WorldWideScience

Sample records for infrared-vanishing gluon propagator

  1. Gluon propagator with dynamical quarks

    CERN Document Server

    Papavassiliou, Joannis

    2014-01-01

    We review recent work on the effects of quark loops on the gluon propagator in the Landau gauge, relying mainly on the Schwinger-Dyson equations that describe the two-point sector of QCD. Particularly important in this context is the detailed study of how the standard gluon mass generation mechanism, which is responsible for the infrared finiteness of the quenched gluon propagator, is affected by the inclusions of dynamical quarks. This issue is especially relevant and timely, given the qualitative picture that emerges from recent unquenched lattice simulations. Our results demonstrate clearly that the gluon mass generation persists, and that the corresponding saturation points of the unquenched gluon propagators are progressively suppressed, as the number of quark flavors increases.

  2. Unquenched Gluon Propagator in Landau Gauge

    OpenAIRE

    2004-01-01

    Using lattice quantum chromodynamics (QCD) we perform an unquenched calculation of the gluon propagator in Landau gauge. We use configurations generated with the AsqTad quark action by the MILC collaboration for the dynamical quarks and compare the gluon propagator of quenched QCD (i.e., the pure Yang-Mills gluon propagator) with that of 2+1 flavor QCD. The effects of the dynamical quarks are clearly visible and lead to a significant reduction of the nonperturbative infrared enhancement relat...

  3. Gluon Propagator in Fractional Analytic Perturbation Theory

    CERN Document Server

    Allendes, Pedro; Cvetič, Gorazd

    2014-01-01

    We consider the gluon propagator in the Landau gauge at low spacelike momenta and with the dressing function $Z(Q^2)$ at the two-loop order. We incorporate the nonperturbative effects by making the (noninteger) powers of the QCD coupling in the dressing function $Z(Q^2)$ analytic (holomorphic) via the Fractional Analytic Perturbation Theory (FAPT) model, and simultaneously introducing the gluon dynamical mass in the propagator as motivated by the previous analyses of the Dyson-Schwinger equations. The obtained propagator has behavior compatible with the unquenched lattice data ($N_f=2+1$) at low spacelike momenta $0.4 \\ {\\rm GeV} < Q \\lesssim 10$ GeV. We conclude that the removal of the unphysical Landau singularities of the powers of the coupling via the (F)APT prescription, in conjunction with the introduction of the dynamical mass $M \\approx 0.62$ GeV of the gluon, leads to an acceptable behavior of the propagator in the infrared regime.

  4. Dependence of Quark Effective Mass on Gluon Propagators

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing

    2005-01-01

    Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.

  5. Unquenching effects in the quark and gluon propagator

    Science.gov (United States)

    Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo

    2007-11-01

    In this work we examine the fat-link irrelevant clover (FLIC) overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole-improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalization function, and gluon dressing function in the infrared. The ultraviolet physics is unaffected.

  6. Canonical derivation of the gluon propagator in the temporal gauge

    OpenAIRE

    Girotti, Horacio Oscar; Rothe, Heinz J.

    1986-01-01

    We reexamine the problem of obtaining, within the operator approach, an unambiguous expression for the longitudinal gluon propagator in the temporal gauge. A regularization procedure respecting Gauss's law and the Hermiticity of the gauge fields is proposed. We thereby obtain a definite expression for the longitudinal propagator which agrees with that proposed by Caracciolo, Curci, and Menotti.

  7. K\\"allen-Lehman Representation and the Gluon Propagator

    CERN Document Server

    Frasca, Marco

    2007-01-01

    We exploit the Kallen-Lehman representation of the two-point Wightman function to prove that the gluon propagator cannot go to zero in the infrared limit. We are able to derive also the functional form of it. This means that current results on the lattice can be used to derive the scalar glueball spectrum to be compared both with experiments and different aimed lattice computations.

  8. Lattice Landau gauge quark propagator and the quark-gluon vertex

    CERN Document Server

    Oliveira, Orlando; Silva, Paulo J; Skullerud, Jon-Ivar; Sternbeck, Andre; Williams, Anthony G

    2016-01-01

    We report preliminary results of our ongoing lattice computation of the Landau gauge quark propagator and the soft gluon limit of the quark-gluon vertex with 2 flavors of dynamical O(a) improved Wilson fermions.

  9. Numerically Solving Quark-Loop Effects on Dressed Gluon Propagator in Chiral Limit

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-Ying; WANG Jing; Alatancang; SHI Yuan-Mei; HOU Feng-Yao; SUN Wei-Min; ZONG Hong-Shi; PING Jia-Lun

    2008-01-01

    We do a numerical calculation on the quark-loop effects on the dressed gluon propagator in the chiral limit. It is found that the quark-loop effects on the dressed gluon propagator are significant in solving the quark propagator in the rainbow approximation of the Dyson-Schwinger equation. The approach we used here is quite general and can also be used to calculate both the chemical potential and current quark mass dependence of the dressed gluon propagator.

  10. Universal scaling of gluon and ghost propagators in the infrared

    CERN Document Server

    Siringo, Fabio

    2016-01-01

    A universal behavior is predicted for ghost and gluon propagators in the infrared. The universal behavior is shown to be a signature of a one-loop approximation and emerges naturally by the massive expansion that predicts universal analytical functions for the inverse dressing functions that do not depend on any parameter or color number. By a scaling of units and by adding an integration constant, all lattice data, for different color numbers (and even quark content for the ghosts), collapse on the same universal curves predicted by the massive expansion.

  11. Universal behavior of gluon and ghost propagators in the infrared

    Science.gov (United States)

    Siringo, Fabio

    2017-03-01

    A universal behavior is predicted for ghost and gluon propagators in the infrared. The universal behavior is shown to be a signature of a one-loop approximation and emerges naturally by the massive expansion that predicts universal analytical functions for the inverse dressing functions that do not depend on any parameter or color number. By a scaling of units and by adding an integration constant, all lattice data, for different color numbers (and even quark content for the ghosts), collapse on the same universal curves predicted by the massive expansion.

  12. Positivity violation for the lattice Landau gluon propagator

    CERN Document Server

    Cucchieri, A; Taurines, A R; Cucchieri, Attilio; Mendes, Tereza; Taurines, Andre R.

    2004-01-01

    We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t \\in [0,3] fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.

  13. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  14. Effect of a Small Current Quark Mass on Dressed Gluon and Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    HOU Feng-Yao; GU Jian-Zhong; ZONG Hong-Shi; L(U)Xiao-Fu

    2004-01-01

    Based on the Dyson-Schwinger approach, a method for obtaining the small current quark mass effect on the dressed gluon and quark propagator is developed. A comparison with the results of the previous approach is given.

  15. Propagation of Gluons From a Non-Perturbative Evolution Equation in Axial Gauges

    CERN Document Server

    Kinder-Geiger, Klaus

    1999-01-01

    We derive a non-perturbative evolution equation for the gluon propagator in axial gauges based on the framework of Wetterich's formulation of the exact renormalization group. We obtain asymptotic solutions to this equation in the ultraviolet and infrared limits.

  16. Effects of dynamical FLIC fermions in the quark and gluon propagator

    Science.gov (United States)

    Kamleh, W.; Bowman, P. O.; Leinweber, D. B.; Williams, A. G.; Zhang, J.-B.

    2006-11-01

    In this work we examine the FLIC overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalisation function and gluon dressing function in the infrared. The ultraviolet physics is unaffected.

  17. Unified description of seagull cancellations and infrared finiteness of gluon propagators

    CERN Document Server

    Aguilar, A C; Figueiredo, C T; Papavassiliou, J

    2016-01-01

    We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge-invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge-independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of 'seagull cancellations' among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such p...

  18. Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory

    Science.gov (United States)

    Nakagawa, Y.; Voigt, A.; Ilgenfritz, E.-M.; Müller-Preussker, M.; Nakamura, A.; Saito, T.; Sternbeck, A.; Toki, H.

    2009-06-01

    We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb-gauge theory carrying out a joint analysis of data collected independently at the Research Center for Nuclear Physics, Osaka and Humboldt University, Berlin. We focus on the scaling behavior of these propagators at β=5.8,…,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at a large momentum. As a byproduct we obtain the respective lattice scale dependences a(β) for the transversal gluon and the ghost propagator which indeed run faster with β than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(β) dependence as determined from the instantaneous time-time gluon propagator, D44, remains a problem, though. The role of residual gauge-fixing influencing D44 is discussed.

  19. Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory

    CERN Document Server

    Nakagawa, Y; Ilgenfritz, E -M; Müller-Preussker, M; Nakamura, A; Saitô, T; Sternbeck, A; Toki, H

    2009-01-01

    We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb gauge theory carrying out a joint analysis of data collected independently at RCNP Osaka and Humboldt University Berlin. We focus on the scaling behavior of these propagators at beta=5.8,...,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at large momentum. As a byproduct we obtain the respective lattice scale dependences a(beta) for the transversal gluon and the ghost propagator which indeed run faster with beta than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(beta) dependence as determined from the instantaneous time-time gluon propagator, D_{44}, remains a problem, though. The role of residual gauge-fixing influencing D_{44...

  20. SU(2) Landau gluon propagator on a 140^3 lattice

    CERN Document Server

    Cucchieri, A; Taurines, A R; Cucchieri, Attilio; Mendes, Tereza; Taurines, Andre

    2003-01-01

    We present a numerical study of the gluon propagator in lattice Landau gauge for three-dimensional pure-SU(2) lattice gauge theory at couplings beta = 4.2, 5.0, 6.0 and for lattice volumes V = 40^3, 80^3, 140^3. In the limit of large V we observe a decreasing gluon propagator for momenta smaller than p_{dec} = 350^{+ 100}_{- 50} MeV. Data are well fitted by Gribov-like formulae and seem to indicate an infra-red critical exponent kappa slightly above 0.6, in agreement with recent analytic results.

  1. Another look at the Landau-gauge gluon and ghost propagators at low momentum

    CERN Document Server

    Sternbeck, Andre

    2013-01-01

    We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (\\lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies with small (large) values for \\lambda_1 both the ghost dressing function and the gluon propagator get enhanced (suppressed) at low momentum. For larger momenta no dependence on Gribov copies is seen. We compare our lattice data to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski [Annals Phys. 324 (2009) 2408] and find qualitatively good agreement.

  2. Unified description of seagull cancellations and infrared finiteness of gluon propagators

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2016-08-01

    We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of "seagull cancellations" among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.

  3. Jet propagation and medium excitation in a quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-11-15

    We implement the complete set of elastic 2→2 parton scattering processes in the Linearized Boltzmann Transport (LBT) model to study the parton propagation inside a hot quark–gluon plasma. We calculate and compare the elastic energy loss and the transverse momentum distribution of quarks and gluons. We further simulate a single jet propagation and the induced medium excitation within a static quark–gluon plasma to study how the jet energy and profiles are modified by the jet-medium interaction and in particular the jet-induced wake. Effects of the recoiled thermal partons and the jet-induced wake on the jet energy loss and profiles are studied in detail.

  4. Landau gauge gluon and ghost propagators from two-flavor lattice QCD at T > 0

    CERN Document Server

    Aouane, R; Muller-Preussker, M; Ilgenfritz, E -M; Sternbeck, A

    2013-01-01

    In this contribution we extend our unquenched computation of the Landau gauge gluon and ghost propagators in lattice QCD at non-zero temperature. The study was aimed at providing input for investigations employing continuum functional methods. We show data which correspond to pion mass values between 300 and 500 MeV and are obtained for a lattice size 32**3 x 12. The longitudinal and transversal components of the gluon propagator turn out to change smoothly through the crossover region, while the ghost propagator exhibits only a very weak temperature dependence. For a pion mass of around 400 MeV and the intermediate temperature value of approx. 240 MeV we compare our results with additional data obtained on a lattice with smaller Euclidean time extent N_t = 8, 10 and find a reasonable scaling behavior.

  5. Gluon and ghost propagator studies in lattice QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aouane, Rafik

    2013-04-29

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  6. Continuum study on QCD phase diagram through an OPE-modified gluon propagator

    CERN Document Server

    Shi, Chao; Xu, Shu-Sheng; Liu, Xiao-Jun; Zong, Hong-Shi

    2016-01-01

    Within the Dyson-Schwinger equations (DSEs) framework, a gluon propagator model incorporating quark's feedback through operator product expansion (OPE) is introduced to investigate the QCD phase diagram in the temperature--chemical-potential ($T-\\mu$) plane. Partial restoration of chiral symmetry at zero temperature and finite temperature are both studied, suggesting a first order phase transition point on the $\\mu$ axis and a critical end point at $(T_E,\\mu_E)/T_c = (0.85,1.11)$, where $T_c$ is the pseudo-critical temperature. In addition, we find the pseudo-critical line can be well parameterized with the curvature parameter $\\kappa$ and a consistent decrease in $\\kappa$ with more of gluon propagator distributed to quark's feedback.

  7. Unquenched Effects and Quark Mass Dependence of Lattice Gluon Propagator in Infrared Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Bin; PING Jia-Lun; LU Xiao-Fu; ZONG Hong-Shi

    2008-01-01

    In this paper,the gluon propagator in Landau gauge has been studied on a lattice,including the quenched and the unquenehed one.The small geometry size of lattice we use is 163×32,and the big one is 203×64.For the quenched approximation,we fit the numerical results and give a little different fitting values.We also obtain unquenched effects by comparing the gluon propagator resulting from the quenched and unquenehed configurations,for both the two-flavor and three-flavor cases.For the unquenched configurations,an obvious quark mass dependence has not been found in the small quark mass case,but is found in the three-flavor case when the quark mass is big.

  8. The gluon propagator in non-abelian Weizsäcker-Williams fields

    CERN Document Server

    Ayala, A P; McLerran, L; Venugopalan, R; Ayala, Alejandro; Jalilian-Marian, Jamal; McLerran, Larry; Venugopalan, Raju

    1995-01-01

    We carefully compute the gluon propagator in the background of a non--Abelian Weizs\\"{a}cker--Williams field. This background field is generated by the valence quarks in very large nuclei. We find contact terms in the small fluctuation equations of motion which induce corrections to a previously incorrect result for the gluon propagator in such a background field. The well known problem of the Hermiticity of certain operators in Light Cone gauge is resolved for the Weizs\\"{a}cker--Williams background field. This is achieved by working in a gauge where singular terms in the equations of motion are absent and then gauge transforming the small fluctuation fields to Light Cone gauge.

  9. NSPT study of the three-loop lattice gluon propagator in Landau gauge

    CERN Document Server

    Torrero, C; Ilgenfritz, E -M; Perlt, H; Schiller, A

    2010-01-01

    By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a parametrization of both the hypercubic symmetry group H(4) and finite-size effects, we calculate the non-leading-log and non-logarithmic contributions iteratively, starting with the first-loop expression.

  10. An Investigation of the Infrared Behaviour of the Gluon Propagator in the Axial Gauge

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase

    1983-01-01

    In the axial gauge an integral equation for the gluon propagator of a pure Yang-Mills theory is derived based on the Dyson-Schwinger equation and the Slavnov-Taylor identities. Dimensional regularization is used. The solution of this equation is investigated in the case where the variable (nk)^2/(n......^2k^2) is different from zero and it is seen that the nice properties of the confining solution D(k) = 1/k^4 are lost in this case....

  11. On the Infrared Exponent for Gluon and Ghost Propagation in Landau Gauge QCD

    CERN Document Server

    Lerche, C; Lerche, Christoph; Smekal, Lorenz von

    2002-01-01

    In the covariant description of confinement, one expects the ghost correlations to be infrared enhanced. Assuming ghost dominance, the long-range behavior of gluon and ghost correlations in Landau gauge QCD is determined by one exponent kappa. The gluon propagator is infrared finite (vanishing) for kappa =1/2 (kappa > 1/2) which is still under debate. Here, we study critical exponent and coupling for the infrared conformal behavior from the asymptotic form of the solutions to the Dyson-Schwinger equations in an ultraviolet finite expansion scheme. The value for kappa is directly related to the ghost-gluon vertex. Assuming that it is regular in the infrared, one obtains kappa = 0.595. This value maximizes the critical coupling alpha_c(kappa), yielding alpha_c^max = (4\\pi/N_c) 0.709 approx. 2.97 for N_c=3. For larger kappa the vertex acquires an infrared singularity in the gluon momentum, smaller ones imply infrared singular ghost legs. Variations in alpha_c remain within 5% from kappa = 0.5 to 0.7. Above this ...

  12. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    Science.gov (United States)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  13. A Gauge and Lorentz covariant Approximation for the Quark Propagator in an arbitrary Gluon Field

    CERN Document Server

    Gromes, D

    2001-01-01

    We decompose the quark propagator in the presence of an arbitrary gluon field with respect to a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are rewritten as line-integrals along certain field lines, together with a weighted integration over the various field lines. It is then easy to transform the propagator into a form involving path ordered exponentials. The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations, gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection and simple results can be obtained immediately.

  14. A Gauge and Lorentz covariant approximation for the quark propagator in an arbitrary gluon field

    Science.gov (United States)

    Gromes, D.

    2001-05-01

    We decompose the quark propagator in the presence of an arbitrary gluon field with respect to a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are rewritten as line-integrals along certain field lines, together with a weighted integration over the various field lines. It is then easy to transform the propagator into a form involving path ordered exponentials. The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations, gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection and simple results can be obtained immediately.

  15. New approach to initializing hydrodynamic fields and mini-jet propagation in quark-gluon fluids

    Science.gov (United States)

    Okai, Michito; Kawaguchi, Koji; Tachibana, Yasuki; Hirano, Tetsufumi

    2017-05-01

    We propose a new approach to initialize the hydrodynamic fields, such as energy density distributions and four-flow velocity fields in hydrodynamic modeling of high-energy nuclear collisions at the collider energies. Instead of matching the energy-momentum tensor or putting the initial conditions of quark-gluon fluids at a fixed initial time, we utilize a framework of relativistic hydrodynamic equations with source terms to describe the initial stage. Putting the energy and momentum loss rate of the initial partons into the source terms, we obtain hydrodynamic initial conditions dynamically. The resultant initial profile of the quark-gluon fluid looks highly bumpy as seen in the conventional event-by-event initial conditions. In addition, initial random flow velocity fields also are generated as a consequence of momentum deposition from the initial partons. We regard the partons that survive after the dynamical initialization process as the mini-jets and find sizable effects of both mini-jet propagation in the quark-gluon fluids and initial random transverse flow on the final momentum spectra and anisotropic flow observables. We perform event-by-event (3+1)-dimensional ideal hydrodynamic simulations with this new framework that enables us to describe the hydrodynamic bulk collectivity, parton energy loss, and interplay among them in a unified manner.

  16. On the continuum limit of Landau gauge gluon and ghost propagators in SU(2) lattice gauge gluodynamics

    CERN Document Server

    Bogolubsky, I; Müller-Preussker, M; Sternbeck, A

    2013-01-01

    We continue the systematic computation of Landau gauge gluon and ghost propagators of SU(2) gluodynamics using a sequence of increasing lattice sizes L^4 up to L=112 with corresponding \\beta-values chosen to keep the linear physical size a(\\beta)L ~ 9.6 fm fixed. To extremize the Landau gauge functional we employ simulated annealing combined with subsequent overrelaxation. Renormalizing the propagators at momentum \\mu= 2.2 GeV we observe quite strong lattice artifacts for the gluon propagator as well as for the ghost dressing function within the momentum region q < 1.0 GeV. The dependence on the lattice spacing for the gluon propagator at lowest accessible physical momentum values does not yet allow a simple extrapolation to the continuum limit. On the contrary, the running coupling derived from the bare dressing functions seems less affected by lattice artifacts.

  17. From unphysical gluon and ghost propagators to physical glueball propagators (in the Gribov-Zwanziger picture): a not so trivial task?

    CERN Document Server

    Dudal, David; Baulieu, Laurent; Sorella, Silvio P; Guimaraes, Marcelo S; Huber, Markus Q; Oliveira, Orlando; Zwanziger, Daniel

    2010-01-01

    During recent years, a good agreement was found between the analytical derivation and the numerical simulation of the Landau gauge gluon and ghost propagators. We mention the Schwinger-Dyson and Gribov-Zwanziger formalism for the analytical work. Although the agreement between several approaches is nice, these propagators do not correspond to the relevant physical degrees of freedom. In the case of pure gauge theories, one should start to study the glueball correlators. We shall try to explain why it looks like a hard challenge to go from the unphysical to the physical propagators in the case of the Gribov-Zwanziger theory (but similar conclusions might hold for other approaches giving similar propagators).

  18. Gluons at finite temperature

    CERN Document Server

    Silva, P J; Dudal, D; Bicudo, P; Cardoso, N

    2016-01-01

    The gluon propagator is investigated at finite temperature via lattice simulations. In particular, we discuss its interpretation as a massive-type bosonic propagator. Moreover, we compute the corresponding spectral density and study the violation of spectral positivity. Finally, we explore the dependence of the gluon propagator on the phase of the Polyakov loop.

  19. Lattice gluon and ghost propagators and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects

    Science.gov (United States)

    Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.

    2016-07-01

    The dependence of the Landau gauge two-point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to 1284 and for two lattice spacings 0.10 fm and 0.06 fm corresponding to volumes of ˜(13 fm )4 and ˜(8 fm )4 , respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing a in the infrared region, with the gluon propagator having a stronger dependence on a compared to the ghost propagator. In what concerns the strong coupling constant αs(p2), as defined from gluon and ghost two-point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to ˜1 GeV .

  20. Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-Mills Theory: Finite Lattice Spacing and Volume Effects

    CERN Document Server

    Duarte, Anthony G; Silva, Paulo J

    2016-01-01

    The dependence of the Landau gauge two point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to $128^4$ and for two lattice spacings $0.10$ fm and $0.06$ fm corresponding to volumes of $\\sim$ (13 fm)$^4$ and $\\sim$ (8 fm)$^4$, respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing $a$ in the infrared region, with the gluon propagator having a stronger dependence on $a$ compared to the ghost propagator. In what concerns the strong coupling constant $\\alpha_s (p^2)$, as defined from gluon and ghost two point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to $\\sim 1$ GeV.

  1. The Pomeron as Massive Gluons

    CERN Document Server

    Ducati, M B G

    1993-01-01

    A QCD-Pomeron composed by two non-perturbative gluons with a dynamically generated mass, is constructed in a gauge invariant way. The gluon propagator is infrared-finite. The model properly describes data on elastic scattering, exclusive $\\rho$ production in deep inelastic scattering (DIS) and the $J/\\Psi$-nucleon total cross-section in terms of a single gluon mass $m_g\\simeq0.37$~GeV. The total cross sections of hadrons with small radii, such as $J/\\Psi$, are very sensitive on the effective gluon mass.

  2. Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    CERN Document Server

    Matevosyan, Hrayr H; Tandy, Peter C

    2007-01-01

    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.

  3. A Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution

    CERN Document Server

    Cao, Shanshan; Qin, Guang-You; Wang, Xin-Nian

    2016-01-01

    A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both elastic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $\\sqrt{s_\\mathrm{NN}}$=5.02 TeV is provided.

  4. Are gluons massive ?

    CERN Document Server

    Gilani, A H S

    2004-01-01

    It is claimed that only one gluon is massless and the other seven gluons are massive. Out of eight gluons, six are colored and two are neutral. Among neutral gluons, one is massless and other one is massive. Massive neutral gluon is heavier than the colored gluons. Gluons can only be predicted by set theory but not by SU(3).

  5. Dynamical gluon mass in QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, M.B. Gay; Sauter, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas de Altas Energias (GFPAE)

    2007-06-15

    We perform phenomenological applications of modified gluon propagators and running coupling constants in scattering processes in Quantum Chromodynamics (QCD). The modified forms of propagators and running coupling constant are obtained by non-perturbative methods. The processes investigated includes the diffractive ones - proton-proton elastic scattering, light vector meson photo-production and double vector meson production in gamma-gamma scattering - as well as the pion and kaon meson form factors. The results are compared with experimental data (if available), showing a good agreement with a gluon with dynamical mass but do not indicate the correct gluon propagator functional form. (author)

  6. From Running Gluon Mass to Chiral Symmetry Breaking

    CERN Document Server

    Oliveira, Orlando; Dudal, D; Frederico, T; de Paula, W; Vandersickel, N

    2011-01-01

    The gluon propagator is one of the fundamental Green's functions of QCD. It is an essential ingredient in, for example, the modeling of the Schwinger-Dyson equation used to describe hadronic phenomenology. From the Landau gauge gluon propagator, computed with lattice QCD methods, we discuss its interpretation as a massive propagator and measure the gluon mass as a function of the momenta. Special attention is given to the mass at infrared scales. In the last part of the talk, the gluon mass and chiral symmetry breaking are related via an effective model for QCD.

  7. Gluon and Ghost Dynamics from Lattice QCD

    CERN Document Server

    Oliveira, O; Dudal, D; Silva, P J

    2016-01-01

    The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.

  8. Gluon and Ghost Dynamics from Lattice QCD

    Science.gov (United States)

    Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.

    2017-03-01

    The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.

  9. Constituent gluons and the static quark potential

    CERN Document Server

    Greensite, Jeff

    2015-01-01

    We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.

  10. Constituent gluons and the static quark potential

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.

  11. Soft gluons are heavy and rowdy

    CERN Document Server

    Alkofer, R; Cotanch, S R; Fischer, C S; Llanes-Estrada, F J; Alkofer, Reinhard; Bicudo, Pedro; Cotanch, Stephen R.; Fischer, Christian S.; Llanes-Estrada, Felipe J.

    2006-01-01

    We study dynamical mass generation in pure Yang-Mills theory and report on a recently developed ansatz that exactly solves the tower of Dyson-Schwinger equations in Landau gauge at low Euclidean momentum, featuring enhanced gluon-gluon vertices, a finite ghost-gluon vertex in agreement with an old argument of Taylor, and an IR suppressed gluon propagator. This ansatz reinforces arguments in favor of the concept of a gluon mass gap at low momentum (although the minimum of the gluon's dispersion relation is not at zero momentum). As an application, we have computed the spectrum of oddballs, three-gluon glueballs with negative parity and C-parity. The three body problem is variationally solved employing the color density-density interaction of Coulomb gauge QCD with a static Cornell potential. Like their even glueball counterparts, oddballs fall on Regge trajectories with similar slope to the pomeron. However their intercept at t=0 is smaller than the omega Regge trajectory and therefore the odderon may only be ...

  12. Unquenching the three-gluon vertex: A status report

    CERN Document Server

    Blum, Adrian L; Huber, Markus Q; Windisch, Andreas

    2015-01-01

    We discuss unquenching of the three-gluon vertex via its Dyson-Schwinger equation. We review the role of Furry's theorem and present first results for the quark triangle diagrams using non-perturbatively calculated dressing functions for the quark propagator and the quark-gluon vertex.

  13. Properties of gluon jets

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, K.

    1986-09-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed.

  14. Non-transversality of the gluon self-energy and the DDT analysis

    Science.gov (United States)

    Konetschny, W.

    1982-12-01

    It is found that the one-loop corrections to the propagator induced by the non-transversality of the gluon self energy in the planar gauge are not kinematically suppressed in the leading logarithm approximation. As a consequence the multiplicative renormalization of the bare gluon propagator assumed by Dokshitzer, Dyakonov and Troyan is lost.

  15. Nonperturbative study of the four gluon vertex

    CERN Document Server

    Binosi, D; Papavassiliou, J

    2014-01-01

    In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale $p$ is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergen...

  16. Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory

    CERN Document Server

    Oliveira, O; Frederico, T

    2011-01-01

    A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.

  17. Quark Gluon Condensate,Virtuality and Susceptibility of QCD Vacuum

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; WU Qing; MA Wei-Xing

    2008-01-01

    We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values of various local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtuality in QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson-Schwinger equations in "rainbow" approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature,and many other theoretical calculations.The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work is centrally important for studying non-perturbative QCD,and has many important applications both in particle and nuclear physics.

  18. Colliding solitary waves in quark gluon plasmas

    Science.gov (United States)

    Rafiei, Azam; Javidan, Kurosh

    2016-09-01

    We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.

  19. Exploring dynamical gluon mass generation in three dimensions

    CERN Document Server

    Cornwall, John M

    2015-01-01

    In the d=3 gluon mass problem in pure-glue non-Abelian $SU(N)$ gauge theory we pay particular attention to the observed (in Landau gauge) violation of positivity for the spectral function of the gluon propagator. This causes a large bulge in the propagator at small momentum. Mass is defined through $m^{-2}=\\Delta (p=0)$, where $\\Delta(p)$ is the scalar function for the gluon propagator in some chosen gauge, it is not a pole mass and is generally gauge-dependent, except in the gauge-invariant Pinch Technique (PT). We truncate the PT equations with a new method called the vertex paradigm that automatically satisfies the QED-like Ward identity relating the 3-gluon PT vertex function with the PT propagator. The mass is determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to...

  20. Gluon density in nuclei

    CERN Document Server

    Ayala, A P; Levin, E M

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.

  1. Gluon TMD studies at EIC

    Directory of Open Access Journals (Sweden)

    Boer Daniël

    2016-01-01

    Full Text Available A high-energy Electron-Ion Collider (EIC would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gluons inside transversely polarized protons, the so-called gluon Sivers effect. The inherent process dependence of these distributions can be studied by comparing to similar, but often complementary observables at LHC.

  2. Quark gluon plasma

    Indian Academy of Sciences (India)

    C P Singh

    2000-04-01

    Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.

  3. Constraining gluon poles

    Directory of Open Access Journals (Sweden)

    I.V. Anikin

    2015-12-01

    Full Text Available In this letter, we revise the QED gauge invariance for the hadron tensor of Drell–Yan type processes with the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon poles in the correlators 〈ψ¯γ⊥A+ψ〉 related traditionally to dT(x,x/dx. As a result, these terms disappear from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing the corresponding light-cone Dirac algebra.

  4. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  5. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  6. The cool potential of gluons

    CERN Document Server

    Peshier, Andre

    2015-01-01

    We put forward the idea that the quark-gluon plasma might exist way below the usual confinement temperature $T_c$. Our argument rests on the possibility that the plasma produced in heavy-ion collisions could reach a transient quasi-equilibrium with `over-occupied' gluon density, as advocated by Blaizot et al. Taking further into account that gluons acquire an effective mass by interaction effects, they can have a positive chemical potential and therefore behave similarly to non-relativistic bosons. Relevant properties of this dense state of interacting gluons, which we dub serried glue, can then be inferred on rather general grounds from Maxwell's relation.

  7. Testing OPE for ghosts, gluons and $\\alpha_s$

    CERN Document Server

    Blossier, Benoit; Brinet, Mariane; Morenas, vincent; Pene, Olivier; Petrov, Konstantin; Rodriguez-Quinteiro, Jose; de Soto, Feliciano

    2013-01-01

    We present here our results on extracting Wilson coefficients from different quantities such as ghost and gluon propagators which are calculated by means of Lattice QCD. The results confirm the validity of our method for the calculation of the strong coupling constant as well as allow to estimate the range of momenta where OPE is applicable.

  8. Tales of 1001 Gluons

    CERN Document Server

    Weinzierl, Stefan

    2016-01-01

    These lectures are centred around tree-level scattering amplitudes in pure Yang-Mills theories, the most prominent example is given by the tree-level gluon amplitudes of QCD. I will discuss several ways of computing these amplitudes, illustrating in this way recent developments in perturbative quantum field theory. Topics covered in these lectures include colour decomposition, spinor and twistor methods, off- and on-shell recursion, MHV amplitudes and MHV expansion, the Grassmannian and the amplituhedron, the scattering equations and the CHY representation. At the end of these lectures there will be an outlook on the relation between pure Yang-Mills amplitudes and scattering amplitudes in perturbative quantum gravity.

  9. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  10. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  11. Linear response of hot gluons

    Science.gov (United States)

    Carrington, M. E.; Hansson, T. H.; Yamagishi, H.; Zahed, I.

    1989-03-01

    We reexamine the various schemes for calculating the linear response (the retarded Green's function) of a hot gluon plasma. The problems related to gauge invariance are discussed in detail, and results in different gauges are compared. We also point out some issues related to the very definition of a thermal ensemble in the presence of unphysical degrees of freedom. By culculating the retarded Green's function directly in real time, we explicitly study the effects of unphysical degrees of freedom in different gauges. Although there appears to be no unique way to define the response function, we find that several schemes can be questioned on formal grounds and that use of the background-field gauge (BFG) is the most satisfactory in this respect. We discuss two proposals to fix the gauge parameter (α) dependence in the BFG response function, the Vilkovisky-DeWitt effective action corresponding to the choice α = 0 (background Landau gauge), and the "gauge-invariant propagator" of Cornwall et al. corresponding to α = 1 (background Feynman gauge).

  12. Gluon TMD studies at EIC

    NARCIS (Netherlands)

    Boer, Daniël

    2016-01-01

    A high-energy Electron-Ion Collider (EIC) would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gl

  13. Gluon TMDs in Quarkonium Production

    Science.gov (United States)

    Boer, Daniël

    2017-03-01

    Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that χ _{b0/2} and η _b production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to cos 2φ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small- x limit this corresponds to the Weizsäcker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small x-values are reached. Quarkonia can also be useful in the study of single transverse spin asymmetries. For transversely polarized hadrons the gluon distribution can be asymmetric, which is referred to as the Sivers effect. It leads to single spin asymmetries in for instance J{/}ψ (pair) production at AFTER@LHC, which probe the WW or f-type gluon Sivers TMD. It allows for a test of a sign-change relation w.r.t. the gluon Sivers TMD probed at an EIC in open heavy quark pair production. Single spin asymmetries in backward inclusive C-odd quarkonium production, such as J{/}ψ production, may offer probes of the DP or d-type gluon Sivers TMD at small x-values in the polarized proton, which in that limit corresponds to a correlator of a single Wilson loop, describing the spin-dependent odderon.

