WorldWideScience

Sample records for infrared-faint radio sources

  1. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  2. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  3. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  4. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NARCIS (Netherlands)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-01-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence

  5. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    International Nuclear Information System (INIS)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-01-01

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of ∼1 μJy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S 3.6μm ∼ 0.2 μJy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  6. VLBI observations of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  7. Morphology and astrometry of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  8. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  9. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    Science.gov (United States)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  10. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    Science.gov (United States)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  11. The first VLBI image of an infrared-faint radio source

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  12. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  13. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    Science.gov (United States)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  14. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    Science.gov (United States)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2010-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  15. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  16. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  17. Optical and near-infrared imaging of faint Gigahertz Peaked Spectrum sources

    NARCIS (Netherlands)

    Snellen, IAG; Schilizzi, RT; de Bruyn, AG; Miley, GK; Rottgering, HJA; McMahon, RG; Fournon, IP

    1998-01-01

    A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R - I and R - K colours of the faint optical counterparts are as

  18. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    Science.gov (United States)

    Whittam, I. H.; Riley, J. M.; Green, D. A.; Jarvis, M. J.; Vaccari, M.

    2015-11-01

    A complete, flux density limited sample of 96 faint (>0.5 mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including Spitzer Extragalactic Representative Volume Survey, Spitzer Wide-area Infrared Extragalactic survey, United Kingdom Infrared Telescope Infrared Deep Sky Survey and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric redshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and star-forming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below ˜1 mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the Square Kilometre Array Design Studies Simulated Skies; a population of low-redshift star-forming galaxies predicted by the simulation is not found in the observed sample.

  19. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  20. Exploring three faint source detections methods for aperture synthesis radio images

    Science.gov (United States)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  1. Radio and infrared observations of the faint nebula GM24

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L F; Roth, M; Tapia, M; Canto, J; Persi, P; Ferrari-Toniolo, M

    1986-02-01

    The faint nebulosity GM24=PP85 listed by Parsamian and Petrosian (1979) was observed at infrared (1-10 ..mu..m) and radio (6 cm and CO line) wavelengths in the vicinity of the CO hot spot reported by Torrelles et al. (1983). The radio continuum (6 cm) emission from a spherically symmetrical HII region was detected with the Very Large Array. Its position coincides with the brightest part of the visible nebulosity and a 1-4 ..mu..m emission peak. Their infrared maps made at the Observatorio Astronomico Nacional de San Pedro Martir, show two additional (1-10 ..mu..m) peaks located at distances approx. 30 arc sec from the compact HII region, all surrounded by extended near infrared (1-4 ..mu..m) emission. A detailed CO (J=1 ..-->.. 0) map of the whole molecular cloud was also obtained with the University of Texas Millimeter - Wave Telescope. Their results are interpreted in terms of the recent formation of three massive stars, one of which, having developed an HII region, is at a slightly later phase of its evolution. The extended near infrared emission may arise in a reflection nebula similar to NGC 7538-Irs 9. 4 references.

  2. VizieR Online Data Catalog: Infrared-faint radio sources catalog (Collier+, 2014)

    Science.gov (United States)

    Collier, J. D.; Banfield, J. K.; Norris, R. P.; Schnitzeler, D. H. F. M.; Kimball, A. E.; Filipovic, M. D.; Jarrett, T. H.; Lonsdale, C. J.; Tothill, N. F. H.

    2014-11-01

    The 20cm radio data come from the Unified Radio Catalog (URC) compiled by Kimball & Ivezic (2008AJ....136..684K). This radio catalogue combines data from the National Radio Astronomy Observatory (NRAO) VLA Sky Survey (NVSS; Condon et al., 1998, Cat. VIII/65), Faint Images of the Radio Sky at Twenty Centimeters (FIRST; Becker, White & Helfand, 1995, cat. VIII/92), Green Bank 6cm survey (GB6; Gregory et al., 1996, Cat. VIII/40), the Westerbork Northern Sky Survey (WENSS; Rengelink et al. 1997; de Bruyn et al. 2000, Cat. VIII/62) and the Sloan Digital Sky Survey Data Release 6 (SDSS DR6; Adelman-McCarthy et al., 2008, Cat. II/282). We use updated NVSS and FIRST data from the URC version 2.0 (Kimball & Ivezic, in preparation), which includes a number of new sources as well as updated positions and flux densities. The IR data come from WISE (Wright et al. (WISE Team) 2009, Cat. II/311), which is an all-sky survey centred at 3.4, 4.6, 12 and 22um (referred to as bands W1, W2, W3 and W4), with respective angular resolutions of 6.1, 6.4, 6.5 and 12.0-arcsec (full width at half-maximum, FWHM), and typical 5σ sensitivity levels of 0.08, 0.11, 1 and 6mJy, with sensitivity increasing towards the ecliptic poles. (1 data file).

  3. A study of faint radio sources near the North Galactic Pole

    International Nuclear Information System (INIS)

    Benn, C.R.

    1981-09-01

    A large amount of observational data has been obtained on faint radio sources in a small area of sky near the North Galactic Pole (the 5C 12 area). This provides a new perspective (3 decades in flux density from the 3CR catalogue) on the physical properties and cosmological evolution of extragalactic radio sources. Chapter 1 introduces the problem and concludes that faint-object cosmology is best served by intensive investigation of sources in a small area of sky. An optimum area is chosen, at right ascension 12sup(h) 58sup(m) 43sup(s) and declination 35 0 14' 00'' (1950.0). Chapter 2 describes the 5C12 radio survey (complete to 9mJy apparent flux density at 408MHz) conducted with the One Mile Telescope at Cambridge. Chapter 4 describes a 4.85GHz survey to 20mJy of the area, conducted at Effelsberg. In chapter 5, a program of optical identification for the sources is described, using deep (msub(g) = 22.5, msub(y) = 20.7) Schmidt plates taken at Hale Observatories. A statistical algorithm is developed to cope with the problems of optical confusion due to radio positional errors. Chapter 6 draws on data from the previous 4, and presents results concerning radio source counts, spectral index distributions, optical identifications and clustering. (author)

  4. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    Science.gov (United States)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  5. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    International Nuclear Information System (INIS)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-01-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  6. Spectral Index Properties of millijansky Radio Sources in ATLAS

    Science.gov (United States)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  7. Near-infrared imaging survey of faint companions around young dwarfs in the Pleiades cluster

    International Nuclear Information System (INIS)

    Itoh, Yoichi; Funayama, Hitoshi; Hashiguchi, Toshio; Oasa, Yumiko; Hayashi, Masahiko; Fukagawa, Misato; Currie, Thayne

    2011-01-01

    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found ten faint point sources, with magnitudes as faint as 20 mag in the K-band, with around seven dwarfs. Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths, which indicates very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.

  8. The optical, infrared and radio properties of extragalactic sources observed by SDSS, 2mass and first surveys

    International Nuclear Information System (INIS)

    Z. Ivezic et al.

    2002-01-01

    We positionally match sources observed by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are matched to an SDSS source within 2 arcsec; ∼ 11% of them are optically resolved galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are matched to an SDSS source within 2 arcsec; ∼ 80% of these are galaxies and the rest are dominated by quasars. Based on these results, we project that by the completion of these surveys the matched samples will include about 10 7 and 10 6 galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies and 50,000 quasars observed by both SDSS and FIRST. Here we present a preliminary analysis of the optical, infrared and radio properties for the extragalactic sources from the matched samples. In particular, we find that the fraction of quasars with stellar colors missed by the SDSS spectroscopic survey is probably not larger than ∼ 10%, and that the optical colors of radio-loud quasars are ∼ 0.05 mag. redder (with 4σ significance) than the colors of radio-quiet quasars

  9. Sources of the Radio Background Considered

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; /KIPAC, Menlo Park /Stanford U.; Stawarz, L.; /KIPAC, Menlo Park /Stanford U. /Jagiellonian U., Astron. Observ.; Lawrence, A.; /Edinburgh U., Inst. Astron. /KIPAC, Menlo Park /Stanford U.; Petrosian, V.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2011-08-22

    We investigate possible origins of the extragalactic radio background reported by the ARCADE 2 collaboration. The surface brightness of the background is several times higher than that which would result from currently observed radio sources. We consider contributions to the background from diffuse synchrotron emission from clusters and the intergalactic medium, previously unrecognized flux from low surface brightness regions of radio sources, and faint point sources below the flux limit of existing surveys. By examining radio source counts available in the literature, we conclude that most of the radio background is produced by radio point sources that dominate at sub {mu}Jy fluxes. We show that a truly diffuse background produced by elections far from galaxies is ruled out because such energetic electrons would overproduce the observed X-ray/{gamma}-ray background through inverse Compton scattering of the other photon fields. Unrecognized flux from low surface brightness regions of extended radio sources, or moderate flux sources missed entirely by radio source count surveys, cannot explain the bulk of the observed background, but may contribute as much as 10%. We consider both radio supernovae and radio quiet quasars as candidate sources for the background, and show that both fail to produce it at the observed level because of insufficient number of objects and total flux, although radio quiet quasars contribute at the level of at least a few percent. We conclude that the most important population for production of the background is likely ordinary starforming galaxies above redshift 1 characterized by an evolving radio far-infrared correlation, which increases toward the radio loud with redshift.

  10. A VLA SURVEY FOR FAINT COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Mann, Rita K. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Williams, Jonathan P., E-mail: psheehan@email.arizona.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin{sup 2} at 1.3 cm, 70 arcmin{sup 2} at 3.6 cm and 109 arcmin{sup 2} at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope -identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free–free and dust emission model to characterize the radio emission. We extrapolate the free–free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.

  11. EoR Foregrounds: the Faint Extragalactic Radio Sky

    Science.gov (United States)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  12. Identification and spectrophotometry of faint southern radio galaxies

    International Nuclear Information System (INIS)

    Spinrad, H.; Kron, R.G.; Hunstead, R.W.

    1980-01-01

    We have observed a mixed sample of southern radio sources, identified on the Palomar sky survey or on previous direct plates taken with medium-aperture reflectors. At CIO we obtained a few deep 4m photographs and SIT spectrophotometry for redshift and continuum-color measurement. Almost all our sources were faint galaxies; the largest redshift measured was for 3C 275, with z=0.480. The ultraviolet continuum of PKS 0400--643, a ''thermal'' galaxy with z=0.476, closely resembles that of 3C 295 and shows some color evolution in U--B compared to nearby giant ellipticals

  13. A new sample of faint Gigahertz Peaked Spectrum radio sources

    NARCIS (Netherlands)

    Snellen, IAG; Schilizzi, RT; de Bruyn, AG; Miley, GK; Rengelink, RB; Rottgering, HJ

    The Westerbork Northern Sky Survey (WENSS) has been used to select a sample of Gigahertz Peaked Spectrum (GPS) radio sources at flux densities one to two orders of magnitude lower than bright GPS sources investigated in earlier studies. Sources with inverted spectra at frequencies above 325 MHz have

  14. A statistical study of faint radio sources at 81.5 MHz

    International Nuclear Information System (INIS)

    Duffett-Smith, P.J.; Purvis, A.; Hewish, A.

    1980-01-01

    The method of interplanetary scintillations (IPS) together with the technique of background deflection analysis (P(D)) have been used to determine the mean angular size and the sky density of scintillating radio sources in the range 2 to 3 Jy at 81.5 MHz. It is found that the radio power from a high proportion of the sources in this range comes from one or two components of angular diameter about 0.7 arcsec. (author)

  15. The History and Evolution of Young and Distant Radio Sources

    Science.gov (United States)

    Collier, Jordan

    We study two classes of object to gain a better understanding of the evolution of Active Galactic Nuclei (AGN): Infrared-Faint Radio Sources (IFRSs) and Gigahertz Peaked Spectrum (GPS) / Compact Steep Spectrum (CSS) sources. IFRSs are a recently discovered rare class of object, which were found to be strong in the radio but undetectable in extremely sensitive infrared observations from the Spitzer Space Telescope, even in stacked images with sigma 3. Therefore, IFRSs may significantly increase the number of known high-redshift galaxies. However, their non-detections in the optical and infrared prevented confirmation of their nature. Previous studies of IFRSs focused on very sensitive observations of a few small regions of the sky, and the largest sample consisted of 55 IFRSs. However, we follow the strategy of combining radio data with IR and optical data for a large region of the sky. Using these data, we discover a population of >1300 brighter IFRSs which are, for the first time, reliably detected in the infrared and optical. We present the first spectroscopic redshifts of IFRSs and show that the brightest IFRSs are at z > 2. Furthermore, we rule out that IFRSs are Star Forming Galaxies, hotspots, lobes or misidentifications. We find the first X-ray counterparts of IFRSs, and increase the number of known polarised IFRSs five-fold. We present an analysis of their radio spectra and show that IFRSs consist of GPS, CSS and ultra-steep-spectrum sources. We follow up >50 of these using VLBI observations, and confirm the AGN status of IFRSs. GPS and CSS sources are compact radio sources with a convex radio spectrum. They are widely thought to represent young and evolving radio galaxies that have recently launched their jets. However, good evidence exists in individual cases that GPS and CSS sources are one of the following: 1) frustrated by interactions with dense gas and dust in their environment; 2) prematurely dying radio sources; 3) recurrent radio galaxies. Their

  16. The Bologna complete sample of nearby radio sources. II. Phase referenced observations of faint nuclear sources

    Science.gov (United States)

    Liuzzo, E.; Giovannini, G.; Giroletti, M.; Taylor, G. B.

    2009-10-01

    Aims: To study statistical properties of different classes of sources, it is necessary to observe a sample that is free of selection effects. To do this, we initiated a project to observe a complete sample of radio galaxies selected from the B2 Catalogue of Radio Sources and the Third Cambridge Revised Catalogue (3CR), with no selection constraint on the nuclear properties. We named this sample “the Bologna Complete Sample” (BCS). Methods: We present new VLBI observations at 5 and 1.6 GHz for 33 sources drawn from a sample not biased toward orientation. By combining these data with those in the literature, information on the parsec-scale morphology is available for a total of 76 of 94 radio sources with a range in radio power and kiloparsec-scale morphologies. Results: The fraction of two-sided sources at milliarcsecond resolution is high (30%), compared to the fraction found in VLBI surveys selected at centimeter wavelengths, as expected from the predictions of unified models. The parsec-scale jets are generally found to be straight and to line up with the kiloparsec-scale jets. A few peculiar sources are discussed in detail. Tables 1-4 are only available in electronic form at http://www.aanda.org

  17. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  18. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. V. ANALYSIS OF THE RADIO CANDIDATES WITH THE KERNEL DENSITY ESTIMATION

    International Nuclear Information System (INIS)

    Massaro, F.; Funk, S.; D'Abrusco, R.; Paggi, A.; Smith, Howard A.; Masetti, N.; Giroletti, M.; Tosti, G.

    2013-01-01

    Nearly one-third of the γ-ray sources detected by Fermi are still unidentified, despite significant recent progress in this area. However, all of the γ-ray extragalactic sources associated in the second Fermi-LAT catalog have a radio counterpart. Motivated by this observational evidence, we investigate all the radio sources of the major radio surveys that lie within the positional uncertainty region of the unidentified γ-ray sources (UGSs) at a 95% level of confidence. First, we search for their infrared counterparts in the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) and then we analyze their IR colors in comparison with those of the known γ-ray blazars. We propose a new approach, on the basis of a two-dimensional kernel density estimation technique in the single [3.4] – [4.6] – [12] μm WISE color-color plot, replacing the constraint imposed in our previous investigations on the detection at 22 μm of each potential IR counterpart of the UGSs with associated radio emission. The main goal of this analysis is to find distant γ-ray blazar candidates that, being too faint at 22 μm, are not detected by WISE and thus are not selected by our purely IR-based methods. We find 55 UGSs that likely correspond to radio sources with blazar-like IR signatures. An additional 11 UGSs that have blazar-like IR colors have been found within the sample of sources found with deep recent Australia Telescope Compact Array observations

  19. Infrared, radio, and x-ray observations of Cygnus X-3

    International Nuclear Information System (INIS)

    Becklin, E.E.; Hawkins, F.J.; Mason, K.O.; Matthews, K.; Neugebauer, G.; Packman, D.; Sanford, P.W.; Schupler, B.; Stark, A.; Wynn-Williams, C.G.

    1974-01-01

    The x-ray source Cygnus X-3 has been interpreted as being a binary system on the basis of extensive x-ray observations of periodic variability. At radio wavelengths, the source displays erratic outbursts. Cyg x-3 has not been detected visually but at infrared wavelengths periodic variations in phase with the x-ray variations have been reported. Infrared, x-ray and radio observations of Cyg X-3 made during 1973 through 1973 October are presented. (U.S.)

  20. Compact radio and infrared sources near the centre of the bipolar outflow NGC 2264D

    International Nuclear Information System (INIS)

    Mendoza, E.E.; Rodriguez, L.F.; Chavarria-K, C.; Neri, L.

    1990-01-01

    A multi-frequency study of the central region of the bipolar outflow NGC 2264D in the Monoceros OB1 molecular cloud has been made in an attempt to localize and understand its driving source. We have detected a weak (≅ 0.6 mJy) radio continuum source at 6 cm, using the VLA; a bright (≅ 270 Jy) H 2 O maser, using the Haystack Observatory telescope; and near-infrared counterparts to these sources at San Pedro Martir Observatory. Stromgren and JHKL'M photometry of stellar objects in the region was also carried out at this observatory. The star-like object W166, a probable Herbig Be/Ae star, which has strong Hα emission and a near-infrared excess, is located closest to the centroid of the bipolar outflow and is probably its driving source. (author)

  1. Infrared and radio emission from S0 galaxies

    International Nuclear Information System (INIS)

    Bally, J.; Thronson, H.A. Jr.

    1989-01-01

    Far-IR data are presented on 74 early-type S0 galaxies that were selected on the basis of the availability of radio-continuum measurements. Most of the galaxies are detected at IR wavelengths with IRAS, indicating the presence of a cold interstellar medium (ISM) in these galaxies. The mass of gas in these systems is estimated to lie in the range of 10 to the 7th to 10 to the 10th solar. The most massive ISM in some S0s approaches that found in some spirals. The brighter IR-emitting galaxies all lie close to a relationship established for gas-rich spiral galaxies. None of these galaxies have large ratio fluxes, suggesting that strong nuclear radio sources or extended radio lobes and jets are absent or suppressed. Strong radio emission is found among those galaxies that are either faint or not detected at IR wavelengths. The absence of an ISM suggests that these galaxies are of an earlier type that those that have large IR fluxes. 38 references

  2. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  3. The Origin of Powerful Radio Sources

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-05-01

    Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.

  4. Self-noise in interferometers - radio and infrared

    International Nuclear Information System (INIS)

    Kulkarni, S.R.

    1989-01-01

    A complete theory of noise in a synthesis image is proposed for a source of arbitrary strength. In the limit of faint sources, the standard estimates of noise in a synthesis image are recovered, while in the limit of strong sources, the noise in the synthesis image is found to be dominated by either self noise or by the noise generated by the source signal itself. It is found that the best VLBI maps (with noise approaching the thermal noise) may in fact be limited by self noise, and that there is a negligible bias in the standard definitions of the bispectrum phasor and the closure phase. The results suggest that at the low signal levels which are characteristic of infrared interferometers, it is best to fit the model to all the closure phases and fringe amplitudes. 13 refs

  5. The psisub(IPS)-LAS relation for extragalactic radio sources

    International Nuclear Information System (INIS)

    Banhatti, D.G.

    1984-01-01

    Metre-wavelength interplanetary scintillation (IPS) observations give the overall angular sizes psi of scintillating compact structures in radio sources. From 326.5-MHz IPS data for a sample of faint (Ooty) radio sources, log psi versus log (largest angular size) is seen, on average, to have a slope 0.2, significantly less than one. A similar trend is seen from 81.5-MHz IPS data for a sample of strong, powerful (3CR) double sources, although the slope is 0.4 and the mean psi about four times larger. The difference in slopes is due mainly to the large spread in the redshifts of the 3CR sources compared to the expected narrow range for the Ooty sources, while the difference in mean psi values is due to the different methods of determining psi for the two samples, the different frequencies used for the IPS observations and the different mean LAS values. (author)

  6. Studies of the infrared source CRL 2688

    International Nuclear Information System (INIS)

    Ney, E.P.; Merrill, K.M.; Becklin, E.E.; Neugebauer, G.; Wynn-Williams, C.G.

    1975-01-01

    Infrared, optical, and radio observations are descirbed of a newly discovered galactic infrared source. Most of the radiation comes from 1/sup double-prime/./sub /5 diameter infrared source at a temperature of about 150 K, but some visible emission in the form of a symmetrical highly polarized reflection nebulosity is also seen. The object could represent either a very early or a very late stage in stellar evolution

  7. JVLA observations of IC 348 SW: Compact radio sources and their nature

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico)

    2014-07-20

    We present sensitive 2.1 and 3.3 cm Jansky Very Large Array radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, 7 of which are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797, we detect a double radio source at its center, separated by ∼3''. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.

  8. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  9. FAINT RADIO-SOURCES WITH PEAKED SPECTRA .1. VLA OBSERVATIONS OF A NEW SAMPLE WITH INTERMEDIATE FLUX-DENSITIES

    NARCIS (Netherlands)

    SNELLEN, IAG; ZHANG, M; SCHILIZZI, RT; ROTTGERING, HJA; DEBRUYN, AG; MILEY, GK

    We present 2 and 20 cm observations with the VLA of 25 candidate peaked spectrum radio sources. These data combined with those from earlier surveys have allowed us to construct radio spectra spanning a range of frequency from 0.3 to 15 GHz. Ten of the 25 sources are found to be variable with no

  10. An X-ray and infrared survey of the Lynds 1228 cloud core

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Rebull, Luisa [Spitzer Science Center/Caltech, M/S 220-6, 1200 East California Blvd., Pasadena, CA 91125 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: rebull@ipac.caltech.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-04-01

    The nearby Lynds 1228 (L1228) dark cloud at a distance of ∼200 pc is known to harbor several young stars including the driving sources of the giant HH 199 and HH 200 Herbig-Haro (HH) outflows. L1228 has previously been studied at optical, infrared, and radio wavelengths but not in X-rays. We present results of a sensitive 37 ks Chandra ACIS-I X-ray observation of the L1228 core region. Chandra detected 60 X-ray sources, most of which are faint (<40 counts) and non-variable. Infrared counterparts were identified for 53 of the 60 X-ray sources using archival data from the Two Micron All-Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer. Object classes were assigned using mid-IR colors for those objects with complete photometry, most of which were found to have colors consistent with extragalactic background sources. Seven young stellar object candidates were identified including the class I protostar HH 200-IRS which was detected as a faint hard X-ray source. No X-ray emission was detected from the luminous protostar HH 199-IRS. We summarize the X-ray and infrared properties of the detected sources and provide IR spectral energy distribution modeling of high-interest objects including the protostars driving the HH outflows.

  11. RAPID INFRARED VARIABILITY OF THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES: A VIEW FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Ning; Zhou Hongyan; Wang Tinggui; Dong Xiaobo; Jiang Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Science, Hefei, Anhui 230026 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Yuan Weimin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji Tuo; Tian Qiguo, E-mail: jnac@mail.ustc.edu.cn [Polar Research Institute of China, 451 Jinqiao Road, Pudong, Shanghai 200136 (China)

    2012-11-10

    Using newly released data from the Wide-field Infrared Survey Explorer, we report the discovery of rapid infrared variability in three radio-loud narrow-line Seyfert 1 galaxies (NLS1s) selected from the 23 sources in the sample of Yuan et al. J0849+5108 and J0948+0022 clearly show intraday variability, while J1505+0326 has a longer measurable timescale within 180 days. Their variability amplitudes, corrected for measurement errors, are {approx}0.1-0.2 mag. The detection of intraday variability restricts the size of the infrared-emitting region to {approx}10{sup -3} pc, significantly smaller than the scale of the torus but consistent with the base of a jet. The three variable sources are exceptionally radio-loud, have the highest radio brightness temperature among the whole sample, and all show detected {gamma}-ray emission in Fermi/LAT observations. Their spectral energy distributions resemble those of low-energy-peaked blazars, with a synchrotron peak around infrared wavelengths. This result strongly confirms the view that at least some radio-loud NLS1s are blazars with a relativistic jet close to our line of sight. The beamed synchrotron emission from the jet contributes significantly to and probably dominates the spectra in the infrared and even optical bands.

  12. Radio continuum, far infrared and star formation

    International Nuclear Information System (INIS)

    Wielebinski, R.; Wunderlich, E.; Klein, U.; Hummel, E.

    1987-01-01

    A very tight correlation was found between the radio emission and the far infrared emission from galaxies. This has been found for various samples of galaxies and is explained in terms of recent star formation. The tight correlation would imply that the total radio emission is a good tracer of star formation. The correlation between the radio power at 5 GHz and the far infrared luminosity is shown. The galaxies are of various morphological types and were selected from the various IRAS circulars, hence the sample is an infrared selected sample. The far infrared luminosities were corrected for the dust temperature. This is significant because it decreases the dispersion in the correlation

  13. A Polarimetric Search for Hidden Quasars in Three Radio-selected Ultraluminous Infrared Galaxies

    International Nuclear Information System (INIS)

    Tran, H.D.; Brotherton, M.S.; Stanford, S.A.; Breugel, W. van; Dey, A.; Stern, D.; Antonucci, R.

    1999-01-01

    We have carried out a spectropolarimetric search for hidden broad-line quasars in three ultraluminous infrared galaxies (ULIRGs) discovered in the positional correlations between sources detected in deep radio surveys and the IRAS Faint Source Catalog. Only the high-ionization Seyfert 2 galaxy TF J1736+1122 is highly polarized, displaying a broad-line spectrum visible in polarized light. The other two objects, TF J1020+6436 and FF J1614+3234, display spectra dominated by a population of young (A type) stars similar to those of open-quotes E+Aclose quotes galaxies. They are unpolarized, showing no sign of hidden broad-line regions. The presence of young starburst components in all three galaxies indicates that the ULIRG phenomenon encompasses both active galactic nuclei (AGNs) and starburst activity, but the most energetic ULIRGs do not necessarily harbor open-quotes buried quasars.close quotes We find that a luminous infrared galaxy is most likely to host an obscured quasar if it exhibits a high-ionization ([O iii] λ5007/Hβ approx-gt 5) spectrum typical of a 'classic' Seyfert 2 galaxy with little or no Balmer absorption lines, is 'ultraluminous' (L IR approx-gt 10 12 L circle-dot ), and has a 'warm' IR color (f 25 /f 60 approx-gt 0.25). The detection of hidden quasars in this group but not in the low-ionization, starburst-dominated ULIRGs (classified as LINERs or H ii galaxies) may indicate an evolutionary connection, with the latter being found in younger systems. copyright copyright 1999. The American Astronomical Society

  14. Associating Fast Radio Bursts with Extragalactic Radio Sources: General Methodology and a Search for a Counterpart to FRB 170107

    Science.gov (United States)

    Eftekhari, T.; Berger, E.; Williams, P. K. G.; Blanchard, P. K.

    2018-06-01

    The discovery of a repeating fast radio burst (FRB) has led to the first precise localization, an association with a dwarf galaxy, and the identification of a coincident persistent radio source. However, further localizations are required to determine the nature of FRBs, the sources powering them, and the possibility of multiple populations. Here we investigate the use of associated persistent radio sources to establish FRB counterparts, taking into account the localization area and the source flux density. Due to the lower areal number density of radio sources compared to faint optical sources, robust associations can be achieved for less precise localizations as compared to direct optical host galaxy associations. For generally larger localizations that preclude robust associations, the number of candidate hosts can be reduced based on the ratio of radio-to-optical brightness. We find that confident associations with sources having a flux density of ∼0.01–1 mJy, comparable to the luminosity of the persistent source associated with FRB 121102 over the redshift range z ≈ 0.1–1, require FRB localizations of ≲20″. We demonstrate that even in the absence of a robust association, constraints can be placed on the luminosity of an associated radio source as a function of localization and dispersion measure (DM). For DM ≈1000 pc cm‑3, an upper limit comparable to the luminosity of the FRB 121102 persistent source can be placed if the localization is ≲10″. We apply our analysis to the case of the ASKAP FRB 170107, using optical and radio observations of the localization region. We identify two candidate hosts based on a radio-to-optical brightness ratio of ≳100. We find that if one of these is indeed associated with FRB 170107, the resulting radio luminosity (1029‑ 4 × 1030 erg s‑1 Hz‑1, as constrained from the DM value) is comparable to the luminosity of the FRB 121102 persistent source.

  15. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    Energy Technology Data Exchange (ETDEWEB)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu [National Radio Astronomy Observatory, Socorro, NM-87801 (United States)

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.

  16. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    International Nuclear Information System (INIS)

    Sargsyan, Lusine A.; Weedman, Daniel W.

    2009-01-01

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 μm polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z ν (7.7 μm)] - 42.57 ± 0.2, for SFR in M sun yr -1 and νL ν (7.7 μm) the luminosity at the peak of the 7.7 μm PAH feature in erg s -1 , is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 ± 0.05)log [νL ν (7.7 μm)] - 21.5 ± 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between νL ν (7.7 μm) and L ir , this becomes log [SFR(PAH)/SFR(UV)]= (0.53 ± 0.05)log L ir - 4.11 ± 0.18, for L ir in L sun . Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of ∼10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z ∼ 2.5. Application of this factor explains why the most luminous starbursts discovered by Spitzer at z ∼ 2.5 are optically faint; with this amount of extinction, the optical magnitude of a starburst

  17. A CLUSTER OF COMPACT RADIO SOURCES IN W40

    International Nuclear Information System (INIS)

    RodrIguez, Luis F.; Rodney, Steven A.; Reipurth, Bo

    2010-01-01

    We present deep 3.6 cm radio continuum observations of the H II region W40 obtained using the Very Large Array (VLA) in its A and B configurations. We detect a total of 20 compact radio sources in a region of 4' x 4', with 11 of them concentrated in a band with 30'' of extent. We also present JHK photometry of the W40 cluster taken with the QUIRC instrument on the University of Hawaii 2.2 m telescope. These data reveal that 15 of the 20 VLA sources have infrared counterparts, and 10 show radio variability with periods less than 20 days. Based on these combined radio and IR data, we propose that eight of the radio sources are candidate ultracompact H II regions, seven are likely to be young stellar objects, and two may be shocked interstellar gas.

  18. A composite plot of far-infrared versus radio luminosity, and the origin of far-infrared luminosity in quasars

    International Nuclear Information System (INIS)

    Sopp, H.M.; Alexander, P.

    1991-01-01

    We have constructed a composite plot of far-infrared versus radioluminosity for late-type galaxies, Seyferts, quasars and radio galaxies. The most striking result is that the radio and far-infrared luminosities of radio-quiet quasars are correlated and follow the same correlation as normal star-forming galaxies and ultra-luminous infrared galaxies, whereas the radio-loud quasars have luminosities in both bands similar to those of radio galaxies. We conclude that the far-infrared emission from radio-quiet quasars is from star-forming host galaxies and not from active galactic nuclei. The far-infrared radio plot may be a powerful discriminator between host galaxy type. (author)

  19. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  20. The search for faint radio supernova remnants in the outer Galaxy: five new discoveries

    Science.gov (United States)

    Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert

    2014-06-01

    Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer

  1. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  2. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  3. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    Science.gov (United States)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1poster, I will present the results of this study and compare our results to various results in the literature.

  4. A direct localization of a fast radio burst and its host.

    Science.gov (United States)

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  5. Compact radio sources as a plasma turbulent reactor

    International Nuclear Information System (INIS)

    Atoyan, A.M.; Nagapetyan, A.

    1987-01-01

    The electromagnetic raiation spectra of a homogeneous cosmic radio source (CRS) wherein the relativistic electron acceleration on the langmuir waves leads to the formation of Maxwell-like spectra with characteristic value of the Lorentz-factor γ 0 ∼ 10 3 are considered. It has been shown that due to synchrotron radiation of relativistic electrons, usually observed from CRSs flat radiosepctra, gradually steepening at submillimeter wavelengths are naturally formed in the optically thin range of frequencies. The electromagnetic radiation at the scattering of the electron on the turbulence produces significant nonthermal infrared radiation. Inverse compton scattering of the relativistic electrons on the radio-infrared photons leads the production of X-rays. The characteristic of the electromagnetic radiation spectra obtained in the model are compared with the observational ones

  6. High resolution far-infrared survey of A section of the galactic plane. I. The nature of the sources

    International Nuclear Information System (INIS)

    Jaffe, D.T.; Stier, M.T.; Fazio, G.G.

    1982-01-01

    We have surveyed a 7.5 deg 2 portion of the galactic plane between l/sup II/ = 10 0 and l/sup II/ = 16 0 at 70 μm with a 1' beam. We present far-infrared, radio continuum, and 12 CO and 13 CO line observations of the 42 far-infrared sources in the survey region. The sources range in luminosity from 4 x 10 3 to 3 x 10 6 L/sub sun/. Most are associated with 12 CO peaks. More than half of the sources have associated H 2 O maser emission. Half have associated radio continuum emission at a limit of 100 mJy. Eight sources have radio emission at weaker levels. In a number of cases, the far-infrared source is smaller than its associated radio source. This difference can be explained in the context of the ''blister'' picture of H II regions. One group of sources emits many fewer Lyman continuum photons than expected, given the far-infrared luminosities. We examine a number of possible reasons for this and conclude that the most reasonable explanation is that clusters of early type stars rather than single stars excite the far-infrared sources. We examine the energetics in the molecular clouds surrounding the infrared sources and conclude that the sources could supply the energy to explain the observed temperature structure and velocity field in the molecular gas

  7. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Delgado, R. Gonzalez; Groves, B.

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 radio jet, active galactic nucleus (AGN), starburst activity and MFIR

  8. Multiband Study of Radio Sources of the RCR Catalogue with Virtual Observatory Tools

    Directory of Open Access Journals (Sweden)

    Zhelenkova O. P.

    2012-09-01

    Full Text Available We present early results of our multiband study of the RATAN Cold Revised (RCR catalogue obtained from seven cycles of the “Cold” survey carried with the RATAN-600 radio telescope at 7.6 cm in 1980-1999, at the declination of the SS 433 source. We used the 2MASS and LAS UKIDSS infrared surveys, the DSS-II and SDSS DR7 optical surveys, as well as the USNO-B1 and GSC-II catalogues, the VLSS, TXS, NVSS, FIRST and GB6 radio surveys to accumulate information about the sources. For radio sources that have no detectable optical candidate in optical or infrared catalogues, we additionally looked through images in several bands from the SDSS, LAS UKIDSS, DPOSS, 2MASS surveys and also used co-added frames in different bands. We reliably identified 76% of radio sources of the RCR catalogue. We used the ALADIN and SAOImage DS9 scripting capabilities, interoperability services of ALADIN and TOPCAT, and also other Virtual Observatory (VO tools and resources, such as CASJobs, NED, Vizier, and WSA, for effective data access, visualization and analysis. Without VO tools it would have been problematic to perform our study.

