Copper alloys with improved properties: standard ingot metallurgy vs. powder metallurgy
Directory of Open Access Journals (Sweden)
Milan T. Jovanović
2014-09-01
Full Text Available Three copper-based alloys: two composites reinforced with Al2O3 particles and processed through powder metallurgy (P/M route, i.e. by internal oxidation (Cu-2.5Al composite and by mechanical alloying (Cu-4.7Al2O3 and Cu-0.4Cr-0.08Zr alloy produced by ingot metallurgy (vacuum melting and casting were the object of this investigation. Light microscope and scanning electron microscope (SEM equipped with electron X-ray spectrometer (EDS were used for microstructural characterization. Microhardness and electrical conductivity were also measured. Compared to composite materials, Cu-0.4Cr-0.08Zr alloy possesses highest electrical conductivity in the range from 20 to 800 ℃, whereas the lowest conductivity shows composite Cu-2.5Al processed by internal oxidation. In spite to somewhat lower electrical conductivity (probably due to inadequate density, Cu-2.5Al composite exhibits thermal stability enabling its application at much higher temperatures than materials processed by mechanical alloying or by vacuum melting and casting.
International Nuclear Information System (INIS)
Waseem, M.; Awais, H.B.; Zauha, M.S.; Tariq, N.H.
2007-01-01
Current project focuses on the production of AI-Zn alloy AA7075 used for wide range of applications like Aircraft components, missile and other structural applications. The above alloy was developed by two different routes. One was melting /casting, after which alloy was characterized by microstructural - examination (optical and SEM) and mechanical testing. Other route was the preparation of this alloy by powder metallurgy. This involves preparation of powders, mechanical alloying, compaction, sintering, rolling, solution treatment and aging then analysis. Powders of Aluminum, Zinc and powders of master alloys of AI-Cu, AI-Mg, AI-Mn, and AI-Cr were Mechanical alloyed. Then this powder was compacted by uniaxial press to form pellets. Sintering was carried out at 500 degree C and then hot rolled in Ar atmosphere. After solution and aging treatments samples were characterized. It is observed that there is about 12-21% improvement in mechanical properties such as tensile strength, yield strength, ductility and fracture toughness due to the more fine microstructure and less segregation than ingot metallurgy route. (author)
Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu
2018-04-01
During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.
Advanced powder metallurgy aluminum alloys and composites
Lisagor, W. B.; Stein, B. A.
1982-01-01
The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.
International Nuclear Information System (INIS)
Pereira, Luiz Alberto Tavares
2014-01-01
PWR reactors employ, as nuclear fuel, UO 2 pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)
Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.
Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma
2015-06-01
Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dehydrogenation in large ingot casting process
International Nuclear Information System (INIS)
Ubukata, Takashi; Suzuki, Tadashi; Ueda, Sou; Shibata, Takashi
2009-01-01
Forging components (for nuclear power plants) have become larger and larger because of decreased weld lines from a safety point of view. Consequently they have been manufactured from ingots requirement for 200 tons or more. Dehydrogenation is one of the key issues for large ingot manufacturing process. In the case of ingots of 200 tons or heavier, mold stream degassing (MSD) has been applied for dehydrogenation. Although JSW had developed mold stream degassing by argon (MSD-Ar) as a more effective dehydrogenating practice, MSD-Ar was not applied for these ingots, because conventional refractory materials of a stopper rod for the Ar blowing hole had low durability. In this study, we have developed a new type of stopper rod through modification of both refractory materials and the stopper rod construction and have successfully expanded the application range of MSD-Ar up to ingots weighting 330 tons. Compared with the conventional MSD, the hydrogen content in ingots after MSD-Ar has decreased by 24 percent due to the dehydrogenation rate of MSD-Ar increased by 34 percent. (author)
Fabrication by powder metallurgy of the niobium based alloy Nb-1-Zr
International Nuclear Information System (INIS)
Marty, M.; Delaunay, C.; Walder, A.
1989-01-01
The Nb-1Zr alloy has been produced by the powder metallurgy technique. Production of powders was performed by centrifugal atomization with the rotating electrode process (REP) under an inert atmosphere of argon-helium. Alloy powders were characterized by granulometric spectra, oxygen content and the various types of structures which were found. After consolidation by extrusion, materials were evaluated by tensile test under vacuum at ambient temperature, 750 and 900 0 C and compared with the same alloy elaborated by ingot metallurgy. 8 refs., 9 figs. (Author)
Metallography of powder metallurgy materials
International Nuclear Information System (INIS)
Lawley, Alan; Murphy, Thomas F.
2003-01-01
The primary distinction between the microstructure of an ingot metallurgy/wrought material and one fabricated by the powder metallurgy route of pressing followed by sintering is the presence of porosity in the latter. In its various morphologies, porosity affects the mechanical, physical, chemical, electrical and thermal properties of the material. Thus, it is important to be able to characterize quantitatively the microstructure of powder metallurgy parts and components. Metallographic procedures necessary for the reliable characterization of microstructures in powder metallurgy materials are reviewed, with emphasis on the intrinsic challenges presented by the presence of porosity. To illustrate the utility of these techniques, five case studies are presented involving powder metallurgy materials. These case studies demonstrate problem solving via metallography in diverse situations: failure of a tungsten carbide-coated precipitation hardening stainless steel, failure of a steel pump gear, quantification of the degree of sinter (DOS), simulation of performance of a porous filter using automated image analysis, and analysis of failure in a sinter brazed part assembly
Metallurgy of steels for PWR pressure vessels
International Nuclear Information System (INIS)
Kepka, M.; Mocek, J.; Barackova, L.
1980-01-01
A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure. (B.S.)
Metallurgy of steels for PWR pressure vessels
Energy Technology Data Exchange (ETDEWEB)
Kepka, M; Mocek, J; Barackova, L [Skoda, Plzen (Czechoslovakia)
1980-09-01
A survey and the chemical compositions are presented of reactor pressure vessel steels. The metallurgy is described of steel making for pressure vessels in Japan and the USSR. Both acidic and alkaline open-hearth steel is used for the manufacture of ingots. The leading world manufacturers of forging ingots for pressure vessels, however, exclusively use electric steel. Vacuum casting techniques are exclusively used. Experience is shown gained with the introduction of the manufacture of forging ingots for pressure vessels at SKODA, Plzen. The metallurgical procedure was tested utilizing alkaline open hearths, electric arc furnaces and facilities for vacuum casting of steel. Pure charge raw materials should be used for securing high steel purity. Prior to forging pressure vessel rings, not only should sufficiently big bottoms and heads be removed but also the ingot middle part should be scrapped showing higher contents of impurities and nonhomogeneous structure.
Powder metallurgy bearings for advanced rocket engines
Fleck, J. N.; Killman, B. J.; Munson, H.E.
1985-01-01
Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.
Study on the formation of cubic texture in Ni-7 at.% W alloy substrates by powder metallurgy routes
DEFF Research Database (Denmark)
Zhao, Yue; Suo, HongLi; Zhu, YongHua
2009-01-01
One of the main challenges for coated conductor applications is to produce sharp cubic textured alloy substrates with high strength and low magnetism. In this work, the cubic textured Ni–7 at.% W substrates were prepared from different powder metallurgy ingots by rolling-assisted biaxially textured...... substrate processing. The fabrication processes of cubic texture in the Ni–7 at.% W tapes by two powder metallurgy routes are described in detail. Through the optimized process, full width at half maximum values of 6.7° and 5.0° were obtained, as estimated by X-ray (1 1 1) phi scan and (2 0 0) rocking curve...
High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process
International Nuclear Information System (INIS)
Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.
2000-01-01
The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10 -3 ). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10 -2 , however, their densities are usually great than 5 x 10 3 kg m -3 , or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process
Simulation of ingot casting processes at Deutsche Edelstahlwerke GmbH®
International Nuclear Information System (INIS)
Hartmann, L; Ernst, C; Klung, J-S
2012-01-01
To enhance the quality of tool steels it is necessary to analyse all stages of the production process. During the ingot- or continuous casting processes and the following solidification, material and geometry depending reactions cause defects such as macro segregations or porosities. In former times the trial and error approach, together with the experience and creativity of the steelworks engineers was used to improve the as-cast quality, with a high amount of test procedures and a high demand of research time and costs. Further development in software and algorithms has allowed modern simulation techniques to find their way into industrial steel production and casting-simulations are widely used to achieve an accurate prediction of the ingot quality. To improve the as-cast quality, several ingot casting processes of tool steels were studied at the R and D department of Deutsche Edelstahlwerke GmbH by using the numerical casting simulation software MAGMASOFT ® . In this paper some results extracted from the simulation software are shown and compared to experimental investigations.
Directory of Open Access Journals (Sweden)
WANG Shuang
2007-11-01
Full Text Available Ingots of a new super-high strength Al-Zn-Mg-Cu-Zr alloy were produced respectively by low frequency electromagnetic casting (LFEC and by conventional direct chill (DC casting process. Microstructure and constituents of the ingots were studied. The results indicated that the LFEC process significantly refines microstructure and constituents of the alloy, and to some extent, decreases the area (or volume fraction of constituents and eutectic structure precipitated at grain boundaries. But, no difference in the type of constituents was observed between LFEC and DC ingots. The results also showed LFEC process can improve the as-cast mechanical properties.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luiz Alberto Tavares
2014-09-01
PWR reactors employ, as nuclear fuel, UO{sub 2} pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)
International Nuclear Information System (INIS)
Tetyukhin, V.V.; Kurapov, V.N.; Trubin, A.N.; Demchenko, M.V.; Lazarev, V.G.; Ponedilko, S.V.; Dubrovina, N.T.; Kurapova, L.A.
1978-01-01
The process of crystallization and hardening of the VT3-1 and VT9 titanium alloys ingots during the vacuum-arc remelting (VAR) has been studied. In order to investigate the kinetics of the hole shape changing and the peculiarities of the ingot formation during the VAR, the radiography method has been used. It is established that the VAR of the titanium alloy ingots is basically a continuous process. An intense heating of the liquid bath mirror and the availability of high temperature gradients in the hole are the typical features of the VAR process
Vacuum induction melting of uranium ingots
International Nuclear Information System (INIS)
Hussain, M.M.; Bagchi, S.N.; Singh, S.P.
1992-01-01
Massive uranium ingot is produced from green salt (UF 4 ) using calciothermic reduction (CTR) or magnesiothermic reduction (MTR) process. CTR process has been replaced by MTR process at Trombay due to economic considerations. This paper highlights problems associated with the vacuum induction melting of MTR ingots and the remedial measures taken to produce good quality billets. Details of metallographic examination of inclusions in ingots and billets have been incorporated. (author). 3 figs
Introduction to powder metallurgy processes for titanium manufacturing
International Nuclear Information System (INIS)
Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.
2011-01-01
The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.
Powder-Metallurgy Process And Product
Paris, Henry G.
1988-01-01
Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.
Modelling of defects in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter
The present report presents an investigation of the ingot forging process with special emphasis on modelling the influence of die geometry on the soundness of the ingot after hot forging. An investigation on how to model damage is also performed. The influence of the lower die angle is quantified...... angle of 130o-140o giving rise to the largest centreline porosity closure regardless of material hardening behaviour applied. Friction was found only to have minor influence on the optimum. Multi stroke forging operations have also been modelled since the ingot forging process consists of many forging...... damage. It is found that when evaluating damage only by relative density; feed size and lower die angle does not influence whether the hot forging process is successful or not. This is in disagreement with the general understanding of the ingot forging process. When evaluating ductile damage...
Microstructure and Aging of Powder-Metallurgy Al Alloys
Blackburn, L. B.
1987-01-01
Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.
Intensification of heating processes of ingots in top-fired pit furnaces
International Nuclear Information System (INIS)
Kotlyarevskij, E.M.; Bazhenov, A.V.; Zavarova, I.S.; Baboshin, V.M.; Ioffe, Ya.E.
1978-01-01
The soaking pits provided with only one upper burner are characterized by the non-uniformity of the temperature field. It is suggested to improve the gas-burner device and the smoke flue for obviating that draw-back. It is the application of new compositions of dry materials for building up the bottom (preventing its growth) and the rational arrangement of cold ingots of the 12Kh18N10T steel (with their bottom part widened upward) that allowed the bottom crops to be reduced by about 0.5% (abs. %), and the temperature at the end of rolling ingots to be increased by about 40 degrees. According to the temperature readings, the most representative point in the soaking pit has been determined. If the preheating process is carried out automatically in accordance with that representative point, the calculated rational modes of the rapid preheating of ingots may be realized, and the consumption of the conventional fuel may be reduced by about 3 to 5 kg/ton of steel
Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process
International Nuclear Information System (INIS)
Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho
2006-01-01
Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added
Production of High Quality Die Steels from Large ESR Slab Ingots
Geng, Xin; Jiang, Zhou-hua; Li, Hua-bing; Liu, Fu-bin; Li, Xing
With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.
Microstructure and properties of powder metallurgy (PM) high alloy tool steels
International Nuclear Information System (INIS)
Wojcieszynski, A.L.; Eisen, W.B.; Dixon, R.B.
1998-01-01
Particle metallurgy (PM) processing is currently the primary manufacturing method used to produce advanced high alloy tool steel compositions for use in industrial tooling applications. This process involves gas atomization of the pre-alloyed melt to form spherical powders and consolidation by HIP to full density. The HIP product may be used directly in select applications, but is usually subjected to additional forging to improve properties and produce a wide range of bar and plate sizes. Compared to ingot-cast tool steels, PM tool steels have very homogeneous microstructures with very fine carbide and sulfide size distributions, free from carbide banding, which results in improved machinability, grindability, and mechanical properties. In addition, this technology enables the development of advanced tool steel compositions which could not be economically produced by conventional steelmaking. (author)
Remelt Ingot Production Technology
Grandfield, J. F.
The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.
Numerical simulation on multiple pouring process for a 292 t steel ingot
Directory of Open Access Journals (Sweden)
Tu Wutao
2014-01-01
Full Text Available A ladle-tundish-mould transportation model considering the entire multiple pouring (MP process is proposed. Numerical simulation is carried out to study the carbon distribution and variation in both the tundish and the mould for making a 292 t steel ingot. Firstly, the fluid flow as well as the heat and mass transfer of the molten steel in the tundish is simulated based on the multiphase transient turbulence model. Then, the carbon mixing in the mould is calculated by using the species concentration at the tundish outlet as the inlet condition during the teeming process. The results show a high concentration of carbon at the bottom and a low concentration of carbon at the top of the mould after a MP process with carbon content high in the first ladle and low in the last ladle. Such carbon concentration distribution would help reduce the negative segregation at the bottom and the positive segregation at the top of the solidified ingot.
Application of directional solidification ingot (LSD) in forging of PWR reactor vessel heads
International Nuclear Information System (INIS)
Benhamou, C.; Poitrault, I.
1985-09-01
Creusot-Loire Industrie uses this type of ingot for manufacture of Framatome 1300 and 1450 MW 4-loop PWR reactor vessel heads. This type of ingot offers a number advantages: improved internal soundness; greater chemical, structural and mechanical homogeneity of the finished part; simplified forging process. After a brief description of the pouring and solidification processes, this paper presents an analysis of the results of examinations performed on the prototype forging, as well as review of results obtained during industrial fabrication of dished heads from LSD ingots. The advantages of the LSD ingot over conventional ingots are discussed in conclusion
Industrial powder metallurgy processing for production of high field Nb3Sn
International Nuclear Information System (INIS)
Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.
1988-01-01
Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility
Prediction of qualitative parameters of slab steel ingot using numerical modelling
Directory of Open Access Journals (Sweden)
M. Tkadlečková
2016-07-01
Full Text Available The paper describes the verification of casting and solidification of heavy slab ingot weighing 40 t from tool steel by means of numerical modelling with use of a finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, the problems with determination of the thermodynamic properties of materials and with determination of the heat transfer between the individual parts of the casting system are discussed. The final porosity, macrosegregation and the risk of cracks were predicted. The results allowed us to use the slab ingot instead of the conventional heavy steel ingot and to improve the ratio, the chamfer and the external shape of the wall of the new design of the slab ingot.
Uranium 2000 : International symposium on the process metallurgy of uranium
International Nuclear Information System (INIS)
Ozberk, E.; Oliver, A.J.
2000-01-01
The International Symposium on the Process Metallurgy of Uranium has been organized as the thirtieth annual meeting of the Hydrometallurgy Section of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM). This meeting is jointly organized with the Canadian Mineral Processors Division of CIM. The proceedings are a collection of papers from fifteen countries covering the latest research, development, industrial practices and regulatory issues in uranium processing, providing a concise description of the state of this industry. Topics include: uranium industry overview; current milling operations; in-situ uranium mines and processing plants; uranium recovery and further processing; uranium leaching; uranium operations effluent water treatment; tailings disposal, water treatment and decommissioning; mine decommissioning; and international regulations and decommissioning. (author)
The Structural Evolution and Segregation in a Dual Alloy Ingot Processed by Electroslag Remelting
Directory of Open Access Journals (Sweden)
Yu Liu
2016-12-01
Full Text Available The structural evolution and segregation in a dual alloy made by electroslag remelting (ESR was investigated by various analytical techniques. The results show that the macrostructure of the ingot consists of two crystallization structures: one is a quite narrow, fine, equiaxed grain region at the edge and the other is a columnar grain region, which plays a leading role. The typical columnar structure shows no discontinuity between the CrMoV, NiCrMoV, and transition zones. The average secondary arm-spacing is coarsened from 35.3 to 49.2 μm and 61.5 μm from the bottom to the top of the ingot. The distinctive features of the structure are attributed to the different cooling conditions during the ESR process. The Ni, Cr, and C contents markedly increase in the transition zone (TZ and show a slight increase from the bottom to the top and from the surface to the center of the ESR ingot due to the partition ratios, gravity segregation, the thermal buoyancy flow, the solutal buoyancy flow, and the inward Lorentz force. Less dendrite segregation exists in the CrMoV zone and the transition zone due to a stronger cooling rate (11.1 and 4.5 °C/s and lower Cr and C contents. The precipitation of carbides was observed in the ingot due to a lower solid solubility of the carbon element in the α phase.
Electrochemical Corrosion Testing of Neutron Absorber Materials
International Nuclear Information System (INIS)
Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge
2007-01-01
This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled)
Energy Technology Data Exchange (ETDEWEB)
Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.
2011-07-01
The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.
Directory of Open Access Journals (Sweden)
Pricop Bogdan
2015-01-01
Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.
Modelling of macrosegregation in steel ingots: benchmark validation and industrial application
International Nuclear Information System (INIS)
Li Wensheng; Shen Houfa; Liu Baicheng; Shen Bingzhen
2012-01-01
The paper presents the recent progress made by the authors on modelling of macrosegregation in steel ingots. A two-phase macrosegregation model was developed that incorporates descriptions of heat transfer, melt convection, solute transport, and solid movement on the process scale with microscopic relations for grain nucleation and growth. The formation of pipe shrinkage at the ingot top is also taken into account in the model. Firstly, a recently proposed numerical benchmark test of macrosegregation was used to verify the model. Then, the model was applied to predict the macrosegregation in a benchmark industrial-scale steel ingot. The predictions were validated against experimental data from the literature. Furthermore, macrosegregation experiment of an industrial 53-t steel ingot was performed. The simulation results were compared with the measurements. It is indicated that the typical macrosegregation patterns encountered in steel ingots, including a positively segregated zone in the hot top and a negative segregation in the bottom part of the ingot, are well reproduced with the model.
A review of experiment data processing method for uranium mining and metallurgy in BRICEM
International Nuclear Information System (INIS)
Ye Guoqiang; Lu Kehong; Wang Congying
1997-01-01
The authors investigates the methods of experiment data processing in Beijing Research Institute of Chemical Engineering and Metallurgy (BRICEM). It turns out that error analysis method is used to process experiment data, single-factor transformation and orthogonal test design method are adopted for arranging test, and regression analysis and mathematical process simulation are applied to process mathematical model for uranium mining and metallurgy. The methods above-mentioned lay a foundation for the utilization of mathematical statistics in our subject
Processing and properties of silver-metal oxide electrical contact materials
Directory of Open Access Journals (Sweden)
Nadežda M. Talijan
2012-12-01
Full Text Available The presented study gives a brief overview of the experimental results of investigations of different production technologies of silver-metal oxide electrical contact materials in relation: processing method - properties. The two most common routes of production, i.e. internal oxidation/ingot metallurgy and powder metallurgy are demonstrated on the example of Ag-CdO and Ag-ZnO materials. For illustration of alternative processing routes that provide higher dispersion of metal-oxide particles in silver matrix more environmentally friendly Ag-SnO2 contact materials are used. Processing of electrical contact materials by mechanical mixing of starting powders in high energy ball mill is presented. The obtained experimental results of application of different methods of introduction of SnO2 nanoparticles in the silver matrix such as conventional powder metallurgy mixing and template method are given and discussed in terms of their influence on microstructure and physical properties (density, hardness and electrical conductivity of the prepared Ag-SnO2 electrical contact materials.
Superconductors by powder metallurgy techniques
International Nuclear Information System (INIS)
Pickus, M.R.; Wang, J.L.F.
1976-05-01
Fabrication methods for Nb 3 Sn type compounds are described. Information is included on the Bell Telephone process, the General Electric tape process, superconductor stability, the bronze process, powder metallurgy multifilamentary tapes and wires, and current assessment of powder metallurgy superconducting wire
Numerical modelling of damage evolution in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf
2015-01-01
The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of feed...... (400mm and 800mm) are analysed. Comparison of the simulation results with recommendations in literature on ingot forging, indicates the normalized Cockcroft & Latham damage criterion to be the most realistic of the two....
International Nuclear Information System (INIS)
Kondoh, Katsuyoshi; Hamada, EL-Sayed Ayman; Imai, Hisashi; Umeda, Junko; Jones, Tyrone
2010-01-01
Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1-4 mm length, having fine α-Mg grains and Al 2 Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg-6%Al-0.5%Mn-2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573-673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45-0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200-500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.
Mechanical properties of AZ31 alloy processed by a green metallurgy route
International Nuclear Information System (INIS)
D'Enrico, F.; Garces, G.; Hofer, M.; Kim, S. K.; Perez, P.; Cabeza, S.; Adeva, P.
2013-01-01
Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out successfully when small amounts of CaO are added to the melt, making unnecessary the use of SF 6 coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl 2 phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu) funded by the European Union (LIFE+2009), studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM) using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demonstrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa. (Author)
A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy
Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao
2018-04-01
The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.
Energy Technology Data Exchange (ETDEWEB)
Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)
2009-04-03
Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.
International Nuclear Information System (INIS)
Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.
2009-01-01
Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes
Research and Development of the Solidification of Slab Ingots from Special Tool Steels
Directory of Open Access Journals (Sweden)
Tkadlečková M.
2017-09-01
Full Text Available The paper describes the research and development of casting and solidification of slab ingots from special tool steels by means of numerical modelling using the finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, problems with determining the thermophysical properties of materials and heat transfer between the individual parts of the casting system are discussed. Based on the type of grade of tool steel, the risk of final porosity is predicted. The results allowed to improve the production technology of slab ingots, and also to verify the ratio, the chamfer and the external/ internal shape of the wall of the new designed slab ingots.
Modelling of Damage During Hot Forging of Ingots
DEFF Research Database (Denmark)
Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels
2013-01-01
Ductile damage modelling in the ingot forging process is discussed. Advantages and disadvantages of both coupled and uncoupled ductile damage models are presented. Some uncoupled damage models are examined in greater detail regarding their applicability to different processes, where hydrostatic...
Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys
International Nuclear Information System (INIS)
Fuchs, G.E.
1995-02-01
The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed
Superconducting radio-frequency cavities made from medium and low-purity niobium ingots
Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.
2016-06-01
Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100-150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 1010 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.
Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots
Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Myneni, Ganapati R.
2015-12-01
Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ˜1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR˜260 and RRR˜100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.
Zircaloy 4 ingots' industrial fabrication
International Nuclear Information System (INIS)
Leyt, A.
1987-01-01
The technology developed for the industrial fabrication of Zircaloy-4 ingots is presented. According to the results obtained: a) the homogeneity of the ingots is analyzed, regarding the distribution of components (tin, iron, chromium, oxygen) and Brinell hardness as a function of different types of charge: zirconium sponge-recycling alloy material, sponge of zirconium-alloy; b) the distribution of the same parameters as a function of production is also analyzed. (Author)
Gilman, P. S.
1984-01-01
Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.
Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots
International Nuclear Information System (INIS)
Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Myneni, Ganapati R.
2015-01-01
Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material
High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy
International Nuclear Information System (INIS)
Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.
1993-01-01
The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control
Superconducting radio-frequency cavities made from medium and low-purity niobium ingots
International Nuclear Information System (INIS)
Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R
2016-01-01
Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0 -values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nb of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0 -value of 2 × 10 10 at 2 K after standard processing treatments. The performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching. (paper)
Studies on ancient silver metallurgy using SR XRF and micro-PIXE
Vasilescu, Angela; Constantinescu, Bogdan; Stan, Daniela; Radtke, Martin; Reinholz, Uwe; Buzanich, Guenter; Ceccato, Daniele
2015-12-01
This work presents a complex evaluation of a series of Geto-Thracian silver adornments found on Romanian territory, part of the 4th century BC Agighiol (Northern Dobruja) hoard and of an ingot from the 1st century BC Geto-Dacian Surcea (Transylvania) hoard, using Synchrotron Radiation X-Ray Fluorescence and micro- Proton Induced X-ray Emission analysis and mapping in order to investigate aspects related to the elemental composition of the metal and the metallurgy implied in their manufacture. One of the samples can be linked to Laurion as the source of metal, and several items contain silver probably originated in Macedonia. The set of silver items was found to be heteregenous as composition and microstructure, and corrosion-related elements could be also identified in the X-Ray maps.
Directory of Open Access Journals (Sweden)
Zaoyang Li
2016-01-01
Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.
International Nuclear Information System (INIS)
Rodriguez, P.P.; Ibarra, A.; Iza-Mendia, A.; Recarte, V.; Perez-Landazabal, J.I.; San Juan, J.; No, M.L.
2003-01-01
Cu-Al-Ni shape memory alloys processed by powder metallurgy show very good thermo-mechanical properties, much better than those found in alloys produced by conventional casting. In this paper, we present the microstructural characterisation of these powder metallurgy alloys in order to find the microscopic mechanisms, linked to the powder metallurgy processing method, which are indeed responsible of such good thermo-mechanical behaviour. Electron microscopy studies [scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM)] show that powder metallurgy processing creates a sub-grain structure characterised by the presence of low angle sub-boundaries. These sub-boundaries are found to be lying on {1 1 0} and {1 1 2} lattice planes and are composed by an arrangement of superdislocations. These sub-boundaries may improve ductility in two ways: acting as a sink of dislocations which promotes plastic deformation and decreasing stress concentration at grain boundaries. Moreover, since sub-boundaries act as weak obstacles for the movement of martensite plates, the improvement on ductility is accomplished by an adequate thermo-mechanical behaviour
Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking
Energy Technology Data Exchange (ETDEWEB)
Das, S.K.; Ningileri, S.; Long, Z.; Saito, K.; Khraisheh, M.; Hassan, M.H.; Kuwana, K.; Han, Q.; Viswanathan, S.; Sabau, A.S.; Clark, J.; Hyrn, J. (ANL)
2006-08-15
Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting process has been the mainstay of the aluminum industry for the production of ingots due largely to its robust nature and relative simplicity. Though the basic process of DC casting is in principle straightforward, the interaction of process parameters with heat extraction, microstructural evolution, and development of solidification stresses is too complex to analyze by intuition or practical experience. One issue in DC casting is the formation of stress cracks [1-15]. In particular, the move toward larger ingot cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies have increased industry efficiencies but have made it more difficult to predict the occurrence of stress crack defects. The Aluminum Industry Technology Roadmap [16] has recognized the challenges inherent in the DC casting process and the control of stress cracks and selected the development of 'fundamental information on solidification of alloys to predict microstructure, surface properties, and stresses and strains' as a high-priority research need, and the 'lack of understanding of mechanisms of cracking as a function of alloy' and 'insufficient understanding of the aluminum solidification process', which is 'difficult to model', as technology barriers in aluminum casting processes. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack incidence is important for improving product quality and consistency as well as for saving resources and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, by reducing the scalping thickness of
Directory of Open Access Journals (Sweden)
W. H. D. Luna
2017-12-01
Full Text Available This article presents the use of finite elements to analyze the yield of electric machines based on the use of different soft magnetic materials for the rotor and the stator, in order to verify the performance in electric machine using powder metallurgy. Traditionally, the cores of electric machines are built from rolled steel plates, thus the cores developed in this work are obtained from an alternative process known as powder metallurgy, where powders of soft magnetic materials are compacted and sintered. The properties of interest were analyzed (magnetic, electric and mechanical properties and they were introduced into the software database. The topology of the rotor used was 400 W three-phase synchronous motor manufactured by WEG Motors. The results show the feasibility to replace the metal sheets of the electric machines by solid blocks obtained by powder metallurgy process with only 0.37% yield losses. In addition, the powder metallurgical process reduces the use of raw materials and energy consumption per kg of raw material processed.
International Nuclear Information System (INIS)
Kamran, J.; Feroz, M.; Sarwar, M.
2009-01-01
Shrinkage cavity/piping at the end of the solidified ingot of steels is one of the most common casting problem in 316L austenitic stainless steel ingot, when consumable electrode is melted and cast in a water-cooled copper mould by vacuum arc re-melting furnace. In present study an effort has been made to reduce the size of shrinkage cavity/ piping by establishing the optimum value of hot topping process parameters at the end of the melting process. It is concluded that the shrinkage cavity/piping at the top of the solidified ingot can be reduced to minimum by adjusting the process parameters particularly the melting current density. (author)
The extractive metallurgy of gold
Kongolo, K.; Mwema, M. D.
1998-12-01
Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.
The extractive metallurgy of gold
International Nuclear Information System (INIS)
Kongolo, K.; Mwema, M.D.
1998-01-01
Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied
The extractive metallurgy of gold
Energy Technology Data Exchange (ETDEWEB)
Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)
1998-12-15
Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.
Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots
Directory of Open Access Journals (Sweden)
Binczyk F.
2012-12-01
Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces, excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.
Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots
Directory of Open Access Journals (Sweden)
F. Binczyk
2012-12-01
Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces,excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.
Powder metallurgy and fabricating processes of cermet and metmet fuel in Russia
International Nuclear Information System (INIS)
Vatulin, A.; Konovalov, I.; Savchenco, A.; Stetsky, Y.; Trifonov, Y.; Bochvar, A.A.
2000-01-01
Methods of powder metallurgy are widely used for manufacturing of various components of reactor core: beryllium reflectors, absorbers, parts of controlling and safety systems, fuel pellets for fuel elements of power reactors and etc. The new problems arising before atomic engineering associated with increasing requirements to safe operation of reactors, non-proliferation of the nuclear weapons and utilization of plutonium stockpile in the world, served as a push to development of new kinds of dispersion nuclear fuel CERMET, CERCER, METMET. The bases of fabricating processes of such compositions are the methods of powder metallurgy. In this report some results of research activities on the development of new kinds of CERMET and METMET fuel and fuel elements for different type reactors are presented. (author)
The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys
Pickens, J. R.; Christodoulou, L.
1987-01-01
The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.
Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.
1992-01-01
In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.
International Nuclear Information System (INIS)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.
2015-01-01
Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications
Radiometric study of creep in ingot rolling
International Nuclear Information System (INIS)
Kubicek, P.; Zamyslovsky, Z.; Uherek, J.
The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)
Bio technologies in extractive metallurgy
International Nuclear Information System (INIS)
Morin, D.
1995-01-01
The bio technologies processes used (or used in the future) in extractive metallurgy are presented. The most advanced one is the degradation of the metals sulfides (bacteria catalyzing the sulfides oxidation of Au, Cu, U). Two other applications outside the extractive metallurgy are also described: metals fixation by living or dead organic matter and the biological destruction of organic reactants such as cyanides. (A.B.)
Operation of arc heating furnace on manufacturing gigantic ingots and segregation of gigantic ingots
International Nuclear Information System (INIS)
Niimi, Takayasu; Okamura, Masayoshi
1976-01-01
The techniques and procedure for manufacturing gigantic ingots heavier than 200 t are described. Especially, practical results of an arc heating furnace which plays an important role in the procedure and segregation of gigantic ingots are discussed in detail. By appropriate operations of the arc heating furnance, hydrogen and phosphorus are kept unchanged, and oxygen and sulphur decrease to very low levels. Furthermore, the temperature can be accurately controlled. The application of multipour technique reduces segregation and its degree is dependent on kinds of steel. V-segregation and inverted V-segregation in steel deoxidized with carbon in vacuum seem to be very slight. (auth.)
Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy
International Nuclear Information System (INIS)
Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.
1995-01-01
Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures
Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce
2017-06-01
In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.
Ingot formation using uranium dendrites recovered by electrolysis in LiCl-KCl-PuCl3-UCl3 melt
International Nuclear Information System (INIS)
Mineo Fukushima; Akira Nakayoshi; Shinichi Kitawaki; Masaki Kurata; Noboru Yahagi
2008-01-01
Products on solid cathodes recovered by the metal pyrochemical processing were processed to obtain uranium ingot. Studies on process conditions of uranium formation, assay recovered uranium products and by-products and evaluation of mass balance were carried out. In these tests, it is confirmed that uranium ingots can be obtained with heating the products more than melting temperature of metal uranium under atmospheric pressure because adhered salt cover the uranium not to oxidize it during uranium cohering. Covered salt can be removed after ingot formation. Inside the ingot, there were a lump of uranium and dark brown colored dross was observed. Material balance of uranium is 77 ∼ 96%, that of plutonium is 71 ∼ 109%, and that of americium that is a volatile substance more than uranium and plutonium become 79 ∼ 119%. Volatilization of americium is very small under the condition of high temperature. (authors)
Powder Metallurgy Reconditioning of Food and Processing Equipment Components
Nafikov, M. Z.; Aipov, R. S.; Konnov, A. Yu.
2017-12-01
A powder metallurgy method is developed to recondition the worn surfaces of food and processing equipment components. A combined additive is composed to minimize the powder losses in sintering. A technique is constructed to determine the powder consumption as a function of the required metallic coating thickness. A rapid method is developed to determine the porosity of the coating. The proposed technology is used to fabricate a wear-resistant defectless metallic coating with favorable residual stresses, and the adhesive strength of this coating is equal to the strength of the base metal.
International Nuclear Information System (INIS)
Chang Heon Lee; Kih Soo Joe; Won Ho Kim; Euo Chang Jung; Kwang Yong Jee
2009-01-01
A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li 2 O molten salt at 650 deg C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239 Pu, 237 Np, 241 Am and 244 Cm added to a synthetic uranium metal ingot dissolved solution. (author)
Kinetics of steel heavy ingot formation in dies of semicontinuous-casting machines
International Nuclear Information System (INIS)
Tsukerman, V.Ya.; Marchenko, I.K.
1986-01-01
Formation kinetics of round section ingot of up to 0.67 m in diameter was analyzed in dies of semicontinuous-casting machines on casting of the most usable assortment steels: medium-carbon low-alloyed and chromium-nickel stainless steels. It is established that solidification coefficient decreases in direct proportion to ingot diameter. Value of different-thickness ingot skin at die outlet is in direct proportion to a casted steel overheating temperature, ingot diameter and inversely proportional to the number and diameter of holes in a ladder nozzle and square root of ingot drawing rate
Structural Transformations Versus Hard Particles Motion in the Brass Ingots
Directory of Open Access Journals (Sweden)
Wołczyński W.
2017-12-01
Full Text Available A mathematical method for the forecast of the type of structure in the steel static ingot has been recently developed. Currently, the method has been applied to structural zones prediction in the brass ingots obtained by the continuous casting. Both the temperature field and thermal gradient field have been calculated in order to predict mathematically the existence of some structural zones in the solidifying brass ingot. Particularly, the velocity of the liquidus isotherm movement and thermal gradient behavior versus solidification time have been considered. The analysis of the mentioned velocity allows the conclusion that the brass ingots can evince: chilled columnar grains-, (CC, fine columnar grains-, (FC, columnar grains-, (C, equiaxed grains zone, (E, and even the single crystal, (SC, situated axially. The role of the mentioned morphologies is analyzed to decide whether the hard particles existing in the brass ingots can be swallowed or rejected by the solid / liquid (s/l interface of a given type of the growing grains. It is suggested that the columnar grains push the hard particles to the end of a brass ingot during its continuous casting.
Formation of non-metallic inclusions and the possibility of their removal during ingot casting
Ragnarsson, Lars
2010-01-01
The present study was carried out to investigate the formation and evolution of non-metallic inclusions during ingot casting. Emphasize have been on understanding the types of inclusions formed and developed through the casting process and on the development of already existing inclusions carried over from the ladle during casting. Industrial experiments carried on at Uddeholm Tooling together with laboratory work and Computational Fluid Dynamics (CFD) simulations. Ingots of 5.8 tons have bee...