  14. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    CERN Document Server

    Bhattacharyya, Trambak; Abir, Raktim

    2016-01-01

    It is known that gluon bremsstrahlung emission off heavy flavor jet is suppressed in the forward direction compared to that of light quark due to the mass effect ($`$dead cone effect'). Most of the models that address jet quenching generally assume that a jet always travels in straight eikonal path. However, once the eikonal approximation of propagation is called off and jet is allowed to bend, additional gluons pop-up within the so called `depopulated' region deluging the dead cone. This color synchrotron by color charge, once wound in an ambiance of color field, seems to be very apt for better understanding of jet quenching in hot and dense deconfined quark-gluon medium.

  15. Gluon TMDs in quarkonium production

    CERN Document Server

    Boer, Daniël

    2016-01-01

    Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that $\\chi_{b0/2}$ and $\\eta_b$ production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to $\\cos 2\\phi$ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small-$x$ limit this corresponds to the Weizs\\"acker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small $x$ are ...

  16. The quark-gluon vertex in Landau gauge bound-state studies

    Science.gov (United States)

    Williams, Richard

    2015-05-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations.

  17. The quark-gluon vertex in Landau gauge bound-state studies

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard [Justus-Liebig University of Giessen, Institute of Theoretical Physics, Giessen (Germany)

    2015-05-15

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations. (orig.)

  18. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  19. Non-linear BFKL dynamics: color screening vs. gluon fusion

    CERN Document Server

    Fiore, R; Zoller, V R

    2012-01-01

    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...

  20. Gluon Shadowing in DIS off Nuclei

    CERN Document Server

    Kopeliovich, B Z; Potashnikova, I K; Schmidt, I

    2008-01-01

    Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB 0.0001, when a variation of the transverse size of the \\bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the \\bar{q}q Fock component is "frozen" during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.

  1. Scale evolution of gluon TMDPDFs

    Directory of Open Access Journals (Sweden)

    Echevarria Miguel G.

    2015-01-01

    Full Text Available By applying the effective field theory machinery we factorize the transverse momentum spectrum of Higgs boson production, where the main hadronic quantities are the gluon transverse momentum dependent parton distribution functions (TMDPDFs. We properly define those quantities, showing explicitly, in the case of an unpolarized hadron, that they are free from rapidity divergences, and extract their evolution properties. It turns out that the evolution for all eight (un-polarized leading-twist gluon TMDPDFs is driven by the same evolution kernel, for which we derive the necessary ingredients to obtain a resummation of large logarithms at next-tonext-to-leading-logarithmic accuracy. We make predictions for the contribution of linearly polarized gluons to the Higgs boson qT -spectrum.

  2. Multiplicity description by gluon model

    CERN Document Server

    Kokoulina, E S

    2015-01-01

    Study of high multiplicity events in proton-proton interactions is carried out at the U-70 accelerator (IHEP, Protvino). These events are extremely rare. Usually, Monte Carlo codes underestimate topological cross sections in this region. The gluon dominance model (GDM) was offered to describe them. It is based on QCD and a phenomenological scheme of a hadronization stage. This model indicates a recombination mechanism of hadronization and a gluon fission. Future program of the SVD Collaboration is aimed at studying a long-standing puzzle of excess soft photon yield and its connection with high multiplicity at the U-70 and Nuclotron facility at JINR, Dubna.

  3. Equilibration in quark gluon plasma

    Science.gov (United States)

    Das, S. K.; Alam, J.; Mohanty, P.

    2011-07-01

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.

  4. Equilibration in Quark Gluon Plasma

    OpenAIRE

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal

    2009-01-01

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more real...

  5. Equilibration in Quark Gluon Plasma

    CERN Document Server

    Das, Santosh K; Mohanty, Payal

    2009-01-01

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.

  6. Quark-gluon plasma 5

    CERN Document Server

    2016-01-01

    This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.

  7. Gluon, Quark and Hadron Masses from a Modified Perturbative QCD

    CERN Document Server

    Rigol, M

    2000-01-01

    The development of a Modified Perturbation Theory for QCD, introduced in previous works, is continued. The gluon propagator is modified as consequence of a soft gluon pairs condensate in the vacuum. The modified Feynman rules for $\\alpha=1$ are shown, and some physical magnitudes calculated with them. The mean value of $G^{2}$, gluon masses and the effective potential are calculated up to the $g^2$ order, improving previous calculations. In connection with the gluon self-energy it follows that the gluonic mass shell becomes tachyonic in the considered approximation. The constituent quarks masses, produced by the influence of the condensate, are also calculated. Results of the order of 1/3 of the nucleon mass, are obtained for the constituent masses of the up and down quarks. In addition, the predicted flavour dependence of the calculated quarks masses turns out to be the appropriate to reproduce the spectrum of the ground states within the various groups of hadronic resonances, through the simple addition of ...

  8. Quark ACM with topologically generated gluon mass

    CERN Document Server

    Choudhury, Ishita Dutta

    2016-01-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment of quarks (ACM) by perturbative calculations at one loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field $B_{\\mu \

  9. Confined gluon from Minkowski space continuation of PT-BFM SDE solution

    CERN Document Server

    Sauli, Vladimir

    2011-01-01

    Recent lattice studies exhibit infrared finite effective QCD charges. Corresponding gluon propagator in Landau gauge is finite and nonzero, suggesting a mechanism of dynamical gluon mass generation is in the operation. In this paper, the analytical continuation of the Euclidean (spacelike) Pinch Technique-Background Field Method (PT-BFM) solution of Schwinger-Dyson equation for gluon propagator to the timelike region of $q^2$ is found. We found that in some cases such continuation exists and is in rather good agreement with a generalized Lehman representation, while there is large parameter space for which we observe moderate deviations from assumed analyticity. For those solutions which are in best agreement with analyticity of Stieltjes transformation, an unexpected behaviour is uncovered. Albeit infrared Euclidean space solution naively looks like single scale "massive" propagator, there are more complicated singularities in the timelike axis of momenta. The spectrum does not correspond to the delta functi...

  10. On propagators and vertices of Landau gauge Yang-Mills theory

    CERN Document Server

    Huber, Markus Q; Mitter, Mario; von Smekal, Lorenz

    2014-01-01

    We calculate the three-point functions of pure Landau gauge QCD and investigate their influence on the propagators. As expected, the ghost-gluon vertex leads only to minor modifications, while the three-gluon vertex has a sizeable impact on the mid-momentum regime of the gluon propagator. We describe an effective model of the three-gluon vertex that includes contributions from the neglected two-loop diagrams and thus allows to obtain propagators in good agreement with lattice results. We also determine the three-gluon vertex from these propagators and find good agreement with lattice results as well. In turn, these results allow us to assess the effect of the missing two-loop diagrams in the gluon propagator equation. Finally, we present the first self-consistent calculation that includes all two-and three-point functions.

  11. Non-perturbative gluons in diffractive photo-production of J/Psi

    CERN Document Server

    Ducati, M B G; Sauter, Werner K.

    2001-01-01

    The modifications induced in the calculation of the cross section of the diffractive process gamma gamma -> J/Psi J/Psi when the gluon propagator is changed are analyzed. Instead of the usual perturbative gluon propagator, alternative forms obtained using non-perturbative methods like Dyson-Schwinger equations are used to consider in a more consistent way the contributions of the infrared region. The result shows a reduction in the differential cross-section for low momentum transfer once compared with the perturbative result, to be confirmed with future experimental results from TESLA.

  12. Abrikosov Gluon Vortices in Color Superconductors

    CERN Document Server

    Ferrer, Efrain J

    2010-01-01

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...

  13. The quark-gluon vertex in Landau gauge bound-state studies

    CERN Document Server

    Williams, Richard

    2014-01-01

    We present a practical method for the solution of the quark-gluon vertex for use in Bethe--Salpeter and Dyson--Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A model suitable for bound-state calculations is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within Rainbow-Ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required for practical calculations.

  14. Thermalization of mini-jets in a quark-gluon plasma

    Directory of Open Access Journals (Sweden)

    Iancu Edmond

    2016-01-01

    Full Text Available We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.

  15. Thermalization of mini-jets in a quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond, E-mail: edmond.iancu@cea.fr; Wu, Bin, E-mail: bin.wu.phys@gmail.com [Institut de Physique Théorique, CEA Saclay, CNRS UMR 3681, F-91191 Gif-sur-Yvette (France); Department of Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2016-12-15

    We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP) by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.

  16. Thermalization of mini-jets in a quark-gluon plasma

    Science.gov (United States)

    Iancu, Edmond; Wu, Bin

    2016-12-01

    We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP) by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.

  17. Tevatron constraint on the Kaluza-Klein gluon of the Bulk Randall-Sundrum model

    CERN Document Server

    Guchait, M; Sridhar, K

    2007-01-01

    The Bulk Randall-Sundrum model, where all Standard Model particles except the Higgs are free to propagate in the bulk, predicts the existence of Kaluza-Klein (KK) modes of the gluon with a large branching into top-antitop pairs. We study the production of the lowest KK gluon mode at the Tevatron energy and use the data on the top cross-section from the Run II of Tevatron to put a bound on the mass of the KK gluon. The resulting bound of 800 GeV, while being much smaller than the constraints obtained on the KK gluon mass from flavour-changing neutral currents, is the first, direct collider bound which is independent of the specificities of the model.

  18. The gluon mass generation mechanism: a concise primer

    CERN Document Server

    Aguilar, A C; Papavassiliou, J

    2015-01-01

    We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution...

  19. Gluon TMDs in quarkonium production

    CERN Document Server

    Signori, Andrea

    2016-01-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. $\\eta_b$) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the $q_T$ spectrum of $\\eta_b$ produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log (NNLL) and next-to-leading order (NLO) accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  20. Gluon TMDs in Quarkonium Production

    Science.gov (United States)

    Signori, Andrea

    2016-08-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  1. On Multiple Gluon Exchange Webs

    CERN Document Server

    Harley, Mark

    2015-01-01

    I present an overview of the study of infrared singularities through the eikonal approximation and the concept of webs. Our work reveals the interesting structure of an infinite subclass of webs, Multiple Gluon Exchange Webs. We find that they can be expressed as sums of products of functions depending upon only a single cusp angle, spanned by a simple basis of functions, and conjecture that this structure will hold to all orders.

  2. Long Range Azimuthal Correlations of Multiple Gluons in Gluon Saturation Limit

    CERN Document Server

    Ozonder, Sener

    2016-01-01

    We calculate the inclusive gluon correlation function for arbitrary number of gluons with full rapidity and transverse momentum dependence for the initial glasma state of the p-p, p-A and A-A collisions. The formula we derive via superdiagrams generates cumulants for any number of gluons. Higher order cumulants contain information on correlations between multiple gluons, and they are necessary for calculations of higher dimensional ridges as well as flow coefficients from multi-particle correlations.

  3. Quark ACM with topologically generated gluon mass

    Science.gov (United States)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  4. Asymptocic Freedom of Gluons in Hamiltonian Dynamics

    Science.gov (United States)

    Gómez-Rocha, María; Głazek, Stanisław D.

    2016-07-01

    We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.

  5. When does the gluon reggeize?

    Energy Technology Data Exchange (ETDEWEB)

    Caron-Huot, Simon [Niels Bohr International Academy and Discovery Center,Blegdamsvej 17, Copenhagen 2100 (Denmark); School of Natural Sciences, Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States)

    2015-05-19

    We propose the eikonal approximation as a simple and reliable tool to analyze relativistic high-energy processes, provided that the necessary subtleties are accounted for. An important subtlety is the need to include eikonal phases for a rapidity-dependent collection of particles, as embodied by the Balitsky-JIMWLK rapidity evolution equation. In the first part of this paper, we review how the phenomenon of gluon reggeization and the BFKL equations can be understood simply (but not too simply) in the eikonal approach. We also work out some previously overlooked implications of BFKL dynamics, including the observation that starting from four loops it is incompatible with a recent conjecture regarding the structure of infrared divergences. In the second part of this paper, we propose that in the strict planar limit the theory can be developed to all orders in the coupling with no reference at all to the concept of “reggeized gluon.” Rather, one can work directly with a finite, process-dependent, number of Wilson lines. We demonstrate consistency of this proposal by an exact computation in N=4 super Yang-Mills, which shows that in processes mediated with two Wilson lines the reggeized gluon appears in the weak coupling limit as a resonance whose width is proportional to the coupling. We also provide a precise operator definition of Lipatov’s integrable spin chain, which is manifestly integrable at any value of the coupling as a result of the duality between scattering amplitudes and Wilson loops in this theory.

  6. The Bulk RS KK-gluon at the LHC

    CERN Document Server

    Lillie, Benjamin Huntington; Wang, L T; Lillie, Ben; Randall, Lisa; Wang, Lian-Tao

    2007-01-01

    We study the possibility of discovering and measuring the properties of the lightest Kaluza-Klein excitation of the gluon in a Randall-Sundrum scenario where the Standard Model matter and gauge fields propagate in the bulk. The KK-gluon decays primarily into top quarks. We discuss how to use the $t \\bar{t}$ final states to discover and probe the properties of the KK-gluon. Identification of highly energetic tops is crucial for this analysis. We show that conventional identification methods relying on well separated decay products will not work for heavy resonances but suggest alternative methods for top identification for energetic tops. We find, conservatively, that resonances with masses less than 5 TeV can be discovered if the algorithm to identify high $p_T$ tops can reject the QCD background by a factor of 10. We also find that for similar or lighter masses the spin can be determined and for lighter masses the chirality of the coupling to $t\\bar t$ can be measured. Since the energetic top pair final stat...

  7. Ordering multiple soft gluon emissions

    CERN Document Server

    Ángeles-Martínez, René; Seymour, Michael H

    2016-01-01

    We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full colour structure and both the real and imaginary contributions to the amplitude.

  8. Quark-Gluon Plasma Fireball

    OpenAIRE

    Hamieh, Salah; Letessier, Jean; Rafelski, Johann

    2000-01-01

    Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the...

  9. Gluon polarization and higher twist effects

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter

    2008-01-01

    We examine the influence of the recent CLAS and COMPASS experiments on our understanding of higher twist (HT) effects and the gluon polarization, and show how EIC could discriminate between negative and positive gluon polarizations. We comment on the issue of HT and the recent DSSV analysis.

  10. Lattice gauge theory and gluon color-confinement in curved spacetime

    CERN Document Server

    Villegas, Kristian Hauser

    2014-01-01

    The lattice gauge theory for curved spacetime is formulated. A discretized action is derived for both gluon and quark fields which reduces to the generally covariant form in the continuum limit. Using the Wilson action, it is shown analytically that for a general curved spacetime background, two propagating gluons are always color-confined. The fermion-doubling problem is discussed in the specific case of Friedman-Robertson-Walker metric. Lastly, we discussed possible future numerical implementation of lattice QCD in curved spacetime.

  11. HUNTING THE QUARK GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    LUDLAM, T.; ARONSON, S.

    2005-04-11

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear

  12. Quark-gluon plasma fireball

    Science.gov (United States)

    Hamieh, Salah; Letessier, Jean; Rafelski, Johann

    2000-12-01

    Lattice quantum chromodynamics results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb-Pb interactions.

  13. Higgs as a gluon trigger

    Energy Technology Data Exchange (ETDEWEB)

    Cipriano, P.; Dooling, S.; Grebenyuk, A.; Gunnellini, P.; Katsas, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hautmann, F. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Oxford Univ. (United Kingdom). Dept. of Physics; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica

    2013-08-15

    In the forthcoming high-luminosity phase at the LHC many of the most interesting QCD measurements so far become prohibitively difficult due to the high pile-up. We suggest a program of QCD measurements based on the observed Higgs boson which can be started now and can be carried through also in the large pile-up environment at high luminosity. It focuses on gluonic processes at high mass scales, and their distinctive QCD features compared to classic probes such as Drell-Yan. It explores the strong-interaction sector of the Standard Model both at high transverse momenta and at low transverse momenta, by investigating issues on gluon fusion processes which have never been addressed experimentally before. We discuss a few specific examples and present results of Monte Carlo simulations.

  14. Classical Higgs fields on gauge gluon bundles

    Directory of Open Access Journals (Sweden)

    Palese Marcella

    2016-01-01

    Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.

  15. Hydrodynamics of anisotropic quark and gluon fluids

    Science.gov (United States)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  16. Graviton and gluon scattering from first principles

    CERN Document Server

    Boels, Rutger H

    2016-01-01

    Graviton and gluon scattering are studied from minimal physical assumptions such as Poincare and gauge symmetry as well as unitarity. The assumptions lead to an interesting and surprisingly restrictive set of linear equations. This shows gluon and graviton scattering to be related in many field and string theories, explaining and extending several known results. By systematic analysis exceptional graviton scattering amplitudes are derived which in general dimensions can not be related to gluon amplitudes. The simplicity of the formalism guarantees wide further applicability to gauge and gravity theories.

  17. Soft gluon resummation for gluon-induced Higgs Strahlung

    CERN Document Server

    Harlander, Robert V; Theeuwes, Vincent; Zirke, Tom

    2014-01-01

    We study the effect of soft gluon emission on the total cross section predictions for the $gg\\to HZ$ associated Higgs production process at the LHC. To this end, we perform resummation of threshold corrections at the NLL accuracy in the absolute threshold production limit and in the threshold limit for production of a $ZH$ system with a given invariant mass. Analytical results and numerical predictions for various possible LHC collision energies are presented. The perturbative stability of the results is verified by including universal NNLL effects. We find that resummation significantly reduces the scale uncertainty of the $gg\\to HZ$ contribution, which is the dominant source of perturbative uncertainty to $ZH$ production. We use our results to evaluate updated numbers for the total inclusive cross section of associated $pp \\to ZH$ production at the LHC. The reduced scale uncertainty of the $gg\\to HZ$ component translates into a decrease of the overall scale error by about a factor of two.

  18. The Perfect Quark-Gluon Vertex Function

    CERN Document Server

    Orginos, K; Brower, Richard C; Chandrasekharan, S; Wiese, U J

    1998-01-01

    We evaluate a perfect quark-gluon vertex function for QCD in coordinate space and truncate it to a short range. We present preliminary results for the charmonium spectrum using this quasi-perfect action.

  19. Asymptocic Freedom of Gluons in Hamiltonian Dynamics

    CERN Document Server

    Gómez-Rocha, María

    2016-01-01

    We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.

  20. Systematics of quark/gluon tagging

    Science.gov (United States)

    Gras, Philippe; Höche, Stefan; Kar, Deepak; Larkoski, Andrew; Lönnblad, Leif; Plätzer, Simon; Siódmok, Andrzej; Skands, Peter; Soyez, Gregory; Thaler, Jesse

    2017-07-01

    By measuring the substructure of a jet, one can assign it a "quark" or "gluon" tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton ( C F versus C A ). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we find a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.

  1. Ward identities for amplitudes with reggeized gluons

    Energy Technology Data Exchange (ETDEWEB)

    Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-05-15

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  2. Hadrons and Quark-Gluon Plasma

    Science.gov (United States)

    Letessier, Jean; Rafelski, Johann

    2002-06-01

    Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark gluon plasma. This hot soup of quarks and gluon is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions, quantum chromodynamics. This book covers the ongoing search to verify this prediction experimentally and discusses the physical properties of this novel form of matter.

  3. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  4. Quarkonium states in an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yun

    2009-09-10

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  5. Two-Loop Gluon to Gluon-Gluon Splitting Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.

    2004-04-30

    Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g {yields} gg splitting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The {epsilon}-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/{epsilon} pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula.

  6. Gluon Wavefunctions and Amplitudes on the Light-Front

    CERN Document Server

    Cruz-Santiago, Christian A

    2013-01-01

    We investigate the tree level multi-gluon components of the gluon light cone wavefunctions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wavefunctions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wavefunction as well as the fragmentation function is obtained. Furthermore we analyze the 2 to N tree-level gluon scattering in the framework of light-front perturbation theory and we demonstrate that the amplitude for this process can be obtained from the 1 to N+1 gluon wavefunction. Finally, we demonstrate that our results for selected helicity configurations are equivalent to the Parke-Taylor amplitudes.

  7. Quark-gluon vertex: A perturbation theory primer and beyond

    Science.gov (United States)

    Bermudez, R.; Albino, L.; Gutiérrez-Guerrero, L. X.; Tejeda-Yeomans, M. E.; Bashir, A.

    2017-02-01

    There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far.

  8. On the Landau gauge matter-gluon vertex in scalar QCD in a functional approach

    CERN Document Server

    Hopfer, Markus

    2013-01-01

    Recently the quark-gluon vertex has been investigated in Landau gauge using a combined Dyson-Schwinger and nPI effective action approach. We present here a numerical analysis of a simpler system where the quarks have been replaced by charged scalar fields. We solve the coupled system of Dyson-Schwinger equations for the scalar propagator, the scalar-gluon vertex and the Yang-Mills propagators in a truncation related to earlier studies. The calculations have been performed for scalars both in the fundamental and the adjoint representation. A clear suppression of the Abelian diagram is found in both cases. Thus, within the used truncation the suppression of the Abelian diagram predominantly happens dynamically and is to a high degree independent of the colour structure. The numerical techniques developed here can directly be applied to the fermionic case.

  9. Collisional Energy Loss of a Heavy Quark in an Anisotropic Quark-Gluon Plasma

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    We compute the leading-order collisional energy loss of a heavy quark propagating through a quark-gluon plasma in which the quark and gluon distributions are anisotropic in momentum space. Following the calculation outlined for QED in an earlier work we indicate the differences encountered in QCD and their effect on the collisional energy loss results. For a 20 GeV bottom quark we show that momentum space anisotropies can result in the collisional heavy quark energy loss varying with the angle of propagation by up to 50%. For low velocity quarks we show that anisotropies result in energy gain instead of energy loss with the energy gain focused in such a way as to accelerate particles along the anisotropy direction thereby reducing the momentum-space anisotropy. The origin of this negative energy loss is explicitly identified as being related to the presence of plasma instabilities in the system.

  10. Dijet induced collective modes in an anisotropic quark-gluon plasma

    CERN Document Server

    Mandal, Mahatsab

    2012-01-01

    We discuss the collective modes due to the propagation of two oppositely moving relativistic jets (dijet) in an anisotropic quark-gluon plasma(AQGP) and compare the results with the case of single jet propagation. Assuming a tsunami-like initial jet distribution, it is found that the dispersion relations for both the stable and unstable modes are altered significantly due to the passage of dijet compared to the case of single jet propagation. It has also been shown that the growth rate of instability, due to introduction of dijet in the system, increases compared to the case of single jet case. As in the case of single jet propagation, the instability always grows when the jet velocity is perpendicular to the wave vector. We, thus, argue that the introduction of dijet in the AQGP, in general, leads to faster isotropization (than single jet propagation) for the special case when the wave vector is parallel to the anisotropy axis.

  11. Quark vs Gluon Jet Tagging at ATLAS

    CERN Document Server

    Rubbo, Francesco; The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.

  12. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  13. Shear Viscosity in a Gluon Gas

    OpenAIRE

    Xu, Zhe; Greiner, Carsten

    2007-01-01

    The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio \\eta/s for a gluon gas, which involves elastic gg-> gg perturbative QCD (PQCD) scatterings as well as inelastic ggggg PQCD bremsstrahlung. For \\alpha_s=0.3 we find \\eta/s=0.13 and for \\alpha_s=0.6, \\eta/s=0.076. The small \\eta/s values, which suggest strongly coupled systems, are due to the gluon bremsstrah...

  14. Hydrodynamics of anisotropic quark and gluon fluids

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2012-01-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  15. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates

  16. The impact of the ghost-gluon vertex on the ghost Schwinger-Dyson equations

    CERN Document Server

    Aguilar, A C

    2014-01-01

    We derive an approximate dynamical equation for the form-factor of the ghost-gluon vertex that contributes to the Schwinger-Dyson equation of the ghost dressing function in the Landau gauge. In particular, we consider the "one-loop dressed" approximation of the corresponding equation governing the evolution of the ghost-gluon vertex, using fully dressed propagators and tree-level vertices in the relevant diagrams. Within this approximation, we then compute the aforementioned form factor for two special kinematic configurations, namely the soft gluon limit, in which the momentum carried by the gluon leg is zero, and the soft ghost limit, where the momentum of the anti-ghost leg vanishes. The results obtained display a considerable departure from the tree-level value, and are in rather good agreement with available lattice data. We next solve numerically the coupled system formed by the equation of the ghost dressing function and that of the the vertex form factor, in the soft ghost limit. Our results demonstra...

  17. Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /YITP, Stony Brook /Durham U.; Shrock, Robert; /YITP, Stony Brook

    2008-08-01

    Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.

  18. Transversality of gluon mass generation through an effective loop expansion in covariant and background field gauges

    CERN Document Server

    Machado, F A

    2016-01-01

    Gluon mass generation is investigated for 4-dimensional $SU(N)$ Yang-Mills in conventional covariant and in background field gauges within an effective description that, through a parameterization, can be regarded as a massive gluon model, or as a Nambu-Jona-Lasinio-like expansion around a massive leading order while preserving the Yang-Mills Lagrangian. We employ a renormalization scheme that introduces the ratio of the gluon mass parameter $m$ to the saturation value of the gluon propagator. This, along with the mass $m(\\mu)$ and the strong coupling $\\alpha_s(\\mu)$, provided the fit parameters for comparison with $SU(3)$ lattice results renormalized at the scale $\\mu$. We obtain two types of solutions with satisfactory fits. Within the proposed expansion, we show that it is possible to obtain an exactly vanishing longitudinal self-energy for any gauge parameter $\\xi$ in the background field case. However, such a result in conventional covariant gauges is unattainable by the given expansion as it is, indicat...

  19. On-shell two-loop three-gluon vertex

    CERN Document Server

    Davydychev, A I

    1999-01-01

    The two-loop three-gluon vertex is calculated in an arbitrary covariant gauge, in the limit when two of the gluons are on the mass shell. The corresponding two-loop results for the ghost-gluon vertex are also obtained. It is shown that the results are consistent with the Ward-Slavnov-Taylor identities.

  20. The Gluon Sivers Distribution : Status and Future Prospects

    NARCIS (Netherlands)

    Boer, Daniel; Lorce, Cedric; Pisano, Cristian; Zhou, Jian

    2015-01-01

    We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p up arrow p -> pi X provide only indirect information about the gluon Sivers function through the relation with the quark-gluon

  1. First Measurement of the Fraction of Top Quark Pair Production Through Gluon-Gluon Fusion

    CERN Document Server

    Aaltonen, T; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrerar, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillol, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerritop, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenarr, C; Cuevaso, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdeckerd, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopoloua, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokarisa, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraesda Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hillc, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Le Compte, T; Lee, J; Lee, J; Lee, Y J; Leeq, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakisa, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martinj, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNultyi, R; Mehta, A; Mehtälä, P; Menzemerk, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsenf, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohosh, F; Punzi, G; Pursley, J; Rademackerc, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojiman, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffarde, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thomg, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vazquezl, F; Velev, G; Vellidisa, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouevq, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whitesone, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittichg, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yangm, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhengb, Y; Zucchelli, S

    2007-01-01

    We present the first measurement of the fraction of top quark pair production through gluon-gluon fusion. We use 0.96/fb of s*(1/2)=1.96 TeV p-pbar collision data recorded with the CDF II detector at Fermilab. We identify theE candidate t-tbar events with a high-energy charged lepton, a neutrino candidate, and four or more jets with at least one identified as originating from a b quark. Using charged particles with low transverse momentum in t-tbar events, we find the fraction of top quark pair production through gluon-gluon fusion to be 0.07 +/- 0.14(stat) +/- 0.07(syst), in agreement with the standard model NLO prediction of 0.15 +/- 0.05.

  2. Gluons and the spin of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Kubelskyi, Oleksandr

    2010-12-23

    The structure of the proton and the origin of the proton spin has been a puzzle for many years. The EMC collaboration at CERN provided the first experimental data on the spin structure of the proton. The result was almost zero net contribution from quarks. Over the past 20 years new measurements of polarized parton distributions became available. The present value of the quark contribution to the proton spin is one third. The remaining 60 percent of the proton spin come from the gluons and orbital angular momentum of quarks and gluons. We investigate how the spin of the proton originates from the spin of its constituents. We study the proton using the phenomenologically accessible parameters such as distribution functions for quarks and gluons. The basic understanding of the proton structure (and in particular its spin structure) is important for interpreting the results of the LHC, which in turn can be used to refine the present knowledge. The proton spin structure gives a detailed information about the dynamical structure of the proton. Based on the present experimental data we suggest that the gluons and quarks play equally important role in the structure of the proton. (orig.)

  3. Exploring Quarks, Gluons and the Higgs Boson

    Science.gov (United States)

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  4. Physics of quark-gluon plasma

    CERN Document Server

    Smilga, A V

    1997-01-01

    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.

  5. Renormalization of dimension 6 gluon operators

    Directory of Open Access Journals (Sweden)

    HyungJoo Kim

    2015-09-01

    Full Text Available We identify the independent dimension 6 twist 4 gluon operators and calculate their renormalization in the pure gauge theory. By constructing the renormalization group invariant combinations, we find the scale invariant condensates that can be estimated in nonperturbative calculations and used in QCD sum rules for heavy quark systems in medium.

  6. Exploring Quarks, Gluons and the Higgs Boson

    Science.gov (United States)

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  7. Quark-gluon separation at the LHC

    CERN Document Server

    Rauco, Giorgia

    2017-01-01

    Studies focused on the discrimination between gluon- and quark-like jets at the LHC are presented. The results here discussed are obtained with proton collisions collected by the ATLAS experiment at 8 TeV and by the CMS experiment at 13 TeV.

  8. On Gauge Invariant Descriptions of Gluon Polarization

    CERN Document Server

    Guo, Zhi-Qiang

    2012-01-01

    We propose methods to construct gauge invariant decompositions of nucleon spin, especially gauge invariant descriptions of gluon polarization. We show that gauge invariant decompositions of nucleon spin can be derived naturally from the conserved current of a generalized Lorentzian transformation by Noether theorem. We also examine the problem of gauge dependence with a gauge invariant extension of the Chern-Simons current.

  9. Baryon Ratios in Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; MIAO Hong; GAO Chong-Shou

    2003-01-01

    A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.

  10. Recent COMPASS results on the gluon polarization

    CERN Document Server

    Quintans, Catarina

    2009-01-01

    The spin structure of the nucleon is studied in the COMPASS experiment at CERN/SPS, from the collisions of 160 GeV polarized muon beam with a $^{6}$LiD target. The data collected from 2002 to 2006 provide an accurate measurement of longitudinal double spin cross-section asymmetries. The latest results on the gluon polarization, accessed from two independent analyses of photon-gluon fusion selected events, are presented. The study of the open-charm production allows to extract the gluon polarization (in LO QCD) from the measurement of the asymmetry, the value obtained being $\\Delta g/g = -$ 0.49 $\\pm$ 0.27($stat$) $\\pm$ 0.11($syst$), at an average $x_{g} =$ 0.11$^{+0.11}_{-0.05}$ and a scale $\\langle\\mu^{2}\\rangle =$ 13 (GeV/c)$^{2}$. An alternative and independent way to study the gluon polarization, by studying the high transverse momentum hadron pairs produced, leads to a value $\\Delta g/g =$ 0.08 $\\pm$ 0.10($stat$) $\\pm$ 0.05($syst$), at $x^{av}_{g} =$ 0.082$^{+0.041}_{-0.027}$ and $\\langle\\mu^{2}\\rangle =...

  11. Impact Factors for Reggeon-Gluon Transitions

    CERN Document Server

    Fadin, V S

    2015-01-01

    General expressions for the impact factors up to terms vanishing at the space-time dimension $D\\rightarrow 4$ are presented. Their infrared behaviour is analysed and calculation of exact in $D\\rightarrow 4$ asymptotics at small momenta of Reggeized gluons is discussed.

  12. Gluon Sivers function in a light-cone spectator model

    CERN Document Server

    Lu, Zhun

    2016-01-01

    We calculate the gluon Sivers function of the proton in the valence-$x$ region using a light-cone spectator model with the presence of the gluon degree of freedom. We obtain the values of the parameters by fitting the model resulting gluon density distribution to the known parametrization. We find that our results agree with the recent phenomenological extraction of the gluon Sivers function after considering the evolution effect. We also estimate the mean transverse momentum of the gluon in a transversely polarized proton and find that it is within the range implied by the Burkardt sum rule.

  13. Gluon chains and the quark-antiquark potential

    CERN Document Server

    Greensite, J

    2009-01-01

    The flux tube between a quark and an antiquark in Coulomb gauge is imagined in the gluon-chain model as a sequence of constituent gluons bound together by Coulombic nearest-neighbor interactions. We diagonalize the transfer matrix in SU(2) lattice gauge theory in a finite basis of states containing a static quark-antiquark pair together with zero, one, and two gluons in Coulomb gauge. We show that while the string tension of the color-Coulomb potential (obtained from the zero-gluon to zero-gluon element of the transfer matrix) overshoots the true asymptotic string tension by a factor of about three, the inclusion of a few states with constituent gluons reduces the discrepancy considerably. The minimal energy eigenstate of the transfer matrix in the zero-, one-, and two-gluon basis exhibits a linearly rising potential with the string tension only about 1.4 times larger than the asymptotic one.

  14. Virtualities of quark and gluon in QCD vacuum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.

  15. KdV solitons in a cold quark gluon plasma

    CERN Document Server

    Fogaça, D A; Filho, L G Ferreira

    2011-01-01

    The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the properties of the quark gluon plasma (QGP) and, in particular, the study of perturbations in this kind of plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a localized pulse in baryon density could propagate throughout the QGP for long distances preserving its shape and without loosing localization, this could have interesting consequences for relativistic heavy ion physics and for astrophysics. A mathematical way to proove that this can happen is to derive (under certain conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS does not lead to KdV solitons. Recently we have developed an EOS for the QGP which include...

