerea, Septoria petroselini and Phoma spp. inhabited low number of seeds, respectively O,4; 0,5 and 0,8%, but they were highly pathogenic to root parsley. The fungi: Bipolaris sorokiniana, Drechslera biseptata, Stemphylium botryosum and Ulocludium consortiale showed slight pathogenicity. They were isolated from 3,8% of seeds.

  6. Propagation of internal stresses in composite materials during heating and cooling according to thermal cycles of welding

    International Nuclear Information System (INIS)

    Gukasyan, L.E.; Belov, V.V.

    1977-01-01

    Investigations of free thermal expansion of a composite material, of fibre and matrix during welding thermal cycle make it possible to estimate mean internal strain and stress in the composite components, as well as the residual internal stress and strain present in the composite material after manufacturing. The samples investigated consisted of nickel-chromium EhI445 alloy, reinforced by tungsten-rhenium alloy fibres. As the composite material was cooled and heated in course of welding, the stress and strain changed their sign twice, the first time upon heating, the second time upon cooling. After complete cooling of the composite material residual stresses in the fibre stay at the proportionality level, while those in the matrix are lower. Experimental evidence of internal stress and strain appearing in the composite material during heating are fairly consistent with calculations in the elastic region, if account is taken of the temperature of internal residual stress relaxation upon heating

  7. Numerical simulation of temperature and thermal stress for nuclear piping by using computational fluid dynamics analysis and Green’s function

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of); Oh, Chang-Kyun; Kim, Hyun-Su [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Choi, Choeng-Ryul [ELSOLTEC, Inc., Yongin (Korea, Republic of)

    2017-05-15

    Owing to the fact that thermal fatigue is a well-known damage mechanism in nuclear power plants, accurate stress and fatigue evaluation are highly important. Operating experience shows that the design condition is conservative compared to the actual one. Therefore, various fatigue monitoring methods have been extensively utilized to consider the actual operating data. However, defining the local temperature in the piping is difficult because temperature-measuring instruments are limited. The purpose of this paper is to define accurate local temperature in the piping and evaluate thermal stress using Green’s function (GF) by performing a series of computational fluid dynamics analyses considering the complex fluid conditions. Also, the thermal stress is determined by adopting GF and comparing it with that of the design condition. The fluid dynamics analysis result indicates that the fluid temperature slowly varies compared to the designed one even when the flow rate changes abruptly. In addition, the resulting thermal stress can significantly decrease when reflecting the actual temperature.

  8. Thermal Stress Analysis and Structure Parameter Selection for a Bi2Te3-Based Thermoelectric Module

    Science.gov (United States)

    Gao, Jun-Ling; Du, Qun-Gui; Zhang, Xiao-Dan; Jiang, Xin-Qiang

    2011-05-01

    The output power and conversion efficiency of thermoelectric modules (TEMs) are mainly determined by their material properties, i.e., Seebeck coefficient, electrical resistivity, and thermal conductivity. In practical applications, due to the influence of the harsh environment, the mechanical properties of TEMs should also be considered. Using the finite-element analysis (FEA) model in ANSYS software, we present the thermal stress distribution of a TEM based on the anisotropic mechanical properties and thermoelectric properties of hot-pressed materials. By analyzing the possibilities of damage along the cleavage plane of Bi2Te3-based thermoelectric materials and by optimizing the structure parameters, a TEM with better mechanical performance is obtained. Thus, a direction for improving the thermal stress resistance of TEMs is presented.

  9. Analysis of electrical and thermal stress effects on PCBM:P3HT solar cells by photocurrent and impedance spectroscopy modeling

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Rizzo, Antonio; Cester, Andrea

    2017-01-01

    We investigated the effects of electrical stress and thermal storage by means of photocurrent, Impedance Spectroscopy and Open Circuit Voltage Decay models. The electrical stress damages only the active layer, by reducing the generation rate, the polaron separation probability and the carrier...... lifetime. The thermal stress also degrades the anode interface. This reflects on the appearance of an inflection in the I-V photocurrent shape close to the operative region....

  10. Thermal Stress and Toxicity | Science Inventory | US EPA

    Science.gov (United States)

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  11. Thermal creep and stress-affected precipitation of 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Puigh, R.J.; Lovell, A.J.; Garner, F.A.

    1984-01-01

    Measurements of the thermal creep of 20% cold-worked 316 stainless steel have been performed for temperatures from 593 to 760 0 C, stress levels as high as 138 MPa and exposure times as long as 15,000 hours. The creep strains exhibit a complex behavior arising from the combined action of true creep and stress-affected precipitation of intermetallic phases. The latter process is suspected to be altered by neutron irradiation. (orig.)

  12. Thermal stress comparison in modular power converter topologies for smart transformers in the electrical distribution system

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Liserre, Marco

    2015-01-01

    A Smart Transformer (ST) can cover an important managing role in the future electrical distribution grid. For the moment, the reliability and cost are not competitive with traditional transformers and create a barrier for its application. This work conduct detail designs and analysis...... for a promising modular ST solution, which is composed of Modular Multi-level converter, Quad Active Bridge DC-DC converters, and two-level voltage source converters. The focus is put on the loading conditions and thermal stress of power semiconductor devices in order to discover critical parts of the whole...... system when performing various mission profiles in the realistic distribution grid. It is concluded that the thermal stress for all stages is low during normal operation and especially the isolation stage is stressed least....

  13. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  14. Residual thermal stresses in a solid sphere cast from a thermosetting material

    Science.gov (United States)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  15. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  16. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera

    Science.gov (United States)

    Hillyer, Katie E.; Dias, Daniel A.; Lutz, Adrian; Wilkinson, Shaun P.; Roessner, Ute; Davy, Simon K.

    2017-03-01

    Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography-mass spectrometry (GC-MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian-dinoflagellate symbiosis.

  17. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  18. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  19. Study of thermal stress in heat affected zones during welding

    International Nuclear Information System (INIS)

    Devaux, J.C.

    1979-01-01

    The importance of applications of welding in the nuclear industry leads to the study of the main problem concerning metal welding: sensibility to cracking. The development of computation methods allows the numerical simulation of welding effects. Due to the complexity of this problem, it is divided in three steps: thermal, metallurgical and mechanical calculus. Interactions between the 3 steps are examined. Mathematical models necessary to get residual stress (i.e. stress remaining when welding is completed and structure at ambient temperature) are described. Then parameters for metallurgical structure determination are given and compared to experiments. A508 and A533 type steels of primary coolant circuit of PWR reactors are taken as examples and the numerical simulation of a test is presented [fr

  20. Calculation of thermal stress condition in long metal cylinder under heating by continuous laser radiation

    International Nuclear Information System (INIS)

    Uglov, A.A.; Uglov, S.A.; Kulik, A.N.

    1997-01-01

    The method of determination of temperature field and unduced thermal stresses in long metallic cylinder under its heating by cw-laser normally distributed heat flux is offered. The graphically presented results of calculation show the stress maximum is placed behind of center of laser heat sport along its movement line on the cylinder surface

  1. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress.

    Science.gov (United States)

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J

    2016-10-15

    Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T maxima in response to heat stress. © 2016. Published by The Company of Biologists Ltd.

  2. Survey of Tsuruga inhabitants concerning radiation and its risks

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko; Yamano, Naoki

    2015-01-01

    The Fukushima Daiichi nuclear accident has led to changes in the acceptance of nuclear power in many people. The authors conducted an opinion survey of 300 adult inhabitants of Tsuruga city in Fukui prefecture, Japan. The aim of this survey is to obtain people's opinions concerning radiation and its risks. Authors classified Tsuruga inhabitants on the basis of responses to questions on the concept and knowledge of risk and the cognition of radiation by factor and cluster analyses of multivariable analysis. Using the results of these analyses, Tsuruga inhabitants have been assigned to five categories: “acceptance group,” “anxiety group,” and three intermediate groups. (author)

  3. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  4. What is the best clothing to prevent heat and cold stress? Experiences with thermal manikin.

    Science.gov (United States)

    Magyar, Z; Tamas, R

    2013-02-01

    The present study summarizes the current knowledge of the heat and cold stress which might significantly affect military activities and might also occur among travellers who are not well adapted to weather variations during their journey. The selection of the best clothing is a very important factor in preserving thermal comfort. Our experiences with thermal manikin are also represented in this paper.

  5. The competition between thermal contraction and differentiation in the stress history of the moon

    Science.gov (United States)

    Kirk, Randolph L.; Stevenson, David J.

    1989-01-01

    The stress history of the moon is discussed, taking into consideration the effects of thermal contraction and differentiation. The amount of expansion caused by extracting basalt from undifferentiated lunar material is estimated taking account of the uncertainty in the knowledge of the appropriate compositions, and the resulting estimate of the expansion is used to compare the relative importance of the thermal and differentiation effects in the moon's volumetric history. The results of calculations show that differentiation is likely to be of major importance and, thus, thermal expansion is not the sole possible contributor to evolutionary changes in the lunar radius.

  6. Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading

    Directory of Open Access Journals (Sweden)

    Kambiz Raoufi

    2011-01-01

    Full Text Available A finite element model is used to examine how the properties of cementitious mortar are related to the stress development in the dual ring test. The results of this investigation are used to explain the thermal cracking behavior of mixtures containing prewetted lightweight aggregates (LWA by quantifying the contribution of several material properties individually. In addition to the beneficial effects of using the LWA as an internal curing agent to reduce the autogenous shrinkage of concrete, the LWA also helps to reduce the potential for thermal cracking due to a lower elastic modulus and increased stress relaxation. The rate of stress development, age of cracking, and magnitude of the temperature drop necessary to induce cracking in a dual ring specimen are dependent on a variety of factors, including the coefficient of thermal expansion of both the cementitious mortar and the restraining rings, elastic modulus of the mortar, creep effect of the mortar, and rate of thermal loading. Depending on the rate of cooling, cracking may or may not occur. The slowest rate of cooling (2.5∘C/h minimizes the effects of creep while cooling rates faster than 8∘C/h can produce a thermal gradient through the mortar cross-section that needs to be considered.

  7. Measurement and analysis of temperature, strain and stress of foundation mat concrete in nuclear and thermal power stations

    International Nuclear Information System (INIS)

    Haraguchi, Akira; Yamakawa, Hidetsugu; Abe, Hirotoshi

    1981-01-01

    The problems of the thermal stress in concrete structures are roughly divided into the initial stress due to setting heat and the stress due to external temperature after hardening. The initial stress exists in every concrete structure, and it is usually neglected in beams and columns, but it must be taken into account in case of the foundation mat structures in nuclear power stations, for example. In this paper, (1) the results of measurement of temperature, strain and stress in each lift at the time of and after placing concrete in the foundation mat of a nuclear power station and the comparison of them with the results of analysis, (2) the results of measurement of the temperature and stress in a foundation mat, which was carried out to rationalize the design method for the raft type foundation mats in thermal power stations, and (3) the results of examination on the analysis model, external force conditions and boundary conditions used for the design are reported. The analysis method for temperature and thermal stress by finite element method, developed by the Central Research Institute of Electric Power Industry, can take the changes in the heat of hydration in placed concrete, the creep phenomenon of concrete and the restraint at construction joints in consideration. It is necessary to collect the data on the measurement of mat concrete and to develop the accurate analysis method. (Kako, I.)

  8. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    Science.gov (United States)

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  9. Assessment of the reference stress method for combined tensile bending and thermal loading

    International Nuclear Information System (INIS)

    Philipp, A.; Munz, D.

    1984-01-01

    The reference stress method has been investigated for combined tensile, bending and thermal loading by considering a uniformly bent beam subjected to superimposed tensile stress and lateral temperature gradients. The creep deformation of the beam can be calculated numerically applying a Norton-type creep law. It turns out that the ratio of curvature rate to strain at the outer fiber depends on the creep exponent. Therefore, the reference stresses for these two quantities must be expected to be different in general. In most load cases, however, it is possible to determine a reference stress which can be used to describe the complete deformation of the beam. The only exception is the case of high tensile loading if the side exposed to higher tensile stress is cooler. Approximate solutions for the reference stress which rely on elastic and limit analyses, can be used only for estimates because they lead to extremely non-conservative predictions. (author)

  10. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    International Nuclear Information System (INIS)

    Muthukkannan, N.; Murugesan, A.G.

    2002-01-01

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  11. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    In several postulated LMFBR subassembly-to-subassembly failure propagation events, it is hypothesized that the duct wall of an accident subassembly fails and deposits molten fuel on the outer wall of an adjacent subassembly. It is therefore necessary to determine if the deposited fuel will fail the adjacent wall and thus propagate the event. This entails a thermal stress analysis, and since at times the adjacent subassembly is internally pressurized, thermomechanical analysis are also of value. Solutions are presented for several elastic plastic thermal problems. Some of these examples are compared to available analytic solutions. In addition, the hypothetical accident of molten fuel deposition on the adjacent hexcan is addressed. Combinations of pressure and thermal loading are considered. It is shown that the principal feature of the response is a large in-plane compressive stress which would undoubtedly cause buckling

  12. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  13. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching.

    Science.gov (United States)

    Cardini, Ulisse; van Hoytema, Nanne; Bednarz, Vanessa N; Rix, Laura; Foster, Rachel A; Al-Rshaidat, Mamoon M D; Wild, Christian

    2016-09-01

    Coral holobionts (i.e., coral-algal-prokaryote symbioses) exhibit dissimilar thermal sensitivities that may determine which coral species will adapt to global warming. Nonetheless, studies simultaneously investigating the effects of warming on all holobiont members are lacking. Here we show that exposure to increased temperature affects key physiological traits of all members (herein: animal host, zooxanthellae and diazotrophs) of both Stylophora pistillata and Acropora hemprichii during and after thermal stress. S. pistillata experienced severe loss of zooxanthellae (i.e., bleaching) with no net photosynthesis at the end of the experiment. Conversely, A. hemprichii was more resilient to thermal stress. Exposure to increased temperature (+ 6°C) resulted in a drastic increase in daylight dinitrogen (N2 ) fixation, particularly in A. hemprichii (threefold compared with controls). After the temperature was reduced again to in situ levels, diazotrophs exhibited a reversed diel pattern of activity, with increased N2 fixation rates recorded only in the dark, particularly in bleached S. pistillata (twofold compared to controls). Concurrently, both animal hosts, but particularly bleached S. pistillata, reduced both organic matter release and heterotrophic feeding on picoplankton. Our findings indicate that physiological plasticity by coral-associated diazotrophs may play an important role in determining the response of coral holobionts to ocean warming. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Geographic variation in responses of European yellow dung flies to thermal stress.

    Science.gov (United States)

    Bauerfeind, Stephanie S; Sørensen, Jesper G; Loeschcke, Volker; Berger, David; Broder, E Dale; Geiger, Madeleine; Ferrari, Manuela; Blanckenhorn, Wolf U

    2018-04-01

    Climatic conditions can be very heterogeneous even over small geographic scales, and are believed to be major determinants of the abundance and distribution of species and populations. Organisms are expected to evolve in response to the frequency and magnitude of local thermal extremes, resulting in local adaptation. Using replicate yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae) populations from cold (northern Europe) and warm climates (southern Europe), we compared 1) responses to short-term heat and cold shocks in both sexes, 2) heat shock protein (Hsp70) expression in adults and eggs, and 3) female reproductive traits when facing short-term heat stress during egg maturation. Contrary to expectations, thermal traits showed minor geographic differentiation, with weak evidence for greater heat resistance of southern flies but no differentiation in cold resistance. Hsp70 protein expression was little affected by heat stress, indicating systemic rather than induced regulation of the heat stress response, possibly related to this fly group's preference for cold climes. In contrast, sex differences were pronounced: males (which are larger) endured hot temperatures longer, while females featured higher Hsp70 expression. Heat stress negatively affected various female reproductive traits, reducing first clutch size, overall reproductive investment, egg lipid content, and subsequent larval hatching. These responses varied little across latitude but somewhat among populations in terms of egg size, protein content, and larval hatching success. Several reproductive parameters, but not Hsp70 expression, exhibited heritable variation among full-sib families. Rather than large-scale clinal geographic variation, our study suggests some local geographic population differentiation in the ability of yellow dung flies to buffer the impact of heat stress on reproductive performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  16. Random thermal stress in concrete containments

    International Nuclear Information System (INIS)

    Singh, M.P.; Heller, R.A.