Densification of powder metallurgy billets by a roll consolidation technique
Sellman, W. H.; Weinberger, W. R.
1973-01-01
Container design is used to convert partially densified powder metallurgy compacts into fully densified slabs in one processing step. Technique improves product yield, lowers costs and yields great flexibility in process scale-up. Technique is applicable to all types of fabricable metallic materials that are produced from powder metallurgy process.
Solidification Mapping of a Nickel Alloy 718 Laboratory VAR Ingot
Watt, Trevor J.; Taleff, Eric M.; Lopez, Felipe; Beaman, Joe; Williamson, Rodney
The solidification microstructure of a laboratory-scale Nickel alloy 718 vacuum arc remelted (VAR) ingot was analyzed. The cylindrical, 210-mm-diameter ingot was sectioned along a plane bisecting it length-wise, and this mid-plane surface was ground and etched using Canada's reagent to reveal segregation contrast. Over 350 photographs were taken of the etched mid-plane surface and stitched together to form a single mosaic image. Image data in the resulting mosaic were processed using a variety of algorithms to extract quantities such as primary dendrite orientation, primary dendrite arm spacing (PDAS), and secondary dendrite arm spacing (SDAS) as a function of location. These quantities were used to calculate pool shape and solidification rate during solidification using existing empirical relationships for Nickel Alloy 718. The details and outcomes of this approach, along with the resulting comparison to experimental processing conditions and computational models, are presented.
Energy Technology Data Exchange (ETDEWEB)
Mineo Fukushima; Akira Nakayoshi; Shinichi Kitawaki [Japan Atomic Energy Agency (JAEA), 4-33 Muramatsu Tokai-mura Naka-gun, Ibaraki, 319-1194 (Japan); Masaki Kurata; Noboru Yahagi [Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwadokita Komae-shi, Tokyo, 201-8511 (Japan)
2008-07-01
Products on solid cathodes recovered by the metal pyrochemical processing were processed to obtain uranium ingot. Studies on process conditions of uranium formation, assay recovered uranium products and by-products and evaluation of mass balance were carried out. In these tests, it is confirmed that uranium ingots can be obtained with heating the products more than melting temperature of metal uranium under atmospheric pressure because adhered salt cover the uranium not to oxidize it during uranium cohering. Covered salt can be removed after ingot formation. Inside the ingot, there were a lump of uranium and dark brown colored dross was observed. Material balance of uranium is 77 {approx} 96%, that of plutonium is 71 {approx} 109%, and that of americium that is a volatile substance more than uranium and plutonium become 79 {approx} 119%. Volatilization of americium is very small under the condition of high temperature. (authors)
Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production
Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun
2018-03-01
Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.
Directory of Open Access Journals (Sweden)
C. Mathalai Sundaram
2014-12-01
Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.
Physical metallurgy. Vol. 6. Corrosion, oxidation and physical metallurgy applications
International Nuclear Information System (INIS)
Adda, Y.; Dupuy, J.M.; Philibert, J.; Quere, Y.
1982-12-01
This document deals with the following subjects: oxidation, corrosion and surface treatments. Some physical metallurgy applications are presented: aluminium alloys, high elastic limit materials, materials for very high temperature, nuclear metallurgy problems, composite materials, magnetic materials, very high purity materials, and, superconductor materials [fr
Powder metallurgy - some economic considerations
Energy Technology Data Exchange (ETDEWEB)
Kassem, M.E.
1982-01-01
As a forming process powder metallurgy offers reductions in material and energy consumption. The engineering prerequisites and economics are discussed in relation to several industrial applications including automobile parts. 14 refs.
International Nuclear Information System (INIS)
Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.
2009-01-01
Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over
Preparation of nitinol by non-conventional powder metallurgy techniques
Czech Academy of Sciences Publication Activity Database
Novák, P.; Moravec, H.; Salvetr, P.; Průša, F.; Drahokoupil, Jan; Kopeček, Jaromír; Karlík, M.; Kubatík, Tomáš František
2015-01-01
Roč. 31, č. 15 (2015), s. 1886-1893 ISSN 0267-0836 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 ; RVO:61389021 Keywords : shape memory alloys * SHS process * SEM * powder metallurgy Subject RIV: JG - Metallurgy Impact factor: 1.008, year: 2015
Current programmes of Metallurgy Division (1991)
International Nuclear Information System (INIS)
1991-01-01
Current research and development programmes of the Metallurgy Division are listed under the headings: 1)Thrust Areas, 2)High Temperature Materials Section, 3)Chemical Metallurgy Section, 4)Metallurgical Thermochemistry Section, 5)Physical Metallurgy Section, 6)Mechanical Metallurgy Section, 7)Corrosion Metallurgy Section, 8)Electrochemical Science and Technology Section, 9)Ceramics Section, and 10)Fabrication and Maintenance Group. A list of equipment in the Division and a list of sciientific personnel of the Division are also given. (M.G.B.)
Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Cho, Churl-Hee
2014-08-01
Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.
Tungsten and tungsten alloys by powder metallurgy
International Nuclear Information System (INIS)
Belhadjhamida, A.; German, R.M.
1991-01-01
Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances
Energy Technology Data Exchange (ETDEWEB)
Beer, Stefan [I.A.S. Induktions-Anlagen + Service GmbH und Co. KG, Iserlohn (Germany)
2013-03-15
Inductive heating of large-format aluminium ingots on modern extrusion press lines generates significant process-engineering benefits. In addition, the proportion of special alloys processed is continuously increasing, accompanied simultaneously by ever smaller production batches, both of which are factors necessitating improvement of and greater flexibility in process-cycle control. This report examines a system concept recently commissioned on one of the world's largest aluminium extrusion presses. (orig.)
Directory of Open Access Journals (Sweden)
Bondarenko V.I.
2015-03-01
Full Text Available The generic mathematical model and computational algorithm considering hydrodynamics, heat and mass transfer processes during casting and forming steel ingots and castings are offered. Usage domains for turbulent, convective and non-convective models are determined depending on ingot geometry and thermal overheating of the poured melt. The expert system is developed, enabling to choose a mathematical model depending on the physical statement of a problem.
International Nuclear Information System (INIS)
Johansen, K.; Voggenreiter, H.; Eggeler, G.
1999-01-01
The present study investigates the tensile properties of a nickel titanium (NiTi) shape memory alloy (SMA) produced by powder metallurgy (PM) with and without TiC-particles. It discusses the effect of the addition of particles on the mechanical behavior in tension and studies the intrinsic two way effect (ε 2W ) after thermomechanical training. Special emphasis is placed on the stability of ε 2W after subsequent thermal cycling. The results are discussed on the basis of an analysis of the thermomechanical data and microstructural results. The present study shows that the PM route can produce NiTi SMAs with tensile properties which match those of materials produced by classical ingot metallurgy. Adding TiC particles to NiTi SMAs alters the phase transition temperatures (PTTs) and affects the SMA performance. Adding more than ten volume percent TiC particles results in early and brittle rupture during tensile loading. (orig.)
Tannins in Mineral Processing and Extractive Metallurgy
Directory of Open Access Journals (Sweden)
Jordan Rutledge
2015-08-01
Full Text Available This study provides an up to date review of tannins, specifically quebracho, in mineral processing and metallurgical processes. Quebracho is a highly useful reagent in many flotation applications, acting as both a depressant and a dispersant. Three different types of quebracho are mentioned in this study; quebracho “S” or Tupasol ATO, quebracho “O” or Tupafin ATO, and quebracho “A” or Silvafloc. It should be noted that literature often refers simply to “quebracho” without distinguishing a specific type. Quebracho is most commonly used in industry as a method to separate fluorite from calcite, which is traditionally quite challenging as both minerals share a common ion—calcium. Other applications for quebracho in flotation with calcite minerals as the main gangue source include barite and scheelite. In sulfide systems, quebracho is a key reagent in differential flotation of copper, lead, zinc circuits. The use of quebracho in the precipitation of germanium from zinc ores and for the recovery of ultrafine gold is also detailed in this work. This analysis explores the wide range of uses and methodology of quebracho in the extractive metallurgy field and expands on previous research by Iskra and Kitchener at Imperial College entitled, “Quebracho in Mineral Processing”.
Radiation technologies in metallurgy and machinery
International Nuclear Information System (INIS)
Meshkov, I.N.
1990-01-01
Applications of electron beam accelerators for technologies in metallurgy and machinery are discussed. Processes described are provided with special industrial accelerators, developed in the Institute of Nuclear Physics, Novosibirsk. (author)
Energy Technology Data Exchange (ETDEWEB)
Jirak, Z; Malik, J; Vrba, J
1976-01-01
The present power situation and its estimated development with a view to metallurgy is presented. The possibilities of the development of Czechoslovak metallurgy are described with regard to conventional fuels and to nuclear power applications. The programme of the use of nuclear power in countries with a highly developed metallurgical industry, such as Japan, the FRG, etc., is presented and the technical pre-requisites for the use of nuclear power in metallurgy, namely the use of high temperature reactors and their incorporation in nuclear metallurgical complexes are discussed. The problems are indicated of the selection of suitable materials for high temperature reactors and the experience is described with the operation of such equipment. The results are given of the analysis of 10 variants of the model of a nuclear metallurgical complex manufacturing 1000 tons of sponge iron per day and having four main technological circuits (the helium circuit, the steam circuit, the reduction gas circuit and the cycle of metallurgical processes). An estimate is given of the capital costs of building a high temperature reactor, a power plant and a metallurgical complex with the reactor. The costs are also given of steel and power production in a nuclear metallurgical complex.
International Nuclear Information System (INIS)
Wu Shan-Shan; Wang Lei; Yang De-Ren
2011-01-01
The behavior of wafers and solar cells from the border of a multicrystalline silicon (mc-Si) ingot, which contain deteriorated regions, is investigated. It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells (about 16%) is achieved. It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions. Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not. Therefore, it is suggested that the border of a mc-Si ingot could be used to fabricate high efficiency solar cells, which will increase mc-Si utilization effectively. (condensed matter: structure, mechanical and thermal properties)
Scaleup of powder metallurgy processed Nb-Al multifilamentary wire
International Nuclear Information System (INIS)
Thieme, C.; Foner, S.; Otubo, J.; Pourrahimi, S.; Schwartz, B.; Zhang, H.
1983-01-01
Power metallurgy processed Nb-Al superconducting wires were fabricated from billets up to 45 mm o.d. with nominal areal reduction ratios, R, up to 2 X 10 5 , Nb powder sizes from 40 to 300 μm from various sources, Al powder sizes from 9 to 75 μm, Al concentrations from 3 to 25 wt % Al and with a wide range of heat treatments. All the compacts used tap density powder in a Cu tube and swaging and/or rod rolling and subsequent wire drawing. Both single strand and bundled wires were made. Overall critical current densities, J /SUB c/, of 2 X 10 4 A/cm 2 at 14 T and 10 4 A/cm 2 at 16 T were achieved for 6 to 8 wt % Al in Nb
Constrained/unconstrained solidification within the massive cast steel/iron ingots
Directory of Open Access Journals (Sweden)
W. S. Wołczyński
2010-04-01
Full Text Available Some properties of the ingot and especially of the steel forging ingots depend on the ratio of a columnar structure area to an equiaxed structure area created during solidification. The C-E transition is fundamental phenomenon that can be applied to characterize massive cast steel ingots produced by the casting house. The mentioned ratio is created spontaneously due to the rate of heat transfer towards the ceramic mould and then to the environment. The ceramic mould operates as an isolator. So that the thickness of the mould together with a growing solid fraction control the heat transfer and finally the ratio of the columnar structure area to the equiaxed structure area. At first the increase of heat accumulation within the ceramic mould is observed. Next the stationary state for heat transfer is created and finally a gentle abatement of the mould temperature associated with the heat output to the environment is expected. The steep thermal gradients correspond to the increase of heat accumulation in the ceramic mould. The steep thermal gradients are required to promote the columnar structure formation. The full heat accumulation in the mould corresponds well with the C-E transformation while the appearance of the moderate thermal gradients is referred to the gentle temperature abatement within the ceramic mould. The equiaxed structure is expected within this period of heat transfer behavior. The steep thermal gradients involve the activity of viscosity gradient in the liquid. As the result a sedimentary cones are formed at the bottom of the ingot. The C-E transformation is associated with competition between columnar and equaixed structure formation. At the end of competition a fully equiaxed structure is formed. The viscosity gradient is replaced by the thermophoresis which is the driving force for the deposition of some equiaxed grain layers onto the surface of C+E zone. The convection together with the gravity allow the layers to be uniform
Energy Technology Data Exchange (ETDEWEB)
Stoelzel, K [ed.
1986-01-01
The dictionary represents the German-English terminology of the broad field of metallurgy (the dressing of ores and fluxes, pig iron and steel making, powder and nonferrous metallurgy, forming processes etc.) as well as of the broad field of foundry practice. Apart from the theoretical fundamental principles emphasis is on the problems of materials working and materials testing. Moreover, the dictionary considers a number of technical terms concerning the hardening, surface treatment and corrosion of materials.
Neutron radiography in metallurgy
International Nuclear Information System (INIS)
Rant, J.; Ilic, R.
1977-01-01
The review surveys microneutronographic and neutron-induced autoradiographic techniques and their applications in metallurgy. A brief survey of applications of neutron radiography as a method of non-destructive testing to some macroscopic problems in metallurgy is included. (author)
Thermogravimetric control of intermediate compounds in uranium metallurgy
International Nuclear Information System (INIS)
Gasco Sanchez, L.; Fernandez Cellini, R.
1959-01-01
The thermal decomposition of some intermediate compounds in the metallurgy of the uranium as uranium peroxide, ammonium uranate, uranium and ammonium penta-fluoride, uranium tetrafluoride and uranous oxide has been study by means of the Chevenard's thermo balance. Some data on pyrolysis of synthetic mixtures of intermediate compounds which may occasionally appear during the industrial process, are given. Thermogravimetric methods of control are suggested, usable in interesting products in the uranium metallurgy. (Author) 20 refs
On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot
Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.
2018-06-01
Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.
Study of hot cracking potential in a 6-ton steel ingot casting
Yang, Jing'an; Liu, Baicheng; Shen, Houfa
2018-04-01
A new hot cracking potential (HCP) criterion, for the appearance of hot tearing in steel ingot castings, is proposed. The maximum value of the first principal stress, divided by the dynamic yield strength in the brittle temperature range (BTR), was used to identify the HCP. Experiments were carried out on a 6-ton P91 steel ingot in which severe hot tearing was detected in the upper centerline. Another ingot, with a better heat preservation riser, and without hot tearing, was used for comparison. Samples were obtained from the area of the ingot body with hot tearing, and their morphologies were inspected by a X-ray high energy industrial computed tomography. The carbon and sulfur distributions around the hot tearing were characterized by an infrared spectrometry carbon and sulfur analyzer. High temperature mechanical properties were obtained by a Gleeble thermal simulation machine, under different strain rates. Then, thermo-mechanical simulations using an elasto-viscoplastic finite-element model were conducted to analyze the stress and strain evolution during ingot solidification. The results showed that the hot tearing area, which was rich in both carbon and sulfur, was under excessive tensile stress in the BTR, bearing the highest HCP.
Production and fabrication of 2500-lb Nb--Ti ingots to rod
International Nuclear Information System (INIS)
Cordier, T.E.; McDonald, W.K.
1975-01-01
Interest in Nb--Ti superconducting devices is exploding. This paper outlines the critical production criteria for this material. Areas discussed include ingot blending, melting, forging, extrusion, and rod reducing with emphasis on the metallurgical considerations affecting mechanical properties. Data are included relating process parameters to TEM finding as well as R.T. ductility and optical microscopy
Mechanical Properties of Lightweight Porous Magnesium Processed Through Powder Metallurgy
Zou, Ning; Li, Qizhen
2018-02-01
Porous magnesium (Mg) samples with various overall porosities (28.4 ± 1.8%, 35.5 ± 2.5%, 45.4 ± 1.9%, and 62.4 ± 2.2%) were processed through powder metallurgy and characterized to study their mechanical properties. Different porosities were obtained by utilizing different mass fractions of space holder camphene. Camphene was removed by sublimation before sintering and contributed to processing porous Mg with high purity and small average pore size. The average pore size increased from 5.2 µm to 15.1 µm with increase of the porosity from 28.4 ± 1.8% to 62.4 ± 2.2%. Compressive strain-stress data showed that the strain hardening rate, yield strength, and ultimate compressive strength decreased with increase of the porosity. The theoretical yield strength of porous Mg obtained using the Gibson-Ashby model agreed with experimental data.
Effect of processing variables on microstructure and properties of two Al-Li-Cu-Mg-Zr alloys
International Nuclear Information System (INIS)
Palmer, I.G.; Lewis, R.E.; Crooks, D.D.
1984-01-01
Two Al-Li-Cu-Mg-Zr alloys have been prepared in the form of both powder metallurgy (PM) and ingot metallurgy (IM) alloys. The compositions were selected to meet certain program goals based on the results of an alloy development phase, the details of which have been previously published. The target compositions were Al-3Li-1.5Cu-1Mg-0.2Zr and Al-3Cu-2Li-1Mg-0.2Zr. The PM alloys were prepared from chill cast remelt stock by centrifugal atomization in helium, followed by screening, degassing, and extrusion. The IM alloys were prepared by direct chill (DC) casting, homogenization and extrusion. Full details of the production of the alloys are given. The effects of various processing conditions on microstructure and properties were evaluated, including different heat treatments and stretching conditions. These effects are described in detail with particular emphasis on a comparison of the PM and IM alloys. 10 references
Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking
Energy Technology Data Exchange (ETDEWEB)
Das, Subodh K.
2006-01-09
A successful four-year project on the modeling and optimization of direct chill (DC) casting to reduce ingot cracking has been completed. The project involved close collaboration among private industries, national laboratories, and universities. During the four-year project, 16 quarterly meetings brought the industrial partners and the research team together for discussion of research results and research direction. The industrial partners provided guidance, facilities, and experience to the research team. The research team went to two industrial plants to measure temperature distributions in commercial 60,000-lb DC casting ingot. The collaborative research resulted in several major accomplishments or findings: (1) Surface cracks were shown to be a result of hot tearing rather than cold cracks, as was thought before this project. These cracks form on the surface of a DC cast ingot just above the impingement point of the secondary cooling water jets. The cracks form along dendrite and grain boundaries, where solute and impurity elements are highly segregated. This understanding led to the development of a new technique for determining the mechanical properties in the nonequilibrium mushy zone of alloys and to thermodynamic predictions of the hot tearing propensity of DC cast ingots. (2) The apparent heat transfer coefficient (HTC) at the ingot surface in the water cooling region during DC casting was determined on the basis of temperature measurements in commercial DC casting ingots and an inverse heat transfer analysis. HTCs were calculated as a function of temperature and time, and covered the different regimes of heat transfer expected during DC casting. The calculated values were extrapolated to include the effect of water flow rate. The calculated HTCs had a peak at around 200 C, corresponding to the high heat transfer rates during nucleate boiling, and the profile was consistent with similar data published in the literature. (3) A new method, termed the
Authorized limits for Fernald copper ingots
Energy Technology Data Exchange (ETDEWEB)
Frink, N.; Kamboj, S.; Hensley, J.; Chen, S. Y.
1997-09-01
This development document contains data and analysis to support the approval of authorized limits for the unrestricted release of 59 t of copper ingots containing residual radioactive material from the U.S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP). The analysis presented in this document comply with the requirements of DOE Order 5400.5, {open_quotes}Radiation Protection of the Public and the Environment,{close_quotes} as well as the requirements of the proposed promulgation of this order as 10 CFR Part 834. The document was developed following the step-by-step process described in the Draft Handbook for Controlling Release for Reuse or Recycle Property Containing Residual Radioactive Material.
Authorized limits for Fernald copper ingots
International Nuclear Information System (INIS)
Frink, N.; Kamboj, S.; Hensley, J.; Chen, S.Y.
1997-09-01
This development document contains data and analysis to support the approval of authorized limits for the unrestricted release of 59 t of copper ingots containing residual radioactive material from the U.S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP). The analysis presented in this document comply with the requirements of DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes as well as the requirements of the proposed promulgation of this order as 10 CFR Part 834. The document was developed following the step-by-step process described in the Draft Handbook for Controlling Release for Reuse or Recycle Property Containing Residual Radioactive Material
Controlling liquid pool depth in VAR of a 21.6 cm diameter ingot of Alloy 718
Lopez, Felipe; Beaman, Joseph; Williamson, Rodney; Taleff, Eric; Watt, Trevor
It is believed that the final microstructure in vacuum arc remelted (VAR) ingots is strongly influenced by the molten metal pool profile. Thus, if the pool profile was properly controlled during the melt then defect-free microstructures would be obtained. The recent development of a reduced-order model of VAR solidification allowed the design of a pool depth controller to accomplish this task. The controller used a linear quadratic regulator and a Kalman filter to stabilize the melt pool solidification front under the effect of uncertain process dynamics and noisy measurements. Basic Axisymmetric Remelting (BAR), a high-fidelity VAR ingot model, was used in real time to provide pool depth measurements that were incorporated in the control loop. The controller was tested at Los Alamos National Laboratory in a 21.6 diameter Alloy 718 ingot. Details of the controller design will be presented, along with comparisons to experimentally-measured pool depths.
Evolution of ESR Technology and Equipment for Long Hollow Ingots Manufacture
Medovar, Lev; Stovpchenko, Ganna; Dudka, Grigory; Kozminskiy, Alexander; Fedorovskii, Borys; Lebid, Vitalii; Gusiev, Iaroslav
In this paper development of both ESR technology and equipment for hollow ingot manufacture review and analysis are presented. The real complications of hollow ingot manufacture and some tendentious issues which restrict process dissemination are discussed. An actual data of modern manufacture of as-cast pipes for heat and power engineering by traditional ESR with consumable electrode are given. Results of microstructure and nonmetal inclusion investigations have shown the high quality of as-cast ESR pipes. On the basis of these results the possibility to produce huge ESR hollows (up 5000 mm in dia) with final goal drastically to reduce setting ratio on forged shells and rings or even replace it by ESR hollows as-cast is grounded. Two new ESR technologies — consumable electrodes change and liquid metal usage — have passed pilot tests for heavy hollow production and shown very prospective results to be presented.
Preparation of magnesium metal matrix composites by powder metallurgy process
Satish, J.; Satish, K. G., Dr.
2018-02-01
Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.
Shrinkage Porosity Criterion and Its Application to A 5.5 Ton Steel Ingot
Directory of Open Access Journals (Sweden)
Zhang C.
2016-06-01
Full Text Available In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m · °C1/2 · s−3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.
International Nuclear Information System (INIS)
Lin, Rui; Shen, Houfa
2015-01-01
Inclusions content in the steel ingot is an important index for homogeneity, and it becomes more serious for heavy steel ingots which are used for major equipment. However, knowledge about the formation of inclusion in steel ingot is limited, and modeling of inclusion distribution is still challenging, so it is of great significance to research the behavior of inclusion. In this paper, fluid flow during solidification is numerically simulated based on the equilibrium equations of mass, momentum and energy, and then inclusion distribution is modeled according to the Lagrangian Stokes trajectory method. The Results show that the inclusion distribution in the steel ingot is influenced by the flow pattern which is affected by the solidification pattern. Therefore, inclusion distribution could be controlled by the solidification front with the optimization of heat transfer condition such as the hot top design of steel ingot for the high quality steel production. (paper)
Extractive metallurgy of the beryllium
International Nuclear Information System (INIS)
Alonso, Neusa; Capocchi, Jose Deodoro Trani
1995-01-01
A bibliographic review is performed on the beryllium extractive metallurgy. The work describes the main type of ores and processes applied to the metallic beryllium production, beryllium oxide production using fluoride, sulfide and direct chlorination. The thermodynamic consideration are made on beryllium reduction processes, discussing the viability of the beryllium oxide and hallide reduction processes. Under the technological viewpoint, the Cu-Be alloys main production processes are discussed, and the main toxicity problems related with beryllium are mentioned
Foundations of powder metallurgy
International Nuclear Information System (INIS)
Libenson, G.A.
1987-01-01
Consideration is being given to physicochemical foundations and technology of metal powders, moulding and sintering of bars, made of them or their mixtures with nonmetal powders. Data on he design of basic equipment used in the processes of powder metallurgy and its servicing are presented. General requirements of safety engineering when fabricating metal powders and products of them are mentioned
Study on Fabrication of Ni-5 at.%W Tapes for Coated Conductors from Cylinder Ingots
DEFF Research Database (Denmark)
Ma, L.; Suo, H. L.; Yue, Zhao
2015-01-01
Ni-5 at.%W (Ni5W) tapes with a strong cube texture were fabricated using the RABiTS technique and by starting from cylindrical shaped ingots. In contrast to a conventional cuboid-shaped ingot, a cylinder shaped ingot has no anisotropy along the axial direction and the resulting tape will therefore...
Energy Technology Data Exchange (ETDEWEB)
Karches, Barbara; Hampel, Gabriele; Plonka, Christian; Stieghorst, Christian; Wiehl, Norbert [Mainz Univ. (Germany). Inst. for Nuclear Chemistry; Schoen, Jonas; Krenckel, Patricia; Riepe, Stephan [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany); Gerstenberg, Heiko [Technische Univ. Muenchen, Garching (Germany). Heinz-Maier-Leibniz Zentrum; Ponsard, Bernard [Belgian Nuclear Research Centre (SCK CEN), Mol (Belgium). BR2 reactor
2017-09-01
In a series of crystallization experiments, the directional solidification of silicon was investigated as a low cost path for the production of silicon wafers for solar cells. Instrumental neutron activation analysis was employed to measure the influence of different crystallization parameters on the distribution of 3d-metal impurities of the produced ingots. A theoretical model describing the involved diffusion and segregation processes during the solidification and cooling of the ingots could be verified by the experimental results. By successive etching of the samples after the irradiation, it could be shown that a layer of at least 60 μm of the samples has to be removed to get real bulk concentrations.
International Nuclear Information System (INIS)
Bocquet, P.; Blondeau, R.; Poitrault, I.; Badeau, J.P.; Dumont, R.
1989-01-01
The example of forging shells for PWR type reactors is proposed to show how the choice of the manufacturing process may be of prime importance for the component integrity by the reduction of the detrimental effects of segregations. The forging shells (20MnMoNi55) manufactured from hollow ingot are free of any segregation in the critical area located just at the internal surface and sub-surface. Manufacturing problems associated to these segregations in shells issued from conventional ingots, in particular welding difficulties for cladding, have been reduced or eleminated. The reliability of these components present an improved resistance to irradiation embrittlement. (DG)
Powder Metallurgy characteristics and application: state of the art
International Nuclear Information System (INIS)
Zaid, A.I.O.
2005-01-01
Powder metallurgy process (P/M) is a near-net or net-shape manufacturing process that combines the features of shape making technology of powder compaction with the development of final material and design properties (physical and mechanical) during subsequent densification or consolidation processes, e.g. sintering. It utilizes the metal powder or powders of metal alloys. In this paper, the major historical developments in P/M are reviewed and discussed. The main parameters involved in the process and their effects on the product characteristics are presented and discussed, which include: powders and methods of their production, particle size and shape, compressibility and additives, sintering temperature and time and finishing processes. The advantages and limitations of powder metallurgy are also presented and discussed. Finally, applications and future developments of the process are outlined and discussed. (author)
Sanmugavel, S.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.
2018-04-01
90% of the solar industries are using crystalline silicon. Cost wise the multi-crystalline silicon solar cells are better compared to mono crystalline silicon. But because of the presence of grain boundaries, dislocations and impurities, the efficiency of the multi-crystalline silicon solar cells is lower than that of mono crystalline silicon solar cells. By reducing the defect and dislocation we can achieve high conversion efficiency. The velocity of dislocation motion increases with stress. By annealing the grown ingot at proper temperature we can decrease the stress and dislocation. Our simulation results show that the value of stress and dislocation density is decreased by annealing the grown ingot at 1400K and the input parameters can be implemented in real system to grow a better mc-Si ingot for energy harvesting applications.
International Nuclear Information System (INIS)
Nordin, D.R.
1978-06-01
The feasibility of using a thermoplastic-powder metallurgy technique for the fabrication of porous niobium rods was investigated. Some early problems were overcome to successfully extrude the polymer coated niobium powder into long lengths. The effects of certain process variables were investigated. Residual porosity and extrusion pressure were found to be regulated by the polymer fraction. The procedures for taking the extruded polystyrene--niobium rods through the heat treatments to the final, tin infiltrated stage are explained
Fabrication of a 1200 kg Ingot of V-4Cr-4Ti for the DIII-D Radiative Divertor Program
International Nuclear Information System (INIS)
Johnson, W.R.; Smith, J.P.
1998-01-01
Vanadium chromium titanium alloys are attractive materials for fusion reactors because of their high temperature capability and their potential for low neutron active and rapid activation decay. A V-4Cr-4Ti alloy has been selected in the U.S. as the current leading candidate vanadium alloy for future use in fusion reactor structural applications. General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan for the utilization of this vanadium alloy in the DIII-D tokamak. The plan will culminate in the fabrication, installation, and operation of a V-4Ti alloy structure in the DIII-D Radiative Divertor (RD) upgrade. The deployment of vanadium alloy will provide a meaningful step in the development and technology acceptance of this advanced material for future fusion power devices. Under a GA contract and material specification, an industrial scale 1200 kg heat (ingot) of a V-4Cr-4Ti alloy has been produced and converted into product forms by Wah Chang of Albany, Oregon (WCA). To assure the proper control of minor and trace impurities which affect the mechanical and activation behavior of this vanadium alloy, selected lots of raw vanadium base metal were processed by aluminothermic reduction of high purity vanadium oxide, and were then electron beam melted into two high purity vanadium ingots. The ingots were then consolidated with high purity Cr and Ti, and double vacuum-arc melted to obtain a 1200 kg V-4Cr-4Ti alloy ingot. Several billets were extruded from the ingot, and were then fabricated into plate, sheet, and rod at WCA. Tubing was subsequently processed from plate material. The chemistry and fabrication procedures for the product forms were specified on the basis of experience and knowledge gained from DOE Fusion Materials Program studies on previous laboratory scale heats and a large scale ingot (500 kg)
Promoting energy conservation in China's metallurgy industry
International Nuclear Information System (INIS)
Lin, Boqiang; Du, Zhili
2017-01-01
China is undergoing rapid industrialization and urbanization, with consequent dramatic increase in energy demand. Given energy scarcity, environmental pollution, energy security and energy cost constraints, energy conservation will be the major strategy in China's transition to a low-carbon economy. Since the metallurgy industry is a main sector of energy consumption, the efficiency of energy conservation in this industry will affect the future prospects of energy savings. This paper analyzes the energy conservation potential of China's metallurgy industry. First, seemingly unrelated regression method is applied to investigate the relationship between energy relative price, R&D input, enterprise ownership structure, enterprise scale and energy intensity of the metallurgy industry. Then, based on the SUR results, we use the scenario analysis method to predict energy consumption and savings potential in the industry in different scenarios. This paper provides references for China's government and metallurgy industry in formulating relevant energy conservation policies. - Highlights: • Seemingly unrelated regression method is applied to analyze the energy intensity of metallurgy industry. • We use the scenario analysis method to predict energy consuming and energy saving of Chinese metallurgy industry. • Provide references for China's government and metallurgy industry in formulating relevant energy conservation policies.
Improving the effectiveness of heat use in ferrous metallurgy
Energy Technology Data Exchange (ETDEWEB)
Yegorichev, A P; Lisiyenko, V G; Rozin, S Ye; Shchelokov, Ya M
1980-01-01
Ferrous metallurgy of the USSR consumes about 10% of the total consumption of fuel in the country. The specific consumption of fuel in 100-150-T open-hearth furnaces in the scrap-process flucuate (in kilograms of conventional fuel/T of metal) from 199-206 to 244-249, in 450-T open-hearth furnaces with scrap-ore process from 108 to 135, in method furnaces with step-like beams from 70 to 123, in heating furnaces of low-grade machines ''250'' through 55.4 to 79, and on heating pits of bloomings from 32.5 to 55.3. In openhearth production, the percentage of outlays for fuel is 2.5-4.5%, in rolling 0.6-2% of the net cost of conversion. The overconsumption of fuel up to 5% will increase the net cost of conversion by 0.030.23%. In order to increase the effectiveness of conservation of fuel in ferrous metallurgy, a new method has been proposed for evaluating the energy intensity of the final product of ferrous metallurgy which makes it possible to determine comprehensive energy outlays for the manufactured product. A new system has been developed for stimulating the enterprises of ferrous metallurgy in the struggle for conservation and reduction in the specific consumption norms of fuel. It is based on the establishment of average-sector and progressive standards for single-type units of equal output.
Numerical Model for Solidification Zones Selection in the Large Ingots
Directory of Open Access Journals (Sweden)
Wołczyński W.
2015-12-01
Full Text Available A vertical cut at the mid-depth of the 15-ton forging steel ingot has been performed by curtesy of the CELSA - Huta Ostrowiec plant. Some metallographic studies were able to reveal not only the chilled undersized grains under the ingot surface but columnar grains and large equiaxed grains as well. Additionally, the structural zone within which the competition between columnar and equiaxed structure formation was confirmed by metallography study, was also revealed. Therefore, it seemed justified to reproduce some of the observed structural zones by means of numerical calculation of the temperature field. The formation of the chilled grains zone is the result of unconstrained rapid solidification and was not subject of simulation. Contrary to the equiaxed structure formation, the columnar structure or columnar branched structure formation occurs under steep thermal gradient. Thus, the performed simulation is able to separate both discussed structural zones and indicate their localization along the ingot radius as well as their appearance in term of solidification time.
Modelling the void deformation and closure by hot forging of ingot castings
DEFF Research Database (Denmark)
Christiansen, Peter; Hattel, Jesper Henri; Kotas, Petr
2012-01-01
by mechanical deformation. The aim of this paper is to analyze numerically if and to what degree the voids areclosed by the forging. Using the commercial simulation software ABAQUS, both simplified model ingots and physically manufactured ingots containing prescribed void distributions are deformed and analyzed....... The analysis concernsboth the void density change and the location of the voids in the part after deformation. The latter can be important for the subsequent reliability of the parts, for instance regarding fatigue properties. The analysis incorporates the Gurson yield criterion for metals containing voids...... and focuses on how the voids deform depending on their size and distribution in the ingot as well ashow the forging forces are applied....
International Nuclear Information System (INIS)
Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor
2004-01-01
The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques
International Nuclear Information System (INIS)
Watkins, E.J.; Tihansky, E.L.
1986-01-01
A four-loop, upper barrel flange forging for a nuclear reactor was produced from what the authors believe to be the largest 304H grade stainless steel electroslag refined (ESR) ingot ever refined. The ingot was refined in a 1524-mm-diameter, ingot withdrawal-type ESR furnace using a lime-bearing slag, low-frequency a-c power, and dry air protection. Five electrodes were remelted in order to produce the desired ingot weight. The ingot was subsequently forged in a five-step operation on a 6800-metric-ton press to produce the desired barrel flange configuration. Testing of the finished machined forging revealed excellent tensile ductility, excellent ultrasonic penetrability, and good chemical uniformity with no macrosegregation. Overall quality was judged to be superior to previously produced, conventionally melted forgings
DEFF Research Database (Denmark)
Pedersen, Jan
Ny gennemarbejdet udgave af den klassiske "Metallurgi for Ingeniører", først skrevet af K. Offer Andersen i 1962......Ny gennemarbejdet udgave af den klassiske "Metallurgi for Ingeniører", først skrevet af K. Offer Andersen i 1962...
Processing and properties of solid state nitrided stainless steels
International Nuclear Information System (INIS)
Rennhard, C.A.P.