  16. Coulomb gauge ghost propagator and the Coulomb form factor

    CERN Document Server

    Quandt, M; Chimchinda, S; Reinhardt, H

    2008-01-01

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0--propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0-propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  17. Coulomb gauge ghost propagator and the Coulomb form factor

    Science.gov (United States)

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  18. Degrees of Freedom of the Quark Gluon Plasma, tested by Heavy Mesons

    CERN Document Server

    Berrehrah, H; Song, T; Ozvenchuck, V; Gossiaux, P B; Werner, K; Bratkovskaya, E; Aichelin, J

    2016-01-01

    Heavy quarks (charm and bottoms) are one of the few probes which are sensitive to the degrees of freedom of a Quark Gluon Plasma (QGP), which cannot be revealed by lattice gauge calculations in equilibrium. Due to the rapid expansion of the QGP energetic heavy quarks do not come to an equilibrium with the QGP. Their energy loss during the propagation through the QGP medium depends strongly on the modelling of the interaction of the heavy quarks with the QGP quarks and gluons, i.e. on the assuption of the degrees of freedom of the plasma. Here we compare the results of different models, the pQCD based Monte-Carlo (MC@sHQ), the Dynamical Quasi Particle Model (DQPM) and the effective mass approach, for the drag force in a thermalized QGP and discuss the sensitivity of heavy quark energy loss on the properties of the QGP as well as on non-equilibrium dynamics

  19. Recent gluon polarization results from COMPASS

    CERN Document Server

    Quintans, C

    2007-01-01

    One of the main goals of the COMPASS experiment at CERN is the measurement of the gluon polarization in the nucleon, $\\Delta G$, by scattering of 160 GeV/c polarized muons on a polarized $^{6}$LiD target. This quantity is experimentally accessible via the photon-gluon fusion process, tagged either by charmed mesons production or by high $p_{T}$ hadron pairs production. The status of these two analyses is presented. Preliminary results obtained from the 2002/03 data samples on the $D^{0}$ and the $D^{*\\pm}$ channels are shown. The high $p_{T}$ hadron pairs, produced at $Q^{2}\\lessgtr$ 1 (GeV/c)$^{2}$, were also analysed, and the measured $\\Delta G/G$ values are presented here.

  20. Higgs production in gluon fusion beyond NNLO

    CERN Document Server

    Ball, Richard D; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2013-01-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N3LO) in alpha_s with finite top mass. We argue that an accurate approximationcan be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N3LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  1. Strongly Coupled Quark Gluon Plasma (SCQGP)

    CERN Document Server

    Bannur, V M

    2006-01-01

    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems.

  2. Plasmons in Anisotropic Quark-Gluon Plasma

    CERN Document Server

    Carrington, Margaret E; Mrowczynski, Stanislaw

    2014-01-01

    Plasmons of quark-gluon plasma - gluon collective modes - are systematically studied. The plasma is, in general, non-equilibrium but homogeneous. We consider anisotropic momentum distributions of plasma constituents which are obtained from the isotropic one by stretching or squeezing in one direction. This leads to prolate or oblate distributions, respectively. We study all possible degrees of one dimensional deformation from the extremely prolate case, when the momentum distribution is infinitely elongated in one direction, to the extremely oblate distribution, which is infinitely squeezed in the same direction. In between these extremes we discuss arbitrarily prolate, weakly prolate, isotropic, weakly oblate and arbitrarily oblate distributions. For each case, the number of modes is determined using a Nyquist analysis and the complete spectrum of plasmons is found analytically if possible, and numerically when not. Unstable modes are shown to exist in all cases except that of isotropic plasma. We derive con...

  3. Effective "Gluon" Dynamics in a Stochastic Vacuum

    CERN Document Server

    Magpantay, J A

    2002-01-01

    Using the new scalar and vector degrees of freedom derived from the non-linear gauge condition (grad-dot-D)(grad-dot-A)=0, we show that the effective dynamics of the vector fields (identified as ``gluons'') in the stochastic vacuum defined by the scalars result in the vector fields acquiring a mass. We also find the vector fields losing their self-interactions.

  4. Tracing the pressure of the gluon plasma

    CERN Document Server

    Jackson, G

    2016-01-01

    Being interested in how a strongly coupled system approaches asymptotic freedom, we re-examine existing precision lattice QCD results for thermodynamic properties of the gluon plasma in a large temperature range. We discuss and thoroughly test the applicability of perturbative results, on which grounds we then infer that the pressure and other bulk properties approach the free limit somewhat slower than previously thought. We also revise the value of the first non-perturbative coefficient in the weak-coupling expansion.

  5. Energy Density in Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    马忠彪; 苗洪; 高崇寿

    2003-01-01

    We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,

  6. From Color Fields to Quark Gluon Plasma

    CERN Document Server

    Fries, R J; Li, Y; Fries, Rainer J.; Kapusta, Joseph I.; Li, Yang

    2006-01-01

    We discuss a model for the energy distribution and the early space-time evolution of a heavy ion collision. We estimate the gluon field generated in the wake of hard processes and through primordial fluctuations of the color charges in the nuclei. Without specifying the dynamical mechanism of thermalization we calculate the energy momentum tensor of the following plasma phase. The results of this model can be used as initial conditions for a further hydrodynamic evolution.

  7. On the quark-gluon plasma search

    OpenAIRE

    Hamieh, S. D.

    2004-01-01

    We report on the effect of the quantum statistics on the two-proton spin correlation (SC) in cold and thermal nuclear matter. We have found that two nucleons SC function can be well approximated by a guassian with correlations length $\\sigma\\sim1.2$ fm. We have proposed SC measurement on low protons energy as test of the quark-gluon plasma formation in relativistic heavy ions collisions.

  8. Landau gauge gluon vertices from Lattice QCD

    CERN Document Server

    Duarte, Anthony G; Silva, Paulo J

    2016-01-01

    In lattice QCD the computation of one-particle irreducible (1PI) Green's functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Green's functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Green's function.

  9. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  10. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  11. Composite Gluons and Effective Nonabelian Gluon Dynamics in a Unified Spinor-Isospinor Preon Field Model

    Science.gov (United States)

    Stumpf, H.

    1987-03-01

    The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.

  12. The Gluon Sivers Distribution: Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Daniël Boer

    2015-01-01

    Full Text Available We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p↑p→πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution of natural size expected from large Nc arguments, which is O(1/Nc times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been suggested, which besides RHIC investigations, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon Sivers TMD probed in the various processes are different linear combinations of two universal gluon Sivers functions that have different behavior under charge conjugation and that therefore satisfy different theoretical constraints. For this reason both hadronic and DIS type of collisions are essential in the study of the role of gluons in transversely polarized protons.

  13. Diphoton excess at 750 GeV: gluon-gluon fusion or quark-antiquark annihilation?

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jun [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Zhang, Hao [University of California, Santa Barbara, Department of Physics, Santa Barbara, CA (United States); Zhu, Hua Xing [Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)

    2016-06-15

    Recently, ATLAS and CMS collaborations reported an excess in the measurement of diphoton events, which can be explained by a new resonance with a mass around 750 GeV. In this work, we explored the possibility of identifying if the hypothetical new resonance is produced through gluon-gluon fusion or quark-antiquark annihilation, or tagging the beam. Three different observables for beam tagging, namely the rapidity and transverse-momentum distribution of the diphoton, and one tagged bottom-jet cross section, are proposed. Combining the information gained from these observables, a clear distinction of the production mechanism for the diphoton resonance is promising. (orig.)

  14. Universality of Unintegrated Gluon Distributions at small x

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Fabio; Marquet, Cyrille; Xiao, Bowen; Yuan, Feng

    2011-01-04

    We systematically study dijet production in various processes in the small-x limit and establish an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target. In the large-Nc limit, the unintegrated gluon distributions involved in different processes are shown to be related to two widely proposed ones: the Weizsacker-Williams gluon distribution and the dipole gluon distribution.

  15. Classical gluon production amplitude in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Chirilli Giovanni Antonio

    2016-01-01

    Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  16. The refractive index in the viscous quark-gluon plasma

    CERN Document Server

    Jiang, Bing-feng; Li, Jia-rong; Gao, Yan-Jun

    2013-01-01

    Under the framework of the viscous chromohydrodynamics, the gluon self-energy is derived for the quark-gluon plasma with shear viscosity. The viscous electric permittivity and magnetic permeability are evaluated from the gluon self-energy, through which the refraction index %in the %viscous quark-gluon plasma is investigated. The numerical analysis indicates that the refractive index becomes negative in some frequency range. The start point for that frequency range is around the electric permittivity pole, and the magnetic permeability pole determines the end point. As the increase of $\\eta/s$, the frequency range for the negative refraction becomes wider.

  17. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    Directory of Open Access Journals (Sweden)

    Trambak Bhattacharyya

    2016-01-01

    Full Text Available We calculate the soft gluon radiation spectrum off heavy quarks (HQs interacting with light quarks (LQs beyond small angle scattering (eikonality approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.

  18. Dilepton production by dynamical quasiparticles in the strongly interacting quark gluon plasma

    CERN Document Server

    Linnyk, O

    2010-01-01

    The dilepton production by the constituents of the strongly interacting quark-gluon-plasma (sQGP) is addressed. In order to make quantitative predictions at realistically low plasma temperatures (O(T_c)), experimentally relevant low dilepton mass (O(1 GeV)) and strong coupling (alphaS=0.5-1), we take into account not only the higher order pQCD reaction mechanisms, but also the non-perturbative spectral functions (off-shellness) and self-energies of the quarks, anti-quarks and gluons thus going beyond the leading twist. For this purpose, our calculations utilize parametrizations of the non-perturbative propagators for quarks and gluons provided by the dynamical quasi-particle model (DQPM) matched to reproduce lattice data. The DQPM describes QCD properties in terms of single-particle Green's functions (in the sense of a two-particle irreducible approach) and leads to the notion of the constituents of the sQGP being effective quasiparticles, which are massive and have broad spectral functions (due to large inte...

  19. Evolution to the quark–gluon plasma

    Science.gov (United States)

    Fukushima, Kenji

    2017-02-01

    Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed, including pedagogical introductions on the initial condition with small-\\text{x} gluons treated as a color glass condensate, the bottom–up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.

  20. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Bikash Sinha

    2000-04-01

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS energies are considered. It has been shown that the present photon spectra measured by WA80 and WA98 Collaborations can not distinguish between the formation of quark matter and hadronic matter in the initial state.

  1. Gluon Green functions free of Quantum fluctuations

    CERN Document Server

    Athenodorou, A; De Soto, F; Rodríguez-Quintero, J; Zafeiropoulos, S

    2016-01-01

    This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, removes the $\\Lambda_{\\rm QCD}$ scale and destroys the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a cheap lattice calibration.

  2. Evolution to the Quark-Gluon Plasma

    CERN Document Server

    Fukushima, Kenji

    2016-01-01

    Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed including pedagogical introductions on the initial condition with small-x gluons treated as a color glass condensate, the bottom-up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.

  3. The Theory of Quark and Gluon Interactions

    CERN Document Server

    Ynduráin, Francisco J

    2006-01-01

    F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.

  4. Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution

    NARCIS (Netherlands)

    Boer, Daniel; den Dunnen, Wilco J.; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner

    2012-01-01

    We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine whethe

  5. The gluon Sivers distribution: status and future prospects

    CERN Document Server

    Boer, Daniël; Pisano, Cristian; Zhou, Jian

    2015-01-01

    This is a review of what is currently known about the gluon Sivers distribution and of what are the opportunities to learn more about it. Because single transverse spin asymmetries in $p^\\uparrow \\, p \\to \\pi \\, X$ provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution that is of the natural size expected from large $N_c$ arguments, which is ${\\cal O}(1/N_c)$ times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been put forward, which apart from ongoing and future investigations at RHIC, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon...

  6. Accessing the distribution of linearly polarized gluons in unpolarized hadrons

    NARCIS (Netherlands)

    Boer, Daniël; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian

    2011-01-01

    Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos(2 phi) asymmetries in heavy quark pair or dijet production in electron-hadron

  7. Dilepton Production in a Chemically Equilibrating Quark-Gluon Matter

    Institute of Scientific and Technical Information of China (English)

    贺泽君; 蒋维洲; 张家驹; 张伟; 刘波

    2002-01-01

    We have studied dilepton production in a chemically equilibrating quark-gluon matter produced at RHIC energies.We find that the dilepton yield is no longer a monotonically decreasing function of the initial quark chemicalpotential. Therefore, the dilepton suppression may not be useful as a signature for quark-gluon matter formation.

  8. Virtual photon impact factors with exact gluon kinematic

    CERN Document Server

    Bialas, A; Peschanski, R

    2001-01-01

    An explicit analytic formula for the transverse and longitudinal impact factors S_{T,L}(N,\\gamma) of the photon using k_T factorization with exact gluon kinematics is given. Applications to the QCD dipole model and the extraction of the unintegrated gluon structure function from data are proposed.

  9. Soft-gluon effects in nonleptonic decays of charmed mesons

    Energy Technology Data Exchange (ETDEWEB)

    Shizuya, Ken-ichi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1981-03-19

    In this paper, soft-gluon effects in nonleptonic decays of D and F mesons are studied nonperturbatively by use of a QCD multipole expansion. Finally, for reasonable values of D-meson bound-state parameters, the soft-gluon effects lead to a significant difference in the lifetimes of the D0 and D+ mesons.

  10. Bound states of quarks and gluons and hadronic transitions; Estados ligados de quarks e gluons e transicoes hadronicas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Antonio Soares de

    1990-05-01

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs.

  11. From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.

  12. From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma

    Science.gov (United States)

    Liao, Jinfeng

    2017-01-01

    Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.

  13. Prompt photon hadroproduction at high energies in off-shell gluon-gluon fusion

    CERN Document Server

    Baranov, S P; Zotov, N P

    2007-01-01

    The amplitude for production of a single photon associated with quark pair in the fusion of two off-shell gluons is calculated. The matrix element found is applied to the inclusive prompt photon hadroproduction at high energies in the framework of kt-factorization QCD approach. The total and differential cross sections are calculated in both central and forward pseudo-rapidity regions. The conservative error analisys is performed. We used the unintegrated gluon distributions in a proton which were obtained from the full CCFM evolution equation as well as from the Kimber-Martin-Ryskin prescription. Theoretical results were compared with recent experimental data taken by the D0 and CDF collaborations at Fermilab Tevatron. Theoretical predictions for LHC energies are given.

  14. The Dark Side of the Propagators: exploring their analytic properties by a massive expansion

    Science.gov (United States)

    Siringo, Fabio

    2017-03-01

    Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-loop massive expansion in the Landau gauge, and are studied in Minkowski space, yielding a direct proof of positivity violation and confinement from first principles. Complex conjugated poles are found for the gluon propagator.

  15. Propagators and Masses of Light Quarks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; ZHU Ji-Zhen; MA Wei-Xing

    2003-01-01

    Based on Dyson-Schwinger equations in "rainbow" approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.

  16. Propagators and Masses of Light Quarks

    Institute of Scientific and Technical Information of China (English)

    ZHOULi-Juan; ZHUJi-Zhen; MAWei-Xing

    2003-01-01

    Based on Dyson-Schwinger equations in “rainbow” approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.

  17. Very boosted Higgs in gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C. [Univ. Autonoma de Barcelona, Bellaterra (Spain). ICREA at IFAE; Salvioni, E. [California Univ., Davis, CA (United States). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland); Padova Univ. (Italy). Dipt. di Fisica e Astronomica; INFN, Sezione di Padova (Italy); Schlaffer, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiler, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-12-15

    The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.

  18. Gluon Green functions free of quantum fluctuations

    Directory of Open Access Journals (Sweden)

    A. Athenodorou

    2016-09-01

    Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.

  19. Exploding Quark-Gluon Plasma Fireball

    CERN Document Server

    Hamieh, S; Rafelski, Johann; Hamieh, Salah; Letessier, Jean; Rafelski, Johann

    2000-01-01

    Lattice-QCD results provide an opportunity to model and extrapolate to finite baryon density the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data the properties of resulting QGP equations of state (EoS) are developed. An exploding dense matter fireball formed in heavy ion collision experiments at CERN-SPS is considered, and we show that its physical properties are well described by the QGP-EoS we presented. We quantitatively determine the conditions of sudden breakup of the fireball, and show that this instability point is consistent with with the hadronization condition derived from the hadronic particle production data. We further estimate the properties of the fireball as it is formed just after nuclear collision is completed and show that QGP formation must be expected down to 40$A$ GeV central Pb--Pb interactions.

  20. Charmonium states in quark-gluon plasma

    Indian Academy of Sciences (India)

    Su Houng Lee; Kenji Morita

    2009-01-01

    We discuss how the spectral changes of quarkonia at c can reflect the `critical' behaviour of QCD phase transition. Starting from the temperature dependencies of the energy density and pressure from lattice QCD calculation, we extract the temperature dependencies of the scalar and spin-2 gluon condensates near c . We also parametrize these changes into the electric and magnetic condensate near c. While the magnetic condensate hardly changes across c, we find that the electric condensate increases abruptly above c. Similar abrupt change is also seen in the scalar condensate. Using the QCD second-order Stark effect and QCD sum rules, we show that these sudden changes induce equally abrupt changes in the mass and width of /, both of which are larger than 100 MeV at slightly above c.

  1. Very boosted Higgs in gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C. [ICREA at IFAE, Universitat Autónoma de Barcelona,E-08193 Bellaterra (Spain); Salvioni, E. [Department of Physics, University of California,Davis, CA 95616 (United States); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Schlaffer, M. [DESY,Notkestrasse 85, D-22607 Hamburg (Germany); Weiler, A. [Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); DESY,Notkestrasse 85, D-22607 Hamburg (Germany)

    2014-05-06

    The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the tt-macronh channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.

  2. Associated production of prompt photons and heavy quarks in off-shell gluon-gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, S.P. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)

    2008-08-15

    In the framework of the k{sub T}-factorization approach, we study the production of prompt photons associated with heavy (charm and beauty) quarks in hadron-hadron collisions at high energies. Our consideration is based on the amplitude for the production of a single photon associated with a quark pair in the fusion of two off-shell gluons. The total and differential cross sections are presented and the conservative error analysis is performed. Two sets of unintegrated gluon distributions in the proton have been used in numerical calculation: the one obtained from Ciafaloni-Catani-Fiorani-Marchesini evolution equation and the other from Kimber-Martin-Ryskin prescription. The theoretical results are compared with recent experimental data taken by the CDF collaboration at the Fermilab Tevatron. Our analysis extends to specific angular correlations between the produced prompt photons and muons originating from semileptonic decays of the final charmed or beauty quarks. We point out the importance of such observables, which can serve as a crucial test for the unintegrated gluon densities in a proton. Finally, we extrapolate the theoretical predictions to the CERN LHC energies. (orig.)

  3. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  4. On the Quark-Gluon Vertex and Quark-Ghost Kernel: combining Lattice Simulations with Dyson-Schwinger equations

    CERN Document Server

    Rojas, E; El-Bennich, B; Oliveira, O; Frederico, T

    2013-01-01

    We investigate the dressed quark-gluon vertex combining two established non-perturbative approaches to QCD: the Dyson-Schwinger equation (DSE) for the quark propagator and lattice-regularized simulations for the quark, gluon and ghost propagators. The vertex is modeled using a generalized Ball-Chiu ansatz parameterized by a single form factor $\\tilde X_0$ which effectively represents the quark-ghost scattering kernel. The solution space of the DSE inversion for $\\tilde X_0$ is highly degenerate, which can be dealt with by a numerical regularization scheme. We consider two possibilities: (i) linear regularization and (ii) the Maximum Entropy Method. These two numerical approaches yield compatible $\\tilde X_0$ functions for the range of momenta where lattice data is available and feature a strong enhancement of the generalized Ball-Chiu vertex for momenta below 1 GeV. Our ansatz for the quark-gluon vertex is then used to solve the quark DSE which yields a mass function in good agreement with lattice simulations...

  5. Identified Charged Particles in Quark and Gluon Jets

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.A.; Demaria, N.; De Angelis, A.; de Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanskii, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevskii, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovskii, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Seemann, F.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, A.; Sopczak, A.; Sosnowski, R.; Spassoff, Tz.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli de Fatis, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.G.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Vanden Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.

    2000-01-01

    A sample of 2.2 million hadronic \\z decays, selected fythe {\\sc Delphi} detector at {\\sc Lep} during 1994-199nimprovedmeasurement of inclusive distributions of \\pie, \\kp anrantiparticles in gluon and quark jets. The production l identified particles were found to be softer in gluon kjets, with a higher multiplicity in gluon jets as obseecharged particles. A significant proton enhancement indindicating that baryon production proceeds directly fr.The maxima, $\\xi^*$, of the $\\xi$-distributions for kakjets are observed to be different. The study of isoscanshows no indication of an excess of $\\phi(1020)$ produ.

  6. A solution of the DGLAP equation for gluon at low

    Indian Academy of Sciences (India)

    D K Choudhury; P K Sahariah

    2002-04-01

    We obtain a solution of the DGLAP equation for the gluon at low first by expanding the gluon in a Taylor series and then using the method of characteristics. We test its validity by comparing it with that of Glück, Reya and Vogt. The convergence criteria of the approximation used are also discussed. We also calculate 2(,2)/ ln 2 using its approximate relations with the gluon distribution at low . The predictions are then compared with the HERA data.

  7. Gluon transverse momentum dependent correlators in polarized high energy processes

    CERN Document Server

    Boer, Daniel; van Daal, Tom; Mulders, Piet J; Signori, Andrea; Zhou, Yajin

    2016-01-01

    We investigate the gluon transverse momentum dependent correlators as Fourier transform of matrix elements of nonlocal operator combinations. At the operator level these correlators include both field strength operators and gauge links bridging the nonlocality. In contrast to the collinear PDFs, the gauge links are no longer unique for transverse momentum dependent PDFs (TMDs) and also Wilson loops lead to nontrivial effects. We look at gluon TMDs for unpolarized, vector and tensor polarized targets. In particular a single Wilson loop operators become important when one considers the small-x limit of gluon TMDs.

  8. Quark vs Gluon jets in Heavy Ion Collisions

    CERN Document Server

    Drauksas, Simonas

    2017-01-01

    The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.

  9. The LPM effect in sequential bremsstrahlung: 4-gluon vertices

    CERN Document Server

    Arnold, Peter; Iqbal, Shahin

    2016-01-01

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; and large $N_c$) by now including processes involving 4-gluon vertices.

  10. One-Loop Corrections to Five-Gluon Amplitudes

    CERN Document Server

    Bern, Z; Kosower, D A

    1993-01-01

    We present the one-loop helicity amplitudes with five external gluons. The computation employs string-based methods, new techniques for performing tensor integrals, and improvements in the spinor helicity method.

  11. Effective degrees of freedom of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Castorina, P. [Dipartimento di Fisica, Universita di Catania, and INFN Sezione di Catania, Via Santa Sofia 64, I-95100 Catania (Italy); Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: massimo@lns.mit.edu

    2007-01-25

    The effective degrees of freedom of the quark-gluon plasma are studied in the temperature range {approx}(1-2)T{sub c}. We show that including light bosonic states one can reproduce the pressure and energy density of the quark-gluon plasma obtained by lattice simulations. The number of the bosonic states required is at most of the order of 20, consistent with the number of light mesonic states and in disagreement with a recently proposed picture of the quark-gluon plasma as a system populated with exotic bound states. We also constrain the quark quasiparticle chiral invariant mass to be {approx}300 MeV. Some remarks regarding the role of the gluon condensation and the baryon number-strangeness correlation are also presented.

  12. Gluon number fluctuations with heavy quarks at HERA

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiang-Rong; ZHOU Dai-Cui

    2011-01-01

    We study the effect of gluon number fluctuations (Pomeron loops) on the proton structure function at HERA.It is shown that the description of charm and bottom quarks and longitudinal structure functions are improved,with x2/d.o.f=0.803 (fluctuations) as compared with x2/d.o.f=0.908 (without fluctuations),once the gluon number fluctuations are included.We find that in the gluon number fluctuation case the heavy quarks do not play an important role in the proton structure function as the saturation model.The successful description of the HERA data indicates that the gluon number fluctuation could be one of the key mechanisms to describe the proton structure function at HERA energies.

  13. LHC soft physics and TMD gluon density at low x

    CERN Document Server

    Lipatov, A V; Zotov, N P

    2014-01-01

    We study the unintegrated, or transverse momentum dependent (TMD) gluon distribution obtained from the best description of the LHC data on the inclusive spectra of hadrons produced in the mid-rapidity region and low transverse momenta at starting scale Q0^2 = 1 GeV^2. To extend this gluon density at higher Q^2 we apply the Catani-Ciafoloni-Fiorani-Marchesini (CCFM) evolution equation. The influence of the initial (starting) non-perturbative gluon distribution is studied. The application of the obtained gluon density to the analysis of the ep deep inelastic scattering allows us to get the results which describe reasonably well the H1 and ZEUS data on the longitudinal proton structure function FL(x,Q^2). So, the connection between the soft processes at LHC and small x physics at HERA has been confirmed and extended to a wide kinematical region.

  14. The gluon condensation at high energy hadron collisions

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2017-03-01

    Full Text Available We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.

  15. Evolution of gluon TMD at low and moderate x

    CERN Document Server

    Balitsky, I

    2014-01-01

    We study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x\\ll 1$ to linear double-logarithmic evolution at moderate $x\\sim 1$.

  16. The gluon condensation at high energy hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei, E-mail: weizhu@mail.ecnu.edu.cn [Department of Physics, East China Normal University, Shanghai 200241 (China); Lan, Jiangshan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-03-15

    We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.

  17. Tetraquarks Production in Quark-Gluon Plasma with Diquarks

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; GAO Chong-Shou

    2006-01-01

    @@ We present a way to calculate tetraquarks ratios for quark-gluon plasma with diquarks. The ratios of tetraquarks over baryons produced from quark matter are high than hadronic gas model limits. It is a better way to search for four-quark states in relativistic heavy ion collisions. It may become a criterion to judge whether quark-gluon plasma has formed to search for four-quark states in relativistic heavy ion collisions.

  18. The five gluon amplitude and one-loop integrals

    CERN Document Server

    Bern, Zvi; Kosower, David A.

    1992-01-01

    We review the conventional field theory description of the string motivated technique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are given.

  19. Transverse momentum dependence in gluon distribution and fragmentation functions

    CERN Document Server

    Mulders, P J

    2001-01-01

    We investigate the twist two gluon distribution functions for spin 1/2 hadrons, emphasizing intrinsic transverse momentum of the gluons. These functions are relevant in leading order in the inverse hard scale in scattering processes such as inclusive leptoproduction or Drell-Yan scattering, or more general in hard processes in which at least two hadrons are involved. They show up in azimuthal asymmetries. For future estimates of such observables, we discuss specific bounds on these functions.

  20. Massive quark-gluon scattering amplitudes at tree level

    Science.gov (United States)

    Hall, Anthony

    2008-01-01

    Results for four-, five-, and six-parton tree amplitudes for massive quark-antiquark scattering with gluons are calculated using the recursion relations of Britto, Cachazo, Feng, and Witten. The required diagrams are generated using shifts of the momenta of a pair of massless legs to complex values. Checks verifying the calculations are described, and a simple formula for the shifted spinors of an internal gluon is presented.

  1. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  2. Investigation of the splitting of quark and gluon jets

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vincent, P; Vitale, L; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1998-01-01

    The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution $y$, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is $2.77\\pm0.11\\pm0.10$. Due to non-perturbative effects, the data are below the expectation at small $y$. The transition from the perturbative to the non-perturbative domain appears at smaller $y$ for quark ...

  3. Gluon fragmentation functions in the Nambu-Jona-Lasinio model

    CERN Document Server

    Yang, Dong-Jing

    2016-01-01

    We derive gluon fragmentation functions in the Nambu-Jona-Lasinio (NJL) model by treating a gluon as a pair of color lines formed by fictitious quark and anti-quark ($q\\bar q$). Gluon elementary fragmentation functions are obtained from the quark and anti-quark elementary fragmentation functions for emitting specific mesons in the NJL model under the requirement that the $q\\bar q$ pair maintains in the flavor-singlet state after meson emissions. An integral equation, which iterates the gluon elementary fragmentation functions to all orders, is then solved to yield the gluon fragmentation functions at a model scale. It is observed that these solutions are stable with respect to variation of relevant model parameters, especially after QCD evolution to a higher scale is implemented. We show that the inclusion of the gluon fragmentation functions into the theoretical predictions from only the quark fragmentation functions greatly improves the agreement with the SLD data for the pion and kaon productions in $e^+e^...

  4. Analytic structure of QCD propagators in Minkowski space

    CERN Document Server

    Siringo, Fabio

    2016-01-01

    Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-loop massive expansion in the Landau gauge, deep in the infrared. By analytic continuation, the spectral functions are studied in Minkowski space, yielding a direct proof of positivity violation and confinement from first principles.The dynamical breaking of chiral symmetry is described on the same footing of gluon mass generation, providing a unified picture. While dealing with the exact Lagrangian, the expansion is based on massive free-particle propagators, is safe in the infrared and is equivalent to the standard perturbation theory in the UV. By dimensional regularization, all diverging mass terms cancel exactly without including mass counterterms that would spoil the gauge and chiral symmetry of the Lagrangian. Universal scaling properties are predicted for the inverse dressing functions and shown to be satisfied by the lattice data. Complex conjugated poles are found for the gluon propagator, in agre...

  5. Collective Flow signals the Quark Gluon Plasma

    Science.gov (United States)

    Bratkovskaya, E. L.; Bleicher, M.; Greiner, C.; Muronga, A.; Paech, K.; Reiter, M.; Scherer, S.; Soff, S.; Xu, Z.; Zeeb, G.; Zschiesche, D.; Tavares, B.; Portugal, L.; Aguiar, C.; Kodama, T.; Grassi, F.; Hama, Y.; Osada, T.; Sokolowski, O.; Werner, K.; Gallmeister, K.; Cassing, W.; Stöcker, H.

    2004-12-01

    A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 AṡGeV: here the hydrodynamic model has predicted the collapse of the v1-flow and of the v2-flow at ˜ 10 AṡGeV; at 40 AṡGeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as potential evidence for a first order phase transition at high baryon density ρB. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Additionally, detailed transport studies show that the away-side jet suppression can only partially (QGP formed at RHIC — can give further information on the equation of state (EoS) and transport coefficients of the Quark Gluon Plasma (QGP).

  6. Modeling Quark Gluon Plasma Using CHIMERA

    Science.gov (United States)

    Abelev, Betty

    2011-09-01

    We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.

  7. Modeling Quark Gluon Plasma Using CHIMERA

    CERN Document Server

    Abelev, Betty B I

    2011-01-01

    We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (T$_{\\mathrm{init}}$), presence or absence of initial flow, viscosity over entropy density ($\\eta$/s) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. $\\chi^2$/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP wi...

  8. Inflating metastable quark-gluon plasma universe.

    Science.gov (United States)

    Jenkovszky, L.

    The cosmic evolution of our universe before and after the assumed confinement phase transition is studied within the homogeneous, isotropic and spatially flat model. The Friedmann equation, describing its evolution is appended by an equation of state (EOS) of the quark-gluon plasma. A specifically interesting feature of this EOS, derived both in the content of the quark model (and quantum chromodynamics) and the S-matrix formulation of statistical mechanics is the presence of a local minimum in the pressure vs. temperature dependence, that may be the origin of the exponential expansion of our universe, called inflation. The conditions necessary for the deep supercooling, accompanied by nucleation in a first-order phase transition, have been investigated. The nucleation rate (and consequently the probability of the deep supercooling indispensable for the inflation) are shown to depend essentially on the surface tension of the created bubbles. The possibility of a "nuclear inflation" - the analogue of the above scenario in heavy ion collisions - is also discussed.

  9. Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD

    CERN Document Server

    Kim, Youngman; Tsukioka, Takuya; Zhang, P M

    2016-01-01

    We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.

  10. Gluon TMDs in the small-$x$ limit

    CERN Document Server

    van Daal, Tom

    2016-01-01

    In high-energy scattering processes involving two or more hadrons one can measure observables that are sensitive to partonic transverse momentum, which is encoded in so-called transverse momentum dependent (TMD) parton distribution functions (PDFs), also called TMDs. These functions correspond to Fourier transforms of matrix elements that contain process-dependent gauge links. As the energy associated to the collision process increases, one becomes more sensitive to the small-$x$ region which is dominated by gluon rather than quark TMDs. In this paper we study the leading-twist gluon TMDs in the small-$x$ limit for the dipole-type gauge link structure, for both unpolarized and vector polarized hadrons. In the limit $x\\to0$, the gluon-gluon correlator reduces to a correlator that consists of a single Wilson loop. This is used to obtain a simple description of gluon TMDs in the small-$x$ region: some of the functions vanish, while others become proportional to each other.

  11. Applicability of Parametrized Form of Fully Dressed Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p2)] and [Bf(p2) - mf], dynamically running effective mass of quark Mf(p2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results are compatible with other theoretical calculations.

  12. Worldline calculation of the three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadiniaz, N.; Schubert, C. [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna Via Irnerio 46, I-40126 Bologna (Italy); Instituto de Fisica y Matematicas Universidad Michoacana de San Nicolas de Hidalgo Apdo. Postal 2-82 C.P. 58040, Morelia, Michoacan (Mexico)

    2012-10-23

    The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.

  13. YFS MC Approach to QCD Soft Gluon Exponentiation

    CERN Document Server

    Ward, B F L

    2002-01-01

    We present two things in this discussion. First, we develop and prove the theory of the extension of the YFS Monte Carlo approach to higher order SU_{2L} x U_1 radiative corrections to the analogous higher order QCD radiative corrections. Contact is made with other pioneering soft gluon resummation theories in the literature. Second, semi-analytical results and preliminary explicit Monte Carlo data are presented for the specific example of the processes p-bar p -> t-bar t +n(G)+X at FNAL energies, where G is a soft gluon and the respective event generator, ttp1.0, features realistic, event-by-event simulation of multiple, soft, finite p_T gluon effects in which the infrared singularities are canceled to all orders in alpha_s. We comment briefly on the implications of our results on the CDF/D0 observations and on their possible applications to RHIC physics and to LHC physics.

  14. Improved LO extraction of the gluon polarisation using COMPASS data

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, Malte [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: COMPASS collaboration

    2015-07-01

    The COMPASS experiment at the M2 beamline of the CERN SPS has taken data with a polarised muon beam (E=160 GeV) scattering of a polarised LiD target from 2002 to 2006. The events in the DIS region are re-analysed to extract simultaneously the gluon polarisation Δg/g and the leading process asymmetry from the same data using a Neural Network approach. The new method of extracting Δg/g is presented. The main feature of this method is a reduction of both the systematic and the statistical uncertainty of the gluon polarisation obtained in LO. The new result is in good agreement with the already published one in PLB 718 (2013) 922 and is presented in three bins of gluon momentum fraction x{sub g}.