  9. Planck intermediate results. VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschènes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Sudiwala, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2013-02-01

    We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg2 (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a

  10. Far-infrared observations of Sagittarius B2 - reconsideration of source structure

    International Nuclear Information System (INIS)

    Thronson, H.A. Jr.; Harper, D.A.; Yerkes Observatory, Williams Bay, WI)

    1986-01-01

    New moderate-angular-resolution far-infrared observations of the Sagittarius B2 star-forming region are presented, discussed, and compared with recent radio molecular and continuum observations of this source. In contrast to previous analyses, its far-infrared spectrum is interpreted as the result of a massive frigid cloud overlying a more-or-less normal infrared source, a natural explanation for the object's previously-noted peculiarities. The characteristics derived for the obscuring cloud are similar to those found for the W51 MAIN object. Both sources have high sub-millimeter surface brightness, a high ratio of sub-millimeter to far-infrared flux, and numerous regions of molecular maser emission. 28 references

  11. Detection of a compact radio source near the center of a gravitational lens: quasar image or galactic core

    International Nuclear Information System (INIS)

    Gorenstein, M.V.; Shapiro, I.I.; Cohen, N.L.

    1983-01-01

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q0957 + 561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives

  12. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.II; Brown, R.L.

    1985-12-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy H II regions G30.8-0.0 (in the W43 complex) and G25.4-02., along with radio and molecular line measurements at selected positions. An effort is made to understand far infrared wavelingths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. For G25.4-0.2, the radio recombination line and CO line data permit resolution of the distance ambiguity for this source. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright H II regions. Using revised distances of 4.3 kpc for G26.4SE and 12 kpc for G25.4NW, that the latter, which is apparently the fainter of the two sources, is actually the more luminous. Though it is not seen on the Palomar Sky Survey, G25.4SE is easily visible in the 9532A line of S III and is mapped in this line. The ratio of total luminosity to ionizing luminosity is very similar to that of H II regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  13. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.; Brown, R.L.

    1985-09-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  14. MEASURING THE UNDETECTABLE: PROPER MOTIONS AND PARALLAXES OF VERY FAINT SOURCES

    International Nuclear Information System (INIS)

    Lang, Dustin; Hogg, David W.; Jester, Sebastian; Rix, Hans-Walter

    2009-01-01

    The near future of astrophysics involves many large solid-angle, multi-epoch, multiband imaging surveys. These surveys will, at their faint limits, have data on a large number of sources that are too faint to be detected at any individual epoch. Here, we show that it is possible to measure in multi-epoch data not only the fluxes and positions, but also the parallaxes and proper motions of sources that are too faint to be detected at any individual epoch. The method involves fitting a model of a moving point source simultaneously to all imaging, taking account of the noise and point-spread function (PSF) in each image. By this method it is possible to measure the proper motion of a point source with an uncertainty close to the minimum possible uncertainty given the information in the data, which is limited by the PSF, the distribution of observation times (epochs), and the total signal-to-noise in the combined data. We demonstrate our technique on multi-epoch Sloan Digital Sky Survey (SDSS) imaging of the SDSS Southern Stripe (SDSSSS). We show that with our new technique we can use proper motions to distinguish very red brown dwarfs from very high-redshift quasars in these SDSS data, for objects that are inaccessible to traditional techniques, and with better fidelity than by multiband imaging alone. We rediscover all 10 known brown dwarfs in our sample and present nine new candidate brown dwarfs, identified on the basis of significant proper motion.

  15. Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Hacking, P.B.; Conrow, T.P.; Rowan-Robinson, M.

    1990-01-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling. 105 refs

  16. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Science.gov (United States)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  17. Radio and infrared observations of (almost) one hundred non-Seyfert Markarian galaxies

    Science.gov (United States)

    Dressel, Linda L.

    1987-01-01

    The 13 cm flux densities of 96 non-Seyfert Markarian galaxies were measured at Arecibo Observatory. Far infrared flux densities have been published for 78 of these galaxies in the IRAS catalog. The radio, infrared, and optical fluxes of these galaxies and of a magnitude limited sample of normal galaxies were compared to clarify the nature of the radio emission in Markarian galaxies. It was found that Markarian galaxies of a given apparent magnitude and Hubble type generally have radio fluxes several times higher that the fluxes typical of normal galaxies of the same magnitude and type. Remarkably, the ratio of radio flux to far infrared flux is nearly the same for most of these starburst galaxies and for normal spiral disks. However, the compact and peculiar Markarian galaxies consistently have about 60% more radio flux per unit infrared flux than the other Markarian galaxies and the normal spirals. It is not clear whether this difference reflects a difference in the evolution of the starbursts in these galaxies or whether there is excess radio emission of nonstellar origin.

  18. Accurate shear measurement with faint sources

    International Nuclear Information System (INIS)

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys

  19. X- and γ-ray pulsations of the nearby radio-faint PSR J1741–2054

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Belfiore, A.; Caraveo, P.; De Luca, A.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Saz Parkinson, P. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Sarazin, C.; Sivakoff, G. R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Camilo, F., E-mail: marelli@lambrate.inaf.it [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States)

    2014-07-20

    We report the results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both the thermal and non-thermal components are ∼35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.

  20. X- and γ-ray pulsations of the nearby radio-faint PSR J1741–2054

    International Nuclear Information System (INIS)

    Marelli, M.; Belfiore, A.; Caraveo, P.; De Luca, A.; Salvetti, D.; Saz Parkinson, P.; Sarazin, C.; Sivakoff, G. R.; Camilo, F.

    2014-01-01

    We report the results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both the thermal and non-thermal components are ∼35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.

  1. Compact radio sources

    International Nuclear Information System (INIS)

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  2. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin [CEOU—Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Pak, Soojong [School of Space Research, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Edge, Alastair, E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom)

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  3. THE SUB-mJy RADIO POPULATION OF THE E-CDFS: OPTICAL AND INFRARED COUNTERPART IDENTIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Bonzini, M.; Mainieri, V.; Padovani, P.; Rosati, P. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Miller, N. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Tozzi, P.; Balestra, I. [INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131, Trieste (Italy); Vattakunnel, S. [Dipartimento di Fisica Universit di Trieste, piazzale Europa 1, I-34127 Trieste (Italy); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Y. Q., E-mail: mbonzini@eso.org [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2012-11-15

    We study a sample of 883 sources detected in a deep Very Large Array survey at 1.4 GHz in the Extended Chandra Deep Field South. This paper focuses on the identification of their optical and infrared (IR) counterparts. We use a likelihood-ratio technique that is particularly useful when dealing with deep optical images to minimize the number of spurious associations. We find a reliable counterpart for 95% of our radio sources. Most of the counterparts (74%) are detected at optical wavelengths, but there is a significant fraction (21%) that are only detectable in the IR. Combining newly acquired optical spectra with data from the literature, we are able to assign a redshift to 81% of the identified radio sources (37% spectroscopic). We also investigate the X-ray properties of the radio sources using the Chandra 4 Ms and 250 ks observations. In particular, we use a stacking technique to derive the average properties of radio objects undetected in the Chandra images. The results of our analysis are collected in a new catalog containing the position of the optical/IR counterpart, the redshift information, and the X-ray fluxes. It is the deepest multi-wavelength catalog of radio sources, which will be used for future study of this galaxy population.

  4. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  5. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, J.; Bizzocchi, L.; Grossi, M.; Messias, H.; Fernandes, C. A. C. [Observatorio Astronomico de Lisboa, Faculdade de Ciencias, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Ibar, E.; Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Simpson, C. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Chapman, S.; Gonzalez-Solares, E. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Rottgering, H. [Leiden Observatory, Leiden University, Oort Gebouw, P.O. Box 9513, 2300 RA Leiden (Netherlands); Norris, R. P. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Dunlop, J.; Best, P. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Pforr, J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Vaccari, M. [Department of Astronomy, University of Padova, vicolo Osservatorio 3, 35122 Padova (Italy); Seymour, N. [Mullard Space Science Laboratory, UCL, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Farrah, D. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Huang, J.-S., E-mail: jafonso@oal.ul.pt [Department of Astrophysics, Oxford University, Keble Road, Oxford OX1 3RH (United Kingdom); and others

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610 MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.

  6. Revisiting the Gamma-Ray Source 2FGL J1823.8+4312

    Science.gov (United States)

    Stern, Daniel; Assef, Roberto J.

    2013-02-01

    One of the great challenges of gamma-ray astronomy is identifying the lower energy counterparts to these high-energy sources. Recently, in this journal, Massaro et al. attempted to find the counterpart of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus (AGN) of uncertain type from the Second Fermi Large Area Telescope catalog. After considering mid-infrared data in the field from the Wide-field Infrared Survey Explorer (WISE), those authors conclude that the preferred identification of 2FGL J1823.8+4312 is WISE J182352.33+431452.5, despite the fact that the mid-infrared source is undetected at radio energies. They claim that WISE J182352.33+431452.5 constitutes the discovery of a new class of extragalactic X-ray source, either a radio-faint blazar or the prototype of a new class of active galaxy with an enigmatic spectral energy distribution. This conclusion is claimed to be independent of whether or not the WISE source is the actual counterpart to 2FGL J1823.8+4312. Based on a re-analysis of public data in this field and new spectroscopy from Palomar, we conclude that WISE J182352.33+431452.5 is a dust-reddened quasar at z = 0.560, a representative example of a very common extragalactic AGN class. Were WISE J182352.33+431452.5 to be associated with the gamma-ray emission, this would be an unusual and exciting discovery. However, we argue that 2FGL J1823.8+4312 is more likely associated with either WISE J182409.25+431404.7 or, more likely, WISE J182419.04+430949.6, two radio-loud sources in the field. The former is a radio-loud quasar and the latter is an optically variable source with a featureless blue spectrum.

  7. Circumstellar envelopes seen in radio (OH masers) and in the infrared observations (IRAS)

    International Nuclear Information System (INIS)

    David, Pedro-Correia-de-Matos

    1992-01-01

    Intermediate mass stars, namely from one to nine solar masses, eject mass into the surrounding interstellar medium at high rates (up to 1/10000 solar masses per year) in their late stages of evolution on the so called asymptotic giant branch (AGB). Indeed, the presence of a circumstellar envelope (CSE) composed of dust and gas is one of the principal features of the objects on the AGB. Because of the high opacity at visible wavelength of the CSE, most of these objects can only be observed at infrared and radio frequencies. This study was undertaken using infrared and radio data from a large sample of CSE sources. The infrared data was obtained from the infrared astronomical satellite (IRAS) data base. For a selection of IRAS objects, radio observations were made of the OH maser at 1612 and 1667 MHz at the Nancay radio telescope, France. This work consists in two parts, one is theoretical in nature, the other observational. The theoretical part is concerned with the modeling of IRAS low resolution spectra (LRS catalog) and IRAS photometry through the use of a radiative transfer code. Confrontation between models and data has yielded such results as a better definition of the grain optical properties and the behavior of the CSE as it evolves. A model of a shock wave (a possible lifting engine of the CSE) propagating in the atmosphere of Mira stars (AGB) is described. On the observational side, a large number of objects has been surveyed for the presence of OH masers at 1612 and 1667 MHz. A statistical analysis has established more clearly the evolutionary status of CSE and the OH maser characteristics. A compiling of detection rates for the occurrence of masers, average location of these masing CSEs in the Galaxy, and OH maser characteristics is reported for use in future work. (author) [fr

  8. Radio and X-ray properties of the source G29.37+0.1 linked to HESS J1844-030

    Science.gov (United States)

    Castelletti, G.; Supan, L.; Petriella, A.; Giacani, E.; Joshi, B. C.

    2017-06-01

    Aims: We report on the first detailed multiwavelength study of the radio source G29.37+0.1, which is an as-yet-unclassified object linked to the very-high-energy γ-emitting source HESS J1844-030. The origin of the multiwavelength emission toward G29.37+0.1 has not been clarified so far, leaving open the question about the physical relationship between these sources. Methods: Using observations carried out with the Giant Metrewave Radio Telescope (GMRT), we performed high-quality full-synthesis imaging at 610 MHz of the field containing G29.37+0.1. The obtained data, combined with observations at 1400 MHz from The Multi-Array Galactic Plane Imaging Survey (MAGPIS) were used to investigate in detail the properties of its radio emission. Additionally, we reprocessed archival data obtained with the XMM-Newton and Chandra observatories in order to get a multiwavelength view of this unusual source. Results: The radio source G29.37+0.1 mainly consists of a bright twisted structure, named the S-shaped feature. The high sensitivity of the new GMRT observations allowed the identification of potential lobes, jets, and a nuclear central region in the S-shaped morphology of G29.37+0.1. We also highlight the detection of diffuse and low surface brightness emission enveloping the brightest emitting regions. The brightest emission in G29.37+0.1 has a radio synchrotron spectral index α = 0.59 ± 0.09. Variations in the spectral behaviour are observed across the whole radio source with the flattest spectral features in the central nuclear and jets components (α 0.3). These results lead us to conclude that the brightest radio emission from G29.37+0.1 likely represents a newly recognized radio galaxy. The identification of optical and infrared counterparts to the emission arising from the core of G29.37+0.1 strengthens our interpretation of an extragalactic origin of the radio emission. We performed several tests to explain the physical mechanism responsible for the observed X

  9. Measuring size evolution of distant, faint galaxies in the radio regime

    Science.gov (United States)

    Lindroos, L.; Knudsen, K. K.; Stanley, F.; Muxlow, T. W. B.; Beswick, R. J.; Conway, J.; Radcliffe, J. F.; Wrigley, N.

    2018-05-01

    We measure the evolution of sizes for star-forming galaxies as seen in 1.4 GHz continuum radio for z = 0-3. The measurements are based on combined VLA+MERLIN data of the Hubble Deep Field, and using a uv-stacking algorithm combined with model fitting to estimate the average sizes of galaxies. A sample of ˜1000 star-forming galaxies is selected from optical and near-infrared catalogues, with stellar masses M⊙ ≈ 1010-1011 M⊙ and photometric redshifts 0-3. The median sizes are parametrized for stellar mass M* = 5 × 1010 M⊙ as R_e = A× {}(H(z)/H(1.5))^{α _z}. We find that the median radio sizes evolve towards larger sizes at later times with αz = -1.1 ± 0.6, and A (the median size at z ≈ 1.5) is found to be 0.26^'' ± 0.07^'' or 2.3±0.6 kpc. The measured radio sizes are typically a factor of 2 smaller than those measure in the optical, and are also smaller than the typical H α sizes in the literature. This indicates that star formation, as traced by the radio continuum, is typically concentrated towards the centre of galaxies, for the sampled redshift range. Furthermore, the discrepancy of measured sizes from different tracers of star formation, indicates the need for models of size evolution to adopt a multiwavelength approach in the measurement of the sizes star-forming regions.

  10. Search for near-infrared counterparts of IRAS embedded sources in the M17 SW giant molecular cloud

    International Nuclear Information System (INIS)

    Elmegreen, D.M.; Phillips, J.; Beck, K.; Thomas, H.; Howard, J.

    1988-01-01

    Wide-field near-infrared and blue band plates of the region containing the M17 giant molecular cloud complex have been blinked to locate bright near-infrared stars that may be embedded in the M17 SW giant molecular cloud. Twenty such stars coincided with the positions of IRAS point sources that appeared embedded based on color-color diagrams. Some of these stars may be the sources of the infrared luminosities. Of the 20 stars, seven were too faint to appear on the B band plate. The optical magnitudes and colors determined from the plate image diameters were measured for the other 13 coincident stars; they are most likely upper main-sequence or pre-main-sequence stars with extinctions of 7 mag. The IRAS luminosity-temperature diagram indicates that the embedded sources in M17 are more massive than those in the Orion cloud. 35 references

  11. Radio continuum observations of NML Cygni

    International Nuclear Information System (INIS)

    Gregory, P.C.; Seaquist, E.R.

    1976-01-01

    An attempt to detect thermal radio emission from a compact circumstellar cloud about the infrared star NML Cyg has been carried out at three frequencies, 2.7, 8.1, and 10.5 GHz. Although positive results were obtained with single-dish observations at 10.5 GHz, the radio emission is not from a circumstellar cloud about NML Cyg. Instead it is postulated that the emission is from an H ii region with an angular extent of approx.2'. The red print of the Sky Survey shows a faint nebulosity of comparable angular size overlapping the star's position, lending support to this interpretation. The interferometer observations at 2.7 and 8.1 GHz provide an upper limit on the radio emission from any compact circumstellar cloud about NML Cyg of 2.8 mJy, which is well below the flux density expected for the absorbing cloud postulated by Davies et al. (1972)

  12. RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stierwalt, S.; Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Condon, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Evans, A. S., E-mail: emurphy@obs.carnegiescience.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States)

    2013-05-01

    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

  13. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  14. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena [Instituto de Astrofísica de Andalucía-CSIC, P.O. Box 3004, E-18008 Granada (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Colina, Luis [Centro de Astrobiología (INTA-CSIC), Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Efstathiou, Andreas [School of Sciencies, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Miralles-Caballero, Daniel [Instituto de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Väisänen, Petri [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 Cape Town (South Africa); Packham, Christopher C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Rajpaul, Vinesh [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Zijlstra, Albert A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  15. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Science.gov (United States)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  16. The hyperluminous infrared quasar 3C 318 and its implications for interpreting sub-mm detections of high-redshift radio galaxies

    OpenAIRE

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep- spectrum radio source 3C 318 which shows it to be a quasar at redshift z=1.574 (the z=0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10^13 solar luminosity level above ...

  17. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  18. THE WISE BLAZAR-LIKE RADIO-LOUD SOURCES: AN ALL-SKY CATALOG OF CANDIDATE γ-RAY BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Paggi, A.; Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Masetti, N. [INAF/IASF di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Landoni, M. [INAF/Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate (Italy); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2014-11-01

    We present a catalog of radio-loud candidate γ-ray emitting blazars with WISE mid-infrared colors similar to the colors of confirmed γ-ray blazars. The catalog is assembled from WISE sources detected in all four WISE filters, with colors compatible with the three-dimensional locus of the WISE γ-ray emitting blazars, and which can be spatially cross-matched with radio sources from one of the three radio surveys: NVSS, FIRST, and/or SUMSS. Our initial WISE selection uses a slightly modified version of previously successful algorithms. We then select only the radio-loud sources using a measure of the radio-to-IR flux, the q {sub 22} parameter, which is analogous to the q {sub 24} parameter known in the literature but which instead uses the WISE band-four flux at 22 μm. Our final catalog contains 7855 sources classified as BL Lacs, FSRQs, or mixed candidate blazars; 1295 of these sources can be spatially re-associated as confirmed blazars. We describe the properties of the final catalog of WISE blazar-like radio-loud sources and consider possible contaminants. Finally, we discuss why this large catalog of candidate γ-ray emitting blazars represents a new and useful resource to address the problem of finding low-energy counterparts to currently unidentified high-energy sources.

  19. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  20. Extragalactic active objects in the radio and infrared bands

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M [Polska Akademia Nauk, Warsaw. Centrum Astronomiczne

    1981-01-01

    This paper is the second in a series of papers concerning extragalactic active objects. We discuss the properties of Seyfert's galaxies, radiogalaxies, quasars and BL Lacertae objects in the radio and infrared bands.

  1. No evidence for radio-quiet BL Lacertae objects

    International Nuclear Information System (INIS)

    Stocke, J.T.; Morris, S.L.; Gioia, I.; Maccacaro, T.; Schild, R.E.

    1990-01-01

    Using a large, flux-limited sample of faint X-ray sources, a search has been conducted for radio-quiet BL Lacertae objects. None has been found. Thirty-two X-ray-selected BL Lac objects and BL Lac candidates have been found within the sources of the Einstein Medium Sensitivity Survey (EMSS). Thirty-one of these have been observed with the VLA and all have been detected at 5 GHz. While the optical magnitudes of the EMSS BL Lac objects range from 17 to 20.8, their radio-to-optical spectral indices occupy a very small range. The very bright X-ray-selected BL Lac objects like PKS 2155-304 and Markarian 501 have similar range values. Therefore, unlike the clear dichotomy between radio-loud quasars and radio-quiet QSOs, there is no evidence for two populations of Lacertids distinguished by radio loudness. 43 refs

  2. THE ORIGIN OF THE INFRARED EMISSION IN RADIO GALAXIES. II. ANALYSIS OF MID- TO FAR-INFRARED SPITZER OBSERVATIONS OF THE 2JY SAMPLE

    International Nuclear Information System (INIS)

    Dicken, D.; Tadhunter, C.; Axon, D.; Morganti, R.; Inskip, K. J.; Holt, J.; Groves, B.; Delgado, R. Gonzalez

    2009-01-01

    We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 < z < 0.7), conducting a statistical investigation of the links between radio jet, active galactic nucleus (AGN), starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [O III]λ5007 emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [O III] luminosities. Since [O III] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circumnuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 μm. We demonstrate that AGN heating is energetically feasible, and identify the narrow-line region clouds as the most likely location of the cool, far-IR emitting dust. Starbursts make a major contribution to the heating of the cool dust in only 15%-28% of our targets. We also investigate the orientation dependence of the continuum properties, finding that the broad- and narrow-line objects in our sample with strong emission lines have similar distributions of MFIR luminosities and colors. Therefore our results are entirely consistent with the orientation-based unified schemes for powerful radio galaxies. However, the weak line radio galaxies form a separate class of objects with intrinsically low-luminosity AGNs in which both the optical emission lines and the MFIR continuum are weak.

  3. Infrared astronomy

    International Nuclear Information System (INIS)

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  4. Extended radio sources in the cluster environment

    International Nuclear Information System (INIS)

    Burns, J.O. Jr.

    1979-01-01

    Extended radio galaxies that lie in rich and poor clusters were studied. A sample of 3CR and 4C radio sources that spatially coincide with poor Zwicky clusters of galaxies was observed to obtain accurate positions and flux densities. Then interferometer observations at a resolution of approx. = 10 arcsec were performed on the sample. The resulting maps were used to determine the nature of the extended source structure, to make secure optical identifications, and to eliminate possible background sources. The results suggest that the environments around both classical double and head-tail radio sources are similar in rich and poor clusters. The majority of the poor cluster sources exhibit some signs of morphological distortion (i.e., head-tails) indicative of dynamic interaction with a relatively dense intracluster medium. A large fraction (60 to 100%) of all radio sources appear to be members of clusters of galaxies if one includes both poor and rich cluster sources. Detailed total intensity and polarization observations for a more restricted sample of two classical double sources and nine head-tail galaxies were also performed. The purpose was to examine the spatial distributions of spectral index and polarization. Thin streams of radio emission appear to connect the nuclear radio-point components to the more extended structures in the head-tail galaxies. It is suggested that a non-relativistic plasma beam can explain both the appearance of the thin streams and larger-scale structure as well as the energy needed to generate the observed radio emission. The rich and poor radio cluster samples are combined to investigate the relationship between source morphology and the scale sizes of clustering. There is some indication that a large fraction of radio sources, including those in these samples, are in superclusters of galaxies

  5. A radio and optical study of Molonglo radio sources

    Science.gov (United States)

    Ishwara-Chandra, C. H.; Saikia, D. J.; McCarthy, P. J.; van Breugel, W. J. M.

    2001-05-01

    We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff-Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu-Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.

  6. Radio Source Morphology: 'nature or nuture'?

    Science.gov (United States)

    Banfield, Julie; Emonts, Bjorn; O'Sullivan, Shane

    2012-10-01

    Radio sources, emanating from supermassive black-holes in the centres of active galaxies, display a large variety of morphological properties. It is a long-standing debate to what extent the differences between various types of radio sources are due to intrinsic properties of the central engine (`nature') or due to the properties of the interstellar medium that surrounds the central engine and host galaxy (`nurture'). Settling this `nature vs. nurture' debate for nearby radio galaxies, which can be studied in great detail, is vital for understanding the properties and evolution of radio galaxies throughout the Universe. We propose to observe the radio galaxy NGC 612 where previous observations have detected the presence of a large-scale HI bridge between the host galaxy and a nearby galaxy NGC 619. We request a total of 13 hrs in the 750m array-configuration to determine whether or not the 100 kpc-scale radio source morphology is directly related to the intergalactic distribution of neutral hydrogen gas.

  7. X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey

    Science.gov (United States)

    Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji

    2018-01-01

    We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.

  8. Optical identifications of radio sources in the 5C 7 survey

    International Nuclear Information System (INIS)

    Perryman, M.A.C.

    1979-01-01

    An identification procedure developed for the deep radio survey 5C 6 has been refined and applied to the 5C 7 survey. Positions and finding charts are presented for candidate identifications from deep plates taken with the Palomar 48-inch Schmidt telescope. The identification statistics are in good agreement with the 5C 6 results, the accurate radio positions obtained at 1407 MHz defining a reasonably reliable and complete sample of associations with an identification rate of about 40 per cent. At 408 MHz the positional uncertainties are larger and the identifications are thus of lower reliability; the identification rate is about 20 per cent. The results are in good agreement with the assumptions that the optical identifications are coincident with the radio centroids, and that the identifications are not preferentially associated with faint clusters. (author)

  9. Fainting

    Science.gov (United States)

    ... a medicine you’re taking. Alcohol, cocaine, and marijuana can also cause fainting. More serious causes of fainting include seizures and problems with the heart or with the blood vessels leading to the brain. How is fainting diagnosed? Your doctor will probably ...

  10. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    Science.gov (United States)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; hide

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  11. Magnetogasdynamics of double radio sources

    International Nuclear Information System (INIS)

    Nepveu, M.

    1979-01-01

    The magnetogasdynamical behaviour of plasmoids moving through an ambient gas is investigated numerically with a two-dimensional code, based on the SHASTA scheme. The astrophysical importance of this study lies in the observed extended extragalactic radio sources. It is assumed that plasma clouds with cylinder symmetry are ejected from the nucleus of a galaxy. Their large-scale evolution in the intergalactic medium (IGM) is followed. The gas dynamics of an ejected cloud, the magnetogasdynamics of ejected clouds, the Christiansen-Pacholczyk-Scott picture for radio galaxies and the shear layers in double radio sources are studied. (Auth.)

  12. Infrared study of seven possible compact H II regions

    International Nuclear Information System (INIS)

    Sibille, F.; Lunel, M.; Bergeat, J.

    1976-01-01

    We report observations of seven possible compact H II regions in the infrared with the hydrogen spectrum in order to derive extinction and emission measures. The emission measure is compared with available radio data. For two sources, agreement is found between radio and infrared data. Infrared excess is found in four sources, its origin is discussed. Two sources cannot be interpreted as compact H II regions. (orig.) [de

  13. Nasu 1.4 GHz Interferometer Transient Radio Source Survey and Improvement in Detection of Radio Sources

    International Nuclear Information System (INIS)

    Matsumura, Nobuo; Kuniyoshi, Masaya; Takefuji, Kazuhiro; Niinuma, Kotaro; Kida, Sumiko; Takeuchi, Akihiko; Asuma, Kuniyuki; Daishido, Tsuneaki

    2006-01-01

    We have surveyed 1.4GHz transient radio sources in Nasu Pulsar Observatory. To investigate such sources, both immediacy and accuracy are severely maintained. We have developed Data Transfer System and improved antenna control system. Now we have received the fringe data from transient radio source candidates. To get reliable information, we carefully analyze with Fringe Band Pass Filter software and Fringe Fitting method

  14. Optical identifications of flat-spectrum radio sources

    International Nuclear Information System (INIS)

    Condon, J.J.; Condon, M.A.; Broderick, J.J.; Davis, M.M.

    1983-01-01

    A complete sample of radio sources with S> or =0.3 Jy at 1400 MHz, +24 0 0 , and low-frequency spectral indices α(408, 1400) or =+0.5 are usually in empty fields. The lower limits that can be assigned to the radio-optical spectral indices α/sub RO/ of these sources are significantly higher than the median α/sub RO/ of the sources with flat high-frequency spectra, so the optical characteristics of the two classes of radio source are intrinsically different. The radio and optical fluxes of flat-spectrum QSO's appear to be correlated, at least when averaged over 10 2 --10 3 yr

  15. Star formation rate and extinction in faint z ∼ 4 Lyman break galaxies

    Energy Technology Data Exchange (ETDEWEB)

    To, Chun-Hao; Wang, Wei-Hao [Institute of Astronomy and Astrophysics, Academia Sinica, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Owen, Frazer N. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States)

    2014-09-10

    We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z ∼ 4 Lyman break galaxies (LBGs). To constrain their extinction and intrinsic star formation rate (SFR), we combine the latest ultradeep Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advanced Camera for Surveys (ACS) optical images in the GOODS-N. We select a large sample of 1771 z ∼ 4 LBGs from the ACS catalog using B {sub F435W}-dropout color criteria. Our LBG samples have I {sub F775W} ∼ 25-28 (AB), ∼0-3 mag fainter than M{sub UV}{sup ⋆} at z ∼ 4. In our stacked radio images, we find the LBGs to be point-like under our 2'' angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of S {sub 1.5} {sub GHz} = 0.210 ± 0.075 μJy at ∼3σ for the first time on such a faint LBG population at z ∼ 4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an obscured SFR of 16.0 ± 5.7 M {sub ☉} yr{sup –1}, and implies a rest-frame UV extinction correction factor of 3.8. This extinction correction is in excellent agreement with that derived from the observed UV continuum spectral slope, using the local calibration of Meurer et al. This result supports the use of the local calibration on high-redshift LBGs to derive the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.

  16. RESOLUTION OF THE COMPACT RADIO CONTINUUM SOURCES IN Arp220

    International Nuclear Information System (INIS)

    Batejat, Fabien; Conway, John E.; Hurley, Rossa; Parra, Rodrigo; Diamond, Philip J.; Lonsdale, Colin J.; Lonsdale, Carol J.

    2011-01-01

    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters ≥0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10 4 cm -3 . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L∝D -9/4 . Revised equipartition arguments adjusted to a magnetic field to a relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ∼15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.

  17. Particle reacceleration and apparent radio source structure

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1982-01-01

    The radio galaxy model which uses magnetohydrodynamic turbulence generated by surface instabilities to reaccelerate the radiating electrons has striking consequences for apparent source structure. Strong wave damping in the plasma results in a narrow turbulent edge. Particles accelerated in this edge must diffuse across field lines into the radio source; this predicts strong limb brightening in some cases. The structure of this edge and diffusion into the source are described. The relevance of this model to jets, radio tails, and standard double sources is discussed

  18. Optical and radio counterpart of Circinus X-1 (3U 1516-56)

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, J A.J.; Murdin, P G; Peterson, B A [Anglo-Australian Observatory, Epping (Australia); and others

    1977-11-01

    Circinus X-1 (3U 1516-56) has a radio counterpart which, at high frequencies, show flares with the same 16.6 day periodicity as the X-ray intensity. In each cycle the radio flare occurs shortly after the intensity drop-off which defines the X-ray modulation. The radio source is positionally coincident with a faint red star having very strong H..cap alpha.. and weak He I emission lines which are probably variable. The object may be an early-type emission-line star or a symbiotic star, at a distance of 10 kpc.

  19. Powerful warm infrared sources in early-type galaxies

    International Nuclear Information System (INIS)

    Dressel, L.L.

    1988-01-01

    IRAS far-infrared sources have been identified with 129 S0, Sa, Sb, and Sc galaxies in a statistically complete sample of 738 galaxies brighter than 14.5 mag and smaller than 4.0 arcmin. In most cases, the far-IR colors and the ratios of far-IR flux to radio flux density are those of normal galactic disks and/or starbursts. The most powerful far-IR sources in S0 and Sa galaxies are just as powerful as the strongest far-IR sources in Sb and Sc galaxies. Bright-IR sources in S0 and Sa galaxies are warm; those in Sc galaxies are cool. Sb galaxies have both warm and cool IR sources. Bright warm IR sources occur much more frequently in barred galaxies than in galaxies without bars for types S0, Sa, and Sb. Bright, cool IR sources are found with increasing frequency along the Hubble sequence, regardless of the presence or absence of a bar. At least some S0 galaxies with warm, bright IR sources have peculiar morphologies and ambiguous classifications. 22 references

  20. Infrared photometry of the nuclei of early-type radio galaxies

    International Nuclear Information System (INIS)

    Sparks, W.B.; Bailey, J.

    1986-01-01

    J,H,K,L' two-aperture photometry and single-aperture 10-μm(N) photometry of the nuclei of 44 nearby radio elliptical and SO galaxies are presented. Clear infrared excesses are found from the galaxies with broad emission-lines, the BL Lac objects, and two other galaxies, one of which appears to have an extended infrared excess. In addition, the sample as a whole appears to have positive 10-μm emission which is believed to be largely due to starlight. The near-infrared colours in general are characteristic of normal starlight, with only the strongest 10-μm emitters showing a significant near-infrared excess. These latter galaxies have blue optical colours. (author)

  1. 4C radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    McHardy, I.M.

    1979-01-01

    Observations of a complete sample of 4C and 4CT radio sources in Abell clusters with the Cambridge One-Mile telescope are analysed. It is concluded that radio sources are strongly concentrated towards the cluster centres and are equally likely to be found in clusters of any richness. The probability of a galaxy of a given absolute magnitude producing a source above a given luminosity does not depend on cluster membership. 4C and 4CT radio sources in clusters, selected at 178 MHz, occur preferentially in Bautz-Morgan (BM) class 1 clusters, whereas those selected at 1.4 GHz do not. The most powerful radio source in the cluster is almost always associated with the optically brightest galaxy. The average spectrum of 4C sources in the range 408 to 1407 MHz is steeper in BM class 1 than in other classes. Spectra also steepen with cluster richness. the morphology of 4C sources in clusters depends strongly on BM class and, in particular, radio-trail sources occur only in BM classes II, II-III and III. (author)

  2. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J H; Brindle, C; Axon, D J; Bailey, J; Sparks, W B

    1987-02-15

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10/sup 41/ erg s/sup -1/. This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear.

  3. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    International Nuclear Information System (INIS)

    Hough, J.H.; Brindle, C.; Axon, D.J.; Bailey, J.; Sparks, W.B.

    1987-01-01

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10 41 erg s -1 . This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear. (author)

  4. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    An Tao; Baan, Willem A.

    2012-01-01

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  5. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    An Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai (China); Baan, Willem A., E-mail: antao@shao.ac.cn, E-mail: baan@astron.nl [ASTRON, P.O. Box 2, 7990-AA Dwingeloo (Netherlands)

    2012-11-20

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  6. Observations of radio sources or 'What happened to radio stars?'

    International Nuclear Information System (INIS)

    Conway, R.G.