1993-02-01
The properties of austenitic steels and duplex-steels are significantly improved by nitrogen (N) addition. In the present investigation, new alloys were produced and characterized using the high solid N-solubility and diffusion alloying from the gas phase. Most suitable base materials are powder, wire or sheet because of the short diffusion distance. PM-materials were in-can nitrided or treated in a fluidized bed and compacted by Hot Isostatic Pressing (HIP) or hot extrusion. The impact toughness level of PM alloys at room temperature is about 120 to 200 J, compared to 250 to 300 J for steels with equal strength that are produced by ingot metallurgy (IM). The toughness can be improved by high temperature deformation such as forging, hot rolling or hot extrusion or by removing the oxide layer on the particle surface by hydrogen gas reduction. A duplex steel with 22 Cr, 5.6 Ni and 2.7 Mo was transformed to a fully austenitic steel with over 500 MPa yield strength by increasing the N content from 0.2 to 0.65 weight-percent. The expensive Ni can successfully be replaced by N. Nitrided wire material is the base material for cold deformed high-strength wire. The improved strain hardening rate of nitrogen alloyed steels helps to achieve ductile and corrosion resistant materials with strength up to 2200 MPa. Sheet materials were diffusion bonded in the HIP or compacted in a 5000 kN press immediately after in-can nitriding to form solid blocks. Nitrided powder, wire and sheet materials lead to near net shape products that cannot be produced by conventional ingot metallurgy or would require the expensive high-pressure metallurgy. (author) 67 figs., tabs., 70 refs
Energy Technology Data Exchange (ETDEWEB)
Wang, Xuchao [Division of Functional Materials Research, Central Iron and Steel Research Institute, Beijing 100081, China (China); College of Sciences, Northeastern University, Shenyang 110819 (China); Zhu, Minggang, E-mail: mgzhu@126.com [Division of Functional Materials Research, Central Iron and Steel Research Institute, Beijing 100081, China (China); Li, Wei; Zheng, Liyun; Guo, Zhaohui; Du, Xiao [Division of Functional Materials Research, Central Iron and Steel Research Institute, Beijing 100081, China (China); Du, An [College of Sciences, Northeastern University, Shenyang 110819 (China)
2015-11-01
The paper studies the phase transition of ingot with the composition (Ce{sub 50}Nd{sub 50}){sub 30}Fe{sub bal}Co{sub 4}Ga{sub 0.2}B{sub 0.92} after the annealing treatment at 1050 °C. The melt-spun ribbons which is prepared by the two treatment status ingots. The phase structure and microstructure morphologies of the ingots and melt-spun ribbons were analysed and observed by XRD and SEM. It was found that the grain size of the ribbons is on the nanometer scale. The EDS results show that there are four different phases in the ingot: (CeNd){sub 2}Fe{sub 14}B, α-Fe, Ce-rich phase and Nd-rich phase. After the annealing treatment, α-Fe, Ce-rich phase, and Nd-rich phase were obviously reduced and the contents of the main phase was significantly increased in the annealed ingot compared with the unanneal treatment ingot. The VSM results show that there is a peak waist in the ribbon which is prepared by the untreated ingot. Because the ingot is uneven, the ribbons may have the secondary phase, the Hcj is 8394 Oe. But the demagnetization curves of the ribbons, which is prepared by the annealed ingot, is relatively smooth and without the soft magnetic phase and the Hcj is 12,528 Oe, which is higher than the unanneal treatment ingot. We can know that the ingot with fine organization is the key factors to preparing high-performance ribbons.
Extractive metallurgy. Recent advances
International Nuclear Information System (INIS)
Stevenson, E.J.
1977-01-01
Detailed technical information derived from patents issued since 1975 on extractive metallurgy is presented. In part one, concerning copper, the major areas covered are: smelting and roasting; acid leaching; ammonia leach processes; cuprous chloride and ferric chloride; and recovery of copper values from solution. Part two covers other metals, including: nickel and cobalt; ocean floor nodules; lead, zinc, molybdenum and manganese; precious metals; and uranium titanium, tantalum, rhenium, gallium, and other metals
Solidification Segregation and Homogenization Behavior of 1Cr-1.25Mo-0.25V Steel Ingot
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong-Bae [Dae-gu Mechatronics and Materials Institute, Daegu (Korea, Republic of); Na, Young-Sang; Seo, Seong-Moon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Je-Hyun [Changwon National University, Changwon (Korea, Republic of)
2016-09-15
As a first step to optimizing the homogenization heat treatment following high temperature upset forging, the solidification segregation and the homogenization behaviors of solute elements were quantitatively analyzed for 1Cr-1.25Mo-0.25V steel ingot by electron probe micro-analysis (EPMA). The random sampling approach, which was designed to generate continuous compositional profiles of each solute element, was employed to clarify the segregation and homogenization behaviors. In addition, ingot castings of lab-scale and a 16-ton-sized 1Cr-1.25Mo-0.25V steel were simulated using the finite element method in three dimensions to understand the size effect of the ingot on the microsegregation and its reduction during the homogenization heat treatment. It was found that the microsegregation in a large-sized ingot was significantly reduced by the promotion of solid state diffusion due to the extremely low cooling rate. On the other hand, from the homogenization point of view, increasing the ingot size causes a dramatic increase in the dendrite arm spacing, and hence the homogenization of microsegregation in a large-sized ingot appears to be practically difficult.
Analysis of internal crack in a six-ton P91 ingot
Directory of Open Access Journals (Sweden)
Jing-an Yang
2016-05-01
Full Text Available P91 is a new kind of heat-resistant and high-tensile steel. It can be extruded after ingot casting and can be widely used for different pipes in power plants. However, due to its mushy freezing characteristics, a lack of feeding in the ingot center often generates many defects, such as porosity and crack. A six-ton P91 ingot was cast and sliced, and a representative part of the longitudinal section was inspected in more detail. The morphology of crack-like defects was examined by X-ray high energy industrial CT and reconstructed by 3D software. There are five main portions of defects larger than 200 mm3, four of which are interconnected. These initiated from continuous liquid film, and then were torn apart by excessive tensile stress within the brittle temperature range (BTR. The 3D FEM analysis of thermo-mechanical simulation was carried out to analyze the formation of porosity and internal crack defects. The results of shrinkage porosity and Niyama values revealed that the center of the ingot suffers from inadequate feeding. Several criteria based on thermal and mechanical models were used to evaluate the susceptibility of hot crack formation. The Clyne and Davies’ criterion and Katgerman’s criterion successfully predicted the high hot crack susceptibility in the ingot center. Six typical locations in the longitudinal section had been chosen for analysis of the stresses and strains evolution during the BTR. Locations in the defects region showed the highest tensile stresses and relative high strain values, while other locations showed either low tensile stresses or low strain values. In conclusion, hot crack develops only when stress and strain exceed a threshold value at the same time during the BTR.
Development and prospect of china uranium mining and metallurgy
International Nuclear Information System (INIS)
Que Weimin; Wang Haifeng; Niu Yuqing; Gu Wancheng; Zhang Feifeng
2007-01-01
The development of industry of uranium mining and metallurgy in China has been reviewed generally, emphasizing on investigation approaches and application levels of uranium mining technologies such as in-situ leaching, heap leaching, stope leaching: on the basis of analysis on status of uranium mining and metallurgy and problems existed, also considering the specific features of deposit resources, the development orientation of uranium mining and metallurgy in China is pointed out. The industry of China uranium mining and metallurgy is faced to new opportunity of development and challenge in 21st century, the only way to realize sustainable development of uranium mining and metallurgy and harmonious development between economy and environment is to develop new technology on mining, ore beneficiation and metallurgy, increase the utilization level of uranium resources, low down impact on environment caused by mining and metallurgy. (authors)
Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications
Directory of Open Access Journals (Sweden)
Matěj Březina
2017-10-01
Full Text Available Magnesium with its mechanical properties and nontoxicity is predetermined as a material for biomedical applications; however, its high reactivity is a limiting factor for its usage. Powder metallurgy is one of the promising methods for the enhancement of material mechanical properties and, due to the introduced plastic deformation, can also have a positive influence on corrosion resistance. Pure magnesium samples were prepared via powder metallurgy. Compacting pressures from 100 MPa to 500 MPa were used for samples’ preparation at room temperature and elevated temperatures. The microstructure of the obtained compacts was analyzed in terms of microscopy. The three-point bendisng test and microhardness testing were adopted to define the compacts’ mechanical properties, discussing the results with respect to fractographic analysis. Electrochemical corrosion properties analyzed with electrochemical impedance spectroscopy carried out in HBSS (Hank’s Balanced Salt Solution and enriched HBSS were correlated with the metallographic analysis of the corrosion process. Cold compacted materials were very brittle with low strength (up to 50 MPa and microhardness (up to 50 HV (load: 0.025 kg and degraded rapidly in both solutions. Hot pressed materials yielded much higher strength (up to 250 MPa and microhardness (up to 65 HV (load: 0.025 kg, and the electrochemical characteristics were significantly better when compared to the cold compacted samples. Temperatures of 300 °C and 400 °C and high compacting pressures from 300 MPa to 500 MPa had a positive influence on material bonding, mechanical and electrochemical properties. A compacting temperature of 500 °C had a detrimental effect on material compaction when using pressure above 200 MPa.
New radiation technologies and methods for control of technological processes in metallurgy
International Nuclear Information System (INIS)
Zaykin, Yu.
1996-01-01
Radiation Technology of Metal and Ceramic Production with Enhanced Service Properties. Based on application of radiation technique in powder metallurgy the new technology for obtaining metals, alloys and ceramic materials with high service properties is worked out. Radiation processing of powder materials at the certain stage of the process leads to profound structure alterations at all further stages and eventually effects the properties of the resulting product. Theoretical calculation and experimental studies of electron-positron annihilation in powder-pressed samples showed that irradiation caused powder particles surface state changes favorable for further sintering and crystallization processes development. It is shown that irradiation of metal powders and powder-pressed samples by high energy electrons is technologically most efficient. The right choice of the type-and the mode of the radiation processing makes it possible to obtain metals, alloys and ceramic materials (Mo,Fe, W, Al, Ni, Cu, stainless steels, ceramics, etc.) with homogeneous structure and stable enhanced service properties. The project on radiation technology application to powder metallurgy represented by a group of authors was awarded with the diploma and the gold medal at the 22 International Exhibition of Inventions (Geneva, 1994). New Technologic Opportunities of the Chromium-Nickel Alloys Processing To obtain the required phase-structure state special methods of the chromium-nickel alloy processing for sensitive elastic devices production were worked out combining plastic deformation, thermal and radiation processing. It is shown that h-gbb phase transfer not observed before is possible in extremely non-equilibrium conditions under electron irradiation. It is established that the complex reaction of recrystallization and gb-phase deposition proceeds under electron irradiation at the room temperature when the certain threshold plastic deformation degree is reached that leads to the same
Energy Technology Data Exchange (ETDEWEB)
García, C. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain); Romero, A. [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Herranz, G., E-mail: gemma.herranz@uclm.es [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Blanco, Y.; Martin, F. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain)
2016-11-15
Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructures of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.
Fundamentals of powder metallurgy
International Nuclear Information System (INIS)
Khan, I.H.; Qureshi, K.A.; Minhas, J.I.
1988-01-01
This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)
Powder metallurgy techniques in nuclear technology
International Nuclear Information System (INIS)
Mardon, P.G.
1983-01-01
The nuclear application of conventional powder metallurgy routes is centred on the fabrication of ceramic fuels. The stringent demands in terms of product performance required by the nuclear industry militate against the use of conventional powder metallurgy to produce metallic components such as the fuel cladding. However, the techniques developed in powder metallurgy find widespread application throughout nuclear technology. Illustrations of the use of these techniques are given in the fields of absorber materials, ceramic cladding materials, oxide fuels, cermet fuels, and the disposal of highly active waste. (author)
Progress report of the Metallurgy Group
International Nuclear Information System (INIS)
Sundaram, C.V.; Moorthy, V.K.
1975-01-01
The activities of the Metallurgy Division of the Bhabha Atomic Research Centre, Bombay, during the year 1974 are reported under six sections, namely: ore dressing; extractive metallurgy; ceramics; physical metallurgy; corrosion and electrometallurgy, and radiometallurgy. The developmental programme is not only concerned with materials of nuclear interest such as uranium, thorium, plutonium, zirconium, niobium and beryllium, but also other materials of national interest such as titanium, tantalum, ceramics, corrosion-resistant alloys etc. In addition to the laboratory studies, collaborative work has also been undertaken with other units of the Department of Atomic Energy. (A.K.)
Near net shape of powder metallurgy rhenium parts
International Nuclear Information System (INIS)
Leonhardt, T.; Downs, J.
2001-01-01
In this paper, a description of the stages of processing necessary to produce a near-net shape (NNS) powder metallurgy (PM) rhenium component through the use of cold isostatic pressing (CIP) to form a complex shape will be explained. This method was primarily developed for the production of the 440 N and 490 N liquid apogee engine combustion chambers used in satellite positioning systems. The CIP to NNS process has been used in the manufacture and production of other rhenium aerospace components as well. Cold isostatic pressing (CIP) to a near net shape utilizing a one or two-part mandrel greatly reduces the quantity of rhenium required to produce the component, and also significantly reduces the number of secondary machining operations necessary to complete the manufacturing process. Further, the developments in near-net shape powder metallurgy rhenium manufacturing techniques have generated significant savings in the area of both time and budget. Overall, cost declined by as much as 35 % for the quantity of rhenium chambers, and manufacturing time was decreased by 30-40 %. The quantity of rhenium metal powder used to produce a rhenium chamber was reduced by approximately 70 %, with a subsequent reduction of nearly 50 % in secondary machining operation schedules. Thus, it is apparent that the overall savings provided by the production of near-net shape powder metallurgy rhenium components will be more than merely another aspect of any project involving high temperature applications, it will constitute significant benefit. (author)
Role of forgings in powder metallurgy industry
International Nuclear Information System (INIS)
Hayes, A.F.; DeRidder, A.J.
1975-01-01
Forging of powder metallurgy materials is discussed. Information and data are included on forging powder metallurgy W, Mo, In 100, Rene 95, Astroloy, Be, and Ti. It is noted that the combination of powder metallurgy and forging work provides the best product from standpoints of reproducibility, freedom from segregation, low scrap rate, and uniform mechanical properties. Experience is being used to develop contour forging from hot isostatic pressed billets or preforms. The quality of this product is under evaluation. Results show steady improvement and it is anticipated that continued effort will soon produce a reliable, less costly product. Forging can continue to be relied upon to correct subtle defects present in powder metallurgy material
Metallurgy - steel and non-ferrous metals
International Nuclear Information System (INIS)
Wusatowski, R.
1999-01-01
Several actual problems of metallurgy and processing of the chief metals and their alloys, especially of steel, copper, zinc and aluminium were discussed. The thought was given to the problems of: scientific, technical (also the energy consumption of production, the evolution of technology), organizational, economical, even political nature (influence of the state on the development of industry). (author)
Metallurgy for nuclear engineering
International Nuclear Information System (INIS)
Kozlov, A.F.
1986-01-01
Principal ways of development in metallurgy and metallurgical equipment on nuclear engineering plants are discussed. A great attention is paid to changing welded structures for casted and forged ones. These measures give the possibility to increase reliability of NPP components and decrease labour content. The following processing procedures have been introduced: vacuum carbon reduction providing small amount of nonmetallic inclusions in reactor vessel steel; manufacturing steel large-size castings (360 and 420 t) for WWER vessels; rolling at plate mill 5000 etc
The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.
Energy Technology Data Exchange (ETDEWEB)
D' Enrico, F.; Garces, G.; Hofer, M.; Kim, S. K.; Perez, P.; Cabeza, S.; Adeva, P.
2013-07-01
Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out successfully when small amounts of CaO are added to the melt, making unnecessary the use of SF{sub 6} coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl{sub 2} phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu) funded by the European Union (LIFE+2009), studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM) using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demonstrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa. (Author)
Schmid, F.; Khattak, C. P.; Smith, M. B.; Lynch, L. D.
1982-01-01
Slicing is an important processing step for all technologies based on the use of ingots. A comparison of the economics of three slicing techniques shows that the fixed abrasive slicing technique (FAST) is superior to the internal diameter (ID) and the multiblade slurry (MBS) techniques. Factors affecting contact length are discussed, taking into account kerf width, rocking angle, ingot size, and surface speed. Aspects of blade development are also considered. A high concentration of diamonds on wire has been obtained in wire packs usd for FAST slicing. The material removal rate was found to be directly proportional to the pressure at the diamond tips.
DEFF Research Database (Denmark)
Risø National Laboratory, Roskilde
The activities of the Metallurgy Department at Risø during 1981 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Development, Fuel Elements. Furthermore, a survey is given of the department's participation in international collaboration...
Large grain cavities from pure niobium ingot
Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA
2012-03-06
Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.
International Nuclear Information System (INIS)
Fu, Ying; Jie, Jinchuan; Wu, Li; Park, Joonpyo; Sun, Jianbo; Kim, Jongho; Li, Tingju
2013-01-01
An innovative direct chill casting process to prepare Al–10 wt%Si and Al–1 wt%Mn alloy circular clad ingots has been developed in the present study. The experimental casting parameters were determined by theoretical analysis, numerical simulation and experimental processes. The interface of clad ingots was investigated by methods of metallographic examination, electron probe microanalysis (EPMA) and transmission electron microscopy (TEM). The results showed that excellent metallurgical bonding of two different aluminum alloys could be achieved by direct chill casting. The Al–1Mn alloy which was poured into the mold earlier served as the substrate for heterogeneous nucleation of Al–10Si alloy. Because of diffusion of Si and Mn elements, a diffusion layer with a thickness of about 40 μm on average between the Al–10Si and Al–1Mn alloys could be obtained. The tensile strength of the clad ingot was 106.8 MPa and the fractured position was located in the Al–1Mn alloy side, indicating the strength of the interfacial region is higher than that of Al–1Mn alloy.
Annual report of the Metallurgy Division [for the] period ending December 1977
International Nuclear Information System (INIS)
Elayaperumal, K.; Sridhar Rao, Ch.; Mukhopadhyay, P.; Rao, S.V.K.
1979-01-01
The research and development work carried out and the various programmes underway in the Metallurgy Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1977 have been reported. The R and D work and programmes cover extraction metallurgy, physical metallurgy, alloy development, corrosion metallurgy and ceramics. Some of the major studies and programmes are: (1) development of processes for extraction of niobium, vanadium, hafnium and nickel, (2) preparation of niobium alloys, ferro-zirconium, ceramic grade zirconia, (3) electro-refining of zircaloy scrap, (4) preparation of anhydrous beryllium fluoride from Indian beryl, (5) preparation of beryllium alloys, (6) studies on phase transformation and deformation behaviour of zirconium and zirconium-oxygen alloys, (7) self-diffusion studies in dilute Zr-Fe and Zr-Cr alloys, (8) studies on corrosion and stress corrosion cracking of zirconium base alloys and (9) sintering studies on ZrO 2 -PuO 2 and BeO. (M.G.B.)
Copper-carbon and aluminum-carbon composites fabricated by powder metallurgy processes
International Nuclear Information System (INIS)
Silvain, Jean-François; Veillère, Amélie; Lu, Yongfeng
2014-01-01
The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers and diamond-reinforced copper and aluminum matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon fibers and copper/diamond and aluminum/carbon fibers composite films by powder metallurgy and hot pressing. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between metal and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect.
Design Concept of Kijang Research Reactor for Neutron Transmutation Doping of 300 MM ingots
International Nuclear Information System (INIS)
Jun, B. J.; Kim, H. S.; Seo, C. G.; Kim, H. C.; Lee, B. C.
2013-01-01
Neutron transmutation doping will be one of the important utilization areas of the Kijang research reactor, which is currently under design. The reactor will serve for at least 50 years. As the diameter of a current NTD ingot is already large compared to the size of the reactor, unless a provision in the reactor design is specifically made for the irradiation of potential larger diameter ingots in the future, the lifetime sustainability of the NTD activity, if possible, may be difficult to achieve. While 200 mm became the largest diameter of NTD wafers a few years ago, 300 mm is the majority nowadays in the silicon semiconductor market, and one of the world leading device companies recently invested in the construction of a 450 mm fabrication plant. The usual peak time of a wafer diameter has been around 12 years. Though the generation gap of a NTD wafer diameter has become longer as time has passed, we can foresee that NTD demand for 300 mm ingots will arise within 20 years if their NTD is possible. Our calculations show that the radial uniformity for the 300 mm ingot irradiation may be acceptable by wafer companies. However, the NTD for 450 mm ingots is judged as impractical. The KJRR is designed to irradiate 6' and 200 mm ingots to accommodate the major demands in the current and near future markets. We suppose that a 6' irradiation facility will be modified into a 300 mm irradiation facility when the demand for a 300 mm NTD arises. As the demand for the 300 mm NTD increases, other 6' and 200 mm NTD facilities will be modified one by one. A minimization of the component replacement and long-lived radwaste and a facilitation of the replacement work for each modification are important factors along with a better performance of NTD facilities
Basic metallurgy for nondestructive testing
International Nuclear Information System (INIS)
Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail
2008-01-01
For this chapter, reader will be served with the basic knowledge on metallurgy for nondestructive testing. One the main application of nondestructive testing is to detect discontinuity of mass defect in metal. As we already know, metal are widely used in many application such as in building as a system, component and engineering product. Steel and iron are metal that usually used in industry, especially heavy industry such as gas and petroleum industry, chemistry, electric generation, automobile, and military device. Based on this, basic knowledge on metallurgy must need by NDT practitioner. The combination between metallurgy and datas from radiography testing can make radiographer good interpretation on quality of the metal inspected and can used to make a good decision either to accept or not certain product, system or components.
Application of laser in powder metallurgy
International Nuclear Information System (INIS)
Tolochko, N.K.
1995-01-01
Modern status of works in the field of laser application in powder metallurgy (powders preparation, sintering, coatings formation, powder materials processing) is considered. The attention is paid to the new promising direction in powder products shape-formation technology - laser layer-by-layer selective powders sintering and bulk sintering of packaged layered profiles produced by laser cutting of powder-based sheet blanks. 67 refs
International Nuclear Information System (INIS)
1995-10-01
The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG's technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m 3 (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m 3 -(7.5 ft 3 -) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal
Primary Structure and Mechanical Properties of AlSi2 Alloy Continuous Ingots
Directory of Open Access Journals (Sweden)
Wróbel T.
2017-06-01
Full Text Available The paper presents the research results of horizontal continuous casting of ingots of aluminium alloy containing 2% wt. silicon (AlSi2. Together with the casting velocity (velocity of ingot movement we considered the influence of electromagnetic stirring in the area of the continuous casting mould on refinement of the ingot’s primary structure and their selected mechanical properties, i.e. tensile strength, yield strength, hardness and elongation. The effect of primary structure refinement and mechanical properties obtained by electromagnetic stirring was compared with refinement obtained by using traditional inoculation, which consists in introducing additives, i.e. Ti, B and Sr, to the metal bath. On the basis of the obtained results we confirmed that inoculation done by electromagnetic stirring in the range of the continuous casting mould guarantees improved mechanical properties and also decreases the negative influence of casting velocity, thus increasing the structure of AlSi2 continuous ingots.
Biennial activity report of metallurgy programme for 1987 and 1988
International Nuclear Information System (INIS)
Shanmugam, V.; Rao, B.P.C.; Bhanu Sankara Rao, K.; Muralidharan, P.; Bhaduri, A.K.; Kuppusami, P.; Shyamsunder, M.T.; Sampath, N.; Sreedharan, O.M.
1990-01-01
The research and development (R and D) activities in the field of metallurgy at Indira Gandhi Centre for Atomic Research, Kalpakkam during 1987-1988 are reported in the form of individual summaries arranged under headings : (1) Mechanical Metallurgy Section, (2) Physical Metallurgy Section, (3) Chemical Metallurgy Section, (4) Materials Technology Section, (5) Division for PIE and NDT Development and (6) Quality Engineering Section. A list of publications by the staff scientists working in the field of metallurgy during report period is given in one of the appendices. (author). figs., tabs
One step HIP canning of powder metallurgy composites
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Superplastic deformation of P/M and I/M Al-Li based alloys
International Nuclear Information System (INIS)
Lederich, R.J.; Sastry, S.M.L.
1984-01-01
Incremental strain-rate and constant strain-rate cone-forming tests have been carried out at 450-550 C to investigate the superplastic forming characteristics of Al-Li-Cu-Mn, Al-Li-Cu-Mg-Zr, and Al-Li-Zn-Mg alloys processed by powder-metallurgy (P/M) and ingot-metallurgy (I/M) techniques. It is found that P/M Al-Li alloys containing 0.2 pct Zr are inherently superplastically formable without the need for extensive thermomechanical processing. I/M Al-Li alloys containing Zr are also superplastically formable. The mechanical properties of the superplastically formed and solution-treated-and-aged alloys are comparable to those of solution-treated-and-aged alloys before superplastic forming. 6 references
Electrochemical Corrosion Testing of Neutron Absorber Materials
International Nuclear Information System (INIS)
Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian
2006-01-01
The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)
International Nuclear Information System (INIS)
Vaibhaw, Kumar; Jha, S.K.; Saibaba, N.; Neogy, S.; Mani Krishna, K.V.; Srivastava, D.; Dey, G.K.
2011-01-01
Zr-2.5 Nb alloys finds its applications as a pressure tube component in pressure tube type thermal reactors such as PHWRs and RBMK due to properties attributed such as low neutron absorption cross section, high temperature strength and corrosion resistance etc. Manufacturing of this life time components involves series of thermo-mechanical processes of hot working and cold working with intermediate annealing. The life time of Pressure tube are limited due to their diametral creep properties which is governed by metallurgical characteristics such as texture, microstructure dislocation density etc. The primary breakdown of cast structure in Vacuum Arc Melted ingot can be effected by either hot extrusion or forging in single or multiple stages before final hot extrusion step into the blank for manufacturing of seamless pressure tube. Elevated temperature deformation carried out in hot working above the recrystallization temperature would enable impositions of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on process parameters such as extrusion ratio, temperature and strain rate. Basic microstructure developed at this deformation stage has significant bearing on the final properties of the material fabricated with subsequent cold working steps. The major texture in α+β Zr-2.5 Nb alloy is established during final extrusion to blank which does not change significantly during subsequent cold pilgering. However, microstructure is modified significantly in subsequent cold working which can be effected by cold pilgering or cold drawing in single or multiple steps. Present paper brings out the various ingot processing routes using forging and or extrusion followed for fabrication of pressure tubes. The development of texture and microstructures has been discussed at the blank stage from these processing routes and also with respect to varying extrusion variable such as extrusion ratio
Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications
Czech Academy of Sciences Publication Activity Database
Březina, M.; Minda, J.; Doležal, P.; Krystýnová, M.; Fintová, Stanislava; Zapletal, J.; Wasserbauer, J.; Ptáček, P.
2017-01-01
Roč. 7, č. 11 (2017), č. článku 461. ISSN 2075-4701 Institutional support: RVO:68081723 Keywords : magnesium * powder metallurgy * cold pressing * hot pressing * EIS (Electrochemical impedance spectroscopy) * three-point bending test * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.984, year: 2016 http://www.mdpi.com/2075-4701/7/11/461
Czech Academy of Sciences Publication Activity Database
Peréz, P.; Milička, Karel; Badia, J. M.; Garcés, G.; Antoranz, J. M.; Gonzáles, S.; Dobeš, Ferdinand; Adeva, P.
289-292, - (2009), s. 127-136 ISSN 1012-0386. [DIMAT 2008, International Conference on Diffusion in Materials /7./. Lanzarote, Canary Islands, 28.10.2008-31.10.2008] Grant - others:Ministerio de Ciencia y Tecnologia (ES) MAT2006-11731-C02 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnesium alloys * powder metallurgy * microstructure * thermal stability * creep Subject RIV: JG - Metallurgy
International Nuclear Information System (INIS)
Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh
2014-01-01
Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process
Li, Fengxian; Yi, Jianhong; Eckert, Jürgen
2017-12-01
Powder forged connecting rods have the problem of non-uniform density distributions because of their complex geometric shape. The densification behaviors of powder metallurgy (PM) connecting rod preforms during hot forging processes play a significant role in optimizing the connecting rod quality. The deformation behaviors of a connecting rod preform, a Fe-3Cu-0.5C (wt pct) alloy compacted and sintered by the powder metallurgy route (PM Fe-Cu-C), were investigated using the finite element method, while damage and friction behaviors of the material were considered in the complicated forging process. The calculated results agree well with the experimental results. The relationship between the processing parameters of hot forging and the relative density of the connecting rod was revealed. The results showed that the relative density of the hot forged connecting rod at the central shank changed significantly compared with the relative density at the big end and at the small end. Moreover, the relative density of the connecting rod was sensitive to the processing parameters such as the forging velocity and the initial density of the preform. The optimum forging processing parameters were determined and presented by using an orthogonal design method. This work suggests that the processing parameters can be optimized to prepare a connecting rod with uniform density distribution and can help to better meet the requirements of the connecting rod industry.
International Nuclear Information System (INIS)
Chen Anquan
2011-01-01
Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)
Bakirov, A B; Takaev, R M; Kondrova, N S; Shaĭkhlislamova, E R
2011-01-01
The authors studied factors of working environment and process on nonferrous metallurgy enterprises in Bashkortostan Republic and evaluated their influence on the workers' occupational health over 1997-2009, with consideration of occupation, sex, age, length of service, work conditions and characters. The article demonstrates that sanitary and hygienic characteristics of occupations connected with machinery operation are prone to increased integral evaluation of work conditions due to underestimation of actual hardiness and intensity of work.
Preparation of uranium ingots from double fluorides
International Nuclear Information System (INIS)
Le Boulbin, E.
1967-05-01
A simple method has been developed for the preparation of uranium double fluorides and has given a new impetus to the study of the reduction of these compounds with a view to obtaining very pure uranium ingots. This reduction can be carried out using calcium or magnesium as the reducing agent, this latter metal being very interesting from the practical point of view. A comparative study of the heat balances of the reduction processes for the double fluorides and for uranium tetrafluoride has shown that reduction of the double fluorides is possible. The exact experimental conditions for these reductions have been determined. Our study has shown in particular that the reduction of the double salt UF 4 , CaF 2 by magnesium leads to the production of small (20 to 500 g) samples of high-purity uranium with a yield of 99 per cent. (author) [fr
Ideate about building green mine of uranium mining and metallurgy
International Nuclear Information System (INIS)
Shi Zuyuan
2012-01-01
Analysing the current situation of uranium mining and metallurgy; Setting up goals for green uranium mining and metallurgy, its fundamental conditions, Contents and measures. Putting forward an idea to combine green uranium mining and metallurgy with the state target for green mining, and keeping its own characteristics. (author)
Metals in Past Societies: A Global Perspective on Indigenous African Metallurgy Shadreck Chirikure
Energy Technology Data Exchange (ETDEWEB)
Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-10-01
This slim book (166 pages) shines a spotlight on pre-industrial African metallurgy, its global connections, and anthropological implications. It integrates seemingly disparate disciplines, such as history, geology, ethnography, archeology, and metallurgy, to illustrate the diversity and innovation in metallurgy across Africa and the role of metals in the rise of socio-economic inequalities and political power. The book has 7 chapters and the focus on metals as enablers of human needs and wants is evident in each chapter. The first chapter presents the context of the work and data sources. The second chapter focuses on the origin and development of mining and metallurgy in pre-industrial Africa. Chapter 3 is dedicated to the interaction of nature and culture in the process of mining. Chapter 4 deals with the transformation of the ore into metal by smelting and the sociocultural aspects of this process. Chapter 5 explores the social and cultural roles acquired by metals as a result of fabrication into objects. Chapter 6 examines the social role of metals, trade in metals, cultural contact, proto-globalization, and technology transfer. Finally, Chapter 7 draws lessons for global anthropology from the African experience. The sources of information are adequately cited and the long list of references at the end of each chapter will be a boon to researchers in this field. The author highlights the cultural aspects and social context of the adoption of metallurgy in Africa while drawing parallels between practices in pre-industrial Africa and those in other parts of the world. The book is peppered with delightful vignettes that offer insights into the process of transforming nature into culturally significant objects. For instance, African miners, like their counterparts in Nepal and Latin America, called upon deities, spirits and ancestors to mediate between nature and humans. Women had distinct roles in this process, but there were variations in these roles and in the
Multi-objective optimization of die geometry in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels
2014-01-01
The soundness of an ingot after hot forging with different V-shaped lower dies is evaluated using finite element simulations.Two different modelling approaches that make use of uncoupled ductile damage and coupled ductile damage based on porousplasticity are employed. It is shown that the two...
Manufacture of good-weldable low oxygen molybdenum by powder metallurgy
International Nuclear Information System (INIS)
Hiraoka, Yutaka; Okada, Masatoshi; Akiyama, Takashi; Yamafuchi, Yasuo.
1984-01-01
In general most of commercial molybdenum is produced by the powder metallurgy method and is utilized as a superior heat-resisting material in many fields. Moreover, molybdenum is expected to be used as the first-wall components of JT-60 (JAERI Tokamak-60). However, one of major problems on molybdenum, particularly on powder metallurgy molybdenum, is that any sound welded joint is hard to be obtainable. In many cases weld pores are formed on welding and, therefore, ductility of the welded joint is severely degraded. The object of the present work is to get a sound welded joint without any weld pores by reducing impurity levels in the material. The materials were produced by modifying one or several parts in the ordinary manufacturing process of powder metallurgy molybdenum. Oxygen, nitrogen, carbon and other principal metallic impurities were chemically analysed. The above materials were then subjected to electron-beam-welding by using a melt-run technique, and the soundness of the welded joints was examined by optical microscopy. (author)
Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys
Energy Technology Data Exchange (ETDEWEB)
Lazarus, L.J.
2001-12-10
Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.
Metallurgy in the Czech Republic: a spatio-temporal view
Directory of Open Access Journals (Sweden)
J. Suchacek
2017-01-01
Full Text Available The objective of this paper is to introduce the stochastic input-output model of the impact of metallurgy sector on the Czech economy. Contrary to original input-output model, which is of deterministic nature, we reckon with interval estimates of the development of metallurgy sector. They help us to surpass deterministic impediments when analyzing and forecasting the possible developmental tendencies of metallurgy sector in various economies.
Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots
DEFF Research Database (Denmark)
Rad, M. Torabi; Kotas, Petr; Beckermann, C.
2013-01-01
A Rayleigh number-based criterion is developed for predicting the formation of A-segregates in steel castings and ingots. The criterion is calibrated using available experimental data for ingots involving 27 different steel compositions. The critical Rayleigh number above which A-segregates can b......, the primary reason for this over-prediction is persumed to be the presence of a central zone of equiaxed grains in the casting sections. A-segregates do not form when the grain structure is equiaxed. © The Minerals, Metals & Materials Society and ASM International 2013...
Current programmes on physical metallurgy and related areas in BARC
International Nuclear Information System (INIS)
1994-01-01
Current research and development programmes on physical metallurgy and related areas from the following Divisions of Bhabha Atomic Research Centre are included in this report : Atomic Fuels Division, High Pressure Physics Division, Metallurgy Division, Radio Metallurgy Division, Solid State Physics Division. Important publications corresponding to each activity have also been listed. (author)
On the cooling rate of strip cast ingots for sintered NdFeB magnets
Energy Technology Data Exchange (ETDEWEB)
Yu, L.Q. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mse_yanmi@dial.zju.edu.cn; Wu, J.M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Luo, W. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cui, X.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Ying, H.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)
2007-04-30
Effects of the cooling rate of strip cast ingots on magnetic properties of sintered NdFeB magnets were studied. It is found that the magnetic properties greatly depend on wheel speed due to different alloy microstructures, which affect readily the particle size distribution of powders obtained after the subsequent jet milling. At higher cooling rate, interlamellar spacing between Nd-rich platelets of the alloy was small, resulting in a lower saturated magnetization due to increased amounts of small particles after jet milling. With further decreasing cooling rate, the resultant larger interlamellar spacing led to too large particle sizes as well as a more irregular shape; thus deteriorated the magnetic properties of the final magnet. A model was developed to disclose the effects of particle sizes on the magnetic alignment process. In the current investigation, optimum magnetic properties of the final magnets were obtained with a cooling rate of 2.6 m/s for preparing the strip. The magnets made by conventionally cast ingot technique exhibited the lowest magnetic properties because of the slowest cooling rate.
Electron microscopy in metallurgy
International Nuclear Information System (INIS)
Loretto, M.H.
1980-01-01
The aim of this paper is to review briefly the contribution which (TEM) transmission electron microscopy (including high voltage electron microscopy (HVEM)) has made to metallurgy. Since it is straightforward with modern electron microscopes to extract the crystallographic information which provides the basis for any interpretation, the major problem in most metallurgical work lies in assessing how the structure (which TEM has characterised) has arisen and which properties of the specimen can be understood in terms of this structure. Radiation damage, quenching, phase transformations, grain boundaries and plastic deformation have been the main fields in which TEM has contributed significantly. After briefly summarising the role of TEM in each field, examples of recent work will be used to indicate current TEM activity in physical metallurgy. (author)
Prerequisites and opportunities for repositioning of the Urals metallurgy within the Industry 4.0
Directory of Open Access Journals (Sweden)
O. A. Romanova
2017-12-01
Full Text Available The authors present the modern trends in the development of metallurgy, and classify the technological structure of metallurgical industry. The article contains specific features of the development of metallurgy in the conditions of industry formation. A special role in this process plays the pace of digitalization and robotization of the industry, the development of additive technologies, Internet of things. The authors substantiate the possibility of developing the metallurgy of the Middle Urals as a science-intensive, high-tech complex that meets the requirements of Industry 4.0. This possibility interrelates with its repositioning, one of the main tasks of which is the formation of new sales markets focused on high-tech consumer industries, as well as the preservation of traditional consumption sectors under conditions of increasing competition in the construction materials market. The authors underline the importance of international cooperation in the field of environmentally safe industrial development, with applying the best available technologies and innovative development in general. The authors propose a methodological approach for assessing the repositioning of the regional metallurgical complex. This approach is the consecutive implementation of the following stages: assessment of dynamics and the forecast of development of consumer steel products sector and its structure based on identified priority areas of technological development of metallurgy in the region; construction of a factor model describing the changes in parameters of the RMC repositioning process, and approximation of the characteristics of their nonlinear elements; building a mathematical model on the basis of neural network algorithms for assessing the process of repositioning the RMC, taking into account projected values of the RMK parameters in the process of repositioning and changing the structure of consumer markets for metal products; formation of a variable
Permanent magnets and its production by powder metallurgy
Directory of Open Access Journals (Sweden)
Enrique Herraiz Lalana
2018-06-01
Full Text Available In this work, the historical relationship between permanent magnets and powder metallurgy is reviewed. Powder metallurgy is a manufacturing technique based on the compaction of powders that are sintered to create a solid product. This technique was used in the production of permanent magnets for the first time in the 18th century and, nowadays, most permanent magnetic materials are manufacturing by this mean. Magnetic properties are highly dependent on the microstructure of the final product, the magnetic alignment of domains and presence of porosity, to mention a few, and powder metallurgy enables fine control of these factors.