  15. Holographic Multiquarks in the Quark-Gluon Plasma: A Review

    Directory of Open Access Journals (Sweden)

    Piyabut Burikham

    2011-01-01

    Full Text Available We review the holographic multiquark states in the deconfined quark-gluon plasma. Nuclear matter can become deconfined by extremely high temperature and/or density. In the deconfined nuclear medium, bound states with colour degrees of freedom are allowed to exist. Using holographic approach, the binding energy and the screening length of the multiquarks can be calculated. Using the deconfined Sakai-Sugimoto model, the phase diagram of the multiquark phase, the vacuum phase, and the chiral-symmetric quark-gluon plasma can be obtained. Then we review the magnetic properties of the multiquarks and their phase diagrams. The multiquark phase is compared with the pure pion gradient, the magnetized vacuum, and the chiral-symmetric quark-gluon plasma phases. For moderate temperature and sufficiently large density at a fixed magnetic field, the mixed phase of multiquark and pion gradient is the most energetically preferred phase.

  16. Anomalous Viscosity of the Quark-Gluon Plasma

    CERN Document Server

    Hong, Juhee

    2013-01-01

    The shear viscosity of the quark-gluon plasma is predicted to be lower than the collisional viscosity for weak coupling. The estimated ratio of the shear viscosity to entropy density is rather close to the ratio calculated by N = 4 super Yang-Mills theory for strong coupling, which indicates that the quark-gluon plasma might be strongly coupled. However, in presence of momentum anisotropy, the Weibel instability can arise and affect transport properties. Shear viscosity can be lowered by enhanced collisionality due to turbulence, but the decorrelation time and its relation to underlying dynamics and color-magnetic fields have not been calculated self-consistently. In this paper, we use resonance broadening theory for strong turbulence to calculate the anomalous viscosity of the quark-gluon plasma for nonequilibrium. For saturated Weibel instability, we estimate the scalings of the decorrelation rate and viscosity and compare these with collisional transport. This calculation yields an explicit connection betw...

  17. Quark and gluon tagging in dijet mass resonance search

    CERN Document Server

    Kellermann, Edgar

    2013-01-01

    Several models beyond the Standard Model predict new phenomena in particle physics, which would appear as resonant signals in dijet mass distributions. An example for such a resonance is the excited quark q, which is a consequence of Compositeness Models postulating that quarks and leptons are build by more fundamental particles. The main signature of an excited quark would be a dijet event, originated from the radiation of a gluon from the original excited quark when going back to its non-excited state, leading to a quark and a gluon in the final state (with a branching ratio of 83%) . Other examples are the heavy vector bosonsW0 decaying to two quarks and colour octet scalar S8 decaying to two gluons.

  18. Evidence for gluon interference in hadronic Z decays

    Science.gov (United States)

    Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Bujak, A.; Burger, J. D.; Burger, W. J.; Burgos, C.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; De Boeck, H.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabbretti, R.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Gailloud, M.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M. W.; Gu, C.; Guanziroli, M.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hartmann, B.; Hasan, A.; He, J. T.; Hebbeker, T.; Hervé, A.; Hilgers, K.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kirsch, S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krenz, W.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Laurikainen, P.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, J.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, L.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; Macchiolo, A.; Maity, M.; Malgeri, L.; Malik, R.; Malinin, A.; Maña, C.; Mangla, S.; Maolinbay, M.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McNally, D.; Mele, S.; Merk, M.; Merola, L.; Meschini, M.; Wetzger, W. J.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monaco, V.; Monteleoni, B.; Moore, R.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Salicio, J. M.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Son, D.; Sopczak, A.; Soulimov, V.; Smith, B.; Spickermann, T.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Stoyanov, B.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Timellini, R.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tuchscherer, H.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Voelkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weill, R.; Willmott, C.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, G.; Yao, X. Y.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zalite, An.; Zemp, P.; Zeng, J. Y.; Zeng, M.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration

    1995-02-01

    We present evidence for soft gluon interference, as required by QCD. This interference is expected to manifest itself in an angular ordering of the gluons radiated within a jet. Using hadronic decays of the Z boson in the L3 detector at LEP, we compare variables sensitive to such an angular ordering, namely the energy-energy correlation asymmetry and the newly introduced particle-particle correlation asymmetry, with the predictions of various parton shower models. Only those models which incorporate the expected interference agree with the data.

  19. Elliptic flow in small systems due to elliptic gluon distributions?

    Science.gov (United States)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2017-08-01

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the 'elliptic flow' parameter v2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  20. Nonperturbative effects in a rapidly expanding quark gluon plasma

    CERN Document Server

    Mohanty, A K; Gleiser, Marcello; 10.1103/PhysRevC.65.034908

    2002-01-01

    Within first-order phase transitions, we investigate pretransitional effects due to the nonperturbative, large-amplitude thermal fluctuations which can promote phase mixing before the critical temperature is reached from above. In contrast with the cosmological quark-hadron transition, we find that the rapid cooling typical of the relativistic heavy ion collider and large hadron collider experiments and the fact that the quark-gluon plasma is chemically unsaturated suppress the role of nonperturbative effects at current collider energies. Significant supercooling is possible in a (nearly) homogeneous state of quark gluon plasma. (24 refs).

  1. Probing the quark–gluon interaction with hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Alepuz, Hèlios, E-mail: helios.sanchis-alepuz@physik.uni-giessen.de; Williams, Richard, E-mail: richard.williams@physik.uni-giessen.de

    2015-10-07

    We present a unified picture of mesons and baryons in the Dyson–Schwinger/Bethe–Salpeter approach, wherein the quark–gluon and quark–(anti)quark interactions follow from a systematic truncation of the QCD effective action and include all its tensor structures. The masses of some of the ground-state mesons and baryons are found to be in reasonable agreement with the expectations of a ‘quark-core calculation’, suggesting a partial insensitivity to the details of the quark–gluon interaction. However, discrepancies remain in the meson sector, and for excited baryons, that suggest higher order corrections are relevant and should be investigated following the methods outlined herein.

  2. Further evidence for zero crossing on the three gluon vertex

    Science.gov (United States)

    Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.

    2016-10-01

    The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four-dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range 220-260 MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalization group improved perturbation theory.

  3. Further Evidence For Zero Crossing On The Three Gluon Vertex

    CERN Document Server

    Duarte, Anthony G; Silva, Paulo J

    2016-01-01

    The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range $220 - 260$ MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalisation group improved perturbation theory.

  4. QCD Factorization, Wilson Loop Space and Unintegrated Gluon Distributions

    Science.gov (United States)

    Cherednikov, Igor O.

    2017-03-01

    Currently available operator definitions of gauge-invariant unintegrated (transverse momentum dependent) gluon density function available are briefly overviewed, with emphasis on the structure of the associated Wilson lines. A gauge-invariant generating function with maximal path-dependence is proposed, which, as distinct from the common methodology, is based on arbitrary Wilson loops with no reference to any factorization scheme. After the local area differentiation defined in the Wilson loop space, this object can be used to define fully unintegrated gluon distribution functions in a way potentially suitable for the lattice simulations.

  5. Direct probes of linearly polarized gluons inside unpolarized hadrons.

    Science.gov (United States)

    Boer, Daniël; Brodsky, Stanley J; Mulders, Piet J; Pisano, Cristian

    2011-04-01

    We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2ϕ asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized gluon distribution in the proton should be feasible in future Electron-Ion Collider or Large Hadron electron Collider experiments. Analogous asymmetries in hadron-hadron collisions suffer from factorization breaking contributions and would allow us to quantify the importance of initial- and final-state interactions.

  6. Quark-gluon vertex in arbitrary gauge and dimension

    CERN Document Server

    Davydychev, A I; Saks, L

    2001-01-01

    One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.

  7. Soft Gluon kt-Resummation and the Froissart bound

    CERN Document Server

    Grau, A; Pancheri, G; Srivastava, Y N

    2009-01-01

    We study soft gluon kt-resummation and the relevance of zero momentum gluons for the energy dependence of total hadronic cross-sections. We discuss a model in which consistency of the energy dependence of the cross-section with the limitation of the Froissart bound, is directly related to the behaviour of the strong coupling constant in the infrared region. Our predictions for the asymptotic behaviour are shown to be related to the ansatz that the infrared behaviour of the QCD strong coupling constant follows an inverse power law.

  8. Study of gluon fragmentation and colour octet neutralization in DELPHI

    CERN Document Server

    Buschbeck, Brigitte

    2002-01-01

    Using the full statistics of the DELPHI experiment at $\\sqrt{s}=91 GeV$ 3-jet events are selected and gluon respectively quark jet enriched subsamples are defined. The leading systems of the two kinds of jets are determined using rapidity gaps. The sum of charges of the leading systems is studied. It is found that for gluon-jets there is a significant excess of leading systems with total charge zero when compared to Monte Carlo simulations with JETSET. The corresponding leading systems of quark-jets do not exhibit such an excess. The mass spectra of the leading systems with total charge zero are studied.

  9. J/ψ Dissociation in QGP via Multi-gluon Absorption

    Institute of Scientific and Technical Information of China (English)

    DING Yi-Bing; LI Xue-Qian; ZHANG Feng

    2003-01-01

    We propose that the suppression of J/ψ production in relativistic heavy ion collisions may be explained by that J/ψ dissociates via absorbing multi-gluons in the environment of quark-gluon-plasma (QGP) where abundance of gluons is expected.

  10. J/Φ Dissociation in QGP via Multi-gluon Absorption

    Institute of Scientific and Technical Information of China (English)

    DINGYi-Bing; LIXue-Qian; ZHANGFeng

    2003-01-01

    We propose that the suppression of J/Φ production in relativistic heavy ion collisions may be explained by that J/Φ dissociates via absorbing multi-gluons in the environment of quark-gluon-plasma (QGP) where abundance of gluons is expected.

  11. Intermediate mass dilepton production in a chemically equilibrating quark-gluon matter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section ofin the intermediate mass region, the gluon fusion provides a dominant contribution to dileptons with intermediate masses, resulting in the significant enhancement of intermediate mass dileptons.

  12. Can gluon condensate in pulsar cores explain pulsar glitches ?

    CERN Document Server

    Ray, R D

    1998-01-01

    Making use of the possibility that gluon condensate can be formed in neutron star core, we study the vortex pinning force between the crust and the interior of the neutron star. Our estimations indicate an increase in pinning strength with the age of the neutron star. This helps in explaining observed pulsar glitches and removes some difficulties faced by vortex creep model.

  13. The quark gluon plasma: Lattice computations put to experimental test

    Indian Academy of Sciences (India)

    Sourendu Gupta

    2003-11-01

    I describe how lattice computations are being used to extract experimentally relevant features of the quark gluon plasma. I deal specifically with relaxation times, photon emissivity, strangeness yields, event-by-event fluctuations of conserved quantities and hydrodynamic flow. Finally I give evidence that the plasma is rather liquid-like in some ways.

  14. Search for b-->s.gluon in B meson decays

    Science.gov (United States)

    Albrecht, H.; Gläser, R.; Harder, G.; Krüger, A.; Nippe, A.; Oest, T.; Reidenbach, M.; Schäfer, M.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Sefkow, F.; Wurth, R.; Appuhn, R. D.; Drescher, A.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Scheck, H.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Volland, U.; Wegener, H.; Funk, W.; Stiewe, J.; Werner, S.; Ball, S.; Gabriel, J. C.; Geyer, C.; Hölscher, A.; Hofmann, W.; Holzer, B.; Khan, S.; Spengler, J.; Charlesworth, C. E. K.; Edwards, K. W.; Frisken, W. R.; Kapitza, H.; Krieger, P.; Kutschke, R.; Macfarlane, D. B.; McLean, K. W.; Orr, R. S.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seidel, S. C.; Swain, J. D.; Tsipolitis, G.; Yoon, T.-S.; Davis, R.; Ruf, T.; Schael, S.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Boštjančič, B.; Kernel, G.; Križan, P.; Križnič, E.; Pleško, M.; Cronström, H. I.; Jönsson, L.; Nilsson, A. W.; Babaev, A.; Danilov, M.; Fominykh, B.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Rostovtsev, A.; Semenov, A.; Semenov, S.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitsev, Yu.; Childers, R.; Darden, C. W.; Argus Collaboration

    1991-01-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, a search for penguin decays of B mesons involving b→s gluon has been performed. No evidence for the penguin mechanism was found and a number of upper limits are quoted.

  15. Nonlinear Landau damping in quark-gluon plasma

    Science.gov (United States)

    Xiaofei, Zhang; Jiarong, Li

    1995-08-01

    The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.

  16. Investigation of Dilaton-Gluon Coupling Potential in Charmonium Family

    Institute of Scientific and Technical Information of China (English)

    PING Rong-Gang; CHEN Hong; PING Rong-Xiang

    2006-01-01

    The behaviour of dilaton-gluon coupling (DGC) potential is investigated by studying charmonium spectra,annihilation rates and E1 transition rates systematically.We find that in the non-relativistic quantum chromodynamics approximation,the charmonium properties can be described by the DGC potential.

  17. Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons

    NARCIS (Netherlands)

    Boer, Daniel; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian

    2011-01-01

    We show that linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production in electron-hadron collisions. We discuss the simplest cos2 phi asymmetries and estimate their maximal value, concluding that measurements of the unknown linearly polarized

  18. Linear polarization of gluons and photons in unpolarized collider experiments

    NARCIS (Netherlands)

    Pisano, Cristian; Boer, Daniel; Brodsky, Stanley J.; Buffing, Maarten G. A.; Mulders, Piet J.

    2013-01-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed

  19. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Science.gov (United States)

    Ageev, Dmitry

    2016-10-01

    The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  20. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Directory of Open Access Journals (Sweden)

    Ageev Dmitry

    2016-01-01

    Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  1. Two-Loop Gluon Regge Trajectory from Lipatov's Effective Action

    CERN Document Server

    Chachamis, Grigorios; Madrigal, José Daniel; Vera, Agustín Sabio

    2012-01-01

    Lipatov's high-energy effective action is a useful tool for computations in the Regge limit beyond leading order. Recently, a regularisation/subtraction prescription has been proposed that allows to apply this formalism to calculate next-to-leading order corrections in a consistent way. We illustrate this procedure with the computation of the gluon Regge trajectory at two loops.

  2. Creating the Primordial Quark-Gluon Plasma at the LHC

    Science.gov (United States)

    Harris, John W.

    2013-04-01

    Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.

  3. Gluon transport equations with condensate in the small angle approximation

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Institut de Physique Théorique (IPhT), CNRS/URA2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-15

    We derive the set of kinetic equations that control the evolution of gluons in the presence of a condensate. We show that the dominant singularities remain logarithmic when the scattering involves particles in the condensate. This allows us to define a consistent small angle approximation.

  4. Study of Leading Hadrons in Gluon and Quark Fragmentation

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brunet, J M; Brückman, P; Buschbeck, B; Buschmann, P; Bérat, C; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Da Silva, T; Da Silva, W; Dalmau, J; De Angelis, A; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Della Ricca, G; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Föth, H; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Gómez-Ceballos, G; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Krumshtein, Z; Kucharczyk, M; Kuznetsov, O; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; Loukas, D; Lutz, P; Lyons, L; López, J M; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Maréchal, B; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Mönig, K; Müller, U; Münich, K; Nassiakou, M; Navarria, F; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Rídky, J; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Sekulin, R L; Shlyapnikov, P; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M; de Boer, Wim; van Dam, P; Åsman, B; Österberg, K

    2006-01-01

    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed...

  5. Asymptotic freedom of gluons in the Fock space

    CERN Document Server

    Głazek, Stanisław D

    2015-01-01

    Asymptotic freedom of gluons is described in terms of a family of scale-dependent renormalized Hamiltonian operators acting in the Fock space. The Hamiltonians are obtained by applying the renormalization group procedure for effective particles to quantum Yang-Mills theory.

  6. Bounds on the gluon mass from nucleon decay

    Energy Technology Data Exchange (ETDEWEB)

    Avila, M.A. [Universidad Autonoma del Estado de Morelos, Morelos (Mexico)

    2001-04-01

    Permanent confinement of quarks is assumed to hold in QCD. However, if the gluon has a small mass it is possible to produce-quarks in hadron decays, high-energy reactions or in the early-universe. This situation is modelled by a quark-diquark potential composed of a linear (or harmonic) plus a Yukawa term. We compare our prediction for the proton decay with the experimental lower bound on its life-time, and obtain an upper bound on the gluon mass. [Spanish] Se supone se cumple el confinamiento permanente de quarks en cromodinamica cuantica. Si el gluon tiene masa pequena es posible producir quarks libres en decaimiento hadronicos, reacciones de altas energias o en el universo temprano. Esta situacion es modelada por un potencial quark-diquark, compuesto de un termino lineal (o armonico) mas un termino Yukawa. Comparamos nuestra prediccion para el decaimiento del proton con la cota inferior experimental de su vida media y obtenemos una cota superior sobre la masa del gluon.

  7. Positivity and unitarity constraints on dipole gluon distributions

    CERN Document Server

    Peschanski, Robi

    2016-01-01

    In the high-energy domain, gluon transverse-momentum dependent distributions in nuclei obey constraints coming from positivity and unitarity of the colorless QCD dipole distributions through Fourier-Bessel transformations. Using mathematical properties of Fourier-positive functions, we investigate the nature of these constraints which apply to dipole model building and formulation

  8. Same sign di-lepton candles of the composite gluons

    CERN Document Server

    Azatov, Aleksandr; Ghosh, Diptimoy; Ray, Tirtha Sankar

    2015-01-01

    Composite Higgs models, where the Higgs boson is identified with the pseudo-Nambu-Goldstone-Boson (pNGB) of a strong sector, typically have light composite fermions (top partners) to account for a light Higgs. This type of models generically also predicts the existence of heavy vector fields (composite gluons) which appear as an octet of QCD. These composite gluons generically become very broad resonances once phase-space allows them to decay into two composite fermions. This makes their traditional experimental searches, which are designed to look for narrow resonances, quite ineffective. In this paper we, as an alternative, propose to utilize the impact of composite gluons on the production of top partners to constrain their parameter space. We place constraints on the parameters of the composite resonances using the 8 TeV LHC data and also assess the reach of the 14 TeV LHC. We find that the high luminosity LHC will be able to probe composite gluon masses up to $\\sim 6$ TeV, even in the broad resonance reg...

  9. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: Riemann solver for quark-gluon plasma

    CERN Document Server

    Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto

    2013-01-01

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  10. Origin of Temperature of Quark-Gluon Plasma in Heavy Ion Collisions

    CERN Document Server

    Xu, Xiao-Ming

    2015-01-01

    Initially produced quark-gluon matter at RHIC and LHC does not have a temperature. A quark-gluon plasma has a high temperature. From this quark-gluon matter to the quark-gluon plasma is the early thermalization or the rapid creation of temperature. Elastic three-parton scattering plays a key role in the process. The temperature originates from the two-parton scattering, the three-parton scattering, the four-parton scattering and so forth in quark-gluon matter.

  11. Quark and gluon jet properties in symmetric three-jet events

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Quark and gluon jets with the same energy, 24GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on either a track impact parameter method or a high transverse momentum lepton tag. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity. Evidence is also presented which shows that the corresponding differences between gluon and heavy flavour jets are significantly smaller.

  12. A direct determination of the gluon density in the proton at low x

    CERN Document Server

    Aïd, S; Andrieu, B; Appuhn, R D; Arpagaus, M; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bernet, R; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Brasse, F W; Braunschweig, W; Brisson, V; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Buschhorn, G W; Bán, J; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Campbell, A J; Carli, T; Charles, F; Charlet, M; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Colombo, M G; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Coutures, C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; De Wolf, E A; Del Buono, L; Delcourt, B; Di Nezza, P; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duboc, J; Duhm, H; Düllmann, D; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichenberger, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Erlichmann, H; Evrard, E; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Forbush, M; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gayler, J; Gebauer, M; Gellrich, A; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; González-Pineiro, B; Gorelov, I V; Goritchev, P A; Grab, C; Greenshaw, T J; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Haidt, Dieter; Hajduk, L; Hamon, O; Hampel, M; Hapke, M; Haynes, W J; Heatherington, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hildesheim, W; Hill, P; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Horisberger, R P; Hudgson, V L; Huet, Patrick; Hufnagel, H; Höppner, M; Hütte, M; Ibbotson, M; Itterbeck, H; Jabiol, M A; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Johnson, L; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kant, D; Kaschowitz, R; Kasselmann, P; Kathage, U; Katzy, J M; Kaufmann, H H; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Ko, W; Kolanoski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Krüger, U P; Krüner-Marquis, U; Kuhlen, M; Kurca, T; Kurzhöfer, J; Kuznik, B; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Lamarche, F; Lander, R; Landon, M P J; Lange, W; Lanius, P; Laporte, J F; Lebedev, A; Lehner, F; Leverenz, C; Levonian, S; Ley, C; Lindström, G; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lohmander, H; Lomas, J W; Lubimov, V; López, G C; Lüke, D; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Masson, S; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Mercer, D; Merz, T; Meyer, C A; Meyer, H; Meyer, J; Migliori, A; Mikocki, S; Milstead, D; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Obrock, U; Olsson, J E; Ozerov, D; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Peppel, E; Phillips, J P; Pichler, C; Pitzl, D; Pope, G; Prell, S; Prosi, R; Pérez, E; Rabbertz, K; Raupach, F; Reimer, P; Reinshagen, S; Ribarics, P; Rick, Hartmut; Riech, V; Riedlberger, J; Riess, S; Rietz, M; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rylko, R; Rädel, G; Rüter, K; Sahlmann, N; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sciacca, G F; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Spiekermann, J; Spielman, S; Spitzer, H; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Stella, B; Stephens, K; Stier, J; Stiewe, J; Stolze, K; Strachota, J; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Thiebaux, C; Thompson, G; Truöl, P; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vartapetian, A H; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Weber, G; Weber, M; Wegener, D; Wegner, A; Wellisch, H P; West, L R; Willard, S; Winde, M; Winter, G G; Wittek, C; Wright, A E; Wulff, N; Wünsch, E; Yiou, T P; Zarbock, D; Zhang, Z; Zhokin, A S; Zimmer, M; Zimmermann, W; Zomer, F; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W

    1995-01-01

    A leading order determination of the gluon density in the proton has been performed in the fractional momentum range 1.9 \\cdot 10^{-3} < x_{g/p} < 0.18 by measuring multi-jet events from boson-gluon fusion in deep-inelastic scattering with the H1 detector at the electron-proton collider HERA. This direct determination of the gluon density was performed in a kinematic region previously not accessible. The data show a considerable increase of the gluon density with decreasing fractional momenta of the gluons.

  13. Collinear Singularities and Running Coupling Corrections to Gluon Production in CGC

    CERN Document Server

    Kovchegov, Yuri V

    2007-01-01

    We analyze the structure of running coupling corrections to the gluon production cross section in the projectile-nucleus collisions calculated in the Color Glass Condensate (CGC) framework. We argue that for the gluon production cross section (and for gluon transverse momentum spectra and multiplicity) the inclusion of running coupling corrections brings in collinear singularities due to final state splittings completely unaffected by CGC resummations. Hence, despite the saturation/CGC dynamics, the gluon production cross section is not infrared-safe. As usual, regularizing the singularities requires an infrared cutoff Lambda_coll that defines a resolution scale for gluons. We specifically show that the cutoff enters the gluon production cross section in the argument of the strong coupling constant alpha_s(Lambda_coll^2). We argue that for hadron production calculations one should be able to absorb the collinear divergence into a fragmentation function. The singular collinear terms in the gluon production cro...

  14. Korteveg-de Vries solitons in a cold quark-gluon plasma

    Science.gov (United States)

    Fogaça, D. A.; Navarra, F. S.; Ferreira Filho, L. G.

    2011-09-01

    The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the properties of the quark-gluon plasma (QGP) and, in particular, the study of perturbations in this kind of plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a localized pulse in baryon density could propagate throughout the QGP for long distances preserving its shape and without loosing localization, this could have interesting consequences for relativistic heavy ion physics and for astrophysics. A mathematical way to prove that this can happen is to derive (under certain conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS does not lead to KdV solitons. Recently we have developed an EOS for the QGP which includes both perturbative and nonperturbative corrections to the MIT one and is still simple enough to allow for analytical manipulations. With this EOS we were able to derive a KdV equation for the cold QGP.

  15. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  16. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  17. Momentum Imbalance Observables as a Probe of Gluon TMDs

    CERN Document Server

    Pisano, Cristian

    2015-01-01

    The unpolarized and linearly polarized gluon TMDs can be directly probed in heavy quark and jet pair production in unpolarized electron-proton collisions by looking at observables, like transverse momentum distributions and azimuthal asymmetries, depending on the momentum imbalance of the pair. Analytical expressions are presented for these observables and for analogous ones in Higgs plus jet and quarkonium plus photon production in unpolarized proton-proton scattering experiments. It is shown how the proposed measurements, to be performed at a future EIC and at the LHC, could provide important information on the size and shape of gluon TMDs, as well as on other fundamental properties such as their process and energy scale dependences.

  18. Exploratory study of the 3-gluon vertex on the lattice

    CERN Document Server

    Parrinello, C

    1994-01-01

    We define and evaluate on the lattice the amputated 3-gluon vertex function in momentum space. We give numerical results for 16^3 \\times 40 and 24^3 \\times 40 quenched lattices at \\beta=6.0. A good numerical signal is obtained, at the price of enforcing the gauge-fixing condition with high accuracy. By comparing results from two different lattice volumes, we try to investigate the crucial issue of finite volume effects. We also outline a method for the lattice evaluation of the QCD running coupling constant as defined from the 3-gluon vertex, while being aware that a realistic calculation will require larger \\beta values and very high statistics.

  19. Probing the quark–gluon interaction with hadrons

    Directory of Open Access Journals (Sweden)

    Hèlios Sanchis-Alepuz

    2015-10-01

    Full Text Available We present a unified picture of mesons and baryons in the Dyson–Schwinger/Bethe–Salpeter approach, wherein the quark–gluon and quark–(antiquark interactions follow from a systematic truncation of the QCD effective action and include all its tensor structures. The masses of some of the ground-state mesons and baryons are found to be in reasonable agreement with the expectations of a ‘quark-core calculation’, suggesting a partial insensitivity to the details of the quark–gluon interaction. However, discrepancies remain in the meson sector, and for excited baryons, that suggest higher order corrections are relevant and should be investigated following the methods outlined herein.

  20. On the zero crossing of the three-gluon vertex

    Directory of Open Access Journals (Sweden)

    A. Athenodorou

    2016-10-01

    Full Text Available We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  1. On the zero crossing of the three-gluon vertex

    Science.gov (United States)

    Athenodorou, A.; Binosi, D.; Boucaud, Ph.; De Soto, F.; Papavassiliou, J.; Rodríguez-Quintero, J.; Zafeiropoulos, S.

    2016-10-01

    We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  2. Probing nuclear gluons with heavy quarks at EIC

    CERN Document Server

    Chudakov, E; Hyde, Ch; Furletov, S; Furletova, Yu; Nguyen, D; Stratmann, M; Strikman, M; Weiss, C; Yoshida, R

    2016-01-01

    We explore the feasibility of direct measurements of nuclear gluon densities using heavy-quark production (open charm, beauty) at a future Electron-Ion Collider (EIC). We focus on the regions x > 0.3 (EMC effect) and x ~ 0.05-0.1 (antishadowing), where the nuclear modifications of the gluon density offer insight into non-nucleonic degrees of freedom and the QCD structure of nucleon-nucleon interactions. We describe the charm production rates and momentum distributions in nuclear deep-inelastic scattering (DIS) at large x_B, and comment on the possible methods for charm reconstruction using next-generation detectors at the EIC (pi/K identification, tracking, vertex detection).

  3. Color Instabilities in the Quark-Gluon Plasma

    CERN Document Server

    Mrowczynski, Stanislaw; Strickland, Michael

    2016-01-01

    When the quark-gluon plasma (QGP) - a system of deconfined quarks and gluons - is in a nonequilibrium state, it is usually unstable with respect to color collective modes. The instabilities, which are expected to strongly influence dynamics of the QGP produced in relativistic heavy-ion collisions, are extensively discussed under the assumption that the plasma is weakly coupled. We begin by presenting the theoretical approaches to study the QGP, which include: field theory methods based on the Keldysh-Schwinger formalism, classical and kinetic theories, and fluid techniques. The dispersion equations, which give the spectrum of plasma collective excitations, are analyzed in detail. Particular attention is paid to a momentum distribution of plasma constituents which is obtained by deforming an isotropic momentum distribution. Mechanisms of chromoelectric and chromomagnetic instabilities are explained in terms of elementary physics. The Nyquist analysis, which allows one to determine the number of solutions of a ...

  4. Nonperturbative equation of state of quark gluon plasma: Applications

    Science.gov (United States)

    Komarov, E. V.; Simonov, Yu. A.

    2008-05-01

    The vacuum-driven nonperturbative factors Li for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for μ = 0 including P/ T4, ɛ/ T4, {ɛ-3P}/{T4}. The basic role in the dynamics at T ≲ 3 Tc is played by the factors Li which are approximately equal to the modulus of Polyakov line for quark Lfund and gluon Ladj. The properties of Li are derived from field correlators and compared to lattice data, in particular the Casimir scaling property Ladj=(Lfund) follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for P/ T4, ɛ/ T4, {ɛ-3P}/{T4} are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.

  5. Quark/gluon jet discrimination: a reproducible analysis using R

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The power to discriminate between light-quark jets and gluon jets would have a huge impact on many searches for new physics at CERN and beyond. This talk will present a walk-through of the development of a prototype machine learning classifier for differentiating between quark and gluon jets at experiments like those at the Large Hadron Collider at CERN. A new fast feature selection method that combines information theory and graph analytics will be outlined. This method has found new variables that promise significant improvements in discrimination power. The prototype jet tagger is simple, interpretable, parsimonious, and computationally extremely cheap, and therefore might be suitable for use in trigger systems for real-time data processing. Nested stratified k-fold cross validation was used to generate robust estimates of model performance. The data analysis was performed entirely in the R statistical programming language, and is fully reproducible. The entire analysis workflow is data-driven, automated a...

  6. Study of multiparticle production by gluon dominance model (Part II)

    CERN Document Server

    Ermolov, P F; Kuraev, E A; Kutov, A V; Nikitin, V A; Pankov, A A; Roufanov, I A; Zhidkov, N K

    2005-01-01

    The gluon dominance model presents a description of multiparticle production in proton-proton collisions and proton-antiproton annihilation. The collective behavior of secondary particles in $pp$-interactions at 70 GeV/c and higher is studied in the project {\\bf "Thermalization"}. The obtained neutral and charged multiplicity distribution parameters explain some RHIC-data. The gluon dominance model is modified by the inclusion of intermediate quark topology for the multiplicity distribution description in the pure $p\\bar p$-annihilation at few tens GeV/c and explains behavior of the second correlative moment. This article proposes a mechanism of the soft photon production as a sign of hadronization. Excess of soft photons allows one to estimate the emission region size.

  7. Medium-induced gluon radiation beyond the eikonal approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A

    2014-01-01

    In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy-momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x$\\rightarrow$1 in Phys. Lett. B718 (2012) 160-168, to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon. We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.

  8. On the zero crossing of the three-gluon vertex

    CERN Document Server

    Athenodorou, A; Boucaud, Ph; De Soto, F; Papavassiliou, J; Rodriguez-Quintero, J; Zafeiropoulos, S

    2016-01-01

    We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  9. Probing Sea Quark and Gluon Polarization at STAR

    CERN Document Server

    Stevens, Justin R

    2014-01-01

    One of the primary goals of the spin program at the Relativistic Heavy Ion Collider (RHIC) is to determine the polarization of the sea quarks and gluons in the proton. The polarization of the sea quarks is probed through the production of $W^{-(+)}$ bosons via the annihilation of $\\bar{u}+d\\,(\\bar{d}+u)$, at leading order. In this proceedings we report measurements of the single-spin asymmetry, $A_{L}$, for $W$ boson production at $\\sqrt{s} = 510$ GeV, and the new constraints these results place on the antiquark helicity distributions. Recent results on the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive and di-jet production at $\\sqrt{s} = 200$ GeV are also presented. The inclusive jet results provide the first experimental indication of non-zero gluon polarization in the $x$ range probed at RHIC.

  10. Transverse momentum dependent gluon distributions at the LHC

    CERN Document Server

    Pisano, Cristian

    2014-01-01

    Linearly polarized gluons inside an unpolarized proton contribute to the transverse momentum distributions of (pseudo)scalar particles produced in hadronic collisions, such as Higgs bosons and quarkonia with even charge conjugation ($\\eta_c$, $\\eta_b$, $\\chi_{c0}$, $\\chi_{b0}$). Moreover, they can produce azimuthal asymmetries in the associated production of a photon and a $J/\\psi$ or a $\\Upsilon$ particle, in a kinematic configuration in which they are almost back to back. These observables, which can be measured in the running experiments at the LHC, could lead to a first extraction of both the polarized and the unpolarized gluon distributions and allow for a study of their process and energy scale dependences.

  11. Strong-coupling effects in a plasma of confining gluons

    CERN Document Server

    Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad

    2015-01-01

    The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk and shear viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, bulk to shear viscosity ratio, scales linearly with the difference $1/3 - c_s^2$, where $c_s$ is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.

  12. Holographic quark-gluon plasmas at finite quark density

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)

    2012-07-15

    Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Radiation spectrum of a massive quark–gluon antenna

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, M.R., E-mail: manoel.rodriguez@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain); Institut de Physique Théorique de Saclay, F-91191, Gif-sur-Yvette (France); Moldes, M.R., E-mail: manoel.rodriguez-moldes@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain); Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau (France); Salgado, C.A., E-mail: carlos.salgado@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    We compute the color coherence effects for soft gluon radiation off antennas containing heavy quarks in the presence of a QCD medium. The analysis is performed resumming the multiple scattering of the partonic system with the medium. The main conclusion is that decorrelation due to color rotation is more effective in the case in which at least one of the emitters of the antenna is a heavy quark.