    1980-01-01

    Currently, the overly conservative thermal design forces are obtained on the basis of simplified assumptions made about the temperature gradient across the containment wall. Using the method presented in this paper, a more rational and better estimate of the design forces can be obtained. Herein, the outside temperature is considered to consist of a constant mean on which yearly and daily harmonic changes plus a randomly varying part are superimposed. The random part is modeled as a stationary random process. To obtain the stresses due to random and harmonic temperatures, the complex frequency response function approach has been used. Numerical results obtained for a typical containment show that the higher frequency temperature variations, though of large magnitude, induce relatively small forces in a containment. Therefore, in a containment design, a rational separation of more effective, slowly varying temperatures, such as seasonal cycle from less effective but more frequently occuring daily and hourly changes, is desirable to obtain rational design forces. 7 refs

  17. Effect of hall currents on thermal instability of dusty couple stress fluid

    Directory of Open Access Journals (Sweden)

    Aggarwal Amrish Kumar

    2016-09-01

    Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.

  18. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    International Nuclear Information System (INIS)

    Roudkenar, Mehryar Habibi; Halabian, Raheleh; Roushandeh, Amaneh Mohammadi; Nourani, Mohammad Reza; Masroori, Nasser; Ebrahimi, Majid; Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2009-01-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  19. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    Energy Technology Data Exchange (ETDEWEB)

    Roudkenar, Mehryar Habibi, E-mail: roudkenar@ibto.ir [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Halabian, Raheleh [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Roushandeh, Amaneh Mohammadi [Department of Anatomy, Faculty of Medicine, Medical University of Tabriz, Tabriz (Iran, Islamic Republic of); Nourani, Mohammad Reza [Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Masroori, Nasser [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Ebrahimi, Majid [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Najafabadi, Ali Jahanian [Department of Molecular Biology, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur institute of Iran, Tehran (Iran, Islamic Republic of)

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  20. Dynamic, large-deflection, inelastic and thermal stress analysis by the finite element method

    International Nuclear Information System (INIS)

    Haisler, W.E.; Stricklin, J.A.

    1975-01-01

    A finite element theory and computer program have been developed for predicting the dynamic, large displacement, inelastic and thermal response of stiffened and layered structures. The dependence of material properties on temperature is explicitly accounted for and any arbitrary, transient mechanical or thermal load history is allowed. The shell may have internal or external stiffeners and be constructed with up to three layers. The equations of motion are developed by using the pseudo force approach to represent all nonlinearities and are then solved by using either the Houbolt method or central differences. Moderately large rotations are allowed. The program is based on an incremental theory of plasticity using the Von Mises yield condition and associated flow rule. The post yield or work-hardening behavior is idealized with either the isotropic hardening or mechanical sublayer models. Two models are utilized since it has been found through comparison with experimental results that isotropic hardening is best for simple loading conditions while the mechanical sublayer model is better for reverse and cyclic loading. Strain-rate effects are also accounted for in the program by using a power-law type model based on the strain rate. The dependence of material properties on temperature is taken into account in the pseudo forces. Young's modulus, Poisson's ratio, thermal coefficient of expansion, the yield stress, and the entire stress strain curve are treated as functions of the applied temperature. Containment vessels subjected to transient and shock-type mechanical and thermal loads have been analyzed

  1. Comparative expression profile of NOD1/2 and certain acute inflammatory cytokines in thermal-stressed cell culture model of native and crossbred cattle

    Science.gov (United States)

    Bhanuprakash, V.; Singh, Umesh; Sengar, Gyanendra Singh; Raja, T. V.; Sajjanar, Basavraj; Alex, Rani; Kumar, Sushil; Alyethodi, R. R.; Kumar, Ashish; Sharma, Ankur; Kumar, Suresh; Bhusan, Bharat; Deb, Rajib

    2017-05-01

    Thermotolerance depends mainly on the health and immune status of the animals. The variation in the immune status of the animals may alter the level of tolerance of animals exposed to heat or cold stress. The present study was conducted to investigate the expression profile of two important nucleotide binding and oligomerization domain receptors (NLRs) (NOD1 and NOD2) and their central signalling molecule RIP2 gene during in vitro thermal-stressed bovine peripheral blood mononuclear cells (PBMCs) of native (Sahiwal) and crossbred (Sahiwal X HF) cattle. We also examined the differential expression profile of certain acute inflammatory cytokines in in vitro thermal-stressed PBMC culture among native and its crossbred counterparts. Results revealed that the expression profile of NOD1/2 positively correlates with the thermal stress, signalling molecule and cytokines. Present findings also highlighted that the expression patterns during thermal stress were comparatively superior among indigenous compared to crossbred cattle which may add references regarding the better immune adaptability of Zebu cattle.

  2. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Ariman, T.; Pierce, R.D.; Pedersen, D.R.

    1977-01-01

    A description of a meltdown cup to be used in the SLSF in-reactor experiments is presented. Thermal analyses have shown that the cup is capable of containing and cooling the postulated quantities of molten fuel and steel. The basic loadings for stress analyses were defined and failure modes were determined. It was shown that both the maximum bending stress and maximum tangential stress in the Inconel vessel are below the material yield stress. Additionally, the axial stress in the Inconel vessel was found to be negligible. The shear stress in the wire-formed retaining ring is much below the maximum shear stress. Therefore, the meltdown cup is capable of performing its required function

  3. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery

    Science.gov (United States)

    A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...

  4. Effects of current stress and thermal storage on polymeric heterojunction P3HT:PCBM solar cell

    DEFF Research Database (Denmark)

    Rizzo, Antonio; Cester, Andrea; Torto, Lorenzo

    2016-01-01

    We subjected P3HT:PCBM solar cells to electrical constant current stress and thermal storage. We employed the impedance spectroscopy technique combined to conventional DC measurements for device characterization during all stresses. We identified and separated different contributions affecting...... the open circuit voltage and short circuit current. Several mechanisms are behind these changes during the stresses; in particular, we underlined the exciton recombination rate and the variation of the built-in voltage....

  5. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  6. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    Science.gov (United States)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  7. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  8. Reliability-oriented environmental thermal stress analysis of fuses in power electronics

    DEFF Research Database (Denmark)

    Bahman, A. S.; Iannuzzo, F.; Holmgaard, T.

    2017-01-01

    This paper investigates the thermo-mechanical stress experienced by axial lead fuses used in power electronics. Based on some experience, the approach used in this paper is pure thermal cycling, and the found failure mechanisms have been investigated through X-ray imaging. A two-step analysis, i...... element has been confirmed thanks to the analysis performed. Finally, the fatigue analysis is presented obtained by FEM-based fatigue tool....

  9. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  10. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  11. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  12. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    Science.gov (United States)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  13. Survey of lead and CO--Hb in inhabitants in general

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, M.; Hitosugi, M.; Ishikawa, K.; Suzuki, T.

    1972-11-01

    To grasp the effects of air pollution on the human body in smaller cities, lead content and CO--Hb (carboxyhemoglobin) in blood were examined in inhabitants of Soka City, Saitama Prefecture, as well as the factors of living. The inhabitants are nonuniform as an occupational population, however, from the point of view that the work places are located in the same city they are considered to be uniform as an occupational population. In the city, the Pb content of air was 6, 2 to 5 and 1 microgram/cu m, respectively, in highly, moderately, and slightly polluted areas. The Pb content of blood of inhabitants in highly polluted areas in the city was on the arithmetical average - 15 micrograms/dl, and CO--Hb in the same individuals was 1.8% (2.6% in smokers and 1.2% in nonsmokers). These figures mean that the effect of air pollution was very slight in the inhabitants in this city.

  14. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  15. Estimation of the thermal stress in the coke layer. Kanryu katei ni okeru kokusu sonai netsuoryoku no suisan

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Takatsoshi; Yoshino, Hiroyuki; Saito, Shozaburo; Otani, Shigemori [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1989-12-20

    Fissures which are formed in coke ovens are an important factor which exerts influences not only on the quality of coke but also on consumed energy such as thermal transfer. An estimation method of thermal stress distribution in the coke layer which is important to determine these fissures was, therefore, proposed, and the propriety of the method was demonstrated in comparison with the experiment results by X-ray computerized tomography. In the analysis model, heat fluxes from the upper part of the carbonization room and from the heating wall were regarded the same, and the temperature field was obtained by formulating the non-steady heat conduction equation to the finite element method by Galerkin scheme. The stress field was presumed to be an elastic flat field, and it was formulated to the finite element method by the incremental theory. Following investigation results were obtained and thus the propriety of this method was demonstrated. The formation position of principal tensile stress calculated and the formation position of fissures observed by X-ray computerized tomography had a corresponding relation. According to the calculation, with the increase of heating rate, principal tensile stress was increased; and that accounted for experiment results. Estimated results of thermal stress in the layer varied depending on the coal's value of property of the matter. 8 refs., 15 figs., 2 tabs.

  16. Ghosts of thermal past: reef fish exposed to historic high temperatures have heightened stress response to further stressors

    Science.gov (United States)

    Mills, S. C.; Beldade, R.; Chabanet, P.; Bigot, L.; O'Donnell, J. L.; Bernardi, G.

    2015-12-01

    Individual exposure to stressors can induce changes in physiological stress responses through modulation of the hypothalamic-pituitary-interrenal (HPI) axis. Despite theoretical predictions, little is known about how individuals will respond to unpredictable short-lived stressors, such as thermal events. We examine the primary neuroendocrine response of coral reef fish populations from the Îles Eparses rarely exposed to anthropogenic stress, but that experienced different thermal histories. Skunk anemonefish, Amphiprion akallopisos, showed different cortisol responses to a generic stressor between islands, but not along a latitudinal gradient. Those populations previously exposed to higher maximum temperatures showed greater responses of their HPI axis. Archive data reveal thermal stressor events occur every 1.92-6 yr, suggesting that modifications to the HPI axis could be adaptive. Our results highlight the potential for adaptation of the HPI axis in coral reef fish in response to a climate-induced thermal stressor.

  17. Neurobehavioral effects among inhabitants around mobile phone base stations.

    Science.gov (United States)

    Abdel-Rassoul, G; El-Fateh, O Abou; Salem, M Abou; Michael, A; Farahat, F; El-Batanouny, M; Salem, E

    2007-03-01

    There is a general concern on the possible hazardous health effects of exposure to radiofrequency electromagnetic radiations (RFR) emitted from mobile phone base station antennas on the human nervous system. To identify the possible neurobehavioral deficits among inhabitants living nearby mobile phone base stations. A cross-sectional study was conducted on (85) inhabitants living nearby the first mobile phone station antenna in Menoufiya governorate, Egypt, 37 are living in a building under the station antenna while 48 opposite the station. A control group (80) participants were matched with the exposed for age, sex, occupation and educational level. All participants completed a structured questionnaire containing: personal, educational and medical histories; general and neurological examinations; neurobehavioral test battery (NBTB) [involving tests for visuomotor speed, problem solving, attention and memory]; in addition to Eysenck personality questionnaire (EPQ). The prevalence of neuropsychiatric complaints as headache (23.5%), memory changes (28.2%), dizziness (18.8%), tremors (9.4%), depressive symptoms (21.7%), and sleep disturbance (23.5%) were significantly higher among exposed inhabitants than controls: (10%), (5%), (5%), (0%), (8.8%) and (10%), respectively (Pstation exhibited a lower performance in the problem solving test (block design) than those under the station. All inhabitants exhibited a better performance in the two tests of visuomotor speed (Digit symbol and Trailmaking B) and one test of attention (Trailmaking A) than controls. The last available measures of RFR emitted from the first mobile phone base station antennas in Menoufiya governorate were less than the allowable standard level. Inhabitants living nearby mobile phone base stations are at risk for developing neuropsychiatric problems and some changes in the performance of neurobehavioral functions either by facilitation or inhibition. So, revision of standard guidelines for public

  18. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  19. Polyp bailout in Pocillopora damicornis following thermal stress [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alexander J Fordyce

    2017-08-01

    Full Text Available Polyp bailout is an established but understudied coral stress response that involves the detachment of individual polyps from the colonial form as a means of escaping unfavourable conditions. This may influence both the mortality and asexual recruitment of coral genotypes across a range of species. It has been observed in response to numerous stressors including high salinity and low pH. Polyp expulsion in association with thermal stress has once been described in a geographically restricted, temperate species. We therefore cannot reliably apply this observation to tropical coral reefs around the world, which are increasingly under threat from thermal stress events. We present the first qualitative observation of polyp bailout following acute temperature shock  in a near-natural mesocosm experiment. Detached polyps show similar characteristics to those described in previous studies, including the retention of endosymbiotic zooxanthellae and the ability to disperse across short distances. This finding strongly suggests that polyp bailout occurs in tropical coral reef environments and warrants further detailed research into the implication of this response in terms of individual survival, rapid migration into cooler micro-habitats and local recruitment within the reef environment and its coral community.

  20. Inhabiting compassion: A pastoral theological paradigm

    Directory of Open Access Journals (Sweden)

    Phil C. Zylla

    2017-08-01

    Full Text Available Inspired by the vision of care in Vincent van Gogh’s depiction of the parable of the Good Samaritan, this article offers a paradigm for inhabiting compassion. Compassion is understood in this article as a moral emotion that is also a pathocentric virtue. This definition creates a dynamic view of compassion as a desire to alleviate the suffering of others, the capacity to act on behalf of others and a commitment to sustain engagement with the suffering other. To weave this vision of compassion as a habitus rather than a theoretical construct, the article develops three phases of compassion: seeing, companioning and sighing. This framework deepens and augments a pastoral theological paradigm of compassion with the aim of inculcating an inhabited compassion in caregivers and the communities in which they participate.

  1. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  2. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    Science.gov (United States)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P goats.

  3. Transient thermal stress analysis of a near-edge elliptical defect in a semi-infinite plate subjected to a moving heat source

    International Nuclear Information System (INIS)

    Mingjong Wang; Weichung Wang

    1994-01-01

    In this paper, the maximum transient thermal stresses on the boundary of a near-edge elliptical defect in a semi-infinite thin plate were determined by the digital photoelastic technique, when the plate edge experiences a moving heat source. The relationships between the maximum transient thermal stresses and the size and inclination of the elliptical defect, the minimum distance from the elliptical defect to the plate edge as well as the speed of the moving heat source were also studied. Finally, by using a statistical analysis package, the variations of the maximum transient thermal stresses were then correlated with the time, the minimum distance between the edge and the elliptical defect, temperature difference, and speed of the moving heat source. (author)

  4. Environmental pollution by automotive source. II. Local inhabitants's reaction to environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, R; Hirara, K; Izumi, T; Mori, S

    1975-04-01

    The reaction of inhabitants to auto exhaust, noise, and vibration was surveyed in commercial and residential quarters by inquiries and measurement of the carbon monoxide in expired air of the inhabitants. About 65 percent of the inhabitants of busy quarters complained of severe reactions to auto exhaust, noise, and vibration; physical effects included headache, absentmindedness, loss of appetite, prickling of eyes, pain in the throat, and frequent colds. The concentration of carbon monoxide in the expired air of inhabitants of residential quarters was about 5 ppM, and in the busy quarter with much motor traffic the concentration was about 10 ppM. The concentration of carboxyhemoglobin in blood of the latter averaged 2.5 to 2.6 percent, and the former was 1.5 percent. The data were taken among non-smokers, and there were socio-economic differences among inhabitants of both quarters.

  5. Thermal fatigue evaluation of partially cooled pipes

    International Nuclear Information System (INIS)

    Kawasaki, N.; Kasahara, N.; Takasho, H.

    2004-01-01

    Concerning thermal striping phenomenon with a cold/hot spot, effect of the thermal spot on fatigue strength was investigated. The thermal spot causes membrane stress and enhances bending stress in the structure. Increased stress shortens the fatigue life and accelerates the crack propagation rate. The mechanism to increase stress was found to be the structural constraint of thermal strain by the thermal spot. To consider this mechanism, constraint efficiency factors were introduced to the thermal stress evaluation method based on frequency transfer functions developed by authors. Proposed method with these factors was validated through comparisons with cyclic FEA considering thermal spots. (orig.)