Obtainment of the alloy Cu13Al4Ni using processed by powder metallurgy
International Nuclear Information System (INIS)
Grossi, L.J.; Damasceno, N.; Muterlle, P.V.
2016-01-01
The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)
Directory of Open Access Journals (Sweden)
Binczyk F.
2013-12-01
Full Text Available The paper presents the results of research on the impact of impurities in the feed ingots (master heat on the precipitation of impurities in the ATD thermal analysis probe castings. This impurities occur mostly inside shrinkage cavities and in interdendritic space. Additionally, insufficient filtration of liquid alloy during pouring promotes the transfer of impurities into the casting. The technology of melting superalloys in vacuum furnace prevents the removal of slag from the surface of molten metal. Because of that, the effective method of quality assessment of feed ingots in order to evaluate the existence of impurities is needed. The effectiveness of ATD analysis in evaluation of purity of feed ingots was researched. In addition the similarities of non-metallic inclusions in feed ingots and in castings were observed.
Quantifying the properties of low-cost powder metallurgy titanium alloys
International Nuclear Information System (INIS)
Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E.
2017-01-01
The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.
Quantifying the properties of low-cost powder metallurgy titanium alloys
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, L., E-mail: bolzoni.leandro@gmail.com [WaiCAM (Waikato Centre for Advanced Materials), The University of Waikato, Private Bag 3105, 3240 Hamilton (New Zealand); Ruiz-Navas, E.M.; Gordo, E. [Department of Materials Science and Engineering, University Carlos III of Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid (Spain)
2017-02-27
The extensive industrial employment of titanium is hindered by its high production costs where reduction of these costs can be achieved using cheap alloying elements and appropriate alternative processing techniques. In this work the feasibility of the production of low-cost titanium alloys is addressed by adding steel to pure titanium and processing the alloys by powder metallurgy. In particular, a spherical 4140 LCH steel powder commonly used in metal injection moulding is blended with irregular hydride-dehydride Ti. The new low-cost alloys are cold uniaxially pressed and sintered under high vacuum and show comparable properties to other wrought-equivalent and powder metallurgy titanium alloys. Differential thermal analysis and X-ray diffraction analyses confirm that Ti can tolerate the employment of iron as primary alloying element without forming detrimental TiFe-based intermetallic phases. Thus, the newly designed α+β alloys could be used for cheaper non-critical components.
Physical modeling and numerical simulation of V-die forging ingot with central void
DEFF Research Database (Denmark)
Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels
2014-01-01
Numerical simulation and physical modeling performed on small-scale ingots made from pure lead, having a hole drilled through their centerline to mimic porosity, are utilized to characterize the deformation mechanics of a single open die forging compression stage and to identify the influence...... of the lower V-die angle on porosity closure and forging load requirements of large cast ingots. Results show that a lower V-die angle of 120 provides the best closure of centerline porosity without demanding the highest forging loads or developing unreasonably asymmetric shapes that may create difficulties...... in multi-stage open die forging procedures....
Loucif, Abdelhalim; Ben Fredj, Emna; Harris, Nathan; Shahriari, Davood; Jahazi, Mohammad; Lapierre-Boire, Louis-Philippe
2018-06-01
A-type macrosegregation refers to the channel chemical heterogeneities that can be formed during solidification in large size steel ingots. In this research, a combination of experiment and simulation was used to study the influence of open die forging parameters on the evolution of A-type macrosegregation patterns during a multistep forging of a 40 metric ton (MT) cast, high-strength steel ingot. Macrosegregation patterns were determined experimentally by macroetch along the longitudinal axis of the forged and heat-treated ingot. Mass spectroscopy, on more than 900 samples, was used to determine the chemical composition map of the entire longitudinal sectioned surface. FORGE NxT 1.1 finite element modeling code was used to predict the effect of forging sequences on the morphology evolution of A-type macrosegregation patterns. For this purpose, grain flow variables were defined and implemented in a large scale finite element modeling code to describe oriented grains and A-type segregation patterns. Examination of the A-type macrosegregation showed four to five parallel continuous channels located nearly symmetrical to the axis of the forged ingot. In some regions, the A-type patterns became curved or obtained a wavy form in contrast to their straight shape in the as-cast state. Mass spectrometry analysis of the main alloying elements (C, Mn, Ni, Cr, Mo, Cu, P, and S) revealed that carbon, manganese, and chromium were the most segregated alloying elements in A-type macrosegregation patterns. The observed differences were analyzed using thermodynamic calculations, which indicated that changes in the chemical composition of the liquid metal can affect the primary solidification mode and the segregation intensity of the alloying elements. Finite element modeling simulation results showed very good agreement with the experimental observations, thereby allowing for the quantification of the influence of temperature and deformation on the evolution of the shape of the
Bottino, Marco C; Coelho, Paulo G; Henriques, Vinicius A R; Higa, Olga Z; Bressiani, Ana H A; Bressiani, José C
2009-03-01
This article presents details of processing, characterization and in vitro as well as in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr samples with different levels of porosity. Sintered samples were characterized for density, crystalline phases (XRD), and microstructure (SEM and EDX). Samples sintered at 1000 degrees C showed the highest porosity level ( approximately 30%), featuring open and interconnected pores ranging from 50 to 100 mum in diameter but incomplete densification. In contrast, samples sintered at 1300 and 1500 degrees C demonstrated high densification with 10% porosity level distributed in a homogeneous microstructure. The different sintering conditions used in this study demonstrated a coherent trend that is increase in temperature lead to higher sample densification, even though densification represents a drawback for bone ingrowth. Cytotoxicity tests did not reveal any toxic effects of the starting and processed materials on surviving cell percentage. After an 8-week healing period in rabbit tibias, the implants were retrieved, processed for nondecalcified histological evaluation, and then assessed by backscattered electron images (BSEI-SEM) and EDX. Bone growth into the microstructure was observed only in samples sintered at 1000 degrees C. Overall, a close relation between newly formed bone and all processed samples was observed. (c) 2008 Wiley Periodicals, Inc.
Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder
Directory of Open Access Journals (Sweden)
Jeon Byoungjun
2015-06-01
Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.
Environmental protection technologies and prospect for uranium mining and metallurgy in China
International Nuclear Information System (INIS)
Pan Yingjie
2002-01-01
Based on practices of production and environmental protection of China's uranium mining and metallurgy, control and protection of the three wastes in uranium mining and metallurgy are discussed. Prospects for environmental protection technologies of uranium mining and metallurgy is made
Peculiarities of the coolant of large ingots in crystallizators of semicontinuous casting machines
International Nuclear Information System (INIS)
Tsukerman, V.Ya.; Marchenko, I.K.; Rimen, V.Kh.
1983-01-01
Peculiarities of heat transfer in crystallizator of semicontinuous blank casting machine were investigated, taking carbon and chromium-nickel steels as an example. The effect of crystallizator cross-section and decrease of the rate of metal casting on ingot cooling was considered at that. It was established that nonuniformity of deformation of ingot skin as well as the state of crystallizator operating walls affect on heat transfer in crystallizator. Crystallizator structure with ribs in upper part and without ribs in lower cone part is optimal. It provides more uniform skin growth in initial period of solidification and compensation of gap, which appears due to shrinkage
Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities
Energy Technology Data Exchange (ETDEWEB)
Kneisel, P., E-mail: kneisel@jlab.org [Jefferson Lab, Newport News, VA 23606 (United States); Ciovati, G.; Dhakal, P. [Jefferson Lab, Newport News, VA 23606 (United States); Saito, K. [Michigan State University, East Lansing, MI 48824 (United States); Singer, W.; Singer, X. [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Myneni, G.R., E-mail: rao@jlab.org [Jefferson Lab, Newport News, VA 23606 (United States)
2015-02-21
As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E{sub acc}=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.
Energy Technology Data Exchange (ETDEWEB)
Padberg, Michael; Doetsch, Erwin [ABP Induction Systems, Dortmund (Germany)
2012-03-15
The continuously increasing importance of the CO{sub 2} balance and of conservation of resources is resulting in ever greater demands for high energy-efficiency in the process used for heating of forging ingots. Plant and process engineering play roles of parallel significance in the fulfillment of these requirements, and this article focuses on both in equal degree. The shares of the individual components in the overall energy consumption of an induction heating installation are therefore firstly determined, and their respective potentials for optimization then discussed. The quality of the heating process itself, and its optimum design for reduction of energy consumption, are then examined. (orig.)
Evaluation of powder metallurgy superalloy disk materials
Evans, D. J.
1975-01-01
A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.
Structure and properties of powder metallurgy constructional steel of different densities
International Nuclear Information System (INIS)
Gulyaev, A.P.; Moskvina, T.P.
1986-01-01
A specific feature of powder metallurgy steels is porosity, the degree of which depends upon the method of their production. This article establishes the influence of a small amount of porosity on the mechanical properties of powder metallurgy constructional steel. The structure of heat-treated cast and powder metallurgy steels with different porosities are shown. The results of mechanical tests of the experimental steels with different porosities are shown. With an increase in porosity the nonmetallic inclusion rating of the powder metallurgy constructional steel increases, primarily as the result of the increase in the coarse particles, which is caused by the lower degree of plastic deformation in pressing. With an increase in porosity the mechanical properties of the powder metallurgy steel become poorer: the hardness and strength properties with a porosity of more than 3-5%, the plasticity with more than 1-2%, and the toughness even with a porosity of 1%
Metallurgy Department publications 1988
International Nuclear Information System (INIS)
Schroeder Pedersen, A.; Bilde-Soerensen, J.B.
1989-08-01
A presentation (including abstracts) of scientific and technical publications and lectures by the staff of the Metallurgy Department during 1988 is given. The list comprises journal papers, conference papers, reports, lectures and poster presentations in the following catagories: Publications, Lectures and Poster Presentations. (author)
Metallurgy Department publications 1989
International Nuclear Information System (INIS)
Horsewell, A.
1990-08-01
All publiclations by the staff of the Metallurgy Department during 1989 are listed. This list is divided into three sections as follows: Publications (journal and conference papers, reports); Lectures (public lecture presentations) and Posters (poster presentations at conferences and symposia). Abstracts are included. (author)
Superior metallic alloys through rapid solidification processing (RSP) by design
Energy Technology Data Exchange (ETDEWEB)
Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)
1995-05-01
Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.
Metallurgy and Heat Treating. Welding Module 7. Instructor's Guide.
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching a three-unit module in metallurgy and heat treating. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles of metallurgy and heat treatment and techniques for…
Numerical analysis on effect of annealing mc-Si ingot grown by DS process for PV application
Aravindan, G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.
2017-10-01
Silicon solar cells play a crucial role in Photo voltaic (PV) application. We have numerically investigated thermal stress and normal stress components (Sigma 11, Sigma 22, Sigma 33 and sigma 12) by using finite volume method. The maximum thermal stress has low value at the centre region for 900 K and 700 K annealing temperatures comparing all the cases. The maximum thermal stress at peripheral region is low for 700 K annealing compared to 900 K annealing. The annealing effect of mc-Si ingot normal stress components is discussed. At 700 K annealing temperature the normal stress in 11 and 33 direction has lower maximum and at the 900 K annealing temperature the normal stress in 22 and 12 direction has lower maximum.
Microstructural and mechanical property characterization of ingot metallurgy ODS iron aluminide
Energy Technology Data Exchange (ETDEWEB)
Sikka, V.K.; Howell, C.R. [Oak Ridge National Lab., TN (United States); Hall, F.; Valykeo, J. [Hoskins Mfg. Co., Hamburg, MI (United States)
1997-12-01
This paper deals with a novel, lower cost method of producing a oxide dispersion strengthened (ODS) iron-aluminide alloy. A large 250-kg batch of ODS iron-aluminide alloy designated as FAS was produced by Hoskins Manufacturing Company (Hoskins) [Hamburg, Michigan] using the new process. Plate and bar stock of the ODS alloy were the two major products received. Each of the products was characterized for its microstructure, including grain size and uniformity of oxide dispersion. Tensile tests were completed from room temperature to 1100 C. Only 100-h creep tests were completed at 800 and 1000 C. The results of these tests are compared with the commercial ODS alloy designated as MA-956. An assessment of these data is used to develop future plans for additional work and identifying applications.
Welding Metallurgy and Weldability of Stainless Steels
Lippold, John C.; Kotecki, Damian J.
2005-03-01
Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.
Biennial activity report of Metallurgy Division for 1989 and 1990
International Nuclear Information System (INIS)
Kamachi Mudali, U.; Muraleedharan, P.; Parameswaran, P.; Swaminathan, K.; Sreedharan, O.M.
1993-01-01
This is the first divisional biennial report of the Metallurgy Division of Indira Gandhi Centre for Atomic Research, for the year 1989-1990, after formation of the Metallurgy Division in September 1988. Major areas of work in the Division relate to aqueous corrosion and localised corrosion, stress corrosion cracking and liquid metal corrosion, high temperature oxidation, thermodynamic studies, physical metallurgy studies for structure-property correlations and failure analyses. The principal materials of studies have been the austenitic stainless steels, the current materials of construction in the Fast Breeder Test Reactor and the candidate materials for the Prototype Fast Breeder Reactor
Nagarajan, S. G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.
2018-04-01
Transient simulation has been carried out for analyzing the heat transfer properties of Directional Solidification (DS) furnace. The simulation results revealed that the additional heat exchanger block under the bottom insulation on the DS furnace has enhanced the control of solidification of the silicon melt. Controlled Heat extraction rate during the solidification of silicon melt is requisite for growing good quality ingots which has been achieved by the additional heat exchanger block. As an additional heat exchanger block, the water circulating plate has been placed under the bottom insulation. The heat flux analysis of DS system and the temperature distribution studies of grown ingot confirm that the established additional heat exchanger block on the DS system gives additional benefit to the mc-Si ingot.
Biennial activity report of Metallurgy Programme - 1985 and 1986
International Nuclear Information System (INIS)
Mallika, C.; Sreenivasan, P.R.; Muraleedharan, P.; Shyamsunder, M.T.; Kuppuswami, P.; Sampath, N.; Bhaduri, A.K.; Sreedharan, O.M.
1988-01-01
The biennial activity report of the Metallurgy Programme of the Indira Gandhi Centre for Atomic Research covers the period of the years 1985 and 1986. Along with NDT, welding metallurgy, low cycle fatigue, creep and creep fatigue interactions, structure-property correlations, thermodynamics and corrosion metallurgy of alloy steels with respect to their compatibility with aqueous and liquid sodium environments continue to be the major thrust areas of the Programme. Some of the basic research contributions of the Programme are: the observation of uniform and homogeneous distribution of voids in cyclically deformed 304 SS, the role of grain boundaries and precipitation in dynamic strain ageing of 316 SS and the determination of the activities of component metals in 316 and 304 SS by metastable EMF method. (author)
Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process
Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo
2015-11-01
In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.
Industrial applications and metallurgy
International Nuclear Information System (INIS)
Torres M, N.; Melendrez C, G.; Morales, F.L.
1989-01-01
From 1961 the use of nuclear energy in the industrial field in Colombia has a big advance. Today nuclear isotopes are used by private companies in this kind of application the Area of Industrial Applications and Metallurgy was the institution section that has trained and has transferred the technology needed for this purpose
The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process
Energy Technology Data Exchange (ETDEWEB)
Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia; Amal, M. Ikhlasul; Kartika, Ika, E-mail: pepeng2000@yahoo.com [Research center for Metallurgy and Material, Indonesian Institute of Science (Indonesia); Sitorus, Lyandra S. [Sultan Ageng Tirtayasa University (Indonesia)
2016-04-19
Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.
International Nuclear Information System (INIS)
Rahn, K.M.M.; Jusevicius, E.; Michael, H.
1981-01-01
The process for the qualification of 'Sao Caetano do Sul (Acos Villares S/A)' Plant as manufacturers of ingot iron pieces for application in components of Angra 2 and Angra 3 Nuclear Power Plants, is presented. The qualification was executed by IBQN - Instituto Brasileiro de Qualidade Nuclear - the organ officially in charge of the execution of qualification of suppliers of materials for the nuclear industry. (E.G.) [pt
Biennial activity report of Metallurgy Division for 1989 and 1990
Energy Technology Data Exchange (ETDEWEB)
Kamachi Mudali, U; Muraleedharan, P; Parameswaran, P; Swaminathan, K; Sreedharan, O M [eds.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)
1994-12-31
This is the first divisional biennial report of the Metallurgy Division of Indira Gandhi Centre for Atomic Research, for the year 1989-1990, after formation of the Metallurgy Division in September 1988. Major areas of work in the Division relate to aqueous corrosion and localised corrosion, stress corrosion cracking and liquid metal corrosion, high temperature oxidation, thermodynamic studies, physical metallurgy studies for structure-property correlations and failure analyses. The principal materials of studies have been the austenitic stainless steels, the current materials of construction in the Fast Breeder Test Reactor and the candidate materials for the Prototype Fast Breeder Reactor 7 figs., 6 tabs., 2 ills.
Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy
Czech Academy of Sciences Publication Activity Database
Moravčík, I.; Čížek, Jan; Kováčová, Z.; Nejezchlebová, J.; Kitzmantel, M.; Neubauer, E.; Kuběna, Ivo; Horník, Vít; Dlouhý, I.
2017-01-01
Roč. 701, July (2017), s. 370-380 ISSN 0921-5093 Institutional support: RVO:61389021 ; RVO:68081723 Keywords : tensile test * mechanical alloying * plastic ity * mechanical characterization * powder metallurgy Subject RIV: JG - Metallurgy; JG - Metallurgy (UFM-A) OBOR OECD: Materials engineering; Materials engineering (UFM-A) Impact factor: 3.094, year: 2016 https://www.sciencedirect.com/science/article/pii/S0921509317308535
Effects of Post-Sinter Processing on an Al–Zn–Mg–Cu Powder Metallurgy Alloy
Directory of Open Access Journals (Sweden)
Matthew David Harding
2017-09-01
Full Text Available The objective of this work was to study the effects of several post-sinter processing operations (heat-treatment, sizing, shot peening on a press-and-sinter 7xxx series aluminum powder metallurgy (PM alloy. The characterization of the products was completed through a combination of non-contact surface profiling, hardness measurements, differential scanning calorimetry (DSC, transmission electron microscopy (TEM, X-ray diffraction (XRD, tensile, and three-point bend fatigue testing. It was determined that sizing in the as-quenched state imparted appreciable reductions in surface hardness (78 HRB and fatigue strength (168 MPa relative to counterpart specimens that were sized prior to solutionizing (85 HRB and 228 MPa. These declines in performance were ascribed to the annihilation of quenched in vacancies that subsequently altered the nature of precipitates within the finished product. The system responded well to shot peening, as this process increased fatigue strength to 294 MPa. However, thermal exposure at 353 K (80 °C and 433 K (160 °C then reduced fatigue performance to 260 MPa and 173 MPa, respectively, as a result of residual stress relaxation and in-situ over-aging.
Energy Technology Data Exchange (ETDEWEB)
Gasco Sanchez, L; Fernandez Cellini, R
1959-07-01
The thermal decomposition of some intermediate compounds in the metallurgy of the uranium as uranium peroxide, ammonium uranate, uranium and ammonium penta-fluoride, uranium tetrafluoride and uranous oxide has been study by means of the Chevenard's thermo balance. Some data on pyrolysis of synthetic mixtures of intermediate compounds which may occasionally appear during the industrial process, are given. Thermogravimetric methods of control are suggested, usable in interesting products in the uranium metallurgy. (Author) 20 refs.
Powder metallurgy approaches to high temperature components for gas turbine engines
Probst, H. B.
1974-01-01
Research is reported for the tensile strength, ductility, and heat performance characterisitics of powder metallurgy (p/m) superalloys. Oxide dispersion strengthened alloys were also evaluated for their strength during thermal processing. The mechanical attributes evident in both p/m supperalloys and dispersion strengthened alloys are discussed in terms of research into their possible combination.
Klyuev, R. V.; Bosikov, I. I.; Madaeva, M. Z.; A-V Turluev, R.
2018-03-01
The structural scheme of the automated control system of power consumption at the industrial enterprise is developed in the article. At the non-ferrous metallurgy enterprise, an energy inspection and a rank analysis of the electrical energy consumption of the main processing equipment were carried out. It is established that the enterprises of non-ferrous metallurgy are a complex process system consisting of a set of thousands of jointly functioning technological facilities. For the most effective estimation of power consumption of enterprises, it is reasonable to use the automated system of dispatching control of power consumption (ASDCPC). The paper presents the results of the development of the ASDCPC structural diagram that allows one to perform on-line control and management of the energy and process parameters of the main production units and the enterprise as a whole. As a result of the introduction of ASDCPC at the non-ferrous metallurgy enterprise, the consumed active power was reduced during the peak hours of the load by 20%, the specific electricity consumption - by 14%, the cost of the energy component in the cost of production of hard alloys - by 3%.
Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.
Krasnodebska-Ostrega, Beata; Pałdyna, Joanna; Kowalska, Joanna; Jedynak, Łukasz; Golimowski, Jerzy
2009-08-15
The stored metallurgy wastes contain residues from ore processing operations that are characterized by relatively high concentrations of heavy metals. The bioleaching process makes use of bacteria to recover elements from industrial wastes and to decrease potential risk of environmental contamination. Wastes were treated by solutions containing bacteria. In this work, the optimized six-stage sequential extraction procedure was applied for the fractionation of Ni, Cr, Fe, Mn, Cu and Zn in iron-nickel metallurgy wastes deposited in Southern Poland (Szklary). Fractionation and total concentrations of elements in wastes before and after various bioleaching treatments were studied. Analyses of the extracts were performed by ICP-MS and FAAS. To achieve the most effective bioleaching of Zn, Cr, Ni, Cu, Mn, Fe the usage of both autotrophic and heterotrophic bacteria in sequence, combined with flushing of the residue after bioleaching is required. 80-100% of total metal concentrations were mobilized after the proposed treatment. Wastes treated according to this procedure could be deposited without any risk of environmental contamination and additionally the metals could be recovered for industrial purposes.
Smellie, Iain A.; Forgan, Ross S.; Brodie, Claire; Gavine, Jack S.; Harris, Leanne; Houston, Daniel; Hoyland, Andrew D.; McCaughan, Rory P.; Miller, Andrew J.; Wilson, Liam; Woodhall, Fiona M.
2016-01-01
A multidisciplinary experiment for advanced undergraduate students has been developed in the context of extractive metallurgy. The experiment serves as a model of an important modern industrial process that combines aspects of organic/inorganic synthesis and analysis. Students are tasked to prepare a salicylaldoxime ligand and samples of the…
[Respiratory diseases in metallurgy production workers].
Shliapnikov, D M; Vlasova, E M; Ponomareva, T A
2012-01-01
The authors identified features of respiratory diseases in workers of various metallurgy workshops. Cause-effect relationships are defined between occupational risk factors and respiratory diseases, with determining the affection level.
Chemical and microstructural characterization of recycled zircaloy
International Nuclear Information System (INIS)
Martinez, Luis G.; Pereira, Luiz A.T.; Rossi, Jesualdo L.; Takiishi, Hidetoshi; Sato, Ivone M.; Scapin, Marcos A.; Orlando, Marcos T.D.
2011-01-01
PWR reactors employ as nuclear fuel UO 2 pellets with Zircaloy clad. Brazil is autonomous in the nuclear fuel cycle, from uranium mining to enrichment and nuclear fuel manufacture. However, the industrial production of nuclear zirconium alloys does not meet the demand, leading to importation of Zircaloy for fuel manufacturing. In the fabrication of fuel elements parts, machining chips of alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is strategic in economical and environmental aspects. In this work are described two methods that are being developed to recycle Zircaloy chips. The first method the Zircaloy machining chips are melted using an electric arc furnace to obtain small laboratory ingots. The second method uses powder metallurgy technique. By this later method, the Zircaloy chips are submitted to a hydriding process and the resulting material is milled in a high-energy ball mill. The powder is cold isostatically pressed and vacuum sintered. The elemental composition of the materials obtained using both methods is being determined using X-ray fluorescence techniques and compared to the specifications of nuclear grade Zircaloy and to the composition of the starting chips. The phase composition of the laboratory ingots was determined using X-ray diffraction. The ingots were vacuum annealed and the microstructures resulting from both processing methods before and after heat treatments were characterized using optical and scanning electron microscopy. The hardness of the materials was evaluated. A methodology of chemical analysis using X-ray fluorescence spectrometry, for composition certification, was established and tested. The results showed that recycled Zircaloy presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding cap-ends, using near net shape sintering. (author)
Machinability of zinc-aluminum alloy5; zamzk5; alloy produced by powder metallurgy
International Nuclear Information System (INIS)
Adnan, I.O.; Momani, M.A.A.
2007-01-01
Powder metallurgy process (P/M) is repeatedly reported as a near-net or net-shape manufacturing process with the ability of producing parts of complicated or intricate shapes with high required dimensional accuracy and high surface quality. However, some finishing and machining operations are sometimes necessary and must be done to meet dimensional tolerances or accommodate design features that can be achieved during compaction such as transverse holes, undercuts and threads. Therefore, it is necessary to study the machinability of P/M products. ZAMAK5 alloy is widely used in engineering applications in the automobile industry, particularly in the manufacturing of bushes and recently self -lubricated bearings which are manufactured by the P/M process. Therefore it is anticipated that studying the machinability of this alloy as produced by the powder metallurgy process is worthwhile investigating. In this paper, the machinability of ZAMAK5, alloy produced by powder metallurgy, under different cutting conditions of speed, depth of cut and feed rate is carried out. Surface roughness was used as a criterion for assessing machinability at the different conditions. It was found that specimens compacted at 475 MPa and having 1% addition of zinc stearates as a binder and lubricant gave better surface quality than those produced at 550 MPa compacting pressure,whereas at 1.5% addition of zinc stearates produced worse surface quality (i.e. Higher surface roughness than in case of 475 MPa compacting pressure). On the whole, the results of the experimental work revealed that the surface roughness at the different cutting conditions remained within the accepted level in industry, less than 2 microns. (author)
The Development and Application of an Integrated VAR Process Model
Ballantyne, A. Stewart
2016-07-01
The VAR ingot has been the focus of several modelling efforts over the years with the result that the thermal regime in the ingot can be simulated quite realistically. Such models provide important insight into solidification of the ingot but present some significant challenges to the casual user such as a process engineer. To provide the process engineer with a tool to assist in the development of a melt practice, a comprehensive model of the complete VAR process has been developed. A radiation heat transfer simulation of the arc has been combined with electrode and ingot models to develop a platform which accepts typical operating variables (voltage, current, and gap) together with process parameters (electrode size, crucible size, orientation, water flow, etc.) as input data. The output consists of heat flow distributions and solidification parameters in the form of text, comma-separated value, and visual toolkit files. The resulting model has been used to examine the relationship between the assumed energy distribution in the arc and the actual energy flux which arrives at the ingot top surface. Utilizing heat balance information generated by the model, the effects of electrode-crucible orientation and arc gap have been explored with regard to the formation of ingot segregation defects.
Energy Technology Data Exchange (ETDEWEB)
Gasco Sanchez, L.; Fernandez Cellini, R.
1959-07-01
The thermal decomposition of some intermediate compounds in the metallurgy of the uranium as uranium peroxide, ammonium uranate, uranium and ammonium penta-fluoride, uranium tetrafluoride and uranous oxide has been study by means of the Chevenard's thermo balance. Some data on pyrolysis of synthetic mixtures of intermediate compounds which may occasionally appear during the industrial process, are given. Thermogravimetric methods of control are suggested, usable in interesting products in the uranium metallurgy. (Author) 20 refs.
Research of radiation protection standard system in uranium mining and metallurgy
International Nuclear Information System (INIS)
Lian Guoxi; Song Liquan; Xie Zhanjun
2011-01-01
The contents of radiation and environment protection standards used in uranium mining and metallurgy are analyzed and the existent problems in current standard system are pointed out. A new standard system is established according to theory of systematology and the actuality of uranium mining and metallurgy. Some standard checklists which need to be complemented, corrected, deleted and used during the work of perfection and complementation of standard system are presented. The procedures of establishing new standard system are described, and some suggestions on the establishment and implementation of radiation protection standard system in uranium mining and metallurgy are put forward. (authors)
Weldability of powder-metallurgy molybdenum with low oxygen content
International Nuclear Information System (INIS)
Hiraoka, Yutaka; Okada, Masatoshi
1987-01-01
Relationships between the formation of weld pores and the chemical compositions in powder-metallurgy molybdenum were investigated. It is suggested that almost 100% of Ca and Mg form oxides. In contrast, Fe, Ni, Cr and Al, Si only partly form oxides. A powder-metallurgy molybdenum containing less than 84 at.ppm oxygen did not show any large weld pores. The reduction of the oxygen content was achieved by purifying the molybdenum powder. (orig.) [de
Powder metallurgy development at SRL
International Nuclear Information System (INIS)
Peacock, H.B.
1978-01-01
Fuel for Savannah River Plant (SRP) reactors consists of extruded tubes with aluminum--uranium alloy cores clad with 8001 aluminum. The 235 U in the fuel is periodically recovered and recycled in new fuel assemblies. The buildup of 236 U in the enriched uranium requires increased total uranium contents to maintain reactivity in existing assembly designs. High level waste production from these tubes is proportional to the aluminum content; therefore, appreciable radioactive waste reductions result from lower aluminum--uranium ratios and thinner clad tubes. The casting process now used for fuel cores is limited to below 40 wt % U because of the reduced fabricability of high uranium alloys. To increase tube loading and reduce aluminum, the U 3 O 8 -Al powder metallurgy (P/M) process for fuel tubes is under development. Several fabricaion and irradiaion tests have been made using production conditions. Both small scale and production tests carried out at SRL for high-density P/M fuel development are discussed
Optimization of hybrid-type instrumentation for Pu accountancy of U/TRU ingot in pyroprocessing.
Seo, Hee; Won, Byung-Hee; Ahn, Seong-Kyu; Lee, Seung Kyu; Park, Se-Hwan; Park, Geun-Il; Menlove, Spencer H
2016-02-01
One of the final products of pyroprocessing for spent nuclear fuel recycling is a U/TRU ingot consisting of rare earth (RE), uranium (U), and transuranic (TRU) elements. The amounts of nuclear materials in a U/TRU ingot must be measured as precisely as possible in order to secure the safeguardability of a pyroprocessing facility, as it contains the most amount of Pu among spent nuclear fuels. In this paper, we propose a new nuclear material accountancy method for measurement of Pu mass in a U/TRU ingot. This is a hybrid system combining two techniques, based on measurement of neutrons from both (1) fast- and (2) thermal-neutron-induced fission events. In technique #1, the change in the average neutron energy is a signature that is determined using the so-called ring ratio method, according to which two detector rings are positioned close to and far from the sample, respectively, to measure the increase of the average neutron energy due to the increased number of fast-neutron-induced fission events and, in turn, the Pu mass in the ingot. We call this technique, fast-neutron energy multiplication (FNEM). In technique #2, which is well known as Passive Neutron Albedo Reactivity (PNAR), a neutron population's changes resulting from thermal-neutron-induced fission events due to the presence or absence of a cadmium (Cd) liner in the sample's cavity wall, and reflected in the Cd ratio, is the signature that is measured. In the present study, it was considered that the use of a hybrid, FNEM×PNAR technique would significantly enhance the signature of a Pu mass. Therefore, the performance of such a system was investigated for different detector parameters in order to determine the optimal geometry. The performance was additionally evaluated by MCNP6 Monte Carlo simulations for different U/TRU compositions reflecting different burnups (BU), initial enrichments (IE), and cooling times (CT) to estimate its performance in real situations. Copyright © 2015 Elsevier Ltd. All
Radiation effects in high-disperse metal media and their application in powder metallurgy
International Nuclear Information System (INIS)
Zaykin, Y.A.; Aliyev, B.A.
2002-01-01
Experimental and theoretical results showing up effects of metal powder radiation processing, such as powder grinding, chemical refinement, and changes in powder particle surface state, are discussed. It is shown that preliminary irradiation of metal powders leads to profound structural alterations at all further stages of their processing by conventional methods of powder metallurgy and eventually effects the properties of the resulting product
Application of powder metallurgy beryllium in Beijing spectrometer III beam pipe
International Nuclear Information System (INIS)
Zheng Lifang; Li Xunfeng; Wang Li; Ji Quan; Liu Jianping
2008-01-01
According to the requirements of Beijing Spectrometer III (BESIII) beam pipe, the physical properties of several materials were compared and powder metallurgy beryllium was chosen as the material for the central pipe of the BES III beam pipe. Weight-loss method was used to study the corrosion of powder metallurgy beryllium in No. 1 oil for electron discharge machining (EDM-1). The result shows that the anticorrosive property of powder metallurgy beryllium in EDM-1 is high. The corrosion rate, 4.18 x 10 -7 kg· m -2 ·h -1 in initial stage, becomes small with the lapse of the time and stabilizes at 1.54 x 10 -7 kg·m -2 ·h -1 at last. It can be estimated that the powder metallurgy beryllium will be corroded 19.9 μm in the depth in 10 years and it accounts for 3.32% of the smallest thickness of the central pipe, which satisfies the requirements of the BESIII. (authors)
Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo
2017-03-01
A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.
Computational thermodynamics in electric current metallurgy
DEFF Research Database (Denmark)
Bhowmik, Arghya; Qin, R.S.
2015-01-01
. The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations.......A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature...
State-of-the-art and main options to improve fuel-energy complex of ferrous metallurgy
Energy Technology Data Exchange (ETDEWEB)
Rozenblit, G I; Pashkov, V D; Romanov, G M
1981-01-01
In 1980, the State Institute for the Design and Planning Metallury (Gripromez), elaborated ''The main options of Fuel and energy resources conservation (FERG) in ferrous metallurgy of the USSR program of works for the period 1981-1985 and up to 1990''. The Gipromez technical committee recommended: 1) elaborating feasibility studies and reports, developing branch schemes and starting complexes to separate out FERC measures; 2) inclusion of the FERC measures at the starting complexes as the first stages of main projects construction; 3) that the Ministy of Ferrous Metallurgy of the USSR, general designers and enterprises reconsider the starting complexes of the projects constructed during the present five-year period and incorporate in them the urgent FERC actions on heat-utilizing facilities. Changing the steel smelting process structure through more extensive use of the converter process and installation of continuous blank casting allows achievement of considerable fuel conservation, some 4 m trf per year as compared with its consumption in the scheme of open-hearth furnace - blooming mill (slabbing mill). During the 11th five-year-plan period introduction of metallurgy plant. An installation with discharge of the converter gas without its afterburning and successive utilization as a fuel in the converter shop of the Novolipetsk is planned.
A major advance in powder metallurgy
Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.
1991-01-01
Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.
Extractive metallurgy of zirconium--1945 to the present
International Nuclear Information System (INIS)
Franklin, D.G.; Adamson, R.B.
1984-01-01
Although the history of the reduction of zirconium dates from 1824 and the first ductile zirconium metal was produced in the laboratory in 1914, modern reduction practice was pioneered by the U.S. Bureau of Mines starting in 1945. This paper reviews the history of the extractive metallurgy of zirconium from the early work of W. J. Kroll and co-workers at the Bureau of Mines in Albany, Ore., through the commercial development of the production of reactor-grade zirconium metal which was spurred by the requirements of the Naval Reactor Program and the development of commercial nuclear power. Technical subjects covered include processes for opening the ore, zirconium-hafnium separation, chlorination of zirconium oxide, reduction processes, and electrowinning of zirconium metal. Proposed new processes and process modifications are reviewed
Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys
International Nuclear Information System (INIS)
Triveno Rios, C.; Kiminami, C.S.
2014-01-01
The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)
International Nuclear Information System (INIS)
Bottino, M.C.; Coelho, P.G.; Yoshimoto, M.; Koenig, B.; Henriques, V.A.R.; Bressiani, A.H.A.; Bressiani, J.C.