  14. Evolution of gluon TMDs from small to moderate x

    CERN Document Server

    Tarasov, Andrey

    2015-01-01

    Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.

  15. Gluon condensate and the vacuum structure of QCD

    CERN Document Server

    Mendes, R V

    1998-01-01

    Phenomenological evidence and analytic approximations to the QCD ground state suggest a complex gluon condensate structure. Exclusion of elementary fermion excitations by the generation of infinite mass corrections is a consequence. In addition the existence of vacuum condensates in unbroken non-abelian gauge theories, endows SU(3) and higher order groups with a non-trivial structure in the manifold of possible vacuum solutions, which is not present in SU(2). This may be related to the existence of particle generations.

  16. Higgs Boson Production at the LHC with Soft Gluon Effects

    CERN Document Server

    Balázs, C

    2000-01-01

    We present results of QCD corrections to Higgs boson production at the CERN Large Hadron Collider. Potentially large logarithmic contributions from multiple soft-gluon emission are summed up to all order in the strong coupling. Various kinematical distributions, including the Higgs transverse momentum, are predicted with O(alpha_s^3) precision. Comparison is made to outputs of the popular Monte Carlo event generator PYTHIA.

  17. The extent of strangeness equilibration in quark gluon plasma

    Indian Academy of Sciences (India)

    Dipali Pal; Abhijit Sen; Munshi Golam Mustafa; Dinesh Kumar Srivastava

    2003-05-01

    The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy-ion collisions is studied with initial conditions obtained from the self screened parton cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with the number of participants.

  18. Quark-gluon plasma phase transition using cluster expansion method

    Science.gov (United States)

    Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.

    2015-08-01

    This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).

  19. Evolution of gluon TMDs from small to moderate x

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Andrey [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.

  20. Transport phenomena in a plasma of confining gluons

    Directory of Open Access Journals (Sweden)

    Ryblewski Radoslaw

    2016-01-01

    Full Text Available The plasma of confining gluons resulting from the Gribov quantization is considered. In the fluid dynamical framework the non-equilibrium properties of the system are studied. In the linear response approximation the formulas for the bulk, ζ, and shear, η, viscosities of the plasma are calculated analytically. Surprisingly, the approximate scaling of the ζ/η ratio reveals the strong-coupling properties of the system under consideration.

  1. On the scattering of gluons in the GKP string

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Bianchi, Marco S. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2016-02-22

    We compute the one-loop S-matrix for the light bosonic excitations of the GKP string at strong coupling. These correspond, on the gauge theory side, to gluon insertions in the GKP vacuum. We perform the calculation by Feynman diagrams in the worldsheet theory and we compare the result to the integrability prediction, finding perfect agreement for the scheme independent part. For scheme dependent rational terms we test different schemes and find that a recent proposal reproduces exactly the integrability prediction.

  2. RHIC AND THE PURSUIT OF THE QUARK-GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,J.T.

    2001-07-25

    There is a fugitive on the loose. Its name is Quark-Gluon Plasma, alias the QGP. The QGP is a known informant with knowledge about the fundamental building blocks of nature that we wish to extract. This briefing will outline the status of the pursuit of the elusive QGP. We will cover what makes the QGP tick, its modus operandi, details on how we plan to hunt the fugitive down, and our level of success thus far.

  3. Magnetic component of gluon plasma and its viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Verschelde, H. [Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2010-10-15

    We discuss the role of the magnetic degrees of freedom of the gluon plasma in its viscosity. The main assumption is that motions of the magnetic component and of the rest of the plasma can be considered as independent. The magnetic component in the deconfined phase is described by a three-dimensional (Euclidean) field theory. The parameters of the theory can be estimated phenomenologically. It is not ruled out that the magnetic component is superfluid.

  4. The gluon momentum fraction of the nucleon from lattice QCD

    CERN Document Server

    Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Panagopoulos, Haralambos; Wiese, Christian

    2016-01-01

    We perform a direct calculation of the gluon momentum fraction of the nucleon using maximally twisted mass fermion ensembles with $N_f=2+1+1$ flavors at a pion mass of about $370\\,\\mathrm{MeV}$ and a lattice spacing of $a\\approx 0.082\\,\\mathrm{fm}$ and with $N_f=2$ flavors at the physical pion mass and a lattice spacing of $a\\approx 0.093\\,\\mathrm{fm}$. In the definition of the gluon operator we employ stout smearing to obtain a statistically significant result for the bare matrix elements. In addition, we perform a lattice perturbative calculation including 2 levels of stout smearing to carry out the mixing and the renormalization of the quark and gluon operators. We find, after conversion to the $\\overline{\\mathrm{MS}}$ scheme at a scale of $2\\,\\mathrm{GeV}$: $\\langle x\\rangle^R_g {=} 0.284(23)(23)$ for pion mass of about $370\\,\\mathrm{MeV}$ and $\\langle x\\rangle^R_g {=} 0.283(23)(15)$ for the physical pion mass.

  5. String-inspired representations of photon/gluon amplitudes

    CERN Document Server

    Ahmadiniaz, Naser; Villanueva, Victor M

    2012-01-01

    The string-based Bern-Kosower rules provide an efficient way for obtaining parameter integral representations of the one-loop N - photon/gluon amplitudes involving a scalar, spinor or gluon loop, starting from a master formula and using a certain integration-by-parts (`IBP') procedure. Strassler observed that this algorithm also relates to gauge invariance, since it leads to the absorption of polarization vectors into field strength tensors. Here we present a systematic IBP algorithm that works for arbitrary N and leads to an integrand that is not only suitable for the application of the Bern-Kosower rules but also optimized with respect to gauge invariance. In the photon case this means manifest transversality at the integrand level, in the gluon case that a form factor decomposition of the amplitude into transversal and longitudinal parts is generated naturally by the IBP, without the necessity to consider the nonabelian Ward identities. Our algorithm is valid off-shell, and provides an extremely efficient ...

  6. Gaining (Mutual) Information about Quark/Gluon Discrimination

    CERN Document Server

    Larkoski, Andrew J; Waalewijn, Wouter J

    2014-01-01

    Discriminating quark jets from gluon jets is an important but challenging problem in jet substructure. In this paper, we use the concept of mutual information to illuminate the physics of quark/gluon tagging. Ideal quark/gluon separation requires only one bit of truth information, so even if two discriminant variables are largely uncorrelated, they can still share the same "truth overlap". Mutual information can be used to diagnose such situations, and thus determine which discriminant variables are redundant and which can be combined to improve performance. Using both parton showers and analytic resummation, we study a two-parameter family of generalized angularities, which includes familiar infrared and collinear (IRC) safe observables like thrust and broadening, as well as IRC unsafe variants like $p_T^D$ and hadron multiplicity. At leading-logarithmic (LL) order, the bulk of these variables exhibit Casimir scaling, such that their truth overlap is a universal function of the color factor ratio $C_A/C_F$. ...

  7. Transverse-momentum-dependent gluon distributions from JIMWLK evolution

    CERN Document Server

    Marquet, C; Roiesnel, C

    2016-01-01

    Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essen...

  8. Non-perturbative inputs for gluon distributions in the hadrons

    Science.gov (United States)

    Ermolaev, B. I.; Troyan, S. I.

    2017-03-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.

  9. Electromagnetic Radiation From An Equilibrium Quark -Gluon Plasma System

    CERN Document Server

    Singh, S S; Jha, Agam K.

    2006-01-01

    We study the electromagnetic radiation from a hot and slightly strong interacting fireball system of quark-gluon plasma using the Boltzmann distribution function for the incoming particles and Bose-Einstein distribution for gluon in first calculation of electromagnetic radiation and Fermi-Dirac distribution for quark, antiquark and Boltzmann distribution for gluon in our second calculation. The thermal photon emission rate is found that it is infrared divergent for massless quarks which are discussed by many authors and regulate this divergence using different cut-off in the qurak mass. However we remove this divergence using the same technique of Braaten and Pisarski in the thermal mass of the system by using our model calculation in the coupling parameter. Thus the production rate of the thermal photon is found to be smoothly worked by this cut-off technique of our model. The result is found to be matched with the most of the theoretical calculations and it is in the conformity with the experimental results...

  10. Quark Gluon Plasma: Surprises from strongly coupled QCD matter

    Science.gov (United States)

    Jacak, Barbara

    2017-01-01

    Quantum Chromodynamics has long predicted a transition from normal hadronic matter to a phase where the quarks and gluons are no longer bound together and can move freely. Quark gluon plasma is now produced regularly in collisions of heavy nuclei at very high energy at both the Relativistic Heavy Ion Collider (RHIC) in the U.S. and at the LHC in Europe. Quark gluon plasma exhibits remarkable properties. Its vanishingly small shear viscosity to entropy density ratio means that it flows essentially without internal friction, making it one of the most ``perfect'' liquids known. It is also very opaque to transiting particles including heavy charm quarks, though the exact mechanism for this is not yet understood. Recent data suggest that even very small colliding systems may produce a droplet of plasma. The similarities to strongly coupled or correlated systems in ultra-cold atoms and condensed matter are striking, and have inspired novel theoretical descriptions growing out of string theory. It remains a mystery how this plasma emerges from cold, dense gluonic matter deep inside nuclei. I will discuss how a future electron-ion collider can help address this question.

  11. Two-gluon and trigluon glueballs from dynamical holography QCD

    Science.gov (United States)

    Chen, Yi-dian; Huang, Mei

    2016-12-01

    We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS

  12. Ghost-gluon and ghost-quark bound states and their role in BRST quartets

    CERN Document Server

    Alkofer, Natalia

    2011-01-01

    A non-perturbative version of the BRST quartet mechanism in infrared Landau gauge QCD is proposed for transverse gluons and quarks. Based on the positivity violation for transverse gluons the content of the respective non-perturbative BRST quartet is derived. To identify the gluon's BRST-daughter and second parent state, a truncated Bethe-Salpeter equation for the gluon-(anti-)ghost bound state is investigated. We comment shortly on several equivalent forms of this equation. Repeating the same construction for quarks leads to a truncated Bethe-Salpeter equation for a fundamentally charged quark-(anti-)ghost bound state. It turns out that a cardinal input to this equation is given by the fully dressed quark-gluon vertex, and that it is indispensable to dress the quark-gluon vertex in this equation in order to obtain a consistent truncation.

  13. Gluon bremsstrahlung by heavy quarks - its effects on transport coefficients and equilibrium distribution

    CERN Document Server

    Mazumder, Surasree; Alam, Jan-e

    2014-01-01

    The effects of gluon radiation by charm quarks on the transport coefficients {\\it e.g.} drag, longitudinal and transverse diffusion and shear viscosity have been studied within the ambit of perturbative quantum chromodynamics (pQCD) and kinetic theory. We found that while the soft gluon radiation has substantial effects on the transport coefficients of the charm quarks in the quark gluon plasma its effects on the equilibrium distribution function is insignificant.

  14. Intermediate mass dilepton production during the chemical equilibration of quark gluon plasma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The production of dileptons from the chemically equilibrating quark gluon plasma in the intermediate mass region has been studied. Comparing with the calculated results based on the thermodynamic equilibrium system of quark gluon plasma, it has been found that the quark phase of the chemically equilibrating system gives rise to an even larger enhancement of the dileptons production. Therefore, such an enhancement of dilepton production may signal the formation of quark gluon plasma.

  15. Gluon Saturation Model with Geometric Scaling for Net-Baryon Distributions in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    李双; 冯笙琴

    2012-01-01

    The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. The net-baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions are investigated by taking advantage of the gluon saturation model with geometric scaling. Predications are made for the net-baryon rapidity distributions, mean rapidity loss and gluon saturation features in central Pb + Pb collisions at LHC.

  16. Thermal Charmed Quark Contribution to Dileptons in Chemically Equilibrating Quark-Gluon Matter

    Institute of Scientific and Technical Information of China (English)

    贺泽君; 龙家丽; 卢朝辉; 马余刚; 刘波

    2003-01-01

    We find that in a chemically equilibrating baryon-rich quark-gluon matter, due to the slow cooling rate, high initial temperature, large gluon density as well as large fusion cross section of gg → c(c) in the intermediate mass region, the gluon fusion gg → c(c) provides a dominant contributionto dileptons with intermediate masses, resulting in the significant enhancement of intermediate mass dileptons.

  17. The PLUTO experiment at DORIS (DESY) and the discovery of the gluon (A recollection)

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Bruno R. [Rome-3 Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Meyer, Hans-Juergen

    2010-08-15

    With the aim of determining the contribution of the PLUTO experiment at the DORIS e{sup +}e{sup -} storage ring to the discovery of the gluon, as members of this former collaboration we have reconsidered all the scientific material produced by PLUTO in 1978 and the first half of 1979. It is clear that the experiment demonstrated the main decay of the Y(9.46 GeV) resonance to be mediated by 3 gluons, by providing evidence for the agreement of this hypothesis with average values and differential distributions of all possible experimental variables and by excluding all other possible alternative models. Moreover PLUTO measured in June 1979 the matrix element of the 3-gluon decay to be quantitatively as expected by QCD (even after hadronization) and, having checked the possibility to correctly trace the gluons' directions, demonstrated the spin 1 nature of the gluon by excluding spin 0 and spin 1/2. The hadronization of the gluon like a quark jet, hypothesized in the 3-gluon jet Monte Carlo simulation, was compatible with the topological data at this energy and was shown to be an approximation at 10% level for the multiplicity ({approx} < p {sub vertical} {sub stroke} {sub vertical} {sub stroke} {sub >}{sup -1}); the right expected gluon fragmentation was needed for the inclusive distributions; this was the first experimental study of (identified) gluon jets. In the following measurements at the PETRA storage ring, these results were confirmed by PLUTO and by three contemporaneous experiments by evidencing at higher energies the gluon radiation (''bremsstrahlung''), the softer one, by jet broadening, and the hard one, by the emission of (now clearly visible) gluon jets by quarks. The gluon's spin 1 particle nature was also confirmed. The PLUTO results on Y decays had been confirmed both by contemporaneous experiments at DORIS (partially) and later (also partially) were confirmed by more sophisticated detectors. (orig.)

  18. Influence of Fermion Determinant on the Temperature Dependence of Gluon Condensates

    Institute of Scientific and Technical Information of China (English)

    LIU Jue-Ping

    2000-01-01

    The contribution of the fermion determinant to the gluon condensates at a finite temperature is calculated in the framework of the grand partition function for a weak-interacting instanton medium of a disordered phase. It is found that the temperature behavior of both chromomagnetic and chromoelectric gluon condensates depends sensitively on the flavor number. The more the flavors are, the faster the gluon condensates decrease. In the three-flavor case, the gluon condensates would be vanish (or the scale invariance would be restored) approximately at the temperature of 180 MeV.

  19. Regge behaviour of distribution functions and and -evolutions of gluon distribution function at low-

    Indian Academy of Sciences (India)

    U Jamil; J K Sarma

    2007-08-01

    In this paper, and -evolutions of gluon distribution function from Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equation in leading order (LO) at low- are presented assuming the Regge behaviour of quarks and gluons at this limit. We compare our results of gluon distribution function with MRST 2001, MRST 2004 and GRV 1998 parametrizations and show the compatibility of Regge behaviour of quark and gluon distribution functions with perturbative quantum chromodynamics (PQCD) at low-. We also discuss the limitations of Taylor series expansion method used earlier to solve DGLAP evolution equations in the Regge behaviour of distribution functions.

  20. Transverse momentum dependent splitting functions at work: quark-to-gluon splitting

    CERN Document Server

    Hentschinski, M; Kutak, K

    2016-01-01

    Using the recently obtained Pgq splitting function we extend the low x evolution equation for gluons to account for contributions originating from quark-to-gluon splitting. In order to write down a consistent equation we resum virtual corrections coming from the gluon channel and demonstrate that this implies a suitable regularization of the Pgq singularity, corresponding to a soft emitted quark. We also note that the obtained equation is in a straightforward manner generalized to a nonlinear evolution equation which takes into account effects due to the presence of high gluon densities.

  1. Chemical Equilibration and Dilepton Production of Quark-Gluon Plasma at RHIC Energies

    Institute of Scientific and Technical Information of China (English)

    龙家丽; 贺泽君; 马国亮; 马余刚; 刘波

    2004-01-01

    An evolution model of the chemically equilibrating quark-gluon plasma system has been established based on the Jiittner distribution function of partons. By studying the dilepton production of the system, we find that due to high initial temperature, large gluon density of the system as well as large gluon fusion gg → c(c-) cross section in the intermediate mass region, a dominant contribution to dileptons with intermediate masses is provided by quark-antiquark annihilation qq → l(l-) and, especially, thermal charmed quarks from the gluon fusion gg → c(c-) and quark-antiquark annihilation qq → c(c-).

  2. Double-soft behavior for scalars and gluons from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Instituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2015-12-22

    We compute the leading double-soft behavior for gluons and for the scalars obtained by dimensional reduction of a higher dimensional pure gauge theory, from the scattering amplitudes of gluons and scalars living in the world-volume of a Dp-brane of the bosonic string. In the case of gluons, we compute both the double-soft behavior when the two soft gluons are contiguous as well as when they are not contiguous. From our results, that are valid in string theory, one can easily get the double-soft limit in gauge field theory by sending the string tension to infinity.

  3. A comprehensive study of the properties of gluon and quark jets; Eine umfassende Studie der Eigenschaften von Gluon- und Quark-Jets

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, O.

    1999-07-01

    Three jet events arising from decays of the Z boson, collected by the DELPHI detector at LEP, were used to compare properties of gluon and quark jets. The charged hadron multiplicity in a cone perpendicular to the event plane of symmetric three jet events was determined. The measurement constitutes a test of the colour coherence property of QCD and of LPHD. The production spectra of the identified particles K{sup {+-}}, {pi}{sup {+-}}, p, and p were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. (orig.)

  4. Relativistic correction to gluon fragmentation function into pseudoscalar quarkonium

    CERN Document Server

    Gao, Xiangrui; Li, LiuJi; Xiong, Xiaonu

    2016-01-01

    Inspired by the recent measurements of the $\\eta_c$ meson production at LHC, we investigate the relativistic correction effect for the fragmentation function of the gluon into $\\eta_c$, which constitutes the crucial nonperturbative elements to understand $\\eta_c$ production at high $p_T$. Employing three distinct methods, we calculate the leading relativistic correction to the $g\\to\\eta_c$ fragmentation function in the NRQCD factorization framework, as well as verify the existing NLO result for the $c\\to \\eta_c$ fragmentation function. We also study the evolution behavior of these fragmentation functions with the aid of DGLAP equation.

  5. Threshold region for Higgs boson production in gluon fusion.

    Science.gov (United States)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2012-09-07

    We provide a quantitative determination of the effective partonic kinematics for Higgs boson production in gluon fusion in terms of the collider energy at the LHC. We use the result to assess, as a function of the Higgs boson mass, whether the large m(t) approximation is adequate and Sudakov resummation advantageous. We argue that our results hold to all perturbative orders. Based on our results, we conclude that the full inclusion of finite top mass corrections is likely to be important for accurate phenomenology for a light Higgs boson with m(H)~125 GeV at the LHC with √s=14 TeV.

  6. Supercooling of rapidly expanding quark-gluon plasma

    CERN Document Server

    Zabrodin, E E; Csernai, László P; Stöcker, H; Greiner, W

    1998-01-01

    We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter $\\lambda_Z$. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3-6%, then it is reheated, and the hadronization is completed within 6-10 fm/c, i.e. 5-10 times faster than it was estimated earlier, in a strongly nonequilibrium way.

  7. Gluon fragmentation into {sup 3} P{sub J} quarkonium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.P.

    1995-10-01

    The functions of the gluon fragmentation into {sup 3}P{sub j} quarkonium are calculated to order {alpha}{sup 2}{sub s}. With the recent progress in analysing quarkonium systems in QCD it is possible show how the so called divergence in the limit of the zero-binding energy, which is related to P-wave quarkonia, is treated correctly in the case of fragmentation functions. The obtained fragmentation functions satisfy explicitly at the order of {alpha} {sup 2}{sub s} the Altarelli-Parisi equation and when z {yields} 0 they behave as z{sup -1} as expected. 19 refs., 7 figs.

  8. Quark-gluon plasma and topological quantum field theory

    Science.gov (United States)

    Luo, M. J.

    2017-03-01

    Based on an analogy with topologically ordered new state of matter in condensed matter systems, we propose a low energy effective field theory for a parity conserving liquid-like quark-gluon plasma (QGP) around critical temperature in quantum chromodynamics (QCD) system. It shows that below a QCD gap which is expected several times of the critical temperature, the QGP behaves like topological fluid. Many exotic phenomena of QGP near the critical temperature discovered at Relativistic Heavy Ion Collision (RHIC) are more readily understood by the suggestion that QGP is a topologically ordered state.

  9. Gluon polarisation from high transverse momentum hadron pairs production (COMPASS)

    CERN Document Server

    Silva, L

    2010-01-01

    A new preliminary result of a gluon polarisation $\\Delta G/G$ obtained selecting high transverse momentum hadron pairs in DIS events with $Q^2>1 \\ ({GeV/}c)^2$ is presented. Data has been collected by COMPASS at CERN during the 2002-2004 years. In the extraction of $\\Delta G/G$ contributions coming from the leading order $\\gamma q$ and QCD processes are taken into account. A new weighting method based on a neural network approach is used. Also a preliminary result of $\\Delta G/G$ for events with $Q^2<1 \\ ({GeV/}c)^2$ is presented.

  10. Baryon inhomogeneities in a charged quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Avijeet [Indian Institute of Technology Roorkee, Uttarakhand, 247667 (India); Sanyal, Soma, E-mail: sossp@uohyd.ernet.in [School of Physics, University of Hyderabad, Gachibowli, Hyderabad, 500046 (India)

    2013-10-07

    We study the generation of baryon inhomogeneities in regions of the quark gluon plasma which have a charge imbalance. We find that the overdensity in the baryon lumps for positively charged particles is different from the overdensity due to the negatively charged particles. Since quarks are charged particles, the probability of forming neutrons or protons in the lumps would thus be changed. The probability of forming hadrons having quarks of the same charges would be enhanced. This might have interesting consequences for the inhomogeneous nucleosynthesis calculations.

  11. Automation of soft-gluon resummation in Sherpa

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarese, Piero; Schumann, Steffen [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    We present a fully automated NLL resummation of soft-gluons in global event-shape distributions at hadron colliders, for generic QCD processes. In general, for non-additive variables, the single logarithmic piece of the resummed distribution involves integrals that are not analytically solvable. We present a new algorithm to evaluate such integral, based on Monte Carlo methods. For this purpose we employ the parton-shower formalism, as implemented in the SHERPA event generator, to efficiently generate points in the multiple emission phase space. We discuss the general layout of our approach and present exemplary results.

  12. Linear Landau damping in strongly relativistic quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)

    2004-07-01

    On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)

  13. Soft-gluon resolution scale in QCD evolution equations

    Science.gov (United States)

    Hautmann, F.; Jung, H.; Lelek, A.; Radescu, V.; Žlebčík, R.

    2017-09-01

    QCD evolution equations can be recast in terms of parton branching processes. We present a new numerical solution of the equations. We show that this parton-branching solution can be applied to analyze infrared contributions to evolution, order-by-order in the strong coupling αs, as a function of the soft-gluon resolution scale parameter. We examine the cases of transverse-momentum ordering and angular ordering. We illustrate that this approach can be used to treat distributions which depend both on longitudinal and on transverse momenta.

  14. Surface Emission of Quark Gluon Plasma at RHIC and LHC

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; WAN Ren-Zhuo; ZHOU Dai-Cui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor RLHCAA~0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.

  15. Unintegrated gluon distribution and soft pp collisions at LHC

    CERN Document Server

    Grinyuk, A A; Lykasov, G I; Lipatov, A V; Zotov, N P

    2012-01-01

    We found the parameterization of the unintegrated gluon distribution from the best description of the LHC data on the inclusive spectra of hadrons produced in $pp$ collisions at the mid-rapidity region and small transverse momenta. It is different from the one obtained within perturbative QCD only at low intrinsic transverse momenta $k_t$. The application of this distribution to analysis of the $e-p$ DIS allows us to get the results which do not contradict the H1 and ZEUS data on the structure functions at low $x$. So, the connection between the soft processes at LHC and low-$x$ physics at HERA is found.

  16. The QCD gluon ladders and HERA structure function

    CERN Document Server

    Lengyel, A I

    2002-01-01

    We report on the extension of the data fitting considering the QCD inspired model based on the summation of gluon ladders applied to the $ep$ scattering. In lines of a two Pomeron approach, the structure function $F_2$ has a hard piece given by the model and the remaining soft contribution: a soft Pomeron and non-singlet content. In this contribution, we carefully estimate the relative role of the hard and the soft pieces from a global fit in a large span of $x$ and $Q^2$.

  17. Effects of magnetic fields on the quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bali, G.S. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Bruckmann, F. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Endrődi, G., E-mail: gergely.endrodi@physik.uni-r.de [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany); Fodor, Z. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); Bergische Universität Wuppertal, Theoretical Physics, 42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); Katz, S.D. [Eötvös University, Theoretical Physics, Pázmány P. s 1/A, H-1117, Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group (Hungary); Schäfer, A. [Institute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-11-15

    In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark–gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.

  18. Interactions of quarks and gluons with nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H. [Columbia Univ., New York, NY (United States)

    1994-04-01

    Some processes involving the interaction of medium energy quarks and gluons with nuclear matter are described. Possible mechanisms for the A-dependence of the energy loss of leading protons produced in proton-nucleus collisions are given, and an experiment which may help to distinguish these mechanisms is described. A possible color transparency experiment at CEBAF is described. Experiments to measure energy loss of quarks in nuclear matter and the formation time of hadrons are discussed along with the possibilities of measuring {sigma}{sub J}/{psi} and {sigma}{sub {psi}{prime}} at CEBAF.

  19. Quark-Gluon Plasma: from accelerator experiments to early Universe

    CERN Document Server

    Rosnet, P

    2015-01-01

    In the Big Bang scenario, the early Universe is characterized by the {\\it particle era}, i.e. a Universe made of particles. This period connects both scales of fundamental physics: infinitesimally small and infinitely large. So, particle physics and in particular experimental programs at accelerators can bring valuable inputs for the understanding of the early Universe and its evolution. These proceedings discuss the impact of the Quantum ChromoDynamics phase transition experienced by the {\\it particle era} in the expanding Universe, which is connected to the study of the Quark-Gluon Plasma produced in heavy-ion physics experiments.

  20. Eikonal gluon bremsstrahlung at finite Nc beyond two loops

    Science.gov (United States)

    Delenda, Yazid; Khelifa-Kerfa, Kamel

    2016-03-01

    We present a general formalism for computing the matrix-element squared for the emission of soft energy-ordered gluons beyond two loops in QCD perturbation theory at finite Nc. Our formalism is valid in the eikonal approximation. A Mathematica program has been developed for the automated calculation of all real/virtual eikonal squared amplitudes needed at a given loop order. For the purpose of illustration, we show the explicit forms of the eikonal squared amplitudes up to the fifth-loop order. In the large-Nc limit, our results coincide with those previously reported in literature.

  1. Eikonal gluon radiation at finite-Nc beyond 2 loops

    CERN Document Server

    Khelifa-Kerfa, Kamel

    2015-01-01

    We present first calculations of QCD matrix-elements in perturbation theory at finite Nc beyond 2 loops in the eikonal approximation for e+ e- annihilation processes. For the emission of n soft energy-ordered gluons we solve both the colour and kinematic structures at a given order in perturbation theory by means of a Mathematica program that relies solely on a recently developed Mathematica code, ColorMath, that evaluates the trace of products of colour matrices. At large Nc, our squared amplitudes reduce to those already known in the literature.

  2. Threshold resummation of soft gluons in hadronic reactions - an introduction.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E. L.

    1998-02-17

    The authors discuss the motivation for resummation of the effects of initial-state soft gluon radiation, to all orders in the strong coupling strength, for processes in which the near-threshold region in the partonic subenergy is important. The author summarizes the method of perturbative resummation and its application to the calculation of the total cross section for top quark production at hadron colliders. Comments are included on the differences between the treatment of subleading logarithmic terms in this method and in other approaches.

  3. Photon propagator, monopoles, and the thermal phase transition in three dimensional compact QED.

    Science.gov (United States)

    Chernodub, M N; Ilgenfritz, E-M; Schiller, A

    2002-06-10

    We investigate the gauge boson propagator in the three dimensional compact Abelian gauge model in the Landau gauge at finite temperature. The presence of the monopole plasma in the confinement phase leads to the appearance of an anomalous dimension in the momentum dependence of the propagator. The anomalous dimension as well as an appropriate ratio of photon wave function renormalization constants with and without monopoles is observed to be an order parameter for the deconfinement phase transition. We discuss the relation between our results and the confining properties of the gluon propagator in non-Abelian gauge theories.

  4. Energy loss, equilibration, and thermodynamics of a baryon rich strongly coupled quark-gluon plasma

    CERN Document Server

    Rougemont, Romulo; Finazzo, Stefano; Noronha, Jorge

    2015-01-01

    Lattice data for the QCD equation of state and the baryon susceptibility near the crossover phase transition (at zero baryon density) are used to determine the input parameters of a 5-dimensional Einstein-Maxwell-Dilaton holographic model that provides a consistent holographic framework to study both equilibrium and out-of-equilibrium properties of a hot and {\\it baryon rich} strongly coupled quark-gluon plasma (QGP). We compare our holographic equation of state computed at nonzero baryon chemical potential, $\\mu_B$, with recent lattice calculations and find quantitative agreement for the pressure and the speed of sound for $\\mu_B \\leq 400$ MeV. This holographic model is used to obtain holographic predictions for the temperature and $\\mu_B$ dependence of the drag force and the Langevin diffusion coefficients associated with heavy quark jet propagation as well as the jet quenching parameter $\\hat{q}$ and the shooting string energy loss of light quarks in the dense plasma. We find that the energy loss of heavy ...

  5. Strongly coupled quark-gluon plasma in heavy ion collisions

    Science.gov (United States)

    Shuryak, Edward

    2017-07-01

    A decade ago, a brief summary of the field of the relativistic heavy ion physics could be formulated as the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy ion program added excellent new data and discoveries. Significant theoretical efforts have been made to understand these phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology, detailed measurements and calculations of these correlations helped to make our knowledge of the explosion much more quantitative. In particular, their damping had quantified the viscosity. Other kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also show enhancements near the critical point T ≈Tc. Since densities of QGP quarks and gluons strongly decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on monopoles. New studies of the p p and p A collisions at high multiplicities reveal collective explosions similar to those in heavy ion A A collisions. These "smallest drops of the sQGP" revived debates about the initial out-of-equilibrium stage of the collisions and mechanisms of subsequent equilibration.

  6. The quark mean field model with pion and gluon corrections

    CERN Document Server

    Xing, Xueyong; Shen, Hong

    2016-01-01

    The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pion and gluon into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pion and gluon on the nucleon structure are treated in second-order perturbation theory. For the nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, $m_q$, we determine three parameter sets about the coupling constants between mesons and quarks, named as QMF-NK1, QMF-NK2, and QMF-NK3 by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give satisfactory description on properties of nuclear matter and finite nuclei, meanwhile they can also predict the larger neutron star mass around $2.3M_\\odot$ without the hypero...

  7. Quark mean field model with pion and gluon corrections

    Science.gov (United States)

    Xing, Xueyong; Hu, Jinniu; Shen, Hong

    2016-10-01

    The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.

  8. Medium-induced gluon radiation beyond the eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Apolinário, Liliana, E-mail: lilianamarisa.cunha@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Armesto, Néstor [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Milhano, Guilherme [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genéve 23 (Switzerland); Salgado, Carlos A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy–momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x→1 in L. Apolinario et al. (2012) [5], to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon (the limit of small formation times was previously employed in J.-P. Blaizot et al., 2013 [6], for the g→gg splitting). We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.

  9. Gluon saturation and Feynman scaling in leading neutron production

    Directory of Open Access Journals (Sweden)

    F. Carvalho

    2016-01-01

    Full Text Available In this paper we extend the color dipole formalism for the study of leading neutron production in e+p→e+n+X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron–proton (ep colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon–pion total cross section. In the color dipole formalism, the photon–pion cross section is described in terms of the dipole–pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.

  10. New signals of quark-gluon-hadron mixed phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, K.A.; Sagun, V.V.; Ivanytskyi, A.I.; Zinovjev, G.M. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Oliinychenko, D.R. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Goethe University, FIAS, Frankfurt am Main (Germany); Ilgenfritz, E.M. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Nikonov, E.G. [JINR, Laboratory for Information Technologies, Dubna (Russian Federation); Taranenko, A.V. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-08-15

    Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out at the center-of-mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center-of-mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low-energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low-energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high-energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations. (orig.)

  11. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Ying-Hua Pan

    2014-01-01

    Full Text Available At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c. However, the quark-gluon plasma (QGP system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.

  12. Nonperturbative equation of state of quark-gluon plasma. Applications

    CERN Document Server

    Komarov, E V

    2007-01-01

    The vacuum-driven nonperturbative factors $L_i$ for quark and gluon Green's functions are shown to define the nonperturbative dynamics of QGP in the leading approximation. EoS obtained recently in the framework of this approach is compared in detail with known lattice data for $\\mu=0$ including $P/T^4$, $\\epsilon/T^4$, $\\frac{\\epsilon-3P}{T^4}$. The basic role in the dynamics at $T\\la 3T_c$ is played by the factors $L_i$ which are approximately equal to the modulus of Polyakov line for quark $L_{fund}$ and gluon $L_{adj}$. The properties of $L_i$ are derived from field correlators and compared to lattice data, in particular the Casimir scaling property $L_{adj} =(L_{fund})^{\\frac{C_2(adj)}{C_2(fund)}}$ follows in the Gaussian approximation valid for small vacuum correlation lengths. Resulting curves for $P/T^4$, $\\epsilon/T^4$, $\\frac{\\epsilon-3P}{T^4}$ are in a reasonable agreement with lattice data, the remaining difference points out to an effective attraction among QGP constituents.

  13. Two-gluon correlations in heavy-light ion collisions

    Science.gov (United States)

    Wertepny, Douglas E.