  6. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  7. DIFFERENTIAL BLOOD COUNT OF TENCH Tinca tinca (Linnaeus, 1758 IN CONDITIONS OF THERMAL STRESS

    Directory of Open Access Journals (Sweden)

    Edhem Hasković

    2014-03-01

    Full Text Available Defining the physiological feature provides an understanding of functional adaptation of species to its ecological niche as well as the various forms of stress factors. This paper gives an overview of changes in certain forms of leukocytes (WBC differential under the influence of thermal stress (increased temperature. In our experiment, we used 46 specimens of tench (Tinca tinca fished in the Jablanica Lake reservoir. Specimens had previously been adapted in specially prepared tanks for 20 days.  The control group of animals (16 was exposed to constant water temperature of 10 0C, while in the treated groups (30, the water temperature was gradually risen to 28 0C and, as such, held for 30 minutes. All specimens were aged 2+ and 3+.It was found that the thermal regime change causes adaptive response of tench specimens by increasing the number of neutrophils and pseudoeosinophils but reduction in the number of lymphocytes. Observed were statistically significant differences in the number of segmented granulocytes, pseudoeosinophils and lymphocytes between the control and the experimental group. However, a significantly higher number of segmented granulocytes and pseudoeosinophils was at the experimental group, while in the control group a number of lymphocytes was significantly higher compared with the experimental group. Neither form of leukocytes showed any significant difference between males and females of the experimental group. It is interesting to note that among individuals from both the control and experimental group, eosinophils and monocytes were rarely noticed, while basophils were not found at all. Key words: thermal stress, tench, Tinca tinca, pseudoeosinophils

  8. Effect of Thermal cycles and Dimensions of the Geometry on Residual stress of the Alumina-Kovar Joint

    Science.gov (United States)

    Mishra, Srishti; Pal, Snehanshu; Karak, Swapan Kumar; Shah, Sejal; Venakata Nagaraju, M.; Chakraborty, Arun Kumar

    2018-03-01

    Finite element method is employed to determine the effect of variation of residual stress with dimension and the stress generated under its working condition along the Kovar. 3 different dimensions of Alumina-Kovar joint with height to diameter ratio of 3/10, using TiCuSil as a filler material. Transient Structural Analysis is carried out for three different dimensions (diameter × height) (i) 60mm × 20mm (Geometry 1) (ii) 90mm × 20mm (Geometry 2) (iii) 120mm × 20mm (Geometry 3). A comparative study has been carried out between the residual stresses developed in the brazed joint that have undergone 5 thermal cycles subsequent to brazing and that between the brazed joint. The heating and cooling rates from the brazed temperature is 10°C/up to room temperature. The brazing temperature and holding time considered for the analysis are 900°C and 10 minutes. Representative Volume Element (RVE) model is used for simulation. Sparse Matrix Direct Solver method is used to evaluate the results, using Augmented Lagrange method formulation in the contact region. All the simulations are performed in ANSYS Workbench 15.0, using solver target Mechanical APDL. From, the above simulations it is observed high concentration of residual stress is observed along the filler region i.e. in between Alumina and Kovar, as a result of difference in coefficient of thermal expansion between Alumina and Kovar. The residual stress decreases with increasing dimensions of the geometry and upon application of thermal cycles, subsequent to brazing.

  9. Change of inhabitants consciousness on air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Imai, N; Abe, K; Komuro, K; Oda, M

    1972-11-01

    The consciousness of inhabitants in Isogo Ward, Yokohama City about air pollution was surveyed in 1969 and 1973. A group of industrial factories was partly in operation in 1969 but was in full operation by 1973. Fortunately there was very slight difference in sex ratio, age, occupation, health condition, and smoking habits of the objects between 1969 and 1973. The survey was performed by questionnaires consisting of 43 items. The percentage of positive answers to human impairments in 1969 and 1973 were: 38.7 and 34.2 experience of health damage; 8.1 and 5.4 of eye-irritation; 16.1 and 14.5 of throat-irritation; 5.8 and 13.6 of sneeze; 4.2 and 2.3 of snivel; 9.2 and 10.2 of cough; 3.6 and 17.1 of dyspnea; 5.4 and 7.4 of asthma; and 22.2 and 5.7 of odor. Generally, the largest source of air pollution in this area was auto exhaust followed by factory-exhaust, and the change of inhabitants consciousness about air pollution pointed out the situation. Most inhabitants were pessimistic about the future status of air pollution in the surveys in 1969 and also in 1973.

  10. Stress analysis in curved composites due to thermal loading

    Science.gov (United States)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  11. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  12. Investigation of stress in a circular tunnel due to overburden and thermal loading of horizontally placed 21 PWR multi purpose canisters

    International Nuclear Information System (INIS)

    Kandalaft-Ladkany, N.; Wyman, R.V.

    1994-01-01

    The drift of a High Level Nuclear Waste (HLNW) Repository were subjected to 2-D thermal loading resulting from the horizontal emplacement of 125 Ton Multi-Purpose Canisters (MPC). Ten 2-D temperature profiles, resulting from 57 Kw/acre and 114 Kw/acre thermal loading conditions, were used in a finite element analysis of the drift; in which a quadrant of the drift and surrounding rock ±100m above and below the drift were modeled. Our analysis shows that the 114 Kw/acre thermal loading results in compressive stresses around the drift, 60 years after emplacement, that exceed the unconfined compressive strength of the TSW tuff analyzed. Stresses resulting from a 57 Kw/acre thermal loading are within the acceptable limit in tunnel rock. A parametric analysis of the invert backfill material showed that Young's modulus for the invert backfill should closely match that of the surrounding unconfined rock in the tunnel in order to prevent an unacceptable stress rise in both rock and backfill

  13. Transient thermal stresses in a transversely isotropic finite composite hollow circular cylinder due to arbitrary surface heat-generations and surrounding temperatures

    International Nuclear Information System (INIS)

    Sugano, Y.

    1981-01-01

    An exact solution is given for the temperature distribution, the thermal stresses and displacements in a transversely isotropic finite composite hollow circular cylinder composed of two distinct cylindrical laminae. The temperature field is determined by using of the Laplace transform and the finite Fourier-cosine transform, respectively, with respect to time and axial coordinate included in the governing equation and the associated thermal stresses and displacements are analvsed by the use of a set of stress functions closely related to the Love's function valid for the axisymmetric isothermal problem of isotropic bodies. (orig.)

  14. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  15. Thermal and stress analyses with ANSYS program

    International Nuclear Information System (INIS)

    Kanoo, Iwao; Kawaguchi, Osamu; Asakura, Junichi.

    1975-03-01

    Some analyses of the heat conduction and elastic/inelastic stresses, carried out in Power Reactor and Nuclear Fuel Development Corporation (PNC) in fiscal 1973 using ANSYS (Engineering Analysis System) program, are summarized. In chapter I, the present state of structural analysis programs available for a FBR (fast breeder reactor) in PNC is explained. Chapter II is a brief description of the ANSYS current status. In chapter III are presented 8 examples of the steady-state and transient thermal analyses for fast-reactor plant components, and in chapter IV 5 examples of the inelastic structural analysis. With the advance in the field of finite element method, its applications in design study should extend progressively in the future. The present report, it is hoped, will contribute as references in similar analyses and at the same time help to understand the deformation and strain behaviors of structures. (Mori, K.)

  16. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  17. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  18. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Science.gov (United States)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  19. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Directory of Open Access Journals (Sweden)

    Schwarzova Ivana

    2016-12-01

    Full Text Available The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution and physically (by ultrasonic procedure treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  20. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    Energy Technology Data Exchange (ETDEWEB)

    Nickols, A N [Codes Coordinator, Atomics International, P. O. Box 309, Canoga Park, California 91304 (United States)

    1975-03-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units.

  1. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    International Nuclear Information System (INIS)

    Nickols, A.N.

    1975-01-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units

  2. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    International Nuclear Information System (INIS)

    Arregui-Mena, José David; Margetts, Lee; Griffiths, D.V.; Lever, Louise; Hall, Graham; Mummery, Paul M.

    2015-01-01

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  3. Spatial variability in the coefficient of thermal expansion induces pre-service stresses in computer models of virgin Gilsocarbon bricks

    Energy Technology Data Exchange (ETDEWEB)

    Arregui-Mena, José David, E-mail: jose.arreguimena@postgrad.manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Margetts, Lee, E-mail: lee.margetts@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Griffiths, D.V., E-mail: d.v.griffiths@mines.edu [Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Lever, Louise, E-mail: louise.lever@manchester.ac.uk [Research Computing, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Hall, Graham, E-mail: graham.n.hall@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2015-10-15

    In this paper, the authors test the hypothesis that tiny spatial variations in material properties may lead to significant pre-service stresses in virgin graphite bricks. To do this, they have customised ParaFEM, an open source parallel finite element package, adding support for stochastic thermo-mechanical analysis using the Monte Carlo Simulation method. For an Advanced Gas-cooled Reactor brick, three heating cases have been examined: a uniform temperature change; a uniform temperature gradient applied through the thickness of the brick and a simulated temperature profile from an operating reactor. Results are compared for mean and stochastic properties. These show that, for the proof-of-concept analyses carried out, the pre-service von Mises stress is around twenty times higher when spatial variability of material properties is introduced. The paper demonstrates that thermal gradients coupled with material incompatibilities may be important in the generation of stress in nuclear graphite reactor bricks. Tiny spatial variations in coefficient of thermal expansion (CTE) and Young's modulus can lead to the presence of thermal stresses in bricks that are free to expand. - Highlights: • Open source software has been modified to include random variability in CTE and Young's modulus. • The new software closely agrees with analytical solutions and commercial software. • Spatial variations in CTE and Young's modulus produce stresses that do not occur with mean values. • Material variability may induce pre-service stress in virgin graphite.

  4. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  5. The transcriptomic response to thermal stress is immediate, transient and potentiated by ultraviolet radiation in the sea anemone Anemonia viridis.

    Science.gov (United States)

    Moya, A; Ganot, P; Furla, P; Sabourault, C

    2012-03-01

    Among the environmental threats to coral reef health, temperature and ultraviolet increases have been proposed as major agents, although the relative contribution of each in the cnidarian/zooxanthellae symbiosis breakdown has been poorly addressed. We have investigated the transcriptomic response to thermal stress, with and without ultraviolet radiation (UVR), in the symbiotic sea anemone Anemonia viridis. Using the Oligo2K A. viridis microarray, dedicated to genes potentially involved in the symbiosis interaction, we monitored the gene expression profiles after 1, 2 and 5 days of stresses that further lead to massive losses of zooxanthellae. Each stress showed a specific gene expression profile with very little overlap. We showed that the major response to thermal stress is immediate (24 h) but returns to the baseline gene expression profile after 2 days. UVR alone has little effect but potentiates thermal stress, as a second response at 5 days was observed when the two stresses were coupled. Several pathways were highlighted, such as mesoglea loosening, cell death and calcium homeostasis and described in more details. Finally, we showed that the dermatopontin gene family, potentially involved in collagen fibrillogenesis, issued from actinarian-specific duplication events, with one member preferentially expressed in the gastroderm and specifically responding to stress. Anemonia viridis EST sequences have been deposited into GenBank dbEST ([GenBank:FK719875–FK759813]. © 2012 Blackwell Publishing Ltd.

  6. Transient thermal stresses due to a zonal heat source moving back and forth over the surface on an infinite plate

    International Nuclear Information System (INIS)

    Sumi, N.; Hetnarski, R.B.

    1989-01-01

    A solution is given for the transient thermal stresses due to a zonal heat source moving back and forth with a constant angular frequency over the surface of an infinite elastic plate. The transient temperature distribution is obtained by using the complex Fourier and Laplace transforms, and the associated thermal stresses are obtained by means of the thermoelastic displacement potential and the Galerkin function. Graphical representations for the solution in dimensionless terms are included in this paper. (orig.)

  7. Laser cutting of triangular geometry into 2024 aluminum alloy: Influence of triangle size on thermal stress field

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, Bekir Sami; Akhtar, Syed Sohail [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Keles, Omer; Boran, Kurtulus [Gazi University, Ankara (Turkmenistan)

    2015-08-15

    Laser cutting of a triangular geometry into aluminum 2024 alloy is carried out. Thermal stress field in the cutting section is predicted using the finite element code ABAQUS. Surface temperature predictions are validated through the thermocouple data. Morphological changes in the cut section are examined incorporating optical and electron scanning microscopes. The effects of the size of the triangular geometry on thermal stress field are also examined. It is found that surface temperature predictions agree well with thermocouple data. von Mises stress remains high in the region close to the corners of the triangular geometry, which is more pronounced for the small size triangle. This behavior is associated with the occurrence of the high cooling rates in this region. Laser cut edges are free from large scale sideways burning and large size burr attachments. However, some locally scattered dross attachments are observed at the kerf exit.

  8. Pressurized-thermal-shock technology

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1991-01-01

    It was recognized at the time the original Issues on Pressurized Thermal Shock (IPTS) studies were conducted that distinct vertical plumes of cooling water form beneath the cold leg inlet nozzles during those particular transients that exhibit fluid/thermal stratification. The formation of these plumes (referred to as thermal streaming) induces a time-dependent circumferential temperature variation on the inner surface of the Reactor Pressure Vessel (RPV) wall that creates an axial stress component. This axial stress component is in addition to the axial stress components induced by time-dependent radial temperature variation through the wall thickness and the time-dependent pressure transient. This additional axial stress component will result in a larger axial stress resultant that results in a larger stress-intensity factor acting on circumferential flaws, thus reducing the fracture margin for circumferential flaws. Although this was recognized at the time of the original IPTS study, the contribution appeared to be relatively small; therefore, it was neglected. The original IPTS studies were performed with OCA-P, a computer program developed at ORNL to analyze the cleavage fracture response of a nuclear RPV subjected to PTS loading. OCA-P is a one-dimensional (1-D) finite-element code that analyzes the stresses and stress-intensity factors (axial and tangential) resulting from the pressure and the radial temperature variation through the wall thickness only. The HSST Program is investigating the potential effects of thermal-streaming-induced stresses in circumferential welds on the reactor vessel PTS analyses. The initial phase of this investigation focused on an evaluation of the available thermal-hydraulic data and analyses results. The objective for the initial phase of the investigation is to evaluate thermal-streaming behavior under conditions relevant to the operation of U.S. PWRs and chracterize any predicted thermal-streaming plumes

  9. Thermal stress analysis of the fuel storage facility

    International Nuclear Information System (INIS)

    Chen, W.W.

    1991-12-01

    This paper presents the results of a nonlinear finite-element analysis to determine the structural integrity of the walls of the nuclear fuel storage room in the Radio Isotope Power System Facility of the Fuels and Materials Examination Facility (FMEF) Project. The analysis was performed to assess the effects of thermal loading on the walls that would result from a loss-of-cooling accident. The results obtained from using the same three-dimensional finite-element model with different types of elements, the eight-node brick element and the nonlinear concrete element, and the calculated results using the analytical solutions, are compared. The concrete responses in terms of octahedral normal and shearing stresses are described. The crack and crush states of the concrete were determined on the basis of multiaxial failure criteria

  10. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  11. Stress and phase changes in a low-thermal-expansion Al-3at.%Ge alloy film on oxidized silicon wafers

    International Nuclear Information System (INIS)

    Tu, K.N.; Rodbell, K.P.; Herd, S.R.; Mikalsen, D.J.

    1993-01-01

    The alloy of Al-3at.%Ge has been found to have a low thermal expansion and contraction in the temperature range of room temperature to 400 C. The reason for the low thermal contraction (or expansion) is the precipitation (or dissolution) of Ge in the alloy. The Ge precipitates have a diamond structure in which each Ge atom occupies a much larger atomic volume than a Ge atom dissolved substitutionally in Al. The volume difference compensates for the effect of thermal expansion and contraction with changing temperature which in turn reduces the thermal stress due to thermal mismatch. The technique of wafer bending was used to determine the stress of the alloy film on oxidized silicon wafers upon thermal cycling; indeed, it is much lower than that of pure Al on identical wafers. The morphology of precipitation and dissolution of Ge in Al has been studied by transmission and scanning electron microscopy. It is found that the precipitation follows a discontinuous mode and occurs predominantly along grain boundaries. In dissolving the Ge precipitates into Al, voids are left behind because of the volume difference. It is proposed that this may explain the enhancement of nucleation of voids in the alloy film upon thermal cycling. (orig.)