    1988-01-01

    A review is given of the early history of the interpretation of the radiation mechanisms following the discovery of the discrete radio sources, both galactic and extragalactic. The conflicting views which prevailed in the early fifties are discussed in some detail: some advocated thermal radiation from stars relatively close by, and others proposed the alternative that synchrotron radiation was responsible for the majority of the radio sources. Attention is drawn to the importance of high-resolution interferometry, whereby the structure of many of the sources could be obtained. Red-shift measurements and spectral distributions also played a part in determining distances and flux strengths at the sources. (U.K.)

  7. Local Volume Hi Survey: the far-infrared radio correlation

    Science.gov (United States)

    Shao, Li; Koribalski, Bärbel S.; Wang, Jing; Ho, Luis C.; Staveley-Smith, Lister

    2018-06-01

    In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 "dwarf" galaxies (M* correlation (FRC) over four orders of magnitude (F_1.4GHz ∝ F_FIR^{1.00± 0.08}). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a "conspiracy" to keep the FIR-to-radio ratio generally constant. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the "conspiracy" to keep the FRC alive.

  8. Radio outbursts in extragalactic sources

    International Nuclear Information System (INIS)

    Kinzel, W.M.

    1989-01-01

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior

  9. BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.; Franzen, T. M. O.

    2015-01-01

    We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information to constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases

  10. Cosmological radio emission induced by WIMP Dark Matter

    International Nuclear Information System (INIS)

    Fornengo, N.; Regis, M.; Lineros, R.; Taoso, M.

    2012-01-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs

  11. Cosmological radio emission induced by WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, N.; Regis, M. [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lineros, R.; Taoso, M., E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: mtaoso@phas.ubc.ca [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-03-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.

  12. The B3-VLA CSS sample. VIII. New optical identifications from the Sloan Digital Sky Survey The ultraviolet-optical spectral energy distribution of the young radio sources

    Science.gov (United States)

    Fanti, C.; Fanti, R.; Zanichelli, A.; Dallacasa, D.; Stanghellini, C.

    2011-04-01

    Context. Compact steep-spectrum radio sources and giga-hertz peaked spectrum radio sources (CSS/GPS) are generally considered to be mostly young radio sources. In recent years we studied at many wavelengths a sample of these objects selected from the B3-VLA catalog: the B3-VLA CSS sample. Only ≈60% of the sources were optically identified. Aims: We aim to increase the number of optical identifications and study the properties of the host galaxies of young radio sources. Methods: We cross-correlated the CSS B3-VLA sample with the Sloan Digital Sky Survey (SDSS), DR7, and complemented the SDSS photometry with available GALEX (DR 4/5 and 6) and near-IR data from UKIRT and 2MASS. Results: We obtained new identifications and photometric redshifts for eight faint galaxies and for one quasar and two quasar candidates. Overall we have 27 galaxies with SDSS photometry in five bands, for which we derived the ultraviolet-optical spectral energy distribution (UV-O-SED). We extended our investigation to additional CSS/GPS selected from the literature. Most of the galaxies show an excess of ultra-violet (UV) radiation compared with the UV-O-SED of local radio-quiet ellipticals. We found a strong dependence of the UV excess on redshift and analyzed it assuming that it is generated either from the nucleus (hidden quasar) or from a young stellar population (YSP). We also compare the UV-O-SEDs of our CSS/GPS sources with those of a selection of large size (LSO) powerful radio sources from the literature. Conclusions: If the major process of the UV excess is caused by a YSP, our conclusion is that it is the result of the merger process that also triggered the onset of the radio source with some time delay. We do not see evidence for a major contribution from a YSP triggered by the radio sources itself. Appendices A-G are only available in electronic form at http://www.aanda.org

  13. Evolutionary tracks of extended radio sources

    International Nuclear Information System (INIS)

    Baldwin, J.E.

    1982-01-01

    We know almost nothing about the evolutionary tracks of extragalactic radio sources but those tracks are, however, strongly constrained by the distribution of sources in the radio luminosity, P, overall physical size, D, diagram. The P-D diagram for the 3CR 166 source sample of Jenkins et al. (1977) is presented with later additions. Most of the sources are identified and have known redshifts. Because of doubts about the completeness of the sample in this region, the author has made searches in the 6C 151MHz survey for sources with specific surface brightnesses. The numbers found to a limiting flux density of 1-2 Jy suggest that there is no serious underestimate of the numbers in 166 source sample. (Auth.)

  14. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  15. DYNAMICS INSIDE THE RADIO AND X-RAY CLUSTER CAVITIES OF CYGNUS A AND SIMILAR FRII SOURCES

    International Nuclear Information System (INIS)

    Mathews, William G.; Guo Fulai

    2012-01-01

    We describe approximate axisymmetric computations of the dynamical evolution of material inside radio lobes and X-ray cluster gas cavities in Fanaroff-Riley II (FRII) sources such as Cygnus A. All energy is delivered by a jet to the lobe/cavity via a moving hotspot where jet energy dissipates in a reverse shock. Our calculations describe the evolution of hot plasma, cosmic rays (CRs), and toroidal magnetic fields flowing from the hotspot into the cavity. Many important observational features are explained. Gas, CRs, and field flow back along the cavity surface in a 'boundary backflow' consistent with detailed FRII observations. Computed ages of backflowing CRs are consistent with observed radio-synchrotron age variations only if shear instabilities in the boundary backflow are damped and we assume this is done with viscosity of unknown origin. We compute a faint thermal jet along the symmetry axis and suggest that it is responsible for redirecting the Cygnus A nonthermal jet. Magnetic fields estimated from synchrotron self-Compton (SSC) X-radiation observed near the hotspot evolve into radio lobe fields. Computed profiles of radio-synchrotron lobe emission perpendicular to the jet reveal dramatically limb-brightened emission in excellent agreement with FRII observation, although computed lobe fields exceed those observed. Strong winds flowing from hotspots naturally create kiloparsec-sized spatial offsets between hotspot nonthermal X-ray inverse Compton (IC-CMB) emission and radio-synchrotron emission that peaks 1-2 kpc ahead where the field increases due to wind compression. In our computed version of Cygnus A, nonthermal X-ray emission increases from the hotspot (some IC-CMB, mostly SSC) toward the offset radio-synchrotron peak (mostly SSC).

  16. Classifying Radio Galaxies with the Convolutional Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Aniyan, A. K.; Thorat, K. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa)

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  17. Classifying Radio Galaxies with the Convolutional Neural Network

    Science.gov (United States)

    Aniyan, A. K.; Thorat, K.

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff-Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ˜200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  18. Classifying Radio Galaxies with the Convolutional Neural Network

    International Nuclear Information System (INIS)

    Aniyan, A. K.; Thorat, K.

    2017-01-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  19. VizieR Online Data Catalog: Radio luminosity function of FSRQs (Mao+, 2017)

    Science.gov (United States)

    Mao, P.; Urry, C. M.; Marchesini, E.; Landoni, M.; Massaro, F.; Ajello, M.

    2018-01-01

    To build the largest sample of flat-spectrum radio quasars, we started with the radio catalog of the Faint Images of the Radio Sky at Twenty Centimeter (FIRST) survey (Helfand+ 2015, VIII/92), which covered 10575deg2 of the sky; and the Green Bank 6cm (GB6) Radio Source Catalog (Gregory+ 1996, VIII/40), which covered 17000deg2 of the sky. We cross-matched the radio position of each FIRST source with sources in the GB6 catalog, taking into account the positional uncertainties of both radio surveys. Of the 638 radio sources with flat radio spectra, 327 have an optical spectrum available in the literature, 266 from SDSS and the rest from various other sources identified through the NASA Extragalactic Database (NED). Out of the 327 objects with optical spectra classified, 200 were classified as FSRQs (of which 168 are free from contamination), 26 were classified as BL Lacs, 38 were classified as Seyferts, 41 were classified as Galaxies, 2 were classified as stars, and 12 and 8 indicated as noisy or uncertain, respectively. An additional 85 quasars (of which 74 are free from contamination) out of the 119 with a literature description were also included in the inclusive sample. See section 2 for more details on the sample selection. (2 data files).

  20. 10C survey of radio sources at 15.7 GHz - II. First results

    Science.gov (United States)

    AMI Consortium; Davies, Mathhew L.; Franzen, Thomas M. O.; Waldram, Elizabeth M.; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony; Olamaie, Malak; Pooley, Guy G.; Riley, Julia M.; Rodríguez-Gonzálvez, Carmen; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Zwart, Jonathan T. L.

    2011-08-01

    In a previous paper (Paper I), the observational, mapping and source-extraction techniques used for the Tenth Cambridge (10C) Survey of Radio Sources were described. Here, the first results from the survey, carried out using the Arcminute Microkelvin Imager Large Array (LA) at an observing frequency of 15.7 GHz, are presented. The survey fields cover an area of ≈27 deg2 to a flux-density completeness of 1 mJy. Results for some deeper areas, covering ≈12 deg2, wholly contained within the total areas and complete to 0.5 mJy, are also presented. The completeness for both areas is estimated to be at least 93 per cent. The 10C survey is the deepest radio survey of any significant extent (≳0.2 deg2) above 1.4 GHz. The 10C source catalogue contains 1897 entries and is available online. The source catalogue has been combined with that of the Ninth Cambridge Survey to calculate the 15.7-GHz source counts. A broken power law is found to provide a good parametrization of the differential count between 0.5 mJy and 1 Jy. The measured source count has been compared with that predicted by de Zotti et al. - the model is found to display good agreement with the data at the highest flux densities. However, over the entire flux-density range of the measured count (0.5 mJy to 1 Jy), the model is found to underpredict the integrated count by ≈30 per cent. Entries from the source catalogue have been matched with those contained in the catalogues of the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-cm survey (both of which have observing frequencies of 1.4 GHz). This matching provides evidence for a shift in the typical 1.4-GHz spectral index to 15.7-GHz spectral index of the 15.7-GHz-selected source population with decreasing flux density towards sub-mJy levels - the spectra tend to become less steep. Automated methods for detecting extended sources, developed in Paper I, have been applied to the data; ≈5 per cent of the sources are found to be extended

  1. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P. [Cosmology Laboratory (Code 665), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Amblard, Alexandre [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Fleuren, Simone [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Smith, Daniel J. B.; Bonfield, David [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bridge, Carrie [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Buttiglione, Sara; De Zotti, Gianfranco [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Cava, Antonio [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, David [Imperial College, Astrophysics Group, Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dariush, Ali [Physics Department, Imperial College London, South Kensington Campus, SW7 2AZ (United Kingdom); and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  2. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. III. GAMMA-RAY BLAZAR-LIKE COUNTERPARTS AT LOW RADIO FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Nori, M. [Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-07-01

    About one-third of the {gamma}-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) have no firmly established counterpart at lower energies and so are classified as unidentified gamma-ray sources (UGSs). Here, we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with the Westerbork Synthesis Radio Telescope in the northern hemisphere. First, we investigate the low-frequency radio properties of blazars, the largest known population of {gamma}-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO Very Large Array Sky Survey. We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in the literature to look for infrared and optical counterparts of the {gamma}-ray blazar candidates selected using the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research, we identify 23 new {gamma}-ray blazar candidates out of the 32 UGSs investigated. Comparison with previous results on the UGSs is also presented. Finally, we speculate on the advantages of using low-frequency radio observations to associate UGSs and to search for {gamma}-ray pulsar candidates.

  3. Another shock for the Bullet cluster, and the source of seed electrons for radio relics

    Science.gov (United States)

    Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-05-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  4. Radio identifications of IRAS point sources with b greater than 30 deg

    International Nuclear Information System (INIS)

    Condon, J.J.; Broderick, J.J.; Virginia Polytechnic Institute and State Univ., Blacksburg)

    1986-01-01

    The present radio identifications of IRAS point sources on the basis of Green Bank 1400 MHz survey maps notes that 365 hot IR sources are not detectable radio sources, and that nearly all cool high latitude IRAS sources are extragalactic. The fainter IR-source identifications encompass optically bright quasars, BL Lac objects, Seyfert galaxies, and elliptical galaxies. No IRAS sources could be identified with distant elliptical radio galaxies, so that although the radio and IR fluxes of most IRAS extragalactic sources are tightly correlated, complete samples of strong radio and IR sources are almost completely disjoint; no more than 1 percent of the IR sources are radio sources and less than 1 percent of the radio sources are IR ones. 35 references

  5. The importance of source positions during radio fine structure observations

    International Nuclear Information System (INIS)

    Chernov, Guennadi P.; Yan Yi-Hua; Fu Qi-Jun

    2014-01-01

    The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures (ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs (the double plasma resonance (DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example, the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources. (mini-volume: solar radiophysics — recent results on observations and theories)

  6. Evolution of Extragalactic Radio Sources and Quasar/Galaxy Unification

    Science.gov (United States)

    Onah, C. I.; Ubachukwu, A. A.; Odo, F. C.; Onuchukwu, C. C.

    2018-04-01

    We use a large sample of radio sources to investigate the effects of evolution, luminosity selection and radio source orientation in explaining the apparent deviation of observed angular size - redshift (θ - z) relation of extragalactic radio sources (EGRSs) from the standard model. We have fitted the observed θ - z data with standard cosmological models based on a flat universe (Ω0 = 1). The size evolution of EGRSs has been described as luminosity, temporal and orientation-dependent in the form DP,z,Φ ≍ P±q(1 + z)-m sinΦ, with q=0.3, Φ=59°, m=-0.26 for radio galaxies and q=-0.5, Φ=33°, m=3.1 for radio quasars respectively. Critical points of luminosity, logPcrit=26.33 WHz-1 and logDc=2.51 kpc (316.23 kpc) of the present sample of radio sources were also observed. All the results were found to be consistent with the popular quasar/galaxy unification scheme.

  7. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Aatrokoski, J.; Lähteenmäki, A.; Lavonen, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz......, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase...... of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data...

  8. Changing-Look AGNs or Short-Lived Radio Sources?

    Energy Technology Data Exchange (ETDEWEB)

    Wołowska, Aleksandra [Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń (Poland); Kunert-Bajraszewska, Magdalena; Mooley, Kunal [Centre for Astrophysical Surveys, University of Oxford, Oxford (United Kingdom); Hallinan, Gregg, E-mail: ola@astro.umk.pl [Cahill Center for Astronomy, California Institute of Technology, Pasadena, CA (United States)

    2017-11-17

    The evolution of extragalactic radio sources has been a fundamental problem in the study of active galactic nuclei for many years. A standard evolutionary model has been created based on observations of a wide range of radio sources. In the general scenario of the evolution, the younger and smaller Gigahertz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources become large-scale FRI and FRII objects. However, a growing number of observations of low power radio sources suggests that the model cannot explain all their properties and there are still some aspects of the evolutionary path that remain unclear. There are indications, that some sources may be short-lived objects on timescales of 10{sup 4}–10{sup 5} years. Those objects represent a new population of active galaxies. Here, we present the discovery of several radio transient sources on timescales of 5–20 yrs, largely associated with renewed AGN (Active Galactic Nucleus) activity. These changing-look AGNs possibly represent behavior typical for many active galaxies.

  9. Unidentified point sources in the IRAS minisurvey

    Science.gov (United States)

    Houck, J. R.; Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Aumann, H. H.; Clegg, P. E.; Gillett, F. C.; Habing, H. J.; Hauser, M. G.; Low, F. J.

    1984-01-01

    Nine bright, point-like 60 micron sources have been selected from the sample of 8709 sources in the IRAS minisurvey. These sources have no counterparts in a variety of catalogs of nonstellar objects. Four objects have no visible counterparts, while five have faint stellar objects visible in the error ellipse. These sources do not resemble objects previously known to be bright infrared sources.

  10. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  11. A combined optical, infrared and radio study of the megamaser galaxy III Zw 35

    International Nuclear Information System (INIS)

    Chapman, J.M.; Axon, D.J.; Cohen, R.J.; Pedlar, A.; Davies, R.D.; Unger, S.W.

    1990-01-01

    III Zw 35 is a pair of galaxies characterized by powerful radio continuum, far-infrared and OH maser radiation. We have made a multi-frequency study of the galaxy pair based on optical, infrared and radio observations. The brighter northern component is identified as an early-type LINER or Seyfert galaxy containing an active nuclear region from which radio continuum, OH maser and thermal dust emission are detected. We propose that the northern component has a compact active nucleus deeply embedded in a highly obscured region of diameter ∼ 210 pc, within which enhanced star-formation occurs. The lower luminosity southern component is of low mass and is undergoing starburst activity over an extended region of diameter ∼ 5.5 kpc. The origin of the starburst and non-thermal activity appears to be an interaction between the two components. (author)

  12. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    Science.gov (United States)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  13. The nature of the EGRET source 3EG J1621+8203

    International Nuclear Information System (INIS)

    Mukherjee, R.; Stern, D.; Halpern, J.; Mirabal, N.; Gotthelf, E.V.

    2001-01-01

    We present broad-band observations of 3EG J1621+8203 in an effort to understand the nature of this source. We have examined X-ray images of the field from the ROSAT PSPC, ROSAT HRI, and ASCA GIS to search for a possible counterpart to the EGRET source. We find several faint X-ray point sources in the gamma-ray error circle. Preliminary analysis indicates that most of the point sources correspond to stars or to faint radio sources. Of the nearly 40% identified sources in the 3EG Catalog, the vast majority are blazars, but there is no blazer candidate in the error circle of 3EG J1621+8203. Of the notable objects in the EGRET error circle, one is the bright FR I radio galaxy NGC 6251 at a redshift of 0.0249. If NGC 6251 is the counterpart to the EGRET source 3EG J1621+8203, then it would be the second radio galaxy to be detected by EGRET. The first was Centaurus A. Cen A provided the first clear evidence of the detection above 100 MeV of an AGN with a large-inclination jet. If the identification with NGC 6251 is correct, the apparent gamma-ray luminosity of 3EG J1621+8203 is lower than that of other EGRET blazars; just as in the case of Cen A

  14. Brightness distribution data on 2918 radio sources at 365 MHz

    International Nuclear Information System (INIS)

    Cotton, W.D.; Owen, F.N.; Ghigo, F.D.

    1975-01-01

    This paper is the second in a series describing the results of a program attempting to fit models of the brightness distribution to radio sources observed at 365 MHz with the Bandwidth Synthesis Interferometer (BSI) operated by the University of Texas Radio Astronomy Observatory. Results for a further 2918 radio sources are given. An unresolved model and three symmetric extended models with angular sizes in the range 10--70 arcsec were attempted for each radio source. In addition, for 348 sources for which other observations of brightness distribution are published, the reference to the observations and a brief description are included

  15. FAST RADIO BURSTS: COLLISIONS BETWEEN NEUTRON STARS AND ASTEROIDS/COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Geng, J. J.; Huang, Y. F., E-mail: hyf@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2015-08-10

    Fast radio bursts (FRBs) are newly discovered radio transient sources. Their high dispersion measures indicate an extragalactic origin. However, due to the lack of observational data in other wavelengths, their progenitors still remain unclear. Here we suggest that the collisions between neutron stars (NSs) and asteroids/comets are promising mechanisms for FRBs. During the impact process, a hot plasma fireball forms after the material of the small body penetrates into the NS surface. The ionized matter inside the fireball then expands along the magnetic field lines. Coherent radiation from the thin shell at the top of the fireball will account for the observed FRBs. Our scenario can reasonably explain the main features of FRBs, such as their durations, luminosities, and the event rate. We argue that for a single NS, FRBs are not likely to happen repeatedly in a forseeable timespan since such impacts are of low probability. We predict that faint remnant X-ray emissions should be associated with FRBs, but it may be too faint to be detected by detectors at work.

  16. FAST RADIO BURSTS: COLLISIONS BETWEEN NEUTRON STARS AND ASTEROIDS/COMETS

    International Nuclear Information System (INIS)

    Geng, J. J.; Huang, Y. F.

    2015-01-01

    Fast radio bursts (FRBs) are newly discovered radio transient sources. Their high dispersion measures indicate an extragalactic origin. However, due to the lack of observational data in other wavelengths, their progenitors still remain unclear. Here we suggest that the collisions between neutron stars (NSs) and asteroids/comets are promising mechanisms for FRBs. During the impact process, a hot plasma fireball forms after the material of the small body penetrates into the NS surface. The ionized matter inside the fireball then expands along the magnetic field lines. Coherent radiation from the thin shell at the top of the fireball will account for the observed FRBs. Our scenario can reasonably explain the main features of FRBs, such as their durations, luminosities, and the event rate. We argue that for a single NS, FRBs are not likely to happen repeatedly in a forseeable timespan since such impacts are of low probability. We predict that faint remnant X-ray emissions should be associated with FRBs, but it may be too faint to be detected by detectors at work

  17. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  18. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  19. Infrared observations of gravitational-wave sources in Advanced LIGO's second observing run

    Science.gov (United States)

    Pound Singer, Leo; Kasliwal, Mansi; Lau, Ryan; Cenko, Bradley; Global Relay of Observatories Watching Transients Happen (GROWTH)

    2018-01-01

    Advanced LIGO observed gravitational waves (GWs) from a binary black hole merger in its first observing run (O1) in September 2015. It is anticipated that LIGO and Virgo will soon detect the first binary neutron star mergers. The most promising electromagnetic counterparts to such events are kilonovae: fast, faint transients powered by the radioactive decay of the r-process ejecta. Joint gravitational-wave and electromagnetic observations of such transients hold the key to many longstanding problems, from the nature of short GRBS to the cosmic production sites of the r-process elements to "standard siren" cosmology. Due to the large LIGO/Virgo error regions of 100 deg2, synoptic survey telescopes have dominated the search for LIGO counterparts. Due to the paucity of infrared instruments with multi-deg2 fields of view, infrared observations have been lacking. Near-infrared emission should not only be a more robust signature of kilonovae than optical emission (independent of viewing angle), but should also be several magnitudes brighter and be detectable for much longer, weeks after merger rather than days. In Advanced LIGO's second observing run, we used the FLAMINGOS-2 instrument on Gemini-South to hunt for the near-infrared emission from GW sources by targeted imaging of the most massive galaxies in the LIGO/Virgo localization volumes. We present the results of this campaign, rates, and interpretation of our near-infrared imaging and spectroscopy. We show that leveraging large-scale structure and targeted imaging of the most massive ~10 galaxies in a LIGO/Virgo localization volume may be a surprisingly effective strategy to find the electromagnetic counterpart.

  20. Herschel-PACS photometry of faint stars for sensitivity performance assessment and establishment of faint FIR primary photometric standards

    Science.gov (United States)

    Klaas, U.; Balog, Z.; Nielbock, M.; Müller, T. G.; Linz, H.; Kiss, Cs.

    2018-05-01

    Aims: Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (≲2.5 Jy) to faint (≳5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. Methods: We obtain aperture photometry from Herschel-PACS high-pass-filtered scan maps and chop/nod observations of the faint stars. The issues of detection limits and sky confusion noise are addressed by comparison of the field-of-view at different wavelengths, by multi-aperture photometry, by special processing of the maps to preserve extended emission, and with the help of large-scale absolute sky brightness maps from AKARI. This photometry is compared with flux-density predictions based on photospheric models for these stars. We obtain a robust noise estimate by fitting the flux distribution per map pixel histogram for the area around the stars, scaling it for the applied aperture size and correcting for noise correlation. Results: For 15 stars we obtain reliable photometry in at least one PACS filter, and for 11 stars we achieve this in all three PACS filters (70, 100, 160 μm). Faintest fluxes, for which the photometry still has good quality, are about 10-20 mJy with scan map photometry. The photometry of seven stars is consistent with models or flux predictions for pure photospheric emission, making them good primary standard candidates. Two stars exhibit source-intrinsic far-infrared excess: β Gem (Pollux), being the host star of a confirmed Jupiter-size exoplanet, due to emission of an associated dust disk, and η Dra due to dust emission in a binary system with a K1 dwarf. The investigation of the 160 μm sky background and environment of four sources reveals significant sky confusion prohibiting the determination of an accurate stellar flux at this wavelength. As a good model

  1. A radio monitoring survey of ultra-luminous X-ray sources

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    2005-06-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.

  2. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-01-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array

  3. Rapid variability of extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Quirrenbach, A.; Witzel, A.; Krichbaum, T.; Hummel, C.A.; Alberdi, A.; Schalinski, C.

    1989-02-02

    Since its discovery more than 20 years ago, variability of extragalactic radio sources on timescales of weeks to years has been the subject of many investigations. We have examined the variability of these sources on timescales of hours at wavelengths of 6 and 11 cm using the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie and report the results for two sources. The quasar QSO0917 + 62 showed variations with amplitudes of up to 23% in /similar to/ 24 hours, which were correlated at the two wavelengths; in the BL Lac object 0716 + 71 we found variations with amplitudes of 7-11%. We discuss intrinsic effects, gravitational lensing and scattering in the interstellar medium as possible explanations for rapid radio variability.

  4. Rapid variability of extragalactic radio sources

    International Nuclear Information System (INIS)

    Quirrenbach, A.; Witzel, A.; Krichbaum, T.; Hummel, C.A.; Alberdi, A.; Schalinski, C.

    1989-01-01

    Since its discovery more than 20 years ago, variability of extragalactic radio sources on timescales of weeks to years has been the subject of many investigations. We have examined the variability of these sources on timescales of hours at wavelengths of 6 and 11 cm using the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie and report the results for two sources. The quasar QSO0917 + 62 showed variations with amplitudes of up to 23% in ∼ 24 hours, which were correlated at the two wavelengths; in the BL Lac object 0716 + 71 we found variations with amplitudes of 7-11%. We discuss intrinsic effects, gravitational lensing and scattering in the interstellar medium as possible explanations for rapid radio variability. (author)

  5. The Origin of the Infrared Emission in Radio Galaxies : III. Analysis of 3CRR Objects

    NARCIS (Netherlands)

    Dicken, D.; Tadhunter, C.; Axon, D.; Robinson, A.; Morganti, R.; Kharb, P.

    2010-01-01

    We present Spitzer photometric data for a complete sample of 19 low-redshift (z <0.1) 3CRR radio galaxies as part of our efforts to understand the origin of the prodigious mid-to far-infrared (MFIR) emission from radio-loud active galactic nuclei (AGNs). Our results show a correlation between AGN

  6. Millijansky radio variability in SDSS stripe 82

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, J. A.; Becker, R. H. [University of California, 1 Shields Avenue, Davis, CA 95616 (United States); White, R. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Richards, G. T., E-mail: hodge@mpia.de [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2013-06-01

    We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg{sup 2}. We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f {sub var} > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime.

  7. Infrared observations of extragalactic sources

    International Nuclear Information System (INIS)

    Kleinmann, D.E.

    1977-01-01

    The available balloon-borne and airborne infrared data on extragalactic sources, in particular M 82, NGC 1068 and NGC 253, is reviewed and discussed in the context of the extensive groundbased work. The data is examined for the clues they provide on the nature of the ultimate source of the energy radiated and on the mechanism(s) by which it is radiated. Since the discovery of unexpectedly powerful infrared radiation from extragalactic objects - a discovery now about 10 years old - the outstanding problems in this field have been to determine (1) the mechanism by which prodigious amounts of energy are released in the infrared, and (2) the nature of the underlying energy source. (Auth.)

  8. Polarimetry of the Fast Radio Burst Source FRB121102

    Science.gov (United States)

    Michilli, Daniele; Seymour, Andrew; Hessels, Jason W. T.; Spitler, Laura; Gajjar, Vishal; Archibald, Anne; Bower, Geoffrey C.; Chatterjee, Shami; Cordes, Jim; Gourdji, Kelly; Heald, George; Kaspi, Victoria; Law, Casey; Sobey, Charlotte

    2018-01-01

    Fast radio bursts (FRBs) are millisecond-duration radio flashes of presumably extragalactic origin. FRB121102 is the only FRB known to repeat and the only one with a precise localization. It is co-located with a persistent radio source inside a star-forming region in a dwarf galaxy at z=0.2. While the persistent source is compatible with either a low-luminosity accreting black hole or a very energetic nebula and supernova remnant, the source of the bursts is still a mystery. We present new bursts from FRB121102 detected at relatively high radio frequencies of ~5GHz. These observations allow us to investigate the polarization properties of the bursts, placing new constraints on the environment of FRB121102.

  9. The Far-Infrared Radio Correlation at High-z : Prospects for the SKA

    NARCIS (Netherlands)

    Murphy, Eric J.

    2009-01-01

    In this conference proceedings article I summarize the recent work of Murphy (2009) which presents physically motivated predictions for the evolution of the Far-Infrared--radio correlation as a function of redshift arising from variations in the cosmic-ray (CR) electron cooling time-scales as

  10. Next-generation mid-infrared sources

    Science.gov (United States)

    Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D.

    2017-12-01

    The mid-infrared (mid-IR) is a wavelength range with a variety of technologically vital applications in molecular sensing, security and defense, energy conservation, and potentially in free-space communication. The recent development and rapid commercialization of new coherent mid-infrared sources have spurred significant interest in the development of mid-infrared optical systems for the above applications. However, optical systems designers still do not have the extensive optical infrastructure available to them that exists at shorter wavelengths (for instance, in the visible and near-IR/telecom wavelengths). Even in the field of optoelectronic sources, which has largely driven the growing interest in the mid-infrared, the inherent limitations of state-of-the-art sources and the gaps in spectral coverage offer opportunities for the development of new classes of lasers, light emitting diodes and emitters for a range of potential applications. In this topical review, we will first present an overview of the current state-of-the-art mid-IR sources, in particular thermal emitters, which have long been utilized, and the relatively new quantum- and interband-cascade lasers, as well as the applications served by these sources. Subsequently, we will discuss potential mid-infrared applications and wavelength ranges which are poorly served by the current stable of mid-IR sources, with an emphasis on understanding the fundamental limitations of the current source technology. The bulk of the manuscript will then explore both past and recent developments in mid-infrared source technology, including narrow bandgap quantum well lasers, type-I and type-II quantum dot materials, type-II superlattices, highly mismatched alloys, lead-salts and transition-metal-doped II-VI materials. We will discuss both the advantages and limitations of each of the above material systems, as well as the potential new applications which they might serve. All in all, this topical review does not aim

  11. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin [Center for the Exploration of the Origin of the Universe (CEOU), Building 45, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Minjin; Park, Won-Kee [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Karouzos, Marios [Astronomy Program, FPRD, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Ji Hoon [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong, E-mail: yjkim@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to z = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  12. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  13. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  14. Morphology and power of radio sources

    International Nuclear Information System (INIS)

    Scheuer, P.A.G.

    1982-01-01

    The author discusses two points: 1. Observations suggest that the hot-spots move about either because the beam precesses or more discontinuously, as in sources like 3C351 that have multiple hot-spots. The natural interpretation is that the hot-spot at the end of the beam slides over the inner surface of a 'cavity' filled with very hot dilute ex-hot-spot material, extending the cavity at various places at different times. 2. Most of the radio emission of most really powerful radio sources comes from their hot spots. Contrariwise, straightforward equipartition calculations on models lead to at least as much emission from the 'cavity' as from the hot-spots. (Auth.)

  15. Automated cross-identifying radio to infrared surveys using the LRPY algorithm: a case study

    Science.gov (United States)

    Weston, S. D.; Seymour, N.; Gulyaev, S.; Norris, R. P.; Banfield, J.; Vaccari, M.; Hopkins, A. M.; Franzen, T. M. O.

    2018-02-01

    Cross-identifying complex radio sources with optical or infra red (IR) counterparts in surveys such as the Australia Telescope Large Area Survey (ATLAS) has traditionally been performed manually. However, with new surveys from the Australian Square Kilometre Array Pathfinder detecting many tens of millions of radio sources, such an approach is no longer feasible. This paper presents new software (LRPY - Likelihood Ratio in PYTHON) to automate the process of cross-identifying radio sources with catalogues at other wavelengths. LRPY implements the likelihood ratio (LR) technique with a modification to account for two galaxies contributing to a sole measured radio component. We demonstrate LRPY by applying it to ATLAS DR3 and a Spitzer-based multiwavelength fusion catalogue, identifying 3848 matched sources via our LR-based selection criteria. A subset of 1987 sources have flux density values for all IRAC bands which allow us to use criteria to distinguish between active galactic nuclei (AGNs) and star-forming galaxies (SFG). We find that 936 radio sources ( ≈ 47 per cent) meet both of the Lacy and Stern AGN selection criteria. Of the matched sources, 295 have spectroscopic redshifts and we examine the radio to IR flux ratio versus redshift, proposing an AGN selection criterion below the Elvis radio-loud AGN limit for this dataset. Taking the union of all three AGNs selection criteria we identify 956 as AGNs ( ≈ 48 per cent). From this dataset, we find a decreasing fraction of AGNs with lower radio flux densities consistent with other results in the literature.

  16. Observational constraints on the cosmological evolution of extragalactic radio sources

    International Nuclear Information System (INIS)

    Perryman, M.A.C.

    1979-11-01

    The thesis discusses statistical studies of the remote radio sources, taking into account the various parameters for such sources, based on data from the various Cambridge Catalogues. Some of the sources have optical counterparts which yield distances from their redshifts. Combining optical and radio observations, an attempt is made to investigate whether large-scale evolution of galaxies occurs as one looks backwards in time to early epochs. Special attention is paid to ensuring that the optical identifications of the selected radio sources are sound and that the selection procedures do not distort the inferences obtained. (U.K.)

  17. Detection of OH radicals from IRAS sources

    International Nuclear Information System (INIS)

    Lewis, B.M.; Eder, J.; Terzian, Y.

    1985-01-01

    An efficient method for detecting new OH/infrared stars is to begin with IRAS source positions, selected for appropriate infrared colours, and using radio-line observations to confirm the OH properties. The authors demonstrate the validity of this approach here, using the Arecibo 305 m radio-telescope to confirm the 1,612 MHz line observations of sources in IRAS Circulars 8 and 9; the present observations identify 21 new OH/infrared stars. The new sources have weaker 1,612 MHz fluxes, bluer (60-25) μm colours and a smaller mean separation between the principal emission peaks than previous samples. (author)

  18. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    Science.gov (United States)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  19. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    A discussion of the hydrodynamics of jets formed by discrete portions of materials ejected from the parent galaxy through a channel, and reflected back to it as a result of an encounter with the material accumulated at the end of the channel, is the basis of the present descriptive hypothesis for a class of jets in extended radio sources. The model encompasses the view of extended radio sources as the multiple ejection of plasmoids through a channel, as well as the formation of retrojets through the interaction of a plasmon with the dense relic material at the end of a channel, and the collimation of plasmon material in channels. 14 references

  20. Surveys of radio sources at 5 GHz

    International Nuclear Information System (INIS)

    Pauliny-Toth, I.I.K.

    1977-01-01

    A number of surveys have been carried out at a frequency of 5 GHz at the National Radio Astronomy Observatory (NRAO) and at the Max-Planck-Institut fuer Radioastronomy (MPIFR) with the aim of determining the number-flux density relation for the sources detected and also of obtaining their radio spectra and optical identifications. The surveys fall into two categories: first, the strong source (S) surveys which are intended in due course to cover the whole northern sky and to be complete above a flux density of about 0.6 Jy; second, surveys of limited areas of sky down to lower levels of the flux density. (Auth.)

