WorldWideScience

Sample records for infrared op-ftir spectroscopy

  1. Fourier transform infrared (FTIR) spectroscopy for identification of ...

    African Journals Online (AJOL)

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Two cultures were grown in a chemically-defined media under photoautotrophic culture conditions isolated from eutrophic ...

  2. Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Yung-Chieh; Wu, Chang-Fu [Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei City 100, Taiwan (China); Chang, Pao-Erh; Chen, Shin-Yu [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu City 310, Taiwan 310 (China); Hwang, Yaw-Huei, E-mail: yhhwang@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei City 100, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei City 100, Taiwan (China)

    2011-08-01

    This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. - Research highlights: {yields} To conduct

  3. Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant

    International Nuclear Information System (INIS)

    Tsao, Yung-Chieh; Wu, Chang-Fu; Chang, Pao-Erh; Chen, Shin-Yu; Hwang, Yaw-Huei

    2011-01-01

    This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. - Research highlights: → To conduct multi

  4. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  5. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR

    Directory of Open Access Journals (Sweden)

    Basalekou Marianthi

    2015-01-01

    Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.

  7. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  8. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    Science.gov (United States)

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  9. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples

    Science.gov (United States)

    Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania

    2018-03-01

    A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.

  10. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Science.gov (United States)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  11. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  12. Assessment of Azithromycin in Pharmaceutical Formulation by Fourier-transform Infrared (FT-IR Transmission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Mallah

    2011-12-01

    Full Text Available A simple, rapid and economical method for azithromycin quantification in solid tablet and capsule formulations has been developed by applying Fourier-transform Infrared (FT-IR transmission spectroscopy for regular quality monitoring. The newly developed method avoids the sample preparation, except grinding for pellet formation and does not involve consumption of any solvent as it absolutely eliminates the need of extraction. KBr pellets were employed for the appraisal of azithromycin while acquiring spectra of standards as well as samples on FT-IR. By selecting the FT-IR carbonyl band (C=O in the region 1,744–1,709 cm−1 the calibration model was developed based on simple Beer’s law. The excellent regression coefficient (R2 0.999 was accomplished for calibration set having standard error of calibration equal to 0.01 mg. The current work exposes that transmission FT-IR spectroscopy can definitely be applied to determine the exact amount of azithromycin to control the processing and quality of solid formulations with reduced cost and short analysis time.

  13. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  15. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  16. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    Science.gov (United States)

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  17. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B

    2011-05-01

    Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  18. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    Science.gov (United States)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  19. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  20. A single-beam titration method for the quantification of open-path Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Sung, Lung-Yu; Lu, Chia-Jung

    2014-01-01

    This study introduced a quantitative method that can be used to measure the concentration of analytes directly from a single-beam spectrum of open-path Fourier Transform Infrared Spectroscopy (OP-FTIR). The peak shapes of the analytes in a single-beam spectrum were gradually canceled (i.e., “titrated”) by dividing an aliquot of a standard transmittance spectrum with a known concentration, and the sum of the squared differential synthetic spectrum was calculated as an indicator for the end point of this titration. The quantity of a standard transmittance spectrum that is needed to reach the end point can be used to calculate the concentrations of the analytes. A NIST traceable gas standard containing six known compounds was used to compare the quantitative accuracy of both this titration method and that of a classic least square (CLS) using a closed-cell FTIR spectrum. The continuous FTIR analysis of industrial exhausting stack showed that concentration trends were consistent between the CLS and titration methods. The titration method allowed the quantification to be performed without the need of a clean single-beam background spectrum, which was beneficial for the field measurement of OP-FTIR. Persistent constituents of the atmosphere, such as NH 3 , CH 4 and CO, were successfully quantified using the single-beam titration method with OP-FTIR data that is normally inaccurate when using the CLS method due to the lack of a suitable background spectrum. Also, the synthetic spectrum at the titration end point contained virtually no peaks of analytes, but it did contain the remaining information needed to provide an alternative means of obtaining an ideal single-beam background for OP-FTIR. - Highlights: • Establish single beam titration quantification method for OP-FTIR. • Define the indicator for the end-point of spectrum titration. • An ideal background spectrum can be obtained using single beam titration. • Compare the quantification between titration

  1. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR in the Geological Sciences—A Review

    Directory of Open Access Journals (Sweden)

    Yanyan Chen

    2015-12-01

    Full Text Available Fourier transform infrared spectroscopy (FTIR can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic systems.

  2. Raman and FTIR spectroscopy of methane in olivine

    Science.gov (United States)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  3. Application of Fourier-transform infrared (FT-IR) spectroscopy for simple and easy determination of chylomicron-triglyceride and very low density lipoprotein-triglyceride.

    Science.gov (United States)

    Sato, Kenichi; Seimiya, Masanori; Kodera, Yoshio; Kitamura, Akihide; Nomura, Fumio

    2010-02-01

    Fourier-transform infrared (FT-IR) spectroscopy is a simple and reagent-free physicochemical analysis method, and is a potential alternative to more time-consuming and labor-intensive procedures. In this study, we aimed to use FT-IR spectroscopy to determine serum concentrations of chylomicron-triglyceride (TG) and very low density lipoprotein (VLDL)-TG. We analyzed a chylomicron fraction and VLDL fraction, which had been obtained by ultracentrifugation, to search for wavelengths to designate to each fraction. Then, partial least square (PLS) calibrations were developed using a training set of samples, for which TG concentrations had been determined by conventional procedures. Validation was conducted with another set of samples using the PLS model to predict serum TG concentrations on the basis of the samples' IR spectra. We analyzed a total of 150 samples. Serum concentrations of chylomicron-TG and VLDL-TG estimated by FT-IR spectroscopy agreed well with those obtained by the reference method (r=0.97 for both lipoprotein fractions). FT-IR spectrometric analysis required 15mul of serum and was completed within 1min. Serum chylomicron-TG and VLDL-TG concentrations can be determined with FT-IR spectroscopy. This rapid and simple test may have a great impact on the management of patients with dyslipidemia. Copyright 2009. Published by Elsevier B.V.

  4. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    Science.gov (United States)

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  6. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    Science.gov (United States)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  7. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Science.gov (United States)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  8. Fourier transform infrared spectroscopy in physics laboratory courses

    International Nuclear Information System (INIS)

    Möllmann, K-P; Vollmer, M

    2013-01-01

    Infrared spectrometry is one of the most important tools in the field of spectroscopic analysis. This is due to the high information content of spectra in the so-called spectroscopic fingerprint region, which enables measurement not only of gases, but also of liquids and solids. Today, infrared spectroscopy is almost completely dominated by Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy is able to detect minute quantities in the ppm and ppb ranges, and the respective analyses are now standard tools in science as well as industry. Therefore FTIR spectroscopy should be taught within the standard curriculum at university to physicists and engineers. Here we present respective undergraduate laboratory experiments designed for students at the end of their third year. Experiments deal first with understanding the spectrometer and second with recording and analysing spectra. On the one hand, transmission spectra of gases are treated which relate to environmental analytics (being probably the most prominent and well-known examples), and on the other hand, the focus is on the transmission and reflection spectra of solids. In particular, silicon wafers are studied—as is regularly done in the microelectronics industry—in order to characterize their thickness, oxygen content and phonon modes. (paper)

  9. Fourier Transform Infrared Spectroscopy Part III. Applications.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  10. Infrared characterization of environmental samples by pulsed photothermal spectroscopy

    International Nuclear Information System (INIS)

    Seidel, W.; Foerstendorf, H.; Heise, K.H.; Nicolai, R.; Schamlott, A.; Ortega, J.M.; Glotin, F.; Prazeres, R.

    2004-01-01

    Low concentration of toxic radioactive metals in environmental samples often limits the interpretation of results of infrared studies investigating the interaction processes between the metal ions and environmental compartments. For the first time, we could show that photothermal infrared spectroscopy performed with a pulsed free electron laser can provide reliable infrared spectra throughout a distinct spectral range of interest. In this model investigation, we provide vibrational absorption spectra of a rare earth metal salt dissolved in a KBr matrix and a natural calcite sample obtained by photothermal beam deflection (PTBD) technique and FT-IR (Fourier-transform infrared) spectroscopy, respectively. General agreement was found between all spectra of the different recording techniques. Spectral deviations were observed with samples containing low concentration of the rare earth metal salt indicating a lower detection limit of the photothermal method as compared to conventional FT-IR spectroscopy. (authors)

  11. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    Science.gov (United States)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 1.3±0.3; 3) wet gas window--1.3±0.3 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  12. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  14. Application of FTIR spectroscopy for analysis of the quality of honey

    Directory of Open Access Journals (Sweden)

    Kędzierska-Matysek Monika

    2018-01-01

    Full Text Available Every kind of honey is a very precious natural product which is made by Mellifera bees species. The chemical composition of honey depends on its origin or mode of production. Honey consists essentially of different sugars, predominantly fructose and glucose. There are also non – sugar ingredients like proteins and amino acids, as well as some kind of enzymes, such as: invertase, amylase, glucose oxidase, catalase and phosphatase. The fact that honey is one of the oldest medicine known worldwide is remarkable. Scientists all over the world have been trying to improve analytical methods as well as to implement new ones in order to reaffirm the high quality of honey the benefits of which may be distracted or disturbed. There are many methods and popular analytical techniques, including as follows: mass spectroscopy and molecular spectroscopy (especially FTIR spectroscopy. The infrared spectroscopy technique is one of the most common analytical methods which are used to analyse honey nowadays. The main aim of the task was to use ATR-FTIR infrared spectroscopy to compare selected honey samples as well as typical sequences coming out from certain functional groups in the analysed samples.

  15. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  16. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    Science.gov (United States)

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  17. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Peltre, Clément; Jensen, Lars Stoumann

    2016-01-01

    In the last decade, numerous studies have evaluated the benefits of biochar for improving soil quality. The purposes of the current study were to use Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to analyse P species in biochar and to determine the effect of pyrolysis temperatu...

  18. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    Science.gov (United States)

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  19. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    Science.gov (United States)

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  20. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  1. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  2. Application of fourier-transform infrared (ft-ir) spectroscopy for determination of total phenolics of freeze dried lemon juices

    International Nuclear Information System (INIS)

    Sherazi, S.T.H.; Bhutto, A.A.; Mehesar, S.A.

    2017-01-01

    A cost effective and environmentally safe analytical method for rapid assessment of total phenolic content (TPC) in freeze dried lemon juice samples was developed using transmission Fourier-transform infrared spectroscopy (FT-IR) in conjunction with chemometric techniques. Two types of calibrations i.e. simple Beer's law and partial least square (PLS) were applied to investigate most accurate calibration model based on region from1420 to 1330 cm-1. The better analytical performance was obtained by PLS technique coefficient of determination (R2), root mean square error of calibration (RMSEC) with the value of 0.999 and 0.00864, respectively. The results of TPC in freeze dried lemon juice samples obtained by transmission FT-IR were compared with TPC observed by Folin-Ciocalteu (FC) assay and found to be comparable. Outcomes of the present study indicate that transmission FT-IR spectroscopic approach could be used as an alternative approach in place of Folin-Ciocalteu (FC) assay which is expensive and time-consuming conventional chemical methods for determination of the total phenolic content of lemon fruits. (author)

  3. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    Science.gov (United States)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  4. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR); Diagnostico de lesoes da tireoide pela espectroscopia de absorcao no infravermelho por transformada de Fourier - FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Albero, Felipe Guimaraes

    2009-07-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by {mu}-FTIR (between 950 . 1750 cm{sup -1}), at a nominal resolution of 4 cm{sup -1} and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm{sup -1}, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm{sup -1}) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm{sup -1}. Bands in 1409, 1412, 1414, 1578 and 1579 cm{sup -1} were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower

  5. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy

    Science.gov (United States)

    The presence of Sudan dye used illegally for coloring in food stuffs has become a point of food safety concern, especially in paprika- and chili-containing food products. Fourier transform infrared (FTIR) spectroscopy has been extensively used as an analytical method for quality control and safety m...

  6. Fourier transform infrared spectroscopy of dental unit water line biofilm bacteria

    OpenAIRE

    Liaqat, Iram

    2009-01-01

    Fourier transform-infrared (FT-IR) spectroscopy has become an important tool for rapid analysis of complex biological samples. The infrared absorbance spectrum could be regarded as a “fingerprint” which is a feature of biochemical substances. The FT-IR spectra of fresh and stored dried samples of six bacterial isolates (Klebsiella sp., Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp.) were observed by variation in sample preparation....

  7. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  8. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR).

    Science.gov (United States)

    Mietke, Henriette; Beer, W; Schleif, Julia; Schabert, G; Reissbrodt, R

    2010-05-30

    Animal feed often contains probiotic Bacillus strains used as feed additives. Spores of the non-pathogenic B. cereus var. toyoi (product name Toyocerin) are used. Distinguishing between toxic wild-type Bacillus cereus strains and this probiotic strain is essential for evaluating the quality and risk of feed. Bacillus cereus CIP 5832 (product name Paciflor was used as probiotic strain until 2001. The properties of the two probiotic strains are quite similar. Differentiating between probiotic strains and wild-type B. cereus strains is not easy. ss-lactam antibiotics such as penicillin and cefamandole exhibit an inhibition zone in the agar diffusion test of probiotic B. cereus strains which are not seen for wild-type strains. Therefore, performing the agar diffusion test first may make sense before FT-IR testing. When randomly checking these strains by Fourier transform infrared spectroscopy (FT-IR), the probiotic B. cereus strains were separated from wild-type B. cereus/B. thuringiensis/B. mycoides/B. weihenstephanensis strains by means of hierarchical cluster analysis. The discriminatory information was contained in the spectral windows 3000-2800 cm(-1) ("fatty acid region"), 1200-900 cm(-1) ("carbohydrate region") and 900-700 cm(-1) ("fingerprint region"). It is concluded that FT-IR spectroscopy can be used for the rapid quality control and risk analysis of animal feed containing probiotic B. cereus strains. (c) 2010 Elsevier B.V. All rights reserved.

  9. Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR and chemometrical data treatment

    Directory of Open Access Journals (Sweden)

    Brandes Ammann Andrea

    2011-07-01

    Full Text Available Abstract Background Fourier transform infrared spectroscopy (FTIR has been used as analytical tool in chemistry for many years. In addition, FTIR can also be applied as a rapid and non-invasive method to detect and identify microorganisms. The specific and fingerprint-like spectra allow - under optimal conditions - discrimination down to the species level. The aim of this study was to develop a fast and reproducible non-molecular method to differentiate pure samples of Bacillus spores originating from different species as well as to identify spores in a simple matrix, such as the clay mineral, bentonite. Results We investigated spores from pure cultures of seven different Bacillus species by FTIR in reflection or transmission mode followed by chemometrical data treatment. All species investigated (B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B. subtilis, B. thuringiensis are typical aerobic soil-borne spore formers. Additionally, a solid matrix (bentonite and mixtures of benonite with spores of B. megaterium at various wt/wt ratios were included in the study. Both hierarchical cluster analysis and principal component analysis of the spectra along with multidimensional scaling allowed the discrimination of different species and spore-matrix-mixtures. Conclusions Our results show that FTIR spectroscopy is a fast method for species-level discrimination of Bacillus spores. Spores were still detectable in the presence of the clay mineral bentonite. Even a tenfold excess of bentonite (corresponding to 2.1 × 1010 colony forming units per gram of mineral matrix still resulted in an unambiguous identification of B. megaterium spores.