2008-01-01
This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route
Energy Technology Data Exchange (ETDEWEB)
Bottino, M.C. [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254 1530 3rd Avenue South, Birmingham, AL, 35294 (United States); Coelho, P.G. [Department of Biomaterials and Biomimetics, New York University, College of Dentistry, 345 East 24th Street, Room 804S, New York, NY, 10100 (United States)], E-mail: pgcoelho@nyu.edu; Yoshimoto, M. [Materials Science and Technology Center, Institute for Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, Sao Paulo, SP, 05508-000 (Brazil); Koenig, B. [Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo (ICB-USP) Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP, 05508-900 (Brazil); Henriques, V.A.R. [Materials Division (AMR/IAE), CTA Brazilian Aerospace Technical Center, Sao Jose dos Campos, SP, 12228-904 (Brazil); Bressiani, A.H.A.; Bressiani, J.C. [Materials Science and Technology Center, Institute for Energy and Nuclear Research, Av. Prof. Lineu Prestes, 2242, Sao Paulo, SP, 05508-000 (Brazil)
2008-03-10
This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants' were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit's tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route.
Directory of Open Access Journals (Sweden)
A. N. Chichko
2004-01-01
Full Text Available The results of computer calculations of the stresses, generated in outside layer of ingot of steel 20 of circular section with diameter 300 mm, in application to one of the industrial technological schemas of RUP “BMZ”, are presented. The segments of compressive and tensile stresses formation along the length of ingot are determined and the principal possibility of production of continuously cast slug of circular section at circular-torch spray cooling is shown.
Near-Net Shape Powder Metallurgy Rhenium Thruster
Leonhardt, Todd; Hamister, Mark; Carlen, Jan C.; Biaglow, James; Reed, Brian
2001-01-01
This paper describes the development of a method to produce a near-net shape (NNS) powder metallurgy (PM) rhenium combustion chamber of the size 445 N (100 lbf) used in a high performance liquid apogee engine. These engines are used in low earth Orbit and geostationary orbit for satellite positioning systems. The developments in near-net shape powder metallurgy rhenium combustion chambers reported in this paper will reduce manufacturing cost of the rhenium chambers by 25 percent, and reduce the manufacturing time by 30 to 40 percent. The quantity of rhenium metal powder used to produce a rhenium chamber is reduced by approximately 70 percent and the subsequent reduction in machining schedule and costs is nearly 50 percent.
Metallurgical examination of powder metallurgy uranium alloy welds
International Nuclear Information System (INIS)
Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.
1986-01-01
Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties
Metallurgy and properties of plasma spray formed materials
Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.
1992-01-01
Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.
The certification of boron in primary ingot aluminium. BCR No.25
International Nuclear Information System (INIS)
Vandecasteele, C.; Colinet, E.
1984-01-01
This report sets out the experimental procedures used for the certification of boron in primary ingot aluminium, which has already been certified for carbon and oxygen. Samples were analysed by seven different laboratories using the following methods: spectrophotometry, ICP-emission spectrometry, isotope dilution mass spectrometry, spark source mass spectrometry and charged particle activation analysis. The analytical methods and the statistical approach to analyse the data are described
Positive segregation as a function of buoyancy force during steel ingot solidification
International Nuclear Information System (INIS)
Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa
2008-01-01
We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.
Progress report of the Metallurgy Division for the period 1978-1980
International Nuclear Information System (INIS)
Sharma, B.D.; Mohan, Ashok; Bose, D.K.; Rao, C.N.; Chouthai, S.S.
1980-01-01
The research and development (R and D) work of the Metallurgy Division of the Bhabha Atomic Research Centre at Bombay for the period 1978-1980 is reported in the form of individual summaries under the headings: extractive metallurgy section, physical metallurgy section, corrosion and electrometallurgy section, ceramics section. Progress of work of beryllium pilot plant project, programme for R-5 utilisation for materials irradiation research project, development of rare, reactive and refractory metals, and development of ceramics materials for MHD programme is surveyed. Lists of publications, deputations, visits, conferences, colloquia are given. A chart at the end shows the various sections of the Division and personnel in each section. (M.G.B.)
Energy Technology Data Exchange (ETDEWEB)
Song, Duk-Yong; Kim, Dong-Soo; Kim, Jungyeup; Lee, Jongwook; Ko, Seokhee [Doosan Heavy Industries and Construction, Changwon(Korea, Republic of)
2016-10-15
In order to establish the manufacturing technology for monoblock LP rotor shaft, DHI has produced the prototype monoblock LP rotor shaft with a maximum diameter of φ 2,800 mm using 650 ton ingot and investigated the mechanical properties and the internal quality of the ingot. As a result, the quality and mechanical properties required the large rotor shaft for nuclear power plant met a target. These results indicate that DHI can be contributed to increasing demands with high efficiency and capacity at the nuclear power plant. Additionally, some tests such as high cycle fatigue (HCF), low cycle fatigue (LCF), fracture toughness (K1C/J1C) and dynamic crack propagation velocity (da/dN) are in progress.
Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot
International Nuclear Information System (INIS)
Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama
2013-01-01
Highlights: •Ti 2 Ni second phase particles forms in different sizes and shapes in cast ingot. •TEM evidences showed shearing/fragmentation of Ti 2 Ni during processing. •Matrix close to Ti 2 Ni experienced severe plastic deformation lead to amorphisation. •Ti 2 Ni interfaces were mostly faceted and assist in nucleation of martensite. •Heterogeneity of microstructure observed near to and away from Ti 2 Ni. -- Abstract: Binary NiTi alloy is one of the commercially successful shape memory alloys (SMAs). Generally, the NiTi alloy composition used for thermal actuator application is slightly Ti-rich. In the present study, vacuum arc melted alloy of 50.2Ti–Ni (at.%) composition was prepared and characterized using optical, scanning and transmission electron microcopy. Formation of second phase particles (SPPs) in the cast alloy and their influence on development of microstructure during processing of the alloy into wire form has been investigated. Results showed that the present alloy contained Ti 2 Ni type SPPs in the matrix. In the cast alloy, the Ti 2 Ni particles form in varying sizes (1–10 μm) and shapes. During subsequent thermo-mechanical processing, these SPPs get sheared/fragmented into smaller particles with low aspect ratio. The presence of SPPs plays a significant role in refinement of the microstructure during processing of the alloy. During deformation of the alloy, the matrix phase around the SPPs experiences conditions similar to that observed in severe plastic deformation of metallic materials, leading to localized amorphisation of the matrix phase
Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1984-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.
1983-01-01
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.
1981-01-01
The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.
International Nuclear Information System (INIS)
Tsipas, Sophia A.; Gordo, Elena
2016-01-01
Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions
Energy Technology Data Exchange (ETDEWEB)
Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena
2016-08-15
Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions
International Nuclear Information System (INIS)
Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.
2009-01-01
Full text: The process of powder metallurgy in the production of parts through application of pressure on the selected ceramic or metal powders, which are subjected to a temperature of sintering for to occur consolidation of the components. The metal-mechanical industry is responsible for the generation of inputs from their manufacturing processes. This work aims to re-use of chips of Al and SAE 1045 steel by powder metallurgy of this is a viable and effective. This work is in the manufacture of a composite using Al 6060 metal matrix and steel 1045 as reinforcement (30%, 40%, 50%), under different compaction pressures (250MPa, 400MPa and 600MPa), analyzing the influence of compressibility in hardness of the compressed. The samples were sintered at a temperature of 500 ° C in an oven using resistive atmosphere of hydrogen for 45 minutes. After the procedures of the powder metallurgy technique were analyzed of the optical microscopy, x-ray diffraction, MEV and Rockwell hardness, which was found to be evaluated as not diffusibility between the steel and aluminum. (author)
Improvement in the reliability of shells for light water reactors by manufacture from hollow ingots
International Nuclear Information System (INIS)
Bocquet, P.; Blondeau, R.; Poitrault, I.; Badeau, J.P.; Dumont, R.
1991-01-01
The problems associated to the segregation located at the inner surface and subsurface of heavy shell forgings used in nuclear light water reactors are presented. The effect of A segregation on cold or reheat cracking HAZ has conducted fabricators to use severe welding procedures with high preheat temperature and refining HAZ grain size sequences. For shells and rings, the hollow ingot as developed by CLI, with a good control of the location of the center line of segregation, is an excellent answer to these problems. The use of core shell forgings issued from this type of hollow ingots, free of segregation at the inner surface and subsurface area, contributes, by reducing the irradiation embrittlement effect, to increase the safety factor relatively to the risk of failure of the reactor. (orig.)
Summarizing of new techniques in uranium mining and metallurgy
International Nuclear Information System (INIS)
Wang Delin; Zhang Fei; Su Yanru; Zeng Yijun; Meng Jin
2010-01-01
According to character of national resources and uranium mining and metallurgical science and technology members research achievements, new techniques in ten scientific research area of in-situ leaching, heap leaching, multi-metal comprehensive recovery, bio-metallurgy etc. for 10 years is introduced in this paper. The level of innovation ability is shown by technical index, resources recovery and reduction capital cost etc. datum. The application bound of natural uranium resource is enlarged and production ability of national uranium is increased. It is put forward renovation and development ideas for uranium mining and metallurgy. (authors)
Production of uranium in Navoi Mining and Metallurgy Combinat, Uzbekistan
International Nuclear Information System (INIS)
Kuchersky, N.; Tolstov, E.A.; Mazurkevich, A.P.; Inozemzev, S.B.
2001-01-01
Full text: Under the conditions of constantly increasing level of development of the nuclear power, it is inevitable that the uranium stockpiles accumulated to 1985 will soon be depleted. This consideration underlies the development concept of uranium production in the Navoi Mining and Metallurgy Combinat, Uzbekistan. Because this product has become a source of hard currency revenues for the Republic, there will be a significant increase in the processed ore and output of uranium oxide within the next few years. Uranium production in the Navoi Mining and Metallurgy Combinat represents a full-cycle operations ranging from geological survey through hydrometallurgical processing resulting in the output of uranium concentrate in the form of uranium protoxide-oxide (U 3 O 8 ). The NMMC uranium operations include the Hydrometallurgical Plant and three facilities accomplishing ISL mining facilities. A successful start on the development of the Uchkuduk deposit by ISL method in the 1960s gave rise to scientific and production approach for development of other uranium deposits of the infiltration bedded (sandstone) type. Uranium recovery by ISL has become a separate mining branch within the 30-year period of its history and the contribution of this branch in uranium production has steadily grown. Since 1995 all uranium produced by Navoi Mining and Metallurgy Combinat is attributed to ISL. During this evolution period of the ISL method, a whole range of systematic scientific research and practical works were carried out covering improvement of process flowsheets, equipment, operational methods and techniques for particular mining conditions at those specific sites. In co-operation with design and scientific research institutions, a significant number of scientific researches, test works, design and engineering projects were achieved in order to create optimal conditions for ISL mining and further processing of pregnant solutions by sorption as well as to appropriately equip
Metallurgy department publications and lectures 1987
International Nuclear Information System (INIS)
Schroeder Pedersen, A.; Bilde-Soerensen, J.B.
1988-04-01
A presentation (including abstract) of scientific and technical publications and lectures by the staff of the Metallurgy Department during 1987 is given. The list comprises journal papers, conference papers, reports, lectures and poster presentations in the following categories: Publications, Lectures and Poster Presentations. (author)
Coke briquets for metallurgy based on a thermoreactive binder
Energy Technology Data Exchange (ETDEWEB)
Tjutjunnikov, J.B.; Florinskij, V.N.; Orechov, V.N.; Nefedov, P.J.; Sasmurin, V.I.; Kirenskij, V.N. (Khar' kovskii Inzhenerno-Ehkonomicheskii Institut (USSR))
1992-02-01
Describes a process for production of briquets for metallurgy with binder and coke fines or anthracite. The suggested binder is waste phenol resin from the production of phenol (cumene method). Resin properties are given. Possible reaction mechanisms yielding solidified matter are discussed. The production process requires 10-15% binder and applies charge heating up to 200 C over 30 min. Catalytic amounts of sodium hydroxide or sulfuric acid were also employed. The production process is shown in a flowsheet. Properties of produced briquets are tabulated. The briquets were used in a 8 t/h cupola furnace and their performance was compared to that of KL-1 coke. Performance was found to be comparable; the cost of coke briquets was less than that of heating coke. 2 refs.
Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy
Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.
2018-06-01
The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.
A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)
2017-04-01
AFRL-RX-WP-JA-2017-0225 A COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) S.L...COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...behavior at hot-working temperatures and strain rates of the powder- metallurgy superalloy LSHR was determined under nominally-isothermal and transient
Nuclear science and metallurgy. Advances and interactions
Energy Technology Data Exchange (ETDEWEB)
Grison, E [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1977-01-01
The history of the production of atomic power by fission since 1953 is reviewed: metallurgy of uranium; the new metals zirconium and beryllium; steels and nuclear structure; nuclear reactor vessels; water corrosion; effects of radiations.
Metallurgy of high-silicon steel parts produced using Selective Laser Melting
International Nuclear Information System (INIS)
Garibaldi, Michele; Ashcroft, Ian; Simonelli, Marco; Hague, Richard
2016-01-01
The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to its poor workability. The effect of SLM-processing on the metallurgy of the alloy is investigated in this work using microscopy, X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). XRD analysis suggests that the SLM high-silicon steel is a single ferritic phase (solid solution), with no sign of phase ordering. This is expected to have beneficial effects on the material properties, since ordering has been shown to make silicon steels more brittle and electrically conductive. For near-fully dense samples, columnar grains with a high aspect ratio and oriented along the build direction are found. Most importantly, a <001> fibre-texture along the build direction can be changed into a cube-texture when the qualitative shape of the melt-pool is altered (from shallow to deep) by increasing the energy input of the scanning laser. This feature could potentially open the path to the manufacture of three-dimensional grain-oriented high-silicon steels for electromechanical applications.
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-03-01
Research and development was conducted of a technology for manufacturing an ultrathin polycrystalline silicon solar cell capable of efficiency enhancement and cost reduction earlier than the types of polycrystalline solar cells now available on the market. In this fiscal year, a silicon melt/solidification experimenting apparatus was built for manufacturing high-quality silicon ingots. Using an apparatus with its performance similar to the newly built one, a preliminary experiment was conducted involving high-purity silicon ingot manufacturing. In the experiment, boron was added to 75 kg of silicon for semiconductor devices so that its resistivity may be 0.5 ohm-cm. The silicon was melted in a quartz mold, and then subjected to unidirectional coagulation at 0.13 mm/min that started at the bottom to proceed upward. The result was a silicon ingot 44 cm times 44 cm times 17 cm (height). The ingot thus obtained exhibited 0.4-0.8 ohm-cm in resistivity distribution. Solar cells produced from the ingot showed a conversion rate of 16.9%. (NEDO)
Kubin, M.; Ofner, B.; Holzgruber, H.; Schneider, R.; Enzenhofer, D.; Filzwieser, A.; Konetschnik, S.
2016-07-01
One of the main benefits of the ESR process is to obtain an ingot surface which is smooth and allows a subsequent forging operation without any surface dressing. The main influencing factor on surface quality is the precise controlling of the process such as melt rate and electrode immersion depth. However, the relatively strong cooling effect of water as a cooling medium can result in the solidification of the meniscus of the liquid steel on the boundary liquid steel and slag which is most likely the origin of surface defects. The usage of different cooling media like ionic liquids, a salt solution which can be heated up to 250°C operating temperature might diminish the meniscus solidification phenomenon. This paper shows the first results of the usage of an ionic liquid as a mould cooling medium. In doing so, 210mm diameter ESR ingots were produced with the laboratory scale ESR furnace at the university of applied science using an ionic liquid cooling device developed by the company METTOP. For each trial melt different inlet and outlet temperatures of the ionic liquid were chosen and the impact on the surface appearance and internal quality were analyzed. Furthermore the influence on the energy balance is also briefly highlighted. Ultimately, an effect of the usage of ionic liquids as a cooling medium could be determined and these results will be described in detail within the scope of this paper.
Nuclear science and metallurgy. Advances and interactions
International Nuclear Information System (INIS)
Grison, Emmanuel
1977-01-01
The history of the production of atomic power by fission since 1953 is reviewed: metallurgy of uranium; the new metals zirconium and beryllium; steels and nuclear structure; nuclear reactor vessels; water corrosion; effects of radiations [fr
International Nuclear Information System (INIS)
Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S.
2009-01-01
This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)
2016-12-01
AFRL-RX-WP-JA-2016-0333 PRECIPITATION IN POWDER- METALLURGY , NICKEL-BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF...PRECIPITATION IN POWDER- METALLURGY , NICKEL- BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF ENGINEERING (POSTPRINT) 5a...and kinetic parameters required for the modeling of γ′ precipitation in powder- metallurgy (PM), nickel-base superalloys are summarized. These
Directory of Open Access Journals (Sweden)
Regulski K.
2017-06-01
Full Text Available The process of knowledge formalization is an essential part of decision support systems development. Creating a technological knowledge base in the field of metallurgy encountered problems in acquisition and codifying reusable computer artifacts based on text documents. The aim of the work was to adapt the algorithms for classification of documents and to develop a method of semantic integration of a created repository. Author used artificial intelligence tools: latent semantic indexing, rough sets, association rules learning and ontologies as a tool for integration. The developed methodology allowed for the creation of semantic knowledge base on the basis of documents in natural language in the field of metallurgy.
International Nuclear Information System (INIS)
Jung, Y. J.; Kim, W. K.; Jung, J. H.
2014-01-01
The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.
Energy Technology Data Exchange (ETDEWEB)
Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)
2014-08-15
The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.
The metallurgy, science and engineering
International Nuclear Information System (INIS)
Pineau, A.; Quere, Y.
2011-01-01
Metallurgy, the science of metals and the technical discipline concerned with the production, shaping and assembling of metals, is one of the major assets of European economy. The French metallurgy industry - from producers (steel, light alloys, ...) to users (car, aviation, nuclear industries, ...) -- has achieved in many of its sectors a world-class level of excellence, based on high-quality research centres that are recognized both for their theoretical and experimental academic work. By contrast, public research is insufficiently concerned with engineering. In 2004, this industry employed 1 800 000 persons, 220 000 of which worked as engineers and managers in 45 000 companies, with a turnover of 420 billion euros. This state of grace is starting to decline. We are undergoing, in this sector as in others, a de-industrialization that affects upstream activities: courses in these disciplines, which have been previously outstanding, have partially disappeared; laboratories have shrunk; expertise has been dispersed; students are staying away from a discipline they consider 'unfruitful', like many other engineering sciences. Simultaneously, further up in this sector, decision centres have moved away from production centres and away from our country. France still maintains a few important R and D centres within international groups in spite of France's decreasing weight in world production. However, these groups see the future of R and D as being centred in the emerging countries (China, India...). The main users (transport, energy, ...) are losing their experts as are the technical centres on which rely a large network of small and medium businesses. The consequences are alarming in view of the already noticeable loss of technical control. This trend can and must be reversed. Because of its presence in many industrial sectors and its excellence, metallurgy - including both research and industry - is an essential activity in which France should remain a major player
International Nuclear Information System (INIS)
2010-01-01
Topics covered in this symposium are: steels, functional materials posters, computational materials science, casting and solidification, polymer matrix composites, posters electronic materials, environmental degradation processing of non-metallic materials posters, energy materials, materials forming technology, biomaterials, magnetic materials, mechanical behaviour of materials posters, phase transformations and physical metallurgy, surface engineering, nanostructured materials, ceramics, processing of metals, materials joining technology and optical materials. Papers relevant to INIS are indexed separately
International Nuclear Information System (INIS)
Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.
2009-01-01
Full text: The powder metallurgy process consists to produce metallic or ceramic components through pressure in a powder mass. These components will be submitted to a sintering temperature in order to consolidate them and then improve their mechanical proprieties. The industry is responsible for the swarf generation from different manufacture process. This paper has main goal the reutilization of aluminum and steel swarf using the powder metallurgy as technique. The methodology used in this work consists to compact Al 6060 plus steel SAE 1045 as reinforce material at 250MPa, 400MPa and 600MPa. The composition about these compacted will be 30%, 40%, 50% of steel into aluminum matrix. In this way will be analyze the hardness as function of the compressibility and quantity of steel. The samples will be processed at 500°C during 45 minutes using a resistive furnace in a hydrogen atmosphere. Micrographs of the sintered samples will be obtained by using a Scanning Electron Microscope and Optic Microscope. X-rays diffraction will be also used to characterize the phases found to due diffusivity between the steel and aluminum. (author)
Physical metallurgy of titanium alloys
International Nuclear Information System (INIS)
Collings, E.W.
1988-01-01
Researches in electric, magnetic, thermophysical properties of titanium alloys in the wide range of temperatures (from helium upto elevated one), as well as stability of phases in alloys of different types are generalized. Fundamental description of physical properties of binary model alloys is given. Acoustic emission, shape memory and Bauschinger effects, pseudoelasticity, aging and other aspects of physical metallurgy of titanium alloys are considered
Microstructural and electrical investigation of Cu-Ni-Cr alloys obtained by powder metallurgy method
International Nuclear Information System (INIS)
Carrio, Juan A.G.; Carvalhal, M.A.; Ayabe, L.M.; Monteiro, W.A.
2009-01-01
The aim of this work, using the powder metallurgy process, is to synthesize metallic alloys with high mechanical strength and high electric conductivity, after melting optimizing and thermal treatments. The Cu-Ni-Cr (wt%) alloys are characterized in their mechanical and electrical properties as well as the obtained microstructure. Through the process of powder metallurgy, contacts and structural parts can be obtained. The alloys elements are added to copper with the intention to improve their strength, ductility and thermal stability, without causing considerable damages in their form, electrical and thermal conductivity, and corrosion resistance. The metallic powders were mixed for a suitable time and then they were pressed in a cold uniaxial pressing (1000 kPa). Afterwards, the specimens were sintered in temperatures varying from 700 up to 800 deg C under vacuum. At last, the samples were homogenized at 550 deg C under vacuum, for special times. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. The alloys were characterized by optical microscopy, X-rays powder diffraction, electrical conductivity and Vickers hardness. (author)
Uranium mining and metallurgy library information service under the network environment
International Nuclear Information System (INIS)
Tang Lilei
2012-01-01
This paper analyzes the effect of the network environment on the uranium mining and metallurgy of the information service. Introduces some measures such as strengthening professional characteristic literature resources construction, changing the service mode, building up information navigation, deepening service, meet the individual needs of users, raising librarian's quality, promoting the co-construction and sharing of library information resources, and puts forward the development idea of uranium mining and metallurgy library information service under the network environment. (author)
International Nuclear Information System (INIS)
Gao Renxi
2012-01-01
Beijing Research Institute of Chemical Engineering and Metallurgy (BRICEM) is a multi disciplinary comprehensive research institute engaged in uranium mining, engineering design and related material researches. After 53 years of researches and development, BRICEM has accumulated a plenty of valuable data and resources. By analyzing the actual conditions of BRICEM's technological database, this thesis aims to propose the idea of building a characteristic database for uranium mining and metallurgy. It gives an in-depth analysis on content design, development status and problems of database development, in order to come up with solutions to these problems, as well as suggestions on the future development plans of the characteristic database. (author)
Energy Technology Data Exchange (ETDEWEB)
Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov
2007-10-11
Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.
Fast neutron activation analysis in metallurgy
International Nuclear Information System (INIS)
Sterlinski, S.
1981-01-01
Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys
Neutrons in the field of metallurgy
International Nuclear Information System (INIS)
Novion, C. de
1989-01-01
Beams of thermal neutrons are now widely used for the study of material structure. Following a summary of the characteristics of the neutron-material interaction, and an outlook on the major uses of neutrons in metallurgy, we present some examples of application. The comparative advantages and drawbacks of neutrons and X-rays are discussed. 14 refs [fr
Obtention of uranium-molybdenum alloy ingots microstructure and phase characterization
Energy Technology Data Exchange (ETDEWEB)
Pedrosa, Tercio A.; Braga, Daniel M.; Paula, Joao Bosco de; Brina, Jose Giovanni M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: bragadm@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2011-07-01
The replacement of high enriched uranium (U-{sup 235} > 85 wt%) by low enriched uranium (U-{sup 235} < 20 wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Several uranium alloys that fill this requirement has been investigated since then. Among these alloys, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloys is being performed at the Nuclear Technology Development Centre (CDTN) and also at the Institute of Energetic and Nuclear Research - IPEN. U-{sup 10}Mo ingots were melted in an induction furnace with protective argon atmosphere. The microstructure of the ingots were characterized through optical and scanning electronic microscopy in the as cast and heat treated conditions. Energy Dispersive Spectrometry and X-Ray Diffraction were used as characterization techniques for elemental analysis and phases determination. It was confirmed the presence of metastable gamma-phase in the as cast condition, surrounded by hypereutectoid alpha-phase (uranium-rich phase), as well as a pearlite-like constituent, composed by alternated lamellas of U{sub 2}Mo compound and alpha-phase, in the heat treated condition. (author)
Energy Technology Data Exchange (ETDEWEB)
Karanjai, Malobika [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India)]. E-mail: malobika@arci.res.in; Sundaresan, Ranganathan [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India); Rao, Gummididala Venkata Narasimha [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India); Mohan, Tallapragada Raja Rama [Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Powai, Mumbai 400076, Maharashtra (India); Kashyap, Bhagwati Prasad [Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Powai, Mumbai 400076, Maharashtra (India)
2007-02-25
Composites of titanium and calcium-phosphorus phases were developed by powder metallurgy processing and evaluated for bioactivity. Titanium hydride powder and precursors of calcium and phosphorus in the form of calcium carbonate and di-ammonium hydrogen orthophosphate were mixed in different proportions, compacted and calcined in different atmospheres. The calcined compacts were subsequently crushed, recompacted and sintered in vacuum. In situ formation of bioactive phases like hydroxylapatite, tricalcium phosphate and calcium titanate during the calcination and sintering steps was studied using X-ray diffraction. The effect of calcination atmosphere on density, interconnected porosity, phase composition and modulus of rupture of sintered composites was examined. The sintered composites were immersed in simulated body fluid for 7 days to observe their in vitro behaviour with XRD and FTIR spectroscopic identification of deposits. Composites with 10 wt% precursors sintered from vacuum calcined powder gave the best results in terms of bioactive phases, density and strength.
CURRENT STATE AND TENDENCIES OF DEVELOPMENT OF FERROUS METALLURGY IN THE EAEU COUNTRIES
Directory of Open Access Journals (Sweden)
N. P. Dragun
2016-01-01
Full Text Available The analysis of modern status and tendencies of development of ferrous metallurgy in the countries of the EAEU is described in the article. On the basis of the conducted analysis are revealed the identified systemic problems of metallurgy and the conclusions on possible ways of their solution using the potential of integration are given.
Application of powder metallurgy in production of nuclear fuels for research and power reactors
International Nuclear Information System (INIS)
Fukuda, Kosaku
2000-01-01
Powder metallurgy has been applied in many of the processes of nuclear fuel fabrication, which has contributed, to a great progress of the nuclear technology to date. Evolution of nuclear fuels still continues to meet various emerging demands in terms of enhanced safety, economical effectiveness, non-proliferation and environmental mitigation. This paper reviews recent progress of nuclear fuels of research and power reactors, in particular, focusing on the powder metallurgy application. First, the review is made on plate type fuels for research reactors, inter alia, silicide fuel which is prevailing worldwide from the viewpoint of non-proliferation. The relation between fabrication and irradiation behavior is also discussed. Next, oxide fuels including MOX are reviewed. Recent interests of UO 2 are directed toward large grain pellets and burnable absorber pellets, both of which arise from requirement of extended burnup. Finally, the MOX fuel for thermal reactors is reviewed. (author)
Energy Technology Data Exchange (ETDEWEB)
Zabihi, Majed, E-mail: m.zabihi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza, E-mail: toroghi@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shafyei, Ali, E-mail: shafyei@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2013-01-10
In this study, aluminum matrix composites (AMC) with 2, 4, 6 and 10 wt% alumina were produced using powder metallurgy (PM), mechanical milling (MM) and vacuum hot pressing (VHP) techniques; then, this was followed by the hot-rolling process. During hot rolling, AMCs with 6 and 10 wt% Al{sub 2}O{sub 3} were fractured whereas strip composites with 2 and 4 wt% Al{sub 2}O{sub 3} were produced successfully. Microstructure and mechanical properties of the samples were investigated by optical and scanning electron microscopes and tensile and hardness tests, respectively. Microscopic evaluations of the hot-rolled composites showed a uniform distribution of alumina particles in the aluminum matrix. It was found that with increasing alumina content in the matrix, tensile strength (TS) and hardness increased and the percentage of elongation also decreased. Scanning electron microscope (SEM) was used to investigate aluminum/alumina interfaces and fracture surfaces of the hot rolled specimens after tensile test. SEM observations demonstrated that the failure mode in the hot-rolled Al-2 wt% Al{sub 2}O{sub 3} composite strips is a typical ductile fracture, while the failure mode was shear ductile fracture with more flat surfaces in Al-4 wt% Al{sub 2}O{sub 3} strips.
Measurement of the ratio of liquid to solid phases in a continuous ingot
International Nuclear Information System (INIS)
Deryabina, G.N.; Ripp, A.G.
1980-01-01
A radiometric method of measuring the ratio of liquid and solid phases (crust thickness) in a continuous ingot for automation of the continuous steel casting process, has been proposed. The essence of the method is, that radiation flux, bearing information on the object tested, is transformed in a succession of electric pulses, which is processed afterwords for obtaining necessary information. In this case either the flux of non-scattered radiation, passed through the object, or the flux of single-scattered radiation reflected from the object is registered. Block-diagram and specifications of a radiometric device with the Co source of 50 gxequiv. Ra activity developed for this purpose are presented. The technique for calibration ob the device and the results of its tests, are described. It is shown, that introduction of such devices for the control crust thickness at the installations of continuous steel casting of metallurgical works would permit to exercise casting in the optimum regime, to exclude metal leakage, to increase its quality and yield of the useful metal
Soviet Research in Production and Physical Metallurgy of Pure Metals
1964-01-10
6-- Copper Crucible . Near the first and the last parts of the ingot the grains are somewhat finer. The boundaries between them are difficult to...that were conducted on zone recrystallization of niobium by the arc method in a copper crucible showed that effective refinement of additions (carbon
Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720
Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.
2000-01-01
The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.
International Nuclear Information System (INIS)
Stephens, J.J.; Sorenson, K.B.; McConnell, P.
1991-01-01
This paper has documented the increase in strain to fracture and yield strength obtained with Grade A versions of types 304B5 and 304B7 relative to their respective Grade B, counterparts. The apparent microstructural reason for these property increases is the finer dispersion of boride in the Grade A material, obtained by means of a Powder Metallurgy process, relative to the conventional Grade B material which is produced using an Ingot Metallurgy process. The area size distribution of borides can be well approximated using a log-normal distribution, with the largest boride particles in the Grade B material having areas in the range of 450--600 μm 2 . By comparison, the largest boride particles in the Grade A material have areas nearly an order of magnitude smaller than the largest particles in their Grade B counterparts. A Section III ASME B ampersand PV code case inquiry has been initiated for non-welded versions of 304B4A, 3045A and 3046A ,material
2014-12-01
AFRL-RX-WP-JA-2015-0160 THE EFFECT OF FORGING VARIABLES ON THE SUPERSOLVUS HEAT-TREATMENT RESPONSE OF POWDER - METALLURGY NICKEL-BASE SUPERALLOYS... POWDER - METALLURGY NICKEL- BASE SUPERALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR...treatment (SSHT) of two powder - metallurgy , gamma–gamma prime superalloys, IN-100 and LSHR, was established. For this purpose, isothermal, hot
Rappaport, Aviva I; Whitfield, Kyly C; Chapman, Gwen E; Yada, Rickey Y; Kheang, Khin Meng; Louise, Jennie; Summerlee, Alastair J; Armstrong, Gavin R; Green, Timothy J
2017-08-01
Background: Anemia affects 45% of women of childbearing age in Cambodia. Iron supplementation is recommended in populations in which anemia prevalence is high. However, there are issues of cost, distribution, and adherence. A potential alternative is a reusable fish-shaped iron ingot, which, when added to the cooking pot, leaches iron into the fluid in which it is prepared. Objective: We sought to determine whether there was a difference in hemoglobin concentrations in rural Cambodian anemic women (aged 18-49 y) who cooked with the iron ingot or consumed a daily iron supplement compared with a control after 1 y. Design: In Preah Vihear, 340 women with mild or moderate anemia were randomly assigned to 1 ) an iron-ingot group, 2 ) an iron-supplement (18 mg/d) group, or 3 ) a nonplacebo control group. A venous blood sample was taken at baseline and at 6 and 12 mo. Blood was analyzed for hemoglobin, serum ferritin, and serum transferrin receptor. Hemoglobin electrophoresis was used to detect structural hemoglobin variants. Results: Anemia prevalence was 44% with the use of a portable hemoglobinometer during screening. At baseline, prevalence of iron deficiency was 9% on the basis of a low serum ferritin concentration. There was no significant difference in mean hemoglobin concentrations between the iron-ingot group (115 g/L; 95% CI: 113, 118 g/L; P = 0.850) or iron-supplement group (115 g/L; 95% CI: 113, 117 g/L; P = 0.998) compared with the control group (115 g/L; 95% CI: 113, 117 g/L) at 12 mo. Serum ferritin was significantly higher in the iron-supplement group (73 μg/L; 95% CI: 64, 82 μg/L; P = 0.002) than in the control group at 6 mo; however, this significance was not maintained at 12 mo (73 μg/L; 95% CI: 58, 91 μg/L; P = 0.176). Conclusions: Neither the iron ingot nor iron supplements increased hemoglobin concentrations in this population at 6 or 12 mo. We do not recommend the use of the fish-shaped iron ingot in Cambodia or in countries where the prevalence
Fabrication of metal matrix composites by powder metallurgy: A review
Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.
2018-04-01
Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.
Lu, Yi; Zhang, Xiao-Ling; Guo, Zhi-Shun; Jian, Chuan; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin
2014-01-01
Five secondary aluminum metallurgy enterprises in the southwest area of China were measured for emissions of PCDD/Fs. The results indicated that the emission levels of PCDD/Fs (as TEQ) were 0.015-0.16 ng x m(-3), and the average was 0.093 ng x m(-3) from secondary aluminum metallurgy enterprises. Emission factors of PCDD/Fs (as TEQ) from the five secondary aluminum metallurgy enterprises varied between 0.041 and 4.68 microg x t(-1) aluminum, and the average was 2.01 microg x t(-1) aluminum; among them, PCDD/Fs emission factors from the crucible smelting furnace was the highest. Congener distribution of PCDD/F in stack gas from the five secondary aluminum metallurgies was very different from each other. Moreover, the R(PCDF/PCDD) was the lowest in the enterprise which was installed only with bag filters; the R(PCDF/PCDD) were 3.8-12.6 (the average, 7.7) in the others which were installed with water scrubbers. The results above indicated that the mechanism of PCDD/Fs formation was related to the types of exhaust gas treatment device. The results of this study can provide technical support for the formulation of PCDD/Fs emission standards and the best available techniques in the secondary aluminum metallurgy industry.
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
Research and development has been made on improving quality of ingots for substrates, manufacturing high-quality thin type substrates, and making high-efficiency cells. This paper summarizes the achievements in fiscal 1999. In developing the high-quality ingot manufacturing technology, discussions were given on a method for assessing impurities and crystal defects by using the total reflection scattering type infrared tomography, and on the optimal solidifying and cooling conditions during the ingot manufacturing by using simulation calculation for solidification. As a result of analyses and discussions, such findings were found effective that the ingot should be solidified through making the solid-liquid interface shape flat, and the temperature falling rate in an ingot should be maintained constant. In developing the high-efficiency cell making technology, discussions were given on the optimal construction based on a simulation that assumes the light sealing structure using the RIE method, and on the optimal construction of polycrystalline silicon solar cells by using a device simulator (PCID). The important factors in achieving a conversion efficiency of 20% are the light sealing structure, surface passivation, and substrate thickness. (NEDO)
Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago
Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Rehren, Th.; Schwikowski, M.
2017-01-01
The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.
Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago.
Eichler, A; Gramlich, G; Kellerhals, T; Tobler, L; Rehren, Th; Schwikowski, M
2017-01-31
The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.
Czech Academy of Sciences Publication Activity Database
Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír
2017-01-01
Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering
The Mechanical Metallurgy of Armour Steels
2016-10-01
plate hardness in Figure 2(a) are a result of increased resistance to plastic flow in a ductile hole formation failure mechanism. Beyond a certain...their mechanical metallurgy, and ballistic performance is explained, where such performance is primarily determined by material strength, hardness and...high strain rate behaviour. Other important topics such as toughness; the adiabatic shear phenomenon; structural cracking; and dual hardness and
Low-Cobalt Powder-Metallurgy Superalloy
Harf, F. H.
1986-01-01
Highly-stressed jet-engine parts made with less cobalt. Udimet 700* (or equivalent) is common nickel-based superalloy used in hot sections of jet engines for many years. This alloy, while normally used in wrought condition, also gas-atomized into prealloyed powder-metallurgy (PM) product. Product can be consolidated by hot isostatically pressing (HIPPM condition) and formed into parts such as turbine disk. Such jet-engine disks "see" both high stresses and temperatures to 1,400 degrees F (760 degrees C).
NSF: A "Populist" Pattern in Metallurgy, Materials Research?