  1. UNVEILING THE NATURE OF IGR J17177-3656 WITH X-RAY, NEAR-INFRARED, AND RADIO OBSERVATIONS

    International Nuclear Information System (INIS)

    Paizis, A.; Nowak, M. A.; Wilms, J.; Chaty, S.; Corbel, S.; Rodriguez, J.; Del Santo, M.; Ubertini, P.; Chini, R.

    2011-01-01

    We report on the first broadband (1-200 keV) simultaneous Chandra-INTEGRAL observations of the recently discovered hard X-ray transient IGR J17177-3656 that took place on 2011 March 22, about two weeks after the source discovery. The source had an average absorbed 1-200 keV flux of about 8 x 10 -10 erg cm -2 s -1 . We extracted a precise X-ray position of IGR J17177-3656, α J2000 = 17 h 17 m 42. s 62, δ J2000 = -36 0 56'04.''5 (90% uncertainty of 0.''6). We also report Swift, near-infrared, and quasi-simultaneous radio follow-up observations. With the multi-wavelength information at hand, we propose IGR J17177-3656 is a low-mass X-ray binary, seen at high inclination, probably hosting a black hole.

  2. Statistical studies of powerful extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, J T

    1981-01-01

    This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.

  3. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  4. Stellar populations in distant radio galaxies

    International Nuclear Information System (INIS)

    Lilly, S.J.; Longair, M.S.

    1984-01-01

    A homogeneous data set of infrared observations of 83 3CR galaxies with redshifts 0< z<1.6, selected from a statistically complete sample of 90 radio sources, is used to study the colours and magnitudes of these galaxies as a function of their redshifts. New infrared observations are presented for 66 radio galaxies, in addition to new optical results obtained from a re-analysis of existing CCD images. It is shown that the infrared colours do not deviate from the predicted relations with redshift for a standard giant elliptical galaxy spectrum. The optical to infrared colours, however, show substantial deviations at high redshift. No galaxies have been found that are significantly redder than a passively evolving galaxy, and there is a significant scatter of colours bluewards from this model. The excess of ultraviolet light responsible for these colours is not concentrated at the nucleus, and is interpreted as resulting from bursts of star formation, throughout the galaxy. (author)

  5. Multifrequency VLA observations of PKS 0745-191: the archetypal 'cooling flow' radio source?

    International Nuclear Information System (INIS)

    Baum, S.A.; O'Dea, C.P.

    1991-01-01

    We present 90-, 20-, 6- and 2-cm VLA observations of the high radio luminosity, cooling flow radio source PKS 0745-191. We find that the radio source has a core with a very steep spectrum and diffuse emission with an even steeper spectrum without clear indications of the jets, hotspots or double lobes found in other radio sources of comparable luminosity. The appearance of the source is highly dependent on frequency and resolution. This dependence reflects both the diffuse nature of the extended emission and the steep, but position-dependent, spectrum of the radio emission. (author)

  6. Rotationally symmetric structure in two extragalactic radio sources

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Morison, I.

    1980-01-01

    The new multi-telescope radio-linked interferometer (MTRLI) at Jodrell Bank was used during January and February 1980 at a frequency of 408 MHz to map the extragalactic radio sources 3C196 and 3C305 with a resolution of approximately 1 arc s. It is shown here that both the markedly symmetric structures observed and the spectral index distributions inferred from comparisons with previously published 5 GHz maps provide evidence for the source axes having rotated during the lifetime of the emitting regions. (U.K.)

  7. EGRET Unidentified Source Radio Observations and Performance of Receiver Gain Calibration

    International Nuclear Information System (INIS)

    Niinuma, Kotaro; Asuma, Kuniyuki; Kuniyoshi, Masaya; Matsumura, Nobuo; Takefuji, Kazuhiro; Kida, Sumiko; Takeuchi, Akihiko; Ichikawa, Hajime; Sawano, Akihiro; Yoshimura, Naoya; Suzuki, Shigehiro; Nakamura, Ryosuke; Nakayama, Yu; Daishido, Tsuneaki

    2006-01-01

    Last year, we have developed the receiver gain calibration system by using Johnson-Nyquist noise, for accuracy flux measurement, because we have been starting radio identification program of transient radio sources, blazars and radio counterpart of The Energetic Gamma Ray Experiment Telescope (EGRET) unidentified γ-ray sources in Waseda Nasu Pulsar Observatory. It is shown that there are a few low correlation data between receiver gain and ambient temperature around receiver for anything troubles of receiver, because we can detect gain and ambient temperature through a day by developed system. Estimated fluctuations of daily data of steady sources decrease by removing low correlation data before analysing. As the result of our analysis by using above system, radio counterpart of EGRET identified source showed fading light-curve for a week

  8. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  9. Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power

    Science.gov (United States)

    Baum, Stefi A.; Zirbel, Esther L.; O'Dea, Christopher P.

    1995-09-01

    In Paper I we presented the results of a study of the interrelationships between host galaxy magnitude, optical line luminosity, and radio luminosity in a large sample of Fanaroff-Riley classes 1 and 2 (FR 1 and FR 2) radio galaxies. We report several important differences between the FR 1 and FR 2 radio galaxies. At the same host galaxy magnitude or radio luminosity, the FR 2's produce substantially more optical line emission (by roughly an order of magnitude or more) than do FR 1's. Similarly, FR 2 sources produce orders of magnitude more line luminosity than do radio-quiet galaxies of the same optical magnitude, while FR 1 sources and radio-quiet galaxies of the same optical magnitude produce similar line luminosities. Combining these results with previous results from the literature, we conclude that while the emission-line gas in the FR 2's is indeed photoionized by a nuclear UV continuum source from the AGN, the emission-line gas in the FR 1's may be energized predominantly by processes associated with the host galaxy itself. The apparent lack of a strong UV continuum source from the central engine in FR 1 sources can be understood in two different ways. In the first scenario, FR l's are much more efficient at covering jet bulk kinetic energy into radio luminosity than FR 2's, such that an FR 1 has a much lower bolometric AGN luminosity (hence nuclear UV continuum source) than does an FR 2 of the same radio luminosity. We discuss the pros and cons of this model and conclude that the efficiency differences needed between FR 2 and FR 1 radio galaxies are quite large and may lead to difficulties with the interpretation since it would suggest that FR 2 radio source deposit very large amounts of kinetic energy into the ISM Intracluster Medium. However, this interpretation remains viable. Alternatively, it may be that the AGNs in FR 1 sources simply produce far less radiant UV energy than do those in FR 2 sources. That is, FR 1 sources may funnel a higher fraction

  10. Relativistic jets and the most powerful radio sources in the universe

    International Nuclear Information System (INIS)

    Bridle, A.

    1987-01-01

    Relativistic jets, which are beams of particles and magnetic fields emitting synchrotron radiation that emanate from black holes at the centers of galaxies and quasars, have been one of the most exciting discoveries made at the Very Large Array (VLA) operated by the National Radio Astronomy Observatory (NRAO). The VLA is an array of 27 antennas, each 25 meters in diameter, distributed in a Y-formation with two branches 21 kilometers long and one branch 19 kilometers long. Astronomers can use it to study relativistic jets that generate intense natural radio sources (or transmitters). These sources, associated with regions hundreds of thousands of light years across, are the most powerful in the universe in energy output. In his lecture, Bridle describes how consecutive advances in imaging techniques for radio astronomy have uncovered the properties of the powerful radio sources, culminating in the discovery at the VLA that many of these sources contain radio emitting jets. He then describes some of the NRAO's research on these jets, and discusses the jets' physical properties. He concludes with an outlook for the future: the NRAO's Very Long Baseline Array (VLBA) is to be completed in the early 1990's. The VLBA is an array of ten radio telescopes distributed from Hawaii to St. Croix, from the Canadian border to Texas. With the VLBA, astronomers plan to look more deeply into these radio sources. 15 figs

  11. Is 4C+29.48 a γ-ray source?

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; An, T.

    2018-05-01

    Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to

  12. Hot-spots of radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Saikia, D.J.

    1979-01-01

    A sample of extragalactic double radio sources is examined to test for a correlation between the prominence of compact hot-spots located at their outer edges and membership of clusters of galaxies. To minimize the effects of incompleteness in published catalogues of clusters, cluster classification is based on the number of galaxies in the neighbourhood of each source. After eliminating possible selection effects, it is found that sources in regions of high galactic density tend to have less prominent hot-spots. It is argued that the result is consistent with the 'continuous-flow' models of radio sources, but poses problems for the gravitational slingshot model. (author)

  13. MOA-2008-BLG-379Lb: A massive planet from a high magnification event with a faint source

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, D.; Sumi, T.; Fukagawa, M.; Shibai, H. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601 (Japan); Botzler, C. S.; Freeman, M.; Rattenbury, N. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Muraki, Y. [Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501 (Japan); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To. [Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-01-10

    We report on the analysis of the high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak due to a massive planet with a mass ratio of q = 6.9 × 10{sup –3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the Microlensing Observations in Astrophysics (MOA) Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M{sub L}=3.3{sub −1.2}{sup +1.7} M{sub ⊙} orbited by a planet of mass m{sub P}=0.56{sub −0.27}{sup +0.24} M{sub Jup} at an orbital separation of a=3.3{sub −1.2}{sup +1.3} AU at a distance of D{sub L}=4.1{sub −1.9}{sup +1.7} kpc. The faint source magnitude of I {sub S} = 21.30 and relatively high lens-source relative proper motion of μ{sub rel} = 7.6 ± 1.6 mas yr{sup –1} imply that high angular resolution adaptive optics or Hubble Space Telescope observations are likely to be able to detect the source star, which would determine the masses and distance of the planet and its host star.

  14. Plasma phenomenology in astrophysical systems: Radio-sources and jets

    International Nuclear Information System (INIS)

    Montani, Giovanni; Petitta, Jacopo

    2014-01-01

    We review the plasma phenomenology in the astrophysical sources which show appreciable radio emissions, namely Radio-Jets from Pulsars, Microquasars, Quasars, and Radio-Active Galaxies. A description of their basic features is presented, then we discuss in some details the links between their morphology and the mechanisms that lead to the different radio-emissions, investigating especially the role played by the plasma configurations surrounding compact objects (Neutron Stars, Black Holes). For the sake of completeness, we briefly mention observational techniques and detectors, whose structure set them apart from other astrophysical instruments. The fundamental ideas concerning angular momentum transport across plasma accretion disks—together with the disk-source-jet coupling problem—are discussed, by stressing their successes and their shortcomings. An alternative scenario is then inferred, based on a parallelism between astrophysical and laboratory plasma configurations, where small-scale structures can be found. We will focus our attention on the morphology of the radio-jets, on their coupling with the accretion disks and on the possible triggering phenomena, viewed as profiles of plasma instabilities

  15. RADIO SOURCE FEEDBACK IN GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Shabala, Stanislav; Alexander, Paul

    2009-01-01

    We present a galaxy evolution model which incorporates a physically motivated implementation of active galactic nucleus feedback. Intermittent jets inflate cocoons of radio plasma which then expand supersonically, shock heating the ambient gas. The model reproduces observed star formation histories to the highest redshifts for which reliable data exist, as well as the observed galaxy color bimodality. Intermittent radio source feedback also naturally provides a way of keeping the black hole and spheroid growth in step. We find possible evidence for a top-heavy initial mass function for z > 2, consistent with observations of element abundances, and submillimeter and Lyman break galaxy counts.

  16. Near-infrared observations of the far-infrared source V region in NGC 6334

    International Nuclear Information System (INIS)

    Fischer, J.; Joyce, R.R.; Simon, M.; Simon, T.

    1982-01-01

    We have observed a very red near-infrared source at the center of NGC 6334 FIRS V, a far-infrared source suspected of variability by McBreen et al. The near-infrared source has deep ice and silicate absorption bands, and its half-power size at 20 μm is approx.15'' x 10''. Over the past 2 years we have observed no variability in the near-infrared flux. We have also detected an extended source of H 2 line emission in this region. The total luminosity in the H 2 v-1--0 S(1) line, uncorrected for extinction along the line of sight, is 0.3 L/sub sun/. Detection of emission in high-velocity wings of the J = 1--0 12 CO line suggests that the H 2 emission is associated with a supersonic gas flow

  17. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Aller, H. D.

    2016-01-01

    Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous gro...

  18. Radio and optical observations of 0218+357 - The smallest Einstein ring?

    Science.gov (United States)

    O'Dea, Christopher P.; Baum, Stefi A.; Stanghellini, Carlo; Dey, Arjun; Van Breugel, Wil; Deustua, Susana; Smith, Eric P.

    1992-01-01

    VLA radio observations and optical imaging and spectroscopy of the Einstein radio ring 0218+357 are presented. The ring is detected at 22.4 GHz and shows a basically similar structure at 5, 15, and 22.4 GHz. The B component has varied and was about 15 percent brighter in the 8.4 GHz data than in the data of Patnaik et al. (1992). The ring is highly polarized. A weak jetlike feature extending out roughly 2 arcsec to the southeast of component A is detected at 6 cm. The source has amorphous radio structure extending out to about 11 arcsec from the core. For an adopted redshift of 0.68, the extended radio emission is very powerful. The optical spectrum is rather red and shows no strong features. A redshift of about 0.68 is obtained. The identification is a faint compact m(r) about 20 galaxy which extends to about 4.5 arcsec (about 27 kpc). As much as 50 percent of the total light may be due to a central AGN. The observed double core and ring may be produced by an off-center radio core with extended radio structure.

  19. Infrared source test

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  20. Bending of electromagnetic beams and head-tail radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G; Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica)

    1981-08-01

    An interpretation is presented of bridge bending in head-tail radio sources in the framework of an electromagnetic beam model. The physical effect responsible for the structural distortion is proposed to be the refraction of a large-amplitude wave in a medium with a density gradient perpendicular to the wave propagation vector; this gradient is consistently produced by the relative motion of the beam source in the surrounding medium with a velocity higher than the speed of sound. These effects are calculated in some detail and a quantitative fit of model parameters to the typical radio source associated with NGC 1265 is discussed.

  1. Central radio sources

    International Nuclear Information System (INIS)

    Phinney, E.S.

    1985-01-01

    The compact radio sources in the nuclei of most active galaxies lie closer to their centers of activity than any other region accessible to observation, excepting only the broad emission line region. They provide uniquely strong evidence for bulk motion of matter at relativistic velocities, encouraging the belief that the activity originates in a gravitational potential well whose escape velocity is of the order of the speed of light. The observational facts are reviewed as well as several theoretical pictures of them. Those places where systematic observations could help to distinguish the true theoretical picture from the many competing forgeries are emphasized. 76 references

  2. A Mid-Infrared Search for Kardashev Civilizations

    Science.gov (United States)

    Sigurdsson, Steinn; Wright, J.; Griffith, R.; Povich, M. S.

    2014-01-01

    We are using the WISE all-sky Source Catalog to search for and put upper limits on the existence of extraterrestrial civilizations with large energy supplies. Any galaxy-spanning (Type III) civilization with an energy supply of more than about one percent of its stellar luminosity will have detectable mid-infrared excess, and nearby (extended) galaxies with civilizations with supplies more than about 80% of their stellar luminosity will be well-distinguished from nearly all natural sources in WISE color-color space. Mid-infrared spectra, far-infrared photometry, and radio emission from CO can all be used to distinguish extraterrestrial mid-infrared radiation from dust.

  3. Cosmology from angular size counts of extragalactic radio sources

    International Nuclear Information System (INIS)

    Kapahi, V.K.

    1975-01-01

    The cosmological implications of the observed angular sizes of extragalactic radio sources are investigated using (i) the log N-log theta relation, where N is the number of sources with an angular size greater than a value theta, for the complete sample of 3CR sources, and (ii) the thetasub(median) vs flux density (S) relation derived from the 3CR, the All-sky, and the Ooty occulation surveys, spanning a flux density range of about 300:1. The method of estimating the expected N(theta) and thetasub(m)(S) relations for a uniform distribution of sources in space is outlined. Since values of theta>approximately 100second arc in the 3C sample arise from sources of small z, the slope of the N(theta) relation in this range is practically independent of the world model and the distribution of source sizes, but depends strongly on the radio luminosity function (RLF). From the observed slope the RLF is derived in the luminosity range of about 10 23 178 26 W Hz -1 sr -1 to be of the form rho(P)dP proportional to Psup(-2.1)dP. It is shown that the angular size data provide independent evidence of evolution in source properties with epoch. It is difficult to explain the data with the simple steady-state theory even if identified QSOs are excluded from ths source samples and a local deficiency of strong source is postulated. The simplest evolutionary scheme that fits the data in the Einstein-de Sitter cosmology indicates that (a) the local RLF steepens considerably at high luminosities, (b) the comoving density of high luminosity sources increases with z in a manner similar to that implied by the log N-log S data and by the V/Vsub(m) test for QSOs, and (c) the mean physical sizes of radio sources evolve with z approximately as (1+z) -1 . Similar evolutionary effects appear to be present for QSOs as well as radio galaxies. (author)

  4. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  5. FIRST 'WINGED' AND X-SHAPED RADIO SOURCE CANDIDATES. II. NEW REDSHIFTS

    International Nuclear Information System (INIS)

    Cheung, C. C.; Healey, Stephen E.; Landt, Hermine; Jordan, Andres; Verdoes Kleijn, Gijs

    2009-01-01

    We report optical spectroscopic observations of X-shaped radio sources with the Hobby-Eberly Telescope and Multiple-Mirror Telescope, focused on the sample of candidates from the FIRST survey presented in a previous paper. A total of 27 redshifts were successfully obtained, 21 of which are new, including a newly identified candidate source of this type which is presented here. With these observations, the sample of candidates from the previous paper is over 50% spectroscopically identified. Two new broad emission-lined X-shaped radio sources are revealed, while no emission lines were detected in about one-third of the observed sources; a detailed study of the line properties is deferred to a future paper. Finally, to explore their relation to the Fanaroff-Riley division, the radio luminosities and host galaxy absolute magnitudes of a spectroscopically identified sample of 50 X-shaped radio galaxies are calculated to determine their placement in the Owen-Ledlow plane.

  6. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    Science.gov (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  7. About the Modeling of Radio Source Time Series as Linear Splines

    Science.gov (United States)

    Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald

    2016-12-01

    Many of the time series of radio sources observed in geodetic VLBI show variations, caused mainly by changes in source structure. However, until now it has been common practice to consider source positions as invariant, or to exclude known misbehaving sources from the datum conditions. This may lead to a degradation of the estimated parameters, as unmodeled apparent source position variations can propagate to the other parameters through the least squares adjustment. In this paper we will introduce an automated algorithm capable of parameterizing the radio source coordinates as linear splines.

  8. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  9. Far infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Gatley, I.

    1977-01-01

    Maps of a region 10' in diameter around the galactic center made simultaneously in three wavelength bands at 30 μm, 50 μm, and 100 μm with approximately 1' resolution are presented, and the distribution of far infrared luminosity and color temperature across this region is derived. The position of highest far infrared surface brightness coincides with the peak of the late-type stellar distribution and with the H II region Sgr A West. The high spatial and temperature resolution of the data is used to identify features of the far infrared maps with known sources of near infrared, radio continuum, and molecular emission. The emission mechanism and energy sources for the far infrared radiation are anslyzed qualitatively, and it is concluded that all of the observed far infrared radiation from the galactic center region can be attributed to thermal emission from dust heated both by the late-type stars and by the ultraviolet sources which ionize the H II regions. A self-consistent model for the far infrared emission from the galactic center region is presented. It is found that the visual extinction across the central 10 pc of the galaxy is only about 3 magnitudes, and that the dust density is fairly uniform in this region. An upper limit of 10 7 L/sub mass/ is set on the luminosity of any presently unidentified source of 0.1 to 1 μm radiation at the galactic center. Additional maps in the vicinity of the source Sgr B2 and observations of Sgr C bring the total number of H II regions within 1 0 of the galactic center studied by the present experiment to nine. The far infrared luminosity, color temperature and optical depth of these regions and the ratio of infrared flux to radio continuum flux lie in the range characteristic of spiral arm H II regions. The far infrared results are therefore consistent with the data that the galactic center H II regions are ionized by luminous, early type stars

  10. Bending of electromagnetic beams and head-tail radio sources

    International Nuclear Information System (INIS)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Turin Univ.

    1981-01-01

    An interpretation is presented of bridge bending in head-tail radio sources in the framework of an electromagnetic beam model. The physical effect responsible for the structural distortion is proposed to be the refraction of a large-amplitude wave in a medium with a density gradient perpendicular to the wave propagation vector; this gradient is consistently produced by the relative motion of the beam source in the surrounding medium with a velocity higher than the speed of sound. These effects are calculated in some detail and a quantitative fit of model parameters to the typical radio source associated with NGC 1265 is discussed. (author)

  11. Do Unification Models Explain the X-ray Properties of Radio Sources?

    NARCIS (Netherlands)

    Wilkes, Belinda J.; Kuraszkiewicz, J.; Haas, M.; Barthel, P.; Willner, S. P.; Leipski, C.; Worrall, D.; Birkinshaw, M.; Antonucci, R. R.; Ashby, M.; Chini, R.; Fazio, G. G.; Lawrence, C. R.; Ogle, P. M.; Schulz, B.

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1 radio selected (and so relatively unbiased in orientation), 3CRR radio sources (21 quasars, 17 narrow line radio galaxies, NLRGs) support Unification models and lead to estimates of the covering

  12. How Fred Hoyle Reconciled Radio Source Counts and the Steady State Cosmology

    Science.gov (United States)

    Ekers, Ron

    2012-09-01

    In 1969 Fred Hoyle invited me to his Institute of Theoretical Astronomy (IOTA) in Cambridge to work with him on the interpretation of the radio source counts. This was a period of extreme tension with Ryle just across the road using the steep slope of the radio source counts to argue that the radio source population was evolving and Hoyle maintaining that the counts were consistent with the steady state cosmology. Both of these great men had made some correct deductions but they had also both made mistakes. The universe was evolving, but the source counts alone could tell us very little about cosmology. I will try to give some indication of the atmosphere and the issues at the time and look at what we can learn from this saga. I will conclude by briefly summarising the exponential growth of the size of the radio source counts since the early days and ask whether our understanding has grown at the same rate.

  13. Radio and infrared study of southern H II regions G346.056-0.021 and G346.077-0.056

    Science.gov (United States)

    Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.

    2018-04-01

    Aim. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust, and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods: The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density, and dust emissivity maps were generated using modified blackbody fits in the far-infrared wavelength range 160-500 μm. Various near- and mid-infrared color and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results: The radio maps reveal the presence of diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to zero age main sequence spectral types in the range O7.5V-O7V and O8.5V-O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimeter image shows the presence of two additional clumps, one being associated with G346.056-0.021. The masses of the clumps are estimated to range between 1400 and 15250 M⊙. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model. GMRT data (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via

  14. IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Rafferty, D. A.; Schneider, D. P.; Brusa, M.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Mainieri, V.; Silverman, J. D.; Vignali, C.

    2010-01-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ∼2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ∼ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ∼10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ∼ 1% and an outlier [with |

  15. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Kouzuma, S.; Yamaoka, H.

    2012-01-01

    We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported

  16. FR-type radio sources in COSMOS: relation of radio structure to size, accretion modes and large-scale environment

    Science.gov (United States)

    Vardoulaki, Eleni; Faustino Jimenez Andrade, Eric; Delvecchio, Ivan; Karim, Alexander; Smolčić, Vernesa; Magnelli, Benjamin; Bertoldi, Frank; Schinnener, Eva; Sargent, Mark; Finoguenov, Alexis; VLA COSMOS Team

    2018-01-01

    The radio sources associated with active galactic nuclei (AGN) can exhibit a variety of radio structures, from simple to more complex, giving rise to a variety of classification schemes. The question which still remains open, given deeper surveys revealing new populations of radio sources, is whether this plethora of radio structures can be attributed to the physical properties of the host or to the environment. Here we present an analysis on the radio structure of radio-selected AGN from the VLA-COSMOS Large Project at 3 GHz (JVLA-COSMOS; Smolčić et al.) in relation to: 1) their linear projected size, 2) the Eddington ratio, and 3) the environment their hosts lie within. We classify these as FRI (jet-like) and FRII (lobe-like) based on the FR-type classification scheme, and compare them to a sample of jet-less radio AGN in JVLA-COSMOS. We measure their linear projected sizes using a semi-automatic machine learning technique. Their Eddington ratios are calculated from X-ray data available for COSMOS. As environmental probes we take the X-ray groups (hundreds kpc) and the density fields (~Mpc-scale) in COSMOS. We find that FRII radio sources are on average larger than FRIs, which agrees with literature. But contrary to past studies, we find no dichotomy in FR objects in JVLA-COSMOS given their Eddington ratios, as on average they exhibit similar values. Furthermore our results show that the large-scale environment does not explain the observed dichotomy in lobe- and jet-like FR-type objects as both types are found on similar environments, but it does affect the shape of the radio structure introducing bents for objects closer to the centre of an X-ray group.

  17. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  18. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    Science.gov (United States)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; de Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.; Malin, D. F.; White, G. L.; Kawaguchi, N.; Takahashi, Y.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  19. 3D relativistic MHD numerical simulations of X-shaped radio sources

    Science.gov (United States)

    Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.

    2017-10-01

    Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.

  20. Fainting

    Science.gov (United States)

    ... go to the ER. When Desiree asked her school nurse about it the next day, she said Desiree probably fainted because she stayed in the whirlpool too long or the temperature was set too high, affecting her blood pressure. ...

  1. Chapter 27: Deja vu All Over Again: Using NVO Tools to Re-Investigate a Complete Sample of Texas Radio Survey Sources

    Science.gov (United States)

    Lucas, Ray A.; Rohde, David; Tamura, Takayuki; van Dyne, Jeffrey

    At the first NVO Summer School in September 2004, a complete sample of Texas Radio Survey sources, first derived in 1989 and subsequently observed with the VLA in A-array snapshot mode in 1990, was revisited. The original investigators had never had the occasion to reduce the A-array 5-minute snapshot data, nor to do any other significant follow-up, though the sample still seemed a possibly useful but relatively small study of radio galaxies, AGN, quasars, extragalactic sources, and galaxy clusters, etc. At the time of the original sample definition in late 1989, the best optical material available for the region was the SRC-J plate from the UK Schmidt Telescope in Australia. In much more recent times, the Sloan Digital Sky Survey has included the region in its DR2 data release, so good multicolor optical imaging in a number of standard bandpasses has finally become available. These data, along with other material in the radio, infrared, and (where available) were used to get a better preliminary idea of the nature of the objects in the 1989 sample. We also investigated one of the original questions: whether these radio sources with steeper (or at least non-flat) radio spectra were associated with galaxy clusters, and in some cases higher-redshift galaxy clusters and AGN. A rudimentary web service was created which allowed the user to perform simple cone searches and SIAP image extractions of specified field sizes for multiwavelength data across the electromagnetic spectrum, and a prototype web page was set up which would display the resulting images in wavelength order across the page for sources in the sample. Finally, as an additional investigation, using radio and X-ray IDs as a proxy for AGN which might be associated with large, central cluster galaxies, positional matches of radio and X-ray sources from two much larger catalogs were done using the tool TOPCAT in order to search for the degree of correlation between ID positions, radio luminosity, and cluster

  2. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  3. Identification of southern radio sources

    International Nuclear Information System (INIS)

    Savage, A.; Bolton, J.G.; Wright, A.E.

    1976-01-01

    Identifications are suggested for 36 radio sources from the southern zones of the Parkes 2700 MHz survey, 28 with galaxies, six with confirmed and two with suggested quasi-stellar objects. The identifications were made from the ESO quick blue survey plates, the SRC IIIa-J deep survey plates and the Palomar sky survey prints. Accurate optical positions have also been measured for nine of the objects and for five previously suggested identifications. (author)

  4. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  5. Radio variability in the Phoenix Deep Survey at 1.4 GHz

    Science.gov (United States)

    Hancock, P. J.; Drury, J. A.; Bell, M. E.; Murphy, T.; Gaensler, B. M.

    2016-09-01

    We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1 mJy beam-1 at 1.4 GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1 mJy beam-1. However, one survey found an areal density of radio variables on time-scales of decades that is a factor of ˜4 times greater than a second survey which was conducted on time-scales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be ρ = 0.98 deg-2 on time-scales of 6 months to 8 yr. We make use of Wide-field Infrared Survey Explorer infrared cross-ids, and identify all variable sources as an active galactic nucleus of some description. We suggest that the discrepancy between previous VLA results is due to the different time-scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on time-scales of 2-5 yr.

  6. Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430

    Science.gov (United States)

    Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; hide

    2013-01-01

    We report the detection of radio emission from PSR J1311.3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for less than 10% of approximately 4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nan cay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311.3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm(exp -3) provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.

  7. The effects of variability on the number-flux-density relationship for radio sources

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1981-01-01

    It has been known for some time that the number-flux-density relationship for radio sources requires a population of sources whose properties evolve with cosmological epoch, at least in models where the redshifts are all taken to be cosmological. In particular, the surveys made at metre wavelengths show, for bright sources, a slope of the log N -log S curve which is steeper than the value -1.5 expected in a static, non-evolving Euclidean universe. Here, N is the number of radio sources brighter than flux density S. Expansion without evolution in conventional geometrical models predicts slopes flatter than -1.5. If the radio survey is carried out at higher frequencies (typically 2.7 or 5 GHz - 11 or 6 cm wavelength), the slope of the log N -log S curve is steeper than -1.5 but not so steep as the slopes found for the low-frequency surveys. Many of the sources found in high-frequency surveys have radio spectra with relatively higher flux-densities in the centimetre range; these sources are frequently variable at high frequencies, with time-scales from a month or two upwards. Some possible effects of the variations on the observed counts of radio sources are considered. (author)

  8. Studies of faint field galaxies

    International Nuclear Information System (INIS)

    Ellis, R.S.

    1983-01-01

    Although claims are often made that photometric surveys of faint field galaxies reveal evidence for evolution over recent epochs (z<0.6), it has not yet been possible to select a single evolutionary model from comparisons with the data. Magnitude counts are sensitive to evolution but the data is well-mixed in distance because of the width of the luminosity function (LF). Colours can narrow the possibilities but the effects of redshift and morphology can only be separated using many passbands. In this paper, the author highlights two ways in which one can make further progress in this important subject. First, he discusses results based on the AAT redshift survey which comprises 5 Schmidt fields to J = 16.7 i.e. well beyond local inhomogeneities. Secondly, the difficulties in resolving the many possibilities encountered with faint photometry could be resolved with redshifts. To obtain redshift distributions for faint samples is now feasible via multi-object spectroscopy. At intermediate magnitudes (J=20) such distributions test the faint end of the galaxy LF; at faint magnitudes (J=22) they offer a direct evolutionary test. (Auth.)

  9. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.

    1975-01-01

    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  10. Fine structure of 25 extragalactic radio sources

    International Nuclear Information System (INIS)

    Wittels, J.J.; Knight, C.A.; Shapiro, I.I.; Hinteregger, H.F.; Rogers, A.E.E.; Whitney, A.R.; Clark, T.A.; Hutton, L.K.; Marandino, G.E.; Neill, A.E.; Ronnang, B.G.; Rydbeck, O.E.H.; Klemperer, W.K.; Warnock, W.W.

    1975-01-01

    Between 1972 April and 1973 May, 25 extragalactic radio sources were observed interferometrically at 7.8 GHz(lambdaapprox. =3.8 cm) with five pairings of antennas. These sources exhibit a broad variety of fine structures from very simple to complex. Although the structure and the total power of some of these sources have remained unchanged within the sensitivity of our measurements during the year of observations, both the total flux and the correlated flux of others have undergone large changes in a few weeks

  11. Embedded clusters in NGC1808 central starburst - Near-infrared imaging and spectroscopy

    OpenAIRE

    Galliano, E.; Alloin, D.

    2008-01-01

    In the course of a mid-infrared imaging campaign of close-by active galaxies, we discovered the mid-infrared counterparts of bright compact radio sources in the central star-forming region of NGC1808. We aim at confirming that these sources are deeply embedded, young star clusters and at deriving some of their intrinsic properties. To complement the mid-infrared data, we have collected a set of near-infrared data with ISAAC at the VLT: J, Ks, and L' images, as well as low-resolution, long-sli...

  12. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    International Nuclear Information System (INIS)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; Lico, R.; Burlon, D.

    2016-01-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg"2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α_l_o_w) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.

  13. A young source of optical emission from distant radio galaxies.

    Science.gov (United States)

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  14. FAINT NEAR-ULTRAVIOLET/FAR-ULTRAVIOLET STANDARDS FROM SWIFT/UVOT, GALEX, AND SDSS PHOTOMETRY

    International Nuclear Information System (INIS)

    Siegel, Michael H.; Hoversten, Erik A.; Roming, Peter W. A.; Brown, Peter

    2010-01-01

    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of 11 new faint (u ∼ 17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer archives and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the near-infrared to the far-ultraviolet. These stars were chosen because they are known to be hot (20, 000 eff < 50, 000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraints on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all 11 passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.

  15. H I absorption in nearby compact radio galaxies

    Science.gov (United States)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-05-01

    H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  16. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    Science.gov (United States)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  17. Reflection jets and collimation of radio sources

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.

    1983-01-01

    The author proposes a description of only a certain class of jets in extended radio sources by discussing hydrodynamics of jets formed by discrete portions of material ejected from the parent galaxy through a channel and reflected back into it as a result of an encounter with the material accumulated at the end of the channel. The picture presented here combines some older ideas with recent ones. The older ideas consist of modeling of extended radio sources in terms of multiple ejection of plasmons through a channel ploughed by the first few plasmons in the ambient medium with a resupply of energy in plasmons through the conversion of bulk kinetic energy into relativistic electron energy through instability driven turbulence. The recent ideas concern the formation of retro-jets as the result of interaction of a plasmon with the dense relic material at the end of a channel and the collimation of plasmon material in channels. (Auth.)

  18. THE RADIO JET ASSOCIATED WITH THE MULTIPLE V380 ORI SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Yam, J. Omar; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía, s/n, E-18008, Granada (Spain); Trejo, Alfonso, E-mail: l.rodriguez@crya.unam.mx [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-10-01

    The giant Herbig–Haro object 222 extends over ∼6′ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. However, Very Large Array studies showed that the radio source has a clear morphology of radio galaxy and a lack of flux variations or proper motions, favoring an extragalactic origin. Recently, an optical–IR study proposed that this giant HH object is driven by the multiple stellar system V380 Ori, located about 23′ to the SE of HH 222. The exciting sources of HH systems are usually detected as weak free–free emitters at centimeter wavelengths. Here, we report the detection of an elongated radio source associated with the Herbig Be star or with its close infrared companion in the multiple V380 Ori system. This radio source has the characteristics of a thermal radio jet and is aligned with the direction of the giant outflow defined by HH 222 and its suggested counterpart to the SE, HH 1041. We propose that this radio jet traces the origin of the large scale HH outflow. Assuming that the jet arises from the Herbig Be star, the radio luminosity is a few times smaller than the value expected from the radio–bolometric correlation for radio jets, confirming that this is a more evolved object than those used to establish the correlation.