  10. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Garriques, Liza Nielsen; Frokjaer, Sven; Carpenter, John F; Brange, Jens

    2002-12-01

    Fibril formation (aggregation) of human and bovine insulin and six human insulin mutants in hydrochloric acid were investigated by visual inspection, Thioflavin T fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The fibrillation tendencies of the wild-type insulins and the insulin mutants were (in order of decreasing fibrillation tendencies): Glu(B1) + Glu(B27) = bovine < human < des-(B1,B2)-insulin < Ser(B2) + Asp(B10) < Glu(A13) + Glu(B10) = Gln(B17) < Asp(B10). Transmission electron micrographs showed that the protofibrils of the mutants were similar to those of wild-type insulins and had a diameter of 5-10 nm and lengths varying from 50 nm to several microns. The fibrils of human insulin mutants exhibited varying degrees of lateral aggregation. The Asp(B10) mutant and human insulin had greater tendency to form laterally aggregated fibrils arranged in parallel bundles, whereas fibrils of the other mutants and bovine insulin were mainly arranged in helical filaments. FTIR spectroscopy showed that the native secondary structure of the wild-type insulins and the human insulin mutants in hydrochloric acid were identical, whereas the secondary structure of the fibrils formed by heating at 50 degrees C depended on the amino acid substitution. FTIR spectra of fibrils of the human insulin mutants exhibited different beta-sheet bands at 1,620-1,640 cm(-1), indicating that the beta-sheet interactions in the fibrils depended on variations in the primary structure of insulin. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2473-2480, 2002

  11. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  12. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Carpenter, J F; Brange, J

    2001-01-01

    Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment. Copyright 2001 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 90: 29-37, 2001

  13. Assessment of the Inhibitory Effect of Rifampicin on Amyloid Formation of Hen Egg White Lysozyme: Thioflavin T Fluorescence Assay versus FTIR Difference Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2014-01-01

    Full Text Available The inhibitory effect of rifampicin on the amyloid formation of hen egg white lysozyme was assessed with both Thioflavin T (ThT fluorescence assay and Fourier transform infrared (FTIR difference spectroscopy. We reveal that ThT fluorescence assay gives a false positive result due to rifampicin interference, while FTIR difference spectroscopy provides a reliable assessment. With FTIR, we show that rifampicin only has marginally inhibitory effect. We then propose that FTIR difference spectroscopy can potentially be a convenient method for inhibitor screening in amyloid study.

  14. Fourier transform infrared spectroscopy of peptides.

    Science.gov (United States)

    Bakshi, Kunal; Liyanage, Mangala R; Volkin, David B; Middaugh, C Russell

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopy provides data that are widely used for secondary structure characterization of peptides. A wide array of available sampling methods permits structural analysis of peptides in diverse environments such as aqueous solution (including optically turbid media), powders, detergent micelles, and lipid bilayers. In some cases, side chain vibrations can also be resolved and used for tertiary structure and chemical analysis. Data from several low-resolution spectroscopic techniques, including FTIR, can be combined to generate an empirical phase diagram, an overall picture of peptide structure as a function of environmental conditions that can aid in the global interpretation of large amounts of spectroscopic data.

  15. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  16. Applications of FT-IR spectrophotometry in cancer diagnostics.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  17. Discrimination of wild-growing and cultivated Lentinus edodes by tri-step infrared spectroscopy

    Science.gov (United States)

    Lin, Haojian; Liu, Gang; Yang, Weimei; An, Ran; Ou, Quanhong

    2018-01-01

    It's not easy to discriminate dried wild-growing Lentinus edodes (WL) and cultivated Lentinus edodes (CL) by conventional method based on the morphological inspection of fruiting bodies. In this paper, fruiting body samples of WL and CL are discriminated by a tri-step IR spectroscopy method, including Fourier transform infrared (FT-IR) spectroscopy, second derivatives infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy under thermal perturbation. The results show that the FT-IR spectra of WL and CL are similar in holistic spectral profile. More significant differences are exhibited in their SD-IR spectra in the range of 1700 - 900 cm-1. Furthermore, more evident differences have been observed in their synchronous 2D-IR spectra in the range of 2970 - 2900, 1678 - 1390, 1250 -1104 and 1090 - 1030 cm-1. The CL has thirteen auto-peaks at 2958, 2921, 1649, 1563, 1450, 1218, 1192, 1161, 1140, 1110, 1082, 1065 and 1047 cm-1, in which the four strongest auto-peaks are at 2921, 1563, 1192 and 1082 cm-1. The WL shows fifteen auto-peaks at 2960, 2937, 2921, 1650, 1615, 1555, 1458, 1219, 1190, 1138, 1111, 1084, 1068, 1048 and 1033 cm-1, in which the four strongest auto-peaks are at 2921, 1650, 1190 and 1068 cm-1. This study shows the potential of FT-IR spectroscopy and 2D correlation analysis in a simple and quick distinction of wild-growing and cultivated mushrooms.

  18. FTIR spectroscopy applications in forensic science

    International Nuclear Information System (INIS)

    Roux, C.; Maynard, P.; Dawson, M.

    1999-01-01

    Infrared spectroscopy, and especially Fourier transform infrared spectroscopy, is a well-established technique in analytical chemistry and finds widespread application in qualitative and quantitative analyses. Infrared spectra depend on the nature of the functional groups present in the analyte, and are generally complex with numerous maxima and minima. These features are useful for comparison purposes and, in most cases, the infrared spectrum of an organic compound is considered as a unique functional print of this compound (i e the infrared spectrum constitutes the chemical signature or fingerprint of an organic compound). Many inorganic substances may also be uniquely identified using infrared spectroscopy. Until recently, infrared spectroscopy was of only limited utility in forensic science, despite its high selectivity. This is because infrared spectroscopy suffered from a lack of sensitivity in its early forms. However, with the advance of modern technology this is no longer the case. The widespread use of microscope attachments, along with numerous new sampling accessories, has overcome most of the previous limitations. For example, with an infrared microscope, it is possible to focus the infrared beam, and therefore select relevant areas of the sample as small as 10 x 10 μm and achieve a measurement in situ. Such a configuration enables the rapid generation of high-resolution spectra from samples of 10 ng. Typical forensic applications include the analysis of single textile fibres, minute paint chips or smears, drugs, laser printer and photocopy toners, polymers and miscellaneous unknown substances. Here we will broadly review the most common applications of infrared spectroscopy in forensic science

  19. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  20. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  1. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  2. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    Science.gov (United States)

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  3. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  4. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    Science.gov (United States)

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  5. Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture

    Directory of Open Access Journals (Sweden)

    Lee-Montiel Felipe T

    2011-12-01

    Full Text Available Abstract Background In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1 was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles. Results Buffalo green monkey kidney (BGMK cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.. A partial least squares (PLS regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV of 17 plaque forming units (PFU/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected. Conclusions This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and

  6. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy

    NARCIS (Netherlands)

    Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; Dam, van J.E.G.

    2004-01-01

    Fourier-transformed infrared spectroscopy (FT-IR) was evaluated as an analytical technique for the estimation of the chemical composition and functional properties of lignin. A sample set containing various non-wood, hardwood and softwood lignins isolated by different processing technologies was

  7. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  8. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.

    Science.gov (United States)

    Rubio, Celine; Ott, Christelle; Amiel, Caroline; Dupont-Moral, Isabelle; Travert, Josette; Mariey, Laurence

    2006-03-01

    Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.

  9. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    Science.gov (United States)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  10. ATR-FTIR Spectroscopy Highlights the Problem of Distinguishing Between Exophiala dermatitidis and E. phaeomuriformis Using MALDI-TOF MS

    NARCIS (Netherlands)

    Ergin, C.; Gok, Y.; Baygu, Y.; Gumral, R.; Ozhak-Baysan, B.; Dogen, A.; Ogunc, D.; Ilkit, M.; Seyedmousavi, S.

    2016-01-01

    The present study compared two chemical-based methods, namely, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to understand the misidentification of Exophiala

  11. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

    Directory of Open Access Journals (Sweden)

    Boris Zimmermann

    Full Text Available Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR. The experimental set includes 71 spore (Basidiomycota and 121 pollen (Pinales, Fagales and Poales samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years.The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.

  12. Photoacoustic spectroscopy, FTIR spectra and thermal diffusivity investigation of emeraldine pellet

    International Nuclear Information System (INIS)

    Phing, T.E.; Fanny, C.Y.J.; Wan Mahmood Mat Yunus

    2001-01-01

    Photoacoustic spectra for both emeraldine base and emeraldine salt in bulk form were measured in the wavelength range of 350 nm to 700 nm. The Fourier transform Infrared spectroscopy (FTIR) have also been studied to determine the structure changes due to the protonation process. For the thermal diffusivity measurement, the open photoacoustic cell (OPC) technique has been used. It was found that the emeraldine salt exhibit higher thermal diffusivity compare to emeraldine base and this is similar to the higher conductivity characteristics of emeraldine salt. (Author)

  13. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  14. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    International Nuclear Information System (INIS)

    Smidt, Ena; Meissl, Katharina

    2007-01-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments

  15. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  16. Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine

    Science.gov (United States)

    Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham

    1999-04-01

    A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.

  17. Chlorococcalean microalgae Ankistrodesmus convolutes biodiesel characterization with Fourier transform-infrared spectroscopy and gas chromatography mass spectroscopy techniques

    Directory of Open Access Journals (Sweden)

    Swati SONAWANE

    2015-12-01

    Full Text Available The Chlorococcalean microalgae Ankistrodesmus convolutes was found in fresh water Godawari reservoir, Ahmednagar district of Maharashtra State, India. Microalgae are modern biomass for the production of liquid biofuel due to its high solar cultivation efficiency. The collection, harvesting and drying processes were play vital role in converting algal biomass into energy liquid fuel. The oil extraction was the important step for the biodiesel synthesis. The fatty acid methyl ester (FAME synthesis was carried through base catalyzed transesterification method. The product was analyzed by using the hyphened techniques like Fourier Transform-Infrared spectroscopy (FT-IR and Gas Chromatography Mass Spectroscopy (GCMS. FT-IR Spectroscopy was results the ester as functional group of obtained product while the Gas Chromatography Mass Spectroscopy was results the six type of fatty acid methyl ester with different concentration. Ankistrodesmus convolutes biodiesel consist of 46.5% saturated and 49.14% unsaturated FAME.

  18. Evaluation of flaA short variable region sequencing, multilocus sequence typing and Fourier transform infrared spectroscopy for discrimination between Campylobacter jejuni strains

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas T.

    2012-01-01

    and Fourier transform infrared (FTIR) spectroscopy were applied on a collection of 102 epidemiologically related and unrelated Campylobacter jejuni strains. Previous application of FTIR spectroscopy for subtyping of Campylobacter has been limited. A subset of isolates, initially discriminated by flaA SVR...

  19. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko [Optical Therapeutics and Medical Nanophotonics Laboratory, Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  20. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    Science.gov (United States)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  1. Femtosecond infrared spectroscopy: study, development and applications

    International Nuclear Information System (INIS)

    Bonvalet, Adeline

    1997-01-01

    This work has been devoted to the development and the applications of a new technique of infrared (5-20 μm) spectroscopy allowing a temporal resolution of 100 fs. This technique relies on a source of ultrashort infrared pulses obtained by frequency mixing in a nonlinear material. In particular, the optical rectification of 12-fs visible pulses in gallium arsenide has allowed us to obtain 40-fs infrared pulses with a spectrum extending from 5 pm up to 15 μm. Spectral resolution has been achieved by Fourier transform spectroscopy, using a novel device we have called Diffracting FTIR. These developments allow to study inter-subband transitions in quantum-well structures. The inter-subband relaxation time has been measured by a pump-probe experiment, in which the sample was excited with a visible pulse, and the variations of inter-subband absorption probed with an infrared pulse. Besides, we have developed a method of coherent emission spectroscopy allowing to monitor the electric field emitted by coherent charge oscillations in quantum wells. The decay of the oscillations due to the loss of coherence between excited levels yields a direct measurement of the dephasing time between these levels. Other applications include biological macromolecules like reaction centers of photosynthetic bacteria. We have shown that we were able to monitor variations of infrared absorption of about 10 -4 optical densities with a temporal resolution of 100 fs. This would constitute a relevant tool to study the role of molecular vibrations during the primary steps of biological processes. (author) [fr

  2. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.

  3. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Stejskal, Jaroslav

    2011-01-01

    Roč. 83, č. 10 (2011), s. 1803-1817 ISSN 0033-4545 R&D Projects: GA MŠk LA09028 Institutional research plan: CEZ:AV0Z40500505 Keywords : aniline oligomers * fourier transform infrared (FTIR) spectroscopy * IUPAC Polymer Division Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.789, year: 2011

  4. Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk

    NARCIS (Netherlands)

    Capuano, E.; Rademaker, J.; Bijgaart, van den H.; Ruth, van S.M.

    2014-01-01

    In the present study, a total of 116 tank milk samples were collected from 30 farms located in The Netherlands and analysed by Fourier-transform infrared (FTIR) spectroscopy. Samples were collected in April, May and June 2011 and in February 2012. The samples differed in the time spent by the cows

  5. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    International Nuclear Information System (INIS)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.; Macias, Virgilia; Kajdacsy-Balla, Andre; Hirschmugl, Carol; Bhargava, Rohit

    2010-01-01

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  6. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann

    2006-01-01

    Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopy have been applied to detect structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. The amide I region pointed to a beta-sheet to alpha-helix transition upon ligation in acetate...

  7. Solid-state characterization of triamcinolone acetonide nanosuspensiones by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy and differential scanning calorimetry analysis

    Directory of Open Access Journals (Sweden)

    Eva García-Millán

    2017-12-01

    Full Text Available The data presented in this article describe the physical state of the triamcinolone acetonide (TA in nanosuspension stabilized with polyvinyl alcohol (PVA and poloxamer 407 (PL. The data were assessed by X-ray spectroscopy, ATR Fourier transforms infrared spectroscopy measurements (FTIR, and Differential scanning calorimetry (DSC analysis. PVA, PL and polymeric mixture (PVA and PL were compared with nanosuspension and the interactions between drug triamcinolone acetonide and polymers were studied. The data are related and are complementary to the research article entitle “Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions” (García-Millán et al., 2017 [1]. Keywords: Triamcinolona acetonide nanosuspensiones, X-ray spectroscopy, FTIR spectroscopy, DSC

  8. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices. © 2014 Institute of Food Technologists®

  9. Analysis of serum cortisol levels by Fourier Transform Infrared Spectroscopy for diagnosis of stress in athletes

    Directory of Open Access Journals (Sweden)

    Lia Campos Lemes

    Full Text Available Abstract Introduction Fourier-transform infrared (FT-IR spectroscopy is a technique with great potential for body fluids analyses. The aim of this study was to examine the impact of session training on cortisol concentrations in rugby players by means of infrared analysis of serum. Methods Blood collections were performed pre, post and 24 hours after of rugby training sessions. Serum cortisol was analyzed by FT-IR spectroscopy and chemiluminescent immunoassay. Results There was a significant difference between the integrated area, in the region of 1180-1102 cm-1, of the spectra for pre, post and post 24 h serums. The cortisol concentration obtained by chemiluminescent immunoassay showed no significant difference between pre, post and post 24 h. Positive correlations were obtained between the techniques (r = 0.75, post (r = 0.83 and post 24 h (r = 0.73. Conclusion The results showed no increase in cortisol levels of the players after the training sessions, as well as positive correlations indicating that FT-IR spectroscopy have produced promising results for the analysis of serum for diagnosis of stress.