    2014-11-01

    We derive the cross-section for two-gluon production in heavy-light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark-gluon plasma.

  14. Two-gluon correlations in heavy–light ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wertepny, Douglas E., E-mail: wertepny.1@osu.edu

    2014-11-15

    We derive the cross-section for two-gluon production in heavy–light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark–gluon plasma.

  15. Breakdown of Effective Field Theory for a Gluon Initiated Resonance

    CERN Document Server

    de la Puente, Alejandro

    2016-01-01

    Gauge invariance dictates that a resonance produced from initial state gluons must be produced through a non-renormalizable operator or a loop process. Should such a resonance be discovered, uncovering the dynamics that give rise to its couplings to gluons will be crucial to understanding the nature of the new state. Here we study how the production of this resonance at high transverse momentum in association with one (or more) jets can be used to directly measure the scale of the operator or the mass of the particles in the loop. We use a 750 GeV diphoton resonance as an example application, and we study how the non-renormalizable operator case can be described by a slowly converging effective field theory (EFT) expansion with operators of dimension five and seven. We show that with O(100) events, one can put strong constraints on the scale of the EFT, particularly in theories with strong coupling. We also compare the EFT analysis to that of a UV completion with vector-like quarks, and outline how the mass o...

  16. Comments on the compatibility of thermodynamic equilibrium conditions with lattice propagators

    Science.gov (United States)

    Canfora, Fabrizio; Giacomini, Alex; Pais, Pablo; Rosa, Luigi; Zerwekh, Alfonso

    2016-08-01

    In this paper the compatibility is analyzed of the non-perturbative equations of state of quarks and gluons arising from the lattice with some natural requirements for self-gravitating objects at equilibrium: the existence of an equation of state (namely, the possibility to define the pressure as a function of the energy density), the absence of superluminal propagation and Le Chatelier's principle. It is discussed under which conditions it is possible to extract an equation of state (in the above sense) from the non-perturbative propagators arising from the fits of the latest lattice data. In the quark case, there is a small but non-vanishing range of temperatures in which it is not possible to define a single-valued functional relation between density and pressure. Interestingly enough, a small change of the parameters appearing in the fit of the lattice quark propagator (of around 10 %) could guarantee the fulfillment of all the three conditions (keeping alive, at the same time, the violation of positivity of the spectral representation, which is the expected signal of confinement). As far as gluons are concerned, the analysis shows very similar results. Whether or not the non-perturbative quark and gluon propagators satisfy these conditions can have a strong impact on the estimate of the maximal mass of quark stars.

  17. Comments on the compatibility of thermodynamic equilibrium conditions with lattice propagators

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Cientificos (CECs), Valdivia (Chile); Giacomini, Alex [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Pais, Pablo [Centro de Estudios Cientificos (CECs), Valdivia (Chile); Universite Libre de Bruxelles and International Solvay Institutes, Physique Theorique et Mathematique, Brussels (Belgium); Rosa, Luigi [Universita di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica, Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); INFN, Sezione di Napoli, Naples (Italy); Zerwekh, Alfonso [Universidad Tecnica Federico Santa Maria, Departamento de Fisica and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2016-08-15

    In this paper the compatibility is analyzed of the non-perturbative equations of state of quarks and gluons arising from the lattice with some natural requirements for self-gravitating objects at equilibrium: the existence of an equation of state (namely, the possibility to define the pressure as a function of the energy density), the absence of superluminal propagation and Le Chatelier's principle. It is discussed under which conditions it is possible to extract an equation of state (in the above sense) from the non-perturbative propagators arising from the fits of the latest lattice data. In the quark case, there is a small but non-vanishing range of temperatures in which it is not possible to define a single-valued functional relation between density and pressure. Interestingly enough, a small change of the parameters appearing in the fit of the lattice quark propagator (of around 10 %) could guarantee the fulfillment of all the three conditions (keeping alive, at the same time, the violation of positivity of the spectral representation, which is the expected signal of confinement). As far as gluons are concerned, the analysis shows very similar results. Whether or not the non-perturbative quark and gluon propagators satisfy these conditions can have a strong impact on the estimate of the maximal mass of quark stars. (orig.)

  18. Incident energy dependence of dileption production in an expanding baryon—rich quark—gluon fireball

    Institute of Scientific and Technical Information of China (English)

    HeZe-Jun; ZhangJia-Ju; 等

    1998-01-01

    From the full stopping scenario,the dilepton production in the baryon-rich quark-gluon fireball based on a relativistic hydrodynamic model is studied.,and it is found that with increasing incident energy a characteristic plateau indicating the formation of the baryon-rich quark-gluon matter appears in the total yield.

  19. Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region

    CERN Document Server

    Baulieu, L; Gomez, A J; Lemes, V E R; Sobreiro, R F; Sorella, S P

    2010-01-01

    We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.

  20. Gluon and Wilson loop TMDs for hadrons of spin ≤ 1

    NARCIS (Netherlands)

    Boer, Daniel; Cotogno, Sabrina; van Daal, Tom; Mulders, Piet J.; Signori, Andrea; Zhou, Ya-Jin

    2016-01-01

    In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fiel

  1. Heavy flavours production in deeply inelastic scattering and gluon density in the proton

    CERN Document Server

    Balbi, P

    2002-01-01

    Heavy flavours production in e-p DIS is studied at intermediate values of the transferred four-momentum square, under the assumption of boson-gluon-fusion mechanism dominance (no intrinsic heavy flavours contributions). In this framework different expressions for the splitting functions in the gluon density evolution equation, with respect to the standard (DGLAP) ones, are explicitly derived.

  2. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa; Sudhir Raniwala; T Awes; B Rai; R S Bhalerao; J G Contreras; R V Gavai; S K Ghosh; P Jaikumar; G C Mishra; A P Mishra; H Mishra; B Mohanty; J Nayak; J-Y Ollitrault; S C Phatak; L Ramello; R Ray; P K Sahu; A M Srivastava; D K Srivastava; V K Tiwari

    2006-11-01

    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.

  3. Significance of non-perturbative input to TMD gluon density for hard processes at LHC

    CERN Document Server

    Grinyuk, A A; Lykasov, G I; Zotov, N P

    2015-01-01

    We study the role of the non-perturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at low scale mu0^2 ~ 1 GeV^2 from the fit of the inclusive hadron spectra measured at low transverse momenta in pp collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation obtained at low x and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher mu^2 numerically using the Catani-Ciafoloni-Fiorani-Marchesini (CCFM) gluon evolution equation. A special attention is put to the phenomenological applications of obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.

  4. Low-energy behavior of gluons and gravitons from gauge invariance

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Bern, Zvi; Davies, Scott

    2014-01-01

    We show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to L...

  5. Significance of nonperturbative input to the transverse momentum dependent gluon density for hard processes at the LHC

    Science.gov (United States)

    Grinyuk, A. A.; Lipatov, A. V.; Lykasov, G. I.; Zotov, N. P.

    2016-01-01

    We study the role of the nonperturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at a low scale μ02˜1 GeV2 from a fit of inclusive hadron spectra measured at low transverse momenta in p p collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov equation obtained at low x and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher μ2 numerically using the Catani-Ciafoloni-Fiorani-Marchesini gluon evolution equation. Special attention is paid to phenomenological applications of the obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.

  6. Dyson-Schwinger Approach to Color-Superconductivity: Effects of Selfconsistent Gluon Dressing

    CERN Document Server

    Müller, Daniel; Wambach, Jochen

    2016-01-01

    The phase diagram of dense QCD at nonvanishing temperatures and large quark chemical potentials is studied with Dyson-Schwinger equations for 2+1 quark flavors, focusing on color-superconducting phases with 2SC and CFL-like pairing. The truncation scheme of our previous investigations is extended to include the dressing of gluons with selfconsistently determined quarks, i.e., taking into account the dynamical masses and superconducting gaps of the quarks in the gluon polarization. As a consequence the gluon screening is reduced, leading to an enhancement of the critical temperatures of the color-superconducting phases by about a factor of 2 as compared to the case where the gluons are dressed with bare quarks. We also calculate the Debye and Meissner masses of the gluons and show that they are consistent with weak-coupling results.

  7. Gluon saturation and baryon stopping in the SPS,RHIC, and LHC energy regions

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; FENG Sheng-Qin

    2012-01-01

    A new geometrical scaling method with a gluon saturation rapidity limit is proposed to study the gluon saturation feature of the central rapidity region of relativistic nuclear collisions.The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering.We take advantage of the gluon saturation model with geometric scaling of the rapidity limit to investigate net baryon distributions,nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions.Predictions for net-baryon rapidity distributions,mean rapidity loss and gluon saturation feature in central Pb+Pb collisions at the LHC are made in this paper.

  8. Forward gluon production in hadron-hadron scattering with Pomeron loops

    CERN Document Server

    Iancu, E; Soyez, G

    2006-01-01

    We discuss new physical phenomena expected in particle production in hadron-hadron collisions at high energy, as a consequence of Pomeron loop effects in the evolution equations for the Color Glass Condensate. We focus on gluon production in asymmetric, `dilute-dense', collisions : a dilute projectile scatters off a dense hadronic target, whose gluon distribution is highly evolved. This situation is representative for particle production in proton-proton collisions at forward rapidities (say, at LHC) and admits a dipole factorization similar to that of deep inelastic scattering (DIS). We show that at sufficiently large forward rapidities, where the Pomeron loop effects become important in the evolution of the target wavefunction, gluon production is dominated by `black spots' (saturated gluon configurations) up to very large values of the transverse momentum, well above the average saturation momentum in the target. In this regime, the produced gluon spectrum exhibits diffusive scaling, so like DIS at suffici...

  9. Quark-gluon tagging with shower deconstruction: Unearthing dark matter and Higgs couplings

    Science.gov (United States)

    Ferreira de Lima, Danilo; Petrov, Petar; Soper, Davison; Spannowsky, Michael

    2017-02-01

    The separation of quark and gluon initiated jets can be an important way to improve the sensitivity in searches for new physics or in measurements of Higgs boson properties. We present a simplified version of the shower deconstruction approach as a novel observable for quark-gluon tagging. Assuming topoclusterlike objects as input, we compare our observable with energy correlation functions and find a favorable performance for a large variety of jet definitions. We address the issue of infrared sensitivity of quark-gluon discrimination. When this approach is applied to dark matter searches in monojet final states, limitations from small signal-to-background ratios can be overcome. We also show that quark-gluon tagging is an alternative way of separating weak boson from gluon-fusion production in the process p +p →H +jet+jet+X .

  10. Analytic structure of QCD propagators in Minkowski space

    Science.gov (United States)

    Siringo, Fabio

    2016-12-01

    Analytical functions for the propagators of QCD, including a set of chiral quarks, are derived by a one-loop massive expansion in the Landau gauge, deep in the infrared. By analytic continuation, the spectral functions are studied in Minkowski space, yielding a direct proof of positivity violation and confinement from first principles. The dynamical breaking of chiral symmetry is described on the same footing of gluon mass generation, providing a unified picture. While dealing with the exact Lagrangian, the expansion is based on massive free-particle propagators, is safe in the infrared and is equivalent to the standard perturbation theory in the UV. By dimensional regularization, all diverging mass terms cancel exactly without including mass counterterms that would spoil the gauge and chiral symmetry of the Lagrangian. Universal scaling properties are predicted for the inverse dressing functions and shown to be satisfied by the lattice data. Complex conjugated poles are found for the gluon propagator, in agreement with the i-particle scenario.

  11. All Next-to-Maximally-Helicity-Violating One-Loop Gluon Amplitudes in N=4 Super-Yang-Mills Theory

    CERN Document Server

    Bern, Z; Kosower, D A; Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2004-01-01

    We compute the next-to-MHV one-loop n-gluon amplitudes in N=4 super-Yang-Mills theory. These amplitudes contain three negative-helicity gluons and an arbitrary number of positive-helicity gluons, and are the first infinite series of amplitudes beyond the simplest, MHV, amplitudes. We also discuss some aspects of their twistor-space structure.

  12. Jet propagation within a Linearized Boltzmann Transport model

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.

  13. The $A^2$ asymmetry and propagators in lattice $SU(2)$ gluodynamics at $T>T_c$

    CERN Document Server

    Bornyakov, V G; Rogalyov, R N

    2016-01-01

    We study numerically the chromoelectric-chromomagnetic asymmetry of the dimension two $A^2$ gluon condensate as well as the transverse and longitudinal gluon propagators at $T>T_c$ in the Landau-gauge $SU(2)$ lattice gauge theory with a particular emphasis on finite-volume effects. We show that previously found so called symmetric point at which asymmetry changes sign is an artifact of the finite volume effects. We find that with increasing temperature the asymmetry decreases approaching zero value from above in agreement with perturbative result. Instead of the asymmetry we suggest the ratio of the transverse to longitudinal propagator taken at zero momentum as an indicator of the boundary of the postconfinement domain and find it at $T \\simeq 1.7 T_c$.

  14. Hexagon Wilson loop = six-gluon MHV amplitude

    CERN Document Server

    Drummond, J M; Korchemsky, G P; Sokatchev, E

    2008-01-01

    We compare the two-loop corrections to the finite part of the light-like hexagon Wilson loop with the recent numerical results for the finite part of the MHV six-gluon amplitude in N=4 SYM theory by Bern, Dixon, Kosower, Roiban, Spradlin, Vergu and Volovich (arXiv:0803.1465 [hep-th]) and demonstrate that they coincide within the error bars and, at the same time, they differ from the BDS ansatz by a non-trivial function of (dual) conformal kinematical invariants. This provides strong evidence that the Wilson loop/scattering amplitude duality holds in planar N=4 SYM theory to all loops for an arbitrary number of external particles.

  15. Phenomenological review on Quark-Gluon Plasma: concepts vs observations

    CERN Document Server

    Pasechnik, Roman

    2016-01-01

    In this review, we present an up-to-date phenomenological summary of research developments in physics of the Quark-Gluon Plasma (QGP). A short historical perspective and theoretical motivation for this rapidly developing field of contemporary Particle Physics is provided. In addition, we introduce and discuss the role of the QCD ground state, non-perturbative and lattice QCD results on the QGP properties as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at BNL RHIC, CERN SPS and LHC accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small ($p+p$ and $p+A$) systems.

  16. Renormalization group analysis of the gluon mass equation

    CERN Document Server

    Aguilar, A C; Papavassiliou, J

    2014-01-01

    In the present work we carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass. A detailed, all-order analysis of the complete kernel appearing in this particular equation reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, whose deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various p...

  17. Quark-gluon plasma connected to finite heat bath

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S.; Gabor Barnafoeldi, Gergely; Van, Peter [Wigner Research Centre for Physics of the HAS, P.O.Box 49, Budapest (Hungary)

    2013-09-15

    We derive entropy formulas for finite reservoir systems, S{sub q}, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result interprets thermodynamically the subsystem temperature, T{sub 1}, and the index q in terms of the temperature, T, entropy, S, and heat capacity, C of the reservoir as T{sub 1}=T exp (-S/C) and q=1-1/C. In the infinite C limit, irrespective of the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply this framework for the experimental determination of the original temperature of a finite thermostat, T, from the analysis of hadron spectra produced in high-energy collisions, by analyzing frequently considered simple models of the quark-gluon plasma. (orig.)

  18. Chiral superfluidity of the quark-gluon plasma

    CERN Document Server

    Kalaydzhyan, Tigran

    2013-01-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2 Tc) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, c...

  19. The one loop gluon emission light cone wave function

    CERN Document Server

    Lappi, Tuomas

    2016-01-01

    Light cone perturbation theory has become an essential tool to calculate cross sections for various small-$x$ dilute-dense processes such as deep inelastic scattering and forward proton-proton and proton-nucleus collisions. Here we set out to do one loop calculations in an explicit helicity basis in the four dimensional helicity scheme. As a first process we calculate light cone wave function for one gluon emission to one-loop order in Hamiltonian perturbation theory on the light front. We regulate ultraviolet divergences with transverse dimensional regularization and soft divergences with using a cut-off on longitudinal momentum. We show that when all the renormalization constants are combined, the ultraviolet divergences can be absorbed into the standard QCD running coupling constant, and give an explicit expression for the remaining finite part.

  20. Quantum Gravity effect on the Quark-Gluon Plasma

    CERN Document Server

    Elmashad, I; Abou-Salem, L I; Nabi, Jameel-Un; Tawfik, A

    2012-01-01

    The Generalized Uncertainty Principle (GUP), which has been predicted by various theories of quantum gravity near the Planck scale is implemented on deriving the thermodynamics of ideal Quark-Gluon Plasma (QGP) consisting of two massless quark flavors at the hadron-QGP phase equilibrium and at a vanishing chemical potential. The effective degrees of freedom and MIT bag pressure are utilized to distinguish between the hadronic and partonic phases. We find that GUP makes a non-negligible contribution to all thermodynamic quantities, especially at high temperatures. The asymptotic behavior of corresponding QGP thermodynamic quantities characterized by the Stephan-Boltzmann limit would be approached, when the GUP approach is taken into consideration.

  1. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    R V Gavai

    2000-07-01

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.

  2. Photons from quark gluon plasma and hot hadronic matter

    Indian Academy of Sciences (India)

    Jan-E Alam

    2003-04-01

    The productions of real photons from quark gluon plasma and hot hadronic matter formed after the nucleus–nucleus collisions at ultra-relativistic energies are discussed. The effects of the spectral shift of the hadrons at finite temperature on the production of photons are investigated. On the basis of the present analysis it is shown that the photon spectra measured by WA98 collaboration in Pb + Pb collisions at CERN SPS energies can be explained by both QGP as well as hadronic initial states if the spectral shift of hadrons at finite temperature is taken into account. Several other works on the analysis of WA98 photon data have also been briefly discussed.

  3. Renormalization group analysis of the gluon mass equation

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2014-04-01

    We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansätze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called "power-law" running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.

  4. The PLUTO experiment at DORIS (DESY) and the discovery of the gluon (A Recollection)

    CERN Document Server

    Stella, Bruno R

    2010-01-01

    With the aim of determining the contribution of the PLUTO experiment at the DORIS e+e- storage ring to the discovery of the gluon, as members of this former collaboration we have reconsidered all the scientific material produced by PLUTO in 1978 and the first half of 1979. It is clear that the experiment demonstrated the main decay of the Y(9.46 GeV) resonance to be mediated by 3 gluons, by providing evidence for the agreement of this hypothesis with average values and differential distributions of all possible experimental variables and by excluding all other possible alternative models. Moreover PLUTO measured in June 1979 the matrix element of the 3-gluon decay to be quantitatively as expected by QCD (even after hadronization) and, having checked the possibility to correctly trace the gluons' directions, demonstrated the spin 1 nature of the gluon by excluding spin 0 and spin 1/2. The hadronization of the gluon like a quark jet, hypothesized in the 3-gluon jet Monte Carlo simulation, was compatible with th...

  5. The infrared behavior of lattice QCD Green's functions. A numerical study of lattice QCD in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Sternbeck, A.

    2006-07-18

    Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)

  6. Muoproduction of J/. psi. and the gluon distribution of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Ashman, J.; Combley, F.; Salmon, D.; Wheeler, S. (Sheffield Univ. (United Kingdom). Dept. of Physics); Badelek, B.; Ciborowski, J.; Gajewski, J.; Rondio, E.; Ropelewski, L. (Warsaw Univ. (Poland). Physics Inst.); Baum, G.; Caputo, M.C.; Hughes, V.W.; Oppenheim, R.F.; Papavassiliou, V.; Piegaia, R.; Schueler, K.P. (Yale Univ., New Haven, CT (United States). Physics Dept.); Beaufays, J.; Jacholkowska, A.; Niinikoski, T.; Osborne, A.M.; Rieubland, J.M. (CERN, Geneva (Switzerland)); Bee, C.P.; Brown, S.C.; Court, G.; Francis, D.; Gabathuler, E.; Gamet, R.; Hayman, P.; Holt, J.R.; Jones, T.; Matthews, M.; Wimpenny, S.J. (Liverpool Univ. (United Kingdom). Dept. of Physics); Benchouk, C.; Agostini, G. d' ; Montanet, F.; Pietrzyk, B. (Faculte des Sciences de Luminy, 13 - Marseille (France). Centre de Physique des Particules); Bird, I.G.; Dyce, N.; Sloan, T. (Lancaster Univ. (United Kingdom). Dept. of Physics); Cheung, H.W.K.; Gibson, V.; Gillies, J.; Renton, P.; Taylor, G.N.; Williams, W; European Muon Collaboration

    1992-10-01

    Measurements are presented of the inclusive distributions of the J/{psi} meson produced by muons of energy 200 GeV from an ammonia target. The gluon distribution of the nucleon has been derived from the data in the range 0.04gluon distribution. Some comments are made on the use of J/{psi} production by virtual photons to extract the gluon distribution at HERA. (orig.).

  7. Eine umfassende Studie der Eigenschaften von Gluon- und Quark-Jets

    CERN Document Server

    Klapp, Oliver

    1999-01-01

    Three jet events arising from decays of the Z boson, collected by the DELPHI detector at LEP, were used to compare properties of gluon and quark jets. The charged hadron multiplicity in a cone perpendicular to the event plane of symmetric three jet events was determined. The measurement constitutes a test of the colour coherence property of QCD and of LPHD. The production spectra of the identified particles K sup+-, pi sup+-, p, and p were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles.

  8. Parametrization of the Transverse Momentum Dependent Light-Front Correlator for Gluons

    Science.gov (United States)

    Cotogno, Sabrina

    2017-03-01

    We study the transverse momentum dependent light-front correlator for gluons. At the operator level this is expressed as a matrix element containing nonlocal field strength operators and gauge links bridging the nonlocality. We parametrize the leading (twist-2) gluon-gluon correlator in terms of transverse momentum dependent distribution functions for unpolarized, vector and tensor polarized targets (the latter being relevant for spin-1 targets). For a tensor polarized target there are eleven functions among which two are time reversal odd. We discuss bounds on some functions which might become useful for future applications.

  9. Intermediate Mass Dilepton Production in a Chemically Equilibrating Quark-Gluon Matter

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; ZHOU Wen-Jie; ZHANG Jia-Ju; LIU Bo

    2001-01-01

    Dilepton production during the chemical equilibration of quark-gluon matter with a finite baryon density has been studied. We find that due to the slowing down of the cooling rate and the high initial temperature of the quark-gluon matter produced at RHIC energies, the quark phase contribution to dileptons with intermediate masses is significantly heightened and is much larger than that calculated by the evolution of the thermodynamic equilibrium system. The latter has shown an enhancement of intermediate mass dileptons from the quark phase. Therefore, such an enhancement of dileptons should be a signature for quark-gluon matter formation.

  10. Quark and gluon condensates in nuclear matter with Brown- Rho scaling

    Institute of Scientific and Technical Information of China (English)

    郭华; 杨树; 刘玉鑫

    2001-01-01

    Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.

  11. Gluon Transport Equation with Effective Mass and Dynamical Onset of Bose-Einstein Condensation

    CERN Document Server

    Blaizot, Jean-Paul; Liao, Jinfeng

    2015-01-01

    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  12. Unintegrated gluon distributions in D{sup *{+-}} and dijet associated photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, A.V.; Zotov, N.P. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki

    2005-12-01

    We consider the photoproduction of D{sup *{+-}} mesons associated with two hadron jets at HERA collider in the framework of the k{sub T}-factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is put on the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)

  13. Unintegrated gluon distributions in D{sup *{+-}} and dijet associated photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)

    2006-09-15

    We consider the photoproduction of D{sup *{+-}} mesons associated with two hadron jets at HERA collider in the framework of the k{sub T}-factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make a comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is given to the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)

  14. Flavour equilibration studies of quark-gluon plasma with non-zero baryon density

    Indian Academy of Sciences (India)

    Abhijit Sen

    2009-12-01

    Flavour equilibration for a thermally equilibrated but chemically non-equilibrated quark-gluon plasma is presented. Flavour equilibration is studied enforcing baryon number conservation. In addition to the usual processes like single additional gluon production $gg \\rightleftharpoons ggg$ and its reverse and quark–antiquark pair production by gluon pair fusion $gg \\rightleftharpoons q_{i}q_{i}^{-}$ and reverse thereof, processes like quark-flavour interchanging $q_{i}q_{i}^{-} \\rightleftharpoons q_{j}q_{j}^{-}$ is also considered. The degree of equilibration is studied comparatively for various reactions/constraints that are being considered.

  15. Probing Gluon Helicity with Dijets from $\\sqrt s$ = 510 GeV Polarized Proton Collisions at STAR

    CERN Document Server

    Ramachandran, Suvarna

    2016-01-01

    The production of jets in polarized proton collisions at STAR is dominated by quark-gluon and gluon-gluon scattering processes. The dijet longitudinal double-spin asymmetry $(A_{LL})$ is sensitive to the helicity distributions and may be used to extract information about the gluon helicity contribution $\\Delta{g(x,Q^2)}$ to the spin of the proton. Previous STAR jet measurements at $\\sqrt s$ = 200 GeV show evidence of polarized gluons for gluon momentum fractions above 0.05. The measurement of dijet $A_{LL}$ at $\\sqrt s$ = 510 GeV will extend the current constraints on $\\Delta{g(x,Q^2)}$ to lower gluon momentum fractions and allow for the reconstruction of the partonic kinematics at leading order. These proceedings present preliminary results from the dijet $A_{LL}$ measurement from $\\sim50 pb^{-1}$ of $\\sim50 \\%$ polarized proton data taken during the 2012 RHIC run.

  16. Gluon production in the Color Glass Condensate model of collisions of ultrarelativistic finite nuclei

    CERN Document Server

    Krasnitz, A; Venugopalan, R; Krasnitz, Alex; Nara, Yasushi; Venugopalan, Raju

    2003-01-01

    We extend previous work on high energy nuclear collisions in the Color Glass Condensate model to study collisions of finite ultrarelativistic nuclei. The changes implemented include a) imposition of color neutrality at the nucleon level and b) realistic nuclear matter distributions of finite nuclei. The saturation scale characterizing the fields of color charge is explicitly position dependent, $\\Lambda_s=\\Lambda_s(x_T)$. We compute gluon distributions both before and after the collisions. The gluon distribution in the nuclear wavefunction before the collision is significantly suppressed below the saturation scale when compared to the simple McLerran-Venugopalan model prediction, while the behavior at large momentum $p_T\\gg \\Lambda_s$ remains unchanged. We study the centrality dependence of produced gluons and compare it to the centrality dependence of charged hadrons exhibited by the RHIC data. We demonstrate the geometrical scaling property of the initial gluon transverse momentum distributions for differen...

  17. A new LO extraction of gluon polarisation from COMPASS DIS data

    CERN Document Server

    Stolarski, Marcin

    2014-01-01

    A new LO evaluation of the gluon polarization in the nucleon i s presented. The COMPASS data from 2002-2006 years from DIS region were re-analysed and gl uon polarization was extracted using a so called all- p T method. In this new method gluon polarization and leading pr ocess asymmetry are extracted simultaneously from the same data s et using a Neural Network approach. Reduction of both systematic and statistical uncertaintie s by more than 50% is achived compared to the published result PLB 718 (2013) 922. The preliminary v alue of gluon polarization is ∆ g / g = 0 . 113 ± 0 . 038 ± 0 . 035 at average gluon momentum fraction x g = 0 . 10 and scale of μ 2 = 3 (GeV/ c ) 2

  18. Some applications of thermal field theory to quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa

    2006-04-01

    We briefly introduce the thermal field theory within imaginary time formalism, the hard thermal loop perturbation theory and some of its applications to the physics of the quark-gluon plasma, possibly created in relativistic heavy-ion collisions.

  19. Gluon Polarisation in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    CERN Document Server

    Alekseev, M; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregisilio, A; Badelek, B; Balestra, F; Ball, J; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; Denisov, O.Yu; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M., jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gobbo, B; Goertz, S; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hagemann, R; von Harrach, D; Hasegawa, T; Heckmann, J; Heinsius, F H; Hermann, R; Herrmann, F; Hess, C; Hinterberger, F; von Hodenberg, M; Horikawa, N; Hoppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kafer, W; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kiefer, J; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Konigsmann, Kay; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Kramer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maximov, A N; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, S; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panebianco, S; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J.-F; Ramos, S; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, Igor A; Sbrizza, G; Schiavon, P; Schill, C; Schmitt, L; Schroder, W; Shevchenko, O.Yu; Siebert, H.-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Wenzl, K; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2009-01-01

    The gluon polarisation in the nucleon has been determined by detecting charm production via D0 meson decay to charged K and pi in polarised muon scattering off a longitudinally polarised deuteron target. The data were taken by the COMPASS Collaboration at CERN between 2002 and 2006 and corresponds to an integrated luminosity of 2.8 fb^-1. The dominant underlying process of charm production is the photon-gluon fusion to a cc-bar pair. A leading order QCD approach gives an average gluon polarisation of (Delta g/g)_x= -0.49 +- 0.27(stat) +- 0.11(syst) at a scale mu^2 ~ 13 (GeV/c)^2 and at an average gluon momentum fraction (x) ~ 0.11. The longitudinal cross-section asymmetry for D0 production is presented in bins of the transverse momentum and the energy of the D0 meson.

  20. The dynamical gluon mass in the massless bound-state formalism

    CERN Document Server

    Ibanez, David

    2014-01-01

    We describe the phenomenon of dynamical gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which gives rise to effective vertices containing massless poles; these vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. In this particular approach, the gluon mass is directly related to quantities that are intrinsic to the bound-state formation itself, such as the "transition amplitude" and the corresponding "bound-state wave-function". Specifically, a set of powerful relations discussed in the text, allows one to determine the dynamical evolution of the gluon mass through a Bethe-Salpeter equation, which controls the dynamics of the relevant wave-function. In addition, it is possible to demonstrate ...

  1. Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kostrzewa, Bartosz; Wiese, Christian

    2013-01-01

    To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF $\\langle x \\rangle_g$ for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on $24^3 \\times 48$ lattices for the case where the Feynman-Hellman theorem is used and $32^3 \\times 64$ lattices for the direct method, employing $N_f=2+1+1$ maximally twisted mass fermions.

  2. Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Drach, Vincent; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Kostrzewa, Bartosz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2013-11-15

    To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF left angle x right angle {sub g} for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on 24{sup 3} x 48 lattices for the case where the Feynman-Hellman theorem is used and 32{sup 3} x 64 lattices for the direct method, employing N{sub f}=2+1+1 maximally twisted mass fermions.

  3. Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. This note presents a jet tagger for distinguishing quark-initiated from gluon-initiated jets, which uses the full radiation pattern inside a jet processed as an image in a deep neural network classifier. The study is conducted using simulated dijet events in $\\sqrt{s}$=13 TeV pp collisions with the ATLAS detector. Across a wide range of quark jet identification efficiencies, the neural network tagger achieves a gluon jet rejection that is comparable to or better than the performance of the jet width and track multiplicity observables conventionally used for quark-versus-gluon jet tagging.

  4. Analysis of the Diffractive Deep Inelastic Scattering Data with Running Coupling and Gluon Number Fluctuations

    Institute of Scientific and Technical Information of China (English)

    Wen-Chang Xiang; Zhi-Hai Hu; Wan-Song Liu; Jun-Jin Peng; Shao-Hong Cai

    2016-01-01

    We study the effects of running coupling and gluon number fluctuations in the latest diffractive deep inelastic scattering data.It is found that the description of the data is improved once the running coupling and gluon number fluctuations are included with x2/d.o.f.=0.867,x2/d.o.f.=0.923 and x2/d.o.f.=0.878 for three different groups of experimental data.The values of diffusive coeffcient subtracted from the fit are smaller than the ones obtained by considering only the gluon number fluctuations in our previous studies.The smaller values of the diffusive coefficient are in agreement with the theoretical predictions,where the gluon number fluctuations are suppressed by the running coupling which leads to smaller values of the diffusive coeffcient.

  5. Three-gluon Green functions: low-momentum instanton dominance and zero-crossing

    Directory of Open Access Journals (Sweden)

    Rodríguez-Quintero J.

    2017-01-01

    Full Text Available We will report on a some efforts recently made in order to gain a better understanding of some IR properties of the 3-point gluon Green function by following both lattice and continuum QCD approaches.

  6. Measurement of the Quark and Gluon Fragmentation Functions in $Z^0$ Hadronic Decays

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Ortuno, S; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Skatchkov, N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    The fragmentation functions and multiplicities in $b\\overline{b}$ and light quark events are compared. The measured transverse and longitudinal components of the fragmentation function allow the gluon fragmentation function to be evaluated.

  7. The sound produced by a fast parton in the quark-gluon plasma is a "crescendo"

    CERN Document Server

    Neufeld, R B

    2009-01-01

    We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.

  8. Sound Produced by a Fast Parton in the Quark-Gluon Plasma is a ``Crescendo''

    Science.gov (United States)

    Neufeld, R. B.; Müller, B.

    2009-07-01

    We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well-known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.

  9. Sound produced by a fast parton in the quark-gluon plasma is a "crescendo".

    Science.gov (United States)

    Neufeld, R B; Müller, B

    2009-07-24

    We calculate the total energy deposited into the medium per unit length by fast partons traversing a quark-gluon plasma. The medium excitation due to collisions is taken to be given by the well-known expression for the collisional drag force. The radiative energy loss of the parton contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. We derive a differential equation which governs how the spectrum of radiated gluons is modified when this energy loss is taken into account. This modified spectrum is then used to calculate the additional energy deposition due to the interactions of radiated gluons with the medium. Numerical results are presented for the medium response for the case of two energetic back-to-back partons created in a hard interaction.

  10. Comparing Pure Yang-Mills SU(2) and SU(3) Propagators

    CERN Document Server

    Cucchieri, Attilio; Silva, Paulo J

    2007-01-01

    The infrared behavior of gluon and ghost propagators in Yang-Mills gauge theories is of central importance for the understanding of confinement in QCD. While analytic studies using Schwinger-Dyson equations predict the same infrared exponents for the SU(2) and SU(3) gauge groups, lattice simulations usually assume that the two cases are different, although their qualitative infrared features may be the same. We carry out a comparative study of lattice (Landau) propagators for both gauge groups. Our data were especially produced with equivalent lattice parameters to allow a careful comparison of the two cases.