  19. THE RADIO JET ASSOCIATED WITH THE MULTIPLE V380 ORI SYSTEM

    International Nuclear Information System (INIS)

    Rodríguez, Luis F.; Yam, J. Omar; Carrasco-González, Carlos; Anglada, Guillem; Trejo, Alfonso

    2016-01-01

    The giant Herbig–Haro object 222 extends over ∼6′ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. However, Very Large Array studies showed that the radio source has a clear morphology of radio galaxy and a lack of flux variations or proper motions, favoring an extragalactic origin. Recently, an optical–IR study proposed that this giant HH object is driven by the multiple stellar system V380 Ori, located about 23′ to the SE of HH 222. The exciting sources of HH systems are usually detected as weak free–free emitters at centimeter wavelengths. Here, we report the detection of an elongated radio source associated with the Herbig Be star or with its close infrared companion in the multiple V380 Ori system. This radio source has the characteristics of a thermal radio jet and is aligned with the direction of the giant outflow defined by HH 222 and its suggested counterpart to the SE, HH 1041. We propose that this radio jet traces the origin of the large scale HH outflow. Assuming that the jet arises from the Herbig Be star, the radio luminosity is a few times smaller than the value expected from the radio–bolometric correlation for radio jets, confirming that this is a more evolved object than those used to establish the correlation.

  20. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, K.; Van Leeuwen, J. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Jonker, P. G., E-mail: K.Mikhailov@uva.nl [SRON, the Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands)

    2017-05-01

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraints on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006–2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μ Jy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc{sup 2}, which makes our search complete to ∼85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.

  1. Giant Double Radio Source DA 240: Purveyor of Galaxies

    Science.gov (United States)

    Chen, Ru-Rong; Strom, Richard; Peng, Bo

    2018-05-01

    Galaxies of stars are building blocks of the baryonic universe. Their composition, structure, and kinematics have been well studied, but details of their origins remain sketchy. The collapse of gas clouds, induced by external forces whereby gravity overcomes internal pressure to form stars, is the likely starting point. Among the perturbing initiators of galaxy formation, radio source beams (jets) are quite effective. Typically, a beam may spawn one galaxy, though instances of several aligned with the radio axis are known. Recently, we found an impressive 14 companions in the lobes of the giant radio galaxy DA 240, which we argue formed as the result of jet instigation. This conclusion is bolstered by the fact that the galaxy groups display Z-shaped symmetry with respect to the radio axis. There is some evidence for star formation among the aligned companions. We also conclude that galaxy alignments at low redshift may derive from line-emitting gas observed in radio components of high-redshift galaxies.

  2. Radio Galaxy Zoo: compact and extended radio source classification with deep learning

    Science.gov (United States)

    Lukic, V.; Brüggen, M.; Banfield, J. K.; Wong, O. I.; Rudnick, L.; Norris, R. P.; Simmons, B.

    2018-05-01

    Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. In the context of radio-interferometric imaging in astronomy, we looked for ways to identify multiple components of individual sources. To this effect, we design a convolutional neural network to differentiate between different morphology classes using sources from the Radio Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors that affect the performance of such neural networks, such as the amount of training data, number and nature of layers, and the hyperparameters. We begin with a simple experiment in which we only differentiate between two extreme morphologies, using compact and multiple-component extended sources. We found that a three-convolutional layer architecture yielded very good results, achieving a classification accuracy of 97.4 per cent on a test data set. The same architecture was then tested on a four-class problem where we let the network classify sources into compact and three classes of extended sources, achieving a test accuracy of 93.5 per cent. The best-performing convolutional neural network set-up has been verified against RGZ Data Release 1 where a final test accuracy of 94.8 per cent was obtained, using both original and augmented images. The use of sigma clipping does not offer a significant benefit overall, except in cases with a small number of training images.

  3. Radio Follow-up on All Unassociated Gamma-Ray Sources from the Third Fermi Large Area Telescope Source Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Schinzel, Frank K. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Petrov, Leonid [Astrogeo Center, Falls Church, VA 22043 (United States); Taylor, Gregory B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Philip G., E-mail: fschinze@nrao.edu [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, 1710 NSW (Australia)

    2017-04-01

    The third Fermi Large Area Telescope γ -ray source catalog (3FGL) contains over 1000 objects for which there is no known counterpart at other wavelengths. The physical origin of the γ -ray emission from those objects is unknown. Such objects are commonly referred to as unassociated and mostly do not exhibit significant γ -ray flux variability. We performed a survey of all unassociated γ -ray sources found in 3FGL using the Australia Telescope Compact Array and Very Large Array in the range 4.0–10.0 GHz. We found 2097 radio candidates for association with γ -ray sources. The follow-up with very long baseline interferometry for a subset of those candidates yielded 142 new associations with active galactic nuclei that are γ -ray sources, provided alternative associations for seven objects, and improved positions for another 144 known associations to the milliarcsecond level of accuracy. In addition, for 245 unassociated γ -ray sources we did not find a single compact radio source above 2 mJy within 3 σ of their γ -ray localization. A significant fraction of these empty fields, 39%, are located away from the Galactic plane. We also found 36 extended radio sources that are candidates for association with a corresponding γ -ray object, 19 of which are most likely supernova remnants or H ii regions, whereas 17 could be radio galaxies.

  4. Identification of southern radio sources

    International Nuclear Information System (INIS)

    Savage, A.

    1976-01-01

    Identifications are suggested for 32 radio sources from the southern zones of the Parkes 2700 MHz survey, 18 with galaxies, one with a confirmed and 12 with possible quasistellar objects, and one with a supernova remnant in the Large Magellanic Cloud. The identifications were made from the ESO IIa-O quick blue survey plates, the SRC IIIa-J deep survey plates and the Palomar sky survey prints. Accurate optical positions have also been measured for 10 of the objects and for five previously suggested QSOs. (author)

  5. On the redshift cut-off for flat-spectrum radio sources

    OpenAIRE

    Jarvis, Matt J.; Rawlings, Steve

    2000-01-01

    We use data from the Parkes Half-Jansky Flat-Spectrum (PHJFS) sample (Drinkwater et al. 1997) to constrain the cosmic evolution in the co-moving space density of radio sources in the top decade of the flat-spectrum radio luminosity function (RLF). A consistent picture for the high-redshift evolution is achieved using both simple parametric models, which are the first to allow for distributions in both radio luminosity and spectral index, and variants of the V / V_max test, some of which incor...

  6. Identifications and Photometric Redshifts of the 2 Ms Chandra Deep Field-South Sources

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Brusa, M.; Alexander, D. M.; Bauer, F. E.; Comastri, A.; Koekemoer, A.; Lehmer, B. D.; Mainieri, V.; Rafferty, D. A.; Schneider, D. P.; Silverman, J. D.; Vignali, C.

    2010-04-01

    We present reliable multiwavelength identifications and high-quality photometric redshifts for the 462 X-ray sources in the ≈2 Ms Chandra Deep Field-South (CDF-S) survey. Source identifications are carried out using deep optical-to-radio multiwavelength catalogs, and are then combined to create lists of primary and secondary counterparts for the X-ray sources. We identified reliable counterparts for 442 (95.7%) of the X-ray sources, with an expected false-match probability of ≈ 6.2%; we also selected four additional likely counterparts. The majority of the other 16 X-ray sources appear to be off-nuclear sources, sources associated with galaxy groups and clusters, high-redshift active galactic nuclei (AGNs), or spurious X-ray sources. A likelihood-ratio method is used for source matching, which effectively reduces the false-match probability at faint magnitudes compared to a simple error-circle matching method. We construct a master photometric catalog for the identified X-ray sources including up to 42 bands of UV-to-infrared data, and then calculate their photometric redshifts (photo-z's). High accuracy in the derived photo-z's is accomplished owing to (1) the up-to-date photometric data covering the full spectral energy distributions (SEDs) of the X-ray sources, (2) more accurate photometric data as a result of source deblending for ≈10% of the sources in the infrared bands and a few percent in the optical and near-infrared bands, (3) a set of 265 galaxy, AGN, and galaxy/AGN hybrid templates carefully constructed to best represent all possible SEDs, (4) the Zurich Extragalactic Bayesian Redshift Analyzer used to derive the photo-z's, which corrects the SED templates to best represent the SEDs of real sources at different redshifts and thus improves the photo-z quality. The reliability of the photo-z's is evaluated using the subsample of 220 sources with secure spectroscopic redshifts. We achieve an accuracy of |Δz|/(1 + z) ≈ 1% and an outlier [with |

  7. PySE: Software for extracting sources from radio images

    Science.gov (United States)

    Carbone, D.; Garsden, H.; Spreeuw, H.; Swinbank, J. D.; van der Horst, A. J.; Rowlinson, A.; Broderick, J. W.; Rol, E.; Law, C.; Molenaar, G.; Wijers, R. A. M. J.

    2018-04-01

    PySE is a Python software package for finding and measuring sources in radio telescope images. The software was designed to detect sources in the LOFAR telescope images, but can be used with images from other radio telescopes as well. We introduce the LOFAR Telescope, the context within which PySE was developed, the design of PySE, and describe how it is used. Detailed experiments on the validation and testing of PySE are then presented, along with results of performance testing. We discuss some of the current issues with the algorithms implemented in PySE and their interaction with LOFAR images, concluding with the current status of PySE and its future development.

  8. Extended Radio Emission in MOJAVE Blazars: Challenges to Unification

    Science.gov (United States)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-02-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile "core-only" source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Å, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  9. EXTENDED RADIO EMISSION IN MOJAVE BLAZARS: CHALLENGES TO UNIFICATION

    International Nuclear Information System (INIS)

    Kharb, P.; Lister, M. L.; Cooper, N. J.

    2010-01-01

    We present the results of a study on the kiloparsec-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud active galactic nuclei. New 1.4 GHz Very Large Array (VLA) radio images of six quasars and previously unpublished images of 21 blazars are presented, along with an analysis of the high-resolution (VLA A-array) 1.4 GHz emission for the entire sample. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. We expect more sensitive radio observations, however, to detect faint emission in these sources, as we have detected in the erstwhile 'core-only' source, 1548+056. The kiloparsec-scale radio morphology varies widely across the sample. Many BL Lac objects exhibit extended radio power and kiloparsec-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lac objects to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and parsec-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low-frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent parsec-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 A, is essentially an arbitrary one. While the two blazar subclasses display a smooth continuation in properties, they often reveal differences in the correlation test results when considered separately. This can be understood if, unlike quasars, BL Lac objects do not constitute a homogeneous population, but rather include both FRI and FRII radio galaxies for

  10. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  11. VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Johnson, Michael D.; Torres, Rosa M.; Briceño, Cesar

    2018-05-01

    We present observations of VLBA 20, a radio source found toward the edge of the Orion Nebula Cluster (ONC). Nonthermal emission dominates the spectral energy distribution of this object from the radio to mid-infrared regime, suggesting that VLBA 20 is extragalactic. This source is heavily scattered in the radio regime. Very Long Baseline Array observations resolve it to ∼34 × 19 mas at 5 GHz, and the wavelength dependence of the scattering disk is consistent with ν ‑2 at other frequencies. The origin of the scattering is most likely the ionized X-ray emitting gas from the winds of the most massive stars of the ONC. The scattering is highly anisotropic, with the axis ratio of 2:1, higher than what is typically observed toward other sources.

  12. FIRBACK Far Infrared Survey with ISO: Data Reduction, Analysis and First Results

    OpenAIRE

    Dole, Herve; Lagache, Guilaine; Puget, Jean-Loup; Gispert, Richard; Aussel, H.; Bouchet, F. R.; Ciliegi, C.; Clements, D. L.; Cesarsky, C.; Desert, F-X; Elbaz, D.; Franceschini, A.; Guiderdoni, B.; Harwit, M.; Laureijs, R.

    1999-01-01

    FIRBACK is one of the deepest cosmological surveys performed in the far infrared, using ISOPHOT. We describe this survey, its data reduction and analysis. We present the maps of fields at 175 microns. We point out some first results: source identifications with radio and mid infrared, and source counts at 175 microns. These two results suggest that half of the FIRBACK sources are probably at redshifts greater than 1. We also present briefly the large follow-up program.

  13. Discovery of a z = 7.452 High Equivalent Width Lyα Emitter from the Hubble Space Telescope  Faint Infrared Grism Survey

    Science.gov (United States)

    Larson, Rebecca L.; Finkelstein, Steven L.; Pirzkal, Norbert; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton M.; Hathi, Nimish; O’Connell, Robert; Östlin, Göran; Pasquali, Anna; Pharo, John; Rothberg, Barry; Windhorst, Rogier A.; The FIGS Team

    2018-05-01

    We present the results of an unbiased search for Lyα emission from continuum-selected 5.6 data set consists of 160 orbits of G102 slitless grism spectroscopy obtained with the Hubble Space Telescope(HST)/WFC3 as part of the Faint Infrared Grism Survey (FIGS; PI: Malhotra), which obtains deep slitless spectra of all sources in four fields, and was designed to minimize contamination in observations of previously identified high-redshift galaxy candidates. The FIGS data can potentially spectroscopically confirm the redshifts of galaxies, and as Lyα emission is resonantly scattered by neutral gas, FIGS can also constrain the ionization state of the intergalactic medium during the epoch of reionization. These data have sufficient depth to detect Lyα emission in this epoch, as Tilvi et al. have published the FIGS detection of previously known Lyα emission at z = 7.51. The FIGS data use five separate roll angles of HST to mitigate the contamination by nearby galaxies. We created a method that accounts for and removes the contamination from surrounding galaxies and also removes any dispersed continuum light from each individual spectrum. We searched for significant (>4σ) emission lines using two different automated detection methods, free of any visual inspection biases. Applying these methods on photometrically selected high-redshift candidates between 5.6 7 (140.3 ± 19.0 Å).

  14. An unusually strong Einstein ring in the radio source PKS1830-211

    International Nuclear Information System (INIS)

    Jauncey, D.L.

    1991-01-01

    RADIO observations of the strong, flat-spectrum radio source PKS1830-211 revealed a double structure, with a separation of 1 arcsec, suggesting that it might be a gravitationally lensed object. We have now obtained high-resolution radio images of PKS1830-211 from several interferometric radiotelescope networks, which show an unusual elliptical ring-like structure connecting the two brighter components. The presence of the ring, and the similarity of the two brighter spots, argue strongly that this is indeed a gravitationally lensed system, specifically an Einstein ring in which lens and lensed object are closely aligned. Although the source is close to the galactic plane, it seems that both the lens and background (lensed) object are extragalactic. This object is one hundred times brighter than either of the two previously discovered radio Einstein rings, and is among the six brightest flat-spectrum sources in the sky. Its brightness makes it a peculiar object: it must involve either a chance alignment of a lensing object with an unusually bright background source, or an alignment with a less bright object but amplified to an unusual degree. (author)

  15. Identification of southern radio sources

    International Nuclear Information System (INIS)

    Savage, A.; Bolton, J.G.; Wright, A.E.

    1977-01-01

    Identifications are suggested for 53 radio sources from the southern zones of the Parkes 2700-MHz survey, 32 with galaxies, 11 with suggested QSOs and 10 with confirmed QSOs. The identifications were made from the ESO quick blue survey plates, the SRC IIIa-J deep survey plates and the Palomar Sky Survey prints. Accurate optical positions have been measured for four of the new identifications and for two previously suggested identifications. A further nine previously suggested QSO identifications have also been confirmed by two-colour photography or spectroscopy. (author)

  16. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric; Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Monnier, John D.; Crepp, Justin; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A V = 8-12, with an effective temperature of ∼4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  17. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Laurent [Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Monnier, John D. [Department of Astronomy, University of Michigan, 941 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1090 (United States); Crepp, Justin [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Parry, Ian [University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge, CB3, OHA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  18. Variability of GPS Radio Sources at 5 GHz

    Indian Academy of Sciences (India)

    GPS) radio sources at 5 GHz and find that about one-third of them show considerable Inter-Month Variability (IMV), and these IMV phenomena are likely to be caused by interstellar scintillation (ISS). Furthermore, we find that those showing IMV ...

  19. Syncope (Fainting)

    Science.gov (United States)

    ... for Heart.org CPR & ECC for Heart.org Shop for Heart.org Causes for Heart.org Advocate ... loss of consciousness usually related to insufficient blood flow to the brain. It’s also called fainting or " ...

  20. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  1. Properties of Radio Sources in the FRB 121102 Field

    Science.gov (United States)

    Bower, Geoffrey C.; Chatterjee, Shami; Wharton, Robert; Law, Casey J.; Hessels, Jason; Spolaor, Sarah; Abruzzo, Matthew W.; Bassa, Cees; Butler, Bryan J.; Cordes, James M.; Demorest, Paul; Kaspi, Victoria M.; McLaughlin, Maura; Ransom, Scott M.; Scholz, Paul; Seymour, Andrew; Spitler, Laura; Tendulkar, Shriharsh P.; PALFA Survey; VLA+AO FRB121102 Simultaneous Campaign Team; EVN FRB121102 Campaign Team; Realfast Team

    2017-01-01

    Fast radio bursts are millisecond duration radio pulses of unknown origin. With dispersion measures substantially in excess of expected Galactic contributions, FRBs are inferred to originate extragalactically, implying very high luminosities. Models include a wide range of high energy systems such as magnetars, merging neutron star binaries, black holes, and strong stellar magnetic fields driving coherent radio emission. Central to the mystery of FRB origins are the absence of confirmed host objects at any wavelength. This is primarily the result of the poor localization from single dish detection of FRBs. Of the approximately 20 known examples, only one, FRB 121102, has been observed to repeat. This repetition presents an opportunity for detailed follow-up if interferometric localization to arcsecond accuracy can be obtained. The Very Large Array has previously been used to localize individual pulses from pulsars and rotating radio transients to arcsecond localizaiton. We present here the results of radio observations of the field of FRB 121102 that permit us to constrain models of possible progenitors of this bursting source. These observations can characterize active galactic nuclei, stars, and other progenitor objects.

  2. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    International Nuclear Information System (INIS)

    De la Luz, V.

    2016-01-01

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H − . In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H − , and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  3. Problem of spiral galaxies and satellite radio sources

    International Nuclear Information System (INIS)

    Arp, H.; Carpenter, R.; Gulkis, S.; Klein, M.

    1976-01-01

    A detailed comparison is made between the results of this program and the results of previous investigators. In particular, attention is called to the potentially important implications of an investigation by Tovmasyan, who searched a large number of spirals and found evidence that a small percentage of them apparently have radio satellites located up to 20' from the central galaxy. 15 sources were measured selected from Tovmasyan's list of 43 satellite sources. Results confirm his positions and relative flux densities for each of the sources

  4. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  5. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    International Nuclear Information System (INIS)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-01-01

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  6. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    Energy Technology Data Exchange (ETDEWEB)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Marshall, Kevin [Department of Physics and Astronomy, Widener University, Chester, PA 19013 (United States); Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver, E-mail: maune@chara.gsu.edu [Cahill Laboratory of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  7. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography

    Science.gov (United States)

    Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.

    2017-07-01

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P 0.80, P animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  8. A model for superliminal radio sources

    International Nuclear Information System (INIS)

    Milgrom, M.; Bahcall, J.N.

    1977-01-01

    A geometrical model for superluminal radio sources is described. Six predictions that can be tested by observations are summarized. The results are in agreement with all the available observations. In this model, the Hubble constant is the only numerical parameter that is important in interpreting the observed rates of change of angular separations for small redshifts. The available observations imply that H 0 is less than 55 km/s/Mpc if the model is correct. (author)

  9. Short timescale variability in the faint sky variability survey

    NARCIS (Netherlands)

    Morales-Rueda, L.; Groot, P.J.; Augusteijn, T.; Nelemans, G.A.; Vreeswijk, P.M.; Besselaar, E.J.M. van den

    2006-01-01

    We present the V-band variability analysis of the Faint Sky Variability Survey (FSVS). The FSVS combines colour and time variability information, from timescales of 24 minutes to tens of days, down to V = 24. We find that �1% of all point sources are variable along the main sequence reaching �3.5%

  10. AILES: the infrared and THz beamline on SOLEIL synchrotron radiation source

    International Nuclear Information System (INIS)

    Roy, P.; Brubach, J.B.; Rouzieres, M.; Pirali, O.; Kwabia Tchana, F.; Manceron, L.

    2008-01-01

    The development of a new infrared beamline (ligne de lumiere AILES) at the third generation Synchrotron Radiation source SOLEIL is underway. This beamline utilizes infrared synchrotron radiation from both the edge emission and the constant field conventional source. The expected performances including flux, spatial distribution of the photons, spectral range and stability are calculated and discussed. The optical system, spectroscopic stations and workspace are described. The calculation in the near field approach and the simulation by ray tracing show that the source with its adapted optics offers high flux and brilliance for a variety of infrared experiments. We also review the main research themes and the articulation and developments of the infrared sources at SOLEIL. (authors)

  11. CHANDRA OBSERVATIONS OF 3C RADIO SOURCES WITH z < 0.3. II. COMPLETING THE SNAPSHOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Tremblay, G. R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Muenchen (Germany); Harris, D. E.; O' Dea, C. P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kharb, P.; Axon, D. [Department of Physics, Rochester Institute of Technology, Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Balmaverde, B.; Capetti, A. [INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Baum, S. A. [Carlson Center for Imaging Science 76-3144, 84 Lomb Memorial Dr., Rochester, NY 14623 (United States); Chiaberge, M.; Macchetto, F. D.; Sparks, W. [Space Telescope Science Institute, 3700 San Martine Drive, Baltimore, MD 21218 (United States); Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Giovannini, G. [INAF-Istituto di Radioastronomia di Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Grandi, P.; Torresi, E. [INAF-IASF-Istituto di Astrofisica Spaziale e fisica Cosmica di Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Risaliti, G. [INAF-Osservatorio Astronomico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-15

    We report on the second round of Chandra observations of the 3C snapshot survey developed to observe the complete sample of 3C radio sources with z < 0.3 for 8 ks each. In the first paper, we illustrated the basic data reduction and analysis procedures performed for the 30 sources of the 3C sample observed during Chandra Cycle 9, while here we present the data for the remaining 27 sources observed during Cycle 12. We measured the X-ray intensity of the nuclei and of any radio hot spots and jet features with associated X-ray emission. X-ray fluxes in three energy bands, i.e., soft, medium, and hard, for all the sources analyzed are also reported. For the stronger nuclei, we also applied the standard spectral analysis, which provides the best-fit values of the X-ray spectral index and absorbing column density. In addition, a detailed analysis of bright X-ray nuclei that could be affected by pile-up has been performed. X-ray emission was detected for all the nuclei of the radio sources in our sample except for 3C 319. Among the current sample, there are two compact steep spectrum radio sources, two broad-line radio galaxies, and one wide angle tail radio galaxy, 3C 89, hosted in a cluster of galaxies clearly visible in our Chandra snapshot observation. In addition, we also detected soft X-ray emission arising from the galaxy cluster surrounding 3C 196.1. Finally, X-ray emission from hot spots has been found in three FR II radio sources and, in the case of 3C 459, we also report the detection of X-ray emission associated with the eastern radio lobe as well as X-ray emission cospatial with radio jets in 3C 29 and 3C 402.

  12. Asymmetries in four powerful radio sources

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Morison, I.

    1983-01-01

    The extragalactic radio sources 3C 153, 196, 249.1 and 268.4 have been observed at frequencies of 408 and 1666 MHz with the new MERLIN array operated by Jodrell Bank, giving resolutions of approx. 0.9 and 0.25 arcsec respectively. The sources show marked asymmetries about the central object in spectral index, flux and morphology, which we believe are most naturally accounted for by the effects of a time-dependent asymmetry in the central powerhouse. In the case of 3C 249.1 the observations suggest that energy is being supplied alternately to the two sides of the source. The 1666-MHz observations also show that each of the other three sources contains one extremely compact hotspot. The minimum internal energy densities in these hotspots are such that confinement by ram pressure of motion through the intergalactic medium may not be possible, indicating that such features are transient phenomena in free expansion, or that some other confinement mechanism is operating. (author)

  13. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    Science.gov (United States)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  14. Scorpius X-1 - an evolving double radio source

    International Nuclear Information System (INIS)

    Geldzahler, B.J.; Fomalont, E.B.; National Radio Astronomy Observatory, Charlottesville, VA)

    1986-01-01

    The radio emission from Sco X-1 has been monitored with the VLA over a 5 yr period with 0.4 arcsec resolution at 4.85 GHz. The source contains three components: an unresolved radio core coincident with the stellar binary system; an unresolved lobe northeast of the core; and an extended lobe southwest of the core. All radio components are approximately comoving with the binary system and are thus undoubtedly associated with it. The northeast lobe is moving away from the core at a rate of 0.013-0.017 arcsec/yr, which corresponds to a velocity of 31-41 km/sec, assuming a distance of 500 pc to Sco X-1. The relative velocity of a hot spot in the southwest lobe with respect to the core is less than 70 km/sec. The flux density in the lobes appears to vary by about 20 percent over time scales of 1 yr, and the variations between the lobes may be correlated. The twin-exhaust beam model where energy is transported from the core to the lobes in narrow beams is the most acceptable model for the evolution of the source. However, interstellar density (greater than 0.6/cu cm) is needed to restrain the velocity of the northeast lobe (presumably the working surface of the beam). 16 references

  15. SOURCE REGIONS OF THE TYPE II RADIO BURST OBSERVED DURING A CME–CME INTERACTION ON 2013 MAY 22

    International Nuclear Information System (INIS)

    Mäkelä, P.; Reiner, M. J.; Akiyama, S.; Gopalswamy, N.; Krupar, V.

    2016-01-01

    We report on our study of radio source regions during the type II radio burst on 2013 May 22 based on direction-finding analysis of the Wind /WAVES and STEREO /WAVES (SWAVES) radio observations at decameter–hectometric wavelengths. The type II emission showed an enhancement that coincided with the interaction of two coronal mass ejections (CMEs) launched in sequence along closely spaced trajectories. The triangulation of the SWAVES source directions posited the ecliptic projections of the radio sources near the line connecting the Sun and the STEREO-A spacecraft. The WAVES and SWAVES source directions revealed shifts in the latitude of the radio source, indicating that the spatial location of the dominant source of the type II emission varies during the CME–CME interaction. The WAVES source directions close to 1 MHz frequencies matched the location of the leading edge of the primary CME seen in the images of the LASCO/C3 coronagraph. This correspondence of spatial locations at both wavelengths confirms that the CME–CME interaction region is the source of the type II enhancement. Comparison of radio and white-light observations also showed that at lower frequencies scattering significantly affects radio wave propagation.

  16. Optical, infrared and radio astronomy from techniques to observation

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents the established sciences of optical, infrared, and radio astronomy as distinct research areas, focusing on the science targets and the constraints that they place on instrumentation in the different domains. It aims to bridge the gap between specialized books and practical texts, presenting the state of the art in different techniques. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities that drive the building of instrumentation and the development of advanced techniques. The specific telescopes and detectors are then presented, together with the techniques used to measure fluxes and spectra. Finally, the instruments and their limits are discussed to assist readers in choice of setup, planning and execution of observations, and data reduction. The volume also includes worked examples and problem sets to improve student understanding; tables and figures in chapters summarize the state of the art of instrumentation and techniques.

  17. The Einstein@Home Gamma-ray Pulsar Survey. II. Source Selection, Spectral Analysis, and Multiwavelength Follow-up

    Science.gov (United States)

    Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.

    2018-02-01

    We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.

  18. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-01-01

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 μJy at the field center and redshift ∼5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P ∼> 3 x 10 24 W Hz -1 ) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for ∼30% of the sample and ∼60% of all AGNs, and outnumbering radio-loud AGNs at ∼< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  19. Suzaku Diagnostics of the Energetics in the Lobes of the Giant Radio Galaxy 3C 35

    Science.gov (United States)

    Isobe, Naoki; Seta, Hiromi; Gandhi, Poshak; Tashiro, Makoto S.

    2011-02-01

    The Suzaku observation of a giant radio galaxy 3C 35 revealed faint extended X-ray emission, associated with its radio lobes and/or host galaxy. After careful subtraction of the X-ray and non-X-ray background and contaminating X-ray sources, the X-ray spectrum of the faint emission was reproduced by a sum of the power-law (PL) and soft thermal components. The soft component was attributed to the thermal plasma emission from the host galaxy. The photon index of the PL component, Γ = 1.35+0.56 -0.86 +0.11 -0.10, where the first and second errors represent the statistical and systematic ones, was found to agree with the synchrotron radio index from the lobes, ΓR = 1.7. Thus, the PL component was attributed to the inverse Compton (IC) X-rays from the synchrotron electrons in the lobes. The X-ray flux density at 1 keV was derived as 13.6 ± 5.4+4.0 -3.6 nJy with the photon index fixed at the radio value. The X-ray surface brightness from these lobes (~0.2 nJy arcmin-2) is lowest among the lobes studied through the IC X-ray emission. In combination with the synchrotron radio flux density, 7.5 ± 0.2 Jy at 327.4 MHz, the electron energy density spatially averaged over the lobes was evaluated to be the lowest among those radio galaxies, as u e = (5.8 ± 2.3+1.9 -1.7) × 10-14 erg cm-3 over the electron Lorentz factor of 103-105. The magnetic energy density was calculated as u m = (3.1+2.5 -1.0 +1.4 -0.9) × 10-14 erg cm-3, corresponding to the magnetic field strength of 0.88+0.31 -0.16 +0.19 -0.14 μG. These results suggest that the energetics in the 3C 35 lobes are nearly consistent with equipartition between the electrons and magnetic fields.

  20. THE CHROMOSPHERIC SOLAR LIMB BRIGHTENING AT RADIO, MILLIMETER, SUB-MILLIMETER, AND INFRARED WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, V. [Conacyt—SCiESMEX, Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Morelia, Michoacán, 58190, México (Mexico)

    2016-07-10

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the autoconsistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-local thermodynamic equilibrium was computed for hydrogen, electron density, and H{sup −}. In order to solve the radiative transfer equation, a three-dimensional (3D) geometry was employed to determine the ray paths, and Bremsstrahlung, H{sup −}, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high-resolution observations at the limb obtained by Clark. We found that there are differences between the observed and computed solar radii of 12,000 km at 20 GHz, 5000 km at 100 GHz, and 1000 km at 3 THz for both semi-empirical models. A difference of 8000 km in the solar radii was found when comparing our results against the heights obtained from H α observations of spicules-off at the solar limb. We conclude that the solar radii cannot be reproduced by VALC and C7 semi-empirical models at radio—infrared wavelengths. Therefore, the structures in the high chromosphere provide a better measurement of the solar radii and their limb brightening as shown in previous investigations.

  1. Evolution in linear sizes and the Faraday effects in radio sources

    International Nuclear Information System (INIS)

    Anene, G.; Ugwoke, A.C.

    2001-05-01

    It is still a matter of conjecture whether the observed depolarization in radio sources originate from an external Faraday screen lying in our line of sight, or is largely due to internal processes occurring within these sources. This paper argues for an external origin. By applying recent evidences from the evolution of linear sizes while allowing for selection effects, it is shown that the density parameters within radio sources do not depend on redshift, implying that the observed depolarizations is epoch independent and may therefore, be largely external in origin. We also show that the observed low correlation between λ 1/2 and linear size(D) cannot be improved much even when allowance is made for evolution in D. (author)

  2. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    Science.gov (United States)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  3. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    Science.gov (United States)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  4. Radio Observations of Ultra-Luminous X-Ray Sources and their Implication for Models

    Science.gov (United States)

    Koerding, E. G.; Colbert, E. J. M.; Falcke, H.

    2004-05-01

    We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These intriguing sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg/sec. Assuming isotropic emission the Eddington Limit suggests that they harbor intermediate mass black holes. Due to the problems of this explanation also other possibilities are currently discussed, among them are anisotropic emission, super-Eddington accretion flows or relativistically beamed emission from microquasars. Detections of compact radio cores at the positions of ULXs would be a direct hint to jet-emission. However, as the ULX phenomenom is connected to star formation we have to assume that they are strongly accreting objects. Thus, similar to their nearest Galactic cousins, the very high state X-ray binaries (see e.g., GRS 1915), ULXs may show radio flares. A well-defined sample of the 9 nearest ULXs has been monitored eight times during 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is 0.15 mJy (4 σ ) for flares and 68 μ Jy for continuous emission. In M82 some ULXs seem to be connected to radio supernova remnants. Besides that no flare or continuous emission has been detected. As the timescales of radio flares in ULXs are highly uncertain, it could well be that we have undersampled the lightcurve. However, upper bounds for the probability to detect a flare can be given. The upper limits for the continuous emission are compared with the emission found in NGC 5408 X-1 and with quasars and microquasars. We show that these limits are well in agreement with the microblazar model using the Radio/X-ray correlation of XRBs and AGN. Thus, it could well be that ULXs are microblazers which may be radio loud.

  5. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  6. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  7. Two-Component Structure of the Radio Source 0014+813 from VLBI Observations within the CONT14 Program

    Science.gov (United States)

    Titov, O. A.; Lopez, Yu. R.

    2018-03-01

    We consider a method of reconstructing the structure delay of extended radio sources without constructing their radio images. The residuals derived after the adjustment of geodetic VLBI observations are used for this purpose. We show that the simplest model of a radio source consisting of two point components can be represented by four parameters (the angular separation of the components, the mutual orientation relative to the poleward direction, the flux-density ratio, and the spectral index difference) that are determined for each baseline of a multi-baseline VLBI network. The efficiency of this approach is demonstrated by estimating the coordinates of the radio source 0014+813 observed during the two-week CONT14 program organized by the International VLBI Service (IVS) in May 2014. Large systematic deviations have been detected in the residuals of the observations for the radio source 0014+813. The averaged characteristics of the radio structure of 0014+813 at a frequency of 8.4 GHz can be calculated from these deviations. Our modeling using four parameters has confirmed that the source consists of two components at an angular separation of 0.5 mas in the north-south direction. Using the structure delay when adjusting the CONT14 observations leads to a correction of the average declination estimate for the radio source 0014+813 by 0.070 mas.

  8. The Geometry of the Infrared and X-Ray Obscurer in a Dusty Hyperluminous Quasar

    DEFF Research Database (Denmark)

    Farrah, Duncan; Baloković, Mislav; Stern, Daniel

    2016-01-01

    We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrare...

  9. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    International Nuclear Information System (INIS)

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-01-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of ∼18% at M K s < -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  10. Probing the bias of radio sources at high redshift

    CSIR Research Space (South Africa)

    Passmoor, S

    2012-11-01

    Full Text Available The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate-to-high-redshift radio continuum sources for which...

  11. WiseView: Visualizing motion and variability of faint WISE sources

    Science.gov (United States)

    Caselden, Dan; Westin, Paul, III; Meisner, Aaron; Kuchner, Marc; Colin, Guillaume

    2018-06-01

    WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.