  10. Application of FT-IR spectroscopy on breast cancer serum analysis

    Science.gov (United States)

    Elmi, Fatemeh; Movaghar, Afshin Fayyaz; Elmi, Maryam Mitra; Alinezhad, Heshmatollah; Nikbakhsh, Novin

    2017-12-01

    Breast cancer is regarded as the most malignant tumor among women throughout the world. Therefore, early detection and proper diagnostic methods have been known to help save women's lives. Fourier Transform Infrared (FT-IR) spectroscopy, coupled with PCA-LDA analysis, is a new technique to investigate the characteristics of serum in breast cancer. In this study, 43 breast cancer and 43 healthy serum samples were collected, and the FT-IR spectra were recorded for each one. Then, PCA analysis and linear discriminant analysis (LDA) were used to analyze the spectral data. The results showed that there were differences between the spectra of the two groups. Discriminating wavenumbers were associated with several spectral differences over the 950-1200 cm- 1(sugar), 1190-1350 cm- 1 (collagen), 1475-1710 cm- 1 (protein), 1710-1760 cm- 1 (ester), 2800-3000 cm- 1 (stretching motions of -CH2 & -CH3), and 3090-3700 cm- 1 (NH stretching) regions. PCA-LDA performance on serum IR could recognize changes between the control and the breast cancer cases. The diagnostic accuracy, sensitivity, and specificity of PCA-LDA analysis for 3000-3600 cm- 1 (NH stretching) were found to be 83%, 84%, 74% for the control and 80%, 76%, 72% for the breast cancer cases, respectively. The results showed that the major spectral differences between the two groups were related to the differences in protein conformation in serum samples. It can be concluded that FT-IR spectroscopy, together with multivariate data analysis, is able to discriminate between breast cancer and healthy serum samples.

  11. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing...

  12. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  13. Advanced multivariate data evaluation for Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Diewok, J.

    2002-12-01

    The objective of the presented dissertation was the evaluation, application and further development of advanced multivariate data evaluation methods for qualitative and quantitative Fourier transform infrared (FT-IR) measurements, especially of aqueous samples. The focus was set on 'evolving systems'; i.e. chemical systems that change gradually with a master variable, such as pH, reaction time, elution time, etc. and that are increasingly encountered in analytical chemistry. FT-IR measurements on such systems yield 2-way and 3-way data sets, i.e. data matrices and cubes. The chemometric methods used were soft-modeling techniques, like multivariate curve resolution - alternating least squares (MCR-ALS) or principal component analysis (PCA), hard modeling of equilibrium systems and two-dimensional correlation spectroscopy (2D-CoS). The research results are presented in six publications and comprise: A new combination of FT-IR flow titrations and second-order calibration by MCR-ALS for the quantitative analysis of mixture samples of organic acids and sugars. A novel combination of MCR-ALS with a hard-modeled equilibrium constraint for second-order quantitation in pH-modulated samples where analytes and interferences show very similar acid-base behavior. A detailed study in which MCR-ALS and 2D-CoS are directly compared for the first time. From the analysis of simulated and experimental acid-base equilibrium systems, the performance and interpretability of the two methods is evaluated. Investigation of the binding process of vancomycin, an important antibiotic, to a cell wall analogue tripeptide by time-resolved FT-IR spectroscopy and detailed chemometric evaluation. Determination of red wine constituents by liquid chromatography with FT-IR detection and MCR-ALS for resolution of overlapped peaks. Classification of red wine cultivars from FT-IR spectroscopy of phenolic wine extracts with hierarchical clustering and soft independent modeling of class analogy (SIMCA

  14. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  15. Triglyceride dependent differentiation of obesity in adipose tissues by FTIR spectroscopy coupled with chemometrics.

    Science.gov (United States)

    Kucuk Baloglu, Fatma; Baloglu, Onur; Heise, Sebastian; Brockmann, Gudrun; Severcan, Feride

    2017-10-01

    The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm -1 spectral region as a more sensitive obesity related biomarker using the diagnostic potential of Fourier Transform Infrared (FTIR) spectroscopy in subcutaneous (SCAT) and visceral (VAT) adipose tissues. The adipose tissue samples were obtained from 10 weeks old male control (DBA/2J) (n = 6) and four different obese BFMI mice lines (n = 6 per group). FTIR spectroscopy coupled with hierarchical cluster analysis (HCA) and principal component analysis (PCA) was applied to the spectra of triglyceride bands as a diagnostic tool in the discrimination of the samples. Successful discrimination of the obese, obesity related insulin resistant and control groups were achieved with high sensitivity and specificity. The results revealed the power of FTIR spectroscopy coupled with chemometric approaches in internal diagnosis of abdominal obesity based on the spectral differences in the triglyceride region that can be used as a spectral marker. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Science.gov (United States)

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. © The Author(s) 2016.

  17. Organic and inorganic content of fluorotic rat incisors measured by FTIR spectroscopy

    Science.gov (United States)

    Porto, Isabel Maria; Saiani, Regina Aparecida; Chan, K. L. Andrew; Kazarian, Sergei G.; Gerlach, Raquel Fernanda; Bachmann, Luciano

    2010-09-01

    Details on how fluoride interferes in enamel mineralization are still controversial. Therefore, this study aimed at analyzing the organic contents of fluorosis-affected teeth using Fourier Transformation Infrared spectroscopy. To this end, 10 male Wistar rats were divided into two groups: one received 45 ppm fluoride in distilled water for 60 days; the other received distilled water only. Then, the lower incisors were removed and prepared for analysis by two FTIR techniques namely, transmission and micro-ATR. For the first technique, the enamel was powdered, whereas in the second case one fluorotic incisor was cut longitudinally for micro-ATR. Using transmission and powdered samples, FTIR showed a higher C-H content in the fluorotic enamel compared with control enamel ( p amelogenesis. Further studies along this line may definitely answer some questions regarding protein content in fluorotic enamel as well as their origin.

  18. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum

    Directory of Open Access Journals (Sweden)

    Wills John

    2010-11-01

    Full Text Available Abstract Background Survival time for lung cancer is poor with over 90% of patients dying within five years of diagnosis primarily due to detection at late stage. The main objective of this study was to evaluate Fourier transform infrared spectroscopy (FTIR as a high throughput and cost effective method for identifying biochemical changes in sputum as biomarkers for detection of lung cancer. Methods Sputum was collected from 25 lung cancer patients in the Medlung observational study and 25 healthy controls. FTIR spectra were generated from sputum cell pellets using infrared wavenumbers within the 1800 to 950 cm-1 "fingerprint" region. Results A panel of 92 infrared wavenumbers had absorbances significantly different between cancer and normal sputum spectra and were associated with putative changes in protein, nucleic acid and glycogen levels in tumours. Five prominent significant wavenumbers at 964 cm-1, 1024 cm-1, 1411 cm-1, 1577 cm-1 and 1656 cm-1 separated cancer spectra from normal spectra into two distinct groups using multivariate analysis (group 1: 100% cancer cases; group 2: 92% normal cases. Principal components analysis revealed that these wavenumbers were also able to distinguish lung cancer patients who had previously been diagnosed with breast cancer. No patterns of spectra groupings were associated with inflammation or other diseases of the airways. Conclusions Our results suggest that FTIR applied to sputum might have high sensitivity and specificity in diagnosing lung cancer with potential as a non-invasive, cost-effective and high-throughput method for screening. Trial Registration ClinicalTrials.gov: NCT00899262

  19. Buccal microbiology analyzed by infrared spectroscopy

    Science.gov (United States)

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  20. Application of Fourier Transform Infrared (FTIR) Spectroscopy for Rapid Detection of Fumonisin B2 in Raisins.

    Science.gov (United States)

    Heperkan, Dilek; Gökmen, Ece

    2016-07-01

    The aim of this study was to investigate the potential use of FTIR spectroscopy as a rapid screening method to detect fumonisin produced by Aspergillus niger. A. niger spore suspensions isolated from raisins were inoculated in Petri dishes prepared with sultana raisin or black raisin extracts containing agar and malt extract agar (MEA). After 9 days of incubation at 25°C, fumonisin B2 (FB2) production on each agar plate was determined by subjecting the agar plugs to IR spectroscopy. The presence of amino group (at 1636-1639 cm(-1)) was especially indicative of fumonisin production in MEA and the raisin extracts containing agar. The results were confirmed by HPLC analysis of the agar sample extracts after immunoaffinity column cleanup. It was determined that A. niger produced more FB2 in sultana raisins than in MEA, with no FB2 being produced in black raisin extract agar. This study demonstrated that proper sample preparation procedure followed by FTIR analysis is a useful technique for identifying toxigenic molds and their mycotoxin production in agricultural commodities.

  1. Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Belanche, A.; Weisbjerg, Martin Riis; Allison, G.G.

    2014-01-01

    This study explored the potential of partial least squares (PLS) and Fourier-transform infrared spectroscopy (FTIR) to predict rumen dry matter (DM) and neutral detergent fiber (NDF) degradation parameters of a wide range of feeds for ruminants, as an alternative to the in situ method. In total...... components, such as cellulose, pectin, lignin, cutin, and suberin, but also with nonstructural carbohydrates and certain active compounds. In conclusion, FTIR spectroscopy could be considered a low-cost alternative to in situ measurements in feed evaluation....

  2. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR Transmission Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available The potential of Fourier transform infrared (FT-IR transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA, and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS regression and successive projections algorithm (SPA was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C, 1456, 1438, 1419(C = N, and 1506 (CNH cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVMalgorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291. All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea.

  3. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  4. Quantification of DNA in simple eukaryotic cells using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Whelan, Donna R; Bambery, Keith R; Puskar, Ljiljana; McNaughton, Don; Wood, Bayden R

    2013-10-01

    A technique capable of detecting and monitoring nucleic acid concentration offers potential in diagnosing cancer and further developing an understanding of the biochemistry of disease. The application of Fourier transform infrared (FTIR) spectroscopy has previously been hindered by the supposed non-Beer-Lambert absorption behavior of DNA in intact cells making elucidation of the DNA bands difficult. We use known composition DNA/hemoglobin standards to successfully estimate the DNA content in avian erythrocyte nuclei (44.2%) and intact erythrocytes (12.8%). Furthermore we demonstrate that the absorption of cellular DNA does follow the Beer-Lambert Law and highlights the role of conformation and hydration in FTIR spectroscopy of biological samples. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Identification of Dendrobium varieties by infrared spectroscopy].

    Science.gov (United States)

    Liu, Fei; Wang, Yuan-Zhong; Yang, Chun-Yan; Jin, Hang

    2014-11-01

    The difference of Dendrobium varieties were analyzed by Fourier transform infrared (FTIR) spectroscopy. The infrared spectra of 206 stems from 30 Dendrobium varieties were obtained, and showed that polysaccharides, especially fiber, were the main components in Dendrobium plants. FTIR combined with Wilks' Lambda stepwise discriminative analysis was used to identify Dendrobium varieties. The effects of spectral range and number of training samples on the discrimination results were also analysed. Two hundred eighty seven variables in the spectral range of 1 800-1 250 cm(-1) were studied, and showed that the return discrimination is 100% correct when the training samples number of each species was 2, 3, 4, 5, and 6, respectively, whereas for the remaining samples the correct rates of identification were equal to 79.4%, 91.3%, 93.0%, 98.2%, and 100%, respectively. The same discriminative analyses on five different training samples in the spectral range of 1 800-1 500, 1 500-1 250, 1 250-600, 1 250-950 and 950-650 cm(-1) were compared, which showed that the variables in the range of 1 800-1 250, 1 800-1 500 and 950-600 cm(-1) were more suitable for variety identification, and one can obtain the satisfactory result for discriminative analysis when the training sample is more than 3. Our results indicate that FTIR combined with stepwise discriminative analysis is an effective way to distinguish different Dendrobium varieties.

  6. [Application of FTIR micro-spectroscopy in the tribology].

    Science.gov (United States)

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  7. FTIR spectra of whey and casein hydrolysates in relation to their functional properties

    NARCIS (Netherlands)

    Ven, van der C.; Muresan, S.; Gruppen, H.; Bont, D.B.A.; Merck, K.B.; Voragen, A.G.J.

    2002-01-01

    Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness,

  8. Qualitative analysis of thin films of crude oil deposits on the metallic substrate by Fourier transform infrared (FTIR) microscopy

    DEFF Research Database (Denmark)

    Batina, N.; Reyna-Cordova, A.; Trinidad-Reyes, Y.

    2005-01-01

    Thin films of crude oil samples were prepared for atomic force microscopy (AFM) analysis on the gold substrate. Sample preparation involved evaporation during a long (24 h) but mild thermal exposure (80 °C). Fourier transform infrared (FTIR) microscopy (reflectance spectroscopy) was employed...... of oxidation state was compared to surface morphology data by AFM previously reported. The reported results emphasize the advantage of complementary techniques (AFM/FTIR microscopy) in the analysis of petroleum thin films that should be considered during analysis and interpretation of this type of data....... to determinate the quality of the thin film surface, before the morphology characterization. The surface reflectance spectra were compared to direct transmittance FTIR of liquid oil samples. The two FTIR techniques showed different spectral characteristics related to oxygenated functionalities. This clearly...

  9. Identification of Quercus agrifolia (coast live oak resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Anna Olivia Conrad

    2014-10-01

    Full Text Available Over the last two decades coast live oak (CLO dominance in many California coastal ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum, the causal agent of sudden oak death. In spite of high infection and mortality rates in some areas, the presence of apparently resistant trees has been observed, including trees that become infected but recover over time. However, identifying resistant trees based on recovery alone can take many years. The objective of this study was to determine if Fourier-transform infrared (FT-IR spectroscopy, a chemical fingerprinting technique, can be used to identify CLO resistant to P. ramorum prior to infection. Soft independent modeling of class analogy identified spectral regions that differed between resistant and susceptible trees. Regions most useful for discrimination were associated with carbonyl group vibrations. Additionally, concentrations of two putative phenolic biomarkers of resistance were predicted using partial least squares regression; > 99% of the variation was explained by this analysis. This study demonstrates that chemical fingerprinting can be used to identify resistance in a natural population of forest trees prior to infection with a pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by sudden oak death, as well as in other situations where emerging or existing forest pests and diseases are of concern.

  10. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    Science.gov (United States)

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  11. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics

    Science.gov (United States)

    Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui

    2016-01-01

    A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.