  12. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  13. Inhabiting Adaptive Architecture

    Directory of Open Access Journals (Sweden)

    Holger Schnädelbach

    2017-12-01

    Full Text Available Adaptive Architecture concerns buildings that are specifically designed to adapt to their inhabitants and to their environments. Work in this space has a very long history, with a number of adaptive buildings emerging during the modernist period, such as Rietveld’s Schröder house, Gaudi’s Casa Batlló and Chareau's Maison de Verre. Such early work included manual adaptivity, even if that was motor-assisted. Today, buildings have started to combine this with varying degrees of automation and designed-for adaptivity is commonplace in office buildings and eco homes, where lighting, air conditioning, access and energy generation respond to and influence the behaviour of people, and the internal and external climate.

  14. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Williams, J.S.; Conway, M.J.

    2000-01-01

    Ion beam modification of thermal shock stress resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for all the faces tested and reduces the degree of fracture damage following thermal shock. The theoretical resistance parameters for various crystal faces are calculated using the continuum mechanics approach. The results are discussed on the basis of fracture mechanics principles and the effect of the implantation-induced lattice damage on crack nucleation

  15. Repeated Thermal Stress, Shading, and Directional Selection in the Florida Reef Tract

    Directory of Open Access Journals (Sweden)

    Robert van Woesik

    2017-06-01

    Full Text Available Over the last three decades reef corals have been subjected to an unprecedented frequency and intensity of thermal-stress events, which have led to extensive coral bleaching, disease, and mortality. Over the next century, the climate is predicted to drive sea-surface temperatures to even higher levels, consequently increasing the risk of mass bleaching and disease outbreaks. Yet, there is considerable temporal and spatial variation in coral bleaching and in disease prevalence. Using data collected from 2,398 sites along the Florida reef tract from 2005 to 2015, this study examined the temporal and spatial patterns of coral bleaching and disease in relation to coral-colony size, depth, temperature, and chlorophyll-a concentrations. The results show that coral bleaching was most prevalent during the warmest years in 2014 and 2015, and disease was also most prevalent in 2010, 2014, and 2015. Although the majority of the corals surveyed were found in habitats with low chlorophyll-a concentrations, and high irradiance, these same habitats showed the highest prevalence of coral bleaching and disease outbreaks during thermal-stress events. These results suggest that directional selection in a warming ocean may favor corals able to tolerate inshore, shaded environments with high turbidity and productivity.

  16. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  17. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  18. Feasibility and validity of animal-based indicators for on-farm welfare assessment of thermal stress in dairy goats.

    Science.gov (United States)

    Battini, Monica; Barbieri, Sara; Fioni, Luna; Mattiello, Silvana

    2016-02-01

    This investigation tested the feasibility and validity of indicators of cold and heat stress in dairy goats for on-farm welfare assessment protocols. The study was performed on two intensive dairy farms in Italy. Two different 3-point scale (0-2) scoring systems were applied to assess cold and heat stress. Cold and heat stress scores were visually assessed from outside the pen in the morning, afternoon and evening in January-February, April-May and July 2013 for a total of nine sessions of observations/farm. Temperature (°C), relative humidity (%) and wind speed (km/h) were recorded and Thermal Heat Index (THI) was calculated. The sessions were allocated to three climatic seasons, depending on THI ranges: cold (65). Score 2 was rarely assessed; therefore, scores 1 and 2 were aggregated for statistical analysis. The amount of goats suffering from cold stress was significantly higher in the cold season than in neutral (P stress were recorded only in the hot season (P stress scores are valid indicators to detect thermal stress in intensively managed dairy goats. The use of a binary scoring system (presence/absence), merging scores 1 and 2, may be a further refinement to improve the feasibility. This study also allows the prediction of optimal ranges of THI for dairy goat breeds in intensive husbandry systems, setting a comfort zone included into 55 and 70.

  19. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    Science.gov (United States)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  20. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 20. Thermo-mechanical stress analysis and development of thermal loading guidelines

    International Nuclear Information System (INIS)

    1978-04-01

    This volume is one of a 23-volume series which supplements a Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel, and uranium-only recycling. The thermo-mechanical analysis of proposed preconceptual repositories in granite, shale and basalt have been undertaken. The analysis, was conducted on three different levels of scale (i) Very Near Field (canister scale), (ii) Near Field (excavation scale) and (iii) Far Field (regional scale) studies. Three numerical methods were used to undertake the thermo-mechanical calculations; namely, the finite element method for thermal stress analysis, the boundary element method for thermal and thermal stress analysis and the semi-analytical method also for thermal and thermal stresses analysis. From the thermo-mechanical studies with simplifying assumptions on rock mass behavior where applicable, recommendations for areal thermal loadings to assure retrievability of the canisters and long term safety of the repository are given

  1. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  2. Repeated Thermal Stress, Shading, and Directional Selection in the Florida Reef Tract

    OpenAIRE

    Robert van Woesik; Kelly R. McCaffrey

    2017-01-01

    Over the last three decades reef corals have been subjected to an unprecedented frequency and intensity of thermal-stress events, which have led to extensive coral bleaching, disease, and mortality. Over the next century, the climate is predicted to drive sea-surface temperatures to even higher levels, consequently increasing the risk of mass bleaching and disease outbreaks. Yet, there is considerable temporal and spatial variation in coral bleaching and in disease prevalence. Using data coll...

  3. Stress-related responses after 3 years of exposure to terror in Israel: are ideological-religious factors associated with resilience?

    Science.gov (United States)

    Kaplan, Zeev; Matar, Michael A; Kamin, Ram; Sadan, Tamar; Cohen, Hagit

    2005-09-01

    The inhabitants of 3 different types of population centers in Israel were assessed as to stress-related symptomatology during 2003 and 2004. These centers have been exposed to 2 distinct forms of violence-sporadic, large-scale terror attacks in the metropolitan areas in the heart of Israel and daily "war-zone" conditions in the settlements beyond the 1967 borders of Israel. A semistructured interview and questionnaire survey of a random sample of 314 inhabitants of a suburb of Tel-Aviv, a settlement in the West Bank (Kiryat-Arba), and the Gush-Katif settlement cluster in the Gaza Strip was performed. Symptoms of acute stress and chronic (posttraumatic) stress as well as symptoms of general psychopathology and distress were assessed. The inhabitants of Gush-Katif, in spite of firsthand daily exposure to violent attacks, reported the fewest and least severe symptoms of stress-related complaints, the least sense of personal threat, and the highest level of functioning of all 3 samples. The most severely symptomatic and functionally compromised were the inhabitants of the Tel-Aviv suburb, who were the least frequently and least directly affected by exposure to violent attacks. Because the Gush-Katif population is exclusively religious, the data were reassessed according to religiousness. The religious inhabitants of Kiryat-Arba had almost the same symptom profile as the Gush-Katif population, whereas secular inhabitants of Kiryat-Arba reported faring worse than did either population in the Tel-Aviv suburb. Deeply held belief systems affecting life-views may impart significant resilience to developing stress-related problems, even under extreme conditions. Religiousness combined with common ideological convictions and social cohesion was associated with substantial resilience as compared to a secular metropolitan urban population.

  4. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  5. Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Ghasemi

    2014-08-01

    Full Text Available The micromechanical models are used to investigate mechanical and thermal properties of a polymer matrix nanocomposite containing multi-walled carbon nanotubes (MWCNT in their effects to reduce residual stresses in nanocomposites. To do this, first nanotubes with different weights and volume fractions were dispersed in ML-506 epoxy resin. By using different micromechanical models, the effect additional nanotubes on elastic modulus and coefficient of thermal expansion (CTE of nanotubes/epoxy were studied as critical parameters. Comparing the model and available experimental results, the modified Halpin-Tsai model and the modified Schapery model were chosen to calculate the mechanical and thermal properties of the nanocomposites. Then, using the matrix reinforced with MWCNT and classical micromechanics models the elastic modulus and coefficients of thermal expansion of the nanocomposites were determined for a single orthotropic ply. The results showed that the rule of mixture (ROM and Hashin-Rosen model to determine the longitudinal and transverse elastic moduli and Van Fo Fy model to calculate the coefficient of thermal expansion were in good agreements with the experimental results of a single-layer nanocomposite. Finally, the classical laminated plate theory (CLPT was used to calculate the residual stresses of the CNT/carbon fiber/epoxy composites with different weights and volume fractions of MWCNT for angle-ply, cross-ply and quasi-isotropic laminated composite materials. The results showed that residual stresses were reduced using a maximum of 1% wt or 0.675% volume fraction of the MWCNT in polymer composites. Also, the highest reduction in residual stresses was observed in [02/902] cross-ply laminated composite materials.

  6. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata

    Directory of Open Access Journals (Sweden)

    Arjen Tilstra

    2017-10-01

    Full Text Available Recent research suggests that prior exposure of several months to elevated irradiance induces enhanced thermal tolerance in scleractinian corals. While this tolerance has been reported at the species level, individual coral colonies may react differently due to individual variability in thermal tolerance. As thermal anomalies are predicted to become common in the upcoming future, intraspecific variation may be key to the survival of coral populations. In order to study light-history based thermal stress responses on individual colonies, we developed a preliminary microcosm experiment where three randomly chosen, aquacultured colonies of the model coral Stylophora pistillata were exposed to two irradiance treatments (200 and 400 μmol photons m−2 s−1 for 31 days, followed by artificially induced heat stress (∼33.4 °C. We found different responses to occur at both the intraspecific and the intracolonial levels, as indicated by either equal, less severe, delayed, and/or even non-necrotic responses of corals previously exposed to the irradiance of 400 compared to 200 μmol photons m−2 s−1. In addition, all individual colonies revealed light-enhanced calcification. Finally, elevated irradiance resulted in a lower chlorophyll a concentration in one colony compared to the control treatment, and the same colony displayed more rapid bleaching compared to the other ones. Taken together, this study highlights the potential importance of intra-individual variability in physiological responses of scleractinian corals and provides recommendations for improving methodological designs for future studies.

  7. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  8. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish

    Science.gov (United States)

    Chadwick, Joseph G; Nislow, Kieth H; McCormick, Stephen

    2015-01-01

    Climate change is predicted to change the distribution and abundance of species, yet underlying physiological mechanisms are complex and methods for detecting populations at risk from rising temperature are poorly developed. There is increasing interest in using physiological mediators of the stress response as indicators of individual and population-level response to environmental stressors. Here, we use laboratory experiments to show that the temperature thresholds in brook trout (Salvelinus fontinalis) for increased gill heat shock protein-70 (20.7°C) and plasma glucose (21.2°C) are similar to their proposed thermal ecological limit of 21.0°C. Field assays demonstrated increased plasma glucose, cortisol and heat shock protein-70 concentrations at field sites where mean daily temperature exceeded 21.0°C. Furthermore, population densities of brook trout were lowest at field sites where temperatures were warm enough to induce a stress response, and a co-occurring species with a higher thermal tolerance showed no evidence of physiological stress at a warm site. The congruence of stress responses and proposed thermal limits supports the use of these thresholds in models of changes in trout distribution under climate change scenarios and suggests that the induction of the stress response by elevated temperature may play a key role in driving the distribution of species.

  9. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  10. Thermal stresses calculations in near-surface layers of sphere bodies, falling to the Sun

    International Nuclear Information System (INIS)

    Demchenko, B.I.; Shestakova, L.I.

    2005-01-01

    Profiles of temperature and temperature stresses in surface layers of silicate and icy spheric bodies, falling to the Sun along parabolic orbits were obtained on the base of the analytical solution of the linear heat diffusion equation. Results may be useful for thermal evolution analysis of meteor and comet bodies in the Sun system. (author)

  11. A Ground-Nesting Galliform's Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds.

    Science.gov (United States)

    Carroll, J Matthew; Davis, Craig A; Elmore, R Dwayne; Fuhlendorf, Samuel D

    2015-01-01

    The habitat selection choices that individuals make in response to thermal environments influence both survival and reproduction. Importantly, the way that organisms behaviorally respond to thermal environments depends on the availability and juxtaposition of sites affording tolerable or preferred microclimates. Although, ground nesting birds are especially susceptible to heat extremes across many reproductive stages (i.e., breeding, nesting, brood rearing), the mechanistic drivers of nest site selection for these species are not well established from a thermal perspective. Our goal was to assess nest site selection relative to the configuration of the thermal landscape by quantifying thermal environments available to a ground-nesting bird species inhabiting a climatically stressful environment. Using northern bobwhite (Colinus virginanus) as a model species, we measured black bulb temperature (Tbb) and vegetation parameters at 87 nests, 87 paired sites and 205 random landscape sites in Western Oklahoma during spring and summer 2013 and 2014. We found that thermal space within the study area exhibited differences in Tbb of up to 40°C during peak diurnal heating, resulting in a diverse thermal landscape available to ground-nesting birds. Within this thermally heterogeneous landscape, nest sites moderated Tbb by more than 12°C compared to random landscape sites. Furthermore, successful nests remained on average 6°C cooler than unsuccessful nests on days experiencing ambient temperatures ≥ 39°C. Models of future Tbb associated with 2080 climate change projections indicate that nesting bobwhites will face substantially greater Tbb throughout the landscape for longer durations, placing an even greater importance on thermal choices for nest sites in the future. These results highlight the capacity of landscape features to act as moderators of thermal extremes and demonstrate how thermal complexity at organism-specific scales can dictate habitat selection.

  12. Ion beam modification of thermal stress resistance of MgO single crystals with different crystallographic faces

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Otsuka, P.H.; Jamieson, D.N.; Williams, J.S.; Conway, M.

    1999-01-01

    Ion beam modification of thermal shock stress and damage resistance of MgO single crystals with various crystallographic faces is investigated. The most stable crystal faces in terms of stress and damage resistance are established. Ion implantation is shown to reduce the temperature threshold of fracture for all crystal faces tested. The (111) face is demonstrated to be of highest stability compared to (110) and (100) faces in both implanted and unimplanted crystals. At the same time ion implantation substantially increases the microcrack density for the faces tested and reduces the degree of fracture damage following thermal shock. The microcrack density is found to be highest in the crystals with (110) face in comparison with the (001) and (111) faces. The effect is analysed using fracture mechanics principles and discussed in terms of the implantation-induced lattice damage

  13. Geochemical characterisation of kerogen from the Boom Clay Formation (Mol, Belgium) and evolution under different thermal stress

    International Nuclear Information System (INIS)

    Deniau, I.

    2002-12-01

    The Boom clay formation in Belgium has been chosen as test site for the disposal of high level radioactive wastes. The organic matter present in the clay (kerogen) is sensible to the thermal stress and can generate a huge number of gaseous and liquid compounds leading to local pH changes and to fracturing processes. In particular, some polar compounds can complex radionuclides. The samples analyzed in this work were taken in the underground laboratory of Mol at a 223 m depth. They have been analyzed in detail using geochemical methods (Rock-Eval pyrolysis, element analysis, transmission and scanning electron microscopy), spectroscopic methods (Fourier transformation infrared spectroscopy, solid state 13 C NMR, Raman) and pyrolytic methods (off-line, on-line and in sealed tubes combined with coupled CG/SM analyses). The study of a representative sample of this formation has permitted to characterize the organic matter at the molecular scale, to determine its fossilization mechanisms and the nature of the organic compounds trapped inside the kerogen. The organic matter of the Boom clays comes mainly from phyto-planktonic matter with an important contribution of terrestrial and bacterial matter. The degradation-recondensation played an important role in its preservation but the presence of numerous oxygenated molecules implies that oxidative incorporation also participated to this preservation. Finally, various products (hydrocarbons, oxygenated and nitrogenous polar compounds) trapped in significant amount inside the macro-molecular structure are released under a relatively weak thermal stress. Moreover several small polar organic molecules are released and can play a significant role in the retention or migration of radionuclides inside the geologic barrier. A sample submitted to a in-situ thermal stress of 80 deg. C during 5 years (Cerberus experiment) do not show any significant change in its kerogen structure with respect to the non-heated reference sample

  14. Compressive strength evolution of thermally-stressed Saint Maximin limestone.

    Science.gov (United States)

    Farquharson, J.; Griffiths, L.; Baud, P.; Wadsworth, F. B.; Heap, M. J.