  11. Unresolved questions in J/{psi} production and propagation in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.Y.

    1998-11-01

    In order to understand the J/{psi} suppression arising from the possible occurrence of the quark-gluon plasma in high-energy heavy-ion collisions, it is necessary to have a comprehensive picture how the J/{psi} and its precursors are produced, what their properties after production are, and how the J/{psi} and its precursors propagate inside nuclear matter. There are unresolved questions in the descriptions of J/{psi} production and propagation. The author outlines some of these questions and discusses the approaches for their resolution.

  12. Gluon fusion contribution to HBB (B = H, γ, Z) at the LHC

    Science.gov (United States)

    Shivaji, Ambresh; Agrawal, Pankaj; Saha, Debashis

    2016-11-01

    We have calculated one-loop amplitudes for the production of Higgs boson in association with two electroweak bosons (H, γ, Z) via gluon-gluon fusion. We present preliminary results for the total cross section at 8, 13 and 100 TeV center-of-mass energies at pp colliders. We study the interference effect and, also comment on the effect of new physics in terms of anomalous couplings of the Higgs boson in these processes.

  13. Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    Institute of Scientific and Technical Information of China (English)

    WEI Xin-Bing; FENG Sheng-Qin

    2012-01-01

    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced Cooper-Frye hydrodynamic evolution to systematically study the pseudorapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.

  14. Non-perturbative effects for the Quark-Gluon Plasma equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Begun, V. V., E-mail: viktor.begun@gmail.com; Gorenstein, M. I., E-mail: goren@bitp.kiev.ua; Mogilevsky, O. A. [Bogolyubov Institute for Theoretical Physics (Ukraine)

    2012-07-15

    The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.

  15. Non-perturbative effects for the Quark-Gluon Plasma equation of state

    Science.gov (United States)

    Begun, V. V.; Gorenstein, M. I.; Mogilevsky, O. A.

    2012-07-01

    The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.

  16. Gluons from logarithmic slopes of F{sub 2} in the NLL approximation

    Energy Technology Data Exchange (ETDEWEB)

    Golec-Biernat, K. [Institute of Nuclear Physics, Cracow (Poland)

    1994-02-01

    We make a critical, next-to-leading order, study of the accuracy of the ``Prytz`` relation, which is frequently used to extract the gluon distribution at small x from the logarithmic slopes of the structure function F{sub 2}. We find that the simple relation is not generally valid in the HERA regime, but show that it is a reasonable approximation for gluons which are sufficiency singular at small x. (author). 9 refs, 3 figs.

  17. The contribution of off-shell gluons to the longitudinal structure function F{sub L}

    Energy Technology Data Exchange (ETDEWEB)

    Kotikov, A.V. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lipatov, A.V. [Department of Physics, Lomonosov Moscow State University, 119899 Moscow (Russian Federation); Zotov, N.P. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2003-03-01

    We present the results for the structure function F{sub L} for a gluon target having a non-zero transverse momentum square at order {alpha}{sub s}. The results of a double convolution (with respect to the Bjorken variable x and the transverse momentum) of the perturbative part and the unintegrated gluon densities are compared with recent experimental data for F{sub L} at low x values and with the predictions of other approaches. (orig.)

  18. Hadronic Total Cross-sections Through Soft Gluon Summation in Impact Parameter Space

    OpenAIRE

    1999-01-01

    The Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant $\\alpha_s$ is discussed, both for finite as well as singular, but integrable, $\\alpha_s$. The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission fro...

  19. Interplay between chromoelectric and chromomagnetic gluons in Yang-Mills thermodynamics

    Directory of Open Access Journals (Sweden)

    Sasaki Chihiro

    2014-04-01

    Full Text Available We propose an effective theory of SU(3 gluonic matter where interactions between color-electric and color-magnetic gluons are constrained by the center and scale symmetries. Through matching to the dimensionally-reduced magnetic theories, the magnetic gluon condensate qualitatively changes its thermal behavior above the critical temperature. We argue its phenomenological consequences for the thermodynamics, in particular the dynamical breaking of scale invariance.

  20. Impacts of the Soft-Gluon Exchanges on B→ππ Decays

    Institute of Scientific and Technical Information of China (English)

    吴向尧; 李作宏; 崔建营; 黄涛

    2002-01-01

    We have investigated the role of soft-gluon exchanges in B →ππ, using the light-cone sum rules in quantum chromodynamics. The calculations are carried out not only for the tree operators but also for the penguin operators. We conclude that soft-gluon exchanges contribute to the decay amplitudes, noticeably on some decay channels, and thus cannot be neglected.

  1. The gluon density of the proton at low x from a QCD analysis of F$_{2}$

    CERN Document Server

    Aïd, S; Andrieu, B; Appuhn, R D; Arpagaus, M; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bernet, R; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Brasse, F W; Braunschweig, W; Brisson, V; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Buschhorn, G W; Bán, J; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Campbell, A J; Carli, T; Charles, F; Charlet, M; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Colombo, M G; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Coutures, C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; De Wolf, E A; Del Buono, L; Delcourt, B; Di Nezza, P; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duboc, J; Duhm, H; Düllmann, D; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichenberger, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Erlichmann, H; Evrard, E; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Forbush, M; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gayler, J; Gebauer, M; Gellrich, A; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; González-Pineiro, B; Gorelov, I V; Goritchev, P A; Grab, C; Greenshaw, T J; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Haidt, Dieter; Hajduk, L; Hamon, O; Hampel, M; Hapke, M; Haynes, W J; Heatherington, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hildesheim, W; Hill, P; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Horisberger, R P; Hudgson, V L; Huet, Patrick; Hufnagel, H; Höppner, M; Hütte, M; Ibbotson, M; Itterbeck, H; Jabiol, M A; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Johnson, L; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kant, D; Kaschowitz, R; Kasselmann, P; Kathage, U; Katzy, J M; Kaufmann, H H; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Ko, W; Kolanoski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Krüger, U P; Krüner-Marquis, U; Kuhlen, M; Kurca, T; Kurzhöfer, J; Kuznik, B; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Lamarche, F; Lander, R; Landon, M P J; Lange, W; Lanius, P; Laporte, J F; Lebedev, A; Lehner, F; Leverenz, C; Levonian, S; Ley, C; Lindström, G; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lohmander, H; Lomas, J W; Lubimov, V; López, G C; Lüke, D; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Masson, S; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Mercer, D; Merz, T; Meyer, C A; Meyer, H; Meyer, J; Migliori, A; Mikocki, S; Milstead, D; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Obrock, U; Olsson, J E; Ozerov, D; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Peppel, E; Phillips, J P; Pichler, C; Pitzl, D; Pope, G; Prell, S; Prosi, R; Pérez, E; Rabbertz, K; Raupach, F; Reimer, P; Reinshagen, S; Ribarics, P; Rick, Hartmut; Riech, V; Riedlberger, J; Riess, S; Rietz, M; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rylko, R; Rädel, G; Rüter, K; Sahlmann, N; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sciacca, G F; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Spiekermann, J; Spielman, S; Spitzer, H; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Stella, B; Stephens, K; Stier, J; Stiewe, J; Stolze, K; Strachota, J; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Thiebaux, C; Thompson, G; Truöl, P; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vartapetian, A H; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Weber, G; Weber, M; Wegener, D; Wegner, A; Wellisch, H P; West, L R; Willard, S; Winde, M; Winter, G G; Wittek, C; Wright, A E; Wulff, N; Wünsch, E; Yiou, T P; Zarbock, D; Zhang, Z; Zhokin, A S; Zimmer, M; Zimmermann, W; Zomer, F; Zuber, K; Zácek, J; de Roeck, A; von Schlippe, W

    1995-01-01

    We present a QCD analysis of the proton structure function F_2 measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of F_2 in the range 2\\cdot 10^{-4}gluon density is found to rise steeply with decreasing x.

  2. Soft gluon resummation in the infrared region and the Froissart bound

    CERN Document Server

    Pancheri, Giulia; Godbole, Rohini M; Srivastava, Yogendra N

    2010-01-01

    We describe the taming effect induced by soft gluon $k_t$-resummation on the rapid rise of QCD mini-jet contributions to the total cross-sections.This results from an eikonal model in which the rise of the total cross-section is due to mini-jet contribution. We perform the calculation with current Parton Density Functions (PDFs). The impact parameter distribution we use is obtained as the Fourier transform of the resummed $k_t$-distribution of soft gluons emitted from the initial state during the collision.The emission, which is energy dependent, destroys the initial collinearity of partons.In this model, the strong power-like rise due to the increasing number of low-x gluon collisions is tamed by the acollinearity induced by soft gluon kt-resummation down to zero gluon momenta. It explicitly links a singular soft gluon coupling in the infrared region to the behaviour dictated by the Froissart bound for the total cross-section. The model describes well both proton and photon processes at present accelerator e...

  3. Gluon contribution to the Sivers effect. COMPASS results on deuteron target

    Directory of Open Access Journals (Sweden)

    Szabelski Adam

    2015-01-01

    Full Text Available Sivers effect for gluons is connected to gluon orbital angular momentum which may be the missing part of the nucleon spin puzzle. We present a method of extraction of Sivers effect for gluons from COMPASS SIDIS data on transversely polarised target. In order to access the Sivers effect for gluons photon-gluon fusion (PGF process is used. To enhance the fraction of PGF in the sample high-pT hadron pair events are selected. The method is based on a assumption that there are 3 processes contributing to the muon-nucleon scattering: PGF, leading process and QCD Compton process. Then one performs a weighting procedure which enables to extract the asymmetries for the 3 contributing processes simultaneously. In order to do that a neural network trained by a Monte Carlo to assign to each event 3 probabilities corresponding to the 3 processes is needed. Finaly we show results of Sivers effect for gluons extraction on COMPASS data with transversely polarised deuteron target. APGFsinΦ2h–ΦS = −0.14 ± 0.15 (stat. at ‹XG› = 0.126.

  4. Measurement of the triple gluon vertex from double quark tagged 4-jet events

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Geryukov, L; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Ortuno, S; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chernyaev, E; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1997-01-01

    The 4-jet events collected by the DELPHI experiment at LEP1 in 1992, 1993 and 1994 are analysed to determine the contribution of the triple-gluon vertex. Two of the four jets are tagged as jets from $b$- or $c$-quarks using lifetime and lepton transverse momentum information. The 4-jet contributions from double-gluon bremsstrahlung, the triple-gluon vertex, and secondary quark-antiquark pair production then yield significantly different two-dimensional distributions in the generalized Nachtmann Reiter angle %$\\Theta^{*}_{NR}$ versus the opening angle of the two secondary jets. These distributions are used to fit $C_A/C_F$, the ratio of the coupling strength of the triple-gluon vertex to that of gluon bremsstrahlung, and $N_C/N_A$, the ratio of the number of quark colours to the number of gluons, giving \\begin{center} $C_A/C_F=2.51 \\pm 0.28$ ~and~ $N_C/N_A=0.38 \\pm 0.10$ \\end{center} in agreement with the values expected from QCD: \\begin{center} $C_A/C_F = 9/4 = 2.25$ ~and~ $N_C/N_A = 3/8 = 0.375$. \\end{center...

  5. Gluon bound state and asymptotic freedom derived from the Bethe--Salpeter equation

    CERN Document Server

    Fukamachi, Hitoshi; Nishino, Shogo; Shinohara, Toru

    2016-01-01

    In this paper we study the two-body bound states for gluons and ghosts in a massive Yang-Mills theory which is obtained by generalizing the ordinary massless Yang-Mills theory in a manifestly Lorentz covariant gauge. First, we give a systematic derivation of the coupled Bethe-Salpeter equations for gluons and ghosts by using the Cornwall-Jackiw-Tomboulis effective action of the composite operators within the framework of the path integral quantization. Then, we obtain the numerical solutions for the Bethe-Salpeter amplitude representing the simultaneous bound states of gluons and ghosts by solving the homogeneous Bethe-Salpeter equation in the ladder approximation. We study how the inclusion of ghosts affects the two-gluon bound states in the cases of the standing and running gauge coupling constant. Moreover, we show explicitly that the approximate solutions obtained for the gluon-gluon amplitude are consistent with the ultraviolet asymptotic freedom signaled by the negative $\\beta$ function.

  6. Viscothermal wave propagation

    NARCIS (Netherlands)

    Nijhof, Marten Jozef Johannes

    2010-01-01

    In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a

  7. Quark deconfinement and gluon condensate in a weak magnetic field

    CERN Document Server

    Ayala, Alejandro; Hernandez, L A; Loewe, M; Rojas, Juan Cristobal; Villavicencio, Cristian

    2015-01-01

    We study QCD finite energy sum rules (FESR) for the axial-vector current correlator in the presence of a magnetic field, in the weak field limit and at zero temperature. We find that the perturbative QCD as well as the hadronic contribution to the sum rules get explicit magnetic field-dependent corrections and that these in turn induce a magnetic field dependence on the deconfinement phenomenological parameter s_0 and on the gluon condensate. The leading corrections turn out to be quadratic in the field strength. We find from the dimension d=2 first FESR that the magnetic field dependence of s_0 is proportional to the absolute value of the light-quark condensate. Hence, it increases with increasing field strength. This implies that the parameters describing chiral symmetry restoration and deconfinement behave similarly as functions of the magnetic filed. Thus, at zero temperature the magnetic field is a catalysing agent of both chiral symmetry breaking and confinement. From the dimension d=4 second FESR we ob...

  8. Phenomenological aspects of an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Guerrero, Mauricio

    2010-04-30

    In this work we investigate phenomenological aspects of an anisotropic quark-gluon plasma. In the first part of this thesis, we formulate phenomenologicalmodels that take into account the momentumspace anisotropy of the system developed during the expansion of the fireball at early-times. By including the proper-time dependence of the parton hard momentum scale, p{sub hard}({tau}), and the plasma anisotropy parameter, {xi}({tau}), the proposed models allow us to interpolate from 0+1 pre-equilibrated expansion at early-times to 0+1 ideal hydrodynamics at late times. We study dilepton production as a valuable observable to experimentally determine the isotropization time of the system as well as the degree of anisotropy developed at early-times. We generalize our interpolating models to include the rapidity dependence of p{sub hard} and consider its impact on forward dileptons. Next, we discuss how to constrain the onset of hydrodynamics by demanding two requirements of the solutions to the equations of motion of viscous hydrodynamics. We show this explicitly for 0+1 dimensional 2nd-order conformal viscous hydrodynamics and find that the initial conditions are non-trivially constrained. Finally, we demonstrate how to match the initial conditions for 0+1 dimensional viscous hydrodynamics from pre-equilibrated expansion. We analyze the dependence of the entropy production on the pre-equilibrium phase and discuss limitations of the standard definitions of the non-equilibrium entropy in kinetic theory. (orig.)

  9. NLO uncertainties in Higgs+2 jets from gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gangal, Shireen; Tackmann, Frank J.

    2013-02-15

    A central ingredient in establishing the properties of the newly discovered Higgs-like boson is to isolate its production via vector boson fusion (VBF). With the typical experimental selection cuts, the VBF sample is contaminated by a {proportional_to} 25% fraction from Higgs+2 jet production via gluon fusion (ggF) which has large perturbative uncertainties. We perform a detailed study of the perturbative uncertainties in the NLO predictions for pp{yields}H+2 jets via ggF used by the ATLAS and CMS collaborations, with the VBF selection cuts of their current H{yields}{gamma}{gamma} analyses. We discuss in detail the application of the so-called ''ST method'' for estimating fixed-order perturbative uncertainties in this case, and also consider generalizations of it. Qualitatively, our results apply equally to other decay channels with similar VBF selection cuts. Typical VBF selections include indirect restrictions or explicit vetoes on additional jet activity, primarily to reduce non-Higgs backgrounds. We find that such restrictions have to be chosen carefully and are not necessarily beneficial for the purpose of distinguishing between the VBF and ggF production modes, since a modest reduction in the relative ggF contamination can be easily overwhelmed by its quickly increasing perturbative uncertainties.

  10. Resolving gluon fusion loops at current and future hadron colliders

    Science.gov (United States)

    Azatov, Aleksandr; Grojean, Christophe; Paul, Ayan; Salvioni, Ennio

    2016-09-01

    Inclusive Higgs measurements at the LHC have limited resolution on the gluon fusion loops, being unable to distinguish the long-distance contributions mediated by the top quark from possible short-distance new physics effects. Using an Effective Field Theory (EFT) approach we compare several proposed methods to lift this degeneracy, including toverline{t}h and boosted, off-shell and double Higgs production, and perform detailed projections to the High-Luminosity LHC and a future hadron collider. In addition, we revisit off-shell Higgs production. Firstly, we point out its sensitivity to modifications of the top- Z couplings, and by means of a general analysis we show that the reach is comparable to that of tree-level processes such as toverline{t}Z production. Implications for composite Higgs models are also discussed. Secondly, we assess the regime of validity of the EFT, performing an explicit comparison for a simple extension of the Standard Model containing one vector-like quark.

  11. Dual QCD thermodynamics and quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, H.C., E-mail: chandolaharish@gmail.com [Centre of Advanced Study, Department of Physics, Kumaun University, Nainital-263001 (India); Punetha, Garima [Centre of Advanced Study, Department of Physics, Kumaun University, Nainital-263001 (India); Dehnen, H. [Fachbereich Physik, Universität Konstanz, M 677, 78457 Konstanz (Germany)

    2016-01-15

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark–gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP–hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP–hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  12. Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations

    Directory of Open Access Journals (Sweden)

    Roman Pasechnik

    2017-01-01

    Full Text Available In this review, we present an up-to-date phenomenological summary of research developments in the physics of the Quark–Gluon Plasma (QGP. A short historical perspective and theoretical motivation for this rapidly developing field of contemporary particle physics is provided. In addition, we introduce and discuss the role of the quantum chromodynamics (QCD ground state, non-perturbative and lattice QCD results on the QGP properties, as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (BNL RHIC and CERN Super Proton Synchrotron (SPS and Large Hadron Collider (LHC accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small (p + p and p + A systems.

  13. Momentum broadening in unstable quark-gluon plasma

    CERN Document Server

    Carrington, M E; Schenke, B

    2016-01-01

    Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes much exceeding typical values of the fields in equilibrated plasma. We consider a high energy test parton traversing an unstable plasma that is populated with strong fields. We study the momentum broadening parameter $\\hat q$ which determines the radiative energy loss of the test parton. We develop a formalism which gives $\\hat q$ as the solution of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant for relativistic heavy ion collisions. The parameter $\\hat q$ is found to be strongly dependent on time. For short times it is of the order of the equilibrium value, but at later times $\\hat q$ grows exponentially due to the interaction of the test parton with unstable modes and becomes much bigger than the value in equilibri...

  14. Natural constraints on the gluon-quark vertex

    CERN Document Server

    Binosi, Daniele; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D

    2016-01-01

    In principle, the strong-interaction sector of the Standard Model is characterised by a unique renormalisation-group-invariant (RGI) running interaction and a unique form for the dressed--gluon-quark vertex, $\\Gamma_\\mu$; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles both top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansaetze for $\\Gamma_\\mu$. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Plainly, therefore, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansaetze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.

  15. Natural constraints on the gluon-quark vertex

    Science.gov (United States)

    Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D.

    2017-02-01

    In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluon-quark vertex, Γμ; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansätze for Γμ. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansätze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.

  16. Phase transition for gluon field: a qualitative analysis

    CERN Document Server

    Dzhunushaliev, Vladimir

    2012-01-01

    The phase transition for SU(3) gauge field (without quarks) is considered. It is shown that the phase transition is due to the fact that at high temperatures the partition function should be calculated as for a gas of gluons, whereas at low temperatures as the sum over energy levels of correlated quantum states of SU(3) gauge field. A correlated quantum state for strongly interacting fields is defined as a nonperturbative quantum state of strongly interacting fields. The energy spectrum of these quantum states are discrete one. A lower bound of the phase transition temperature by comparing of the average energy for the perturbative and nonperturbative regimes is estimated (for glueball being in thermal equilibrium with the thermostat). It is shown that this quantity is associated with a mass gap. In a scalar model of glueball its energy is calculated. It is shown that this energy is the mass gap. If we set the glueball mass $ \\approx 1.5 \\cdot 10^3$ Mev then it is found that the corresponding value of couplin...

  17. Kaluza-Klein Gluons as a Diagnostic of Warped Models

    CERN Document Server

    Lillie, Benjamin Huntington; Tait, Tim M P

    2007-01-01

    We study the properties of $g^{1}$, the first excited state of the gluon in representative variants of the Randall Sundrum model with the Standard Model fields in the bulk. We find that measurements of the coupling to light quarks (from the inclusive cross-section for $pp\\to g^{1} \\to t\\bar t$), the coupling to bottom quarks (from the rate of $pp\\to g^{1} b$), as well as the overall width, can provide powerful discriminants between the models. In models with large brane kinetic terms, the $g^1$ resonance can even potentially be discovered decaying into dijets against the large QCD background. We also derive bounds based on existing Tevatron searches for resonant $t \\bar{t}$ production and find that they require $M_{g^{1}} \\gtrsim 950$ GeV. In addition we explore the pattern of interference between the $g^1$ signal and the non-resonant SM background, defining an asymmetry parameter for the invariant mass distribution. The interference probes the relative signs of the couplings of the $g^{1}$ to light quark pai...

  18. Infrared Gluon Resummation and pp total cross-sections

    CERN Document Server

    Pancheri, Giulia; Grau, A; Shekhovtsova, O; Srivastava, Yogendra N

    2014-01-01

    We address here the problem of describing both the total and the elastic proton-proton cross-section, through the four outstanding features of hadron scattering: (i) the optical point; (ii) the forward peak, (iii) the dip and (iv) the subsequent descent at larger momentum transfers. These issues are discussed through an eikonal model for the elastic amplitude where the matter distribution in impact parameter space is given by resummed soft gluons down into the infrared (IR) region. The asymptotic growth of the total cross-section is obtained in a mini-jet model and the taming (saturation) at high energies is related to confinement realized here through an IR singular strong coupling constant alpha_s(Q^2). We present an ansatz that links the IR singularity of alpha_s(Q^2) to that of asymptotic freedom (AF) (at lowest order). Through this model, we illustrate the problems that arise in a generic one-channel eikonal model employed for a description of the measured differential elastic cross-section at LHC7.

  19. Linear polarization of gluons and photons in unpolarized collider experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, Cristian; Boer, Daniël; Brodsky, Stanley J.; Buffing, Maarten G. A.; Mulders, Piet J.

    2013-10-01

    We study azimuthal asymmetries in heavy quark pair production in unpolarized electron-proton and proton-proton collisions, where the asymmetries originate from the linear polarization of gluons inside unpolarized hadrons. We provide cross section expressions and study the maximal asymmetries allowed by positivity, for both charm and bottom quark pair production. The upper bounds on the asymmetries are shown to be very large depending on the transverse momentum of the heavy quarks, which is promising especially for their measurements at a possible future Electron-Ion Collider or a Large Hadron electron Collider. We also study the analogous processes and asymmetries in muon pair production as a means to probe linearly polarized photons inside unpolarized protons. For increasing invariant mass of the muon pair the asymmetries become very similar to the heavy quark pair ones. Finally, we discuss the process dependence of the results that arises due to differences in color flow and address the problem with factorization in case of proton-proton collisions.

  20. Average gluon and quark jet multiplicities at higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, Paolo; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, Anatoly V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2013-05-15

    We develop a new formalism for computing and including both the perturbative and nonperturbative QCD contributions to the scale evolution of average gluon and quark jet multiplicities. The new method is motivated by recent progress in timelike small-x resummation obtained in the MS factorization scheme. We obtain next-to-next-to-leading-logarithmic (NNLL) resummed expressions, which represent generalizations of previous analytic results. Our expressions depend on two nonperturbative parameters with clear and simple physical interpretations. A global fit of these two quantities to all available experimental data sets that are compatible with regard to the jet algorithms demonstrates by its goodness how our results solve a longstanding problem of QCD. We show that the statistical and theoretical uncertainties both do not exceed 5% for scales above 10 GeV. We finally propose to use the jet multiplicity data as a new way to extract the strong-coupling constant. Including all the available theoretical input within our approach, we obtain {alpha}{sub s}{sup (5)}(M{sub Z})=0.1199{+-}0.0026 in the MS scheme in an approximation equivalent to next-to-next-to-leading order enhanced by the resummations of ln(x) terms through the NNLL level and of ln Q{sup 2} terms by the renormalization group, in excellent agreement with the present world average.

  1. Quark, Gluon, Odderon Contributions to Total Cross Section of Proton-Proton Elastic Scattering at High Energies

    Institute of Scientific and Technical Information of China (English)

    TAN Jia-Jin; LU Juan; CHENG Yan; ZHOU Li-Huan; ZHU Wen-Jun; MA Wei-Xing; GOU Qing-Quan

    2008-01-01

    Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon self-interaction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interfer-ence and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy lap and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.

  2. Perfect Derived Propagators

    CERN Document Server

    Schulte, Christian

    2008-01-01

    When implementing a propagator for a constraint, one must decide about variants: When implementing min, should one also implement max? Should one implement linear equations both with and without coefficients? Constraint variants are ubiquitous: implementing them requires considerable (if not prohibitive) effort and decreases maintainability, but will deliver better performance. This paper shows how to use variable views, previously introduced for an implementation architecture, to derive perfect propagator variants. A model for views and derived propagators is introduced. Derived propagators are proved to be indeed perfect in that they inherit essential properties such as correctness and domain and bounds consistency. Techniques for systematically deriving propagators such as transformation, generalization, specialization, and channeling are developed for several variable domains. We evaluate the massive impact of derived propagators. Without derived propagators, Gecode would require 140000 rather than 40000 ...

  3. The analytic structure of non-global logarithms: convergence of the dressed gluon expansion

    Science.gov (United States)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff

    2016-11-01

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large- N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α s log. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. This allows us to calculate the NGL distribution for all values of α s log from the coefficients of the fixed order expansion.

  4. Properties of the quark gluon plasma from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mages, Simon Wolfgang

    2015-03-02

    Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.

  5. Collective flow signals the quark-gluon plasma

    Science.gov (United States)

    Stöcker, H.

    2005-03-01

    A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A GeV: here the hydrodynamic model has predicted the collapse of the v-flow and of the v-flow at ˜10 A GeV; at 40 A GeV it has been recently observed by the NA49 Collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density ρ. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain 2 GeV/c. This is interpreted as evidence for the production of superdense matter at RHIC with initial pressure far above hadronic pressure, p>1 GeV/fm. We suggest that the fluctuations in the flow, v and v, should be measured in future since ideal hydrodynamics predicts that they are larger than 50% due to initial state fluctuations. Furthermore, the QGP coefficient of viscosity may be determined experimentally from the fluctuations observed. The connection of v to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially (QGP formed at RHIC—can give further information on the equation of state (EoS) and transport coefficients of the quark-gluon plasma (QGP).

  6. The bootstrap condition for many reggeized gluons and the photon structure function at low x and large number of colours

    CERN Document Server

    Braun, M

    1995-01-01

    The bootstrap condition is generalized to n reggeized gluons. As a result it is demonstrated that the intercept generated by n reggeized gluons cannot be lower than the one for n=2. Arguments are presented that in the limit N_{c}\\rightarrow\\infty the bootstrap condition reduces the n gluon chain with interacting neighbours to a single BFKL pomeron. In this limit the leading contribution from n gluons corresponds to n/2 non-interacting BFKL pomerons (the n/2 pomeron cut). The sum over n leads to a unitary \\gamma^{\\ast}\\gamma amplitude of the eikonal form.

  7. Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons

    CERN Document Server

    Gomez-Rocha, Maria

    2015-01-01

    Asymptotic freedom of gluons in QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Green's functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the front-form Hamiltonian for effective gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, $s$, that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, $g_\\lambda$, depending on the associated momentum scale $\\lambda = 1/s$, is calculated in the series expansion in powers of $g_0 = g_{\\lambda_0}$ up to the terms of third order, assuming some small value for $g_0$ at some large $\\lambda_0$. The result exhibits the same finite sensitivity to small-$x$ regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler...

  8. First measurement of the Sivers asymmetry for gluons using SIDIS data

    Science.gov (United States)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; D'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rogacheva, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.; Compass Collaboration

    2017-09-01

    The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. For quarks, it was studied in previous measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it was found to be non-zero. In this letter the evaluation of the Sivers asymmetry for gluons is presented. The contribution of the photon-gluon fusion subprocess is enhanced by requiring two high transverse-momentum hadrons. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and the leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely polarised deuterons and protons. With a significance of about two standard deviations, a negative value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like asymmetry for gluons is consistent with zero.

  9. Experimental studies of unbiased gluon jets from $e^{+}e^{-}$ annihilations using the jet boost algorithm

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e- annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed with the OPAL detector at the LEP e+e- collider at CERN. First, we test the boost algorithm through studies with Herwig Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the en...

  10. Experimental properties of gluon and quark jets from a point source

    CERN Document Server

    Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Blobel, Volker; Bloodworth, Ian J; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Frey, A; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hoch, M; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Kanzaki, J I; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kobayashi, T; Kobel, M; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Lü, J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should ap...

  11. Triple- and Quadruple-Gluon Azimuthal Correlations from Glasma and Higher-Dimensional Ridges

    CERN Document Server

    Ozonder, Sener

    2014-01-01

    We calculate the triple- and quadruple-gluon inclusive distributions with arbitrary rapidity and azimuthal angle dependences in the gluon saturation regime by using glasma diagrams. Also, we predict higher-dimensional ridges in triple- and quadruple-hadron correlations for p-p and p-Pb collisions at LHC, which have yet to be measured. In p-p and p-Pb collisions at the top LHC energies, gluon saturation is expected to occur since smaller Bjorken-$x$ values are being probed. Glasma diagrams, which are enhanced at small-$x$, include the gluon saturation effects, and they are used for calculating the long-range rapidity correlations ("ridges") and $v_n$ moments of the azimuthal distribution of detected hadrons. The glasma description reproduces the systematics of the data on both p-p and p-Pb ridges. As an alternative, relativistic hydrodynamics has also been applied to these small systems quite successfully. With the triple- and quadruple-gluon azimuthal correlations, this work aims to set the stage by going bey...

  12. Monte Carlo study on the properties of gluon and quark jets

    CERN Document Server

    Kun Shi Zhang; Mei Ling Yu; Lian Shou Liu

    2002-01-01

    The 3-jet events produced in e/sup +/e/sup -/ collisions at 91.2 GeV have been studied using Monte Carlo method. After applying two angular cuts the three angles between the jets are used to identify the individual jet in 3-jet events. The energy distributions of the three jets, the mean particle multiplicities, mean transverse momenta of the three jets in equal energy bins and their distributions have been analyzed. Comparing with the corresponding results from the quark jets in 2-jet events, a simple method to select gluon and quark jets from 3-jet events is obtained. The properties of the gluon and quark jets being selected using the introduced method are in qualitative agreement with the expectations of perturbative QCD. The ratio of the mean multiplicity between quark and gluon jets, /sub gluon///sub quark/, has been calculated. The results, again, agree with the experimental results from SLD, OPAL, ALEPH, and DELPHI Collaborations, indicating that the method proposed to select gluon and quark jets from ...

  13. Quark production, Bose-Einstein condensates and thermalization of the quark-gluon plasma

    CERN Document Server

    Blaizot, Jean-Paul; Yan, Li

    2014-01-01

    In this paper, we study the thermalization of gluons and N_f flavors of massless quarks and antiquarks in a spatially homogeneous system. First, two coupled transport equations for gluons and quarks (and antiquarks) are derived within the diffusion approximation of the Boltzmann equation, with only 2 2 processes included in the collision term. Then, these transport equations are solved numerically in order to study the thermalization of the quark-gluon plasma. At initial time, we assume that no quarks or antiquarks are present and we choose the gluon distribution in the form f = f_0 theta (1-p/Q_s) with Q_s the saturation momentum and f_0 a constant. The subsequent evolution of systems may, or may not, lead to the formation of a (transient) Bose condensate, depending on the value of f_0. In fact, we observe, depending on the value of f_0, three different patterns: (a) thermalization without gluon Bose-Einstein condensate (BEC) for f_0 1 > f_{0c}, the onset of BEC occurs at a finite time t_c ~ 1/((alpha_s f_0...

  14. Gluon and Wilson loop TMDs for hadrons of spin $\\leq$ 1

    CERN Document Server

    Boer, Daniël; van Daal, Tom; Mulders, Piet J; Signori, Andrea; Zhou, Ya-Jin

    2016-01-01

    In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small $x$, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small-$x$ `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small-$x$ limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-$1/2$ and spin-$1$ hadrons), and tensor pol...

  15. The Wheeler Propagator

    OpenAIRE

    Bollini, C. G.; Rocca, M. C.

    1998-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators. We show with some examples tha...

  16. Analytic properties of the quark propagator from an effective infrared interaction model

    Science.gov (United States)

    Windisch, Andreas

    2017-04-01

    In this paper, I investigate the analytic properties of the quark propagator Dyson-Schwinger equation (DSE) in the Landau gauge. In the quark self-energy, the combined gluon propagator and quark-gluon vertex is modeled by an effective interaction (the so-called Maris-Tandy interaction), where the ultraviolet term is neglected. This renders the loop integrand of the quark self-energy analytic on the cut plane -π Supplemental Material, which can be used to parametrize solutions of the complex quark propagator for a wide range of bare mass values and for large bound-state masses. This study is a first step towards an extension of previous work on the analytic continuation of perturbative one-loop integrals, with the long-term goal of establishing a framework that allows for the numerical extraction of the analytic properties of the quark propagator with a truncation that extends beyond the rainbow by making adequate adjustments in the contour of the radial integration of the quark self-energy.