  12. Application of infrared spectroscopy in the identification of Ewing sarcoma: A preliminary report

    Science.gov (United States)

    Chaber, Radosław; Łach, Kornelia; Szmuc, Kamil; Michalak, Elżbieta; Raciborska, Anna; Mazur, Damian; Machaczka, Maciej; Cebulski, Józef

    2017-06-01

    Fourier transform infrared (FTIR) spectroscopy is a highly sensitive, non-invasive analytical technique that can provide information about molecular changes in a biological sample. FTIR spectrum is a sum of the frequencies of many biomolecules which reveals a biochemical fingerprint for mineral identification, and can be analyzed for information about the mineral structure of malignant cells. This gives us the potential to differentiate tumor cells from normal cells in the early stage of relapse, before the tumor cells would be detectable in light microscopy. Ewing sarcoma (ES) is the second most common malignant bone tumor found in children and adolescents. ES affects annually almost 3 persons/1,000,000 mostly children and young adults under 20 years of age annually. ES originates from primitive, low-differentiated neuroectodermal cells. The current standard of therapy for ES is the surgical resection of the primary tumor and metastasis in combination with the chemo- and radiotherapy. The aim of this study was to compare the spectra of ES bone samples and the spectra of normal bone tissues, analyzed before and after induction chemotherapy, by means of FTIR spectroscopy. Six patients with ES affecting bones aged 5.5-16.5 years (median age 11.2 years), who were treated between 2011 and 2015, were included to the study. In all analyzed patients, the diagnosis of ES and the assessment of response to the chemotherapy were performed according to the Euro-EWING-2008 protocol. The Fourier transform infrared spectroscope (FT-IR; Vertex 70v from Bruker) was used in this study. Tissue specimens were applied to the attenuated total reflection (ATR) in the infrared (IR) radiation from the mid-infrared range using a single-reflection snap ATR crystal diamond. In the FTIR spectra we observed a shift in the wave number of the phosphate ion (from 3 to 26 [cm-1]) associated with the presence of tumor tissue. After chemotherapy, a change of the FTIR spectrum was associated with the

  13. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  14. Investigation of the Cross-Section Stratifications of Icons Using Micro-Raman and Micro-Fourier Transform Infrared (FT-IR) Spectroscopy.

    Science.gov (United States)

    Lazidou, Dimitra; Lampakis, Dimitrios; Karapanagiotis, Ioannis; Panayiotou, Costas

    2018-01-01

    The cross-section stratifications of samples, which were removed from six icons, are studied using optical microscopy, micro-Raman spectroscopy, and micro-Fourier transform infrared (FT-IR) spectroscopy. The icons, dated from the 14th to 19th centuries, are prominent examples of Byzantine painting art and are attributed to different artistic workshops of ​​northern Greece. The following materials are identified in the cross-sections of the icon samples using micro-Raman spectroscopy: anhydrite; calcite; carbon black; chrome yellow; cinnabar; gypsum; lead white; minium; orpiment; Prussian blue; red ochre; yellow ochre; and a paint of organic origin which can be either indigo ( Indigofera tinctoria L. and others) or woad ( Isatis tinctoria L.). The same samples are investigated using micro-FT-IR which leads to the following identifications: calcite; calcium oxalates; chrome yellow; gypsum; kaolinite; lead carboxylates; lead sulfate (or quartz); lead white; oil; protein; Prussian blue; saponified oil; shellac; silica; and tree resin. The study of the cross-sections of the icon samples reveals the combinations of the aforementioned inorganic and organic materials. Although the icons span over a long period of six centuries, the same stratification comprising gypsum ground layer, paint layers prepared by modified "egg tempera" techniques (proteinaceous materials mixed with oil and resins), and varnish layer is revealed in the investigated samples. Moreover, the presence of three layers of varnishes, one at the top and other two as intermediate layers, in the cross-section analysis of a sample from Virgin and Child provide evidence of later interventions.

  15. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    Science.gov (United States)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  16. Application of FTIR spectroscopy to the characterization of archeological wood.

    Science.gov (United States)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-15

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods.

    Science.gov (United States)

    Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho

    2018-07-15

    Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Role of Infrared Spectroscopy and Imaging in Cancer Diagnosis.

    Science.gov (United States)

    Kumar, Saroj; Srinivasan, Alagiri; Nikolajeff, Fredrik

    2018-01-01

    Cancer is a major global health issue. It causes extensive individual suffering and gives a huge burden on the health care in society. Despite extensive research and different tools have been developed it still remains a challenge for early detection of this disease. FTIR imaging has been used to diagnose and differentiate the molecular differences between normal and diseased tissues. Fourier Transform Infrared Spectroscopy (FTIR) is able to measure biochemical changes in tissue, cell and biofluids based on the vibrational signature of their components. This technique enables to the distribution and structure of lipids, proteins, nucleic acids as well as other metabolites. These differences depended on the type and the grade of cancer. We emphasize here, that the FTIR spectroscopy and imaging can be considered as a promising technique and will find its place on the detection of this dreadful disease because of high sensitivity, accuracy and inexpensive technique. Now the medical community started using and accepting this technique for early stage cancer detection. We discussed this technique and the several challenges in its application for the diagnosis of cancer in regards of sample preparations, data interpretation, and data analysis. The sensitivity of chemotherapy drugs on individual specific has also discussed. So far progressed has done with the FTIR imaging in understanding of cancer disease pathology. However, more research is needed in this field and it is necessary to understand the morphology and biology of the sample before using the spectroscopy and imaging because invaluable information to be figured out. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. [Application of Fourier transform infrared spectroscopy in identification of wine spoilage].

    Science.gov (United States)

    Zhao, Xian-De; Dong, Da-Ming; Zheng, Wen-Gang; Jiao, Lei-Zi; Lang, Yun

    2014-10-01

    In the present work, fresh and spoiled wine samples from three wines produced by different companies were studied u- sing Fourier transform infrared (FTIR) spectroscopy. We analyzed the physicochemical property change in the process of spoil- age, and then, gave out the attribution of some main FTIR absorption peaks. A novel determination method was explored based on the comparisons of some absorbance ratios at different wavebands although the absorbance ratios in this method were relative. Through the compare of the wine spectra before and after spoiled, the authors found that they were informative at the bands of 3,020~2,790, 1,760~1,620 and 1,550~800 cm(-1). In order to find the relation between these informative spectral bands and the wine deterioration and achieve the discriminant analysis, chemometrics methods were introduced. Principal compounds analysis (PCA) and soft independent modeling of class analogy (SIMCA) were used for classifying different-quality wines. And partial least squares discriminant analysis (PLS-DA) was applied to identify spoiled wines and good wines. Results showed that FTIR technique combined with chemometrics methods could effectively distinguish spoiled wines from fresh samples. The effect of classification at the wave band of 1 550-800 cm(-1) was the best. The recognition rate of SIMCA and PLSDA were respectively 94% and 100%. This study demonstrates that Fourier transform infrared spectroscopy is an effective tool for monitoring red wine's spoilage and provides theoretical support for developing early-warning equipments.

  20. Differentiation of Leishmania species by FT-IR spectroscopy

    Science.gov (United States)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  1. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  2. Analysis of contaminants on electronic components by reflectance FTIR spectroscopy

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1982-09-01

    The analysis of electronic component contaminants by infrared spectroscopy is often a difficult process. Most of the contaminants are very small, which necessitates the use of microsampling techniques. Beam condensers will provide the required sensitivity but most require that the sample be removed from the substrate before analysis. Since it can be difficult and time consuming, it is usually an undesirable approach. Micro ATR work can also be exasperating, due to the difficulty of positioning the sample at the correct place under the ATR plate in order to record a spectrum. This paper describes a modified reflection beam condensor which has been adapted to a Nicolet 7199 FTIR. The sample beam is directed onto the sample surface and reflected from the substrate back to the detector. A micropositioning XYZ stage and a close-focusing telescope are used to position the contaminant directly under the infrared beam. It is possible to analyze contaminants on 1 mm wide leads surrounded by an epoxy matrix using this device. Typical spectra of contaminants found on small circuit boards are included

  3. Improving precursor adsorption characteristics in ATR-FTIR spectroscopy with a ZrO{sub 2} nanoparticle coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeseo [Korea Research Institute of Standards and Science, Center for Vacuum Technology (Korea, Republic of); Mun, Jihun [University of Science and Technology, Department of Advanced Device Technology (Korea, Republic of); Shin, Jae-Soo; Kim, Jongho; Park, Hee Jung [Daejeon University, Department of Advanced Materials Engineering (Korea, Republic of); Kang, Sang-Woo, E-mail: swkang@kriss.re.kr [Korea Research Institute of Standards and Science, Center for Vacuum Technology (Korea, Republic of)

    2017-02-15

    Nanoparticles were applied to a crystal surface to increase its precursor adsorption efficiency in an attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer. Nanoparticles with varying dispersion stabilities were employed and the resulting precursor adsorption characteristics were assessed. The size of the nanoparticles was <100 nm (TEM). In order to vary the dispersion stability, ZrO{sub 2} nanoparticles were dispersed in aqueous solutions of different pH. The ZrO{sub 2} dispersion solutions were analyzed using scanning electron microscopy (SEM) while particle distribution measurements were analyzed using electrophoretic light scattering (ELS) and dynamic light scattering (DLS) techniques. ZrO{sub 2} nanoparticles dispersed in solutions of pH 3 and 11 exhibited the most stable zeta potentials (≥+30 or ≤−30 mV); these observations were confirmed by SEM analysis and particle distribution measurements. Hexamethyldisilazane (HMDS) was used as a precursor for ATR-FTIR spectroscopy. Consequently, when ZrO{sub 2} nanoparticle solutions with the best dispersion stabilities (pH 3 and 11) were applied to the adsorption crystal surface, the measurement efficiency of ATR-FTIR spectroscopy improved by ∼200 and 300%, respectively.

  4. Analytical method development and validation for quantification of uranium by Fourier Transform Infrared Spectroscopy (FTIR) for routine quality control analysis

    International Nuclear Information System (INIS)

    Pereira, Elaine; Silva, Ieda de S.; Gomide, Ricardo G.; Pires, Maria Aparecida F.

    2015-01-01

    This work presents a low cost, simple and new methodology for direct determination uranium in different matrices uranium: organic phase (UO 2 (NO 3 ) 2 .2TBP - uranyl nitrate complex) and aqueous phase (UO 2 (NO 3 ) 2 - NTU - uranyl nitrate), based on Fourier Transform Infrared spectroscopy (FTIR) using KBr pellets technique. The analytical validation is essential to define if a developed methodology is completely adjusted to the objectives that it is destined and is considered one of the main instruments of quality control. The parameters used in the validation process were: selectivity, linearity, limits of detection (LD) and quantitation (LQ), precision (repeatability and intermediate precision), accuracy and robustness. The method for uranium in organic phase (UO 2 (NO 3 ) 2 .2TBP in hexane/embedded in KBr) was linear (r=0.9989) over the range of 1.0 g L -1 a 14.3 g L -1 , LD were 92.1 mg L -1 and LQ 113.1 mg L -1 , precision (RSD < 1.6% and p-value < 0.05), accurate (recovery of 100.1% - 102.9%). The method for uranium aqueous phase (UO 2 (NO 3 )2/embedded in KBr) was linear (r=0.9964) over the range of 5.4 g L -1 a 51.2 g L -1 , LD were 835 mg L -1 and LQ 958 mg L -1 , precision (RSD < 1.0% and p-value < 0.05), accurate (recovery of 99.1% - 102.0%). The FTIR method is robust regarding most of the variables analyzed, as the difference between results obtained under nominal and modified conditions were lower than the critical value for all analytical parameters studied. Some process samples were analyzed in FTIR and compared with gravimetric and x ray fluorescence (XRF) analyses showing similar results in all three methods. The statistical tests (Student-t and Fischer) showed that the techniques are equivalent. (author)

  5. Quantitative assessment of the ion-beam irradiation induced direct damage of nucleic acid bases through FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); University of Science and Technology of China, Hefei 230029, Anhui (China); Su, Xi; Yao, Guohua; Lu, Yilin; Ke, Zhigang; Liu, Jinghua; Wu, Yuejin; Yu, Zengliang [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China)

    2014-07-01

    Energetic particles exist ubiquitously in nature, and when they hit DNA molecules in organisms, they may induce critical biological effects such as mutation. It is however still a challenge to measure directly and quantitatively the damage imposed by the energetic ions on target DNA molecules. In this work we attempted to employ Fourier transformation infrared (FTIR) spectroscopy to assess the ion-induced direct damage of four nucleic acid bases, namely, thymine (T), cytosine (C), guanine (G), and adenine (A), which are the building blocks of DNA molecules. The samples were prepared as thin films, irradiated by argon ion-beams at raised ion fluences, and in the meantime measured by FTIR spectroscopy for the damage in a quasi-in-situ manner. It was found that the low-energy ion-beam induced radiosensitivity of the four bases shows the sequence G > T > C > A, wherein the possible mechanism was also discussed.

  6. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Science.gov (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  7. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Science.gov (United States)

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  8. GROUPING OF ORAL STREPTOCOCCAL SPECIES USING FOURIER-TRANSFORM INFRARED-SPECTROSCOPY IN COMPARISON WITH CLASSICAL MICROBIOLOGICAL IDENTIFICATION

    NARCIS (Netherlands)

    VANDERMEI, HC; NAUMANN, D; BUSSCHER, HJ

    1993-01-01

    The grouping and identification made by Fourier-transform infrared spectroscopy (FT-IR) of 40 oral streptococcal strains was compared with their known taxonomic positions. Grouping was obtained by cluster analysis on the spectral distances between the first derivative spectra of the strains. Spectra

  9. A validated Fourier transform infrared spectroscopy method for quantification of total lactones in Inula racemosa and Andrographis paniculata.

    Science.gov (United States)

    Shivali, Garg; Praful, Lahorkar; Vijay, Gadgil

    2012-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a technique widely used for detection and quantification of various chemical moieties. This paper describes the use of the FT-IR spectroscopy technique for the quantification of total lactones present in Inula racemosa and Andrographis paniculata. To validate the FT-IR spectroscopy method for quantification of total lactones in I. racemosa and A. paniculata. Dried and powdered I. racemosa roots and A. paniculata plant were extracted with ethanol and dried to remove ethanol completely. The ethanol extract was analysed in a KBr pellet by FT-IR spectroscopy. The FT-IR spectroscopy method was validated and compared with a known spectrophotometric method for quantification of lactones in A. paniculata. By FT-IR spectroscopy, the amount of total lactones was found to be 2.12 ± 0.47% (n = 3) in I. racemosa and 8.65 ± 0.51% (n = 3) in A. paniculata. The method showed comparable results with a known spectrophotometric method used for quantification of such lactones: 8.42 ± 0.36% (n = 3) in A. paniculata. Limits of detection and quantification for isoallantolactone were 1 µg and 10 µg respectively; for andrographolide they were 1.5 µg and 15 µg respectively. Recoveries were over 98%, with good intra- and interday repeatability: RSD ≤ 2%. The FT-IR spectroscopy method proved linear, accurate, precise and specific, with low limits of detection and quantification, for estimation of total lactones, and is less tedious than the UV spectrophotometric method for the compounds tested. This validated FT-IR spectroscopy method is readily applicable for the quality control of I. racemosa and A. paniculata. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    Science.gov (United States)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during

  11. Quantitative determination of polyphosphate in sediments using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and partial least squares regression.