Shapley, Deborah
1975-01-01
Describes the testimony of a University of Virginia professor of applied science, who charged that the National Science Foundation grants disproportionately small funds to the best university departments in the field of metallurgy and materials, while preferentially funding middle-ranked departments. (MLH)
Energy Technology Data Exchange (ETDEWEB)
Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Zhou, Cong; Liang, Houquan [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
2016-01-15
Powder metallurgy (P/M) has been introduced as an innovative process to manufacture high performance components with fine, homogenous and segregation-free microstructure. Unfortunately, previous particle boundary (PPB) precipitated during the powder metallurgy process. Since undesirable PPB is detrimental to mechanical properties, hot extrusion or/and isothermal forging are needed. In present research, isothermal compression tests were conducted on P/M FGH4096 superalloys with typical PPBs. Abnormal flow behavior during high-speed deformation has been quantitatively investigated. Caused by the competition mechanism between work-hardening and dynamic-softening, abnormal flow behaves typical four stages (viz., work-hardening, stable, softening and steady). Microstructure observation for hardening or/and softening mechanism has been investigated. Meanwhile, necklace microstructure was observed by scanning electron microscope, and the grain fraction analysis was performed by using electron backscatter diffraction. Transmission electron microscopy was used for characterizing the boundary structure. Necklace microstructural mechanism for processing P/M superalloys has been developed, and the dynamic recrystallization model has also been conducted. Bulge–corrugation model is the primary nucleation mechanism for P/M superalloys with PPBs. When PPB is entirely covered with new grains, necklace microstructure has formed. Bulge–corrugation mechanism can repeatedly take place in the following necklace DRX.
2013-02-05
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and...
International Nuclear Information System (INIS)
Wu Yongyong; Zhong Pingru; Wang Gaoshan
2014-01-01
The laboratory study for decreasing the concentration of Ra, U, Mn and F ions in acid wastewater of uranium mining and metallurgy was investigated based on lime neutralization-precipitation technology. The technological flowsheet was composed of removing radium by barium chloride, manganese by air aeration and fluorin by aluminum sulfate, and the quality of the disposed effluent could be accorded with the discharge criteria defined by the state, as the neutralization conditions of pH just being 8.5. Furthermore, the lower precipitation pH value can effectively decrease sediment volume, and reduce the subsequent processing pressures. The technological methods were viable and universally applicable for uranium mining and metallurgy wastewater purification. (authors)
Application of fluorides as reagents in exothermal reducing processes
International Nuclear Information System (INIS)
Solov'ev, A.I.; Maksimov, Yu.M.; Dedov, N.V.; Malyutina, V.M.; Avramchik, A.N.
2002-01-01
Thermodynamic calculations were made and the process of calcium-thermic reduction of titanium and zirconium tetrafluorides and their mixtures was experimentally studied. Compound TiF 4 and its mixture with ZrF 4 in amount no more than 34.3 % are reduced producing a well-formed ingot. When ZrF 4 content is exceeded in the mixture to be reduced as well as during reduction of pure ZrF 4 and the mixture of unseparated rare earth metal fluorides, metal and alloys are produced as embedded particles in solidified slag. Additional heat should be brought to produce qualitative ingot during the reducing process. Qualitative ingots of metal in weight up to 10 kg were produced during calcium-thermic reduction of zirconium and rare earth fluorides with application of high-frequency induction heating [ru
Schmid, F.
1981-01-01
The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.
21. Colloquium on metallurgy. Amorphous alloys and materials
International Nuclear Information System (INIS)
1979-01-01
Twenty-two papers were presented at the 21st colloquium on metallurgy of amorphous alloys and materials. They deal with the applications, the various types, the preparation methods, the structure, the magnetic and thermodynamic properties and the structure defects of the amorphous materials [fr
International Nuclear Information System (INIS)
Xiao Zhu; Li Zhou; Fang Mei; Xiong Shiyun; Sheng Xiaofei; Zhou Mengqi
2008-01-01
The fabrication conditions of Cu-Al-Ni-Mn alloy powder by mechanical alloying and powder metallurgy have been systematically studied. The mechanically alloyed powder (MAed powder) was fabricated at a speed between 100 rpm and 300 rpm for various milling times with and without process control agent (PCA). With an increasing of milling time, the size of crystallite grain decreases. Only the Cu diffraction pattern appear as the rotation speed is up to 300 rpm for 25 h. The elemental powders with PCA agglomerate slightly, but the degree of alloying is lower than that without PCA. The shape memory recovery of the quenched sample hot-extruded at extrusion rate of 50:1 is measured to be 100% recovered in 250 deg. C oil bath for 40 s after deformed to 4.0%. After aging at 120 deg. C for 10 days, the shape memory recovery of the alloy remains 98%
Welding of a powder metallurgy uranium alloy
International Nuclear Information System (INIS)
Holbert, R.K.; Doughty, M.W.; Alexander-Morrison, G.M.
1989-01-01
The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity. Varying the EB welding parameters did not eliminate the porosity. Reducing the oxygen and nitrogen content in this P/M uranium material did minimize the weld porosity, but this step made the techniques of producing the material more difficult. Therefore, joining wrought and P/M U-6Nb rods with the inertia welding technique is considered. Since no gases will be evolved with the solid-state welding process and the weld area will be compacted, porosity should not be a problem in the inertia welding of uranium alloys. The welds that are evaluated are wrought-to-wrought, wrought-to-P/M, and P/M-to-P/M U-6Nb samples
International Nuclear Information System (INIS)
Wu Sanmao
1999-01-01
The production costs in uranium ming and metallurgy have been analyzed quantitatively term by term according to present production situation for The Uranium Mining and Metallurgy Corp, which is part of Fuzhou Uranium Mine. The principal factors influencing on the production costs and the main means reducing the production costs have been found
Proceedings of the III International Congress of Mining and Metallurgy MINEMETAL 2016
International Nuclear Information System (INIS)
2016-10-01
The III International Congress of Mining and Metallurgy was inaugurated at the Plaza América Convention Center in Varadero. Professionals from 16 countries come together to promote scientific exchange for sustainable mining and to make concrete future investments to boost the development of this important sector in Cuba. Among the topics that will occupy the agenda of these days of congress stand out the development of geology, new technological processes, advances in the application of zeolite, sustainable development and care of the environment.
Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks
Energy Technology Data Exchange (ETDEWEB)
Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr., James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parten, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-07-01
Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.
International Nuclear Information System (INIS)
Josa, J.M.; Merino, J.L.
1985-01-01
The Nuclear Fusion National Program depends on lithium supplies. Extractive metallurgy development is subordinate to the localization and evaluation of ore resources. Nowadays lithium raw materials usable with present technology consist of pegmatite ore and brine. The Instituto Geologico y Minero Espanol (IGME) found lepidolite, ambligonite and spodrimene in pegmatite ores in different areas of Spain. However, an evaluation of resources has not been made. Different Spanish surface and underground brines are to be sampled and analyzed. If none of these contain significant levels of lithium, the Junta de Energia Nuclear (JEN) will try an agreement with IGME for ENUSA (Empresa Nacional del Uranio, S.A.) to explore pegmatite-ore bodies from different locations. Different work stages, laboratory tests, pilots plants tests and commercial plant, are foreseen, if the deposits are found. (author)
Scandium: its occurrence, chemistry, physics, metallurgy, biology, and technology
International Nuclear Information System (INIS)
Horovitz, C.T.
1975-01-01
This book describes the following aspects of scandium: discovery and history, occurrence in nature, geochemistry and mineralogy, chemical, physical and technological properties, fabrication and metallurgy, its biological significance and toxicology, and its uses. (Extensive references for each chapter)
Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z
2018-04-01
The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.
Development of Cu-Be bronzes through powder metallurgy
International Nuclear Information System (INIS)
Abbas, M.
2012-01-01
Copper and copper alloys are the major group of commercial alloy. One of the important copper bronzes is Copper beryllium. This is unique among all engineering alloys. Copper beryllium alloy possesses the highest strength in all the copper base alloys. Development of copper beryllium alloy with powder metallurgy is challenging problem due to toxicity of beryllium dust. Purpose of this project to find out parameters by which copper beryllium with all unique properties should obtained. For this purpose efforts are put on development of alternative to copper beryllium system like copper-tin and copper-aluminum by powder metallurgy route. Different time of milling with uniaxial pressure of about 200 MPa and different sintering temperature according to phase diagram of alloy, with different soaking time is tried. Problems may occur like decrease in density after sintering, breaking of samples by Rockwell A, B and C indenters arid by hammering. Cold iso-static pressing at 300 MPa and sintering at above 900 degree C is used to develop copper beryllium alloy. As quenched samples are heat treated at 260 degree C, 315 degree C and 370 degree C with different soaking time of 30, 90 and 180 minutes to find out optimum time and temperature parameters. . It is observed that at aging at 260 degree C for 180 minutes, aging at 315 degree C for 180 minutes and aging at 370 degree C for 30 minutes produce optimum result. By observing these pellets by SEM, precipitates appeared in peak-aged alloy and bigger precipitates in over-aged alloy. Copper beryllium alloy developed through powder metallurgy has better prospects than other copper bronzes. (author)
Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates.
Sha, Junwei; Gao, Caitian; Lee, Seoung-Ki; Li, Yilun; Zhao, Naiqin; Tour, James M
2016-01-26
A simple and scalable method which combines traditional powder metallurgy and chemical vapor deposition is developed for the synthesis of mesoporous free-standing 3D graphene foams. The powder metallurgy templates for 3D graphene foams (PMT-GFs) consist of particle-like carbon shells which are connected by multilayered graphene that shows high specific surface area (1080 m(2) g(-1)), good crystallization, good electrical conductivity (13.8 S cm(-1)), and a mechanically robust structure. The PMT-GFs did not break under direct flushing with DI water, and they were able to recover after being compressed. These properties indicate promising applications of PMT-GFs for fields requiring 3D carbon frameworks such as in energy-based electrodes and mechanical dampening.
Advanced powder metallurgy aluminum alloys via rapid solidification technology
Ray, R.
1984-01-01
Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.
The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.
Wang, S G; Mei, Y; Long, K; Zhang, Z D
2009-09-17
The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.
The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K
Directory of Open Access Journals (Sweden)
Mei Y
2009-01-01
Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.
International Nuclear Information System (INIS)
Li Xianjie; Hu Penghua; Duan Jianchen; Xue Jianxin
2014-01-01
The status of effluence and environmental monitoring capability of nine uranium mining and metallurgy corporations in operation in China was investigated and analyzed. The results show that there exist some problems in all corporations such as imperfect monitoring plan, ineligible analyst, aging equipment, insufficient analysis capacity, lack of good detection limit. In order to solve the problems, several steps have been taken by Department of Safety and Environment Protection and Department of Geology and Mining (CNNC) in three years, including establishing three-level monitoring sys- tem, equipping corresponding monitoring instrument, holding three training classes, enhancing the analyst capacity, publishing the model for effluence and environment monitoring capability of uranium mining and metallurgy and carrying out comparison on monitoring of U and Ra in water, which greatly improved effluence and environment monitoring capability of uranium mining and metallurgy. (authors)
[Hygienic evaluation of risk factors on powder metallurgy production].
2011-01-01
Complex hygienic, clinical, sociologic and epidemiologic studies revealed reliable relationship between work conditions and arterial hypertension, locomotory system disorders, monocytosis in powder metallurgy production workers. Findings are more probable cardiovascular and respiratory diseases, digestive tract diseases due to influence of lifestyle factors.
Stress analyses of pump gears produced by powder metallurgy
Energy Technology Data Exchange (ETDEWEB)
Cetinel, Hakan [Celal Bayar Univ., Mechanical Engineering Dept. (Turkey); Yilmaz, Burak
2013-06-01
In this study, trochoidal type (gerotor) hydraulic pump gears were produced by powder metallurgy (P/M) technique. Several gears with different mechanical properties have been obtained by changing process variables. The tooth contact stresses were calculated analytically under particular operation conditions of the hydraulic pump. The 3D models have been obtained from real gears by using Capability Maturity Model (CMM, 3D scanning) operation and SOLIDWORKS software. Stress analyses were conducted on these 3D models by using ANSYS WORKBENCH software. It was found that the density increases by the increase of sintering duration and mechanical properties were positively affected by the increase of density. Maximum deformation takes place in the region of the outer gear where failure generally occurs with the minimum cross-section area.
International Nuclear Information System (INIS)
Liu Ruilan; Li Jianhui; Wang Xiaoqing; Huang Mingquan
2014-01-01
According to the radiation safety management of uranium mining and metallurgy facilities in north area of China, features and radiation safety conditions of uranium mining and metallurgy facilities in north area of China were analyzed based on summarizing the inspection data for 2011-2013. So the main problems of radiation environment security on uranium mine were studied. The relevant management measures and recommendations were put forward, and the basis for environmental radiation safety management decision making of uranium mining and metallurgy facilities in future was provided. (authors)
International Nuclear Information System (INIS)
Tahirov, V.I.; Quliyev, A.F.; Hasanov, Z.Y.; Qahramanov, N.F.
2008-01-01
Ge-Si system is used to describe binary solid solution single crystal growth when the beginning of the ingot prepared by a new method is used as the beginning of the feeding alloy. At first the feeding ingot is prepared by Bridgman method, then it is exposed to the zone melting. Content distribution of the feeding alloy and the grown crystal is determined by solving the continuity equation. The crystals grown by this method can be used for construction of the vary-zone structures
A survivability model for ejection of green compacts in powder metallurgy technology
Directory of Open Access Journals (Sweden)
Payman Ahi
2012-01-01
Full Text Available Reliability and quality assurance have become major considerations in the design and manufacture of today’s parts and products. Survivability of green compact using powder metallurgy technology is considered as one of the major quality attributes in manufacturing systems today. During powder metallurgy (PM production, the compaction conditions and behavior of the metal powder dictate the stress and density distribution in the green compact prior to sintering. These parameters greatly influence the mechanical properties and overall strength of the final component. In order to improve these properties, higher compaction pressures are usually employed, which make unloading and ejection of green compacts more challenging, especially for the powder-compacted parts with relatively complicated shapes. This study looked at a mathematical survivability model concerning green compact characteristics in PM technology and the stress-strength failure model in reliability engineering. This model depicts the relationship between mechanical loads (stress during ejection, experimentally determined green strength and survivability of green compact. The resulting survivability is the probability that a green compact survives during and after ejection. This survivability model can be used as an efficient tool for selecting the appropriate parameters for the process planning stage in PM technology. A case study is presented here in order to demonstrate the application of the proposed survivability model.
The economic analysis of the evolution of Romanian ferrous metallurgy
Directory of Open Access Journals (Sweden)
I. Bostan
2012-10-01
Full Text Available The ferrous metallurgy represents a traditional occupation, being extremely important for the national economy. Romania has gone through all the stages foreseen for the restructuring of this industry in compliance with the provisions of the European Council’s Decision (1999/582/EC concerning the partnership for the EU adherence, which included a special chapter on ferrous metallurgy, the provisions of the Protocol no. 2 (ECSC, as well as with other significant normative acts subsequently enacted. Following the performed restructuring – privatizations, state allowances, liquidations, re-technologization – the activity of this sector has developed, still being under the potential of the Romanian metallurgic industry. Nowadays, the disadvantages relating to energy intensity and the increased need for imported raw materials are doubled by the difficulties generated by the global crisis.
Advances in Powder Metallurgy Soft Magnetic Composite Materials
Directory of Open Access Journals (Sweden)
Bureš R.
2017-06-01
Full Text Available Powder metallurgy has grown with the expansion of various industry. Automotive industry had the most strong influence. Today, more than 90% of PM products are used in the transportation industry. Development of new materials such as magnetic materials is expected to meet the new trends of automotive industry, electric and hybrid vehicles.
Review of the physical metallurgy of Alloy 718
International Nuclear Information System (INIS)
Keiser, D.D.; Brown, H.L.
1976-02-01
The physical metallurgy of Alloy 718 is updated to 1976 on the basis of a survey of post-1967 literature and current experimental data. Composition, microstructures, and mechanical properties are correlated with heat treatment parameters. The current state of understanding of phase stability, strengthening mechanisms, deformation modes, recovery, and recrystallization in this material is described
N18, powder metallurgy superalloy for disks: Development and applications
Energy Technology Data Exchange (ETDEWEB)
Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y. (SNECMA, Evry (France). Materials and Processes Dept.)
1993-08-01
The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in a large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.
Physical metallurgy and physics of solids
International Nuclear Information System (INIS)
Friedel, J.
1997-01-01
A historical review of the development of fundamental research at the Cea in the field of material science, is presented, beginning with the study of material issues for nuclear applications, such as the growth, the swelling (of uranium and its alloys) and the embrittlement of steels. Other researches led to the introduction of plutonium in uranium oxide, paving the way to MOX fuels, and the study of diffusion in fundamental metallurgy, hot plasticity especially the hexagonal metals) and steady state conditions under irradiation
Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling
Bonacuse, Pete; Kantzos, Pete; Telesman, Jack
2002-01-01
Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro
Development and pilot production of three ingot-source beryllium sheet metal parts
International Nuclear Information System (INIS)
Floyd, D.R.
1975-01-01
Results of an extensive development program aimed at making three, separate, structural components from beryllium, using sheet-metal fabrication methods, are presented. Ingot-source beryllium sheet at thicknesses of 0.100, 0.125, and 0.170 inch is formed in a fully-recrystallized and in a partially-recrystallized condition. The tensile yield strength is 26,000 psi after full recrystallization. After partial recrystallization, tensile yield strength is between 35,000 and 45,000 psi, depending upon sheet thickness, heat treat temperature, and time at temperature. The high yield strength is retained in the parts after forming. (U.S.)
Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy
Piascik, R. S.; Newman, J. A.
2002-01-01
Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.
Aluminum powder metallurgy processing
Energy Technology Data Exchange (ETDEWEB)
Flumerfelt, J.F.
1999-02-12
The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.
International Nuclear Information System (INIS)
Stephens, J.J.; Sorenson, K.B.; McConnell, P.
1992-01-01
Conventional cast and wrought (open-quotes Ingot Metallurgyclose quotes) borated 304 stainless steel has been used for a number of years in spent fuel storage applications where a combination of structural integrity and neutron criticality control are required. Similar requirements apply for materials used in transport cask baskets. However, in the high boron contents (>1.0 wt. %) which are most useful for criticality control, the conventional cast and wrought material suffers from low ductility as well as low impact toughness. The microstructural reason for these poor properties is the relatively coarse size of the boride particles in these alloys, which act as sites for crack initiation. Recently, a open-quotes premiumclose quotes grade of borated 304 stainless steel has been introduced (Strober and Smith, 1988) which is made by a Powder Metallurgy (PM) process. This material has greatly improved ductility and impact properties relative to the conventional cast and wrought product. In addition, an ASTM specification (ATSM A887) has been developed for borated stainless steel, containing 8 different material Types with respect to boron content - with the highest level (Type B7) having permissible range from 1.75 to 2.25 wt. % boron - and each Type contains two different Grades of material based on tensile and impact properties. While the ASTM specification is properties-based and does not require a specific production process for a particular grade of material, the PM material qualifies as open-quotes Grade Aclose quotes material while the conventional Ingot Metallurgy (IM) material generally qualifies as open-quotes Grade Bclose quotes material. This paper presents a comparison of the tensile properties of PM open-quotes Grade Aclose quotes material with that of the conventional IM open-quotes Grade Bclose quotes material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7
International Nuclear Information System (INIS)
Wang, S.G.; Sun, M.; Cheng, P.C.; Long, K.
2011-01-01
Highlights: → The corrosion resistance of BNII was enhanced in comparison with CPII in 0.1-0.4 mol L -1 solution. → The function work of BNII is 0.47 eV larger that of CPII. → The energy state density of 4s electrons of BNII is 13.73% less than that of CPII. → BNII corrosion resistance was enhanced due to its larger work function and less 4s electrons weight. → The specific adsorption of Cl - on BNII was weaker than that of CPII due to its larger function work. - Abstract: We studied the corrosion properties of bulk nanocrystalline ingot iron (BNII) and conventional polycrystalline ingot iron (CPII) in HCl solutions from 0.1 mol L -1 to 0.4 mol L -1 at room temperature. The corrosion resistance of BNII was enhanced in comparison with CPII. We investigated the surface energy state densities of BNII and CPII with ultra-violet photoelectron spectroscopy. The energy state density of BNII 4s electrons was 13.73% less than that of CPII. The function work of BNII was 0.47 eV larger that of CPII. The corrosion resistance of BNII was enhanced in comparison with CPII due to its less energy state density of 4s electrons, larger work function and weaker Cl - specific adsorption.
Thermo-ecological cost (TEC evaluation of metallurgical processes
Directory of Open Access Journals (Sweden)
W. Stanek
2015-01-01
Full Text Available Metallurgy represents a complex production system of fuel and mineral non-renewable resources transformation. The effectiveness of resource management in metallurgical chains depends on the applied ore grade and on the irreversibility of components of the system. TEC can be applied to measure the influence of metallurgy on the depletion of natural resources. The paper discusses the possibility of application of TEC in metallurgy and presents illustrative example concerning blast-furnace process.
Czech Academy of Sciences Publication Activity Database
Novák, P.; Školáková, A.; Vojtěch, V.; Knaislová, A.; Pokorný, P.; Moravec, H.; Kopeček, Jaromír; Karlík, M.; Kubatík, Tomáš František
2014-01-01
Roč. 14, č. 3 (2014), s. 387-392 ISSN 1213-2489. [Mezinárodní konference „Mikroskopie a nedestruktivní zkoušení materiálů/3./. Litoměřice, 22.10.2014-24.10.2014] R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : powder metallurgy * NiTi, * mechanical alloying * reactive sintering Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) http://journal.strojirenskatechnologie.cz/templates/obalky_casopis/XIV_2014-3.pdf
Current state of using radionuclides in mining and in metallurgy in the GDR
International Nuclear Information System (INIS)
Holzhey, J.
1987-01-01
Data is presented characterizing the range of the industrial use of tracer and radiometric methods in mining and metallurgy in the GDR in the years 1957-1975 and 1985. Of radiometric methods the most widely used were level gages, densimeters and fire detectors. Level gages were most widely used for measuring the height of filling of hoppers and silos. Radionuclide analytical methods are mainly used in the potassium industry for determining the content of potassium oxide. Natural radiation of 40 K radionuclides is used in the process. (Z.S.). 4 tabs., 2 refs
Peculiarities of powder metallurgy of vanadium and its alloys
International Nuclear Information System (INIS)
Radomysel'skij, I.D.; Solntsev, V.P.; Evtushenko, O.V.
1987-01-01
Literature data on preparation of vanadium powder and powder materials on the vanadium base are generalized. Application of powder metallurgy engineering, allowing simulaneously to introduce practically any strengthening and solid-lubricating components as well as to alloy vanadium, permits undoubtedly to develop composite materials on the vanadium base
Obtention of uranium-molybdenum alloy ingots technique to avoid carbon contamination
Energy Technology Data Exchange (ETDEWEB)
Pedrosa, Tercio A.; Paula, Joao Bosco de; Reis, Sergio C.; Brina, Jose Giovanni M.; Faeda, Kelly Cristina M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2011-07-01
The replacement of high enriched uranium (U{sup 235} > 85 wt%) by low enriched uranium (U{sup 235} < 20wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Among the several uranium alloys investigated since then, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloy is being performed at the Nuclear Technology Development Centre (CDTN) and also at IPEN. The carbon contamination of the alloy is one of the great concerns during the melting process. It was observed that U-Mo alloy is more critical considering carbon contamination when using graphite crucibles. Alternative melting technique was implemented at CDTN in order to avoid carbon contamination from graphite crucible using Yttria stabilized ZrO{sub 2} crucibles. Ingots with low carbon content and good internal quality were obtained. (author)
Waseem, Owais Ahmed; Ryu, Ho Jin
2017-05-16
The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.
Energy Technology Data Exchange (ETDEWEB)
Bolotnikov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kopach, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kopach, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shcherbak, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fochuk, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Filonenko, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); James, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2017-08-01
Solid-liquid phase transitions in Cd0.95-xMnxZn0.05Te alloys with x = 0.20 and 0.30 were investigated by differential thermal analysis (DTA). The heating/cooling rates were 5 and 10 K/min with a melt dwell time of 10, 30 and 60 minutes. Cd0.95-xMnxZn0.05Te (x=0.20, 0.30) single-crystal ingots were grown by the vertical Bridgman method guided using the DTA results. Te inclusions (1-20 microns), typical for CdTe and Cd(Zn)Te crystals, were observed in the ingots by infrared transmission microscopy. The measured X-ray diffraction patterns showed that all compositions are found to be in a single phase. Using current-voltage (I-V) measurements, the resistivity of the samples from each ingot was estimated to be about 105 Ohm·cm. The optical transmission analysis demonstrated that the band-gap width of the investigated ingots increased from 1.77 to 1.88 eV with the increase of the MnTe content from 20 to 30 mol. %.
Nie, Zhiqiang; Zheng, Minghui; Liu, Wenbin; Zhang, Bing; Liu, Guorui; Su, Guijin; Lv, Pu; Xiao, Ke
2011-12-01
Magnesium production is considered to be one potential source of unintentional persistent organic pollutants (unintentional POPs). However, studies on the emissions of unintentional POPs from magnesium metallurgy are still lacking. Emissions of unintentional POPs, such as polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), polychlorinated naphthalenes (PCNs), hexachlorobenzene (HxCBz) and pentachlorobenzene (PeCBz) are covered under the Stockholm Convention. In this study, these emissions were investigated through a magnesium smelting process. Stack gas and fly ash samples from a typical magnesium plant in China were collected and analyzed to estimate the emissions of unintentional POPs from magnesium metallurgy. Emissions factors of 412 ng TEQ t(-1) for PCDD/Fs, 18.6 ng TEQ t(-1) for dl-PCBs, 3329 μg t(-1) for PCNs, 820 μg t(-1) for HxCBz, and 1326 μg t(-1) for PeCBz were obtained in 2009. Annual emissions from magnesium metallurgy in China were estimated to be 0.46 g WHO-TEQ for PCDD/Fs and dl-PCBs, 1651 g for PCNs, 403 g for HxCBz and 653 g for PeCBz, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Metallurgy Department annual progress report for 1987
International Nuclear Information System (INIS)
Schroeder Pedersen, A.; Bilde-Soerensen, J.B.; Hansen, N.
1988-05-01
Selected activities of the Metallurgy Department at Risoe National Laboratory during 1987 are described. The work is presented in four chapters: Materials Science, Materials Engineering, Materials Technology and Energy Programmes. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main numbers illustrating the Departments's economy are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. 38 ills. (author)
Proceedings of the 1985 annual powder metallurgy conference
International Nuclear Information System (INIS)
Sanderow, H.I.; Giebelhausen, W.L.; Kulkarni, K.M.
1985-01-01
This book presents the papers given at a conference on powder metallurgy. Topics considered at the conference included yttrium oxide dispersion strengthened nickel alloy made by mechanical alloying, the optimal design of regression of the additive chromium oxide in aluminium oxide-molybdenum cermets, particle size distribution effects on the sintering of spherical tungsten, and heavy metal alloys containing 30% to 90% tungsten
International Nuclear Information System (INIS)
Monteiro, Waldemar A.; Carrio, Juan A.G.; Masson, T.J.; Vitor, E.; Abreu, C.D.; Marques, I.M.
2009-01-01
The aim of this paper was to analyze the microstructural development in samples of Cu-Ni-Sn alloys (weight %) obtained by powder metallurgy (P/M). The powders were mixed for 1/2 hour. After this, they were pressed, in a cold uniaxial pressing (1000 kPa). In the next step the specimens were sintered at temperatures varying from 650 up to 780 deg C under vacuum. Secondly, the samples were homogenized at 500 deg C for several special times. The alloys were characterized by optical microscopy, electrical conductivity and Vickers hardness. X-rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. (author)
Metallurgy and purification of semiconductor materials
International Nuclear Information System (INIS)
Mughal, G.R.; Ali, M.M.; Ali, I.
1996-01-01
In this article the metallurgical aspects of semiconductor science and technology have been stressed here rather than of the physical and electronic aspect of the subject. Semiconductor technology has not merely presented the metallurgist with new challenges. The ease with which the semiconductor planes cleave make possible, the preparation and study of virgin surface. Semiconductor materials were being widely employed in the study of sub-boundaries and structures and can largely contribute to the study of certain aspects of nucleation and growth, precipitation phenomena, mechanical behaviour, in metallurgy. (A.B.)
Radiometric measurement techniques in metallurgy and foundry technology
International Nuclear Information System (INIS)
1990-01-01
The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de
Improvement of the Zircaloy fuel can manufacturing process
International Nuclear Information System (INIS)
1986-01-01
The following work has been performed in order to ensure more reliable supply of start material for the manufacture of Zy-2 and Zy-4 fuel cans, and to improve the processing techniques and product quality: 1) Two complete production campaigns with the ingot suppliers Western Zirconium and Ugine Aciers. 2) Development of new ingot dimensions (rolling tests). 3) Development of a mechanized washing and cleansing procedure. 4) Development of a new abrasive treatment technique (wet sand blasting). (orig./HP) [de
Niobium-base superalloys via powder metallurgy technology
International Nuclear Information System (INIS)
Loria, E.A.
1987-01-01
This paper provides some insight into an area that has been neglected, namely the possibility of developing high-strength, niobium-base alloys by improved oxidation resistance via the consolidation of rapidly solidified powders. Powder metallurgy (P/M) is an attractive processing technique because of its flexibility and versatility, and it may provide the alloys with properties and workability not obtainable via metal casting. A critical review of both U.S. and Russian literature is presented along with suggestions on the most promising compositions and processing techniques available to meet these competing goals. Previous work on many niobium alloys reveals that long term properties are retained well above those obtained on nickel-base superalloys. Cast and wrought alloys extend specific strength beyond 1200 0 C (2200 0 F), but lack oxidation resistance. Remarkable oxidation resistance is obtained, however, on miniature castings of certain ternary alloys which are too brittle for any processing. A better understanding of the oxidation mechanism is necessary before the proper P/M (RST) approach is taken on compositions which could provide compatibility between the two competing goals through grain refinement and a homogeneous distribution of the contributory phases. Finally, ways to up-scale production of Nb powder are discussed, including thermodynamic feasibility for the direct reduction of NbCl/sub 5/ in a 1.5 MW plasma reactor
Iron Metallurgy: Technical Terminology Bulletin. Terminotech, Vol. 2, No. 7.
General Electric Co. of Canada, Ltd., Montreal, Quebec.
This issue of a bulletin of technological terminology is devoted to iron metallurgy. Various aspects of iron production are described in both French and English. An English-French dictionary of terms comprises the bulk of the document. Explanatory illustrations are appended. (JB)
International Nuclear Information System (INIS)
Zhang Jianguo; Chen Shaoqiang; Qi Jing
2002-01-01
Developing macroporous resin for purifying uranium effluent from uranium mining and metallurgy is presented. The Intense Fractionation Process is employed to elute uranium from lower loaded uranium resin by the eluent of sulfuric acid and ammonium sulfate. The result is indicated that the uranium concentration in the rich elutriant is greatly increased, and the rich liquor is only one bed column volume, uranium concentration in the elutriant is increased two times which concentration is 10.1 g/L. The eluent is saved about 50% compared with the conventional fixed bed elution operation. And also the acidity in the rich elutriant is of benefit to the later precipitation process in uranium recovery
Metallurgy Department. Annual progress report for 1988
International Nuclear Information System (INIS)
Schroeder Pedersen, A.; Bilde-Soerensen, J.B.; Hansen, N.
1989-05-01
Selected activities of the Metallurgy Department at Risoe National Laboratory during 1988 are described. The work is presented in four chapters: Materials Science, Materials Engineering, Materials Technology and Energy Programmes. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main numbers illustrating the Department's economy are given. Lists of staff members, visiting scientists, publications, lectures and poster presentations are included. (author) 36 ills., 81 refs
Metallurgy Department. Annual progress report for 1989
International Nuclear Information System (INIS)
Horsewell, A.; Hansen, N.
1990-07-01
Selected activities of the Metallurgy Department at Risoe National Laboratory during 1989 are described. The work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its acitivities within eduation and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publicaltions, lectures and poster presentations are included. (author) 90 refs
A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.
Cooke, Colin A; Abbott, Mark B; Wolfe, Alexander P; Kittleson, John L
2007-05-15
To date, information concerning pre-Colonial metallurgy in South America has largely been limited to the archaeological record of artifacts. Here, we reconstruct a millennium of smelting activity in the Peruvian Andes using the lake-sediment stratigraphy of atmospherically derived metals (Pb, Zn, Cu, Ag, Sb, Bi, and Ti) and lead isotopic ratios (206Pb/ 207Pb) associated with smelting from the Morococha mining region in the central Peruvian Andes. The earliest evidence for metallurgy occurs ca. 1000 A.D., coinciding with the fall of the Wari Empire and decentralization of local populations. Smelting during this interval appears to have been aimed at copper and copper alloys, because of large increases in Zn and Cu relative to Pb. A subsequent switch to silver metallurgy under Inca control (ca. 1450 to conquest, 1533 A.D.) is indicated by increases in Pb, Sb, and Bi, a conclusion supported by further increases of these metals during Colonial mining, which targeted silver extraction. Rapid development of the central Andes during the 20th century raised metal burdens by an order of magnitude above previous levels. Our results represent the first evidence for pre-Colonial smelting in the central Peruvian Andes, and corroborate the sensitivity of lake sediments to pre-Colonial metallurgical activity suggested by earlier findings from Bolivia.
New evidence for prehistoric copper metallurgy in the vicinity of Bor
Directory of Open Access Journals (Sweden)
Kapuran Aleksandar
2016-01-01
Full Text Available The last three years of archaeological investigations at the site Ru`ana in Banjsko Polje, in the immediate vicinity of Bor, have provided new evidence regarding the role of non-ferrous metallurgy in the economy of the prehistoric communities of north-eastern Serbia. The remains of metallurgical furnaces and a large amount of metallic slags at two neighbouring sites in the mentioned settlement reveal that locations with many installations for the thermal processing of copper ore existed in the Bronze Age. We believe, judging by the finds of material culture, that metallurgical activities in this area also continued into the Iron Age and, possibly, into the 4th century AD. [Projekat Ministarstva nauke Republike Srbije, br. 177020: Archaeology of Serbia: Cultural identity, integration factors, technological processes and the role of the central Balkans in the development of European prehistory
The most essential tendencies in development of powder metallurgy
International Nuclear Information System (INIS)
Fedorchenko, I.M.
1989-01-01
A progress in the sphere of creation and application of new types of powder materials is characterized. The materials are as follows: structural, tribotechnical, composite, reinforced, precipitation-hardened, refractory, tool, materials based on light metals and others. A number of important problems whose solution will promote a further development of powder metallurgy are formulated
Design of powder metallurgy titanium alloys and composites
International Nuclear Information System (INIS)
Liu, Y.; Chen, L.F.; Tang, H.P.; Liu, C.T.; Liu, B.; Huang, B.Y.
2006-01-01
Low cost and good performance are two major factors virtually important for Ti alloy development. In this paper, we have studied the effects of alloying elements, thermo-mechanical treatment and particle reinforcement on microstructures and mechanical properties of powder metallurgy (PM) Ti alloys and their composites. Our results indicate that low cost PM Ti alloys and their composites with attractive properties can be fabricated through a single compaction-sintering process, although secondary treatments are required for high performance applications. Three new PM Ti alloys and one TiC/Ti composite of high performance are developed, and new design principles are also proposed. For design of PM Ti alloys, addition of alloying elements has the beneficial effect of enhanced sintering and/or improved mechanical properties. For example, Fe element accelerates the sintering process, Mo and Al are good candidates for solution strengthening, and rare earth elements effectively increase the material ductility by scavenging oxygen from the Ti matrix. For the design of Ti-based composites, in situ formation of strengthening particles and solid solution hardening of the matrix both should be considered simultaneously for alloy development. Cr 3 C 2 is found to be a very suitable additive for processing particle reinforced Ti composites
Institute of Scientific and Technical Information of China (English)
郑端; 吴建明; 安国瑞; 朱建斌; 王天才; 周鹤立; 翟瑞锋; 王勇
2016-01-01
In order to improve the production efficiency of the London bullion market association (LBMA)1 000 ounces standard silver,using the method of production logistics management to analyze its production process,delete the redundant movement of production logistics and optimize the logistics process,a set of silver ingot automatic casting line was developed in wkich several logistics action were completed by an integrated device for casting silver ingot,such as baking molds,casting and molding of 7 pieces of silver ingots one by one,feedbacking pouring mass signal,slow cooling temperature and demoulding,etc.Trial production shows that the casting line can shorten the silver ingot manufacturing time by 36.5%,handling time by 94%,transport distance by 91.6%,and it can reduce operating staff by 40%,improve yield rate of finished products by 5.33%,significantly improve the production efficiency.The produced 1000 ounces standard silver ingots can meet the requirements of LBMA.%为了提高伦敦金银市场协会(LBMA)1 000盎司标准银锭的生产效率,从生产物流的角度分析了1000盎司标准银锭的生产工艺,删除了生产物流中的多余动作,优化了物流过程,设计了一套银锭自动化铸造线.研制了铸造线的关键设备:银锭铸造车,它把烘模、7块银锭逐一浇注成型、反馈浇注质量信号、补温缓冷、脱模等物流动作集中在一台单体设备上.通过试生产表明,铸造线能够缩短银锭制造时间36.5%、搬运时间94%、搬运距离91.6%,减少操作人员40%,提高成品率5.33%,生产出符合LBMA要求的1000盎司标准银锭.