    2017-12-01

    The Saint Maximin quarry (Oise, France) opened in the early 1600s, and its limestone has been used extensively as masonry stone, particularly during the classical era of Parisian architecture from the 17th century onwards. Its widespread use has been due to a combination of its regional availability, its high workability, and its aesthetic appeal. Notable buildings completed using this material include sections of the Place de la Concorde and the Louvre in Paris. More recently, however, it has seen increasing use in the construction of large private residences throughout the United States as well as extensions to private institutions such as Stanford University. For any large building, fire hazard can be a substantial concern, especially in tectonically active areas where catastrophic fires may arise following large-magnitude earthquakes. Typically, house fires burn at temperatures of around 600 °C ( 1000 F). Given the ubiquity of this geomaterial as a building stone, it is important to ascertain the influence of heating on the strength of Saint Maximin limestone (SML), and in turn the structural stability of the buildings it is used in. We performed a series of compressive tests and permeability measurements on samples of SML to determine its strength evolution in response to heating to incrementally higher temperatures. We observe that the uniaxial compressive strength of SML decreases from >12 MPa at room temperature to 400 °C). We anticipate that this substantial weakening is in part a result of thermal microcracking, whereby changes in temperature induce thermal stresses due to a mismatch in thermal expansion between the constituent grains. This mechanism is compounded by the volumetric increase of quartz through its alpha - beta transition at 573 °C, and by the thermal decomposition of calcite. To track the formation of thermal microcracks, we monitor acoustic emissions, a common proxy for microcracking, during the heating of an SML sample. The

  15. Knowledge of the inhabitants of Belarus on the radiation and power problems

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2000-01-01

    The anonymous questionnaire of the inhabitants living in various regions of Belarus and having different age and level of education ha been done. The poll has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the health of a human being. The analysis of answers shows that people have a rather vague idea in the sphere considered. The analysis of the questionnaires shows that women are informed worse than men about the problems on radiation subjects. The investigation carried out has shown what problems on nuclear power (and radiation safety) should be given the more serious consideration when working with population, especially with women's audience, in order to raise the level of accepting nuclear power as the necessary source of energy. (author)

  16. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    Becka, J.; Kupka, I.

    1976-01-01

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  17. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  18. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  19. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  20. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    Science.gov (United States)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  1. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  2. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  3. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state.

    Science.gov (United States)

    Richard, Nadège; Silva, Tomé S; Wulff, Tune; Schrama, Denise; Dias, Jorge P; Rodrigues, Pedro M L; Conceição, Luís E C

    2016-06-16

    A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed

  4. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    International Nuclear Information System (INIS)

    Leon, Lisa R.

    2008-01-01

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that are elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition

  5. Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO₂-laser annealing.

    Science.gov (United States)

    Lai, Man-Hong; Lim, Kok-Sing; Gunawardena, Dinusha S; Yang, Hang-Zhou; Chong, Wu-Yi; Ahmad, Harith

    2015-03-01

    In this work, we have demonstrated thermal stress relaxation in regenerated fiber Bragg gratings (RFBGs) by using direct CO₂-laser annealing technique. After the isothermal annealing and slow cooling process, the Bragg wavelength of the RFBG has been red-shifted. This modification is reversible by re-annealing and rapid cooling. It is repeatable with different cooling process in the subsequent annealing treatments. This phenomenon can be attributed to the thermal stress modification in the fiber core by means of manipulation of glass transition temperature with different cooling rates. This finding in this investigation is important for accurate temperature measurement of RFBG in dynamic environment.

  6. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the thermal infrared multispectral scanner

    Science.gov (United States)

    Pierce, Lars L.; Running, Steven W.; Riggs, George A.

    1990-01-01

    Water stress was induced in two coniferous forest stands in West Germany by severing tree sapwood. Leaf water potential, Psi(L), measurements indicated that maximum, naturally occurring levels of water stress developed in the stressed plots while control plots exhibited natural diurnal trends. Images of each site were obtained with the Thematic Mapper Simulator (NS001) and the Thermal Infrared Multispectral Scanner (TIMS) 12 to 15 days after stress induction. NS001 bands 2 to 6, NS001 indices combining bands 4 and 6, and NS001 and TIMS thermal bands showed significant radiance differences between stressed and control plots when large differences in Psi(L) and relative water content (RWC) existed during the morning overflights at Munich. However, the NS001 and TIMS sensors could not detect the slightly smaller differences in Psi(L) and RWC during the Munich afternoon and Frankfurt overflights. The results suggest that routine detection of canopy water stress under operational conditions is difficult utilizing current sensor technology.

  7. Design and simulation of thermal residual stresses of coatings on WC-Co cemented carbide cutting tool substrate

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Zang, Jian; Zheng, Wei

    2016-01-01

    Large thermal residual stresses in coatings during the coating deposition process may easily lead to coating delamination of coated carbide tools in machining. In order to reduce the possibility of coating delamination during the tool failure process, a theoretical method was proposed and a numerical method was constructed for the coating design of WC-Co cemented carbide cutting tools. The thermal residual stresses of multi-layered coatings were analytically modeled based on equivalent parameters of coating properties, and the stress distribution of coatings are simulated by Finite element method (FEM). The theoretically calculated results and the FEM simulated results were verified and in good agreement with the experimental test results. The effects of coating thickness, tool substrate, coating type and interlayer were investigated by the proposed geometric and FEM model. Based on the evaluations of matchability of tool substrate and tool coatings, the basic principles of tool coating design were proposed. This provides theoretical basis for the selection and design of coatings of cutting tools in high-speed machining

  8. Thermohydraulic and thermal stress aspects of a porous blockage in an LMFBR fuel assembly

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Marr, W.W.; Helenberg, H.W.; Ariman, T.; Wilson, R.E.; Pedersen, D.R.

    1979-01-01

    The current safety scenarios of Liquid Metal Fast Breeder Reactors (LMFBR) under local fault propagation include the study of a hypothetical accident initiated by the formation of an external debris porous blockage in a fuel subassembly. In this preliminary experimental and analytical investigation, a non-heat-generating porous blockage was postulated to cover 18 flow channels of a 37 pin Fast Test Reactor (FTR) type fuel subassembly. The axial extent of the blockage is 50 mm. The blockage material is stainless steel (SS 316) with 30 percent average porosity (percent void volume). The blockage and the pins were modeled with a finite element technique and the thermal field in the blockage was predicted. This thermal field was utilized to do a planar thermal stress analysis of the postulated blockage. To verify the analytical model and also to better understand the thermal-hydraulics of such a porous blockage out-of-pile tests were conducted in a sodium loop. Data from the out-of-pile tests was utilized to calibrate and improve the analytical model

  9. Dissepiments, density bands and signatures of thermal stress in Porites skeletons

    Science.gov (United States)

    DeCarlo, Thomas M.; Cohen, Anne L.

    2017-09-01

    The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the

  10. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  11. Environmental pollution by automotive source. II. Local inhabitants's reaction to environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, R.; Hirara, K.; Izumi, T.; Mori, S.

    1975-04-01

    The reaction of inhabitants to auto exhaust, noise, and vibration was surveyed in commercial and residential quarters by inquiries and measurement of the carbon monoxide in expired air of the inhabitants. About 65 percent of the inhabitants of busy quarters complained of severe reactions to auto exhaust, noise, and vibration; physical effects included headache, absentmindedness, loss of appetite, prickling of eyes, pain in the throat, and frequent colds. The concentration of carbon monoxide in the expired air of inhabitants of residential quarters was about 5 ppM, and in the busy quarter with much motor traffic the concentration was about 10 ppM. The concentration of carboxyhemoglobin in blood of the latter averaged 2.5 to 2.6 percent, and the former was 1.5 percent. The data were taken among non-smokers, and there were socio-economic differences among inhabitants of both quarters.

  12. High Resolution Decision Maps for Urban Planning: A Combined Analysis of Urban Flooding and Thermal Stress Potential In Asia and Europe

    Directory of Open Access Journals (Sweden)

    Boogaard Floris

    2017-01-01

    Full Text Available Urban flooding and thermal stress have become key issues for many cities around the world. With the continuing effects of climate change, these two issues will become more acute and will add to the serious problems already experienced in dense urban areas. Therefore, the sectors of public health and disaster management are in the need of tools that can assess the vulnerability to floods and thermal stress. The present paper deals with the combination of innovative tools to address this challenge. Three cities in different climatic regions with various urban contexts have been selected as the pilot areas to demonstrate these tools. These cities are Tainan (Taiwan, Ayutthaya (Thailand and Groningen (Netherlands. For these cities, flood maps and heat stress maps were developed and used for the comparison analysis. The flood maps produced indicate vulnerable low-lying areas, whereas thermal stress maps indicate open, unshaded areas where high Physiological Equivalent Temperature (PET values (thermal comfort can be expected. The work to date indicates the potential of combining two different kinds of maps to identify and analyse the problem areas. These maps could be further improved and used by urban planners and other stakeholders to assess the resilience and well-being of cities. The work presented shows that the combined analysis of such maps also has a strong potential to be used for the analysis of other challenges in urban dense areas such as air and water pollution, immobility and noise disturbance.

  13. Fire and EMS Districts - MDC_FDStationTerritoryInhabited

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A polygon feature class of Miami-Dade County Fire Rescue (MDFR) Fire District Station Territories clipped to the extent of inhabited areas. This layer is intended...

  14. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  15. Cracking of GaN on sapphire from etch-process-induced nonuniformity in residual thermal stress

    International Nuclear Information System (INIS)

    Lacroix, Yves; Chung, Sung-Hoon; Sakai, Shiro

    2001-01-01

    An experiment was performed to explain the appearance of cracks along mesa structures during the processing of GaN device layers grown on sapphire substrates. Micro-Raman spectroscopy was used to measure the position-dependent stress in the GaN layer. We show evidence that the stress at the interface with the substrate may be larger along the mesa structures than that of the as-grown layer, and that this increase in stress can be enough to induce cracks along mesa structures during processing. We report on the formation of cracks that propagate guided by the nonuniformity of the stress induced by the formation of mesa structures in the GaN layer, independent of crystal direction. The understanding of cracking mechanisms has implications in GaN-based device structures that require heteroepitaxial growth of layers with different lattice size and thermal expansion coefficients. [copyright] 2001 American Institute of Physics

  16. Mathematical modeling of thermal stresses in basic oxygen furnace hood tubes

    Science.gov (United States)

    Samarasekera, I. V.

    1985-06-01

    The stress-strain history of Basic Oxygen Furnace hood tubes during thermal cycling has been computed using heat flow and stress analyses. The steady-state temperature distribution in a transverse section of the tube was computed at a location where gas temperature in the hood could be expected to be a maximum. Calculations were performed for peak gas temperatures in the range 1950 to 2480 °C (3500 to 4500 °F). The stress-strain history of an element of material located at the center of the tube hot face was traced for three consecutive cycles using elasto-plastic finite-element analysis. It has been shown that the state of stress in the element alternates between compression and tension as the tube successively heats and cools. Yielding and plastic flow occurs at the end of each half of a given cycle. It was postulated that owing to repctitive yielding, plastic strain energy accumulates causing failure of the tubes by fatigue in the low cycle region. Using fatigue theory a conservative estimate for tube life was arrived at. In-plant observations support this mechanism of failure, and the number of cycles within which tube cracking was observed compares reasonably with model predictions. Utilizing the heat flow and stress models it was recommended that tube life could be enhanced by changing the tube material to ARMCO 17-4 pH or AISI 405 steel or alternatively reconstructing hoods with AISI 316L tubes of reduced thickness. These recommendations were based on the criterion that low-cycle fatigue failure could be averted if the magnitude of the cyclic strain could be reduced or if macroscopic plastic flow could be prevented.

  17. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  18. Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium

    Science.gov (United States)

    Oakley, Clinton A.; Hopkinson, Brian M.; Schmidt, Gregory W.

    2014-06-01

    A terminal electron acceptor alternative to mitochondrial cytochrome c oxidase (COX), mitochondrial alternative oxidase (AOX), is ubiquitous in higher plants and represented in nearly every algal taxon but is poorly documented in dinoflagellates. AOX competes for electrons with the conventional COX and has been hypothesized to function as a means of reducing oxidative stress in mitochondria, as well as a potential mechanism for ameliorating thermal and other physiological stressors. Here, the presence of an active AOX in cultured Symbiodinium was assayed by the response of oxygen consumption to the AOX inhibitor salicylhydroxamic acid (SHAM) and the COX inhibitor cyanide (CN). CN-insensitive, SHAM-sensitive oxygen consumption was found to account for a large portion (26 %) of Symbiodinium dark respiration and is consistent with high levels of AOX activity. This experimental evidence of the existence of a previously unreported terminal oxidase was further corroborated by analysis of publicly available Symbiodinium transcriptome data. The potential for enhanced AOX expression to play a compensatory role in mediating thermal stress was supported by inhibitor assays of cultured Symbiodinium at low (18 °C), moderate (26 °C), and high (32 °C) temperature conditions. Maximum capacity of the putative AOX pathway as a proportion of total dark oxygen consumption was found to increase from 26 % at 26 °C to 45 % and 53 % at 18 °C and 32 °C, respectively, when cells were acclimated to the treatment temperatures. Cells assayed at 18 and 32 °C without acclimation exhibited either the same or lower AOX capacity as controls, suggesting that the AOX protein is upregulated under temperature stress. The physiological implications for the presence of AOX in the coral/algal symbiosis and its potential role in response to many forms of biotic and abiotic stress, particularly oxidative stress, are discussed.

  19. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  20. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  1. How the geysers, tidal stresses, and thermal emission across the south polar terrain of enceladus are related

    International Nuclear Information System (INIS)

    Porco, Carolyn; DiNino, Daiana; Nimmo, Francis

    2014-01-01

    We present the first comprehensive examination of the geysering, tidal stresses, and anomalous thermal emission across the south pole of Enceladus and discuss the implications for the moon's thermal history and interior structure. A 6.5 yr survey of the moon's south polar terrain (SPT) by the Cassini imaging experiment has located ∼100 jets or geysers erupting from four prominent fractures crossing the region. Comparing these results with predictions of diurnally varying tidal stresses and with Cassini low resolution thermal maps shows that all three phenomena are spatially correlated. The coincidence of individual jets with very small (∼10 m) hot spots detected in high resolution Cassini VIMS data strongly suggests that the heat accompanying the geysers is not produced by shearing in the upper brittle layer but rather is transported, in the form of latent heat, from a sub-ice-shell sea of liquid water, with vapor condensing on the near-surface walls of the fractures. Normal stresses modulate the geysering activity, as shown in the accompanying paper; we demonstrate here they are capable of opening water-filled cracks all the way down to the sea. If Enceladus' eccentricity and heat production are in steady state today, the currently erupting material and anomalous heat must have been produced in an earlier epoch. If regional tidal heating is occurring today, it may be responsible for some of the erupting water and heat. Future Cassini observations may settle the question.

  2. Transcriptional Upregulation of DNA Damage Response Genes in Bank Voles (Myodes glareolus Inhabiting the Chernobyl Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Toni Jernfors

    2018-01-01

    Full Text Available Exposure to ionizing radiation (IR from radionuclides released into the environment can damage DNA. An expected response to exposure to environmental radionuclides, therefore, is initiation of DNA damage response (DDR pathways. Increased DNA damage is a characteristic of many organisms exposed to radionuclides but expression of DDR genes of wildlife inhabiting an area contaminated by radionuclides is poorly understood. We quantified expression of five central DDR genes Atm, Mre11, p53, Brca1, and p21 in the livers of the bank vole Myodes glareolus that inhabited areas within the Chernobyl Exclusion Zone (CEZ that differed in levels of ambient radioactivity, and also from control areas outside the CEZ (i.e., sites with no detectable environmental radionuclides in Ukraine. Expression of these DDR genes did not significantly differ between male and female bank voles, nor among sites within the CEZ. We found a near two-fold upregulation in the DDR initiators Mre11 and Atm in animals collected from the CEZ compared with samples from control sites. As Atm is an important regulator of oxidative stress, our data suggest that antioxidant activity may be a key component of the defense against exposure to environmental radioactivity.