    Science.gov (United States)

    Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R

    2012-08-21

    Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical

  12. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  13. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    International Nuclear Information System (INIS)

    Portaccio, M.; Gravagnuolo, A.M.; Longobardi, S.; Giardina, P.; Rea, I.; De Stefano, L.; Cammarota, M.; Lepore, M.

    2015-01-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging

  14. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Portaccio, M., E-mail: marianna.portaccio@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Gravagnuolo, A.M., E-mail: alfredomaria.gravagnuolo@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Longobardi, S., E-mail: sara.longobardi@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Giardina, P., E-mail: paola.giardina@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Rea, I., E-mail: ilaria.rea@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); De Stefano, L., E-mail: luca.destefano@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); Cammarota, M., E-mail: marcella.cammarota@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Lepore, M., E-mail: maria.lepore@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy)

    2015-10-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging.

  15. Application of Fourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation.

    Science.gov (United States)

    Irinislimane, Ratiba; Belhaneche-Bensemra, Naima

    2012-12-01

    Commercial sunflower oil was epoxidized at the laboratory-scale. The epoxidized sunflower oil (ESFO) was modified following the acrylation reaction. Modification was carried out simultaneously using acrylic acid (AA) and triethylamine (TEA). To optimize the reaction conditions, the effects of four temperatures (40, 60, 80, and 100 °C), the ESFO:AA (100:100) ratio, and 0.2% TEA were investigated. The rate of conversion was analyzed with both FT-IR and titration of the oxirane ring. After that, the temperature with the highest conversion was selected and used throughout for all modification reactions. Then, four ratios (100:100, 100:90, 100:80, and 100:75) of ESFO:AA were analyzed at four different concentrations of TEA (0.2, 0.3, 0.4, and 0.5%) to determine the best estimate for both the ESFO:AA ratio and the catalyst concentration. Conversion rate was analyzed using FT-IR spectroscopy by measuring the concentrations of ester, carbonyl, and alcohol groups. Moreover, oxirane-ring concentration was estimated using the titration method (with gentian violet as indicator) and FT-IR spectroscopy (epoxy ring absorptions at 1270 cm(-1) and 877 cm(-1)). Based on conversion yield, the optimum ESFO:AA ratio corresponds to 100:80; the best temperature reaction was at 60 °C, and the best TEA concentration was 0.2%. The critical amounts of reactants needed to reach maximum conversion were established. The final acid value of the acrylated ESFO after washing (pH = 7) was 2.1 mg potassium hydroxide (KOH)·g(-1). All results show that FT-IR spectroscopy is a simple, low-cost, rapid method for investigating the kinetics of a reaction.

  16. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  17. Fast infrared spectroscopy in supercritical fluids

    International Nuclear Information System (INIS)

    Sun, X.

    2000-05-01

    the relative wavelength of the visible absorption maximum for Cr(CO) 5 Xe and Cr(CO) 5 (CO 2 ) all indicate a similar strength of interaction for Xe and CO 2 with the M(CO) 5 moiety. Chapter 4: Step-scan fourier transform time resolved infrared spectroscopy. In this chapter, conventional FTIR spectroscopy is introduced. Four methods of applying FTIR for time-resolved studies, i.e., rapid-scan FTIR, synchronous rapid-scan FTIR, asynchronous rapid-scan FTIR, and step-scan time-resolved FTIR are described. The using the step-scan FTIR spectrometer (Nicolet 860) in Nottingham for fast time resolved measurements is discussed. Time-resolved measurements on the photochemistry of [CpFe(CO) 2 ] 2 and Ciba Irgacure 184 in n-heptane solution show that this apparatus offers high spectral resolution, high sensitivity and fast time resolution. Chapter 5: Photochemistry of [CpMo(CO) 3 ] 2 and [Cp*Fe(CO) 2 ] 2 in supercritical CO 2 . This is the first study of the photochemistry of organometallic dimers in supercritical CO 2 . Radicals generated from visible (532nm) photolysis of [CpMo(CO) 3 ] 2 in scCO 2 , scXe, and n-heptane solution pressurised with CO 2 have been identified with ν(CO) bands. Three ν(CO) bands observed in scCO 2 and n-heptane solution pressurised with CO 2 , indicate coordination between Mo and CO 2 . A similar study with photolysis (532nm) of [Cp*Fe(CO) 2 ] 2 in scCO 2 finds no evidence of possible coordination between Fe and CO 2 . Radical recombination in scCO 2 is a second-order reaction. Study on pressure dependence of radical recombination rate shows no evidence of solvation enhancement on reaction rate in scCO 2 since the second-order rate constant is well below the diffusion controlled limit. lsomerisation of gauche-[CpMo(CO) 3 ] 2 and cis-[Cp*Fe(CO) 3 ] 2 is independent of the pressure of the solution. No cage effect is observed on the time scale of this measurement. Appendix: Three papers are attached outlining the work that I have completed during my

  18. Rapid quantification of casein in skim milk using Fourier transform infrared spectroscopy, enzymatic perturbation, and multiway partial least squares: Monitoring chymosin at work

    DEFF Research Database (Denmark)

    Baum, Andreas; Hansen, P. W.; Nørgaard, Lars

    2016-01-01

    In this study, we introduce enzymatic perturbation combined with Fourier transform infrared (FTIR) spectroscopy as a concept for quantifying casein in subcritical heated skim milk using chemometric multiway analysis. Chymosin is a protease that cleaves specifically caseins. As a result of hydroly......In this study, we introduce enzymatic perturbation combined with Fourier transform infrared (FTIR) spectroscopy as a concept for quantifying casein in subcritical heated skim milk using chemometric multiway analysis. Chymosin is a protease that cleaves specifically caseins. As a result...... of hydrolysis, all casein proteins clot to form a creamy precipitate, and whey proteins remain in the supernatant. We monitored the cheese-clotting reaction in real time using FTIR and analyzed the resulting evolution profiles to establish calibration models using parallel factor analysis and multiway partial...

  19. Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy

    Science.gov (United States)

    Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Capitelli, Francesco; Harley, Simon

    2012-11-01

    We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ɛ = 5,200 ± 700 l mol-1 cm-2 and [II]ɛ = 13,000 ± 3,000 l mol-1 cm-2, respectively. For CO2 the integrated coefficient is \\varepsilon_{{{{CO}}_{ 2} }} = 19,000 ± 2,000 l mol-1 cm-2.

  20. Rapid authentication of edible bird's nest by FTIR spectroscopy combined with chemometrics.

    Science.gov (United States)

    Guo, Lili; Wu, Yajun; Liu, Mingchang; Ge, Yiqiang; Chen, Ying

    2018-06-01

    Edible bird's nests (EBNs) have been traditionally regarded as a kind of medicinal and healthy food in China. For economic reasons, they are frequently subjected to adulteration with some cheaper substitutes, such as Tremella fungus, agar, fried pigskin, and egg white. As a kind of precious and functional product, it is necessary to establish a robust method for the rapid authentication of EBNs with small amounts of samples by simple processes. In this study, the Fourier transform infrared spectroscopy (FTIR) system was utilized and its feasibility for identification of EBNs was verified. FTIR spectra data of authentic and adulterated EBNs were analyzed by chemometrics analyses including principal component analysis, linear discriminant analysis (LDA), support vector machine (SVM) and one-class partial least squares (OCPLS). The results showed that the established LDA and SVM models performed well and had satisfactory classification ability, with the former 94.12% and the latter 100%. The OCPLS model was developed with prediction sensitivity of 0.937 and specificity of 0.886. Further detection of commercial EBN samples confirmed these results. FTIR is applicable in the scene of rapid authentication of EBNs, especially for quality supervision departments, entry-exit inspection and quarantine, and customs administration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

    Science.gov (United States)

    Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A

    2015-01-22

    The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Nanna Bjerregaard; Gierlinger, Notburga; Thygesen, Lisbeth Garbrecht

    2015-01-01

    Waterlogged archaeological Norway spruce [Picea abies (L.) Karst] poles were studied by means of confocal Raman imaging (CRI) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis to determine lignin and polysaccharide composition and distribution in the cell......, and minor oxidation of the lignin polymer compared to recent reference material. This is evidence for abiotic decay in the course of waterlogging....

  3. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  4. Persistent explosive activity at Stromboli investigated with OP-FTIR and SO2 cameras

    Science.gov (United States)

    Burton, M. R.; La Spina, A.; Sawyer, G. M.; Harris, A. J.

    2012-12-01

    Stromboli volcano in Italy exhibits what is perhaps one of the most well-known examples of cyclic activity, in the form of its regular explosions, which send a few m3 of material 100-200 m into the air every 10-20 minutes. Recent developments in measurements of volatile release from Stromboli using a series of novel approaches have allowed this cyclic behaviour to be examined in detail. In particular, the use of an automated OP-FTIR has revealed unprecedented detail in the dynamics of degassing from individual craters at the summit of Stromboli. Furthermore, the variations in composition of explosive degassing from Stromboli demonstrate a deep source ~2 km for the gas slugs which produce explosions at this volcano, in contrast to the commonly-held view that gas coalescence at shallow depth is responsible for the behaviour. The SO2 camera has revealed fascinating new details on the dynamics of degassing at Stromboli, and has allowed direct quantification of the amount of gas released during explosions and through quiescent degassing. The remarkable observation that 99% of degassing takes place quiescently, and that the explosions, whilst apparently more significant, are in fact a secondary process compared with the mass and energy involved in background, quiet processes. The new insight that the explosions are actually only a relatively minor aspect of the activity (in terms of mass and energy) actually makes the regularity of the cyclic explosive activity still more remarkable. In this paper we present a detailed overview of the state of the art of our understanding of cyclic explosive activity at Stromboli volcano from the perspective of recent advances in geochemical monitoring of the gas emissions. We also report initial results from a multidisciplinary campaign on Stromboli which utilised both OP-FTIR and SO2 camera techniques.

  5. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Science.gov (United States)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  6. Economical Appraisal of Total Aflatoxin Level in the Poultry Feeds by Fourier Transform Infrared Spectroscopy

    International Nuclear Information System (INIS)

    Sherazai, S.T.H.; Shar, Z.; Iqbal, M.; Sumbal, G.A.

    2013-01-01

    Single-bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy has been used for the quantitative determination of total aflatoxins in the broiler poultry feed. An FTIR calibration spanning the range 1-70 micro g/L aflatoxin standards in (70:30, v/v) methanol-water solvent system based on partial least square (PLS) model, developed by relating mid IR region between 3755-950 cm/ sub -1/. The excellent coefficient of various (using 0.998) was achieved with 1.49 relative mean square error of calibration (RMSEC). Aflatoxins from each of eight poultry feeds was extracted and the determined by the widely used commercially available Enzyme-linked Immunosorbent Assay (ELISA) procedure and the SB-ATR/FTIR method. The SB-ATR/FTIR aflatoxins predictions were related to those determined by the ELISA method by linear regression, producing an R value of 0.989 and a SD of +- 2.80 micro g/L. The result of the study clearly indicated that FT-IR spectroscopy due to its rapidity and simplicity along with data manipulation by advance computer software could be effectively used for routine determination of aflatoxins present in the poultry feeds at very low level. (author)

  7. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément

    2015-01-01

    Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components...... are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during...

  8. Photographic infrared spectroscopy and near infrared photometry of Be stars

    International Nuclear Information System (INIS)

    Swings, J.P.

    1976-01-01

    Two topics are tackled in this presentation: spectroscopy and photometry. The following definitions are chosen: photographic infrared spectroscopy (wavelengths Hα<=lambda<1.2 μ); near infrared photometry (wavebands: 1.6 μ<=lambda<=20 μ). Near infrared spectroscopy and photometry of classical and peculiar Be stars are discussed and some future developments in the field are outlined. (Auth.)

  9. Investigation of Filtration Membranes from the Dairy Protein Industry for Residual Fouling Using Infrared Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Jensen, Jannie Krog

    the reversible fouling can be removed/cleaned. The aim of this thesis is to investigate the residual fouling that is deposited on ultrafiltration and microfiltration membranes after usage. The membrane surfaces are investigated using infrared spectroscopy with an attenuated reflectance sampling unit...... and this is thesis work highlights the strengths and weaknesses of using infrared spectroscopy to investigate residual fouling on membranes and in particular the challenges with the infrared penetration depth when layering in the samples occurs. Real size production membrane cartridges at different stages of use...... microfiltration membrane cartridges were investigated with Attenuated- Total-Reflection Fourier-Transform-Infrared (ATR FT-IR) to map the residual fouling on both types of cartridges. The height of the characteristic amide peaks from proteins were used to determine the relative concentrations. The first...

  10. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Science.gov (United States)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  11. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution

    Science.gov (United States)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-01

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.

  12. Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.

    Science.gov (United States)

    Gordillo-Delgado, Fernando; Marín, Ernesto; Cortés-Hernández, Diego Mauricio; Mejía-Morales, Claudia; García-Salcedo, Angela Janet

    2012-08-30

    Procedures for the evaluation of the origin and quality of ground and roasted coffee are constantly needed for the associated industry due to complexity of the related market. Conventional Fourier transform infrared (FTIR) spectroscopy can be used for detecting changes in functional groups of compounds, such as coffee. However, dispersion, reflection and non-homogeneity of the sample matrix can cause problems resulting in low spectral quality. On the other hand, sample preparation frequently takes place in a destructive way. To overcome these difficulties, in this work a photoacoustic cell has been adapted as a detector in a FTIR spectrophotometer to perform a study of roasted and ground coffee from three varieties of Coffea arabica grown by organic and conventional methods. Comparison between spectra of coffee recorded by FTIR-photoacoustic spectrometry (PAS) and by FTIR spectrophotometry showed a better resolution of the former method, which, aided by principal components analysis, allowed the identification of some absorption bands that allow the discrimination between organic and conventional coffee. The results obtained provide information about the spectral behavior of coffee powder which can be useful for establishing discrimination criteria. It has been demonstrated that FTIR-PAS can be a useful experimental tool for the characterization of coffee. Copyright © 2012 Society of Chemical Industry.

  13. Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing.

    Science.gov (United States)

    Hu, Li-Xin; Ying, Guang-Guo; Chen, Xiao-Wen; Huang, Guo-Yong; Liu, You-Sheng; Jiang, Yu-Xia; Pan, Chang-Gui; Tian, Fei; Martin, Francis L

    2017-02-01

    Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC. © 2016 SETAC.

  14. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  15. Analysis and identification of two similar traditional Chinese medicines by using a three-stage infrared spectroscopy: Ligusticum chuanxiong, Angelica sinensis and their different extracts

    Science.gov (United States)

    Xiang, Li; Wang, Jingjuan; Zhang, Guijun; Rong, Lixin; Wu, Haozhong; Sun, Suqin; Guo, Yizhen; Yang, Yanfang; Lu, Lina; Qu, Lei

    2016-11-01

    Rhizoma Chuanxiong (CX) and Radix Angelica sinensis (DG) are very important Traditional Chinese Medicine (TCM) and usually used in clinic. They both are from the Umbelliferae family, and have almost similar chemical constituents with each other. It is complicated, time-consuming and laborious to discriminate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, to find a fast, applicable and effective identification method for two herbs is urged in quality research of TCM. In this paper, by using a three-stage infrared spectroscopy (Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2D-IR)), we analyzed and discriminated CX, DG and their different extracts (aqueous extract, alcoholic extract and petroleum ether extract). In FT-IR, all the CX and DG samples' spectra seemed similar, but they had their own unique macroscopic fingerprints to identify. Through comparing with the spectra of sucrose and the similarity calculation, we found the content of sucrose in DG raw materials was higher than in CX raw materials. The significant differences in alcoholic extract appeared that in CX alcoholic extract, the peaks at 1743 cm-1 was obviously stronger than the peak at same position in DG alcoholic extract. Besides in petroleum ether extract, we concluded CX contained much more ligustilide than DG by the similarity calculation. With the function of SD-IR, some tiny differences were amplified and overlapped peaks were also unfolded in FT-IR. In the range of 1100-1175 cm-1, there were six peaks in the SD-IR spectra of DG and the intensity, shape and location of those six peaks were similar to that of sucrose, while only two peaks could be observed in that of CX and those two peaks were totally different from sucrose in shape and relative intensity. This result was consistent with that of the

  16. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  17. Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy

    OpenAIRE

    Zhou, Chengfeng; Jiang, Wei; Cheng, Qingzheng; Via, Brian K.