International Nuclear Information System (INIS)
Stone, P.G.; Orr, J.; Guest, J.C.
1975-01-01
Following a review of published information on the metallurgy of the iron/chromium/nickel system, attention is directed to the metallurgical significance of relatively minor compositional variations introduced in Alloy 800 to meet the stress corrosion requirements of the nuclear power industry. These include the effect of carbon, nitrogen, titanium, and aluminium restrictions in the context of Light Water Reactor, High Temperature Reactor, and Fast Reactor applications. Solubility effects are also considered in relation to heat treatment procedures, metallurgical phenomena, and associated properties. The aging behaviour is also discussed and related to fabrication and service performance; particularly stress rupture behaviour. The effect of strain at ambient and elevated temperatures on these aspects is indicated. (author)
Net shape powder processing of aluminium
International Nuclear Information System (INIS)
Schaffer, G.B.
2000-01-01
The increasing interest in light weight materials coupled to the need for cost-effective processing have combined to create a significant opportunity for aluminium powder metallurgy. Net shape processing of aluminium using the classical press-and-sinter powder metallurgy technique is a unique and important metal-forming method which is cost effective in producing complex parts at, or very close to, final dimensions. This paper provides an overview of the net shape powder processing of aluminium. Current research is critically reviewed and the future potential is briefly considered
Maples, A. L.; Poirier, D. R.
1980-01-01
The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data.
Málek, Jaroslav; Hnilica, František; Veselý, Jaroslav; Smola, Bohumil; Medlín, Rostislav
2017-11-01
Ti-35Nb-2Zr-0.5O (wt%) alloy was prepared via a powder metallurgy process (cold isostatic pressing of blended elemental powders and subsequent sintering) with the primary aim of using it as a material for bio-applications. Sintered specimens were swaged and subsequently the influence of annealing temperature on the mechanical and structural properties was studied. Specimens were annealed at 800, 850, 900, 950, and 1000°C for 0.5h and water quenched. Significant changes in microstructure (i.e. precipitate dissolution or grain coarsening) were observed in relation to increasing annealing temperature. In correlation with those changes, the mechanical properties were also studied. The ultimate tensile strength increased from 925MPa (specimen annealed at 800°C) to 990MPa (900°C). Also the elongation increased from ~ 13% (800°C) to more than 20% (900, 950, and 1000°C). Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document
International Nuclear Information System (INIS)
Bargelski, C. J.; Berrett, D. E.
1998-01-01
The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables
Gallego, J R; Esquinas, N; Rodríguez-Valdés, E; Menéndez-Aguado, J M; Sierra, C
2015-12-30
The abandonment of Hg-As mining and metallurgy sites, together with long-term weathering, can dramatically degrade the environment. In this work it is exemplified the complex legacy of contamination that afflicts Hg-As brownfields through the detailed study of a paradigmatic site. Firstly, an in-depth study of the former industrial process was performed to identify sources of different types of waste. Subsequently, the composition and reactivity of As- and Hg-rich wastes (calcines, As-rich soot, stupp, and flue dust) was analyzed by means of multielemental analysis, mineralogical characterization (X-ray diffraction, electronic, and optical microscopy, microbrobe), chemical speciation, and sequential extractions. As-rich soot in the form of arsenolite, a relatively mobile by-product of the pyrometallurgical process, and stupp, a residue originated in the former condensing system, were determined to be the main risk at the site. In addition, the screening of organic pollution was also aimed, as shown by the outcome of benzo(a) pyrene and other PAHs, and by the identification of unexpected Hg organo-compounds (phenylmercury propionate). The approach followed unravels evidence from waste from the mining and metallurgy industry that may be present in other similar sites, and identifies unexpected contaminants overlooked by conventional analyses. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Duvaizem, Jose Helio
2009-01-01
Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)
Solid state bonding of beryllium to copper and vanadium
International Nuclear Information System (INIS)
Floyd, D.R.; Liby, A.L.; Weaver, W.
1993-01-01
The intent of this effort was to demonstrate that ingot metallurgy (IM) beryllium (Be) can be bonded to dissimilar metals such as copper (Cu) or vanadium (V) at low temperatures by using silver (Ag) as a bonding aid. It is hoped that success at the coupon stage will stimulate more extensive studies of the mechanical and thermal integrity of such joints, leading ultimately to use of this technology to fabricate first wall structures for ITER. (orig.)
Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.
2017-11-01
Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.
Plasma-chemical processes and systems
International Nuclear Information System (INIS)
Castro B, J.
1987-01-01
The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt
Proceedings of the International Symposium on quantitative description of metal extraction processes
International Nuclear Information System (INIS)
Themelis, N.J.
1991-01-01
This book contains the proceedings of the H.H. Kellogg International Symposium. Topics include: Extractive metallurgy; Thermochemical phenomena in metallurgy; Thermodynamic modeling of metallurgical processes; and Transport and rate phenomena in metallurgical extraction
Characteristics of the natural uranium ingots developed in IPEN - CNEN/SP
International Nuclear Information System (INIS)
Soares, M.C.B.; Koshimizu, S.
1990-01-01
The natural uranium consists of two primary isotopes, the U sup(235) (0,7%) and the U sup(238) (99,3%). The isotopic separation carried out in order to obtain enriched uranium, generates a by-product called depleted uranium, which can be applied for industrial uses. The most singular property, from engineering standpoint, is its high density. When the density is the only important factor, the uranium has great advantage over other heavy metals related to economic and technical considerations. Among some applications of uranium are aircraft and missile counterweights, kinetics energy penetrators, radiation shielding, gyro rotors and oil-well sinker bars. The uranium ingot fabrication is done by direct reduction of UF, with magnesium, without remelting. The microstructure of as-cast uranium is, as in the other as-cast, formed by coarse and. (author)
Borax as a lubricant in powder metallurgy
Directory of Open Access Journals (Sweden)
Héctor Geovanny Ariza-Suarez
2014-12-01
were compacted at 700 MPa in a uniaxial press of 15 tons. DSC-TGA analysis of the mixture with borax was realized. The specimens were sintered in a plasma reactor at 1000 for 30 minutes, with a combined atmosphere of hydrogen and argon. Microhardness and density of the sintered samples was haracterized. XRD analysis was realized to detect possible compounds formation by interaction of borax. This paper shows that borax can be used as a lubricant in powder metallurgy.
Energy Technology Data Exchange (ETDEWEB)
Triveno Rios, C., E-mail: carlos.triveno@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais; Lopes, E.S.N.; Caram, R. [Universidade Estadual de Campinas (FEM/DEMA/UNICAMP), Campinas, SP (Brazil); Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materiais
2014-07-01
The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi{sub 0,5} and AlCoFeNiVTi{sub 0,5} alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi{sub 0,5} alloy showed better mechanical properties than the AlCoFeNiMnTi{sub 0,5} alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)
Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.
Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P
2008-09-01
One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications.
Modernization of the Ural Metallurgy during the Great Patriotic War (1941–1945
Directory of Open Access Journals (Sweden)
Vladimir V. Zaparii
2013-09-01
Full Text Available The article characterizes the Ural industry modernization in war footing, shows the significance of evacuation of enterprises from the Western areas of the country to the region, reveals their role in the formation of a new metallurgical center of modern metallurgy in terms of human resources and manufacture. Innovations in metallurgy, the role of human factor in solving industrial restructuring problem are examined. Forms and methods of science use for the industrial modernization are considered. Solving of human resources problem is shown. The author touches upon the problem of metallurgical sector management in wartime. The role of people’s heroism in this difficult period of Russian history is discussed.
Physical and mechanical metallurgy of high purity Nb for accelerator cavities
International Nuclear Information System (INIS)
Bieler, T.R.; Wright, N.T.; Pourboghrat, F.; Compton, C.; Hartwig, K.T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; Skoug, E.; Balachandran, S.; Ice, G.E.; Liu, W.
2010-01-01
In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.
Royal Inst. of Tech., Stockholm (Sweden). Library.
The indexing rules presented are designed for use with a new French-German database on metallurgy being developed under an agreement by CNRS (Centre National de la Recherche Scientifique, Paris) and BAM (Bundesanstalt fur Materialprufung, Berlin). The new database, which will feature multilingual titles and index terms (French-German-English-) and…
Energy Technology Data Exchange (ETDEWEB)
Bukvareva, O.F.
1991-02-01
Discusses problems evaluated in October 1990 by the Section during the meeting devoted to research programs in the twelfth five-year plan, research and development of continuous coking methods, prospects for new coke quenching processes. Selected research programs, coordinated research programs and development programs as well as recommendations for future research programs are evaluated. The following research programs aimed at use of weakly caking and noncaking coals in the coking plants are evaluated: coal preheating and charging preheated mixtures to coke ovens, partial coal charge briquetting and equipment for coal briquetting, development of commercial systems for packing coal charges in coke ovens, production of formed coke for metallurgy, processes for coal gas cleaning (especially ammonia separation), development of systems for utilization of waste heat from dry coke quenching for coal charge preheating. Participation of individual research institutes in the programs is discussed. The most significant projects of individual institutes are discussed. Recommendations for research programs for the period 1991 to 1995 are made.
Powder Metallurgy Preparation of Co-Based Alloys for Biomedical Applications
Czech Academy of Sciences Publication Activity Database
Marek, I.; Novák, P.; Mlynár, J.; Vojtěch, D.; Kubatík, Tomáš František; Málek, J.
2015-01-01
Roč. 128, č. 4 (2015), s. 597-601 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA) /13./. Prague, 31.08.2014-04.09.2014] Institutional support: RVO:61389021 Keywords : powder metallurgy * mechanical properties * biomedical applications Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.525, year: 2015
The mysterious world of plutonium metallurgy: Past and future
International Nuclear Information System (INIS)
Hecker, S.S.; Hammel, E.F.
1998-01-01
The first atomic bomb detonated at the Trinity Site in New Mexico on July 16, 1945, used plutonium, a man-made element discovered < 5 yr earlier. The story of how Manhattan Project scientists and engineers tackled the mysteries of this element and fabricated it into the first atomic bomb is one of the most fascinating in the history of metallurgy and materials. The authors are currently trying to generate renewed interest in plutonium metallurgy because of the challenge posed by President Clinton, i.e., to keep the nuclear stockpile of weapons safe and reliable without nuclear testing. The stockpile stewardship challenge requires either a lifetime extension of the plutonium components or a remanufacture--neither of which can be verified by testing. In turn, this requires that one achieve a better fundamental understanding of plutonium. Of special interest is the effect of self-irradiation on the properties and on the long-term stability of plutonium and its alloys. Additional challenges arise from long-term concerns about disposing of plutonium and dealing with its environmental legacy. It is imperative to interest the next generation of students in these plutonium challenges
Hydrogen transport behavior of beryllium
Energy Technology Data Exchange (ETDEWEB)
Anderl, R.A.; Hankins, M.R.; Longhurst, G.R.; Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho, Inc., Idaho Falls, ID (United States)); Macaulay-Newcombe, R.G. (Dept. of Engineering Physics, Univ. Hamilton, ON (Canada))
1992-12-01
Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy. Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important. (orig.).
Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis
Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.
1991-01-01
A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.
On numerical modeling of low-head direct chill ingot caster for magnesium alloy AZ31
Directory of Open Access Journals (Sweden)
Mainul Hasan
2014-12-01
Full Text Available A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head (LH vertical Direct Chill (DC rolling ingot caster for the common magnesium alloy AZ31. The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach. Following the aluminum/magnesium DC casting industrial practices, the LH mold is taken as 30 mm with a hot top of 60 mm. The previously verified in-house code has been modified to model the present casting process. Important quantitative results are obtained for four casting speeds, for three inlet melt pouring temperatures (superheats and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster. The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations. Specifically, the temperature and velocity fields, sump depth and sump profiles, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.
Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy
Piascik, Robert S.; Newman, John A.
2002-01-01
Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.
Powder-metallurgy superalloy strengthened by a secondary gamma phase.
Kotval, P. S.
1971-01-01
Description of experiments in which prealloyed powders of superalloy compositions were consolidated by extrusion after the strengthening by precipitation of a body-centered tetragonal gamma secondary Ni3 Ta phase. Thin foil electron microscopy showed that the mechanical properties of the resultant powder-metallurgy product were correlated with its microstructure. The product exhibited high strength at 1200 F without loss of ductility, after thermomechanical treatment and aging.
Damage on 316LN stainless steel transformed by powder metallurgy
International Nuclear Information System (INIS)
Couturier, R.; Burlet, H.
1998-01-01
This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties
Energy Technology Data Exchange (ETDEWEB)
Grossi, L.J.; Damasceno, N.; Muterlle, P.V., E-mail: larajgrossi@yahoo.com.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Departamento de Engenharia Mecanica
2016-07-01
The powder metallurgy is a technique environmentally advantageous that allows the production of many pieces, with a good superficial finishing and dimensional tolerance. For the production of pieces using technique, basics steps are carried out, as the characterization of powders, the mixing and homogenization, compacting and sintering. In this context, this work has as objective the obtainment of the Cu13Al4Ni alloy via powder metallurgy. For this, was made a high energy milling for 2, 4 and 8 hours. Then, the milled powder was compacted and posteriorly, sintered in an oven with controlled atmosphere. It was observed that the milling time affects directly in sintering of the pieces. The best results obtained were for the samples that were milled for 4 hours. This samples have showed 21, 52% of porosity and 6,382 g/cm³ of the density of sintered. (author)
Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan
2016-02-01
Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).
The Effectiveness of a NiCrY-Coating on a Powder Metallurgy Disk Superalloy
Gabb, Timothy P.; Miller, Robert A.; Nesbitt, James A.; Draper, Susan L.; Rogers, Richard B.; Telesman, Jack
2018-01-01
Protective ductile coatings could be necessary to mitigate oxidation and corrosion attack on superalloy disks in some turbine engine applications. However, the effects of coatings on fatigue life of the disk during service are an important concern. The objective of this study was to investigate how such a coating could perform after varied post-coating processing. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, preparation treated, exposed, and then subjected to fatigue at high temperature. The effects of varied shot peening, preparation treatment, and exposures on fatigue life with and without the coating were compared. Each of these variables and several of their interactions significantly influenced fatigue life.
Energy Technology Data Exchange (ETDEWEB)
Rutkowski, Wladyslaw; Szteke, Witold
1971-09-15
The present work contains a discussion of the problems of applying plasma in powder-metallurgical processes, application of powders to other processes with the use of plasma, and the application of other products of powder metallurgy in the plasma process. Results obtained with the spheroidization of AL{sub 2}O{sub 3}, Ta, and Ni powders are presented, as are the results of metallographic and microscopic investigations on these powders.
International Nuclear Information System (INIS)
Nelson, R.G.; Montgomery, D.R.
1980-04-01
The Inductoslag melting process was developed to densify Zircaloy-4 cladding hulls. It is a cold crucible process that uses induction heating, a segmented water-cooled copper crucible, and a calcium fluoride flux. Metal and flux are fed into the furnace through the crucible, located at the top of the furnace, and the finished ingot is withdrawn from the bottom of the furnace. Melting rates of 40 to 50 kg/h are achieved, using 100 to 110 kW at an average energy use of 2.5 kWh/kg. The quality of ingots produced from factory supplied cladding tubing is sufficient to satisfy nuclear grade standards. An ingot of Zircaloy-4, made from melted cladding tubing that had been autoclaved to near reactor exposure and then descaled by the hydrogen fluoride decontamination process prior to Inductoslag melting, did not meet nuclear grade standards because the hydrogen, nitrogen, and hardness levels were too high. Melting development work is described that could possibly be used to test the capability of the Inductoslag process to satisfactorily melt a variety and mix of materials from LWR reprocessing, decontamination, and storage options. Results of experiments are also presented that could be used to improve remote operation of the melting process
Wear mechanisms in powder metallurgy high speed steels matrix composites
International Nuclear Information System (INIS)
Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.
2001-01-01
The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs
Physical and mechanical metallurgy of high purity Nb for accelerator cavities
Directory of Open Access Journals (Sweden)
T. R. Bieler
2010-03-01
Full Text Available In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, it will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.
Siurin, S A; Chashchin, V P; Frolova, N M
2015-01-01
The study covered data on 977 cases of occupational diseases in 615 workers of nonferrous metallurgy in Kolsky Transpolar area. Findings are high risk of occupational diseases in workers engaged into electrolysis production of aluminium, all nickel reprocessing and pyrometallic copper reprocessing (GR 7.02-10.0). Electrolysis operators and anode operators of aluminium production are more prone to occupational diseases, with bone and muscular disorders (46.8%) prevalent in the morbidity structure. Respiratory diseases are more prevalent (68.2-100%) in the occupational morbidity structure of copper-nickelindustry workers. Conclusion is made on mandatory improvement of the work conditions and more effective individual protective means against occupational hazards in workers of nonferrous metallurgy in Kolsky Transpolar area.
State of the direct reduction and reduction smelting processes
Directory of Open Access Journals (Sweden)
Markotić A.
2002-01-01
Full Text Available For quite a long time efforts have been made to develop processes for producing iron i.e. steel without employing conventional procedures - from ore, coke, blast furnace, iron, electric arc furnace, converter to steel. The insufficient availability and the high price of the coking coals have forced many countries to research and adopt the non-coke-consuming reduction and metal manufacturing processes (non-coke metallurgy, direct reduction, direct processes. This paper represents a survey of the most relevant processes from this domain by the end of 2000, which display a constant increase in the modern process metallurgy.
Power metallurgy approaches to high temperature components for gas turbine engines
Probst, H. B.
1974-01-01
Work conducted by NASA and NASA contractors on prealloyed superalloy powders and materials strengthened by oxide dispersion is reviewed. Fabrication, tensile strength, superplasticity, grain growth control, stress rupture life, and grain-size and dispersion-level effects are covered. Distinct strength advantages of powder metallurgy superalloys over conventional wrought alloys are noted.
Fatigue crack propagation in aluminum-lithium alloys
Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.
1989-01-01
The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.
Vlasova, E M; Shliapnikov, D M; Lebedeva, T M
2015-01-01
The article covers changes in occupational cardiovascular risk for workers of nonferrous,metallurgy. Findings are that exposure to noise up to 94 dB with length of service increases possible atherosclerosis and metabolic syndrome. With 5 years of service, risk of the predicted conditions increases by 40.5%. When occupational exposure lasts over 5 years, risk of arterial hypertension increases. A group of workers without exposure to occupational factors appeared to have no connection between length of service and metabolic syndrome and arterial hypertension. Risk evolution modelling proved that risk of functional disorders in nonferrous metallurgy workers becomes unacceptable after 5 years of service (cardiovascular disorders are critical).
International Nuclear Information System (INIS)
Xiao, Meili; Li, Fuguo; Xie, Hangfang; Wang, Yufeng
2012-01-01
Highlights: → Dynamic recrystallization of powder metallurgy molybdenum occurs in the temperature region (1200-1450 o C). → The value of strain hardening index n decreases along with the temperature rising. → The value of strain-rate sensitivity exponent m increases slowly at first and achieves a peak value at 1350 o C. → Deformation strengthening is the main strengthening mechanism at low temperature. → Rheological strengthening becomes the primary strengthening mechanism at high temperature. -- Abstract: The high-temperature deformation behavior of powder metallurgy molybdenum has been investigated based on a series of isothermal hot compression tests, which were carried out on a Gleeble-1500 thermal mechanical simulator in a wide range of temperatures (900-1450 o C) and strain rates (0.01-10 s -1 ). Through the research on the experimental stress-strain curves, it reveals that dynamic recrystallization softening effect of powder metallurgy molybdenum occurs in the temperature range from 1200 o C to 1450 o C, in which the flow stress is significantly sensitive to temperature. In comparison with the value of strain hardening index n which decreases along with the temperature rising, the value of strain-rate sensitivity exponent m does not change obviously; however, it increases slowly with the increasing of temperature at first and achieves a peak value at 1350 o C. Furthermore, relying on the comparison of mean value of n and m, it is suggested that deformation strengthening is the main strengthening mechanism at low temperature while the rheological strengthening changes into the primary strengthening mechanism at high temperature.
International Nuclear Information System (INIS)
Tolev, J; Mandelis, A
2010-01-01
A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.
Analysis and calculation of macrosegregation in a casting ingot, exhibits C and E
Poirier, D. R.; Maples, A. L.
1984-01-01
A computer model which describes the solidification of a binary metal alloy in an insulated rectangular mold with a temperature gradient is presented. A numerical technique, applicable to a broad class of moving boundary problems, was implemented therein. The solidification model described is used to calculate the macrosegregation within the solidified casting by coupling the equations for liquid flow in the solid/liquid or mushy zone with the energy equation for heat flow throughout the ingot and thermal convection in the bulk liquid portion. The rate of development of the solid can be automatically calculated by the model. Numerical analysis of such solidification parameters as enthalpy and boundary layer flow is displayed. On-line user interface and software documentation are presented.
Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.
Capek, Jaroslav; Vojtěch, Dalibor
2014-10-01
The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Interactive data-processing system for metallurgy
Rathz, T. J.
1978-01-01
Equipment indicates that system can rapidly and accurately process metallurgical and materials-processing data for wide range of applications. Advantages include increase in contract between areas on image, ability to analyze images via operator-written programs, and space available for storing images.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-07-29
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by power metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-26
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-05
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.
Energy Technology Data Exchange (ETDEWEB)
Achtelik, M.; Erken, M.; Juessen, P.; Knapp, A. [Rheinbraun AG, Koeln (Germany)
1998-12-31
In the nineteen seventies the Fortuna Nord refining factory of Rheinbraun AG began to restructure its operations from domestic coal briquetting to the manufacture of industrial products. One of these products, high-temperature brown-coal coke, is produced in two hearth-type furnaces. Coke produced in these plants is mainly used in metallurgy and environmental engineering, in the latter especially for flue gas purification. Rheinbraun has succeeded in introducing a quality management system for brown-coal coke which ensures high quality and security of supply. (orig.) [Deutsch] Im Veredlungsbetrieb Fabrik Fortuna-Nord der Rheinbraun AG begann in den 70er Jahren der Strukturwandel vom Hausbrandbrikett zu Industrieprodukten. Eins dieser Produkte, der Hochtemperatur-Braunkohlenkoks, wird in zwei Herdofenanlagen erzeugt. Die Haupteinsatzbereiche des Herdofenkokses sind die Metallurgie sowie der Umweltschutz und hier insbesondere die Rauchgasreinigung. Um die hohe Produktqualitaet und die Liefersicherheit zu gewaehrleisten, hat Rheinbraun ein Qualitaetsmanagementsystem fuer Braunkohlenkoks erfolgreich eingefuehrt. (orig.)
Annual report of the Metallurgy Division [for the] period ending December 1976
International Nuclear Information System (INIS)
Elayaperumal, K.; Gupta, C.K.; Mukhopadhyay, P.; Rao, S.V.K.
1977-01-01
An account of the work done in the Metallurgy Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1976 is given. Some of the major achievements are: (1) production of boron carbide and boral sheet for the Trombay R-5 reactor under construction, (2) production of niobium metal for the manufacture of Zr-Nb-Cu alloy garter springs, (3) development of a process for graphite coating on zircaloy, (4) studies on structural and metal physics aspects of zirconium alloys and steels, (5) studies on the corrosion behaviour of zircaloy-2 as affected by the replacement of helium and stress corrosion cracking of zircaloy fuel tubes in iodine atmosphere and (6) production of high density UO 2 pellets with stable microstructures and sinterable magnesium oxide for MHD application. (M.G.B.)
Uranium mining and metallurgy library science and technology literature retrieval of network
International Nuclear Information System (INIS)
Tang Lilei
2014-01-01
This paper introduces the network resources and characteristics retrieve service of Beijing research Institute of Chemical Engineering of Metallurgy library, Analyzes the problems often encountered in the literature retrieval in science and technology, And puts forward the solution, Puts forward the thinking and Suggestions of science and technology literature retrieval. (author)
Nie, Zhiqiang; Yang, Yufei; Tang, Zhenwu; Liu, Feng; Wang, Qi; Huang, Qifei
2014-11-01
Field monitoring was conducted to develop a polycyclic aromatic hydrocarbon (PAH) emission inventory for the magnesium (Mg) metallurgy industry in China. PAH emissions in stack gas and fly/bottom ash samples from different smelting units of a typical Mg smelter were measured and compared. Large variations of concentrations, congener patterns, and emission factors of PAHs during the oxidation and reduction stages in the Mg smelter were observed. The measured average emission factor (166,487 μg/t Mg) was significantly higher than those of other industrial sources. Annual emission from Mg metallurgy in 2012 in China was estimated at 116 kg (514 g BaPeq) for PAHs. The results of this study suggest that PAH emission from Mg industries should be considered by local government agencies. These data may be helpful for understanding PAH levels produced by the Mg industry and in developing a PAH inventory.
Zhan, Lu; Xu, Zhenming
2009-09-15
During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.
Characterization and Sintering of Armstrong Process Titanium Powder
Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien
2017-04-01
Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.
Garfinkel, Yosef; Klimscha, Florian; Shalev, Sariel; Rosenberg, Danny
2014-01-01
The beginning of metallurgy in the ancient Near East attracts much attention. The southern Levant, with the rich assemblage of copper artifacts from the Nahal Mishmar cave and the unique gold rings of the Nahal Qanah cave, is regarded as a main center of early metallurgy during the second half of the 5th millennium CalBC. However, a recently discovered copper awl from a Middle Chalcolithic burial at Tel Tsaf, Jordan Valley, Israel, suggests that cast metal technology was introduced to the region as early as the late 6th millennium CalBC. This paper examines the chemical composition of this item and reviews its context. The results indicate that it was exported from a distant source, probably in the Caucasus, and that the location where it was found is indicative of the social status of the buried individual. This rare finding indicates that metallurgy was first diffused [corrected] to the southern Levant through exchange networks and only centuries later involved local productionThis copper awl, the earliest metal artifact found in the southern Levant, indicates that the elaborate Late Chalcolithic metallurgy developed from a more ancient tradition.
Application of the electroslag remelting process for the production of heavy turbine rotors
International Nuclear Information System (INIS)
Choudhury, A.; Jauch, R.; Loewenkamp, H.; Tince, F.
1977-01-01
Discussion of the problems of the production of turbine rotors from steel X 22 CrMoV 12 1 using conventional ingot casting. Report on development work for the production of forging ingots from this steel by electroslag remelting. Presentation of the metallurgical results and data about ingot surface, internal constitution and also mechanical properties of the ESR ingots up to 2,300 mm diameter. (orig.) [de
Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology
Fiegl, G. F.; Bonora, A. C.
1980-01-01
The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.
Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991
International Nuclear Information System (INIS)
Longhurst, G.R.
1991-12-01
This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET
Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991
Energy Technology Data Exchange (ETDEWEB)
Longhurst, G.R.
1991-12-01
This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET.
Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys
International Nuclear Information System (INIS)
Gnanamoorthy, R.; Hanada, S.
1996-01-01
Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated
International Nuclear Information System (INIS)
Kar, R.J.; Bohlen, J.W.; Chanani, G.R.
1984-01-01
In a Northrop research program on Al-Li based alloys, the microstructures and heat treatment characteristics of two Al-Li-Cu-Mg-Zr alloys, one I/M (ingot metallurgy) and one P/M (powder metallurgy), were examined and correlated with properties obtained. Prior work had shown that this alloy system has a high payoff potential for aircraft applications. Following solution-heat-treatments, the artificial aging response of these alloys was determined, using hardness measurements. Microstructural characterization of these alloys was carried out using optical metallography and transmission electron microscopy (TEM) and phases were identified using X-ray methods, electron diffraction and Auger electron spectroscopy. The tensile and fracture toughness properties of the alloys were determined for selected tempers. Scanning electron microscopic (SEM) fracture examination was carried out on fractured tensile and fracture toughness coupons. The mechanical properties obtained and fracture behavior observed were correlated with significant microstructural features. 16 references
Microstructural evolution of Ti-10Nb and Ti-15Nb alloys produced by the blended elemental technique
International Nuclear Information System (INIS)
Martins, G.V.; Souza, J.V.C.; Machado, J.P.B.; Silva, C.R.M.; Henriques, V.A.R.
2009-01-01
Alfa/beta titanium alloys have been intensely used for aerospace and biomedical applications. Production of powder metallurgy titanium alloys components may lead to a reduction in the cost of parts, compared to those produced by conventional cast and wrought (ingot metallurgy) processes, because additional working operations (machining, turning, milling, etc.) and material waste can be avoided. In this work, samples of Ti- 10, 15Nb (weight%) alloys were obtained by the blended elemental technique using hydride-de hydride (HDH) powders as raw material, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering carried out in the range 900-1500 deg C. These alloys were characterized by X-ray diffractometry for phase composition, scanning electron microscopy for microstructure, Vickers indentation for hardness, Archimedes method for specific mass and resonance ultrasound device for elastic modulus. For the samples sintered at 1500 deg C it was identified α and β phases. It was observed the influence of the sintering temperatures on the final microstructure. With increasing sintering temperature, microstructure homogenization of the alloy takes place and at 1500 deg C this process is complete. The same behavior is observed for densification. Comparing to the Ti6Al4V alloy properties, these alloys hardness (sintered at 1500 deg C) are near and elastic modulus are 18% less. (author)
Metallurgy Department. Progress Report for the Period 1 January to 31 December 1984
DEFF Research Database (Denmark)
Risø National Laboratory, Roskilde
The activities of the Metallurgy Department at Risø during 1984 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Development, and Fuel Elements. A survey is given of the Department's participation in international collaboration and of its...
Al/ B4C Composites with 5 and 10 wt% Reinforcement Content Prepared by Powder Metallurgy
International Nuclear Information System (INIS)
Yusof Abdullah; Mohd Reusmaazran Yusof; Azali Muhammad; Nadira Kamarudin; Wilfred Sylvester Paulus; Roslinda Shamsudin; Nasrat Hannah Shudin; Nurazila Mat Zali
2012-01-01
The preparation, physical and mechanical properties of Al/ B 4 C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B 4 C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/ B 4 C composites prepared by powder metallurgy was high. (Author)
International Nuclear Information System (INIS)
MacLeod, G.E.
1977-06-01
Various aspects of a powder metallurgy approach to fabricate filamentary niobium-tin superconducting wire were investigated. Difficulties occurred due to lack of complete tin infiltration of the sintered niobium rod, formation of intermetallics during infiltration, and both cladding and core fracture during mechanical reduction. The influence of sintering time, infiltration temperature, and deformation mode was investigated. Progress is reported on the clarification of the role of several of the important process parameters
Shen, Fu-hai; Ma, Qing-kun; Xiao, Shu-yu; Cui, Feng-tao; Meng, Qing-di; Yang, Xiu-qing; Qi, Hui-sheng; Fan, Xue-yun; Yao, San-qiao
2011-01-01
The purposes of this thesis were to study the behavior about workers exposed to dust and provide scientific basis for health promotion. We designed a questionnaire and carry it on the 746 dust workers in the 3 representative corporations of Machinery, Ceramic, and Metallurgy Industry. All data were input into computer. And a database was established with Excel. SPSS11.5 statistical analysis software was used to analyze the influence on protecting behavioral between the application of qualifications, different jobs, training or protection, and other aspects etc. The rates were 94.4% and 75.3% about the regular physical examination and requirements for protective equipment. The rate of choosing an effective way of protection was generally low (15.4%). There was significant difference for among different educational background workers (P Metallurgy Industry. Those who were not educated had a lower using rate about the protection behavior, regular physical examination, and requirements for protective equipment than those educated.
Energy Technology Data Exchange (ETDEWEB)
Gallego, J.R., E-mail: jgallego@uniovi.es [Environmental Technology, Biotechnology and Geochemistry Group, C/Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias (Spain); Esquinas, N.; Rodríguez-Valdés, E.; Menéndez-Aguado, J.M. [Environmental Technology, Biotechnology and Geochemistry Group, C/Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias (Spain); Sierra, C. [Environmental Technology, Biotechnology and Geochemistry Group, C/Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias (Spain); Escuela Superior Politécnica del Litoral, Guayaquil (Ecuador)
2015-12-30
Highlights: • Complex legacy of contamination afflicts As–Hg brownfields. • As- and Hg-rich waste analyzed in a paradigmatic study site. • Co-ocurrence of a complex speciation of As and Hg, and organic pollution (PAHs). • Arsenolite was determined to be the main source of risk at the site. • Unexpected Hg organo-compounds found. - Abstract: The abandonment of Hg–As mining and metallurgy sites, together with long-term weathering, can dramatically degrade the environment. In this work it is exemplified the complex legacy of contamination that afflicts Hg–As brownfields through the detailed study of a paradigmatic site. Firstly, an in-depth study of the former industrial process was performed to identify sources of different types of waste. Subsequently, the composition and reactivity of As- and Hg-rich wastes (calcines, As-rich soot, stupp, and flue dust) was analyzed by means of multielemental analysis, mineralogical characterization (X-ray diffraction, electronic, and optical microscopy, microbrobe), chemical speciation, and sequential extractions. As-rich soot in the form of arsenolite, a relatively mobile by-product of the pyrometallurgical process, and stupp, a residue originated in the former condensing system, were determined to be the main risk at the site. In addition, the screening of organic pollution was also aimed, as shown by the outcome of benzo(a) pyrene and other PAHs, and by the identification of unexpected Hg organo-compounds (phenylmercury propionate). The approach followed unravels evidence from waste from the mining and metallurgy industry that may be present in other similar sites, and identifies unexpected contaminants overlooked by conventional analyses.
Laser process for extended silicon thin film solar cells
International Nuclear Information System (INIS)
Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.
2011-01-01
We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.
Cooling γ precipitation behavior and strengthening in powder metallurgy superalloy FGH4096
Institute of Scientific and Technical Information of China (English)
TIAN Gaofeng; JIA Chengchang; WEN Yin; LIU Guoquan; HU Benfu
2008-01-01
Two cooling schemes (continuous cooling and interrupted cooling tests) were applied to investigate the cooling γ precipitation behavior in powder metallurgy superalloy FGH4096.The effect of cooling rate on cooling γ precipitation and the development of γ precipitates during cooling process were involved in this study.The ultimate tensile strength (UTS) of the specimens in various cooling circumstances was tested.The experiential equations were obtained between the average sizes of secondary and tertiary γ precipitates,the strength,and cooling rate.The results show that they are inversely correlated with the cooling rate as well as the grain boundary changes from serrated to straight,the shape of secondary γ precipitates changes from irregular cuboidal to spherical,while the formed tertiary γ precipitates are always spherical.The interrupted cooling tests show that the average size of secondary γ precipitates increases as a linear function of interrupt temperature for a fixed cooling rate of 24℃/min.The strength first decreases and then increases against interrupt temperature,which is fundamentally caused by the multistage nucleation of γ precipitates during cooling process.
State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
Zhan, Lu; Xu, Zhenming
2014-12-16
In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.
Minimization of radioactive solid wastes from uranium mining and metallurgy
International Nuclear Information System (INIS)
Zhang Xueli; Xu Lechang; Wei Guangzhi; Gao Jie; Wang Erqi
2010-01-01
The concept and contents of radioactive waste minimization are introduced. The principle of radioactive waste minimization involving administration optimization, source reduction, recycling and reuse as well as volume reduction are discussed. The strategies and methods to minimize radioactive solid wastes from uranium mining and metallurgy are summarized. In addition, the benefit from its application of radioactive waste minimization is analyzed. Prospects for the research on radioactive so-lid waste minimization are made in the end. (authors)
Production of a low young modulus titanium alloy by powder metallurgy
Directory of Open Access Journals (Sweden)
Dalcy Roberto dos Santos
2005-12-01
Full Text Available Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.
Hu, Chieh; Chen, Jyh Chen; Nguyen, Thi Hoai Thu; Hou, Zhi Zhong; Chen, Chun Hung; Huang, Yen Hao; Yang, Michael
2018-02-01
In this study, the power ratio between the top and side heaters and the moving velocity of the side insulation are designed to control the shape of the crystal-melt interface during the growth process of a 1600 kg multi-crystalline silicon ingot. The power ratio and insulation gap are adjusted to ensure solidification of the melt. To ensure that the crystal-melt interface is slightly convex in relation to the melt during the entire solidification process, the power ratio should be augmented gradually in the initial stages while being held to a constant value in the middle stages. Initially the gap between the side and the bottom insulation is kept small to reduce thermal stress inside the seed crystals. However, the growth rate will be slow in the early stages of the solidification process. Therefore, the movement of the side insulation is fast in the initial stages but slower in the middle stages. In the later stages, the side insulation gap is fixed. With these modifications, the convexity of the crystal-melt interface in relation to the melt can be maintained during the growth process with an approximately 41% reduction in the thermal stress inside the growing ingot and an 80% reduction in dislocation density along the center line of the ingot compared with the original case.