  3. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China.

    Science.gov (United States)

    Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding

    2016-12-08

    With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants' health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management.

  4. Feasibility and validity of animal-based indicators for on-farm welfare assessment of thermal stress in dairy goats

    Science.gov (United States)

    Battini, Monica; Barbieri, Sara; Fioni, Luna; Mattiello, Silvana

    2016-02-01

    This investigation tested the feasibility and validity of indicators of cold and heat stress in dairy goats for on-farm welfare assessment protocols. The study was performed on two intensive dairy farms in Italy. Two different 3-point scale (0-2) scoring systems were applied to assess cold and heat stress. Cold and heat stress scores were visually assessed from outside the pen in the morning, afternoon and evening in January-February, April-May and July 2013 for a total of nine sessions of observations/farm. Temperature (°C), relative humidity (%) and wind speed (km/h) were recorded and Thermal Heat Index (THI) was calculated. The sessions were allocated to three climatic seasons, depending on THI ranges: cold (65). Score 2 was rarely assessed; therefore, scores 1 and 2 were aggregated for statistical analysis. The amount of goats suffering from cold stress was significantly higher in the cold season than in neutral ( P farm feasibility of both indicators: No constraint was found and time required was less than 10 min. Our results show that cold and heat stress scores are valid indicators to detect thermal stress in intensively managed dairy goats. The use of a binary scoring system (presence/absence), merging scores 1 and 2, may be a further refinement to improve the feasibility. This study also allows the prediction of optimal ranges of THI for dairy goat breeds in intensive husbandry systems, setting a comfort zone included into 55 and 70.

  5. ASSESSMENT OF NOISE POLLUTION OF INHABITED TERRITORIES IMPACTED BY AIRFIELDS

    Directory of Open Access Journals (Sweden)

    Sazonov Eduard Vladimirovich

    2012-10-01

    Full Text Available In the article, authors provide an overview of effective regulatory, reference and technical documents that govern the extent of suitability of territories adjacent to airfields for building-up. Methods of assessing the acceptable limits of the aviation noise in the areas adjacent to airfields are considered in the article. Ecologization of airfield environs is not a new problem. The research described in the article is noteworthy for the proposed optimization of any plans for the assurance of habitability of specific areas impacted by noise pollutions. The optimization consists in a set of organizational and technical solutions based on the noise levels in specific areas, development planning conditions of inhabited areas, and the monitoring of the airfield environs. It is the multi-factor approach that is capable of resolving the problem of ecological stress imposed by the noise coming from the air transport. Towards this end, the problem-solving strategy is to be developed and implemented in the areas that feature the same unfavorable environmental characteristics.

  6. The application of linear elastic fracture mechanics to thermally stressed welded components

    International Nuclear Information System (INIS)

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  7. Thermal Stresses Analysis and Optimized TTP Processes to Achieved CNT-Based Diaphragm for Thin Panel Speakers

    Directory of Open Access Journals (Sweden)

    Feng-Min Lai

    2016-01-01

    Full Text Available Industrial companies popularly used the powder coating, classing, and thermal transfer printing (TTP technique to avoid oxidation on the metallic surface and stiffened speaker diaphragm. This study developed a TTP technique to fabricate a carbon nanotubes (CNTs stiffened speaker diaphragm for thin panel speaker. The self-developed TTP stiffening technique did not require a high curing temperature that decreased the mechanical property of CNTs. In addition to increasing the stiffness of diaphragm substrate, this technique alleviated the middle and high frequency attenuation associated with the smoothing sound pressure curve of thin panel speaker. The advantage of TTP technique is less harmful to the ecology, but it causes thermal residual stresses and some unstable connections between printed plates. Thus, this study used the numerical analysis software (ANSYS to analyze the stress and thermal of work piece which have not delaminated problems in transfer interface. The Taguchi quality engineering method was applied to identify the optimal manufacturing parameters. Finally, the optimal manufacturing parameters were employed to fabricate a CNT-based diaphragm, which was then assembled onto a speaker. The result indicated that the CNT-based diaphragm improved the sound pressure curve smoothness of the speaker, which produced a minimum high frequency dip difference (ΔdB value.

  8. Shifts of heat availability and stressful temperatures in Russian Federation result in gains and losses of wheat thermal suitability

    Science.gov (United States)

    Di Paola, Arianna; Caporaso, Luca; Santini, Monia; Di Paola, Francesco; Vasenev, Ivan; Valentini, Riccardo

    2017-04-01

    Climate changes are likely to shift the suitability of lands devoted to cropping systems. We explored the past-to-future thermal suitability of Russian Federation for wheat (Triticum aestivum) culture through an ensemble of bias corrected CMIP5-GCMs outputs considering two representative concentration pathways (RCP 4.5 and 8.5). Thermal suitability assesses where wheat heat requirement, counted from suggested sowing dates, is satisfied without the occurrence of stressful hot and frost temperatures. Thermal requirement was estimated by means of phenological observations on soft wheat involving different wheat cultivar collected in different regions of Russian Federation, Azerbaidhan, Kazakhstan and Tadzhikistan, whilst stressful temperatures were taken from a literature survey. Results showed projected geographical shift of heat resource toward the north-eastern regions, currently mainly covered by forests and croplands, but also an increase of very hot temperatures in the most productive areas of the southern regions. Gains and losses were then quantified and discussed from both agronomical and climatic perspective.

  9. Heat stress and sudden infant death syndrome--stress gene expression after exposure to moderate heat stress

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2013-01-01

    The aim of the present study was to investigate stress gene expression in cultured primary fibroblasts established from Achilles tendons collected during autopsies from sudden infant death syndrome (SIDS) cases, and age-matched controls (infants dying in a traumatic event). Expression of 4 stress...... responsive genes, HSPA1B, HSPD1, HMOX1, and SOD2, was studied by quantitative reverse transcriptase PCR analysis of RNA purified from cells cultured under standard or various thermal stress conditions. The expression of all 4 genes was highly influenced by thermal stress in both SIDS and control cells. High...... interpersonal variance found in the SIDS group indicated that they represented a more heterogeneous group than controls. The SIDS group responded to thermal stress with a higher expression of the HSPA1B and HSPD1 genes compared to the control group, whereas no significant difference was observed...

  10. The level of awareness of inhabitants of Banat of environmental pollution

    Directory of Open Access Journals (Sweden)

    Radanov Pavle M.

    2016-01-01

    Full Text Available Of the pollution that leads to serious health and genetic consequences, as well as the reaction of the organism, and thus the problem of Banat becomes the priority before the inhabitants of Banat raises a dilemma: stay at the cost of survival or survive with the engagement of all forms of civil and seostkog opinion and initiatives in terms of raising environmental awareness and create control mechanisms that will actively engage in the environmental fate of Banat. This research I wanted to find out how much the inhabitants of Banat to meet specified environmental problems and environmental zagađenjem. At the same time I wanted to remark on how much pollution adversely affects all the living world. During the research, when collecting data, used the research survey instrument. Survey respondents is included in the table. Respondents are the inhabitants of Banat of different gender, age and academic qualifications. When examining used a questionnaire that contains ten questions and that the materials in the descriptive method. The results suggest that in the future, you should have the most attention paid to development and raising environmental awareness through education of permanent inhabitants of Banat programs on the protection of the environment.

  11. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice

    Science.gov (United States)

    Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin

    2017-04-01

    This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.

  12. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  13. Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment

    Science.gov (United States)

    Sejian, Veerasamy; Maurya, Vijai P.; Naqvi, Sayeed M. K.

    2010-11-01

    A study was conducted to assess the effect of combined stresses (thermal and nutritional) on endocrine and biochemical responses in Malpura ewes. Twenty eight adult Malpura ewes (average body weight 33.56 kg) were used in the present study. The ewes were divided into four groups viz., GI ( n = 7; control), GII ( n = 7; thermal stress), GIII ( n = 7; nutritional stress) and GIV ( n = 7; combined stress). The animals were stall fed with a diet consisting of 60% roughage and 40% concentrate. GI and GII ewes were provided with ad libitum feeding while GIII and GIV ewes were provided with restricted feed (30% intake of GI ewes) to induce nutritional stress. GII and GIV ewes were kept in climatic chamber at 40°C and 55% RH for 6 h a day between 1000 hours and 1600 hours to induce thermal stress. The study was conducted for a period of two estrus cycles. The parameters studied were Hb, PCV, glucose, total protein, total cholesterol, ACP, ALP, cortisol, T4, T3, and insulin. Combined stress significantly ( P ewes. It can be concluded from this study that two stressors occurring simultaneously may impact severely on the biological functions necessary to maintain homeostasis in sheep.

  14. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    OpenAIRE

    Jin, Lei; Li, Peizhong; Zhou, Haibin; Zhang, Wei; Zhou, Guodong; Wang, Chun

    2015-01-01

    In this paper, air plasmas spray (APS) was used to prepare YSZ and Sc2O3–YSZ (ScYSZ) coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2...

  15. Modelling of thermal stresses in bearing steel structure generated by electrical current impulses

    Science.gov (United States)

    Birjukovs, M.; Jakovics, A.; Holweger, W.

    2018-05-01

    This work is the study of one particular candidate for white etching crack (WEC) initiation mechanism in wind turbine gearbox bearings: discharge current impulses flowing through bearing steel with associated thermal stresses and material fatigue. Using data/results from previously published works, the authors develop a series of models that are utilized to simulate these processes under various conditions/local microstructure configurations, as well as to verify the results of the previous numerical studies. Presented models show that the resulting stresses are several orders of magnitude below the fatigue limit/yield strength for the parameters used herein. Results and analysis of models provided by Scepanskis, M. et al. also indicate that certain effects predicted in their previous work resulted from a physically unfounded assumption about material thermodynamic properties and numerical model implementation issues.

  16. Phylogeny of rock-inhabiting fungi related to Dothideomycetes

    NARCIS (Netherlands)

    Ruibal, C.; Gueidan, C.; Selbmann, L.; Gorbushina, A.A.; Crous, P.W.; Groenewald, J.Z.; Muggia, L.; Grube, M.; Isola, D.; Schoch, C.L.; Staley, J.T.; Lutzoni, F.; Hoog, de G.S.

    2009-01-01

    The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in

  17. Thermal stress analysis of HTGR fuel and control rod fuel blocks in the HTGR in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new approach that utilizes the equivalent solid plate method has been applied to the thermal stress analysis of HTGR fuel and control rod fuel blocks. Cases were considered where these blocks, loaded with reprocessed HTGR fuel pellets, were being cured at temperatures up to 1800 0 C. A two-dimensional segment of a fuel block cross section including fuel, coolant holes, and graphite matrix was analyzed using the ORNL HEATING3 heat transfer code to determine the temperature-dependent effective thermal conductivity for the perforated region of the block. Using this equivalent conductivity to calculate the temperature distributions through different cross sections of the blocks, two-dimensional thermal-stress analyses were performed through application of the equivalent solid plate method. In this approach, the perforated material is replaced by solid homogeneous material of the same external dimensions but whose material properties have been modified to account for the perforations

  18. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    Science.gov (United States)

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  19. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  20. Intermittent whole-body cold immersion induces similar thermal stress but different motor and cognitive responses between males and females.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Mickevičienė, Dalia; Brazaitis, Marius

    2014-10-01

    The main aim of this study was to compare the thermal responses and the responses of cognitive and motor functions to intermittent cold stress between males and females. The intermittent cold stress continued until rectal temperature (TRE) reached 35.5°C or for a maximum of 170 min. Thermal response and motor and cognitive performance were monitored. During intermittent cold stress, body temperature variables decreased in all subjects (P cold strain index did not differ between sexes. Maximal voluntary contraction (MVC) decreased after intermittent cold exposure only in males (P cold stress on electrically evoked muscle properties, spinal (H-reflex), and supraspinal (V-waves) reflexes did not differ between sexes. Intermittent cold-induced cognitive perturbation of attention and memory task performance was greater in males (P whole-body cold immersion. Although no sex-specific differences were observed in muscle EMG activity, involuntary muscle properties, spinal and supraspinal reflexes, some of the sex differences observed (e.g., lower isometric MVC and greater cognitive perturbation in males) support the view of sex-specific physiological responses to core temperature decrease. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Analytical expression of the thermal stresses in a vessel or pipe with cladding submitted to any thermal transient

    International Nuclear Information System (INIS)

    Marie, Stephane

    2004-01-01

    This article proposes an extension of the known analytical solution for the temperature and stresses in the event of a linear shock in a pipe containing a fluid. The intention is to propose a simple solution for any variation of the temperature in the fluid and to cover the influence of cladding on the inner surface. The approach consists of breaking down the fluid temperature variation into a succession of linear shocks. Using the linear shock resolution approach, it is possible to propose a simple analytical solution, using the same constant (Biot number B, etc.). The proposed solution is compared with finite element analysis: the solution is found to be reliable for any thermal shock or cyclic variation of fluid temperature, and can even replicate the transient regime. The following stage has made it possible to account for the effect of cladding on the inner surface of the piping on temperature distribution. The second part gives analytical expressions for the elastic stresses due to the temperature field alone

  3. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile.

    Science.gov (United States)

    González-Teuber, M; Vilo, C; Bascuñán-Godoy, L

    2017-03-01

    Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants ( Chenopodium quinoa ) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium , Phoma and Fusarium , which are common endophytes reported in plant roots. This study shows that roots of C . quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  4. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    Science.gov (United States)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  5. Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains.

    Science.gov (United States)

    Roushdy, Elshimaa M; Zaglool, Asmaa W; El-Tarabany, Mahmoud S

    2018-05-01

    The objective was to investigate the effects of genetic type and the duration of chronic thermal stress (36 °C) on the growing efficiency, carcass traits, antioxidant status, and the expression of liver heat shock protein 70 (HSP70), growth hormone (GH) and superoxide dismutase (SOD) genes. Two hundred and seventy one-day-old chicks (135 male chicks of each breed; Ross 308 and Cobb 500) were used in this work. On the 21st day of age, birds were allocated randomly into 3 equal groups till the 42 days of age (CON:raised in a thermoneutral condition; HS 1 and HS 2 groups were subjected to 4 and 6 h of daily thermal stress, respectively). Regardless of genetic type, thermal stress decreased the dressing percentage in broilers when compared with the thermoneutral conditions (p = 0.039). In both broiler strains, thermal stress for 6 h (HS 2 ) increased the heterophil to lymphocyte ratio (p = 0.036) and the serum albumin, cholesterol and triglyceride levels (p = 0.023, 0.012 and 0.005, respectively) compared with the thermoneutral group. Under the thermonuteral and heat stress conditions, the Ross broiler chickens showed a significant lower serum triiodothyronine level compared with the Cobb boilers (p = 0.042). It is interesting to note that the expression of HSP70 in the liver of heat-stressed Ross broilers, either 4 or 6 h, was significantly (p = 0.002) higher than that reported in the heat-stressed Cobb broilers. In both broiler strains, the thermal stress for 6 h up-regulate the expression of SOD gene (p = 0.001), but down-regulate the expression of GH gene (p = 0.021) when compared with the CON group. In conclusion, chronic thermal stress down-regulate the mRNA expression of liver GH, concomitantly with an increase in the expression of HSP70 and SOD genes in both broiler strains. This could be useful in the identification of molecular genetic markers to assist in selecting broilers that are more tolerant to heat stress

  6. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    Science.gov (United States)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  7. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs

  8. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.

    Science.gov (United States)

    Chou, Loke Ming; Toh, Tai Chong; Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.

  9. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility

    Science.gov (United States)

    Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera–Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change. PMID:27438593

  10. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Differential responses of the coral host and their algal symbiont to thermal stress.

    Directory of Open Access Journals (Sweden)

    William Leggat

    Full Text Available The success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium. During an experimental bleaching event significant up-regulation of genes involved in stress response (HSP90 and HSP70 and carbon metabolism (glyceraldehyde-3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, glycogen synthase and glycogen phosphorylase from the coral host were observed. In contrast in the symbiont, HSP90 expression decreased, while HSP70 levels were increased on only one day, and only the α-ketoglutarate dehydrogenase expression levels were found to increase. In addition the changes seen in expression patterns of the coral host were much larger, up to 10.5 fold, compared to the symbiont response, which in all cases was less than 2-fold. This targeted study of the expression of key metabolic and stress genes demonstrates that the response of the coral and their symbiont vary significantly, also a response in the host transcriptome was observed prior to what has previously been thought to be the temperatures at which thermal stress events occur.