    2015-01-01

    This research addressed a rapid method to monitor hardwood chemical composition by applying Fourier transform infrared (FT-IR) spectroscopy, with particular interest in model performance for interpretation and prediction. Partial least squares (PLS) and principal components regression (PCR) were chosen as the primary models for comparison. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set to collect the original data. PLS was found to provide bet...

  18. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  19. Quantification of Multiple Components of Complex Aluminum-Based Adjuvant Mixtures by Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Modeling.

    Science.gov (United States)

    Dowling, Quinton M; Kramer, Ryan M

    2017-01-01

    Fourier transform infrared (FTIR) spectroscopy is widely used in the pharmaceutical industry for process monitoring, compositional quantification, and characterization of critical quality attributes in complex mixtures. Advantages over other spectroscopic measurements include ease of sample preparation, quantification of multiple components from a single measurement, and the ability to quantify optically opaque samples. This method describes the use of a multivariate model for quantifying a TLR4 agonist (GLA) adsorbed onto aluminum oxyhydroxide (Alhydrogel ® ) using FTIR spectroscopy that may be adapted to quantify other complex aluminum based adjuvant mixtures.

  20. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    Science.gov (United States)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  1. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    Science.gov (United States)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  2. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  3. Differentiation and quality estimation of Cordyceps with infrared spectroscopy

    Science.gov (United States)

    Yang, Ping; Song, Ping; Sun, Su-Qin; Zhou, Qun; Feng, Shu; Tao, Jia-Xun

    2009-11-01

    Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, 'Cordyceps', has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400-1700 cm -1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400-1700 cm -1 and hetero 2D spectra of 670-780 cm -1 × 1400-1700 cm -1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.

  4. Tomographic Reconstruction of Tracer Gas Concentration Profiles in a Room with the Use of a Single OP-FTIR and Two Iterative Algorithms: ART and PWLS.

    Science.gov (United States)

    Park, Doo Y; Fessier, Jeffrey A; Yost, Michael G; Levine, Steven P

    2000-03-01

    Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 × 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.

  5. Use of an Open-path FTIR sensor to measure VOCs at the Hanford Site

    International Nuclear Information System (INIS)

    Kagann, R.H.; Fancher, J.D.; Tomich, S.D.

    1994-01-01

    An Open-path Fourier Transform Infrared (OP-FTIR) instrument was used to measure carbo tetrachloride vapor emitted from contaminated soil and monitoring wells in the 200 West Area of the Hanford Site in southeastern Washington State (see Figure 1). Historical activities at US Department of Energy (DOE) facilities around the United States during World War II, including development of a nuclear deterrent, resulted in the discharge of chemical and radioactive materials to the environment. Beginning in 1955, carbon tetrachloride and other liquid wastes were released to the subsurface along with cocontaminants to three liquid waste disposal facilities. The DOE has now focused a major technical effort on the mitigation of the effects of those discharges through an environmental restoration program. The OP-FTIR was used over the soil surface near the 216-Z-9 Trench (one of the disposal facilities) in the 200 West Area. The Hanford demonstration of the OP-FTIR was conducted as part of the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID), which is funded by the US Department of Energy, Office of Technology Development. The mission of the VOC-Arid ID is to identify, develop, and demonstrate new and innovative technologies to support environmental restoration

  6. Fourier transform-infrared spectroscopy as a diagnostic tool for mosquito coil smoke inhalation toxicity in Swiss Albino mice

    Science.gov (United States)

    Anusha, Chidambaram; Sankar, Renu; Varunkumar, Krishnamoorthy; Sivasindhuja, Gnanasambantham; Ravikumar, Vilwanathan

    2017-12-01

    The goal of this study is to establish Fourier transform-infrared (FTIR) spectroscopy as a diagnostic tool for allethrin-based mosquito coil smoke inhalation induced toxicity in mice. Primarily, we confirmed mosquito coil smoke inhalation toxicity in mice via reduced the body, organ weight and major vital organ tissue morphological structure changes. Furthermore, FTIR spectra was collected from control and mosquito coil smoke inhalation (8 h per day for 30 days) mice various tissues like liver, kidney, lung, heart and brain, to investigate the functional groups and their corresponding biochemical content variations. The FTIR spectra result shown major bio macromolecules such as protein and lipid functional peaks were shifted (decreased) in the mosquito coil smoke inhalation group as compared to control. The drastic peak shift was noticed in the liver, kidney followed by lung and brain. It is therefore concluded that the FTIR spectroscopy can be a successful detection tool in mosquito coil smoke inhalation toxicity.

  7. Identification and characterization of historical pigments with x-ray diffraction analysis (XRD), x-ray fluorescence analysis (XRA) and Fourier transformed infrared spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Hochleitner, B.

    2002-11-01

    This thesis presents a systematic characterization of historical inorganic pigments with respect to their crystallographic structure, main components, and trade elements, utilizing three complementary methods. The results are compiled in a computer-database containing the experimentally obtained information. The specimens examined in this study originate from a collection of 19th and 20th century pigments, dyes and binders with a wide variety of colors and materials at the Institute of Natural Sciences and Technologies in Art of the Academy of Fine Arts in Vienna. Approximately 400 different inorganic pigments were analysed for this first study of its kind by combining the experimental techniques explained in the next paragraph. For analyzing the inorganic pigments three different methods were applied: x-ray diffraction (XRD), x-ray fluorescence (XRF) and fourier-transformed infrared spectroscopy (FTIR) proved to be suitable techniques to identify and characterize the composition of the materials. The experimental work was focused on x-ray diffraction to detect the main components and to perform phase analysis for the identification of the crystallographic structure. To facilitate the analysis of the diffractograms and investigate differences in the elemental composition, XRF-measurements were carried out and complemented by FTIR-spectroscopy. The latter technique supports the identification of organic components of the samples and both ease phase analysis. In some cases, the obtained results show remarkable differences in composition for pigments having the same trade name. These differences consist either with respect to the identified elements or added components, such as pure white pigments. However, in most cases the chemical structure of the phase determining the color of the relevant pigment group was similar. Knowledge of the composition of the originally used pigments is of great importance for the restoration and conservation of art objects. In order to

  8. The Scope Of Fourier Transform Infrared (FTIR)

    Science.gov (United States)

    Hirschfeld, T.

    1981-10-01

    Three auarters of a century after its inception, a generation after its advantages were recognized, and a decade after its first commercialization, FT-IR dominates the growth of the IR market, and reigns alone over its high performance end. What lies ahead for FT-IR now? On one hand, the boundary between it and the classical scanning spectrometers is becoming fuzzy, as gratings attempt to use as much of FT-IR's computer technology as they can handle, and smaller FT systems invade the medium cost instrument range. On the other hand, technology advances in IR detectors, non-Fourier interference devices, and the often announced tunable laser are at long last getting set to make serious inroads in the field (although not necessarily in the manner most of us expected). However, the dominance of FT-IR as the leading edge of IR spectroscopy seems assured for a good many years. The evolution of FT-IR will be dominated by demands not yet fully satisfied such as rapid sample turnover, better quantitation, automated interpretation, higher GC-IR sensitivity, improved LC-IR, and, above all else, reliability and ease of use. These developments will be based on multiple small advances in hardware, large advances in the way systems are put together, and the traditional yearly revolutionary advances of the computer industry. The big question in the field will, however, still be whether our ambition and our skill can continue to keep up with the advances of our tools. It will be fun.

  9. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques.

    Science.gov (United States)

    Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak

    2017-07-15

    Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Preliminary studies on the observation of oxygen-18 exchange in coal by Fourier Transform Infrared spectroscopy, investigations in the use of FTIR for coal ultimate analysis, and a fast pneumatic transfer system for 0-18 determination by neutron activation analysis

    International Nuclear Information System (INIS)

    DeKeyser, C.F. Jr.

    1984-01-01

    Use of isotope exchange kinetics for functional group determination in coal is investigated. Net exchange kinetics determined by time dependent Neutron Activation Analysis measurements (NAA) would be related to individual functional group exchange kinetics determined by Fourier Transform Infrared (FTIR) spectroscopy measurements. The work described herein can be grouped into three categories: 1) work relating to the FTIR spectroscopy of coal, 2) work relating to oxygen exchange in coal, and 3) work relating to measurements of O-18 by NAA. Methods are discussed for preparing IR observable samples of coal and ash, obtaining FTIR spectra of these samples, and reducing the spectral data to numerical form. Also included in this category is an investigation into the use of IR spectroscopic methods for the ultimate analysis of coals. An initial attempt at the observation of oxygen exchange in coal is described which includes two exchange schemes and the FTIR spectroscopic observation of their end products. A facile exchange between O-18 water and O-16 in coal was attempted with and without catalysts. Also, the design and construction of a fast pneumatic transfer system for the determination of O-18 is described

  11. Is it possible to find presence of lactose in pharmaceuticals? - Preliminary studies by ATR-FTIR spectroscopy and chemometrics

    Science.gov (United States)

    Banas, A.; Banas, K.; Kalaiselvi, S. M. P.; Pawlicki, B.; Kwiatek, W. M.; Breese, M. B. H.

    2017-01-01

    Lactose and saccharose have the same molecular formula; however, the arrangement of their atoms is different. A major difference between lactose and saccharose with regard to digestion and processing is that it is not uncommon for individuals to be lactose intolerant (around two thirds of the population has a limited ability to digest lactose after infancy), but it is rather unlikely to be saccharose intolerant. The pharmaceutical industry uses lactose and saccharose as inactive ingredients of drugs to help form tablets because of their excellent compressibility properties. Some patients with severe lactose intolerance may experience symptoms of many allergic reactions after taking medicine that contains this substance. People who are specifically "allergic" to lactose (not just lactose intolerant) should not use tablets containing this ingredient. Fourier Transform Infrared (FTIR) spectroscopy has a unique chemical fingerprinting capability and plays a significant important role in the identification and characterization of analyzed samples and hence has been widely used in pharmaceutical science. However, a typical FTIR spectrum collected from tablets contains a myriad of valuable information hidden in a family of tiny peaks. Powerful multivariate spectral data processing can transform FTIR spectroscopy into an ideal tool for high volume, rapid screening and characterization of even minor tablet components. In this paper a method for distinction between FTIR spectra collected for tablets with or without lactose is presented. The results seem to indicate that the success of identifying one component in FTIR spectra collected for pharmaceutical composition (that is tablet) is largely dependent on the choice of the chemometric technique applied.

  12. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy

    Science.gov (United States)

    Cotte, Marine; Dumas, Paul; Taniguchi, Yoko; Checroun, Emilie; Walter, Philippe; Susini, Jean

    2009-09-01

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size). This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples. Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques. To cite this article: M. Cotte et al., C. R. Physique 10 (2009).

  13. Remote characterization of mixed waste by infrared spectroscopy: Fiscal year 1995 report

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Reich, F.R.; Dodd, D.A.; Lopez, T.; Watts, J.K.; Cash, R.J.

    1995-09-01

    This report summarizes development work completed in FY 1995 on near-infrared (NIR) and Fourier Transform Infrared (FTIR) spectroscopy of determining the moisture content and solid species present in Hanford Site high-level waste. In prior fiscal years, the main emphasis was on identification of cyanide species that might be present in the ferrocyanide waste tanks, but the present thrust has been more focused on determining the moisture content of the waste. If sufficient moisture is present in the waste, propagating reactions in reactive waste are precluded, regardless of its fuel content. A prototype hot cell NIR moisture probe is now ready for hot cell deployment to sense moisture contents and homogeneity in tank waste samples

  14. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution.

    Science.gov (United States)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-15

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hyphenation of infrared spectroscopy to liquid chromatography for qualitative and quantitative polymer analysis: Degradation of poly(bisphenol A)carbonate

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.; Hankemeier, T.

    2006-01-01

    Hyphenation of infrared spectroscopy (IR) to liquid chromatography (LC) has been applied to study chemical changes in poly(bisphenol A)carbonate (PC) as a result of degradation. Especially coupling of LC to FTIR through solvent elimination is a sensitive approach to identify changes in functionality

  16. Evaluation of ionizing radiation effects on recycled polyamide-6 by infrared spectroscopy and measures of fluidity index

    International Nuclear Information System (INIS)

    Evora, Maria Cecilia; Goncalez, Odair Lelis

    2000-01-01

    In this work are presented partial results from a set of experiments and analyses performed at CTA and IPEN laboratories for the characterization of the polyamide-6, recycled and irradiated with a 1.5 MeV electron beam with a 500 kGy dose. The experimental determinations were carried out using infrared spectroscopy with Fourier transform (FTIR), in the medium infrared region (MIR) and in the far infrared region (FAR), to evaluate if exist significant changes in the infrared absorption region of the amide groups due to the polyamide irradiation. Characteristics relative to the measured fluidity index were used to evaluate the irradiated material crosslinking. (author)

  17. CO 2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Park, Youngjune; Shin, Dolly; Jang, Young Nam; Park, Ah-Hyung Alissa

    2012-01-01

    attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. Simultaneous measurements of CO 2 capture capacity and swelling behaviors of polyetheramine (Jeffamine M-2070) and its corresponding NOHMs (NOHM-I-PE2070) were reported

  18. Characterisation of InAs-based epilayers by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Baisitse, T.R.; Forbes, A.; Katumba, G.; Botha, J.R.; Engelbrecht, J.A.A.

    2008-01-01

    In this paper, infrared reflectance spectroscopy was employed to extract information on the optical and electrical properties of metal organic vapour phase epitaxial (MOVPE) grown InAs and InAsSb epilayers. These epitaxial layers were grown on InAs and GaAs substrates and characterised by infrared reflectance spectroscopy and Hall measurements. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    Science.gov (United States)

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  20. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves.

    Science.gov (United States)

    Haq, Quazi M I; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S M; Al-Khanbashi, Fatema H S; Al-Fahdi, Amira A M; Al-Zaabi, Ahoud K A; Al-Shuraiqi, Fatma A M; Al-Bahaisi, Iman M

    2018-06-05

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  2. [Establishment of the Mathematical Model for PMI Estimation Using FTIR Spectroscopy and Data Mining Method].