Properties of porous magnesium prepared by powder metallurgy.
Čapek, Jaroslav; Vojtěch, Dalibor
2013-01-01
Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone. Copyright © 2012 Elsevier B.V. All rights reserved.
Obtainment, machining and wear of metal matrix composites processed by powder metallurgy
International Nuclear Information System (INIS)
Jesus, Edilson Rosa Barbosa de.
1998-01-01
The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The
Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys
Harf, Fredric H.
1989-01-01
Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.
Annual report of the Metallurgy Division - period ending December 1975
International Nuclear Information System (INIS)
1976-01-01
The R and D activities of the Metallurgy Division of the Bhabha Atomic Research Centre, Bombay (India) during 1975 are described. Some of the R and D programmes of particular interest to nuclear technology are: (1) flowsheet development for the production of rare metals and alloys of nuclear use e.g. hafnium, beryllium, zirconium (2) metallurgical, irradiation hardening and corrosion studies on Zr and Zr-base alloys and (3) studies of nuclear ceramic materials such as UO2 and beryllia. (M.G.B.)
9th Mining and metallurgy international congress, Leon, 24-28 May 1994
International Nuclear Information System (INIS)
1994-01-01
The 9th Mining and Metallurgy International Congress had 201 communications. These was articulated into 4th areas: 1.- Geological resources management and profit: 1.1- Geological and mining research on geologic resources. 1.2.- Non energetic mineral resources exploitation. 1.3- Hydro-geologic and geothermia resources. 1.4- Geologic resources and planning. 2.- Energy: 2.1.- Energetic mining.- 2.2 Oil and gas. 2.3.- Electricity production and distribution. 2.4.- Coal clean technologies. 2.5.- Energetic management. 3.- Material engineering: 3.1.- Minerallurgia and metallurgic processes. 3.2- Industrial minerals and ornamental 10cks. 3.3 .- Building materials. 3.4 Advanced technology materials. 4.- Environmental and territorial engineering in basic industry. 4.1.-Valuation of environmental impacts. 4.2.- Restoration engineering in mining. 4.3.- Effluent and residue engineering. 4.4.- Environmental management and clean technologies 4.5.- Natural and technological risks
Properties of powder metallurgy steel forgings
International Nuclear Information System (INIS)
Crowson, A.; Anderson, F.E.
1977-01-01
The effects of processing variables on the mechanical properties of heat-treated powder metallurgy (P/M) steel forgings were determined. Prealloyed 4600 steel powder blended with graphite to yield 4640 was compacted into preforms and hot forged in a warm, closed die. Variables studied were preform density, method of lubrication, preform sintering (time, temperature and atmosphere), forging pressure (20 and 40 tsi) and temperature (1850 0 F, 2000 0 F and 2200 0 F), and forging ratio (0.75 and 0.95). Relationships between interconnected porosity and total porosity for the various preform densities were determined. High density compacts required higher sintering temperatures due to the restricted mobility of the reducing gases in the pores. Die wall lubrication was comparable to admixed lubrication, and it simplified powder mixing and preform sintering operations. Forgings with densities from 99 to 99.8 percent of theoretical density were attained with a forging pressure of 20 to 40 tsi and preform temperatures of 2000 0 F and above. At forging conditions which resulted in forgings with acceptable mechanical properties, complete die fill was accomplished at a forging ratio of 0.95, whereas incomplete die fill resulted at a forging ratio of 0.75. The response of P/M forgings to heat treatment was comparable to that for wrought materials, and the resultant tensile and yield strengths were equivalent to the strength values described for wrought 4640 steel in AMS specification 6317B. In addition, ductility and impact properties of P/M forgings with near theoretical density (99.5+ percent) were comparable to bar stock forgings
Chemistry and metallurgy in the Portuguese Empire
Energy Technology Data Exchange (ETDEWEB)
Habashi, F. [Laval Univ., Sainte-Foy, Quebec City, PQ (Canada)
2000-10-01
The foundation and expansion of the Portuguese Empire is sketched, with emphasis on the development of a new type of ship by Prince Henrique the Navigator (AD 1385-1460), known as the caravel. By virtue of its advanced design, it was capable of sailing the stormy seas at high speeds, and thereby was instrumental in extending Portuguese influence over vast territories in South America, Asia and Africa, extending Portuguese know-how in mining, metallurgy, chemistry and trade along with Christianity. The role played by the University of Coimbra, founded in 1306, and the contribution of the Brazilian Geological Survey, established in 1875, and of the School of Mines in Ouro Preto in Brazil in 1876, in the exploitation of the mineral wealth of the Portuguese colonies is chronicled.
Development of fully dense and high performance powder metallurgy HSLA steel using HIP method
Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping
2018-05-01
In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.
Modelling of injection processes in ladle metallurgy
Visser, H.
2016-01-01
Ladle metallurgical processes constitute a portion of the total production chain of steel from iron ore. With these batch processes, the hot metal or steel transfer ladle is being used as a reactor vessel and a reagent is often injected in order to bring the composition of the hot metal or steel to
Quality Management for Neutron Transmutation Doping of Silicon Ingot in HANARO
Energy Technology Data Exchange (ETDEWEB)
Kang, Ki-Doo; Kim, Ji-Uk; Yun, Hwa-Kyung; Lim, Chul-Hong; Kim, Young-Chil; Kim, Myong-Seop; Park, Sang-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-10-15
By using this doping method, silicon semiconductors with extremely uniform dopant distributions can be produced, and this is the dominant advantage of NTD compared with a conventional chemical doping. Good uniformity of a dopant concentration is usually required for high power applications such as thyristor (SCR), IGBT, IGCT and GTO and for special sensors. Achieving an accurate neutron fluence corresponding to a target resistivity as well as a uniform irradiation is the prime target of a neutron irradiation for NTD. Generally, in order to reach an accurate neutron fluence, a real time neutron flux is monitored by a neutron detector such as a Self-powered Neutron Detector(SPND). And, after an irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of a neutron activation sample that has been irradiated with a silicon ingot, and thus the SPND can be properly calibrated. Excellent irradiation uniformity and a high accuracy for a target neutron dose have been achieved from the early works of NTD. However, to maintain this excellent quality, the neutron irradiation fluence should be continuously modified and controlled. So, in this work, an activity to maintain the irradiation quality is introduced.
Physical metallurgy: Scientific school of the Academician V.M. Schastlivtsev
Tabatchikova, T. I.
2016-04-01
This paper is to honor Academician Vadim Mikhailovich Schastlivtsev, a prominent scientist in the field of metal physics and materials science. The article comprises an analysis of the topical issues of the physical metallurgy of the early 21st century and of the contribution of V.M. Schastlivtsev and of his school to the science of phase and structural transformations in steels. In 2015, Vadim Mikhailovich celebrates his 80th birthday, and this paper is timed to this honorable date. The list of his main publications is given in it.
Directory of Open Access Journals (Sweden)
Churl Min Kim
2017-04-01
Full Text Available The Kyropoulos (Ky and Czochralski (Cz methods of crystal growth are used for large-diameter single crystals. The seeding process in these methods must induce initial crystallization by initiating contact between the seed crystals and the surface of the melted material. In the Ky and Cz methods, the seeding process lays the foundation for ingot growth during the entire growth process. When any defect occurs in this process, it is likely to spread to the entire ingot. In this paper, a vision system was constructed for auto seeding and for observing the surface of the melt in the Ky method. An algorithm was developed to detect the time when the internal convection of the melt is stabilized by observing the shape of the spoke pattern on the melt material surface. Then, the vision system and algorithm were applied to the growth furnace, and the possibility of process automation was examined for sapphire growth. To confirm that the convection of the melt was stabilized, the position of the island (i.e., the center of a spoke pattern was detected using the vision system and image processing. When the observed coordinates for the center of the island were compared with the coordinates detected from the image processing algorithm, there was an average error of 1.87 mm (based on an image with 1024 × 768 pixels.
Corrosion resistant zirconium alloys prepared by powder metallurgy
International Nuclear Information System (INIS)
Wojeik, C.C.
1984-01-01
Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described
Slag inclusions in vacuum-melted ingots of the KhN73MBTYu nickel base alloy
International Nuclear Information System (INIS)
Gorin, V.A.; Kleshchev, A.S.; Kazharskaya, L.P.
1977-01-01
Three types of slag inclusions in ingots of the vacuum-arc-remelted nickel alloy KhN73MBTYu are considered. Type 1 inclusions are those in the surface zone; type 2 inclusions are agglomerations of nitrides and oxides formed due to the fall of lining slag; type 3 inclusions consist of agglomerations of nitrides and oxides as a result of interaction of dissolved oxygen and nitrogen with melt components. The inclusions are removed by machining of the lateral surface. It should be noted that the presence of a large amount of slag on the surface of the molten pool adversely affects the stability of the electrical regime of melting. Strict adherence to the recommendations on the melting and pouring of the initial metal reduces the pollution of the consumable electrode with nonmetallic inclusions
Energy Technology Data Exchange (ETDEWEB)
Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)
2015-01-15
Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.
Energy Technology Data Exchange (ETDEWEB)
Bush, R.W., E-mail: ralph.bush@usafa.edu [Department of Engineering Mechanics, 2354 Fairchild Dr., U.S. Air Force Academy, USAF Academy, CO 80840 (United States); Brice, C.A. [Lockheed Martin Aeronautics Co., Fort Worth, TX (United States)
2012-09-30
Highlights: Black-Right-Pointing-Pointer Electron beam freeform fabrication process. Black-Right-Pointing-Pointer Ti-6Al-4V and rare-earth dispersion Ti alloy. Black-Right-Pointing-Pointer Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. Black-Right-Pointing-Pointer Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti-8Al-1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti-8Al-1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti-6Al-4V and Ti-8Al-1Er were measured and compared to those of laser beam additive manufactured Ti-8Al-1Er and wrought Ti-6Al-4V. Elevated temperature tensile properties were measured between 93 Degree-Sign and 538 Degree-Sign C. Creep tests were performed between 425 Degree-Sign and 455 Degree-Sign C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti-8Al-1Er are comparable to those of Ti-6Al-4V in percentage of room
International Nuclear Information System (INIS)
Bush, R.W.; Brice, C.A.
2012-01-01
Highlights: ► Electron beam freeform fabrication process. ► Ti–6Al–4V and rare-earth dispersion Ti alloy. ► Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. ► Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti–8Al–1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti–8Al–1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti–6Al–4V and Ti–8Al–1Er were measured and compared to those of laser beam additive manufactured Ti–8Al–1Er and wrought Ti–6Al–4V. Elevated temperature tensile properties were measured between 93° and 538 °C. Creep tests were performed between 425° and 455 °C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti–8Al–1Er are comparable to those of Ti–6Al–4V in percentage of room temperature strength retained at temperature. Based on a Larson–Miller analysis of the creep test
Czech Academy of Sciences Publication Activity Database
Novák, P.; Kubatík, Tomáš František; Vystrčil, J.; Hendrych, R.; Kříž, J.; Mlynár, J.; Vojtěch, D.
2014-01-01
Roč. 52, September (2014), s. 131-137 ISSN 0966-9795 Institutional support: RVO:61389021 Keywords : Nanostructure intermetallics * Ternary alloys systems * Mechanical alloying and milling * Sintering * Diffraction Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0966979514001198#
International Nuclear Information System (INIS)
Bennett, G.L.
1979-09-01
The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics
Process and Information Tracking of Polycrystalline silicon Ingot for Solar Cell%铸锭多晶硅电池生产流程及信息跟踪
Institute of Scientific and Technical Information of China (English)
焦富强; 乔卉莹
2014-01-01
Si-based photovoltaic materials account for a large proportion in the field of new energy, in which polycrystalline silicon ingot for solar cell is the main type. Many procedures must be used for production of the poly-crystalline silicon solar cell, therefore, accurate recording and tracking information of stuff and procedures play an im-portant role in technical improvement. In this paper, process and information tracking of every procedure in produc-tion of polycrystalline silicon solar cell are discussed, and easy encountered problems in information tracking are ana-lyzed.%在新能源开发利用领域硅基光伏材料占有较大比重,其中铸锭多晶硅光伏电池是当前太阳能电池的主要品种。生产多晶硅电池需要经历众多的加工工序,准确有序记录和跟踪物料流向及各工序相关信息是工艺研究和技术改进的基础。就铸锭多晶硅电池片生产流程及各工序信息跟踪问题进行了论述,并对实施信息跟踪时易出现的问题进行了分析。
Martínez Cortizas, Antonio; López-Merino, Lourdes; Bindler, Richard; Mighall, Tim; Kylander, Malin E
2016-03-01
Although archaeological research suggests that mining/metallurgy already started in the Chalcolithic (3rd millennium BC), the earliest atmospheric metal pollution in SW Europe has thus far been dated to ~3500-3200 cal.yr. BP in paleo-environmental archives. A low intensity, non-extensive mining/metallurgy and the lack of appropriately located archives may be responsible for this mismatch. We have analysed the older section (>2100 cal.yr. BP) of a peat record from La Molina (Asturias, Spain), a mire located in the proximity (35-100 km) of mines which were exploited in the Chalcolithic/Bronze Age, with the aim of assessing evidence of this early mining/metallurgy. Analyses included the determination of C as a proxy for organic matter content, lithogenic elements (Si, Al, Ti) as markers of mineral matter, and trace metals (Cr, Cu, Zn, Pb) and stable Pb isotopes as tracers of atmospheric metal pollution. From ~8000 to ~4980 cal.yr. BP the Pb composition is similar to that of the underlying sediments (Pb 15 ± 4 μg g(-1); (206)Pb/(207)Pb 1.204 ± 0.002). A sustained period of low (206)Pb/(207)Pb ratios occurred from ~4980 to ~2470 cal.yr. BP, which can be divided into four phases: Chalcolithic (~4980-3700 cal.yr. BP), (206)Pb/(207)Pb ratios decline to 1.175 and Pb/Al ratios increase; Early Bronze Age (~3700-3500 cal.yr. BP), (206)Pb/(207)Pb increase to 1.192 and metal/Al ratios remain stable; Late Bronze Age (~3500-2800 cal.yr. BP), (206)Pb/(207)Pb decline to their lowest values (1.167) while Pb/Al and Zn/Al increase; and Early Iron Age (~2800-2470 cal.yr. BP), (206)Pb/(207)Pb increase to 1.186, most metal/Al ratios decrease but Zn/Al shows a peak. At the beginning of the Late Iron Age, (206)Pb/(207)Pb ratios and metal enrichments show a rapid return to pre-anthropogenic values. These results provide evidence of regional/local atmospheric metal pollution triggered by the earliest phases of mining/metallurgy in the area, and reconcile paleo-environmental and
Güner, F.; Sofuoğlu, H.
2018-01-01
Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.
International Nuclear Information System (INIS)
Duan Qunzhang
1999-01-01
The author reviewed recent development and practical application of solid phase spectrophotometry in analysis of materials and goods of mining-metallurgy. Separation and preconcentration and conditions of coloring determination, sensitivity and range of detection, as well as interference of corresponding method are discussed
Metallurgy department progress report for the period 1 January to 31 December 1976
International Nuclear Information System (INIS)
1977-03-01
The activities of the Metallurgy Department at Riso during 1976 are described. The work is presented in four chapters: General Materials Research, Technology and Materials Development, Fuel Elements, and Non-Destructive Testing. Furthermore, a survey is given of the department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1976 is included
Metallurgy department progress report for the period 1 January to 31 December 1982
International Nuclear Information System (INIS)
1983-07-01
The activities of the Metallurgy Department at Risoe during 1982 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Deveopment, Fuel Elements. Furthermore, a survey is given of the department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1982 is included. (author)
Metallurgy department progress report for the period 1 January to 31 December 1983
International Nuclear Information System (INIS)
1984-06-01
The activities of the Metallurgy Department at Risoe during 1983 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Development, and Fuel Elements. Furthermore, a survey is given of the Department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1983 is included. (author)
Metallurgy Department progress report for the period 1 January to 31 December 1984
International Nuclear Information System (INIS)
1985-04-01
The activities of the Metallurgy Department at Risoe during 1984 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Development, and Fuel Elements. A survey is given of the Department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1984 is included. (author)
Metallurgy department progress report for the period 1 January to 31 December 1980
International Nuclear Information System (INIS)
1981-07-01
The activities of the Metallurgy Department at Risoe during 1980 are described. The work is presented in four chapters: General Materials Research, Technology and Materials Development, Fuel Elements, Non-Destructive Testing. Furthermore, a survey is given of the department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1980 is included. (Author)
Metallurgy department progress report for the period 1 January to 31 December 1981
International Nuclear Information System (INIS)
1982-07-01
The activities of the Metallurgy Department at Risoe during 1981 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Development, Fuel Elements. Furthermore, a survey is given of the department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1981 is included. (author)
Effect of cerium and thermomechanical processing on microstructure
Indian Academy of Sciences (India)
The effect of cerium content and thermomechanical processing on structure and properties of Fe–10.5 wt.%Al–0.8 wt%C alloy has been investigated. Alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot-forged and hotrolled at ...
Zhan, Lu; Xu, Zhenming
2008-10-15
The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.
Processing method for high resolution monochromator
International Nuclear Information System (INIS)
Kiriyama, Koji; Mitsui, Takaya
2006-12-01
A processing method for high resolution monochromator (HRM) has been developed at Japanese Atomic Energy Agency/Quantum Beam Science Directorate/Synchrotron Radiation Research unit at SPring-8. For manufacturing a HRM, a sophisticated slicing machine and X-ray diffractometer have been installed for shaping a crystal ingot and orienting precisely the surface of a crystal ingot, respectively. The specification of the slicing machine is following; Maximum size of a diamond blade is φ 350mm in diameter, φ 38.1mm in the spindle diameter, and 2mm in thickness. A large crystal such as an ingot with 100mm in diameter, 200mm in length can be cut. Thin crystal samples such as a wafer can be also cut using by another sample holder. Working distance of a main shaft with the direction perpendicular to working table in the machine is 350mm at maximum. Smallest resolution of the main shaft with directions of front-and-back and top-and-bottom are 0.001mm read by a digital encoder. 2mm/min can set for cutting samples in the forward direction. For orienting crystal faces relative to the blade direction adjustment, a one-circle goniometer and 2-circle segment are equipped on the working table in the machine. A rotation and a tilt of the stage can be done by manual operation. Digital encoder in a turn stage is furnished and has angle resolution of less than 0.01 degrees. In addition, a hand drill as a supporting device for detailed processing of crystal is prepared. Then, an ideal crystal face can be cut from crystal samples within an accuracy of about 0.01 degrees. By installation of these devices, a high energy resolution monochromator crystal for inelastic x-ray scattering and a beam collimator are got in hand and are expected to be used for nanotechnology studies. (author)
Shur, P Z; Zaĭtseva, N V; Kostarev, V G; Lebedeva-Nesevria, N A; Shliapnikov, D M
2012-01-01
Results of health risk evaluation in workers engaged into powder metallurgy, using complex of hygienic, medical, epidemiologic and sociologic studies, enable to define priority occupational and social risk factors, to assess degree of their influence on the workers' health and to identify occupationally induced diseases.
Zhan, Lu; Xu, Zhenming
2014-12-01
Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. © The Author(s) 2014.
Powder metallurgy: Solid and liquid phase sintering of copper
Sheldon, Rex; Weiser, Martin W.
1993-01-01
Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.
Surface metallurgy of cemented carbide tools
International Nuclear Information System (INIS)
Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.
1983-01-01
Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)
The metallurgy of superalloys part 2
International Nuclear Information System (INIS)
Abdelazim, M.E.; Hammad, F.H.
1990-01-01
This is part II of the report titled 'the metallurgy of superalloys'. It deals with the effect of heat treatment and operating conditions (thermal exposure and environment) on the mechanical properties of superalloys. The heat treatment is important in the development of superalloys through that it controls type, amount, size shape and distribution of the precipitate and the grain size of the matrix. The thermal exposure leads to reduction in the amount of the primary carbides and to precipitation of secondary carbides. Also it leads to the agglomeration and coarsening of gamma or the transformation of gamma phase to phase. The environment may lead to the internal oxidation, carburization, decarburization or sulphidization of the superalloys which may result in the degradation of their mechanical properties. This part gives also an example of applications of superalloys in the field of nuclear reactors especially high temperature-gas cooled reactors. Joined with this part a table which contains the major superalloys including its chemical analysis, creep rupture strength and some of its applications. 1 tab
The metallurgy of superalloys part 1
International Nuclear Information System (INIS)
Abdelazim, M.E.; Hammad, F.H.
1990-01-01
This is part I of the report titled 'the metallurgy of superalloys'. In this part the structure, phases and systems of superalloys are reviewed. The role of alloying elements in the design of superalloys and the mechanical properties of superalloys are also reviewed. Superalloys are important in high temperature technology, especially above 700 degree c. They are 'super' mainly because their creep and stress rupture resistances are very high. Superalloys are based on an austenitic matrix including secondary phases, mainly gamma precipitates, inter and intragranular carbides mainly M 23 C 6 and M 6 C. They are classified into three systems, Ni-base, Fe-Ni base and Ce-base alloys. Different alloying elements mainly Cr, Mo, Al, Ti are added to increase the strength either by solid solution hardening (Cr, Mo, Al), precipitation hardening (A 1, Ti to produce gamma) or by dispersion hardening (Cr, Mo to form M 23 C 6 and M 6 C carbides) and to increase the oxidation resistance (Cr, Al). 3 tab., 2 fig
International Nuclear Information System (INIS)
Smith, N.C.
1980-12-01
This list constitutes unclassified material published or presented between January 1979 and July 1980, by the staff of Metallurgy Division. It covers reports, memoranda, articles in periodicals, conference papers, books and patent specifications. (author)
Metallurgy department progress report for the period 1 January to 31 December 1978
International Nuclear Information System (INIS)
1979-04-01
The activities of the metallurgy department at Risoe during 1978 are described. The work is presented in four chapters: General materials research, technology and materials development, fuel elements, and non-destructive testing. Furthermore, a survey is given of the depratment's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1978 is included. (author)
Metallurgy Department progress report for the period 1 January to 31 December 1985
International Nuclear Information System (INIS)
Schroeder Pedersen, A.; Bilde Soerensen, J.B.
1986-04-01
The activities of the Metallurgy department at Risoe during 1985 are described. The work is presented in four chapters: General Materials Research, Technology and Materials Development, Chemical and Electrochemical Energy Research and Development, and Fuel elements. A survey is given of the Department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1985 is included. (author)
Metallurgy Department progress report for the period 1 January to 31 December 1986
International Nuclear Information System (INIS)
Schroeder Pedersen, A.; Bilde-Soerensen, J.B.
1987-04-01
The activities of the Metallurgy Department at Risoe during 1986 are described. The work is presented in four chapters: General Materials Research, Technology and Materials Development, Chemical and Electrochemical Energy Research and Development, and Fuel Elements. A survey is given of the Department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1986 is included. (editors)
Metallurgy department progress report for the period 1 January to 31 December 1975
International Nuclear Information System (INIS)
1976-03-01
The activities of the Metallurgy Department at Risoe during 1975 are described. The work is presented in four chapters: General Materials Research, Technology and Materials Development, Fuel Elements, and Non-Destructive Testing. Furthermore, a survey is given of the department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1975 is included. (author)
Metallurgy department progress report for the period 1 January to 31 December 1977
International Nuclear Information System (INIS)
1978-03-01
The activities of the Metallurgy Department at Risoe during 1977 are described. The work is presented in four chapters: General Materials Research, Technology and Materials Development, Fuel elements, and Non-Destructive Testing. Furthermore, a survey is given of the department's participation in international collaboration and of its activities within education and training. A list (with abstracts) of publications and lectures by the staff during 1977 is included. (author)
[Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].
Dabrowski, J R
2001-04-01
This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.
Some observations on the physical metallurgy of nickel alloy weld metals
International Nuclear Information System (INIS)
Skillern, C.G.; Lingenfelter, A.C.
1982-01-01
Numerous nickel alloys play critical roles in various energy-related applications. Successful use of these alloys is almost always dependent on the availability of acceptable welding methods and welding products. An understanding of the physical metallurgy of these alloys and their weld metals and the interaction of weld metal and base metal is essential to take full advantage of the useful properties of the alloys. To illustrate this point, this paper presents data for two materials: INCONEL alloy 718 and INCONEL Welding Electrode 132. 8 figures, 9 tables
Directory of Open Access Journals (Sweden)
Yan Zhao
2018-01-01
Full Text Available In recent years, the rolling densification process has become increasingly widely used to strengthen powder metallurgy parts. The original composition of the rolled powder metallurgy blank has a significant effect on the rolling densification technology. The present work investigated the effects of different carbon contents (0 wt. %, 0.2 wt. %, 0.45 wt. %, and 0.8 wt. % on the rolling densification. The selection of the raw materials in the surface rolling densification process was analyzed based on the pore condition, structure, hardness, and friction performance of the materials. The results show that the 0.8 wt. % carbon content of the surface rolling material can effectively improve the properties of iron-based powder metallurgy parts. The samples with 0.8 wt. % carbon have the highest surface hardness (340 HV0.1 and the lowest surface friction coefficient (0.35. Even if the dense layer depth is 1.13 mm, which is thinner than other samples with low carbon content, it also meets the requirements for powder metallurgy parts such as gears used in the auto industry.
Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping
2018-05-01
The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).
Twidwell, L. G.
Four courses in extractive metallurgy (Pyrometallurgy, Hydrometallurgy, Electrometallurgy; and Physical Chemistry of Iron and Steel) were prepared in a modular, self-paced format. Development of the course materials included: (1) preparation of course outlines by unit coordinators and advisory committees; (2) approval of course outlines (included…
International Nuclear Information System (INIS)
Koeppel, B.J.; Subhash, G.
1999-01-01
The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed
Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China
International Nuclear Information System (INIS)
Pan Yingjie; Xue Jianxin; Chen Zhongqiu
2012-01-01
Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)
Energy Technology Data Exchange (ETDEWEB)
1988-01-01
The meeting covered many aspects of mining and metallurgy including: underground and surface mining of coal; coal preparation; desulfurization and conversion; coal and coal waste combustion, including FBC; coal quality and chemistry; coal gasification; research programs on coal, the economics of the Spanish coal industry; and the Spanish coal industry and the European Community.
Superplasticity in powder metallurgy aluminum alloys and composites
International Nuclear Information System (INIS)
Mishra, R.S.; Bieler, T.R.; Mukherjee, A.K.
1995-01-01
Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding
International Nuclear Information System (INIS)
Kartavykh, A.V.; Tcherdyntsev, V.V.; Gorshenkov, M.V.; Kaloshkin, S.D.
2014-01-01
Highlights: ► VGF power-down technique is suitable for TiAl-based alloys solidification with tailored microstructure. ► Both columnar-dendrite and granular structures are created in Ti–46Al–8Nb ingots. ► Granular microstructure has been refined with TiB 2 addition to the melt. ► TiB 2 re-precipitate into (Ti,Nb)B particles, those acting as point seeds for fine equiaxed grains nucleation. -- Abstract: The work is aimed at the study of the formation and refinement of primary microstructure appearing in the refractory lightweight structural TiAl-based alloy of Ti–46Al–8Nb (at.%) nominal composition. For tailored microstructure development, the Directional Solidification (DS) of pre-synthesized alloy was performed in the vertical multizone resistive electro-furnace by power-down technique in pure argon environment. Both columnar-dendrite, and equiaxed-granular reproducible as-cast microstructures have been produced in DS ingots, basing on Columnar-to-Equiaxed Transition (CET) diagram and experimental exploration. Particular attention was paid further to equiaxed microstructure improvement by combination of modifying doping of alloy with boron grain refiner and DS processing. As a result the perfect inoculated microstructure of Ti–44Al–7Nb–2B (at.%) ingots was produced with 100 μm mean grain diameter, low scattering of dimensional grain characteristics and high tolerance to DS process parameters variation
German, Carl, Jr.
The major purpose of this guide is to elicit the information necessary for writing educational specifications for facilities to house technical education programs in metallurgy. It is organized in these parts: (1) Part I discusses the major purpose, underlying assumptions, recent instructional trends, and guiding principles utilized in the…
Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy
Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.
2017-01-01
Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.
Boride particles in a powder metallurgy superalloy
Energy Technology Data Exchange (ETDEWEB)
Witt, M C; Charles, J A
1985-12-01
Using optical and electron metallography, the composition, morphology, and distribution of M/sub 3/B/sub 2/ borides in as-hipped (hot isostatically pressed) samples of the powder metallurgy superalloy Nimonic AP1 have been determined. Two types of boride are present depending on the HIP temperature. Hipping below the boride solvus results in low-aspect ratio particles, distributed both inter- and intragranularly. Hipping above the boride solvus produces high-aspect ratio particles which are exclusively intergranular. A small difference in both lattice parameter and composition has been measured. Electron energy loss spectroscopy of the particles has confirmed the presence of boron, and laser ion-induced mass analysis has indicated a low carbon level. The higher susceptibility to edge cracking during forging of material hipped above the boride solvus is related to the boride morphology. Studies of the subsequent recrystallization of the forged samples have indicated that necklace formation is neither inhibited nor accelerated by the presence of grain boundary borides. 18 references.
Energy Technology Data Exchange (ETDEWEB)
Olmos, L.; Alvarado-Hernandez, F.; Omar Jimenez, H.; Vergara-Hernandez, J.; Arroyo Albiter, M.; Ochoa-Gamboa, R. A.
2015-07-01
The main drawback of ferromagnetic shape memory alloys fabricated through casting methods are its brittleness. In order to overcome this disadvantage, powder metallurgy is an ideal technique for the consolidation of many engineering parts. This paper is focused on the study of the milling and sintering effects of metallic powders over the evolution of the crystalline phases responsibly for the shape memory effect of these materials. To achieve this objective, ferromagnetic shape memory alloy powders (Ni{sub 5}3.5-Fe{sub 1}9.5-Ga{sub 2}7) were prepared from a cast ingot by mechanical milling at two different times of 30 and 60 minutes. The evolution of the phases was investigated through high temperature X-ray diffraction (HTXRD), whereas sintering was analyzed with dilatometry tests. X-ray studies showed that four different phases can be present depending on the particle size and temperature at which the heat treatment was performed. Coarser powders showed a B2 structure along with a γ phase while the finer showed a L21 structure when treated below 1173 K. Furthermore, finer powders had a modulated M14 martensitic structure after sintering at temperatures above 1273 K. The sintering of powders was slow and a mass diffusion mechanism was not clearly observed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Jankowiak, A.; Leorier, C.; Desmouliere, F.; Donnet, L. [Commissariat a l' Energie Atomique (CEA), CEA/DEN/VRH/DTEC/SDTC/LEMA, 30207 Bagnols-sur-Ceze cedex (France)
2008-07-01
Transmutation of minor actinides enables to produce energy and to turn them into shorter-lived nuclides. This promising way to reduce the long-term waste radiotoxicity is world wide investigated. In the framework of the Global Actinide Cycle International Demonstration and regarding the homogeneous recycling for transmutation in fast reactors, minor actinides (Am, Np, Cm) bearing MOX fuel pellets were fabricated in the ATALANTE facility by a conventional powder metallurgy process (milling then pressing and finally sintering). The sintered pellets were submitted to a visual inspection where neither crack nor strain was detected. In addition, the pellets exhibit a density in the range 93-96% TD which makes them proper to the irradiation in fast reactors. The pellets were characterized by XRD (X radiation diffraction) and SEM (scanning electron microscopy) combined to image analysis. (authors)
Newbury, Brian Dale
The astrolabe collection of the Adler Planetarium and History of Astronomy Museum, Chicago, IL, was examined using non-destructive synchrotron based high-energy X-ray techniques including diffraction, fluorescence, and radiography to determine the metallurgy, microstructure, and metal forming processes used in astrolabe construction. All high-energy X-ray measurements were performed at the Advanced Photon Source (APS) synchrotron of Argonne National Laboratory, Argonne, IL. Astrolabes from the collection were selected to represent all major astrolabe production centers possible and time periods. It was found that all European astrolabes were manufactured of traditional cementation brass by hand worked metal forming processes consistent with technology in the literature. Of the Islamic astrolabes examined, all seven from Lahore in current-day Pakistan exhibited advanced brass alloys not typical of alloys discussed in the literature. It was found that these alloys were selected for their specific hot working properties, allowing the Lahore metalworkers to more efficiently make brass sheet from which to make astrolabe components. In addition, the alloy required a fundamental change in the brass foundry process, indicating advanced Zn metal production techniques. It was found that analysis by high energy X-rays from the APS was essential to produce data on the chemistry and microstructure from the interior of the astrolabe components in a non-destructive manner. Many astrolabe components had undergone surface dezincification due to heavy annealing during manufacturing, causing the Zn composition measured by the surface sensitive fluorescence technique to be lower than the true bulk alloy Zn composition. This would have been impossible to quantify non-destructively without the high-energy diffraction capability of the APS. The results of this study have proven the effectiveness of the synchrotron as a viable non-destructive analysis technique for examining cultural
Development of interface technology between unit processes in E-Refining process
Energy Technology Data Exchange (ETDEWEB)
Lee, S. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-10-15
The pyroprocessing is composed mainly four subprocesses, such as an electrolytic reduction, an electrorefining, an electrowinning, and waste salt regeneration/ solidification processes. The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, is under development by Korea Atomic Energy Research Institute as a sub process of pyrochemical treatment of spent PWR fuel. The CERS(Continuous ElectroRefining System) is composed of some unit processes such as an electrorefiner, a salt distiller, a melting furnace for the U-ingot and U-chlorinator (UCl{sub 3} making equipment) as shown in Fig. 1. In this study, the interfaces technology between unit processes in E-Refining system is investigated and developed for the establishment of integrated E-Refining operation system as a part of integrated pyroprocessing
Energy Technology Data Exchange (ETDEWEB)
Martínez Cortizas, Antonio, E-mail: antonio.martinez.cortizas@usc.es [Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Campus Sur s/n, Santiago de Compostela (Spain); López-Merino, Lourdes, E-mail: lourdes.lopez-merino@brunel.ac.uk [Institute of Environment, Health and Societies, Brunel University London, UB8 3PH Uxbridge (United Kingdom); Bindler, Richard, E-mail: richard.bindler@umu.se [Department of Ecology and Environmental Science, Umeå University, Umeå (Sweden); Mighall, Tim, E-mail: t.mighall@abdn.ac.uk [Department of Geography & Environment, School of Geosciences, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF (United Kingdom); Kylander, Malin E., E-mail: malin.kylander@geo.su.se [Department of Geological Sciences and the Bolin Centre for Climate Research, Stockholm University, SE-10691, Stockholm (Sweden)
2016-03-01
Although archaeological research suggests that mining/metallurgy already started in the Chalcolithic (3rd millennium BC), the earliest atmospheric metal pollution in SW Europe has thus far been dated to ~ 3500–3200 cal. yr. BP in paleo-environmental archives. A low intensity, non-extensive mining/metallurgy and the lack of appropriately located archives may be responsible for this mismatch. We have analysed the older section (> 2100 cal. yr. BP) of a peat record from La Molina (Asturias, Spain), a mire located in the proximity (35–100 km) of mines which were exploited in the Chalcolithic/Bronze Age, with the aim of assessing evidence of this early mining/metallurgy. Analyses included the determination of C as a proxy for organic matter content, lithogenic elements (Si, Al, Ti) as markers of mineral matter, and trace metals (Cr, Cu, Zn, Pb) and stable Pb isotopes as tracers of atmospheric metal pollution. From ~ 8000 to ~ 4980 cal. yr. BP the Pb composition is similar to that of the underlying sediments (Pb 15 ± 4 μg g{sup −1}; {sup 206}Pb/{sup 207}Pb 1.204 ± 0.002). A sustained period of low {sup 206}Pb/{sup 207}Pb ratios occurred from ~ 4980 to ~ 2470 cal. yr. BP, which can be divided into four phases: Chalcolithic (~ 4980–3700 cal. yr. BP), {sup 206}Pb/{sup 207}Pb ratios decline to 1.175 and Pb/Al ratios increase; Early Bronze Age (~ 3700–3500 cal. yr. BP), {sup 206}Pb/{sup 207}Pb increase to 1.192 and metal/Al ratios remain stable; Late Bronze Age (~ 3500–2800 cal. yr. BP), {sup 206}Pb/{sup 207}Pb decline to their lowest values (1.167) while Pb/Al and Zn/Al increase; and Early Iron Age (~ 2800–2470 cal. yr. BP), {sup 206}Pb/{sup 207}Pb increase to 1.186, most metal/Al ratios decrease but Zn/Al shows a peak. At the beginning of the Late Iron Age, {sup 206}Pb/{sup 207}Pb ratios and metal enrichments show a rapid return to pre-anthropogenic values. These results provide evidence of regional/local atmospheric metal pollution triggered by the