  12. Evaluation of thermal stress in the anode chamber wall of a large volume magnetic bucket ion source

    International Nuclear Information System (INIS)

    Wells, Russell; Horiike, Hiroshi; Kuriyama, Masaaki; Ohara, Yoshihiro

    1984-02-01

    Thermal stress analysis was performed on the plasma chamber of the Large Volume Magnetic Multipole Bucket Ion Source (LVB) designed for use on the JT-60 NBI system. The energy absorbed by the walls of the plasma chambers of neutral beam injectors is of the order of 1% of the accelerator electrical drain power. A previous study indicates that a moderately high heat flux, of about 600W/cm 2 , is concentrated on the magnetic field cusp lines during normal full power operation. Abnormal arc discharges during conditioning of a stainless steel LVB produced localized melting of the stainless steel at several locations near the cusps lines. The power contained in abnormal arc discharges (arc spots) was estimated from the observed melting. Thermal stress analysis was performed numerically on representative sections of the copper LVB design for both stable and abnormal arc discharge conditions. Results show that this chamber should not fail due to thermal fatigue stesses arising from normal arc discharges. However, fatigue failure may occur after several hundred to a few thousand arc spots of 30mS duration at any one location. Limited arc discharge operation of the copper bucket was performed to partially verify the chamber's durability. (author)

  13. X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F., E-mail: florineconchon@gmail.co [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Renault, P.O.; Goudeau, P.; Le Bourhis, E. [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Sondergard, E.; Barthel, E.; Grachev, S. [Laboratoire de Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Gouardes, E.; Rondeau, V.; Gy, R. [Laboratoire de Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Laboratoire de Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-07-01

    Residual stresses in sputtered ZnO films on Si are determined and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After an 800 {sup o}C annealing, ZnO films are tensily stressed while ZnO films encapsulated by Si{sub 3}N{sub 4} are stress-free. With the aid of in-situ X-ray diffraction under ambient and argon atmosphere, we argue that this thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films.

  14. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica.

    Science.gov (United States)

    Teets, Nicholas M; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L

    2013-02-01

    The Antarctic midge, Belgica antarctica, experiences sub-zero temperatures and desiccating conditions for much of the year, and in response to these environmental insults, larvae undergo rapid shifts in metabolism, mobilizing carbohydrate energy reserves to promote synthesis of low-molecular-mass osmoprotectants. In this study, we measured the expression of 11 metabolic genes in response to thermal and dehydration stress. During both heat and cold stress, we observed upregulation of phosphoenolpyruvate carboxykinase (pepck) and glycogen phosphorylase (gp) to support rapid glucose mobilization. In contrast, there was a general downregulation of pathways related to polyol, trehalose, and proline synthesis during both high- and low-temperature stress. Pepck was likewise upregulated in response to different types of dehydration stress; however, for many of the other genes, expression patterns depended on the nature of dehydration stress. Following fast dehydration, expression patterns were similar to those observed during thermal stress, i.e., upregulation of gp accompanied by downregulation of trehalose and proline synthetic genes. In contrast, gradual, prolonged dehydration (both at a constant temperature and in conjunction with chilling) promoted marked upregulation of genes responsible for trehalose and proline synthesis. On the whole, our data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.

  15. Near-field thermal transient and thermomechanical stress analysis of a disposal vault in crystalline hard rock

    International Nuclear Information System (INIS)

    Tsui, K.K.; Tsai, A.; Lee, C.F.

    1981-01-01

    The Canadian Nuclear Fuel Waste Management Program currently focuses on the development of a disposal vault in crystalline hard rock at a reference depth of 1 km below the surface in a suitable pluton in the Canadian Shield. As part of Ontario Hydro's technical assistance to the Atomic Energy of Canada Limited in this program, studies are being carried out to determine the effects of radiogenic heat on the near-field behaviour of a disposal vault. This paper presents the study results obtained to date. Temperature and stress fields were computed and cross-checked by several finite element codes. A comparison between vertical and horizontal borehole emplacement concepts is made. The effects of material non-linearity (temperature dependence) and three-dimensionality on the thermomechanical response are evaluated. Case histories of thermal spalling or fracturing in rock were summarized and discussed to illustrate the possible mechanisms and processes involved in thermal fracturing. An assessment of the thermomechanical stability of the rock mass around a disposal vault under a state of high horizontal in-situ stress is also presented

  16. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...

  17. A method for the dynamic and thermal stress analysis of space shuttle surface insulation

    Science.gov (United States)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1975-01-01

    The thermal protection system of the space shuttle consists of thousands of separate insulation tiles bonded to the orbiter's surface through a soft strain-isolation layer. The individual tiles are relatively thick and possess nonuniform properties. Therefore, each is idealized by finite-element assemblages containing up to 2500 degrees of freedom. Since the tiles affixed to a given structural panel will, in general, interact with one another, application of the standard direct-stiffness method would require equation systems involving excessive numbers of unknowns. This paper presents a method which overcomes this problem through an efficient iterative procedure which requires treatment of only a single tile at any given time. Results of associated static, dynamic, and thermal stress analyses and sufficient conditions for convergence of the iterative solution method are given.

  18. Thermal stress analysis of an Am/Cm stabilization bushing melter

    International Nuclear Information System (INIS)

    Gong, C.; Hardy, B.J.

    1996-01-01

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am 243 and Cm 244 . Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to the Oak Ridge National Laboratory (ORNL) for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. The vitrification process in the Platinum-Rhodium alloy vessel generates a wide spectrum of temperature distributions. The melter is partially supported by a suspension system and confined by the flexible insulation. The combination of the fluctuation of temperature distribution and variable boundary conditions, induces stresses and strains in the melter. The thermal stress analysis is carried out with the finite element code ABAQUS. This analysis is closely associated with the design, manufacture and testing of the melter. The results were compared with the test data

  19. The effect of water on thermal stresses in polymer composites

    Science.gov (United States)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  20. Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress.

    Science.gov (United States)

    Long, Ling-Li; Han, Ying-Li; Sheng, Zhang; Du, Chen; Wang, You-Fa; Zhu, Jun-Quan

    2015-09-01

    The gene encoding heat shock protein 70 (HSP70) was identified in Octopus tankahkeei by homologous cloning and rapid amplification of cDNA ends (RACE). The full-length cDNA (2471 bp) consists of a 5'-untranslated region (UTR) (89 bp), a 3'-UTR (426 bp), and an open reading frame (1956 bp) that encodes 651 amino acid residues with a predicted molecular mass of 71.8 kDa and an isoelectric point of 5.34. Based on the amino acid sequence analysis and multiple sequence alignment, this cDNA is a member of cytoplasmic hsp70 subfamily of the hsp70 family and was designated as ot-hsp70. Tissue expression analysis showed that HSP70 expression is highest in the testes when all examined organs were compared. Immunohistochemistry analysis, together with hematoxylin-eosin staining, revealed that the HSP70 protein was expressed in all spermatogenic cells, but not in fibroblasts. In addition, O. tankahkeei were heat challenged by exposure to 32 °C seawater for 2 h, then returned to 13 °C for various recovery time (0-24 h). Relative expression of ot-hsp70 mRNA in the testes was measured at different time points post-challenge by quantitative real-time PCR. A clear time-dependent mRNA expression of ot-hsp70 after thermal stress indicates that the HSP70 gene is inducible. Ultrastructural changes of the heat-stressed testis were observed by transmission electron microscopy. We suggest that HSP70 plays an important role in spermatogenesis and testis protection against thermal stress in O. tankahkeei. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Implementation and Development of the Incremental Hole Drilling Method for the Measurement of Residual Stress in Thermal Spray Coatings

    Science.gov (United States)

    Valente, T.; Bartuli, C.; Sebastiani, M.; Loreto, A.

    2005-12-01

    The experimental measurement of residual stresses originating within thick coatings deposited by thermal spray on solid substrates plays a role of fundamental relevance in the preliminary stages of coating design and process parameters optimization. The hole-drilling method is a versatile and widely used technique for the experimental determination of residual stress in the most superficial layers of a solid body. The consolidated procedure, however, can only be implemented for metallic bulk materials or for homogeneous, linear elastic, and isotropic materials. The main objective of the present investigation was to adapt the experimental method to the measurement of stress fields built up in ceramic coatings/metallic bonding layers structures manufactured by plasma spray deposition. A finite element calculation procedure was implemented to identify the calibration coefficients necessary to take into account the elastic modulus discontinuities that characterize the layered structure through its thickness. Experimental adjustments were then proposed to overcome problems related to the low thermal conductivity of the coatings. The number of calculation steps and experimental drilling steps were finally optimized.

  2. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  3. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  4. Thermal stress in the scanning tunneling microscopy of the metallic heterostructure lead on copper(111); Thermospannung bei der Rastertunnelmikroskopie der metallischen Heterostruktur Blei auf Kupfer(111)

    Energy Technology Data Exchange (ETDEWEB)

    Langenkamp, Winfried

    2008-02-22

    The thermal stress, which arises, when tip and sample of a scanning tunneling microscope have different temperatures, was studied in the system lead on copper(111). Thereby atomic resolution on the 4 x 4 superstructure of the lead atoms of the first layer was reached. The thermal stress of lead island was studied because the electronic density of states here is in the greatest part determined by quantum pot states. The density of states as function of the energy can by approached as step function und is by this available for a mathematical modelling. As sum of the influence of the substrates and the influence by the quantum pot states it bas possible to develop a model. in which the thermal stress for lead islands on copper(111) can be described also quantitatively.

  5. Nutritional mitigation of winter thermal stress in gilthead seabream associated metabolic pathways and potential indicators of nutritional state

    DEFF Research Database (Denmark)

    Richard, Nadege; Silva, Tomé S.; Wulff, Tune

    2016-01-01

    and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional....... A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle...... and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state....

  6. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth.

    Science.gov (United States)

    Dou, Wei; Tian, Yi; Liu, Hong; Shi, Yan; Smagghe, Guy; Wang, Jin-Jun

    2017-11-01

    To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  8. Thermal shock problems in a plate

    International Nuclear Information System (INIS)

    Takeuti, Y.; Furukawa, T.

    1981-01-01

    The problems considered are coupled dynamic thermoelastic analysis in a plate. First we try to examine a problem of the coupled dynamic thermal stress problem with small time approximation for the finite region. Next, we treatise both effects individually by pursuing rigorous anaylsis without small time approximation. Finally we consider thermal shock problems in a plate against different values of heat transfer coefficient (Biot's number) for the time. In conclusion, for usual materials, the inertia effect may be disregarded in the pure thermal problems in contrast to the coupling effect which brings small lags in the temperature and thermal stress distributions. For the consideration of the maximum thermal stress problems, Manson's uncoupled quasi-static results give enough approximation to the thermal shock problems without significant error from our numerical results. The analysis is developed by the use of Laplace transforms and several useful graphical illustrations are given. (orig./HP)

  9. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green's Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components.

    Science.gov (United States)

    Rouse, James; Hyde, Christopher

    2016-01-06

    The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  10. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.

    Science.gov (United States)

    Sivan, Arun; Shriram, Ananganallur Nagarajan; Muruganandam, Nagarajan; Thamizhmani, Ramanathan

    2017-03-01

    Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and

  11. Stress gradients in CrN coatings

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Tichelaar, F.D.; Visser, C.C.G.

    2006-01-01

    Stress in hard films is the net sum of tensile stress generated at the grain boundaries, compressive stress due to ion peening, and thermal stress due to the difference in thermal expansion of the coating and substrate. The tensile part due to grain boundaries is thickness dependent. The other two

  12. Improvement of the calculation of the stress intensity factors for underclad and through-clad defects in a reactor pressure vessel subjected to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2008-01-01

    The analysis of the stability of a defect in a cladded reactor pressure vessel (RPV) of a nuclear pressure water reactor (PWR) subjected to pressurised thermal shock (PTS) is one main elements of the general safety demonstration. Recently, CEA proposed several improved analytical tools for the analysis of the PTS. First, an analytical solution for the vessel through-thickness temperature variation has been developed to deal with any fluid temperature, taking into account the possible presence of a cladding, in the case of an internal PTS. The associated thermal stress expression has been simplified and a complete linearised solution is given for the thermal loading and also for internal pressure, depending on the main vessel material and on the cladding properties. Finally, a complete compendium is also given for the elastic stresses intensity factor calculation. This paper proposes several improvements of the proposed analytical method to deal with a PTS in a PWR cladded vessel. A variable heat transfer coefficient is now taken into account based on an equivalent fluid temperature variation determination, associated with a constant heat transfer coefficient, to keep the same thermal exchange between the fluid and the inner skin of the vessel obtained with the initial data. A more accurate expression for the linearised stresses due to the internal pressure is given, and a possible effect of residual stresses due to the difference between the operating temperature and the stress-free temperature is also taken into account. Finally, an extension of the domain of definition of the influence functions for the elastic stress intensity factor calculation is given

  13. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Agrell, J.; Lindström, A.

    2002-01-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada,

  14. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus

    Directory of Open Access Journals (Sweden)

    Schoville Sean D

    2012-09-01

    Full Text Available Abstract Background Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. Results Observed differences in gene expression between the southern (San Diego and the northern (Santa Cruz populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps and genes involved in ubiquitination and proteolysis. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Among other sets of genes, cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were down-regulated in both populations. Conclusions Marked changes in gene expression were observed in response to acute sub-lethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations, the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s involved in acute temperature stress may offer at

  15. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    Science.gov (United States)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  16. Changes in the performance characteristics of a GaAs near infrared light emitting diode when exposed to various current and thermal stresses

    Science.gov (United States)

    Thomas, E. F., Jr.

    1974-01-01

    The changes that occurred in the optical and electrical characteristics of a near infrared, GaAs light emitting diode, when operated under various levels and combinations of current and thermal stresses are discussed. A total of forty parts were operated for two thousand hours under eight different sets of dc current and ambient temperature conditions. Degradation in the radiant optical power of these devices was thirty-four percent when operated at their rated current and an ambient temperature of 298K (25 C). Derating the current and/or the thermal stress reduced the degradation of this parameter in approximately a linear manner. All degraded devices behaved similarly, exhibiting rapid nonlinear degradation followed by a gradual linear degradation and finally a period of stable operation. An attempt was made to correlate initial device condition to degradation during stress testing, but met with little success.

  17. Postpartum endocrine activities, metabolic attributes and milk yield are influenced by thermal stress in crossbred dairy cows.

    Science.gov (United States)

    Ihsanullah; Qureshi, Muhammad Subhan; Suhail, Syed Muhammad; Akhtar, Sohail; Khan, Rifat Ullah

    2017-09-01

    This study was conducted on 30 freshly parturated multiparous crossbred dairy cows possessing three levels of Holstein Frisian genetic makeup (62.5, 75.0, and 87.5%). Data on temperature humidity index (THI) were classified into comfortable (≤ 71), mild stress (72-79), moderate stress (80-89), and stressful (≥90) zone. Results showed that serum cortisol concentration increased significantly (P stressful condition irrespective of genetic makeup compared to the other zones. Daily milk yield (DMY) was significantly (P stressful condition. Triglyceride was significantly higher in cows with genetic makeup 87.5% compared to the others, while total serum protein was significantly (P stressful conditions. The mean concentration of cortisol and protein increased linearly from comfort to the stressful condition, while mean serum triglyceride, glucose, progesterone (P 4 ), and luteinizing hormone (LH) decreased by moving from comfort to stressful conditions. Results also indicated that higher cortisol level in higher grade crossbred cows was adversely associated with LH concentration and milk yield under thermal stress conditions. Greater triglyceride in high-grade crossbred (87.5%) cows indicates higher fat mobilization reflecting a negative energy balance. We concluded that heat stress increased blood cortisol and protein, and reduced milk yield in dairy cows irresptive of the genetic makeup. In addition, there was no significant difference in blood metabolites and daily milk yield in the different levels of genetic makeup cows.