    Science.gov (United States)

    Wang, L; Qin, X C; Lin, H C; Deng, K F; Luo, Y W; Sun, Q R; Du, Q X; Wang, Z Y; Tuo, Y; Sun, J H

    2018-02-01

    To analyse the relationship between Fourier transform infrared (FTIR) spectrum of rat's spleen tissue and postmortem interval (PMI) for PMI estimation using FTIR spectroscopy combined with data mining method. Rats were sacrificed by cervical dislocation, and the cadavers were placed at 20 ℃. The FTIR spectrum data of rats' spleen tissues were taken and measured at different time points. After pretreatment, the data was analysed by data mining method. The absorption peak intensity of rat's spleen tissue spectrum changed with the PMI, while the absorption peak position was unchanged. The results of principal component analysis (PCA) showed that the cumulative contribution rate of the first three principal components was 96%. There was an obvious clustering tendency for the spectrum sample at each time point. The methods of partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC) effectively divided the spectrum samples with different PMI into four categories (0-24 h, 48-72 h, 96-120 h and 144-168 h). The determination coefficient ( R ²) of the PMI estimation model established by PLS regression analysis was 0.96, and the root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV) were 9.90 h and 11.39 h respectively. In prediction set, the R ² was 0.97, and the root mean square error of prediction (RMSEP) was 10.49 h. The FTIR spectrum of the rat's spleen tissue can be effectively analyzed qualitatively and quantitatively by the combination of FTIR spectroscopy and data mining method, and the classification and PLS regression models can be established for PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  3. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    Science.gov (United States)

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  4. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  5. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    Science.gov (United States)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  6. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX

    Science.gov (United States)

    Selimovic, Vanessa; Yokelson, Robert J.; Warneke, Carsten; Roberts, James M.; de Gouw, Joost; Reardon, James; Griffith, David W. T.

    2018-03-01

    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for

  7. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. FTIR characterization of Mexican honey and its adulteration with sugar syrups by using chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Corripio, M A; Rojas-Lopez, M; Delgado-Macuil, R [CIBA-Tlaxcala, IPN, Tlaxcala, Tlax. (Mexico); Rios-Leal, E [CINVESTAV, Zacatenco, Mexico D.F. (Mexico)

    2011-01-01

    A chemometric analysis of adulteration of Mexican honey by sugar syrups such as corn syrup and cane sugar syrup was realized. Fourier transform infrared spectroscopy (FTIR) was used to measure the absorption of a group of bee honey samples from central region of Mexico. Principal component analysis (PCA) was used to process FTIR spectra to determine the adulteration of bee honey. In addition to that, the content of individual sugars from honey samples: glucose, fructose, sucrose and monosaccharides was determined by using PLS-FTIR analysis validated by HPLC measurements. This analytical methodology which is based in infrared spectroscopy and chemometry can be an alternative technique to characterize and also to determine the purity and authenticity of nutritional products as bee honey and other natural products.

  9. Measurement of conjugated linoleic acid (CLA) in CLA-rich soy oil by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR).

    Science.gov (United States)

    Kadamne, Jeta V; Jain, Vishal P; Saleh, Mohammed; Proctor, Andrew

    2009-11-25

    Conjugated linoleic acid (CLA) isomers in oils are currently measured as fatty acid methyl esters by a gas chromatography-flame ionization detector (GC-FID) technique, which requires approximately 2 h to complete the analysis. Hence, we aim to develop a method to rapidly determine CLA isomers in CLA-rich soy oil. Soy oil with 0.38-25.11% total CLA was obtained by photo-isomerization of 96 soy oil samples for 24 h. A sample was withdrawn at 30 min intervals with repeated processing using a second batch of oil. Six replicates of GC-FID fatty acid analysis were conducted for each oil sample. The oil samples were scanned using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the spectrum was collected. Calibration models were developed using partial least-squares (PLS-1) regression using Unscrambler software. Models were validated using a full cross-validation technique and tested using samples that were not included in the calibration sample set. Measured and predicted total CLA, trans,trans CLA isomers, total mono trans CLA isomers, trans-10,cis-12 CLA, trans-9,cis-11 CLA and cis-10,trans-12 CLA, and cis-9,trans-11 CLA had cross-validated coefficients of determinations (R2v) of 0.97, 0.98, 0.97, 0.98, 0.97, and 0.99 and corresponding root-mean-square error of validation (RMSEV) of 1.14, 0.69, 0.27, 0.07, 0.14, and 0.07% CLA, respectively. The ATR-FTIR technique is a rapid and less expensive method for determining CLA isomers in linoleic acid photo-isomerized soy oil than GC-FID.

  10. Analytical method development and validation for quantification of uranium in compounds of the nuclear fuel cycle by Fourier Transform Infrared (FTIR) Spectroscopy

    International Nuclear Information System (INIS)

    Pereira, Elaine

    2016-01-01

    This work presents a low cost, simple and new methodology for direct quantification of uranium in compounds of the nuclear fuel cycle, based on Fourier Transform Infrared (FTIR) spectroscopy using KBr pressed discs technique. Uranium in different matrices were used to development and validation: UO 2 (NO 3 )2.2TBP complex (TBP uranyl nitrate complex) in organic phase and uranyl nitrate (UO 2 (NO 3 ) 2 ) in aqueous phase. The parameters used in the validation process were: linearity, selectivity, accuracy, limits of detection (LD) and quantitation (LQ), precision (repeatability and intermediate precision) and robustness. The method for uranium in organic phase (UO 2 (NO 3 )2.2TBP complex in hexane/embedded in KBr) was linear (r = 0.9980) over the range of 0.20% 2.85% U/ KBr disc, LD 0.02% and LQ 0.03%, accurate (recoveries were over 101.0%), robust and precise (RSD < 1.6%). The method for uranium aqueous phase (UO 2 (NO 3 ) 2 /embedded in KBr) was linear (r = 0.9900) over the range of 0.14% 1.29% U/KBr disc, LD 0.01% and LQ 0.02%, accurate (recoveries were over 99.4%), robust and precise (RSD < 1.6%). Some process samples were analyzed in FTIR and compared with gravimetric and X-ray fluorescence (XRF) analyses showing similar results in all three methods. The statistical tests (t-Student and Fischer) showed that the techniques are equivalent. The validated method can be successfully employed for routine quality control analysis for nuclear compounds. (author)

  11. Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis

    Directory of Open Access Journals (Sweden)

    Glaucia Braz Alcantara

    2010-06-01

    Full Text Available This paper describes the potentiality of Fourier transform infrared (FT-IR spectroscopy associated to chemometric analysis for assessment of conventional and genetically modified soybean crops. Recently, genetically modified organisms have been queried about their influence on the environment and their safety as food/feed. In this regard, chemical investigations are ever more required. Thus three different soybean cultivars distributed in transgenic Roundup ReadyTM soybean and theirs conventional counterparts were directly investigated by FT-IR spectroscopy and chemometric analysis. The application of PCA and KNN methods permitted the discrimination and classification of the genetically modified samples from conventional ones when they were separately analysed. The analyses showed the chemical variation according to genetic modification. Furthermore, this methodology was efficient for cultivar grouping and highlights cultivar dependence for discrimination between transgenic and non-transgenic samples. According to this study, FT-IR and chemometrics could be used as a quick, easy and low cost tool to assess the chemical composition variation in genetically modified organisms.

  12. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    Science.gov (United States)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  13. Elucidation of the thermal deterioration mechanism of bio-oil pyrolyzed from rice husk using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Xu, Fang; Xu, Yu; Lu, Rui; Sheng, Guo-Ping; Yu, Han-Qing

    2011-09-14

    In this study, the rationale for exploring the thermal deterioration mechanism of the bio-oil pyrolyzed from rice husk is established. This is based on identification of the unstable intermediates in the thermal deterioration process. Fourier transform infrared (FTIR) spectroscopy was used to monitor such a thermal deterioration process of bio-oil samples in thermal treatment and/or during long-term storage at ambient temperatures of 20-30 °C. Terminal olefins, as a key intermediate, so-called "signature", were identified qualitatively by using FTIR spectroscopy. A band shift observed at 880 cm(-1), which was assigned to the C-H out-of-plane deformation vibration of terminal olefins, indicates the start-up of the bio-oil thermal deterioration. A two-step pathway was proposed to describe the thermal deterioration process of bio-oil. This study suggests that the status of bio-oil could be rapidly monitored by the FTIR method.

  14. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.

    Science.gov (United States)

    Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing

    2018-07-05

    Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The infrared spectroscopy in the study of the bone crystallinity thermally affected

    International Nuclear Information System (INIS)

    Medina, C.; Tiesler, V.; Azamar, J.A.; Alvarado G, J.J.; Quintana, P.

    2006-01-01

    Bone is made up by both organic and inorganic components. Among the latter stands out hydroxyapatite (HAP), composed by hexagonal crystallites arranged in a laminar form. The size of the hydroxyapatite crystals may be altered by different conditions, among those figures thermal exhibition, since during burning the bone eliminates organic matrix and thus promotes the crystallization process of the material. An experimental series was designed to measure crystallinity, in which pig bone remains were burnt at different temperatures and analyzed by infrared spectroscopy (FTIR). By means of analogy a comparison was made between the infrared spectra in order to compare with the ones obtained from the archaeological samples, coming from the Classic period Maya sites of Calakmul and Becan, Campeche. (Author)

  16. Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy

    Science.gov (United States)

    Kneipp, Janina; Miller, Lisa M.; Spassov, Sashko; Sokolowski, Fabian; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2004-07-01

    Syrian hamster nervous tissue was investigated by FTIR microspectroscopy with conventional and synchrotron infrared light sources. Various tissue structures from the cerebellum and medulla oblongata of scrapie-infected and control hamsters were investigated at a spatial resolution of 50 μm. Single neurons in dorsal root ganglia of scrapie-infected hamsters were analyzed by raster scan mapping at 6 μm spatial resolution. These measurements enabled us to (i) scrutinize structural differences between infected and non-infected tissue and (ii) analyze for the first time the distribution of different protein structures in situ within single nerve cells. Single nerve cells exhibited areas of increased β-sheet content, which co-localized consistently with accumulations of the pathological prion protein (PrPSc). Spectral data were also obtained from purified, partly proteinase K digested PrPSc isolated from scrapie-infected nervous tissue of hamsters to elucidate similarities/dissimilarities between prion structure in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP90-232, whose in vitro transition from the predominantly a-helical isoform to β-sheet rich oligomeric structures was also investigated by FTIR spectroscopy.

  17. Determination of quercetins in onion (Allium cepa) using infrared spectroscopy.

    Science.gov (United States)

    Lu, Xiaonan; Ross, Carolyn F; Powers, Joseph R; Rasco, Barbara A

    2011-06-22

    The rapid quantification of flavonoid compounds in onions by attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis was evaluated as a possible alternative to high-performance liquid chromatography (HPLC) analysis. Quercetin content in onion varieties (yellow, red, and sweet) was quantified using ATR FT-IR (4000 to 400 cm⁻¹) spectroscopy and HPLC methods. Quercetin-3,4'-O-diglucoside (3,4'-Qdg) and quercetin-4'-O-glucoside (4'-Qmg) comprised >80% of the total flavonol content detected in the studied varieties. The quercetin compounds (3,4'-Qdg and 4'-Qmg) and total flavonol conjugates were quantified by HPLC, and results correlated closely with ATR-IR values (R > 0.95). Cross-validated (leave-one-out) partial least-squares regression (PLSR) models successfully predicted concentrations of these quercetins. The standard errors of cross-validation (SECV) of 3,4'-Qdg and 4'-Qmg, total quercetin, and total flavonol contents of onions were 20.43, 21.18, and 21.02 mg/kg fresh weight, respectively. In addition, supervised and unsupervised segregation analyses (principal component analysis, discriminant function analysis, and soft independent modeling of class analogue) were performed to classify onion varieties on the basis of unique infrared spectral features. There was a high degree of segregation (interclass distances > 3.0) for the different types of onion. This study indicated that the IR technique could predict 3,4'-Qdg, 4'-Qmg, total quercetin, and total flavonol contents and has advantages over the traditional HPLC method in providing a valid, efficient, and cost-effective method requiring less sample preparation for the quantification of quercetins in onion.

  18. Kvantitativní FTIR spektrometrie huminových látek

    Czech Academy of Sciences Publication Activity Database

    Novák, F.; Machovič, Vladimír; Hrabalová, H.; Novotná, M.

    2017-01-01

    Roč. 111, č. 6 (2017), s. 363-373 ISSN 0009-2770 Institutional support: RVO:67985891 Keywords : FTIR * humic substances * infrared-spectroscopy * structure Subject RIV: DD - Geochemistry OBOR OECD: Analytical chemistry Impact factor: 0.387, year: 2016

  19. Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.

    1997-10-01

    In situ Fourier transform infrared (FTIR) absorption spectroscopy has been used to determine the fractional depletion of silane in a radio-frequency (rf) glow discharge. The technique used a simple single pass arrangement and was implemented in a large area industrial reactor for deposition of amorphous silicon. Measurements were made on silane plasmas for a range of excitation frequencies. It was observed that at constant plasma power, the fractional depletion increased from 35% at 13.56 MHz to 70% at 70 MHz. With a simple model based on the density continuity equations in the gas phase, it was shown that this increase is due to a higher dissociation rate and is largely responsible for the observed increase in the deposition rate with the frequency. (author) 5 figs., 30 refs

  20. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality.

    Science.gov (United States)

    Barnaba, Federico Emanuele; Bellincontro, Andrea; Mencarelli, Fabio

    2014-04-01

    A near infrared acousto-optically tunable filter (NIR-AOTF) spectrophotometer was tested for three seasons on four different vineyards with the aim of monitoring the ripening evolution of the Italian red wine grape variety Sangiovese. Predictive models for the estimation of several enological parameters were carried out applying the partial least squares chemometric approach. Reference analysis was conducted using Fourier transform infrared spectroscopy (FTIR). Spectral detections were obtained working on whole grape berries. A global set of 96 samples (n = 76 in 2009, and n = 20 in 2010) each one represented by 100 intact grape berries was tested. Finally, in 2011, an external validation on an independent data set of 25 samples (50 grape berries per set) was carried out. Coupling the two spectroscopic applications, the following enological parameters were tested: °Brix, °Babo, total sugars (g L(-1)), glucose (g L(-1)), fructose (g L(-1)), density (g mL(-1)), titratable acidity (g L(-1)), tartaric acid (g L(-1)), pH, malic acid (g L(-1)), gluconic acid (g L(-1)), assumable nitrogen (mg L(-1) ), anthocyanins (mg L(-1)), and total phenols (mg L(-1)). NIR-AOTF spectroscopy was able to predict with a high correlation versus the measured data: °Brix, °Babo, total sugars, glucose, fructose and density. The coefficient of determination (R(2)) and the standard error in prediction were: 0.93 and 0.73 for °Brix; 0.93 and 0.62 for °Babo; 0.94 and 7.39 g L(-1) for total sugars; 0.93 and 5.39 g L(-1) for glucose; 0.92 and 5.07 g L(-1) for fructose; and 0.91 and 0.004 g mL(-1) for density, respectively. Significant correlations were found in prediction for tartaric acid and pH value. Promising validation results were recorded for anthocyanins and total phenols, even though predictive models were affected by the method of sample preparation in compound extraction. This study shows how NIR-AOTF spectroscopy can be used in viticulture to

  1. Root Differentiation of Agricultural Plant Cultivars and Proveniences Using FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nicole Legner

    2018-06-01

    Full Text Available The differentiation of roots of agricultural species is desired for a deeper understanding of the belowground root interaction which helps to understand the complex interaction in intercropping and crop-weed systems. The roots can be reliably differentiated via Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR. In two replicated greenhouse experiments, six pea cultivars, five oat cultivars as well as seven maize cultivars and five barnyard grass proveniences (n = 10 plants/cultivar or provenience were grown under controlled conditions. One root of each plant was harvested and five different root segments of each root were separated, dried and measured with FTIR-ATR spectroscopy. The results showed that, firstly, the root spectra of single pea and single oat cultivars as well as single maize and single barnyard grass cultivars/proveniences separated species-specific in cluster analyses. In the majority of cases the species separation was correct, but in a few cases, the spectra of the root tips had to be omitted to ensure the precise separation between the species. Therefore, species differentiation is possible regardless of the cultivar or provenience. Consequently, all tested cultivars of pea and oat spectra were analyzed together and separated within a cluster analysis according to their affiliated species. The same result was found in a cluster analysis with maize and barnyard grass spectra. Secondly, a cluster analysis with all species (pea, oat, maize and barnyard grass was performed. The species split up species-specific and formed a dicotyledonous pea cluster and a monocotyledonous cluster subdivided in oat, maize and barnyard grass subclusters. Thirdly, cultivar or provenience differentiations within one species were possible in one of the two replicated experiments. But these separations were less resilient.