  12. Radio Frequency Energy Harvesting Sources

    Directory of Open Access Journals (Sweden)

    Action NECHIBVUTE

    2017-12-01

    Full Text Available This radio frequency (RF energy harvesting is an emerging technology and research area that promises to produce energy to run low-power wireless devices. The great interest that has recently been paid to RF harvesting is predominantly driven by the great progress in both wireless communication systems and broadcasting technologies that have availed a lot of freely propagating ambient RF energy. The principle aim of an RF energy harvesting system is to convert the received ambient RF energy into usable DC power. This paper presents a state of the art concise review of RF energy harvesting sources for low power applications, and also discusses open research questions and future research directions on ambient RF energy harvesting.

  13. IRAS 15099-5856: REMARKABLE MID-INFRARED SOURCE WITH PROMINENT CRYSTALLINE SILICATE EMISSION EMBEDDED IN THE SUPERNOVA REMNANT MSH15-52

    International Nuclear Information System (INIS)

    Koo, Bon-Chul; Kim, Hyun-Jeong; Im, Myungshin; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Lee, Ho-Gyu; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S.; Gaensler, B. M.; Lee, Jae-Joon; Jeong, Woong-Seob; Tatematsu, Ken'ichi; Kawabe, Ryohei; Ezawa, Hajime; Kohno, Kotaro; Wilson, Grant; Yun, Min S.

    2011-01-01

    We report new mid-infrared (MIR) observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended (∼4') arc-like filaments. The source is seen only at ≥10 μm. The Spitzer mid-infrared spectrum of IRS1 shows prominent emission features from Mg-rich crystalline silicates, strong [Ne II] 12.81 μm, and several other faint ionic lines. We model the MIR spectrum as thermal emission from dust and compare with the Herbig Be star HD 100546 and the luminous blue variable R71, which show very similar MIR spectra. Molecular line observations reveal two molecular clouds around the source, but no associated dense molecular cores. We suggest that IRS1 is heated by UV radiation from the adjacent O star Muzzio 10 and that its crystalline silicates most likely originated in a mass outflow from the progenitor of the supernova remnant (SNR) MSH 15-52. IRS1, which is embedded in the SNR, could have been shielded from the SN blast wave if the progenitor was in a close binary system with Muzzio 10. If MSH 15-52 is a remnant of Type Ib/c supernova (SN Ib/c), as has been previously proposed, this would confirm the binary model for SN Ib/c. IRS1 and the associated structures may be the relics of massive star death, as shaped by the supernova explosion, the pulsar wind, and the intense ionizing radiation of the embedded O star.

  14. Analysis of polymer foil heaters as infrared radiation sources

    International Nuclear Information System (INIS)

    Witek, Krzysztof; Piotrowski, Tadeusz; Skwarek, Agata

    2012-01-01

    Infrared radiation as a heat source is used in many fields. In particular, the positive effect of far-infrared radiation on living organisms has been observed. This paper presents two technological solutions for infrared heater production using polymer-silver and polymer-carbon pastes screenprinted on foil substrates. The purpose of this work was the identification of polymer layers as a specific frequency range IR radiation sources. The characterization of the heaters was determined mainly by measurement of the surface temperature distribution using a thermovision camera and the spectral characteristics were determined using a special measuring system. Basic parameters obtained for both, polymer silver and polymer carbon heaters were similar and were as follows: power rating of 10–12 W/dm 2 , continuous working surface temperature of 80–90 °C, temperature coefficient of resistance (TCR) about +900 ppm/K for polymer-carbon heater and about +2000 ppm/K for polymer-silver, maximum radiation intensity in the wavelength range of 6–14 μm with top intensity at 8.5 μm and heating time about 20 min. For comparison purposes, commercial panel heater was tested. The results show that the characteristics of infrared polymer heaters are similar to the characteristics of the commercial heater, so they can be taken into consideration as the alternative infrared radiation sources.

  15. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    International Nuclear Information System (INIS)

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-01-01

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F 1.4 G Hz ∼> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z ∼< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  16. Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Science.gov (United States)

    Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.

    2016-08-01

    Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.

  17. Electron energy spectrum produced in radio sources by turbulent, resonant acceleration

    International Nuclear Information System (INIS)

    Eilek, J.A.; Henriksen, R.N.

    1984-01-01

    We consider relativistic particle acceleration by resonant Alfven waves which are driven internally in a radio source from fully developed fluid turbulence. We find that self-similar behavior as described by Lacombe, f(p)proportionalp - /sup s/ but with sroughly-equal4.5, arises self-consistently when this turbulent wave driving coexists with synchrotron losses. The coupling of the wave and particle distributions provides feedback which drives an arbitrary initial distribution to the form-stable, self-similar form. The model predicts that turbulent plasma in a radio source should evolve toward a synchrotron spectral index, 0.5< or approx. =α< or approx. =1.0 in one particle lifetime, and that the average spectrum of most sources should also be in this range. The theory may also be applicable to other turbulent sites, such as cosmic-ray reaccelertion in the interstellar medium

  18. `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    Science.gov (United States)

    Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.

    2017-10-01

    We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.

  19. Double radio sources and the new approach to cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1977-08-01

    The methodology of cosmic plasma physics is discussed. A summary is given of laboratory investigations of electric double layers, a phenomenon which is known to be very important in laboratory discharges. The importance of electric double layers in the Earth's surrounding is established. The scaling laws between laboratory and magnetospheric double layers are studied. A further extrapolation to galactic phenomena leads to a theory of double radio sources. From analogy with laboratory and magnetospheric current systems it is argued that the galactic current might produce double layers where a large energy dissipation takes place. This leads to a theory of the double radio sources which within the necessary wide limits of uncertainty is quantitatively reconcilable with observations. (author)

  20. Turblence-related morphology in extragalactic radio sources

    International Nuclear Information System (INIS)

    Benford, G.; Ferrari, A.; Trussoni, E.

    1980-01-01

    As particle beams propagate through the intergalactic medium, unavoidable instabilities from shear flows produce turbulent magnetic waves. Rather than disrupting beams, this wave energy may enhance luminosity and alter morphology. For reasonable parameters the dominant nonlinear process is an energy cascade from long wavelengths ( 21 cm) to short wavelengths ( 14 cm), where particles are reaccelerated in quasi-linear fachion. We construct a phenomenological turbulence theory to describe this. In an ambient magnetic field, wave-particle scatterings which cause reacceleration can also lead to spatial cross-field diffusion, broadening the beam. Thus beams can flare rapidly as they propagate. This relates luminosity to morphology in a new way. The broadening is wholly intrinsic, unrelated to the beam environment. A variety of radio source types may be related to his effect. Protons do not scatter strongly, remaining collimated and depositing most of the beam energy in hot spots, which are generally weak in the radio but strong in the X-ray

  1. What Are “X-shaped” Radio Sources Telling Us? II. Properties of a Sample of 87

    Science.gov (United States)

    Saripalli, Lakshmi; Roberts, David H.

    2018-01-01

    In an earlier paper, we presented Jansky Very Large Array multi-frequency, multi-array continuum imaging of a unique sample of low-axial ratio radio galaxies. In this paper, the second in the series, we examine the images to learn the phenomenology of how the off-axis emission relates to the main radio source. Inversion-symmetric offset emission appears to be bimodal and to originate from one of two strategic locations: outer ends of radio lobes (outer-deviation) or from inner ends (inner-deviation). The latter sources are almost always associated with edge-brightened sources. With S- and Z-shaped sources being a subset of outer-deviation sources, this class lends itself naturally to explanations involving black hole axis precession. Our data allow us to present a plausible model for the more enigmatic inner-deviation sources with impressive wings; as for outer-deviation sources these too require black hole axis shifts, although they also require plasma backflows into relic channels. Evolution in morphology over time relates the variety in structures in inner-deviation sources including XRGs. With features such as non-collinearities, central inner-S “spine,” corresponding lobe emission peaks, double and protruding hotspots not uncommon, black hole axis precession, drifts, or flips could be active in a significant fraction of radio sources with prominent off-axis emission. At least 4% of radio galaxies appear to undergo black hole axis rotation. Quasars offer a key signature for recognizing rotating axes. With a rich haul of sources that have likely undergone axis rotation, our work shows the usefulness of low-axial ratio sources in pursuing searches for binary supermassive black holes.

  2. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Science.gov (United States)

    Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.

    2018-01-01

    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

  3. Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting

    Science.gov (United States)

    Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.

    2018-01-01

    We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.

  4. Magnetic field structures in active compact radio sources

    International Nuclear Information System (INIS)

    Jones, T.W.; Rudnick, L.; Fiedler, R.L.; Aller, H.D.; Aller, M.F.; Hodge, P.E.

    1985-01-01

    The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references

  5. Luminosity dependence in the ratio of X-ray to infrared emission of QSOs

    International Nuclear Information System (INIS)

    Worrall, D.M.

    1987-01-01

    The correlation of X-ray and near-infrared luminosity is studied for a sample of radio-quiet QSOs. The X-ray to infrared ratio is found to decrease as the infrared luminosity increases. No preference is found between the correlations of X-ray luminosity with optical or infrared luminosity. This implies that optical and infrared emission are equally good predictors of X-ray emission. Source models which directly link infrared and X-ray emission are discussed, and a preference is found for a specific synchrotron self-Compton model. This model predicts the correct luminosity dependence of the X-ray to infrared ratio if certain conditions apply. 55 references

  6. Radio measurements in the fields of gamma-ray sources. Pt. 1

    International Nuclear Information System (INIS)

    Sieber, W.; Schlickeiser, R.

    1982-01-01

    The γ-ray source CG 195+04 has been searched for radio counterparts at wavelengths between 2.8 cm and 18 cm with the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie, Bonn. We have detected a number of sources and measured their spectra. Our positions may form the basis for future surveys in other frequency ranges. Different physical emission models suggest compactness of the γ-ray source. (orig.)

  7. Fundamental limits of radio interferometers: calibration and source parameter estimation

    OpenAIRE

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.

    2012-01-01

    We use information theory to derive fundamental limits on the capacity to calibrate next-generation radio interferometers, and measure parameters of point sources for instrument calibration, point source subtraction, and data deconvolution. We demonstrate the implications of these fundamental limits, with particular reference to estimation of the 21cm Epoch of Reionization power spectrum with next-generation low-frequency instruments (e.g., the Murchison Widefield Array -- MWA, Precision Arra...

  8. Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population

    Science.gov (United States)

    Carilli, C. L.; Lee, Nicholas; Capak, P.; Schinnerer, E.; Lee, K.-S.; McCraken, H.; Yun, M. S.; Scoville, N.; Smolčić, V.; Giavalisco, M.; Datta, A.; Taniguchi, Y.; Urry, C. Megan

    2008-12-01

    We present an analysis of the radio properties of large samples of Lyman break galaxies (LBGs) at z ~ 3, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the z ~ 3 LBGs (U-band dropouts), with a 1.4 GHz flux density of 0.90 +/- 0.21 μJy. The stacked emission is unresolved, with a size = 3 is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are (1) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift or (2) cosmic-ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a "submillimeter galaxy"). Based on observations in the COSMOS Legacy Survey including those taken on the HST, Keck, NRAO-VLA, Subaru, KPNO 4 m, CTIO 4 m, and CFHT 3.6 m. The Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  9. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in [National Center for Radio Astrophysics—Tata Institute of Fundamental Research Post Box 3, Ganeshkhind P.O., Pune 41007 (India)

    2017-10-01

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.

  10. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  11. The symmetry, misalignment and kinematic evolution of double radio sources

    International Nuclear Information System (INIS)

    Macklin, J.T.

    1981-01-01

    The symmetry properties of a carefully selected sample of 76 double radio sources have been examined. It is found that: (1) The average intrinsic misalignment (the ratio of the displacement of the optical object to the source size, before projection) of these sources is 0.038, independent of the intrinsic size; (2) sources which are most misaligned tend to have the highest values of D, the ratio of hot-spot separations from the nucleus; (3) hot spots are more asymmetric in brightness than are tails; and (4) the relative brightness of hot spots is not correlated with D, but the relation between D and F, the ratio of total flux densities in components, implies that most of the diffuse structure tends to be associated with the hot spot closer to the optical identification. Computer simulations have been used to examine (2); this is best explained if the major contribution to the D distribution is independent of orientation and is correlated with the intrinsic misalignment. It is shown that (2) is in conflict with the hypothesis that motion of the parent galaxy relative to the intergalactic medium makes the dominant contribution to the observed misalignment. (3) and (4) can be explained in terms of a beam model of double radio sources which includes the effects of the external environment. (author)

  12. PySE: Python Source Extractor for radio astronomical images

    Science.gov (United States)

    Spreeuw, Hanno; Swinbank, John; Molenaar, Gijs; Staley, Tim; Rol, Evert; Sanders, John; Scheers, Bart; Kuiack, Mark

    2018-05-01

    PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).

  13. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    International Nuclear Information System (INIS)

    Singal, J.; Petrosian, V.; Stawarz, Ł.; Lawrence, A.

    2013-01-01

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R ≥ –1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  14. LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0

    Science.gov (United States)

    Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.

    2018-04-01

    This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.

  15. Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations

    Science.gov (United States)

    Coppejans, D. L.; Margutti, R.; Guidorzi, C.; Chomiuk, L.; Alexander, K. D.; Berger, E.; Bietenholz, M. F.; Blanchard, P. K.; Challis, P.; Chornock, R.; Drout, M.; Fong, W.; MacFadyen, A.; Migliori, G.; Milisavljevic, D.; Nicholl, M.; Parrent, J. T.; Terreran, G.; Zauderer, B. A.

    2018-03-01

    The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}values {ε }e=0.1 and {ε }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.

  16. J1649+2635: A Grand-Design Spiral with a Large Double-Lobed Radio Source

    Science.gov (United States)

    Mao, Minnie Y.; Owen, Frazer; Duffin, Ryan; Keel, Bill; Lacy, Mark; Momjian, Emmanuel; Morrison, Glenn; Mroczkowski, Tony; Neff, Susan; Norris, Ray P.; hide

    2014-01-01

    We report the discovery of a grand-design spiral galaxy associated with a double-lobed radio source. J1649+2635 (z = 0.0545) is a red spiral galaxy with a prominent bulge that it is associated with a L(1.4GHz) is approximately 10(exp24) W Hz(exp-1) double-lobed radio source that spans almost 100 kpc. J1649+2635 has a black hole mass of M(BH) is approximately 3-7 × 10(exp8) Solar mass and SFR is approximately 0.26 - 2.6 solar mass year(exp-1). The galaxy hosts a approximately 96 kpc diffuse optical halo, which is unprecedented for spiral galaxies. We find that J1649+2635 resides in an overdense environment with a mass of M(dyn) = 7.7(+7.9/-4.3) × 10(exp13) Solar mass, likely a galaxy group below the detection threshold of the ROSAT All-Sky Survey. We suggest one possible scenario for the association of double-lobed radio emission from J1649+2635 is that the source may be similar to a Seyfert galaxy, located in a denser-than-normal environment. The study of spiral galaxies that host large-scale radio emission is important because although rare in the local Universe, these sources may be more common at high-redshifts.

  17. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  18. MERLIN observations of steep-spectrum radio sources at 6 cm

    International Nuclear Information System (INIS)

    Akujor, C.E.; Zhang, F.J.; Fanti, C.

    1991-01-01

    We present high-resolution observations of steep-spectrum radio sources made with MERLIN at 5 GHz. Thirty-one objects, comprising 11 quasars and 20 galaxies, most of them being 'Compact Steep-Spectrum' sources (CSSs), have been mapped with resolutions from 80 to 150 mas. This completes the current series of observations of CSS sources made with MERLIN at 5 GHz. We find that the majority of the quasars have complex structures, while galaxies tend to have double or triple structures, consistent with other recent studies of CSSs. (author)

  19. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita [Indian Institute of Space Science and Technology, Trivandrum 695547 (India); Ghosh, Swarna K.; Ishwara Chandra, C. H., E-mail: swagat.12@iist.ac.in [National Centre For Radio Astrophysics, Pune 411007 (India)

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {sub ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  20. Discovery of a radio nebula around PSR J0855-4644

    Science.gov (United States)

    Maitra, C.; Roy, S.; Acero, F.; Gupta, Y.

    2018-03-01

    We report the discovery of a diffuse radio emission around PSR J0855-4644 using an upgraded GMRT (uGMRT) observation at 1.35 GHz. The radio emission is spatially coincident with the diffuse X-ray pulsar wind nebula (PWN) seen with XMM-Newton but is much larger in extent compared to the compact axisymmetric PWN seen with Chandra. The morphology of the emission, with a bright partial ring-like structure and two faint tail-like features strongly resembles a bow shock nebula, and indicates a velocity of 100 km/s through the ambient medium. We conclude that the emission is most likely to be associated with the radio PWN of PSR J0855-4644. From the integrated flux density, we estimate the energetics of the PWN.

  1. A Fast Radio Burst Every Second?

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    far. [Fialkov Loeb 2017]The FRB luminosity functionFRBs may all have the same intrinsic brightness (like Type Ia supernovae, for instance). Alternatively, there may be many more faint and dim FRBs than bright ones (like the distribution of galaxy luminosities). Thisdifference affects the number of FRBs we could detect.The host galaxy populationAre FRBs most commonly hosted by low-mass galaxies like FRB 121102? Or do they occur in high-mass galaxies as well? This affects the number of FRBs we would expect to observe at different redshifts.Future HopeBy exploring a range of models that vary these three factors, Fialkov and Loeb find estimates for the rate of FRBs that would appear inthe 500 MHz3.5 GHz frequency band probed by observatories like Parkes, Arecibo, and the Australian Square Kilometre Array Pathfinder (ASKAP).Fialkov and Loeb find that, when we account for faint sources, one FRB may occur per second across the sky in this band. The authors show that future low-frequency radio telescopes with higher sensitivity, such as the Square Kilometre Array, should be able to detect many more of these sources, helping us to differentiate between the models and narrow down the properties of the bursts and their hosts. This, in turn, may finally reveal what causes these mysterious signals.CitationAnastasia Fialkov and Abraham Loeb 2017 ApJL 846 L27. doi:10.3847/2041-8213/aa8905

  2. A Search for Faint, Diffuse Halo Emission in Edge-On Galaxies with Spitzer/IRAC

    Science.gov (United States)

    Ashby, Matthew; Arendt, R. G.; Pipher, J. L.; Forrest, W. J.; Marengo, M.; Barmby, P.; Willner, S. P.; Stauffer, J. R.; Fazio, G. G.

    2006-12-01

    We present deep infrared mosaics of the nearby edge-on spiral galaxies NGC 891, 4244, 4565, and 5907. These data were acquired at 3.6, 4.5, 5.8, and 8.0 microns using the Infrared Array Camera aboard Spitzer as part of GTO program number 3. This effort is designed to detect the putative faint, diffuse emission from halos and thick disks of spiral galaxies in the near-mid infrared under the thermally stable, low-background conditions of space. These conditions in combination with the advantageous viewing angles presented by these well-known edge-on spirals provide arguably the best opportunity to characterize the halo/thick disk components of such galaxies in the infrared. In this contribution we describe our observations, data reduction techniques, corrections for artifacts in the data, and the modeling approach we applied to analyze this unique dataset. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  3. Extending pure luminosity evolution models into the mid-infrared, far-infrared and submillimetre

    Science.gov (United States)

    Hill, Michael D.; Shanks, Tom

    2011-07-01

    Simple pure luminosity evolution (PLE) models, in which galaxies brighten at high redshift due to increased star formation rates (SFRs), are known to provide a good fit to the colours and number counts of galaxies throughout the optical and near-infrared. We show that optically defined PLE models, where dust reradiates absorbed optical light into infrared spectra composed of local galaxy templates, fit galaxy counts and colours out to 8 μm and to at least z≈ 2.5. At 24-70 μm, the model is able to reproduce the observed source counts with reasonable success if 16 per cent of spiral galaxies show an excess in mid-IR flux due to a warmer dust component and a higher SFR, in line with observations of local starburst galaxies. There remains an underprediction of the number of faint-flux, high-z sources at 24 μm, so we explore how the evolution may be altered to correct this. At 160 μm and longer wavelengths, the model fails, with our model of normal galaxies accounting for only a few percent of sources in these bands. However, we show that a PLE model of obscured AGN, which we have previously shown to give a good fit to observations at 850 μm, also provides a reasonable fit to the Herschel/BLAST number counts and redshift distributions at 250-500 μm. In the context of a ΛCDM cosmology, an AGN contribution at 250-870 μm would remove the need to invoke a top-heavy IMF for high-redshift starburst galaxies.

  4. FIRST Bent-Double Radio Sources: Tracers of High-Redshift Clusters

    International Nuclear Information System (INIS)

    Blanton, E. L.; Gregg, M. D.; Helfand, D. J.; Becker, R. H.; White, R. L.

    2000-01-01

    Bent-double radio sources can act as tracers for clusters of galaxies. We present imaging and spectroscopic observations of the environments surrounding 10 of these sources (most of them wide-angle tails [WATs]) selected from the VLA FIRST survey. Our results reveal a previously unknown cluster associated with eight of the radio sources with redshifts in the range 0.33< z<0.85; furthermore, we cannot rule out that the other two bent doubles may be associated with clusters at higher redshift. Richness measurements indicate that these clusters are typical of the majority of those found in the Abell catalog, with a range of Abell richness classes from 0 to 2. The line-of-sight velocity dispersions are very different from cluster to cluster, ranging from approximately 300 to 1100 km s-1. At the upper end of these intervals, we may be sampling some of the highest redshift massive clusters known. Alternatively, the large velocity dispersions measured in some of the clusters may indicate that they are merging systems with significant substructure, consistent with recent ideas concerning WAT formation (Burns et al.). (c) 2000 The American Astronomical Society

  5. A search for HI in elliptical galaxies with nuclear radio sources

    International Nuclear Information System (INIS)

    Dressel, L.L.; Bania, T.M.; O'Connell, R.W.

    1982-01-01

    Two of the galaxies with large HI mass, NGC 1052 and 4278, are known to have powerful nuclear continuum radio sources (P 2380 approximately 10 22 WHz -1 ). Since both of these attributes are fairly rare among elliptical galaxies, their coexistence in these galaxies is not likely to have occurred by chance. The authors have therefore observed twelve other elliptical galaxies with nuclear radio power P 2380 > 10 22 WHz -1 at Arecibo Observatory, to determine whether a large mass of HI is a necessary auxillary to nuclear continuum emission. (Auth.)

  6. THE EVOLUTION OF THE REST-FRAME V-BAND LUMINOSITY FUNCTION FROM z = 4: A CONSTANT FAINT-END SLOPE OVER THE LAST 12 Gyr OF COSMIC HISTORY

    International Nuclear Information System (INIS)

    Marchesini, Danilo; Stefanon, Mauro; Brammer, Gabriel B.; Whitaker, Katherine E.

    2012-01-01

    We present the rest-frame V-band luminosity function (LF) of galaxies at 0.4 ≤ z < 4.0, measured from a near-infrared selected sample constructed from the NMBS, the FIRES, the FIREWORKS, and the ultra-deep NICMOS and WFC3 observations in the HDFN, HUDF, and GOODS-CDFS, all having high-quality optical-to-mid-infrared data. This unique sample combines data from surveys with a large range of depths and areas in a self-consistent way, allowing us to (1) minimize the uncertainties due to cosmic variance; and (2) simultaneously constrain the bright and faint ends with unprecedented accuracy over the targeted redshift range, probing the LF down to 0.1L* at z ∼ 3.9. We find that (1) the faint end is fairly flat and with a constant slope from z = 4, with α = –1.27 ± 0.05; (2) the characteristic magnitude has dimmed by 1.3 mag from z ∼ 3.7 to z = 0.1; (3) the characteristic density has increased by a factor of ∼8 from z ∼ 3.7 to z = 0.1, with 50% of this increase from z ∼ 4 to z ∼ 1.8; and (4) the luminosity density peaks at z ≈ 1-1.5, increasing by a factor of ∼4 from z = 4.0 to z ≈ 1-1.5, and subsequently decreasing by a factor of ∼1.5 by z = 0.1. We find no evidence for a steepening of the faint-end slope with redshift out to z = 4, in contrast with previous observational claims and theoretical predictions. The constant faint-end slope suggests that the efficiency of stellar feedback may evolve with redshift. Alternative interpretations are discussed, such as different masses of the halos hosting faint galaxies at low and high redshifts and/or environmental effects.

  7. Properties of Spectrally Defined Red QSOs at z = 0.3–1.2

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw [Institute of Astronomy, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan (China)

    2017-06-10

    We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOs with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.

  8. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Balokovic, M. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smolcic, V. [Argelander-Institut fuer Astronomie, Auf dem Hugel 71, D-53121 Bonn (Germany); Ivezic, Z. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Zamorani, G. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Schinnerer, E. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  9. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    International Nuclear Information System (INIS)

    Baloković, M.; Smolčić, V.; Ivezić, Ž.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-01-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 ± 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  10. The gaseous haloes of evolving galaxies: a probe using the linear sizes of radio sources

    International Nuclear Information System (INIS)

    Subramanian, K.; Swarup, G.

    1990-01-01

    As galaxies form and evolve, their gaseous haloes are expected to undergo corresponding evolution. We examine here whether observations of the linear sizes of radio sources can be used to probe such evolution. For this purpose we first represent the gas density at various stages of galaxy formation and evolution by means of simple model density profiles, and then work out the expected linear sizes (l) of radio sources in these models. (author)

  11. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10 4 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources

  12. The structure of the radio emission from the NGC 1579/LkHα101 region

    International Nuclear Information System (INIS)

    Brown, R.L.; Broderick, J.J.; Knapp, G.R.

    1976-01-01

    Radio-frequency observations at 3.7 and 11 cm of the NGC 1579/LkHα101 region show that the radio emission arises in a compact, < 1'' core concentric with a more extended approximately 1' emission region. At these wavelengths the compact component is optically thick, with a spectrum increasing as ν, whereas the extended region is optically thin and contributes at least 80 per cent of the total flux density. LkHα101 appears to be the source of excitation for all of the radio emission; this result, together with the total infrared luminosity, suggests that an appropriate spectral classification for LkHα101 is B1 IIe. (author)

  13. Planck early results. XIV. ERCSC validation and extreme radio sources

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Lavonen, N.; León-Tavares, J.

    2011-01-01

    Planck's all-sky surveys at 30-857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic sources to frequencies 2-20 times higher than allowed by past, large-area, ground-based surveys. We combine the results of the Planck Early Release Compact So...

  14. Planck early results. XIII. Statistical properties of extragalactic radio sources in the Planck Early Release Compact Source Catalogue

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    The data reported in Planck's Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measurement extends to the rarest and brightest sou...

  15. Note: A versatile radio-frequency source for cold atom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Wu, Yu-Ping; Min, Hao; Yang, Tao; Jiang, Xiao, E-mail: jiangx@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-08-15

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicated RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.

  16. On the radio source scintillations caused by plasma inhomogeneities behind a shock wave

    International Nuclear Information System (INIS)

    Pimenov, S.F.

    1984-01-01

    The turbulence in the interplanetary and interstellar medium is shown to become anisotropic and statistically inhomogeneous after a shock wave passing. Scintillation intensity spectra of radio sources are estimated. The possibilities to derive the inhomogeneity spectra and source brightness distribution from scintillation changes are discussed

  17. Occultations of Astrophysical Radio Sources as Probes of Planetary Environments: A Case Study of Jupiter and Possible Applications to Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Paul [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Vogt, Marissa F. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2017-02-10

    Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth. Radio occultations are a common method for measuring these properties, but they traditionally rely on radio transmissions from a spacecraft near the planet. Here, we explore whether occultations of radio emissions from a distant astrophysical radio source can be used to measure magnetic field strength, plasma density, and neutral density around planets. In a theoretical case study of Jupiter, we find that significant changes in polarization angle due to Faraday rotation occur for radio signals that pass within 10 Jupiter radii of the planet and that significant changes in frequency and power occur from radio signals that pass through the neutral atmosphere. There are sufficient candidate radio sources, such as pulsars, active galactic nuclei, and masers, that occultations are likely to occur at least once per year. For pulsars, time delays in the arrival of their emitted pulses can be used to measure plasma density. Exoplanets, whose physical properties are very challenging to observe, may also occult distant astrophysical radio sources, such as their parent stars.

  18. Unseen cosmos the universe in radio

    CERN Document Server

    Graham-Smith, Francis

    2013-01-01

    Radio telescopes have transformed our understanding of the Universe. Pulsars, quasars, Big Bang cosmology: all are discoveries of the new science of radio astronomy. Here, Francis Graham-Smith describes the birth, development, and maturity of radio astronomy, from the first discovery of cosmic radio waves to its present role as a major part of modern astronomy. Radio is part of the electromagnetic spectrum, covering infra-red, visible light, ultraviolet, X-rays, and gamma-rays, and Graham-Smith explains why it is that radio waves give us a unique view of the Universe. Tracing the development o

  19. The radio and optical counterpart of the new Fermi LAT flaring source J0109+6134

    Science.gov (United States)

    Paredes, J. M.; Martí, J.; Peracaula, M.

    2010-02-01

    Following the recent ATELs #2414, #2416 and #2420 concerning the Fermi-LAT, AGILE and Swift/XRT consistent detections of the new gamma-ray flaring source J0109+6134, we wish to remind that the proposed radio counterpart (VCS2 J0109+6133/GT 0106+613) was extensively observed nearly two decades ago by different authors in the context of the GT catalogue of Galactic Plane radio sources (Taylor and Gregory 1983, AJ, 88, 1784; Gregory and Taylor 1986, AJ 92, 371).

  20. Model of the Sgr B2 radio source

    International Nuclear Information System (INIS)

    Gosachinskij, I.V.; Khersonskij, V.K.

    1981-01-01

    The dynamical model of the gas cloud around the radio source Sagittarius B2 is suggested. This model describes the kinematic features of the gas in this source: contraction of the core and rotation of the envelope. The stability of the cloud at the initial stage is supported by the turbulent motion of the gas, turbulence energy dissipates due to magnetic viscosity. This process is occurring more rapidly in the dense core and the core begins to collapse but the envelope remains stable. The parameters of the primary cloud and some parameters (mass, density and size) of the collapse are calculated. The conditions in the core at the moment of its fragmentation into masses of stellar order are established [ru

  1. Determination of the properties of magnetic turbulence in radio sources

    International Nuclear Information System (INIS)

    Spangler, S.R.

    1983-01-01

    We have considered the transport of polarized synchrotron radiation in a source possessing a highly irregular magnetic field, as proposed by Laing. The transport equation has been solved in a special case, relating the observable correlation functions in the Stokes parameters Q and U to the correlation functions of magnetic field and plasma density in the source. A rough application of our results to observations of the radio galaxy 3C 166 indicates that the turbulent scale length may be a few percent of the lobe size

  2. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  3. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    International Nuclear Information System (INIS)

    Dzib, Sergio A.; Rodríguez-Garza, Carolina B.; Rodríguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-01-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact (∼0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of α = 1.3 ± 0.3 (S ν ∝ν α ). This spectral index and the brightness temperature of the source (∼6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk

  4. Where does particle acceleration occur in extended extragalactic radio sources

    International Nuclear Information System (INIS)

    Hughes, P.A.

    1980-01-01

    It is suggested that particle acceleration does not occur in the extended lobes of extragalactic radio sources, but only in the compact heads. Away from these, waves capable of accelerating particles may not propagate. Although wave generation within the lobes would allow acceleration there, it is not obvious that the plasma is sufficiently disturbed for this to occur. (author)

  5. The Compact Radio Sources in the Nucleus of NGC 1068

    Science.gov (United States)

    Roy, A. L.; Colbert, E. J. M.; Wilson, A. S.; Ulvestad, J. S.

    1998-09-01

    We report VLBA images of the nucleus of the Seyfert galaxy NGC 1068 at 1.7, 5, and 15 GHz, with resolutions between 3 and 10 mas (0.2-0.7 pc) and a sensitivity of ~106 K at all three frequencies. Our goals are to study the morphology of the radio emission at subparsec resolution and to investigate thermal gas in the putative obscuring disk or torus and in the narrow-line region clouds through free-free absorption of the radio emission. All four known radio components in the central arcsecond (S2, S1, C, and NE, from south to north) have been detected at either 1.7 or 5 GHz, or both. No radio emission was detected at 15 GHz. Component S1 is probably associated with the active nucleus, with radio emission originating from the inner edge of the obscuring torus according to Gallimore et al. Our observed flux densities at 1.7 and 5 GHz are in agreement with their thermal bremsstrahlung emission model, and we find that the nuclear radiation may be strong enough to heat the gas in S1 to the required temperature of ~4 × 106 K. The bremsstrahlung power would be 0.15(frefl/0.01) times the bolometric luminosity of the nucleus between 1014.6 and 1018.4 Hz (where frefl is the fraction of radiation reflected into our line of sight by the electron-scattering mirror) and so the model is energetically reasonable. We also discuss two other models for S1 that also match the observed radio spectrum: electron scattering by the torus of radio emission from a compact synchrotron self-absorbed source and synchrotron radiation from the torus itself. Components NE and S2 have spectra consistent with optically thin synchrotron emission, without significant absorption. Both of these components are elongated roughly perpendicular to the larger scale radio jet, suggesting that their synchrotron emission is related to transverse shocks in the jet or to bow shocks in the external medium. Component C has a nonthermal spectrum absorbed at low frequency. This absorption is consistent with free

  6. On the nature of emission of the star-gas-dust complex of the W1 radio source

    International Nuclear Information System (INIS)

    Udal'tsov, V.A.; Kovalenko, A.V.

    1982-01-01

    The brightness distribution of the radio source W 1 at 102 MHz has been investigated with the 187x384 m radio telescope in Pushchino. It is shown that W 1 is genetically connected with the stellar association Ceph IV as well as with the extended emission nebula GS 285 which consists of numerous nebulae, including two bright ones, Sharpless (S) 171 and NGC 7822. The radio emission of the nebula S 171 is shown to be thermal, and there is no Supernova remnant in it, in contrast with the other authors' suggestion. By two independent methods, the distance to S 171 has been evaluated to be 840 pc. The emission of NGC 7822 is mainly thermal. The extended nebula GS 285 is a thermal source, not a remnant of a Supernova that had exploded in a dense gas - dust medium, as was believed by other authors. Attention is drawn to the wrong identification by many authors of the radio source in the S 171 region with the nebula NGC 7822. It is shown that when measuring the difference of spectral indices of two sources, the calibration error may be eliminated if their calibration at given frequency is made by means of the same source [ru

  7. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, M.; Siemiginowska, A.; Labiano, A.