  18. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals.

    Directory of Open Access Journals (Sweden)

    Juan P Carricart-Ganivet

    Full Text Available Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR, and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR, and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm(-2 year(-1 in Porites spp. and 0.12 g cm(-2 year(-1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ω(ar at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ω(ar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological

  19. Comparison of Analytical Methods for Estimation of Early-Age Thermal-Shrinkage Stresses in RC Walls

    Directory of Open Access Journals (Sweden)

    Klemczak B.

    2013-03-01

    Full Text Available The volume changes caused by coupled temperature and moisture variations in early-age concrete elements lead to formation of stresses. If a restraint exists along the contact surface of mature concrete against which a new concrete element has been cast, generated stresses are mostly of a restraint origin. In engineering practice a wide range of externally restrained concrete elements can be distinguished such as tank walls or bridge abutments cast against an old set foundation, in which early-age cracking may endanger their durability or functionality. Therefore, for years methods were being developed to predict early-age stresses and cracking risk of externally restrained concrete elements subjected to early-age thermal-moisture effects. The paper presents the comparative study of the most recognised analytical approaches: the method proposed in EC2, the method proposed by ACI Committee 207 and the method developed at the Luleå University of Technology.

  20. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Science.gov (United States)

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  1. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  2. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  3. Boundary element analysis of stress due to thermal shock loading or reactor pressure vessel nozzle; Napetostna analiza pri nestacionarni termicni obremenitvi cevnega prikljucka reaktorske tlacne posode z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, J; Potrc, I [Tehniska fakulteta, Maribor (Yugoslavia)

    1989-07-01

    Apart from being exposed to the primary loading of internal pressure and steady temperature field, the reactor pressure vessel is also subject to various thermal transients (thermal shocks). Theoretical and experimental stress analyses show that severe material stresses occur in the nozzle area of the pressure vessel which may lead to defects (cracks). It has been our aim to evaluate these stresses by the use of the Boundary Element method. (author)

  4. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Science.gov (United States)

    Pernice, Mathieu; Dunn, Simon R; Miard, Thomas; Dufour, Sylvie; Dove, Sophie; Hoegh-Guldberg, Ove

    2011-01-24

    Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. The PRESENT study reports the impacts of different stressors (colchicine and heat stress) on three phases of apoptosis: (i) the potential initiation by differential expression of Bcl-2 members, (ii) the execution of apoptotic events by activation of caspase 3-like proteases and (iii) and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  5. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    2011-01-01

    Full Text Available Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts.The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity.In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  6. Cytogenetic findings from inhabitants of different ages in high background radiation areas of Yangjiang

    International Nuclear Information System (INIS)

    Chen Deqing; Yao Suyan; Zhang Chaoyang

    1997-01-01

    Objective: To explore the relationship between high background radiation and injurious effect on inhabitants. Method: Peripheral blood samples were collected from the inhabitants of 10, 40, 55 and 70 years old in high background radiation areas (HBRA) of Yangjiang, Chromosome preparations were carried out with conventional whole-blood microculture. Results: The percentage of dicentric chromosome with fragments in inhabitants of HBRA was significantly higher than that in control areas (CA) (0.469% vs. 0.315%, P<0.01), and there was an increase in the aberration frequencies with age (or accumulated doses). Conclusion: Chromosome aberration is an extremely sensitive indicator of radiation damage and a good radio-biodosimeter

  7. Thermal stress control using waste steel fibers in massive concretes

    Science.gov (United States)

    Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye

    2017-11-01

    One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

  8. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out?

    Directory of Open Access Journals (Sweden)

    Simon R Dunn

    Full Text Available The symbiotic relationship between cnidarians and their dinoflagellate symbionts, Symbiodinium spp, which underpins the formation of tropical coral reefs, can be destabilized by rapid changes to environmental conditions. Although some studies have concluded that a breakdown in the symbiosis begins with increased reactive oxygen species (ROS generation within the symbiont due to a decoupling of photosynthesis, others have reported the release of viable symbionts via a variety of host cell derived mechanisms. We explored an alternative model focused upon changes in host cnidarian mitochondrial integrity in response to thermal stress. Mitochondria are often likened to being batteries of the cell, providing energy in the form of ATP, and controlling cellular pathway activation and ROS generation. The overall morphology of host mitochondria was compared to that of associated symbionts under an experimental thermal stress using confocal and electron microscopy. The results demonstrate that hyperthermic stress induces the degradation of cnidarian host mitochondria that is independent of symbiont cellular deterioration. The potential sites of host mitochondrial disruption were also assessed by measuring changes in the expression of genes associated with electron transport and ATP synthesis using quantitative RT-PCR. The primary site of degradation appeared to be downstream of complex III of the electron transport chain with a significant reduction in host cytochrome c and ATP synthase expression. The consequences of reduced expression could limit the capacity of the host to mitigate ROS generation and maintain both organelle integrity and cellular energy supplies. The disruption of host mitochondria, cellular homeostasis, and subsequent cell death irrespective of symbiont integrity highlights the importance of the host response to thermal stress and in symbiosis dysfunction that has substantial implications for understanding how coral reefs will survive

  9. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.

    Directory of Open Access Journals (Sweden)

    Loke Ming Chou

    Full Text Available Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached. The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.

  10. Thermal stress state of cryogenic HP vessels under freezing and pressurization

    International Nuclear Information System (INIS)

    Tsybenko, A.S.; Kuranov, B.A.; Chepurnoj, A.D.; Shaposhnikov, V.A.; Krishchuk, N.G.

    1986-01-01

    A mathematical model is developed for thermomechanical processes in cryogenic HP vessels under freezing either by liquid and (or) gaseous cryogen and under pressurization. Equations of nonlinear nonstationary thermal conductivity and nonisothermal thermoelastoplasticity are used for the case of the theory off low with isotropic hardening. Semiempiricaldependences of nonstationary heat exchange for gaseous medium, experimental curves of cryogenic liquid boiling, mass exchange relationships are allowed for when formulating boundary conditions. The mathematical modelis realized on the basi of the finite element method in the form of highly automated program complex TERSOD (heat resistanceof vessels), oriented for computer of the Unified System. Heat and stress-strained states for three constructions of vessels are thoroughly studied under different conditions of gaseous, liquid and combined freezing with subsequent pressurization

  11. Release of Bacterial Spores from the Inner Walls of a Stainless Steel Cup Subjected to Thermal Stresses and Mechanical Shock

    Science.gov (United States)

    Wolochow, H.; Chatigny, M.; Hebert, J.

    1973-01-01

    The release and fallout of particulates from surfaces afforded thermal or impact stress is of concern for control of contamination of Mars from planetary landing vehicles. A metal vessel contaminated by aerosols of spores was used as a model system and the fallout of spores as affected by various mechanisms was examined. Thermal stresses simulating those expected on the Mars lander dislodged approximately .01% of the aerosol deposited surface burden as did a landing shock of 8 to 10G deceleration. Spores imprinted by finger or swab contact yielded similar results. In all cases where repeated cycling of temperature, motion, or shock were employed the majority of fallout occurred in the first cycle. Particles released from the surface were predominantly in the size range 1 to 5 microns.

  12. Quasi-Static Transient Thermal Stresses in an Elliptical Plate due to Sectional Heat Supply on the Curved Surfaces over the Upper Face

    Directory of Open Access Journals (Sweden)

    Lalsingh Khalsa

    2018-01-01

    Full Text Available This paper is an attempt to determine quasi-static thermal stresses in a thin elliptical plate which is subjected to transient temperature on the top face with zero temperature on the lower face and the homogeneous boundary condition of the third kind on the fixed elliptical curved surface. The solution to conductivity equation is elucidated by employing a classical method. The solution of stress components is achieved by using Goodier’s and Airy’s potential function involving the Mathieu and modified functions and their derivatives. The obtained numerical results are accurate enough for practical purposes, better understanding of the underlying elliptic object, and better estimates of the thermal effect on the thermoelastic problem. The conclusions emphasize the importance of better understanding of the underlying elliptic structure, improved understanding of its relationship to circular object profile, and better estimates of the thermal effect on the thermoelastic problem.

  13. Inhabiting compassion: A pastoral theological paradigm | Zylla | HTS ...

    African Journals Online (AJOL)

    Inspired by the vision of care in Vincent van Gogh's depiction of the parable of the Good Samaritan, this article offers a paradigm for inhabiting compassion. Compassion is understood in this article as a moral emotion that is also a pathocentric virtue. This definition creates a dynamic view of compassion as a desire to ...

  14. Development of relative thermal stress index (RTSI) for Monitoring and Management of Dry Deciduous Ecosystem

    Science.gov (United States)

    Gupta, R. K.; Vijayan, D.

    Gir wildlife sanctuary located between 20 r 57 to 21 r 20 N and 70 r 28 to 71 r 13 E is the last home of Asiatic lions Its biodiversity comprises of 450 recorded flowering plant species 32 species of mammals 26 species of reptiles about 300 species of birds and more than 2000 species of insects As per 1995 census it has 304 lions and 268 leopards The movement of wildlife to thermally comfortable zones to reduce stress conditions forces the changes in management plan with reference to change in localized water demand This necessitates the use of space based thermal data available from AVHRR MODIS etc to monitor temperature of Gir-ecosystem for meso-scale level operational utility As the time scale of the variability of NDVI parameter is much higher than that for lower boundary temperature LBT the dense patch in riverine forest having highest NDVI value would not experience change in its vigour with the change in the season NDVI value of such patch would be near invariant over the year and temperature of this pixel could serve as reference temperature for developing the concept of relative thermal stress index RTSI which is defined as RTSI T p -T r T max -T r wherein T r T max and T p refer to LBT over the maximum NDVI reference point maximum LBT observed in the Gir ecosystem and the temperature of the pixel in the image respectively RTSI images were computed from AVHRR images for post-monsoon leaf-shedded and summer seasons Scatter plot between RTSI and NDVI for summer seasons

  15. Predicting thermally stressful events in rivers with a strategy to evaluate management alternatives

    Science.gov (United States)

    Maloney, K.O.; Cole, J.C.; Schmid, M.

    2016-01-01

    Water temperature is an important factor in river ecology. Numerous models have been developed to predict river temperature. However, many were not designed to predict thermally stressful periods. Because such events are rare, traditionally applied analyses are inappropriate. Here, we developed two logistic regression models to predict thermally stressful events in the Delaware River at the US Geological Survey gage near Lordville, New York. One model predicted the probability of an event >20.0 °C, and a second predicted an event >22.2 °C. Both models were strong (independent test data sensitivity 0.94 and 1.00, specificity 0.96 and 0.96) predicting 63 of 67 events in the >20.0 °C model and all 15 events in the >22.2 °C model. Both showed negative relationships with released volume from the upstream Cannonsville Reservoir and positive relationships with difference between air temperature and previous day's water temperature at Lordville. We further predicted how increasing release volumes from Cannonsville Reservoir affected the probabilities of correctly predicted events. For the >20.0 °C model, an increase of 0.5 to a proportionally adjusted release (that accounts for other sources) resulted in 35.9% of events in the training data falling below cutoffs; increasing this adjustment by 1.0 resulted in 81.7% falling below cutoffs. For the >22.2 °C these adjustments resulted in 71.1% and 100.0% of events falling below cutoffs. Results from these analyses can help managers make informed decisions on alternative release scenarios.

  16. Active commuting of the inhabitants of Liberec city in low and high walkability areas

    Directory of Open Access Journals (Sweden)

    Lukáš Rubín

    2015-12-01

    Full Text Available Background: Active commuting in terms of everyday transport to school or work can have a significant effect on physical activity. Active commuting can be influenced by the environment, and examples from abroad show that current environmental changes tend mostly to promote passive forms of commuting. A similar situation of decreasing active commuting might be expected in the Czech Republic. However, little information has been published to date about the issue of active commuting among the inhabitants of our country. Objective: The main objective of the present study is to describe the active commuting patterns of the inhabitants of Liberec city in low and high walkability areas. Methods: A total of 23,621 economically active inhabitants or students of Liberec city aged 6-87 years (34.77 ± 14.39 participated in the study. The data about commuting were retrieved from the national Population and Housing Census of 2011. Geographic information systems were used to objectively analyze the built environment and to calculate the walkability index. Results: Active commuting to/from school or work is used by 17.41% of inhabitants. Active commuting is dominated by walking (16.60% as opposed to cycling (0.81%. Inhabitants who lived in high walkability areas were more likely to actively commute than those living in low walkability areas (OR = 1.54; 95% CI [1.41, 1.68]. Conclusions: This study confirmed the findings of international studies about the effect of the built environment on active commuting among Liberec inhabitants. Active commuters are often those living near or in the city center, which is characterized by high walkability. In Liberec city, walking as a means of active commuting significantly prevails over cycling. One of the reasons might be the diverse topography of the city and the insufficiently developed cycling network.

  17. Parameter analysis on the temperature and thermal stress of the cylindrical structure with multiple holes

    International Nuclear Information System (INIS)

    Kang, Y. H.; Lee, Y. S.; Choi, Y. J.

    2001-01-01

    During fuel irradiation tests in the in-core of HANARO, all components of the capsule with multiple holes act as heat sources due to high gamma and fission heat. In the design stage, a series of design parameter study were performed to confirm the thermal integrity of the capsule with multiple holes. The main parameter reviewed in this study are as follows: the position of the specimen, the thickness of the support tube and gap size. From the analysis performed by using of the FEM code ANSYS. it is confirmed that gap size effect on the capsule is one of the most important parameter of the capsule integrity. And the final thermal stress and displacement of the support tube with a increase of gap size are also under the allowable limits of ASME code

  18. Assessment of urban thermal stress by UTCI – experimental and modelling studies: an example from Poland

    Directory of Open Access Journals (Sweden)

    Błażejczyk, Krzysztof

    2014-09-01

    Full Text Available The paper presents a new approach to the study of the spatial variability of heat stress in urban areas. The Universal Thermal Climate Index UTCI was applied for this purpose. The spatial variability of UTCI at the local scale was studied using examples of urban areas with different sizes and geographical locations. The experimental research on urban heat stress was conducted in Warsaw. The research covers both differences between UTCI in urban to rural areas as well as the variation of heat stress within small residential districts in Warsaw. We found a very large and significant heat stress gradient between downtown Warsaw and rural stations. Spatial variability of UTCI was also observed in microclimate research. A modelling approach was presented based on examples from Warsaw, a city with a population of almost 2 million, as well as examples from several spa towns with populations of up to 40,000 located in various parts of Poland. GIS analysis (ArcGIS for Desktop and IDRISI was applied for this purpose.

  19. Estimation of inelastic behavior for a tapered nozzle in vessel due to thermal transient load using stress redistribution locus method

    International Nuclear Information System (INIS)

    Kobayashi, Ken-ichi; Yamada, Jun-ichi

    2010-01-01

    Simplified inelastic design procedures for elevated temperature components have been required to reduce simulation cost and to shorten a period of time for developing new projects. Stress redistribution locus (SRL) method has been proposed to provide a reasonable estimate employing both the elastic FEM analysis and a unique hyperbolic curve: ε tilde={1/σ tilde + (κ - 1)σ tilde}/κ, where ε tilde and σ tilde show dimensionless strain and stress normalized by corresponding elastic ones, respectively. This method is based on a fact that stress distribution in well deformed or high temperature components would change with deformation or time, and that the relation between the dimensionless stress and strain traces a kind of the elastic follow-up locus in spite of the constitutive equation of material and loading modes. In this paper, FEM analyses incorporating plasticity and creep in were performed for a tapered nozzle in reactor vessel under some thermal transient loads through the nozzle thickness. The normalized stress and strain was compared with the proposed SRL curve. Calculation results revealed that a critical point in the tapered nozzle due to the thermal transient load depended on a descending rate of temperature from the higher temperature in the operation cycle. Since the inelastic behavior in the nozzle resulted in a restricted area, the relationship between the normalized stress and strain was depicted inside the proposed SRL curve: Coefficient κ of the SRL in analyses is greater than the proposed one, and the present criterion guarantees robust structures for complicated components involving inelastic deformation. (author)

  20. Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis

    International Nuclear Information System (INIS)

    Oliveira, Laura C.; Zamboni, Cibele B.

    2013-01-01

    In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.