  17. Dileptons from a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density

    Institute of Scientific and Technical Information of China (English)

    GUAN Na-Na; HE Ze-Jun; LONG Jia-Li; CAI Xiang-Zhou

    2008-01-01

    We perform a complete calculation for the delepton production from the processes q(q-) →l(l-), Compton-like (qg→ql(l-),(q-)g→ql(l-)), q(q-)→gl(l-), gluon fusion g(g-)→c(c-), annihilation q(q-)→c(c-) as well as multiple scattering of quarks in a chemically equilibrating quark-gluon plasma system at finite baryon density. It is found that quark-antiquark annihilation,Compton-like, gluon fusion and multiple scattering of quarks give important contribution. Moreover, the increase of the quark phase life-time with increasing initial quark chemical potential makes the dilepton yield as an increasing function of the initial quark chemical potential.

  18. Precision determination of the small-$x$ gluon from charm production at LHCb

    CERN Document Server

    Gauld, Rhorry

    2016-01-01

    The small-$x$ gluon in global fits of parton distributions is affected by large uncertainties from the lack of direct experimental constraints. In this work we provide a precision determination of the small-$x$ gluon from the exploitation of forward charm production data provided by LHCb for three different centre-of-mass (CoM) energies: 5~TeV, 7~TeV and 13~TeV. The LHCb measurements are included in the PDF fit by means of normalized distributions and cross-section ratios between data taken at different CoM values, $R_{13/7}$ and $R_{13/5}$. We demonstrate that forward charm production leads to a reduction of the PDF uncertainties of the gluon down to $x\\simeq 10^{-6}$ by up to an order of magnitude, with implications for high-energy colliders, cosmic ray physics and neutrino astronomy.

  19. Non-perturbative gluon-hadron inputs for all available forms of QCD factorization

    CERN Document Server

    Ermolaev, B I

    2016-01-01

    Description of hadronic reactions at high energies is conventionally done on basis of QCD factoriza- tion so that factorization convolutions involve non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct the inputs for the gluon- hadron scattering amplitudes in the forward kinematics and, using the Optical theorem, convert them into inputs for gluon distributions in the both polarized and unpolarized hadrons. Firstly, we derive general mathematical criteria which any model for the inputs should obey and then suggest a Resonance Model satisfying those criteria. This model is inspired by a simple observation: after emitting an active parton off the hadron, the remaining ensemble of spectators becomes unstable and therefore it can be described through factors of the resonance type. Exploiting Resonance Model, we obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available forms of QCD factorization...

  20. Dynamic gluon confinement in high energy processes within effective QCD field theory

    CERN Document Server

    Kinder-Geiger, Klaus

    1994-01-01

    An effective Lagrangian approach to describe the dynamics of confinement and symmetry breaking in the process of quark-gluon to hadron conversion is proposed. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color neutral condensate fields representing the non-perturbative vacuum with broken scale and chiral symmetry. As a first application the evolution of gluons emitted by a fragmenting high energy q\\bar q pair from the perturbative to the non-perturbative regime with confinement is studied. For reasonable parameter choice the solution of the equations of motion leads to flux tube configurations with a string tension t \\simeq 1 GeV/fm.

  1. QCD fixed points: Banks-Zaks scenario or dynamical gluon mass generation?

    Science.gov (United States)

    Gomez, J. D.; Natale, A. A.

    2017-01-01

    Fixed points in QCD can appear when the number of quark flavors (Nf) is increased above a certain critical value as proposed by Banks and Zaks (BZ). There is also the possibility that QCD possess an effective charge indicating an infrared frozen coupling constant. In particular, an infrared frozen coupling associated to dynamical gluon mass (DGM) generation does lead to a fixed point even for a small number of quarks. We compare the BZ and DGM mechanisms, their β functions and fixed points, and within the approximations of this work, which rely basically on extrapolations of the dynamical gluon masses at large Nf, we verify that between Nf = 8 and Nf = 12 both cases exhibit fixed points at similar coupling constant values (g∗). We argue that the states of minimum vacuum energy, as a function of the coupling constant up to g∗ and for several Nf values, are related to the dynamical gluon mass generation mechanism.

  2. The role of three-gluon correlation functions in the single spin asymmetry

    Directory of Open Access Journals (Sweden)

    Beppu Hiroo

    2015-01-01

    Full Text Available We study the twist-3 three-gluon contribution to the single spin asymmetry in the light-hadron production in pp collision in the framework of the collinear factorization. We derive the corresponding cross section formula in the leading order with respect to the QCD coupling constant. We also present a numerical calculation of the asymmetry at the RHIC energy, using a model for the three-gluon correlation functions suggested by the asymmetry for the D-meson production at RHIC. We found that the asymmetries for the light-hadron and the jet productions are very useful to constrain the magnitude and form of the correlation functions. Since the three-gluon correlation functions shift the asymmetry for all kinds of hadrons in the same direction, it is unlikely that they become a main source of the asymmetry.

  3. Comparison of quark jets and gluon jets produced in high energy $e^{+}e^{-}$ annihilations

    CERN Document Server

    Zomorrodian, M E

    2001-01-01

    We report on an experimental comparison of the characteristics of quark induced and gluon induced jets based on an analysis of jet events selected from hadronic events observed at c.m energy of 60 GeV in electron-positron annihilation. The mean transverse momentum (P /sub T/) with respect to the jet axis is larger for three jet events than the corresponding value for the two jet events. This is in qualitative agreement with the QCD which predicts a more chance of gluon radiation in three jet events. Furthermore, the particles in the gluon enriched sample have a higher multiplicity than its counterpart in quark jet sample. The ratio of the two multiplicities is 1.3+-0.02. This numerical value is in good quantitative agreement with the OPAL experiment. Possible explanation for all these features has been presented in this paper. (13 refs).

  4. QCD fixed points: Banks-Zaks or dynamical gluon mass generation?

    CERN Document Server

    Gomez, J D

    2016-01-01

    Fixed points in QCD can appear when the number of quark flavors ($N_f$) is increased above a certain critical value as proposed by Banks and Zaks (BZ). There is also the possibility that QCD possess an effective charge indicating an infrared frozen coupling constant. In particular, an infrared frozen coupling associated to dynamical gluon mass generation (DGM) does lead to a fixed point even for a small number of quarks. We compare the BZ and DGM mechanisms, their $\\beta$ functions and fixed points, and within the approximations of this work, which rely basically on extrapolations of the dynamical gluon masses at large $N_f$, we verify that near the so called QCD conformal window both cases exhibit fixed points at similar coupling constant values ($g^*$). We argue that the states of minimum vacuum energy, as a function of the coupling constant up to $g^*$ and for several $N_f$ values, are related to the dynamical gluon mass generation mechanism.

  5. Two Gluon Production and Longitudinal Correlations in the Color Glass Condensate

    CERN Document Server

    Fukushima, Kenji

    2008-01-01

    We derive an analytical expression for the two-gluon multiplicity in the pA (light-heavy) collisions, and focus specifically on the rapidity dependent part. We approximate the gauge field from the heavy target as the Color Glass Condensate which interacts with the light projectile whose source density allows for a perturbative expansion. We discuss the longitudinal correlations of produced particles. Our calculation goes in part beyond the eikonal limit for the emitted gluons so that we can retain the exponential terms with respect to the rapidity difference. Our expression can thus describe the short-range correlations as well as the long-range ones for which our formula is reduced to the known expression. In a special case of two high-pt gluons in the back-to-back kinematics we find that dependence on the rapidity separation is only moderate even in the diagrammatically connected part.

  6. Gluon Transport Equation in the Small Angle Approximation and the Onset of Bose-Einstein Condensation

    CERN Document Server

    Blaizot, Jean-Paul; McLerran, Larry

    2013-01-01

    In this paper, we study the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. In the present study we ignore the effect of the longitudinal expansion, i.e., we restrict ourselves to spatially uniform systems, with spherically symmetric momentum distributions. Furthermore we take into account only elastic scattering, i.e., we neglect inelastic, number changing, processes. We solve the transport equation for various initial conditions that correspond to small or large initial gluon phase-space densities. For a small initial phase-space density, the system evolves towards thermal equilibrium, as expected. For a large enough initial phase-space density the equilibrium state contains a Bose condensate. We present numerical evidence that such over-populated systems rea...

  7. Thermo-magnetic behavior of the of the quark-gluon vertex

    CERN Document Server

    Ayala, Alejandro; Loewe, M; Tejeda-Yeomans, Maria Elena; Zamora, R

    2015-01-01

    The thermo-magnetic corrections to the quark-gluon vertex in the presence of a weak magnetic field are calculated in the frame of the Hard Thermal Loop approximation. The vertex satisfies a QED-like Ward identity with the quark self-energy calculated within the same approximation. It turns out that only the longitudinal vertex components get modified. The calculation provides a first principles result for the quark anomalous magnetic moment at high temperature in a weak magnetic field. The effective thermo-magnetic quark-gluon coupling shows a decreasing behavior as function of the field strength. This result supports the observation that the behavior of the effective quark-gluon coupling in the presence of a magnetic field is an important ingredient in order to understand the inverse magnetic catalysis phenomenon recently observed in the lattice QCD simulations.

  8. The sound generated by a fast parton in the quark-gluon plasma is a crescendo

    CERN Document Server

    Neufeld, R B

    2009-01-01

    The total energy deposited into the medium per unit length by a fast parton traversing a quark-gluon plasma is calculated. We take the medium excitation due to collisions to be given by the well known expression for the collisional drag force. The parton's radiative energy loss contributes to the energy deposition because each radiated gluon acts as an additional source of collisional energy loss in the medium. In our model, this leads to a length dependence on the differential energy loss due to the interactions of radiated gluons with the medium. The final result, which is a sum of the primary and the secondary contributions, is then treated as the coefficient of a local hydrodynamic source term. Results are presented for energy density wave induced by two fast, back-to-back partons created in an initial hard interaction.

  9. Form factor decomposition of the off-shell four-gluon amplitudes

    CERN Document Server

    Ahmadiniaz, Naser

    2013-01-01

    We show how to use the Bern-Kosower master formula, originally a generating functional for on-shell gluon matrix elements, to derive well-organized form factor decompositions of the off-shell one-particle-irreducible N - gluon vertices. Two such algorithms are presented which can be used for any N, the first one optimized with respect to the nonabelian gauge invariance, the second one with respect to transversality. We give explicit results for the three- and four-gluon cases. The second algorithm in the three-point case reproduces precisely the well-known Ball-Chiu decomposition, and in the four-point case a natural generalization thereof. A particularly simple structure emerges in the N=4 SYM case.

  10. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  11. Gluon contribution to the structure function $g_{2}(x,Q^{2})$

    CERN Document Server

    Braun, V M; Manashov, A N

    2001-01-01

    We calculate the one-loop twist-3 gluon contribution to the flavor-singlet structure function g_2(x,Q^2) in polarized deep-inelastic scattering and find that it is dominated by the contribution of the three-gluon operator with the lowest anomalous dimension (for each moment N). The similar property was observed earlier for the nonsinglet distributions, although the reason is in our case different. The result is encouraging and suggests a simple evolution pattern of g_2(x,Q^2) in analogy with the conventional description of twist-2 parton distributions.

  12. Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CNRS, CPhT, Ecole Polytechnique, Palaiseau (France); Semenov-Tian-Shansky, K. [Universite de Liege, IFPA, Departement AGO, Liege (Belgium); Szymanowski, L. [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S. [Universite de Paris-Sud, CNRS, LPT, Orsay (France); Universite Paris 06, Faculte de Physique, UPMC, Paris (France)

    2014-05-15

    Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)

  13. A Monte Carlo Study on the Identification of Quark and Gluon Jets

    Institute of Scientific and Technical Information of China (English)

    喻梅凌; 刘连寿

    2002-01-01

    Three-jet events in e+ e- collisions at 91.2 GeV are investigated using both HERWIG and JETSET Monte Carlo generators. The angles among the three jets are used to identify the quark and gluon jets. An ahalysis at the parton level is carried out to ensure the reasonableness of this method and an angular cut is utilized to improve the purity of this identification. The multiplicity inside the identified quark or gluon jets agrees with the quantum chromodynamic predictions qualitatively.

  14. Direct Measurement of the Gluon Polarisation in the Nucleon via Charmed Meson Production

    CERN Document Server

    Alekseev, M; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Arbuzov, A; Badelek, Barbara Maria; Balestra, F; Ball, J; Barth, J; Baum, Guenter; Bedfer, Y; Bernet, Colin; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; De Masi, R; Dedek, N; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dunnweber, W; Eversheim, P D; Eyrich, W; Faessler, M; Falaleev, V; Ferrero, L; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; Franz, J; Friedrich, J M; Garfagnini, R; Gautheron, Fabrice; Gavrichtchouk, O P; Gazda, R; Geyer, R; Giorgi, M; Gobbo, Benigno; Gorin, A M; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hannappel, J; von Harrach, D; Hasegawa, T; Heckmann, J; Hedicke, S; Heinsius, Fritz-Herbert; Hermann, R; Hess, C; Hinterberger, F; von Hodenberg, M; Horikawa, S; d'Hose, N; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Jahn, R; Janata, A; Jasinski, P; Joosten, R; Jouravlev, N I; Kabuss, E; Kang, D; Ketzer, Bernhard; Khaustov, G V; Khokhlov, Yu A; Klein, F; Klimaszewski, K; Koblitz, S; Kolosov, V N; Komissarov, E V; Kondo, K; Konigsmann, Kay; Konstantinov, V F; Korentchenko, A S; Koutchinski, N A; Kral, A; Kravchuk, N P; Kroumchtein, Z V; Kuhn, R; Kunne, Fabienne; Kurek, Krzysztof; Ladygin, M E; Le Goff, Jean-Marc; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W.Thomas; Mikhailov, Yu V; Moinester, M A; Nagaytsev, A; Nagel, T; Nahle, O; Nassalski, J; Neliba, S; Nerling, F; Neubert, S; Neyret, D P; Nikolaenko, V I; Nikolaev, K; Olshevsky, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panknin, R; Panzieri, D; Paul, S; Pawlukiewicz-Kaminska, B; Peshekhonov, D V; Peshekhonov, V D; Piragino, G; Platchkov, Stephane; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Procureur, S; Quintans, C; Rajotte, J F; Ramos, S.; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rondio, Ewa; Rozhdestvensky, A M; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, Igor A; Schiavon, P; Schill, Christian; Schonmeier, P; Schroder, W; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stinzing, F; Sugonyaev, V P; Sulc, M; Sulej, R; Tchalishev, V V; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Webb, Robert C; Weitzel, Q; Windmolders, R; Wirth, S; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziegler, R; Zvyagin, A

    2008-01-01

    We present the first measurement of the gluon polarisation in the nucleon based on the photon-gluon fusion process tagged by charmed meson production and decay to charged K and pi. The data were collected in polarised muon scattering off a polarised deuteron target by the COMPASS collaboration at CERN during 2002-2004. The result of this LO analysis is _x = -0.47 +- 0.44 (stat) +- 0.15 (syst) at ~= 0.11 and a scale mu^2 ~ 13 (GeV/c)^2.

  15. Jagiellonian University Colour Reconnections in Quark and Gluon Jets in Herwig 7

    CERN Document Server

    Reichelt, Daniel; Siódmok, Andrzej

    2017-01-01

    Major event generators deviate significantly in their description of quark and gluon initiated jets. The modelling of these is particularly sensitive to the colour reconnection model used in the cluster hadronization model in the event generator Herwig. However, up to now, observables sensitive to the light flavour of jets have not been widely used in the construction and tuning of event generators. The scheme used in Herwig and changes within it are investigated using observables in $e^+ e^−$ and pp collisions, which are expected to discriminate quark and gluon jets.

  16. Resonance model for non-perturbative inputs to gluon distributions in the hadrons

    CERN Document Server

    Ermolaev, B I; Troyan, S I

    2015-01-01

    We construct non-perturbative inputs for the elastic gluon-hadron scattering amplitudes in the forward kinematic region for both polarized and non-polarized hadrons. We use the optical theorem to relate invariant scattering amplitudes to the gluon distributions in the hadrons. By analyzing the structure of the UV and IR divergences, we can determine theoretical conditions on the non-perturbative inputs, and use these to construct the results in a generalized Basic Factorization framework using a simple Resonance Model. These results can then be related to the K_T and Collinear Factorization expressions, and the corresponding constrains can be extracted.

  17. Trace Anomaly and Dimension Two Gluon Condensate Above the Phase Transition

    Energy Technology Data Exchange (ETDEWEB)

    Megias,E.; Ruiz Arriola, E.; Salcedo, L.L.

    2008-02-04

    The dimension two gluon condensate has been used previously within a simple phenomenological model to describe power corrections from available lattice data for the renormalized Polyakov loop and the heavy quark-antiquark free energy in the deconfined phase of QCD. The QCD trace anomaly of gluodynamics also shows unequivocal inverse temperature power corrections which may be encoded as dimension two gluon condensate. We analyze lattice data of the trace anomaly and compare with other determinations of the condensate from previous references, yielding roughly similar numerical values.

  18. Building a non-perturbative quark-gluon vertex from a perturbative one

    Science.gov (United States)

    Bermudez, Rocio

    2016-10-01

    The quark-gluon vertex describes the electromagnetic and the strong interaction among these particles. The description of this interaction at high precision in both regimes, perturbative and non-perturbative, continues being a matter of interest in the context of QCD and Hadron Physics. There exist very helpful models in the literature that explain perturbative aspects of the theory but they fail describing non-perturbative phenomena, as confinement and dynamic chiral symmetry breaking. In this work we study the structure of the quark-gluon vertex in a non-perturbative regime examining QCD, checking results with QED, and working in the Schwinger-Dyson formalism.

  19. Thermal single-gluon exchange potential for heavy quarkonium in the static limit

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-Qing; Ma, Zhi-Lei; Shi, Chao-Yi; Li, Yun-De, E-mail: yndxlyd@163.com

    2015-10-15

    The calculations of thermal single-gluon exchange potential for heavy quarkonium in Feynman and Coulomb gauges are presented, and the comparisons between them and the hard thermal loop approximation ones which were first calculated by Laine et al. are illustrated. The numerical results show that the hard thermal loop thermal single-gluon exchange potential (especially its imaginary part) which used in many researches make some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependent cannot be avoided when the complete self energy is used in the derivation of potential.

  20. Branching structure of QCD jets: new jet observables for quark-gluon discrimination

    CERN Document Server

    Davighi, Joseph (CERN)

    2014-01-01

    I have explored the fractal nature of hadronic jets and the potential use of fractal dimension in jet substructure physics. A more sophisticated set of parameters, named Branching Logarithmic Fit (BLF) parameters, has subsequently been developed to describe the fractal and corrections-to-fractal behavior due to QCD running in the perturbative regime. Theoretical motivation is given for these parameters, which have then been applied to the problem of quark/gluon discrimination. The BLF parameters are individually discriminating and only weakly correlated to variables currently used in quark/gluon discrimination. Consequently, their inclusion should improve discrimination, and evidence is presented for this at the generator level

  1. Hard scale dependent gluon density, saturation and forward-forward dijet production at the LHC

    CERN Document Server

    Kutak, Krzysztof

    2014-01-01

    We propose a method to introduce Sudakov effects to unintegrated gluon density promoting it to be hard scale dependent. The advantage of proposed approach is that it guarantees that the gluon density is positive definite and that on integrated level the Sudakov effects cancel. Besides that the method to introduce the Sudakov effects is convenient since it does not need evaluation of cross section in the process of imposing the effects. As a case study we apply the method to calculate angular correlations in production of forward-forward dijet and $R_{pA}$ ratio for p+p vs. p+Pb collision.

  2. Gluon distributions from Oliveira-Martin-Ryskin combined BFKL+DGLAP evolution equations

    CERN Document Server

    Toton, Dawid

    2014-01-01

    Kwiecinski, Martin, Stasto [13] argue for inclusion of DGLAP terms into BFKL evolution of unintegrated gluon density. The equation was reformulated by Oliveira, Martin, Ryskin [6] employing the opening angle {\\theta} = k/xp as the evolution variable. It leads to a description of a {\\theta}-integrated gluon density. This paper is a numerical study of these two similar combined BFKL+DGLAP formulations. It is a demonstration of feasibility of the new approach. The different ways of subtracting the contribution common for BFKL and DGLAP proposed in [13] and [6] are compared. The numerical tests confirm that the {\\theta} variable is a more natural evolution variable for this kind of equation.

  3. Superconductivity from perturbative one-gluon exchange in high density quark matter

    CERN Document Server

    Schäfer, T; Schaefer, Thomas; Wilczek, Frank

    1999-01-01

    We study color superconductivity in QCD at asymptotically large chemical potential. In this limit, pairing is dominated by perturbative one-gluon exchange. We derive the Eliashberg equation for the pairing gap and solve this equation numerically. Taking into account both magnetic and electric gluon exchanges, we find $\\Delta\\sim g^{-5}\\exp(-c/g)$ with $c=3\\pi^2/\\sqrt{2}$, verifying a recent result by Son. For chemical potentials that are of physical interest, $\\mu< 1$ GeV, the calculation ceases to be reliable quantitatively, but our results suggest that the gap can be as large as 100 MeV.

  4. Colour-Octet-Annihilation in Leading Neutral Systems of Gluon Jets

    Science.gov (United States)

    Buschbeck, B.; Mandl, F.

    2007-11-01

    Using data of the DELPHI collaboration the electric charges of Leading Systems (defined by a rapidity gap) in quark and gluon jets are measured and are compared with the results from Monte Carlo simulations which do not contain colour-octet neutralistion processes. In the data an enhanced production of neutral Leading Systems compared to the Monte Carlo predictions is found in gluon jets. This excess and its location at low masses (⩽2 GeV/c2) of the neutral Leading System is expected for colour-octet neutralistion. The quark jets are found to be in agreement with the simulation.

  5. Measurement of the gluon structure function from direct photon data at the CERN overlinepp collider

    Science.gov (United States)

    Alitti, J.; Ambrosini, G.; Ansari, R.; Autiero, D.; Bareyre, P.; Bertram, I. A.; Blaylock, G.; Bonamy, P.; Borer, K.; Bourliaud, M.; Buskulic, D.; Carboni, G.; Cavalli, D.; Cavasinni, V.; Cenci, P.; Chollet, J. C.; Conta, C.; Costa, G.; Costantini, F.; Cozzi, L.; Cravero, A.; Curatolo, M.; Dell'Acqua, A.; DelPrete, T.; DeWolf, R. S.; DiLella, L.; Ducros, Y.; Egan, G. F.; Einsweiler, K. F.; Esposito, B.; Fayard, L.; Federspiel, A.; Ferrari, R.; Fraternali, M.; Froidevaux, D.; Fumagalli, G.; Gaillard, J. M.; Gianotti, F.; Gildemeister, O.; Gössling, C.; Goggi, V. G.; Grünendahl, S.; Hara, K.; Hellman, S.; Hrivnac, J.; Hufnagel, H.; Hugentobler, E.; Hultqvist, K.; Iacopini, E.; Incandela, J.; Jacobs, K.; Jenni, P.; Kluge, E. E.; Kurz, N.; Lami, S.; Lariccia, P.; Lefebvre, M.; Linssen, L.; Livan, M.; Lubrano, P.; Magneville, C.; Malgeri, L.; Mandelli, L.; Mapelli, L.; Mazzanti, M.; Meier, K.; Merkel, B.; Meyer, J. P.; Moniez, M.; Moning, R.; Morganti, M.; Müller, L.; Munday, D. J.; Nessi, M.; Nessi-Tedaldi, F.; Onions, C.; Pal, T.; Parker, M. A.; Parrour, G.; Pastore, F.; Pennacchio, E.; Pentney, J. M.; Pepe, M.; Perini, L.; Petridou, C.; Petroff, P.; Plothow-Besch, H.; Polesello, G.; Poppleton, A.; Pretzl, K.; Primavera, M.; Punturo, M.; Repellin, J. P.; Rimoldi, A.; Sacchi, M.; Scampoli, P.; Schacher, J.; Schmidt, B.; Simak, V.; Singh, S. L.; Sondermann, V.; Spiwoks, R.; Stapnes, S.; Talamonti, C.; Tondini, F.; Tovey, S. N.; Tsesmelis, E.; Unal, G.; Valdata-Nappi, M.; Vercesi, V.; Weidberg, A. R.; Wells, P. S.; White, T. O.; Wood, D. R.; Wotton, S. A.; Zaccone, H.; Zylberstejn, A.; UA2 Collaboration; Bern-Cambridge-CERN-Dortmund-Heidelberg-Melbourne-Milano-Orsay (LAL)-Pavia-Perugia-Pisa-Saclay CEN)

    1993-01-01

    A measurement of the gluon structure fusion using direct photon events observed with the UA2 detector in overlinepp collisions at √ s=630 GeV is presented. The x-range covered by this analysis is between 0.049 and 0.207 and the Q2 range is between 280 GeV 2 and 3670 GeV 2. The data sample corresponds to an integrated luminosity of 7.14 pb -1. The results are found to be in good agreement with the gluon distributions measured in deep inelastic scattering experiments extrapolated to the UA2 Q2 values.

  6. Linearly polarized gluons in charmonium and bottomonium production in color octet model

    CERN Document Server

    Mukherjee, Asmita

    2016-01-01

    We study the possibility to probe the unpolarized and linearly polarized transverse momentum- dependent gluon distributions in unpolarized pp collision in charmonium and bottomonium produc- tion, employing non-relativistic QCD (NRQCD) based color octet model within transverse momentum dependent (TMD) factorization framework. The transverse momentum (p T ) and rapidity distributions of J/{\\psi} and {\\Upsilon}(1S) at LHCb, RHIC and AFTER energies are estimated. Significant modulations in transverse momentum spectrum of quarkonium in the low p T region is obtained when contributions of linearly polarized gluons inside an unpolarized proton are taken into account. The results of quarko- nium production in color octet model and color evaporation model are compared.

  7. Equilibrium and equilibration in a gluon plasma with improved matrix elements

    Directory of Open Access Journals (Sweden)

    Zhang Bin

    2014-03-01

    Full Text Available The hot and dense matter created in the early stage of a relativistic heavy ion collision is composed mainly of gluons. Radiative processes can play an important role for the thermalization of such partonic systems. The simplest parton number changing processes are commonly described by the Gunion-Bertsch formula. We show that the cross section from the exact matrix element for the lowest order radiative process could be significantly smaller than that based on the Gunion-Bertsch formula. In light of this, we discuss the role of radiative processes on the equilibrium and equilibration of a gluon plasma.

  8. Branching structure of QCD jets: new jet observables for Quark/Gluon discrimination

    CERN Document Server

    Davighi, Joseph

    2014-01-01

    I have explored the fractal nature of hadronic jets and the potential use of fractal dimension in jet substructure physics. A more sophisticated set of parameters, named Branching Logarithmic Fit (BLF) parameters, has subsequently been developed to describe the fractal and corrections-to-fractal behaviour due to QCD running in the perturbative regime. Theoretical motivation is given for these parameters, which have then been applied to the problem of quark/gluon discrimination. The BLF parameters are individually discriminating and only weakly correlated to variables currently used in quark/gluon discrimination. Consequently, their inclusion should improve discrimination, and evidence is presented for this at the generator level.

  9. The contribution of off-shell gluons to the structure functions F{sub 2} and F{sub L}{sup c} and the unintegrated gluon distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kotikov, A.V. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lipatov, A.V. [Department of Physics, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation); Parente, G. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Zotov, N.P. [D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation)

    2002-11-01

    We calculate the perturbative parts of the structure functions F{sub 2}{sup c} and F{sub L}{sup c} for a gluon target having non-zero transverse momentum squared at order {alpha}{sub s}. The results of the double convolution (with respect to the Bjorken variable x{sub B} and the transverse momentum) of the perturbative part and the unintegrated gluon densities are compared with the HERA experimental data for F{sub 2}{sup c}. The contribution from the F{sub L}{sup c} structure function ranges in 10-30% of that of F{sub 2}{sup c} at the kinematical range of the HERA experiments. (orig.)

  10. Measurement of the fraction of t tmacr production via gluon-gluon fusion in p pmacr collisions at s=1.96TeV

    Science.gov (United States)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Copic, K.; Cordelli, M.; Cortiana, G.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C. S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlok, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner-Kuhr, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-02-01

    We present a measurement of the ratio of the t tmacr production cross section via gluon-gluon fusion to the total t tmacr production cross section in p pmacr collisions at s=1.96TeV at the Tevatron. Using a data sample with an integrated luminosity of 955pb-1 recorded by the CDF II detector at Fermilab, we select events based on the t tmacr decay to lepton+jets. Using an artificial neural network technique we discriminate between t tmacr events produced via q qmacr annihilation and gg fusion, and find Gf=σ(gg→t tmacr )/σ(p pmacr →t tmacr )<0.33 at the 68% confidence level. This result is combined with a previous measurement to obtain the most stringent measurement of this quantity by CDF to date, Gf=0.07-0.07+0.15.

  11. Shallow-Water Propagation

    Science.gov (United States)

    2016-06-07

    Shallow- Water Propagation William L. Siegmann Rensselaer Polytechnic Institute 110 Eighth Street Troy, New York 12180-3590 phone: (518) 276...ocean_acoustics LONG-TERM GOALS Develop methods for propagation and coherence calculations in complex shallow- water environments, determine...intensity and coherence. APPROACH (A) Develop high accuracy PE techniques for applications to shallow- water sediments, accounting for

  12. Regge behaviour of distribution functions and evolution of gluon distribution function in next-to-leading order at low-x

    Indian Academy of Sciences (India)

    U Jamil; J K Sarma

    2008-09-01

    Evolution of gluon distribution function from Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equation in next-to-leading order (NLO) at low- is presented assuming the Regge behaviour of quark and gluon at this limit. We compare our results of gluon distribution function with MRST2004, GRV98LO and GRV98NLO parametrizations and show the compatibility of Regge behaviour of quark and gluon distribution functions with perturbative quantum chromodynamics (PQCD) at low-.

  13. Gear Crack Propagation Investigation

    Science.gov (United States)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  14. The Wheeler Propagator

    CERN Document Server

    Bollini, C G

    1998-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators. We show with some examples that perturbative unitarity holds, whatever the mass (real or complex). Some possible applications are discussed.

  15. Broadening of Transverse Momentum of Partons Propagating through a Medium

    CERN Document Server

    Johnson, M B; Tarasov, A V

    2001-01-01

    Broadening of the transverse momentum of a parton propagating through a medium is treated using the color dipole formalism, which has the advantage of being a well developed phenomenology in deep-inelastic scattering and soft processes. Within this approach, nuclear broadening should be treated as color filtering, i.e. absorption of large-size dipoles leading to diminishing (enlarged) transverse separation (momentum). We also present a more intuitive derivation based on the classic scattering theory of Moli\\`ere. This derivation helps to understand the origin of the dipole cross section, part of which comes from attenuation of the quark, while another part is due to multiple interactions of the quark. It also demonstrates that the lowest-order rescattering term provides an A-dependence very different from the generally accepted A^{1/3} behavior. The effect of broadening increases with energy, and we evaluate it using different phenomenological models for the unintegrated gluon density. Although the process is...

  16. SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    KARSCH,F.; KITAZAWA, M.

    2007-07-30

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  17. Spectral Properties of Quarks in the Quark-Gluon Plasma

    CERN Document Server

    Karsch, F

    2007-01-01

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  18. Renormalized quark-antiquark Hamiltonian induced by a gluon mass ansatz in heavy-flavor QCD

    Science.gov (United States)

    Głazek, Stanisław D.; Gómez-Rocha, María; More, Jai; Serafin, Kamil

    2017-10-01

    In response to the growing need for theoretical tools that can be used in QCD to describe and understand the dynamics of gluons in hadrons in the Minkowski space-time, the renormalization group procedure for effective particles (RGPEP) is shown in the simplest available context of heavy quarkonia to exhibit a welcome degree of universality in the first approximation it yields once one assumes that beyond perturbation theory gluons obtain effective mass. Namely, in the second-order terms, the Coulomb potential with Breit-Fermi spin couplings in the effective quark-antiquark component of a heavy quarkonium, is corrected in one-flavor QCD by a spin-independent harmonic oscillator term that does not depend on the assumed effective gluon mass or the choice of the RGPEP generator. The new generator we use here is much simpler than the ones used before and has the advantage of being suitable for studies of the effective gluon dynamics at higher orders than the second and beyond the perturbative expansion.

  19. Phase transition in matrix model with logarithmic action: Toy-model for gluons in baryons

    CERN Document Server

    Krishnaswami, G S

    2006-01-01

    We study the competing effects of gluon self-coupling and their interactions with quarks in a baryon, using the very simple setting of a hermitian 1-matrix model with action tr A^4 - log det(nu + A^2). The logarithmic term comes from integrating out N quarks. The model is a caricature of 2d QCD coupled to adjoint scalars, which are the transversely polarized gluons in a dimensional reduction. nu is a dimensionless ratio of quark mass to coupling constant. The model interpolates between gluons in the vacuum (nu=infinity), gluons weakly coupled to heavy quarks (large nu) and strongly coupled to light quarks in a baryon (nu to 0). It's solution in the large-N limit exhibits a phase transition from a weakly coupled 1-cut phase to a strongly coupled 2-cut phase as nu is decreased below nu_c = 0.27. Free energy and correlation functions are discontinuous in their third and second derivatives at nu_c. The transition to a two-cut phase forces eigenvalues of A away from zero, making glue-ring correlations grow as nu i...

  20. The Hagedorn structure of the non-perturbative gluon pressure within the mass gap approach to

    CERN Document Server

    Gogokhia, V; Vasuth, M

    2016-01-01

    We have shown in detail that the low-temperature expansion for the non-perturbative gluon pressure has the Hagedorn-type structure. Its exponential spectrum of all the effective gluonic excitations are expressed in terms of the mass gap. It is this which is responsible for the large-scale dynamical structure of the QCD ground state. The gluon pressure properly scaled has a maximum at some characteristic temperature $T=T_c = 266.5 \\ \\MeV$, separating the low- and high temperature regions. The gluon pressure is exponentially suppressed in the $T \\rightarrow 0$ limit. In the $T \\rightarrow T_c$ limit it demonstrates an exponential rise in the number of dynamical degrees of freedom. This makes it possible to identify $T_c$ with the Hagedorn transition temperature $T_h$, i.e., to put $T_h=T_c$. The gluon pressure has a complicated dependence on the mass gap and temperature near $T_c$ and up to approximately $(4-5)T_c$. In the limit of very high temperatures $T \\rightarrow \\infty$ its polynomial character is confir...