    2013-01-01

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 ± 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3σ level out to ∼60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of β = 0.58 ± 0.2 and a core radius of 9.4 +1.1 -0.9 arcsec. The average temperature of the cluster is equal to kT = 4.4 +0.5 -0.3 keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L (0.5-2 k eV) = 3 × 10 44 erg s –1 and mass 1.5 × 10 14 M ☉

  8. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Bajraszewska, M. [Torun Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziacka 5, 87-100 Torun (Poland); Siemiginowska, A. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Labiano, A., E-mail: magda@astro.uni.torun.pl [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir km. 4, E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-07-20

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 {+-} 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3{sigma} level out to {approx}60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of {beta} = 0.58 {+-} 0.2 and a core radius of 9.4{sup +1.1}{sub -0.9} arcsec. The average temperature of the cluster is equal to kT = 4.4{sup +0.5}{sub -0.3} keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L{sub (0.5-2{sub keV)}} = 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and mass 1.5 Multiplication-Sign 10{sup 14} M{sub Sun}.

  9. The rotation measures of radio sources and their interpretation

    International Nuclear Information System (INIS)

    Vallee, J.P.; Kronberg, P.P.

    1975-01-01

    Rotation measures of 251 discrete radio sources have been determined after incorporating new polarization data at short wavelenghts. These have been applied to a 'slab' model-fitting technique to determine the most likely spiral arm magnetic field structure. The best agreement is obtained for a longitudinal spiral arm magnetic field, directed toward (lII approximately 90 0 , bII approximately 0 0 ), but perturbed by an anomaly towards the North Galactic Spur. (orig.) [de

  10. Physical processes in extragalactic radio sources

    NARCIS (Netherlands)

    Carilli, CL; Perley, R; Harris, DE; Barthel, PD

    This paper summarizes extensive observational studies of the closest ultraluminous radio galaxy Cygnus A. These data are used to test jet theory for powering the double-lobed radio emitting structures. Issues addressed include: (i) jet stability, confinement, composition, and velocity, (ii) the

  11. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  12. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.

    Science.gov (United States)

    Moon, Eunseong; Blaauw, David; Phillips, Jamie D

    2017-05-01

    Wireless biomedical implantable devices on the mm-scale enable a wide range of applications for human health, safety, and identification, though energy harvesting and power generation are still looming challenges that impede their widespread application. Energy scavenging approaches to power biomedical implants have included thermal [1-3], kinetic [4-6], radio-frequency [7-11] and radiative sources [12-14]. However, the achievement of efficient energy scavenging for biomedical implants at the mm-scale has been elusive. Here we show that photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 31 % for GaAs under 1.06 μW/mm 2 infrared irradiation at 850 nm. Finally, these photovoltaic cells demonstrate highly efficient energy harvesting through biological tissue from ambient sunlight, or irradiation from infrared sources such as used in present-day surveillance systems, by utilizing the near infrared (NIR) transparency window between the 650 nm and 950 nm wavelength range [15-17].

  13. Radio properties of type 1.8 and 1.9 Seyfert galaxies

    International Nuclear Information System (INIS)

    Ulvestad, J.S.

    1986-01-01

    A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle. 39 references

  14. H- radio frequency source development at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  15. New complete sample of identified radio sources. Part 2. Statistical study

    International Nuclear Information System (INIS)

    Soltan, A.

    1978-01-01

    Complete sample of radio sources with known redshifts selected in Paper I is studied. Source counts in the sample and the luminosity - volume test show that both quasars and galaxies are subject to the evolution. Luminosity functions for different ranges of redshifts are obtained. Due to many uncertainties only simplified models of the evolution are tested. Exponential decline of the liminosity with time of all the bright sources is in a good agreement both with the luminosity- volume test and N(S) realtion in the entire range of observed flux densities. It is shown that sources in the sample are randomly distributed in scales greater than about 17 Mpc. (author)

  16. Faint Traces

    OpenAIRE

    Denyer, Frank

    2005-01-01

    CD of six compositions by Denyer played by The Barton Workshop (Amsterdam): ‘Out of the Shattered Shadows 1’; ‘Out of the Shattered Shadows 2’; ‘Faint Traces’; ‘Music for Two Performers’; ‘Play’; ‘Passages’. Liner notes by Bob Gilmore. \\ud \\ud Like ‘Fired City’ (2002), this is a portrait CD and comprises première recordings of six works. The three longest – one of which is the title track (2001) – are the most recent. All six works continue Denyer’s research into new acoustic instrumental sou...

  17. Infrared observations of Seyfert galaxies and quasars

    International Nuclear Information System (INIS)

    Neugebauer, G.

    1978-01-01

    The infrared energy distributions of the Seyfert galaxies apparently contain three components: a galactic stellar component, a thermal component from heated dust, plus a nonthermal component. The appearance of the infrared energy distribution depends on which component dominates. There is also a correlation observed between the infrared energy distribution and the Khachikian Weedman class. Preliminary data on bright quasars are given. The infrared energy distributions generally increase into the infrared with a power law slope of approximately 1. In detail they differ from power laws with a significant fraction emitting most of their energy near 3μm. No differences in radio loud and radio quiet are obvious from the infrared energy distributions. The variability of the quasars in the infrared is generally correlated with the variability in the visible, although significant exceptions have been observed. (Auth.)

  18. Information Sources on U. S. Radio Regulations in the Law Library.

    Science.gov (United States)

    Lockwood, James D.

    An annotated bibliography gives the radio regulations in the U.S., using sources available in the University of Michigan Law Library as well as the University of Michigan Libraries. Information is applicable to other law, university and public libraries. Relevant material on television regulations is included. Listings cover federal agencies, card…

  19. The use of radio and television as sources of agricultural information ...

    African Journals Online (AJOL)

    This study examined the use of radio and television as sources of agricultural information among poultry farmers in Egbeda Local Government area of Oyo State. Sixty farmers from 4 villages namely: Egbeda, Erunmu, Olode and Owobale were selected for this study. Primary data were collected from the respondents by ...

  20. Photometry of faint blue stars

    International Nuclear Information System (INIS)

    Kilkenny, D.; Hill, P.W.; Brown, A.

    1977-01-01

    Photometry on the uvby system is given for 61 faint blue stars. The stars are classified by means of the Stromgren indices, using criteria described in a previous paper (Kilkenny and Hill (1975)). (author)

  1. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    Energy Technology Data Exchange (ETDEWEB)

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana, E-mail: s.dzib@crya.unam.mx [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58089 (Mexico)

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  2. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  3. Structure of the radio emission from the NGC 1579/LkH. cap alpha. 101 region

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R L [National Radio Astronomy Observatory, Charlottesville, Va. (USA); Broderick, J J; Knapp, G R

    1976-06-01

    Radio-frequency observations at 3.7 and 11 cm of the NGC 1579/LkH..cap alpha..101 region show that the radio emission arises in a compact, < 1'' core concentric with a more extended approximately 1' emission region. At these wavelengths the compact component is optically thick, with a spectrum increasing as ..nu.., whereas the extended region is optically thin and contributes at least 80 per cent of the total flux density. LkH..cap alpha..101 appears to be the source of excitation for all of the radio emission; this result, together with the total infrared luminosity, suggests that an appropriate spectral classification for LkH..cap alpha..101 is B1 IIe.

  4. THE PROPER MOTIONS OF THE DOUBLE RADIO SOURCE n IN THE ORION BN/KL REGION

    International Nuclear Information System (INIS)

    Rodríguez, Luis F.; Loinard, Laurent; Zapata, Luis; Lizano, Susana; Dzib, Sergio A.; Menten, Karl M.; Gómez, Laura

    2017-01-01

    We have extended the time baseline for observations of the proper motions of radio sources in the Orion BN/KL region from 14.7 to 22.5 years. We present improved determinations for the sources BN and I. In addition, we address the proper motions of the double radio source n, that have been questioned in the literature. We confirm that all three sources are moving away at transverse velocities of tens of kilometers per second from a region in-between them, where they were located about 500 years ago. Source n exhibits a new component that we interpret as due to a one-sided ejection of free–free emitting plasma that took place after 2006.36. We used the highly accurate relative proper motions between sources BN and I to determine that their closest separation took place in the year 1475 ± 6, when they were within ∼100 au or less from each other in the plane of the sky.

  5. THE PROPER MOTIONS OF THE DOUBLE RADIO SOURCE n IN THE ORION BN/KL REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Loinard, Laurent; Zapata, Luis; Lizano, Susana [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Dzib, Sergio A.; Menten, Karl M. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Gómez, Laura, E-mail: l.rodriguez@crya.unam.mx [Joint ALMA Observatory, Alonso de Córdoba 3107, Vitacura, Santiago (Chile)

    2017-01-10

    We have extended the time baseline for observations of the proper motions of radio sources in the Orion BN/KL region from 14.7 to 22.5 years. We present improved determinations for the sources BN and I. In addition, we address the proper motions of the double radio source n, that have been questioned in the literature. We confirm that all three sources are moving away at transverse velocities of tens of kilometers per second from a region in-between them, where they were located about 500 years ago. Source n exhibits a new component that we interpret as due to a one-sided ejection of free–free emitting plasma that took place after 2006.36. We used the highly accurate relative proper motions between sources BN and I to determine that their closest separation took place in the year 1475 ± 6, when they were within ∼100 au or less from each other in the plane of the sky.

  6. 318-MHz variability of complete samples of extragalactic radio sources. II

    International Nuclear Information System (INIS)

    Dennison, B.; Broderick, J.J.; Ledden, J.E.; O'Dell, S.L.; Condon, J.J.

    1981-01-01

    We report the remainder of two- and three-epoch 318-MHz observations of extragalactic sources in samples complete to 3 Jy at 1400 MHz and 1 Jy at 5000 MHz. From analysis of this low-frequency variability survey, we find that steep-spectrum (α> or =0.5) sources do not appear to vary, but about 40% of all flat-spectrum (α<0.5) sources exhibit low-frequency variability exceeding 8% over approx.5 yr. Among the flat-spectrum sources, those with inverted spectra show the largest fractional variations. We also find that the incidence of low-frequency variability is strongly correlated with the determination that a source is an optically violent variable. These statistical properties are consistent with models invoking relativistic beaming of radio and optical emission

  7. Diffuse infrared emission from the galaxy. I. Solar neighborhood

    International Nuclear Information System (INIS)

    Boulanger, F.; Perault, M.

    1988-01-01

    A large-scale study of the infrared emission originating in the solar neighborhood based on IRAS data is presented. Away from heating sources and outside molecular clouds, the infrared emission from the ISM is well-correlated with the column density of H I gas. The interstellar radiation field and the dust abundance are roughly uniform on scales of the order of 100 pc. The extinction in the polar caps is discussed, and the origin of the infrared emission from the solar neighborhood is investigated. It is shown that stars younger than a few 100 million yr are responsible for two-thirds of the infrared emission from the solar neighborhood, but that most of this emission comes from interstellar matter not associated with current star formation. The correlation between infrared and radio-continuum fluxes of galaxies breaks down on the scale of a few hundred pc around regions of star formation. 81 references

  8. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  9. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  10. Far infrared spectroscopy of high-Tc superconductors at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Perkowitz, S.; Williams, G.P.

    1989-01-01

    This paper reports the first far infrared transmission spectra for micron-thick films of high-T c rare-earth superconductors such as DyBaCuO, with implications for the superconducting gap. Spectra were obtained at Brookhaven's National Synchrotron Light Source, a new high-intensity, broad-band millimeter to infrared source. The National Synchrotron Light Source at Brookhaven National Laboratory, known for powerful X-ray and UV output, is also a high-intensity (10 to 1000 times above a black body), high-brightness (intensity per solid angle), broad-band, picosecond, millimeter to infrared source. These features make it valuable for far-infrared condensed matter experiments, especially those in highly absorbing or extremely small systems. A first application has been to measure very small infrared transmissions through thick bulk-like high-T c superconducting films. Preliminary measurements through films of the conventional superconductor Nb 3 Ge established techniques. These were followed by the first measurements (to the author's knowledge) through micron-thick films of high-T c rare-earth superconductors such as DyBaCuO over 10-300 cm -1 , which includes the superconducting gap according to BCS or moderately strong-coupled theory. The authors discuss the transmission evidence bearing on the existence of a gap and other important features of high-T c superconductors, and describe the synchrotron and instrumentation features which make possible these unusual measurements

  11. Star formation at high redshift and the importance of dust obscuration

    DEFF Research Database (Denmark)

    Michalowski, Michal

    One of the aspects of the understanding of the Universe evolution is its star formation history. In order to gain a complete picture of the Universe evolution it is important to know when the stars we see today were formed. One of the method to study this problem is to use far-infrared and radio...... emission of galaxies. In this way it is possible to investigate the sites of star formation that are totally obscured by dust and therefore invisible at the optical wavelengths. It is because the energy absorbed by dust in the optical is re-emitted in the infrared, whereas radio emission is unaffected...... and/or radio, namely their enhanced submillimeter / radio emission combined with optical faintness and blue colors. I find that these four galaxies are young, highly star-forming, low-mass and dusty....

  12. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Yoo, Kwang-Lim; Kim, Nam-Young; Hwangbo, Chang Kwon

    2002-01-01

    We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2|Ti|Ag| TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 Ω/□ (where □ stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR

  13. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Langston, Glen [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications for models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.

  14. CROSS-CORRELATION BETWEEN X-RAY AND OPTICAL/NEAR-INFRARED BACKGROUND INTENSITY FLUCTUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Wynne, Ketron; Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Yongquan [CAS Key Laboratory for Researches in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, Bin [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Brandt, William [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, 16802 (United States); Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-01

    Angular power spectra of optical and infrared background anisotropies at wavelengths between 0.5 and 5 μ m are a useful probe of faint sources present during reionization, in addition to faint galaxies and diffuse signals at low redshift. The cross-correlation of these fluctuations with backgrounds at other wavelengths can be used to separate some of these signals. A previous study on the cross-correlation between X-ray and Spitzer fluctuations at 3.6 μ m and 4.5 μ m has been interpreted as evidence for direct collapse black holes present at z  > 12. Here we return to this cross-correlation and study its wavelength dependence from 0.5 to 4.5 μ m using Hubble and Spitzer data in combination with a subset of the 4 Ms Chandra observations in GOODS-S/ECDFS. Our study involves five Hubble bands at 0.6, 0.7, 0.85, 1.25, and 1.6 μ m, and two Spitzer -IRAC bands at 3.6 μ m and 4.5 μ m. We confirm the previously seen cross-correlation between 3.6 μ m (4.5 μ m) and X-rays with 3.7 σ (4.2 σ ) and 2.7 σ (3.7 σ ) detections in the soft [0.5–2] keV and hard [2–8] keV X-ray bands, respectively, at angular scales above 20 arcsec. The cross-correlation of X-rays with Hubble is largely anticorrelated, ranging between the levels of 1.4 σ –3.5 σ for all the Hubble and X-ray bands. This lack of correlation in the shorter optical/NIR bands implies the sources responsible for the cosmic infrared background at 3.6 and 4.5 μ m are at least partly dissimilar to those at 1.6 μ m and shorter.

  15. Global spiral structure of M81 - radio continuum maps

    International Nuclear Information System (INIS)

    Bash, F.N.; Kaufman, M.; Ohio State Univ., Columbus)

    1986-01-01

    VLA observations of the radio continuum emission from M81 at 6 and 20 cm are presented and used to check the predictions of density-wave theories. Both thermal and nonthermal radiation from the spiral arms are detected. Most of the bright knots along the radio arms are giant radio H II regions. The nonthermal emission defines spiral arms that are patchy and well-resolved, with a width of 1-2 kpc. The observed nonthermal arms are too broad to agree with the continuum gasdynamical calculations of Roberts (1969), Shu et al. (1972), and Visser (1978, 1980) for a classical density wave model. The observed arm widths appear consistent with the predictions of density-wave models that emphasize the clumpy nature of the ISM. The 20 cm arms appear to spiral outward from a faint inner H I ring, suggesting that the ring is produced by the inner Lindblad resonance. 36 references

  16. Outer heliospheric radio emissions. II - Foreshock source models

    Science.gov (United States)

    Cairns, Iver H.; Kurth, William S.; Gurnett, Donald A.

    1992-01-01

    Observations of LF radio emissions in the range 2-3 kHz by the Voyager spacecraft during the intervals 1983-1987 and 1989 to the present while at heliocentric distances greater than 11 AU are reported. New analyses of the wave data are presented, and the characteristics of the radiation are reviewed and discussed. Two classes of events are distinguished: transient events with varying starting frequencies that drift upward in frequency and a relatively continuous component that remains near 2 kHz. Evidence for multiple transient sources and for extension of the 2-kHz component above the 2.4-kHz interference signal is presented. The transient emissions are interpreted in terms of radiation generated at multiples of the plasma frequency when solar wind density enhancements enter one or more regions of a foreshock sunward of the inner heliospheric shock. Solar wind density enhancements by factors of 4-10 are observed. Propagation effects, the number of radiation sources, and the time variability, frequency drift, and varying starting frequencies of the transient events are discussed in terms of foreshock sources.

  17. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  18. Radio weak lensing shear measurement in the visibility domain - II. Source extraction

    Science.gov (United States)

    Rivi, M.; Miller, L.

    2018-05-01

    This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper, we focused on the development and testing of the method for the simple case of individual galaxies located at the phase centre, and proposed to extend it to the realistic case of many sources in the field of view by isolating visibilities of each source with a faceting technique. In this second paper, we present a detailed algorithm for source extraction in the visibility domain and show its effectiveness as a function of the source number density by running simulations of SKA1-MID observations in the band 950-1150 MHz and comparing original and measured values of galaxies' ellipticities. Shear measurements from a realistic population of 104 galaxies randomly located in a field of view of 1 \\deg ^2 (i.e. the source density expected for the current radio weak lensing survey proposal with SKA1) are also performed. At SNR ≥ 10, the multiplicative bias is only a factor 1.5 worse than what found when analysing individual sources, and is still comparable to the bias values reported for similar measurement methods at optical wavelengths. The additive bias is unchanged from the case of individual sources, but it is significantly larger than typically found in optical surveys. This bias depends on the shape of the uv coverage and we suggest that a uv-plane weighting scheme to produce a more isotropic shape could reduce and control additive bias.

  19. RADIO SOURCES FROM A 31 GHz SKY SURVEY WITH THE SUNYAEV-ZEL'DOVICH ARRAY

    International Nuclear Information System (INIS)

    Muchovej, Stephen; Hawkins, David; Lamb, James; Woody, David; Leitch, Erik; Carlstrom, John E.; Culverhouse, Thomas; Greer, Chris; Hennessy, Ryan; Loh, Michael; Marrone, Daniel P.; Pryke, Clem; Sharp, Matthew; Joy, Marshall; Miller, Amber; Mroczkowski, Tony

    2010-01-01

    We present the first sample of 31 GHz selected sources to flux levels of 1 mJy. From late 2005 to mid-2007, the Sunyaev-Zel'dovich Array observed 7.7 deg 2 of the sky at 31 GHz to a median rms of 0.18 mJy beam -1 . We identify 209 sources at greater than 5σ significance in the 31 GHz maps, ranging in flux from 0.7 mJy to ∼200 mJy. Archival NVSS data at 1.4 GHz and observations at 5 GHz with the Very Large Array are used to characterize the sources. We determine the maximum-likelihood integrated source count to be N(>S) = (27.2 ± 2.5)deg -2 x (S mJy ) -1.18±0.12 over the flux range 0.7-15 mJy. This result is significantly higher than predictions based on 1.4 GHz selected samples, a discrepancy which can be explained by a small shift in the spectral index distribution for faint 1.4 GHz sources. From comparison with previous measurements of sources within the central arcminute of massive clusters, we derive an overdensity of 6.8 ± 4.4, relative to field sources.

  20. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-01-01

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  1. Physics of compact radio sources. I. Particle acceleration and flux variations

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    The observed patterns of variability of compact radio sources may be explained by assuming that the radio components are plasmons containing relativistic particles, and by applying a model with the following features: (1) the plasmons are ejected at high speed into the interstellar medium in the nuclei of active galaxies: (2) ram pressure confinement of the plasmons leads to Rayleigh-Taylor and Kelvin-Helmholtz instabilities therein; (3) turbulence is thereby introduced into the plasmons; (4) the turbulence amplifies the plasmon magnetic field (for a short period) and this leads to betatron aceleration of the relativistic particles; (5) the turbulence vortices continue to accelerate the particles by the second-order Fermi acceleration mechanism. The emission patterns are the result of the combination of these accelerations and adiabatic losses

  2. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  3. Flux density measurements of radio sources at 2.14 millimeter wavelength

    International Nuclear Information System (INIS)

    Cogdell, J.R.; Davis, J.H.; Ulrich, B.T.; Wills, B.J.

    1975-01-01

    Flux densities of galactic and extragalactic sources, and planetary temperatures, have been measured at 2.14 mm wavelength (140 GHz). Results are presented for OJ 287; the galactic sources DR 21, W3, and Orion A; the extragalactic sources PKS 0106plus-or-minus01, 3C 84, 3C 120, BL Lac, 3C 216, 3C 273, 3C 279, and NGC 4151; and the Sun, Venus, Mars, and Jupiter. Also presented is the first measurement of the 2.14-mm temperature of Uranus. The spectra of some of these sources are discussed. The flux density scale was calibrated absolutely. The measurements were made with a new continuum receiver on the 4.88-m radio telescope of The University of Texas

  4. The Reipurth 50 - north infrared source

    International Nuclear Information System (INIS)

    Casali, M.M.

    1991-01-01

    Near-infrared imaging, imaging polarimetry and CVF spectroscopy of Re50N reveal the presence of a single illuminating source, IRS1. The extinction around IRS1 seems to be distributed anisotropically, with a lower extinction path to the reflection nebula than in the line-of-sight. IRS1 appears to be a young steep-spectrum object, with the bulk of its IR emission coming from hot dust. Multiple scattering in the tail of the reflection nebula could explain its relatively blue colours away from IRS1. (author)

  5. Radio News Source Preference by Residents of UYO Urban, Nigeria

    Directory of Open Access Journals (Sweden)

    CHARLES OBOT

    2013-09-01

    Full Text Available Exposure to broadcast news by audience members is part of human information processing.  Radio is believed to be a major source of news on many local and national issues for many people in many countries. But it was uncertain whether the assumption was tenable in Nigeria. Selectivity plays significant role in audience members’ exposure to broadcast news.  The study set out to investigate which radio station(s residents of Uyo residents tune to for news on important local and national issues. It also studied what factors influence their choice of radio station for news on socio-political crises in Nigeria. The findings showed that majority of the respondents prefer foreign radio stations – Voice of America (VOA and British Broadcasting Corporation (BBC for news on socio-political crises in Nigeria. The survey also revealed that media credibility exerted great influence on audience exposure to broadcast news and choice of broadcast medium for news. It is the submission of this work that the continuous presentation of one-sided point of view, whether in government-controlled media or privately-owned ones not only makes the audience hold their news content suspect but also makes such mass medium to rank low in terms of perceived credibility. One of the implications of that situation is that mass mobilization through such media would be difficult to achieve.  Consequently, it is the submission of this research that if broadcast media in Nigeria are to be reckoned trustworthy and reliable, diverse and balanced views on all issues in the news should always be presented.

  6. HIGH-PRECISION RADIO AND INFRARED ASTROMETRY OF LSPM J1314+1320AB. I. PARALLAX, PROPER MOTIONS, AND LIMITS ON PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan [University of Vienna, Department of Astrophysics, Türkenschanzstr. 17, A-1180 Vienna (Austria); Dupuy, Trent J.; Rizzuto, Aaron; Mann, Andrew W.; Kraus, Adam L. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States); Reid, Mark J.; Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Liu, Michael C.; Aller, Kimberly [Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2016-08-10

    We present multi-epoch astrometric radio observations with the Very Long Baseline Array (VLBA) of the young ultracool-dwarf binary LSPM J1314+1320AB. The radio emission comes from the secondary star. Combining the VLBA data with Keck near-infrared adaptive-optics observations of both components, a full astrometric fit of parallax (π {sub abs} = 57.975 ± 0.045 mas, corresponding to a distance of d = 17.249 ± 0.013 pc), proper motion (μ {sub α} {sub cos} {sub δ} = −247.99 ± 0.10 mas yr{sup −1}, μ {sub δ} = −183.58 ± 0.22 mas yr{sup −1}), and orbital motion is obtained. Despite the fact that the two components have nearly identical masses to within ±2%, the secondary’s radio emission exceeds that of the primary by a factor of ≳30, suggesting a difference in stellar rotation history, which could result in different magnetic field configurations. Alternatively, the emission could be anisotropic and beamed toward us for the secondary but not for the primary. Using only reflex motion, we exclude planets of mass 0.7–10 M {sub jup} with orbital periods of 600–10 days, respectively. Additionally, we use the full orbital solution of the binary to derive an upper limit for the semimajor axis of 0.23 au for stable planetary orbits within this system. These limits cover a parameter space that is inaccessible with, and complementary to, near-infrared radial velocity surveys of ultracool dwarfs. Our absolute astrometry will constitute an important test for the astrometric calibration of Gaia .

  7. MULTI-MESSENGER ASTRONOMY OF GRAVITATIONAL-WAVE SOURCES WITH FLEXIBLE WIDE-AREA RADIO TRANSIENT SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Yancey, Cregg C.; Shawhan, Peter [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Bear, Brandon E.; Akukwe, Bernadine; Simonetti, John H.; Tsai, Jr-Wei [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Chen, Kevin [Department of Physics, The College of New Jersey, Ewing, NJ 08628 (United States); Dowell, Jayce; Obenberger, Kenneth; Taylor, Gregory B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, 87131 (United States); Gough, Jonathan D. [Department of Chemistry, Lehman College, Bronx, NY 10468 (United States); Kanner, Jonah [LIGO-California Institute of Technology, Pasadena, California CA 91125 (United States); Kavic, Michael [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States)

    2015-10-20

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.

  8. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)

  9. H{sup -} radio frequency source development at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Welton, R. F.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37830-6471 (United States); Dudnikov, V. G. [Muons, Inc., 552 N. Batavia Avenue, Batavia, Illinois 60510 (United States); Turvey, M. W. [Villanova University, 800E. Lancaster Ave, Villanova, Pennsylvania 19085 (United States)

    2012-02-15

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  10. Discovery of a Luminous Radio Transient 460 pc from the Central Supermassive Black Hole in Cygnus A

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, R. A.; Dhawan, V.; Carilli, C. L., E-mail: d.a.perley@ljmu.ac.uk [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2017-06-01

    We report the appearance of a new radio source at a projected offset of 460 pc from the nucleus of Cygnus A. The flux density of the source (which we designate Cygnus A-2) rose from an upper limit of <0.5 mJy in 1989 to 4 mJy in 2016 ( ν = 8.5 GHz), but is currently not varying by more than a few percent per year. The radio luminosity of the source is comparable to the most luminous known supernovae, it is compact in Very Long Baseline Array observations down to a scale of 4 pc, and it is coincident with a near-infrared point source seen in pre-existing adaptive optics and HST observations. The most likely interpretation of this source is that it represents a secondary supermassive black hole in a close orbit around the Cygnus A primary, though an exotic supernova model cannot be ruled out. The gravitational influence of a secondary SMBH at this location may have played an important role in triggering the rapid accretion that has powered the Cygnus A radio jet over the past 10{sup 7} years.

  11. Detection of anomalies in radio tomography of asteroids: Source count and forward errors

    Science.gov (United States)

    Pursiainen, S.; Kaasalainen, M.

    2014-09-01

    The purpose of this study was to advance numerical methods for radio tomography in which asteroid's internal electric permittivity distribution is to be recovered from radio frequency data gathered by an orbiter. The focus was on signal generation via multiple sources (transponders) providing one potential, or even essential, scenario to be implemented in a challenging in situ measurement environment and within tight payload limits. As a novel feature, the effects of forward errors including noise and a priori uncertainty of the forward (data) simulation were examined through a combination of the iterative alternating sequential (IAS) inverse algorithm and finite-difference time-domain (FDTD) simulation of time evolution data. Single and multiple source scenarios were compared in two-dimensional localization of permittivity anomalies. Three different anomaly strengths and four levels of total noise were tested. Results suggest, among other things, that multiple sources can be necessary to obtain appropriate results, for example, to distinguish three separate anomalies with permittivity less or equal than half of the background value, relevant in recovery of internal cavities.

  12. Scintillating confusion: Evaluation of a technique for measuring compact structure in weak radio sources

    International Nuclear Information System (INIS)

    Spangler, S.R.; Cordes, J.M.; Meyers, K.A.

    1979-01-01

    An attractive scheme for investigating compact structure in weak radio sources is to study the scintillation properties of confusion in a large single-dish radio telescope. We have investigated the utility of this technique by observing the scintillations of 860-MHz confusion of the NRAO 300' (91 m) telescope. Analysis of these data indicated a reduction in the mean scintillation index with decreasing flux density which implied that weaker sources possessed less compact structure. More direct observations indicated that the weak sources of interest were not significantly deficient in compact structure, so the first result is probably due to properties of the IPS process in the strong scintillation regime. Our results may be due to overresolution (by the IPS process in the strong scintillation regime) of the ''hot spots'' responsible for scintillation in most strong sources at frequencies below 1000 MHz, or may indicate abnormally strong turbulence in the solar wind during August, 1977. Future applications of this method would be best conducted at lower frequencies with larger reflectors or short-spacing interferometers

  13. Biological infrared microspectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-01-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c

  14. Interstellar scattering of the compact radio source 2005 + 403

    International Nuclear Information System (INIS)

    Mutel, R.L.; Lestrade, J.

    1990-01-01

    Analysis of Mk III VLBI visibility amplitudes of the compact radio source 2005 + 403 shows an excess at baselines greater than a few diffractive scale lengths compared with that expected from formulas using ensemble-averaged quantities and power-law turbulence with quasi-Kolmogorov spectral indices. The data are in good agreement with the 1989 analysis of Goodman and Narayan, who find that measured visibility amplitudes correspond to the average visibility regime, which differs significantly from the ensemble-averaged results for baselines much longer than one diffractive scale length. 20 refs

  15. HERschel key program heritage: A far-infrared source catalog for the Magellanic Clouds

    International Nuclear Information System (INIS)

    Seale, Jonathan P.; Meixner, Margaret; Sewiło, Marta; Babler, Brian; Engelbracht, Charles W.; Misselt, Karl; Montiel, Edward; Gordon, Karl; Roman-Duval, Julia; Hony, Sacha; Okumura, Koryo; Panuzzo, Pasquale; Sauvage, Marc; Boyer, Martha L.; Chen, C.-H. Rosie; Indebetouw, Remy; Matsuura, Mikako; Oliveira, Joana M.; Loon, Jacco Th. van; Srinivasan, Sundar

    2014-01-01

    Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC

  16. HERschel key program heritage: A far-infrared source catalog for the Magellanic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Seale, Jonathan P.; Meixner, Margaret; Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Babler, Brian [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Engelbracht, Charles W.; Misselt, Karl; Montiel, Edward [Steward Observatory, University of Arizona, 933 North Cherry Ave., Tucson, AZ 85721 (United States); Gordon, Karl; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hony, Sacha; Okumura, Koryo; Panuzzo, Pasquale; Sauvage, Marc [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Boyer, Martha L. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Chen, C.-H. Rosie [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Indebetouw, Remy [National Radio Astronomy Observatory, 520 Edgemont Road Charlottesville, VA 22903 (United States); Matsuura, Mikako [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Oliveira, Joana M.; Loon, Jacco Th. van [School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Srinivasan, Sundar [UPMC-CNRS UMR7095, Institute d' Astrophysique de Paris, F-75014 Paris (France); and others

    2014-12-01

    Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC

  17. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  18. A PULSED, PRECESSING JET IN CEPHEUS A

    International Nuclear Information System (INIS)

    Cunningham, Nathaniel J.; Moeckel, Nickolas; Bally, John

    2009-01-01

    We present near-infrared H 2 , radio CO, and thermal infrared observations of the nearby massive star-forming region Cepheus A (Cep A). From H 2 bow shocks arranged along four distinct jet axes, we infer that the massive protostellar source HW2 drives a pulsed, precessing jet that has changed its orientation by about 45 deg. in roughly 10 4 years. The current HW2 radio jet represents the most recent event in this time series of eruptions. This scenario is consistent with the recent discovery of a disk around HW2, perpendicular to the current jet orientation, and with the presence of companions at projected distances comparable to the disk radius. We propose that the Cep A system formed by the disk-assisted capture of a sibling star by HW2. We present a numerical model of a 15 M sun star with a circumstellar disk, orbited by a companion in an inclined, eccentric orbit. Close passages of the companion through or near the disk result in periods of enhanced accretion and mass loss, as well as forced precession of the disk and associated orientation changes in the jet. The observations reveal a second powerful outflow that emerges from radio source HW3c or HW3d. This flow is associated with blueshifted CO emission and a faint H 2 bow shock to the east, and with HH 168 to the west. A collision between the flows from HW2 and HW3c/d may be responsible for X-ray and radio continuum emission in Cep A West.

  19. BRIGHTNESS AND FLUCTUATION OF THE MID-INFRARED SKY FROM AKARI OBSERVATIONS TOWARD THE NORTH ECLIPTIC POLE

    International Nuclear Information System (INIS)

    Pyo, Jeonghyun; Jeong, Woong-Seob; Matsumoto, Toshio; Matsuura, Shuji

    2012-01-01

    We present the smoothness of the mid-infrared sky from observations by the Japanese infrared astronomical satellite AKARI. AKARI monitored the north ecliptic pole (NEP) during its cold phase with nine wave bands covering from 2.4 to 24 μm, out of which six mid-infrared bands were used in this study. We applied power-spectrum analysis to the images in order to search for the fluctuation of the sky brightness. Observed fluctuation is explained by fluctuation of photon noise, shot noise of faint sources, and Galactic cirrus. The fluctuations at a few arcminutes scales at short mid-infrared wavelengths (7, 9, and 11 μm) are largely caused by the diffuse Galactic light of the interstellar dust cirrus. At long mid-infrared wavelengths (15, 18, and 24 μm), photon noise is the dominant source of fluctuation over the scale from arcseconds to a few arcminutes. The residual fluctuation amplitude at 200'' after removing these contributions is at most 1.04 ± 0.23 nW m –2 sr –1 or 0.05% of the brightness at 24 μm and at least 0.47 ± 0.14 nW m –2 sr –1 or 0.02% at 18 μm. We conclude that the upper limit of the fluctuation in the zodiacal light toward the NEP is 0.03% of the sky brightness, taking 2σ error into account.

  20. Variability of GPS Radio Sources at 5 GHz Lang Cui , Xiang Liu ...

    Indian Academy of Sciences (India)

    2010-02-07

    Feb 7, 2010 ... Abstract. We carry out flux monitoring on a sample of 169 Gigahertz. Peaked Spectrum (GPS) radio sources at 5 GHz and find that about one- third of them show considerable Inter-Month Variability (IMV), and these. IMV phenomena are likely to be caused by interstellar scintillation (ISS). Furthermore, we ...

  1. Millimeter observations of radio-loud active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Bertoldi, F

    In order to study the nature of the far-infrared emission observed in radio-loud active galaxies, we have obtained 1.2 mill observations with the IRAM 30 m telescope for a sample of eight radio-loud active galaxies. In all objects we find that the 1.2 mm emission is dominated by non-thermal

  2. Near-infrared sources in the molecular cloud G35.2-0.74

    International Nuclear Information System (INIS)

    Tapia, M.; Roth, M.; Persi, P.; Ferrari-Toniolo, M.

    1985-01-01

    Near-infrared (1-4 μm) observations of the molecular cloud G35.2-0.74 reveal the presence of four infrared sources in the vicinity of two previously reported centres of recent star formation. The northern part of G35.2-0.74 contains three point sources which are interpreted as highly obscured stars. Irs 1 coincides with H 2 O and OH maser sources and seems to be a very young early-type star. The southern part of G35.2-0.74 shows a diffuse 2.2-μm source with a flux distribution in the short-wavelength region compatible with free-free emission and a large excess at lambda > or approx. 3 μm attributed to warm dust mixed with the gas. These data are consistent with a fully developed HII region. (author)

  3. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and 99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  4. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  5. The X-Ray Core of the Low-Luminosity Radio Galaxy 3C346 and ASCA Spectroscopy to Test BL LAC/Radio Galaxy Unification

    Science.gov (United States)

    Worrall, Diana

    2000-01-01

    Radio galaxies are relatively faint sources for Advanced Spacecraft for Cosmology Astrophysics (ASCA), and so in order to get the best possible results from the observations two things have been necessary, both of which delayed the fast preparation of papers. Firstly, the best possible data screening and background subtraction were necessary to improve the signal-to-noise, and all our several initial analysis trials were discarded in favor of using FTOOLS versions 4.1 and above. Secondly, we found that the ASCA spectra were statistically too poor to discriminate well between non-thermal and thermal models, never mind the mixture of the two which we expected on the basis of our ROSAT spatial separation of components in radio galaxies. This means that in each case we have needed to combine the ASCA spectroscopy with analysis of data from other X-ray or radio observations in order to exploit the ASCA data to the full. Our analysis for 3C 346 has yielded the cleanest final result. This powerful radio galaxy at a redshift of 0.161, lies in a poor cluster, which we have separated well from the dominant X-ray component of unresolved emission using a spatial analysis of archival ROSAT data. We were then able to fix the thermal component in our ASCA spectral analysis, and have found evidence that the unresolved emission varied by 32 +/- 13% over the 18 months between the ROSAT and ASCA observations. The unresolved X-ray emission does not suffer from intrinsic absorption, and we have related it to radio structures on both milliarcsecond scales and the arcsecond scales which Chandra can resolve. The source is a target of a Chandra AO2 proposal which we have recently submitted to follow up on our ASCA (and ROSAT) work. 3C 346's orientation to the line of sight is uncertain. However, the absence of X-ray absorption, and the radio/optical/X-ray colors, when combined with with previous radio evidence that the source is a foreshortened radio galaxy of the FRII class, suggest that

  6. A high-redshift IRAS galaxy with huge luminosity - hidden quasar or protogalaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rowan-Robinson, M; Broadhurst, T [Queen Mary Coll., London (UK). School of Mathematical Sciences; Lawrence, A [Queen Mary Coll., London (UK). Dept. of Physics; McMahon, R G [Cambridge Univ. (UK). Inst. of Astronomy; Lonsdale, C J [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Oliver, S J; Taylor, A N [Queen Mary Coll., London (UK). School of Mathematical Sciences; Hacking, P B; Conrow, T [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Saunders, W [Oxford Univ. (UK). Dept. of Astrophysics; Ellis, R S [Durham Univ. (UK). Dept. of Physics; Efstathiou, G P [Oxford Univ. (UK). Dept. of Astrophysics; Condon, J J [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1991-06-27

    During a survey intended to measure redshifts for 1,400 galaxies identified with faint sources detected by the Infrared Astronomy Satellite, we found an emission-line galaxy at a redshift of 2.286, and with the enormous far-infrared luminosity of 3 x 10{sup 14} times that of the sun (L{sub sun}) The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-{alpha} emission. A self-absorbed synchrotron model for the infrared energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the infrared emission, as might a starburst embedded in 1-10 x 10{sup 9} M{sub sun} of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. In either case, this is a remarkable object, and the presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch. (author).

  7. The distribution of polarized radio sources >15 μJy IN GOODS-N

    International Nuclear Information System (INIS)

    Rudnick, L.; Owen, F. N.

    2014-01-01

    We present deep Very Large Array observations of the polarization of radio sources in the GOODS-N field at 1.4 GHz at resolutions of 1.''6 and 10''. At 1.''6, we find that the peak flux cumulative number count distribution is N(> p) ∼ 45*(p/30 μJy) –0.6 per square degree above a detection threshold of 14.5 μJy. This represents a break from the steeper slopes at higher flux densities, resulting in fewer sources predicted for future surveys with the Square Kilometer Array and its precursors. It provides a significant challenge for using background rotation measures (RMs) to study clusters of galaxies or individual galaxies. Most of the polarized sources are well above our detection limit, and they are also radio galaxies that are well-resolved even at 10'', with redshifts from ∼0.2-1.9. We determined a total polarized flux for each source by integrating the 10'' polarized intensity maps, as will be done by upcoming surveys such as POSSUM. These total polarized fluxes are a factor of two higher, on average, than the peak polarized flux at 1.''6; this would increase the number counts by ∼50% at a fixed flux level. The detected sources have RMs with a characteristic rms scatter of ∼11 rad m –2 around the local Galactic value, after eliminating likely outliers. The median fractional polarization from all total intensity sources does not continue the trend of increasing at lower flux densities, as seen for stronger sources. The changes in the polarization characteristics seen at these low fluxes likely represent the increasing dominance of star-forming galaxies.

  8. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ridgway, S. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gates, E. L. [UCO/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Nielsen, D. M. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Petric, A. O. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sajina, A. [Department of Physics and Astronomy, Tuffs University, 212 College Avenue, Medford, MA 02155 (United States); Urrutia, T. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Cox Drews, S. [946 Mangrove Avenue 102, Sunnyvale, CA 94086 (United States); Harrison, C. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Seymour, N. [CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Storrie-Lombardi, L. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  9. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Komossa, S.; Zensus, J. A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Yuan, Weimin [Key Lab for Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Zhou, Hongyan, E-mail: gumf@shao.ac.cn [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China)

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  10. A dual-mask coronagraph for observing faint companions to binary stars

    NARCIS (Netherlands)

    Cady, E.; McElwain, M.; Kasdin, N.J.; Thalmann, C.

    2011-01-01

    Observations of binary stars for faint companions with conventional coronagraphic methods are challenging, as both targets will be bright enough to obscure any nearby faint companions if their scattered light is not suppressed. We propose coronagraphic examination of binary stars using an

  11. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  12. Discovery of an infrared nucleus in Cygnus A - An obscured quasar revealed?

    International Nuclear Information System (INIS)

    Djorgovski, S.; Weir, N.; Matthews, K.; Graham, J.R.

    1991-01-01

    This paper reports on the discovery of a compact, unresolved infrared nucleus, coincident with the radio core, in the prototypical powerful radio galaxy Cygnus A (3C 405). The infrared colors and magnitudes of the nucleus can be explained as a highly reddened extension of the radio continuum. The implied restframe extinction is A(V) equal to about 50 + or - 30 magnitudes. The extinction-corrected luminosity of the object is in the quasar range. This discovery gives some support to the unification models for quasars and powerful radio galaxies. 35 refs

  13. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  14. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  15. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  16. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  17. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  18. USING THE METHODS OF WAVELET ANALYSIS AND SINGULAR SPECTRUM ANALYSIS IN THE STUDY OF RADIO SOURCE BL LAC

    OpenAIRE

    Donskykh, G. I.; Ryabov, M. I.; Sukharev, A. I.; Aller, M.

    2014-01-01

    We investigated the monitoring data of extragalactic source BL Lac. This monitoring was held withUniversityofMichigan26-meter radio  telescope. To study flux density of extragalactic source BL Lac at frequencies of 14.5, 8 and 4.8 GHz, the wavelet analysis and singular spectrum analysis were used. Calculating the integral wavelet spectra allowed revealing long-term  components  (~7-8 years) and short-term components (~ 1-4 years) in BL Lac. Studying of VLBI radio maps (by the program Mojave) ...

  19. The difference between radio-loud and radio-quiet active galaxies

    Science.gov (United States)

    Wilson, A. S.; Colbert, E. J. M.

    1995-01-01

    The recent development of unified theories of active galactic nuclei (AGNs) has indicated that there are two physically distinct classes of these objects--radio-loud and radio-quiet. Despite differences, the (probable) thermal emissions from the AGNs (continua and lines from X-ray to infrared wavelengths) are quite similar to the two classes of object. We argue that this last result suggests that the black hole masses and mass accretion rates in the two classes are not greatly different, and that the difference between the classes is associated with the spin of the black hole. We assume that the normal process of accretion through a disk does not lead to rapidly spinning holes and propose that galaxies (e.g., spirals) which have not suffered a recent major merger event contain nonrotating or only slowly rotating black holes. When two such galaxies merge, the two black holes are known to form a binary and we assume that they eventually coalesce. The ratio of the number of radio-loud to radio-quiet AGNs at a given thermal (e.g., optical) luminosity is determined by the galaxy merger rate. Comparisons between the predicted and observed radio luminosity functions constrain the efficiencies with which jet power is extracted from the spinning hole and radio emission is produced by the jet.

  20. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    Science.gov (United States)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  1. An Improved Statistical Point-source Foreground Model for the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S. G.; Trott, C. M.; Jordan, C. H. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia)

    2017-08-10

    We present a sophisticated statistical point-source foreground model for low-frequency radio Epoch of Reionization (EoR) experiments using the 21 cm neutral hydrogen emission line. Motivated by our understanding of the low-frequency radio sky, we enhance the realism of two model components compared with existing models: the source count distributions as a function of flux density and spatial position (source clustering), extending current formalisms for the foreground covariance of 2D power-spectral modes in 21 cm EoR experiments. The former we generalize to an arbitrarily broken power law, and the latter to an arbitrary isotropically correlated field. This paper presents expressions for the modified covariance under these extensions, and shows that for a more realistic source spatial distribution, extra covariance arises in the EoR window that was previously unaccounted for. Failure to include this contribution can yield bias in the final power-spectrum and under-estimate uncertainties, potentially leading to a false detection of signal. The extent of this effect is uncertain, owing to ignorance of physical model parameters, but we show that it is dependent on the relative abundance of faint sources, to the effect that our extension will become more important for future deep surveys. Finally, we show that under some parameter choices, ignoring source clustering can lead to false detections on large scales, due to both the induced bias and an artificial reduction in the estimated measurement uncertainty.

  2. An Improved Statistical Point-source Foreground Model for the Epoch of Reionization

    Science.gov (United States)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2017-08-01

    We present a sophisticated statistical point-source foreground model for low-frequency radio Epoch of Reionization (EoR) experiments using the 21 cm neutral hydrogen emission line. Motivated by our understanding of the low-frequency radio sky, we enhance the realism of two model components compared with existing models: the source count distributions as a function of flux density and spatial position (source clustering), extending current formalisms for the foreground covariance of 2D power-spectral modes in 21 cm EoR experiments. The former we generalize to an arbitrarily broken power law, and the latter to an arbitrary isotropically correlated field. This paper presents expressions for the modified covariance under these extensions, and shows that for a more realistic source spatial distribution, extra covariance arises in the EoR window that was previously unaccounted for. Failure to include this contribution can yield bias in the final power-spectrum and under-estimate uncertainties, potentially leading to a false detection of signal. The extent of this effect is uncertain, owing to ignorance of physical model parameters, but we show that it is dependent on the relative abundance of faint sources, to the effect that our extension will become more important for future deep surveys. Finally, we show that under some parameter choices, ignoring source clustering can lead to false detections on large scales, due to both the induced bias and an artificial reduction in the estimated measurement uncertainty.

  3. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  4. MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Anderson, Scott F.; MacLeod, Chelsea L.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Shemmer, Ohad

    2010-01-01

    We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z < 2.2. Half of these 26 objects are shown to be stars, galaxies, or absorbed quasars. We conclude that the other 13 objects are active galactic nuclei (AGNs) with abnormally weak emission features; 10 of those 13 are definitively radio quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGNs lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGNs appear to have intrinsically weak or absent broad emission line regions (BELRs), and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z < 2.2 radio-quiet BL Lac candidates already identified in the SDSS, but not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN BELRs.

  5. Opacity in compact extragalactic radio sources and the core shift effect

    International Nuclear Information System (INIS)

    Kovalev, Y Y; Lobanov, A P; Pushkarev, A B; Zensus, J A

    2008-01-01

    The apparent position of the 'core' in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. This dependency both provides a tool to probe physical conditions in the vicinity of the core and poses problems for astrometric studies using compact radio sources. We investigate the frequency-dependent shift of the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We present results for 29 selected active galactic nuclei (AGN). In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. We discuss related physics as well as astrometry applications and plans for further studies.

  6. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    Science.gov (United States)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  7. Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters

    Science.gov (United States)

    Dai, Liang; Lu, Wenbin

    2017-09-01

    Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.

  8. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  9. Integrated radio continuum spectra of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marvil, Joshua; Owen, Frazer [National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 (United States); Eilek, Jean, E-mail: josh.marvil@csiro.au [New Mexico Tech, Socorro, NM 87801 (United States)

    2015-01-01

    We investigate the spectral shape of the total continuum radiation, between 74 MHz and 5 GHz (400-6 cm in wavelength), for a large sample of bright galaxies. We take advantage of the overlapping survey coverage of the VLA Low-Frequency Sky Survey, the Westerbork Northern Sky Survey, the NRAO VLA Sky Survey, and the Green Bank 6 cm Survey to achieve significantly better resolution, sensitivity, and sample size compared to prior efforts of this nature. For our sample of 250 bright galaxies we measure a mean spectral index, α, of –0.69 between 1.4 and 4.85 GHz, –0.55 between 325 MHz and 1.4 GHz, and –0.45 between 74 and 325 MHz, which amounts to a detection of curvature in the mean spectrum. The magnitude of this curvature is approximately Δα = –0.2 per logarithmic frequency decade when fit with a generalized function having constant curvature. No trend in low-frequency spectral flattening versus galaxy inclination is evident in our data, suggesting that free-free absorption is not a satisfying explanation for the observed curvature. The ratio of thermal to non-thermal emission is estimated through two independent methods: (1) using the IRAS far-IR fluxes and (2) with the value of the total spectral index. Method (1) results in a distribution of 1.4 GHz thermal fractions of 9% ± 3%, which is consistent with previous studies, while method (2) produces a mean 1.4 GHz thermal fraction of 51% with dispersion 26%. The highly implausible values produced by method (2) indicate that the sum of typical power-law thermal and non-thermal components is not a viable model for the total spectral index between 325 and 1.4 GHz. An investigation into relationships between spectral index, infrared-derived quantities, and additional source properties reveals that galaxies with high radio luminosity in our sample are found to have, on average, a flatter radio spectral index, and early types tend to have excess radio emission when compared to the radio-infrared ratio of later

  10. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  11. Infrared behaviour, sources and the Schwinger action principle

    International Nuclear Information System (INIS)

    Burgess, M.

    1994-05-01

    An action principle technique is used to explore some issues concerning the infra-red problem in the effective action for gauge field theories. The relationship between the renormalization group and other non-perturbative resummation schemes is demonstrated by means of a source theory. It is shown that the use of vertex renormalization conditions and other resummation methods (large N expansion) can lead to erroneous conclusions about the phase transitions in the gauge theory, since it corresponds to only a partial resummation of the scalar self-energies at the expense of the gauge sector. The renormalization group as well as the ansatz of non-local sources can be derived from an associated operator problem for the field couplings by use of the Schwinger action principle. This method generalizes to curved spacetime and non-equilibrium models in a straightforward way. Some examples are computed to lowest order and the conclusion is drawn that none of the approximation schemes are able to extract true non-perturbative information from field theory. Only results which rely on the particular recursive structure of the perturbation series are accessible and the main purpose of the investigation is to determine legal ways of regulating the theory in the infrared. 35 refs

  12. Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis

    Science.gov (United States)

    Arendt, Richard; Kashlinsky, A.; Moseley, S.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale ([greater, similar]30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the [approx]1-5 [mu]m mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low ([greater, similar]1 nW m-2 sr-1 at 3-5 [mu]m), and thus consistent with current [gamma]-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs

  13. COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER INFRARED ARRAY CAMERA IMAGES: DATA PROCESSING AND ANALYSIS

    International Nuclear Information System (INIS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2010-01-01

    This paper provides a detailed description of the data reduction and analysis procedures that have been employed in our previous studies of spatial fluctuation of the cosmic infrared background (CIB) using deep Spitzer Infrared Array Camera observations. The self-calibration we apply removes a strong instrumental signal from the fluctuations that would otherwise corrupt the results. The procedures and results for masking bright sources and modeling faint sources down to levels set by the instrumental noise are presented. Various tests are performed to demonstrate that the resulting power spectra of these fields are not dominated by instrumental or procedural effects. These tests indicate that the large-scale (∼>30') fluctuations that remain in the deepest fields are not directly related to the galaxies that are bright enough to be individually detected. We provide the parameterization of these power spectra in terms of separate instrument noise, shot noise, and power-law components. We discuss the relationship between fluctuations measured at different wavelengths and depths, and the relations between constraints on the mean intensity of the CIB and its fluctuation spectrum. Consistent with growing evidence that the ∼1-5 μm mean intensity of the CIB may not be as far above the integrated emission of resolved galaxies as has been reported in some analyses of DIRBE and IRTS observations, our measurements of spatial fluctuations of the CIB intensity indicate the mean emission from the objects producing the fluctuations is quite low (∼>1 nW m -2 sr -1 at 3-5 μm), and thus consistent with current γ-ray absorption constraints. The source of the fluctuations may be high-z Population III objects, or a more local component of very low luminosity objects with clustering properties that differ from the resolved galaxies. Finally, we discuss the prospects of the upcoming space-based surveys to directly measure the epochs inhabited by the populations producing these

  14. Methods for the determination of lunisolar precession from observations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Elsmore, B.

    1976-01-01

    Although it is not practicable at present to determine the position or motion of the equinox using radio techniques, lunisolar precession may be determined from measurements at two epochs of differences of (i) Right Ascension -RA, and (ii) Declinations - Dec., of extragalactic radio sources. The determinations are largely free from systematic errors, and the magnitudes of random errors, arising principally from tropospheric irregularities, are given for observations with the Cambridge 5-km telescope. Some first epoch measure-ments have been made with this instrument and it is estimated that by carrying out second epoch measurements after an interval of 5 yr, the centennial value of lunisolar precession will be determined with a standard error of +- 0''.25. (author)

  15. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    Energy Technology Data Exchange (ETDEWEB)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States)

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  16. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  17. Time monitoring of radio jets and magnetospheres in the nearby young stellar cluster R Coronae Australis

    International Nuclear Information System (INIS)

    Liu, Hauyu Baobab; Takami, Michihiro; Yan, Chi-Hung; Karr, Jennifer; Chou, Mei-Yin; Ho, Paul T.-P.; Galván-Madrid, Roberto; Costigan, Gráinne; Manara, Carlo Felice; Forbrich, Jan; Rodríguez, Luis F.; Zhang, Qizhou

    2014-01-01

    We report Karl G. Jansky Very Large Array 8-10 GHz (λ = 3.0-3.7 cm) monitoring observations toward the young stellar object (YSO) cluster R Coronae Australis (R CrA), taken from 2012 March 15 to 2012 September 12. These observations were planned to measure the radio flux variabilities in timescales from 0.5 hr to several days, to tens of days, and up to ∼200 days. We found that among the YSOs detectable in individual epochs, in general, the most reddened objects in the Spitzer observations show the highest mean 3.5 cm Stokes I emission, and the lowest fractional variabilities on <200 day timescales. The brightest radio flux emitters in our observations are the two reddest sources IRS7W and IRS7E. In addition, by comparing our observations with observations taken from 1996 to 1998 and 2005, we found that the radio fluxes of these two sources have increased by a factor of ∼1.5. The mean 3.5 cm fluxes of the three Class I/II sources, IRSI, IRS2, and IRS6, appear to be correlated with their accretion rates derived by a previous near-infrared line survey. The weakly accreting Class I/II YSOs, or those in later evolutionary stages, present radio flux variability on <0.5 hr timescales. Some YSOs were detected only during occasional flaring events. The source R CrA went below our detection limit during a few fading events.

  18. Structure in radio galaxies

    International Nuclear Information System (INIS)

    Breugel, W. van.

    1980-01-01

    It is shown that radio jets are a rather common phenomenon in radio galaxies. Jets can be disguised as trails in head-tail sources, bridges in double sources or simply remain undetected because of lack of resolution and sensitivity. It is natural to associate these jets with the channels which had previously been suggested to supply energy to the extended radio lobes. The observations of optical emission suggest that a continuous non-thermal spectrum extending from 10 9 to 10 15 Hz is a common property of jets. Because significant amounts of interstellar matter are also observed in each of the galaxies surveyed it seems that models for jets which involve an interaction with this medium may be most appropriate. New information about the overall structure of extended radio sources has been obtained from the detailed multifrequency study with the WSRT. (Auth.)

  19. Composition of faint comets

    International Nuclear Information System (INIS)

    Brown, L.W.

    1986-01-01

    The study uses an emission line, differential imaging camera built by the Science Operations Branch. This instrument allows photometric data to be obtained over a large area of a comet in a large number of resolution elements. The detector is a 100x100 Reticon array which with interchangeable optics can give resolutions from 2'' to 30'' over a field of 1' to 15'. The camera through its controlling computer can simultaneously take images in on-line and continuum filters and through computer subtraction and calibration present a photometric image of the comet produced by only the emission of the molecule under study. Initial work has shown two significant problems. First the auxiliary equipment of the telescope has not allowed the unambiguous location of faint comets so that systematic observations could be made, and secondly initial data has not shown much molecular emission from the faint comets which were located. Work last year on a software and hardware display system and this year on additional guide motors on the 36-inch telescope has allowed the differential camera to act as its own finder and guide scope. Comet IRAS was observed in C2 and CO+, as well as an occultation by the comet of SAO029103. The perodic comet Giacobini-Zinner was also observed in C2

  20. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-09-20

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.

  1. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    International Nuclear Information System (INIS)

    Yang, Yuan-Pei; Zhang, Bing

    2017-01-01

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.

  2. SPITZER OBSERVATIONS OF HOTSPOTS IN RADIO LOBES

    International Nuclear Information System (INIS)

    Werner, Michael W.; Murphy, David W.; Livingston, John H.; Gorjian, Varoujan; Jones, Dayton L.; Meier, David L.; Lawrence, Charles R.

    2012-01-01

    We have carried out a systematic search with Spitzer Warm Mission and archival data for infrared emission from the hotspots in radio lobes that have been described by Hardcastle et al. These hotspots have been detected with both radio and X-ray observations, but an observation at an intermediate frequency in the infrared can be critical to distinguish between competing models for particle acceleration and radiation processes in these objects. Between the archival and warm mission data, we report detections of 18 hotspots; the archival data generally include detections at all four IRAC bands, the Warm Mission data only at 3.6 μm. Using a theoretical formalism adopted from Godfrey et al., we fit both archival and warm mission spectral energy distributions (SEDs)—including radio, X-ray, and optical data from Hardcastle as well as the Spitzer data—with a synchrotron self-Compton (SSC) model, in which the X-rays are produced by Compton scattering of the radio frequency photons by the energetic electrons which radiate them. With one exception, an SSC model requires that the magnetic field be less or much less than the equipartition value which minimizes total energy and has comparable amounts of energy in the magnetic field and in the energetic particles. This conclusion agrees with those of comparable recent studies of hotspots, and with the analysis presented by Hardcastle et al. We also show that the infrared data rule out the simplest synchrotron-only models for the SEDs. We briefly discuss the implications of these results and of alternate interpretations of the data.

  3. Comparison of Time/Phase Lags in the Hard State and Plateau State of GRS 1915+105

    NARCIS (Netherlands)

    Pahari, M.; Neilsen, J.; Yadav, J.S.; Misra, R.; Uttley, P.

    2013-01-01

    We investigate the complex behavior of energy- and frequency-dependent time/phase lags in the plateau state and the radio-quiet hard (χ) state of GRS 1915+105. In our timing analysis, we find that when the source is faint in the radio, quasi-periodic oscillations (QPOs) are observed above 2 Hz and

  4. Characteristics of infrared point sources associated with OH masers

    International Nuclear Information System (INIS)

    Mu Jimang; Esimbek, Jarken; Zhou Jianjun; Zhang Haijuan

    2010-01-01

    We collect 3249 OH maser sources from the literature published up to April 2007, and compile a new catalog of OH masers. We look for the exciting sources of these masers and their infrared properties from IRAS and MSX data, and make a statistical study. MSX sources associated with stellar 1612 MHz OH masers are located mainly above the blackbody line; this is caused by the dust absorption of stellar envelopes, especially in the MSX A band. The mid-IR sources associated with stellar OH masers are concentrated in a small region in an [A]-[D] vs. [A]-[E] diagram with a small fraction of contamination; this gives us a new criterion to search for new stellar OH masers and distinguish stellar masers from unknown types of OH masers. IR sources associated with 1612 MHz stellar OH masers show an expected result: the average flux of sources with F60 > F25 increases with increasing wavelength, while those with F60 F25.

  5. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  6. Double radio sources and the new approach to cosmical plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1978-01-01

    The methodology of cosmic plasma physics is discussed. It is hazardous to try to describe plasma phenomena by theories which have not been carefully tested experimentally. One present approach is to rely on laboratory measurements and in situ measurements in the magnetosphere and heliosphere, and to approach galactic phenomena by scaling up the wellknown phenomena to galactic dimensions. A summary is given of laboratory investigations of electric double layers, a phenomenon which is known to be very important in laboratory discharges. A summary is also given of the in situ measurements in the magnetosphere by which the importance of electric double layers in the Earth's surrounding is established. The scaling laws between laboratory and magnetospheric double layers are studied. The successful scaling between laboratory and magnetospheric phenomena encourages an extrapolation to heliospheric phenomena. A further extrapolation to galactic phenomena leads to a theory of double radio sources. In analogy with the Sun which, acting as a homopolar inductor, energizes the heliospheric current system, a rotating magnetized galaxy should produce a similar current system. From analogy with laboratory and magnetospheric current systems it is argued that the galactic current might produce double layers where a large energy dissipation takes place. This leads to a theory of the double radio sources which, within the necessary wide limits of uncertainty, is quantitatively reconcilable with observations. (Auth.)

  7. Jets and beams in powerful extragalatic radio sources

    International Nuclear Information System (INIS)

    Pelletier, G.; Roland, J.; Asseo, E.

    1989-01-01

    The simplest, but the most constraining assumption for jet modeling powerfull extragalatic radio sources is to consider a single relativistic plasma with relativistic motion from short distances (few pc) to large distances (few 100 kpc) from the nucleus. We argue that it is worth introducing more ingredients in the model. Besides the interest in developing plasma physics motivated by these objects, there are two reasons for enriching the physics. First, the interpretation of hot spots as resulting from shocks with diffusive acceleration in a thermal classical plasma with a tenuous relativistic component is consistent with data and constrain the parameters. Second, the interpretation of relativistic motions on parsec scales as resulting from a core beam relaxing in a collimated wind is consistent with data and avoid several difficulties. (author). 14 refs

  8. Confirmation of Faint Dwarf Galaxies in the M81 Group

    Science.gov (United States)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  9. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  10. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-01-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  11. A Tool for Optimizing Observation Planning for Faint Moving Objects

    Science.gov (United States)

    Arredondo, Anicia; Bosh, Amanda S.; Levine, Stephen

    2016-10-01

    Observations of small solar system bodies such as trans-Neptunian objects and Centaurs are vital for understanding the basic properties of these small members of our solar system. Because these objects are often very faint, large telescopes and long exposures may be necessary, which can result in crowded fields in which the target of interest may be blended with a field star. For accurate photometry and astrometry, observations must be planned to occur when the target is free of background stars; this restriction results in limited observing windows. We have created a tool that can be used to plan observations of faint moving objects. Features of the tool include estimates of best times to observe (when the object is not too near another object), a finder chart output, a list of possible astrometric and photometric reference stars, and an exposure time calculator. This work makes use of the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (S.E. Levine and D.G. Monet 2000), the JPL Horizons online ephemeris service (Giorgini et al. 1996), the Minor Planet Center's MPChecker (http://cgi.minorplanetcenter.net/cgi-bin/checkmp.cgi), and source extraction software SExtractor (Bertin & Arnouts 1996). Support for this work was provided by NASA SSO grant NNX15AJ82G.

  12. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    Science.gov (United States)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  13. Infrared spectroscopy of a Cygnus A - Implications for the obscured active nucleus

    Science.gov (United States)

    Ward, Martin J.; Blanco, Philip R.; Wilson, Andrew S.; Nishida, Minoru

    1991-01-01

    Near-infrared spectroscopic observations of the central regions of the luminous radio galaxy Cygnus A are presented and interpreted in terms of an obscured quasar nucleus. Strong emission is detected in the molecular hydrogen lines 1-0 S(1) and 1-0 S(3), the strengths of which are accounted for through heating by the nuclear hard X-ray source. The large equivalent widths of these molecular hydrogen lines and the near-infrared narrow hydrogen recombination lines suggest that the observed nuclear continuum is strongly attenuated at 2 microns. The observed upper limit to the flux of broad Pa-alpha implies an extinction to the putative broad line region AV(BL) of at least 24 mag, and the observed continuum intensity of the nuclear point source at 2.2 microns gives an extinction of 43 +/-9 mag toward the optical-infrared continuum. These estimates are consistent with the gas column density inferred from the low-energy X-ray cutoff. Strong forbidden Si VI 1.962-micron line emission from Cygnus A is also reported.

  14. Compact blackbody calibration sources for in-flight calibration of spaceborne infrared instruments

    Science.gov (United States)

    Scheiding, S.; Driescher, H.; Walter, I.; Hanbuch, K.; Paul, M.; Hartmann, M.; Scheiding, M.

    2017-11-01

    High-emissivity blackbodies are mandatory as calibration sources in infrared radiometers. Besides the requirements on the high spectral emissivity and low reflectance, constraints regarding energy consumption, installation space and mass must be considered during instrument design. Cavity radiators provide an outstanding spectral emissivity to the price of installation space and mass of the calibration source. Surface radiation sources are mainly limited by the spectral emissivity of the functional coating and the homogeneity of the temperature distribution. The effective emissivity of a "black" surface can be optimized, by structuring the substrate with the aim to enlarge the ratio of the surface to its projection. Based on the experiences of the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) calibration source MBB3, the results of the surface structuring on the effective emissivity are described analytically and compared to the experimental performance. Different geometries are analyzed and the production methods are discussed. The high-emissivity temperature calibration source features values of 0.99 for wavelength from 5 μm to 10 μm and emissivity larger than 0.95 for the spectral range from 10 μm to 40 μm.

  15. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation

    Science.gov (United States)

    Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.

    2018-04-01

    Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  16. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Huffenberger, K. M. [Department of Physics, Florida State University, P.O. Box 3064350, Tallahassee, FL 32306-4350 (United States); Araujo, D.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Buder, I. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y.; Hasegawa, M. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Kusaka, A. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Monsalve, R. [School of Earth and Space Exploration, Arizona State University, 781 E. Terrace Road, Tempe, AZ 85287 (United States); Næss, S. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Newburgh, L. B. [Dunlap Institute, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Reeves, R. [CePIA, Departamento de Astronomía, Universidad de Concepción (Chile); Ruud, T. M.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K.; Gaier, T. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gundersen, J. O., E-mail: huffenbe@physics.fsu.edu [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  17. Determining the nature of faint X-ray sources from the ASCA Galactic center survey

    Science.gov (United States)

    Lutovinov, A. A.; Revnivtsev, M. G.; Karasev, D. I.; Shimansky, V. V.; Burenin, R. A.; Bikmaev, I. F.; Vorob'ev, V. S.; Tsygankov, S. S.; Pavlinsky, M. N.

    2015-05-01

    We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5-10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them.

  18. A Study of the Radio Continuum Far Infrared Correlation at Small Scales in the Galaxy

    Science.gov (United States)

    Rodriguez-Martinez, Monica I.; Allen, R. J.; Wiklind, T.; Loinard, L.

    2006-12-01

    We present a study of the behavior of the Radio Continuum (RC) Far Infrared (FIR) correlation on scales corresponding to the size of small molecular clouds. This was done by comparing the spatial distribution of RC emission and FIR emission from a sample of several regions, distributed within the range 79∘ ≤ l ≤ 174∘ in the Galaxy. We have examined the 408 and 1420 MHz mosaic images of the sample, from the Canadian Galactic Plane Survey (CGPS), which later were compared with images at 60 and 100 μm. Preliminary results suggest that the RC -FIR correlation still holds at small scales, since a good qualitative correlation between RC and FIR emission is found. The physical process involved that may cause such correlation will be discussed as well as the nature of the RC emission. This research makes use of data from the Canadian Galactic Plane Survey.

  19. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  20. Free-form analysis of the cosmological evolution of radio sources

    International Nuclear Information System (INIS)

    Robertson, J.G.

    1980-01-01

    This paper extends an iterative scheme for calculation of free-form evolution functions able to reconcile observed radio source counts with the standard General Relativistic cosmological models. It is assumed that the luminosity dependence of the evolution consists of a gradual turn-on of evolution above a certain luminosity. No particular functional form is assumed for the redshift dependence of the evolution (i.e. it is free-form). The extension concerns the use of the luminosity distribution to supply an effective luminosity function, thus overcoming a problem of consistency at the high-luminosity end of the luminosity function, where the evolution function has to be known. This method also guarantees that the correct average redshifts will be predicted where they are known observationally at high flux densities. The new iterative scheme has been applied to the source counts at 408 MHz from the Molonglo Cross telescope, using the Einstein-de Sitter cosmology and a recent determination of the luminosity distribution for sources of S 408 > 10 Jy. (author)

  1. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    International Nuclear Information System (INIS)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-01-01

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm -1 (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated

  2. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Chiboucas, Kristin [Gemini Observatory, 670 North A' ohoku Pl, Hilo, HI 96720 (United States); Jacobs, Bradley A.; Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96821 (United States); Karachentsev, Igor D., E-mail: kchibouc@gemini.edu, E-mail: bjacobs@ifa.hawaii.edu, E-mail: tully@ifa.hawaii.edu, E-mail: ikar@luna.sao.ru [Special Astrophysical Observatory (SAO), Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  3. On the Dearth of Ultra-faint Extremely Metal-poor Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Filho, M. E.; Vecchia, C. Dalla [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Skillman, E. D., E