  2. The Use of FTIR and Micro-FTIR Spectroscopy: An Example of Application to Cultural Heritage

    International Nuclear Information System (INIS)

    La Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Barone, G.; Mazzoleni, P.; Pezzino, A.

    2011-01-01

    Micro-FTIR and FTIR spectroscopy is useful for the study of degradation forms of cultural heritage. In particular it permits to identify the degradation phases and to establish the structural relationship between them and the substratum. In this paper, we report the results obtained on marble from a Roman sarcophagus, located in the medieval cloister of St. Cosimato Convent (Rome), and on oolitic limestone from the facade of St. Giuseppe Church in Syracuse (Sicily). The main components found in the samples of both monuments are: gypsum, calcium oxalate, and organic matter due to probably conservation treatments. In particular, the qualitative distribution maps of degradation products, obtained by means of micro-FTIR operating in ATR mode, revealed that the degradation process is present deep inside the stones also if it is not visible macroscopically. This process represents the main cause of crumbling of the substrate. The results of this research highlight the benefits of the μ-FTIR analysis providing useful insights on the polishing and consolidation processes of stone materials

  3. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    Science.gov (United States)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as a Forensic Method to Determine the Composition of Inks Used to Print the United States One-cent Blue Benjamin Franklin Postage Stamps of the 19th Century.

    Science.gov (United States)

    Brittain, Harry G

    2016-01-01

    Through the combined use of infrared (IR) absorption spectroscopy and attenuated total reflectance (ATR) sampling, the composition of inks used to print the many different types of one-cent Benjamin Franklin stamps of the 19th century has been established. This information permits a historical evaluation of the formulations used at various times, and also facilitates the differentiation of the various stamps from each other. In two instances, the ink composition permits the unambiguous identification of stamps whose appearance is identical, and which (until now) have only been differentiated through estimates of the degree of hardness or softness of the stamp paper, or through the presence or absence of a watermark in the paper. In these instances, the use of ATR Fourier transform infrared spectroscopy (FT-IR) spectroscopy effectively renders irrelevant two 100-year-old practices of stamp identification. Furthermore, since the use of ATR sampling makes it possible to obtain the spectrum of a stamp still attached to its cover, it is no longer necessary to identify these blue Franklin stamps using their cancellation dates. © The Author(s) 2015.

  5. Determination of free radical scavenger agent efficiency in Syrian consumed sunflower oil using FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Allaf, A. W.; Al-Zier, A.

    2013-06-01

    Edible oils can be oxidized spontaneously by thermal process in the presence of atmospheric oxygen causing an oxidation to these oils and forming the hydroperoxides; this oxidative process is a major cause of cooking oils deterioration. Many synthetic or natural antioxidants additives have been used as free radical scavenger agent. In this work, Eugenol methylether has been used as free radical scavenger agent at three different concentrations to heated sunflower oil at 160°C for ten hours using Fourier transform infrared (FTIR) spectroscopy for analysis and evaluations. Before any additives, three characteristic absorption bands were observed at 3544, 3473 and 3290 cm-1 in heated oil. The recorded bands were assigned to 7Tthe unbounded7T, 7Tbounded 7Thydroperoxide or free alcohols 7Tgroups7T and to the O-H stretching alcohol associated group, respectively. After the addition of Eugenol methylether at 0.8 mL/L concentration, the bands intensity of hydroperoxide formation content is reduced. It has been shown that the free radical scavenger agent plays an acceptable role in reducing the hydroperoxide formation content as the result of thermal oxidation. It is proved that FTIR spectroscopy is an effective analytical tool for such investigatio (author).

  6. A high-throughput FTIR spectroscopy approach to assess adaptive variation in the chemical composition of pollen.

    Science.gov (United States)

    Zimmermann, Boris; Bağcıoğlu, Murat; Tafinstseva, Valeria; Kohler, Achim; Ohlson, Mikael; Fjellheim, Siri

    2017-12-01

    The two factors defining male reproductive success in plants are pollen quantity and quality, but our knowledge about the importance of pollen quality is limited due to methodological constraints. Pollen quality in terms of chemical composition may be either genetically fixed for high performance independent of environmental conditions, or it may be plastic to maximize reproductive output under different environmental conditions. In this study, we validated a new approach for studying the role of chemical composition of pollen in adaptation to local climate. The approach is based on high-throughput Fourier infrared (FTIR) characterization and biochemical interpretation of pollen chemical composition in response to environmental conditions. The study covered three grass species, Poa alpina , Anthoxanthum odoratum , and Festuca ovina . For each species, plants were grown from seeds of three populations with wide geographic and climate variation. Each individual plant was divided into four genetically identical clones which were grown in different controlled environments (high and low levels of temperature and nutrients). In total, 389 samples were measured using a high-throughput FTIR spectrometer. The biochemical fingerprints of pollen were species and population specific, and plastic in response to different environmental conditions. The response was most pronounced for temperature, influencing the levels of proteins, lipids, and carbohydrates in pollen of all species. Furthermore, there is considerable variation in plasticity of the chemical composition of pollen among species and populations. The use of high-throughput FTIR spectroscopy provides fast, cheap, and simple assessment of the chemical composition of pollen. In combination with controlled-condition growth experiments and multivariate analyses, FTIR spectroscopy opens up for studies of the adaptive role of pollen that until now has been difficult with available methodology. The approach can easily be

  7. Identification of carbonates as additives in pressure-sensitive adhesive tape substrate with Fourier transform infrared spectroscopy (FTIR) and its application in three explosive cases.

    Science.gov (United States)

    Lv, Jungang; Feng, Jimin; Zhang, Wen; Shi, Rongguang; Liu, Yong; Wang, Zhaohong; Zhao, Meng

    2013-01-01

    Pressure-sensitive tape is often used to bind explosive devices. It can become important trace evidence in many cases. Three types of calcium carbonate (heavy, light, and active CaCO(3)), which were widely used as additives in pressure-sensitive tape substrate, were analyzed with Fourier transform infrared spectroscopy (FTIR) in this study. A Spectrum GX 2000 system with a diamond anvil cell and a deuterated triglycine sulfate detector was employed for IR observation. Background was subtracted for every measurement, and triplicate tests were performed. Differences in positions of main peaks and the corresponding functional groups were investigated. Heavy CaCO(3) could be identified from the two absorptions near 873 and 855/cm, while light CaCO(3) only has one peak near 873/cm because of the low content of aragonite. Active CaCO(3) could be identified from the absorptions in the 2800-2900/cm region because of the existence of organic compounds. Tiny but indicative changes in the 878-853/cm region were found in the spectra of CaCO(3) with different content of aragonite and calcite. CaCO(3) in pressure-sensitive tape, which cannot be differentiated by scanning electron microscope/energy dispersive X-ray spectrometer and thermal analysis, can be easily identified using FTIR. The findings were successfully applied to three specific explosive cases and would be helpful in finding the possible source of explosive devices in future cases. © 2012 American Academy of Forensic Sciences.

  8. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments

    DEFF Research Database (Denmark)

    Rosén, Peter; Vogel, Hendrik; Cunningham, Laura

    2010-01-01

    We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples...... varied between r = 0.84-0.99 for TOC, r = 0.85-0.99 for TIC, and r = 0.68-0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology....

  9. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Directory of Open Access Journals (Sweden)

    Tahereh-Sadat Jafarzadeh

    2015-12-01

    Full Text Available Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm. Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan was performed at the top and bottom (depth=2 mm surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  10. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  11. Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Shurong; LIU Qian; LUO Zhongyang; WEN Lihua; CEN Kefa

    2007-01-01

    Based on the investigation of the polysaccharide structure of cellulose by using Fourier transform spectrum analysis,the pyrolysis behaviour of cellulose was studied at a heating rate of 20 K/min by thermogravimetric (TG) analysis coupled with Fourier transform infrared (FTIR) spectroscopy.Experimental results show that the decomposition of cellulose mainly occurs at the temperature range of 550-670 K.The weight loss becomes quite slow when the temperature increases further up to 680 K and the amount of residue reaches a mass percent of 14.7%.The FTIR analysis shows that free water is released first during cellulose pyrolysis,followed by depolymerization and dehydration.Glucosidic bond and carbon-carbon bond break into a series of hydrocarbons,alcohols,aldehydes,acids,etc.Subsequently these large-molecule compounds decompose further into gases,such as methane and carbon monoxide.

  12. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  13. Analysis of Moisture Content in Beetroot using Fourier Transform Infrared Spectroscopy and by Principal Component Analysis.

    Science.gov (United States)

    Nesakumar, Noel; Baskar, Chanthini; Kesavan, Srinivasan; Rayappan, John Bosco Balaguru; Alwarappan, Subbiah

    2018-05-22

    The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm -1 with a spectral resolution of 8 cm -1 . In order to estimate the transmittance peak height (T p ) and area under the transmittance curve [Formula: see text] over the spectral ranges of 2614-4000 and 1465-1853 cm -1 , Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614-4000 and 1465-1853 cm -1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.

  14. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics.

    Science.gov (United States)

    Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W

    2014-06-01

    The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic

  15. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  16. Numerous applications of fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy for subsurface structural analysis

    Science.gov (United States)

    Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr

    1999-10-01

    A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.

  17. In Situ Focused Beam Reflectance Measurement (FBRM, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sohrab Rohani

    2012-02-01

    Full Text Available The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and focused beam reflectance measurement (FBRM. A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization.

  18. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  19. Application of Fourier transform infrared spectroscopy to biomolecular profiling of cultured fibroblast cells from Gaucher disease patients: A preliminary investigation.

    Science.gov (United States)

    Igci, Nasit; Sharafi, Parisa; Demiralp, Duygu Ozel; Demiralp, Cemil Ozerk; Yuce, Aysel; Emre, Serap Dokmeci

    2017-10-01

    Gaucher disease (GD) is defined as an autosomal recessive disorder resulting from the deficiency of glucocerebrosidase (E.C. 3.2.1.45). Glucocerebrosidase is responsible for the degradation of glucosylceramide into ceramide and glucose. The deficiency of this enzyme results in the accumulation of undegraded glucosylceramide, almost exclusively in macrophages. With Fourier transform infrared (FTIR) spectroscopy, the complete molecular diversity of the samples can be studied comparatively and the amount of the particular materials can be determined. Also, the secondary structure ratios of proteins can be determined by analysing the amide peaks. The primary aim of this study is to introduce FTIR-ATR spectroscopy technique to GD research for the first time in the literature and to assess its potential as a new molecular method. Primary fibroblast cell cultures obtained from biopsy samples were used, since this material is widely used for the diagnosis of GD. Intact cells were placed onto a FTIR-ATR crystal and dried by purging nitrogen gas. Spectra were recorded in the mid-infrared region between 4500-850 cm-1 wavenumbers. Each peak in the spectra was assigned to as organic biomolecules according to their chemical bond information. A quantitative analysis was performed using peak areas and we also used a hierarchical cluster analysis as a multivariate spectral analysis. We obtained FTIR spectra of fibroblast samples and assigned the biomolecule origins of the peaks. We observed individual heterogeneity in FTIR spectra of GD fibroblast samples, confirming the well-known phenotypic heterogeneity in GD at the molecular level. Significant alterations in protein, lipid and carbohydrate levels related to the enzyme replacement therapy were also observed, which is also supported by cluster analysis. Our results showed that the application of FTIR spectroscopy to GD research deserves more attention and detailed studies with an increased sample size in order to evaluate its

  20. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  1. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    Science.gov (United States)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  2. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX

    Directory of Open Access Journals (Sweden)

    V. Selimovic

    2018-03-01

    Full Text Available Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX. Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR. We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE as well as black carbon (BC EF measured by photoacoustic extinctiometers (PAXs at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially

  3. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    Science.gov (United States)

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  4. Identification of the traditional Tibetan medicine "Shaji" and their different extracts through tri-step infrared spectroscopy

    Science.gov (United States)

    Liu, Yue; Li, Jingyi; Fan, Gang; Sun, Suqin; Zhang, Yuxin; Zhang, Yi; Tu, Ya

    2016-11-01

    Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name "Shaji", to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.

  5. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination

    Science.gov (United States)

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 1011 molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  6. Use of absorption spectroscopy for refined petroleum product discrimination

    Science.gov (United States)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  7. ATR-FTIR Spectroscopy on intact dried leaves of sage (Salvia officinalis L. – chemotaxonomic discrimination and essential oil composition

    Directory of Open Access Journals (Sweden)

    Gudi, Gennadi

    2016-07-01

    Full Text Available Sage (Salvia officinalis L. is cultivated worldwide for its aromatic leaves which are used as herbal spice and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy method described here provides a reliable calibration model for quantification of essential oil components (EOC and its main constituents (e.g. -thujone and -thujone directly on dried, intact leaves of sage. Except for drying no further sample preparation is required for ATR-FTIR and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydro-distillation followed by GC analysis which can take several hours per sample.

  8. Application of FTIR-ATR Spectroscopy to Determine the Extent of Lipid Peroxidation in Plasma during Haemodialysis

    Directory of Open Access Journals (Sweden)

    Adam Oleszko

    2015-01-01

    Full Text Available During a haemodialysis (HD, because of the contact of blood with the surface of the dialyser, the immune system becomes activated and reactive oxygen species (ROS are released into plasma. Particularly exposed to the ROS are lipids and proteins contained in plasma, which undergo peroxidation. The main breakdown product of oxidized lipids is the malondialdehyde (MDA. A common method for measuring the concentration of MDA is a thiobarbituric acid reactive substances (TBARS method. Despite the formation of MDA in plasma during HD, its concentration decreases because it is removed from the blood in the dialyser. Therefore, this research proposes the Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR spectroscopy, which enables determination of primary peroxidation products. We examined the influence of the amount of hydrogen peroxide added to lipid suspension that was earlier extracted from plasma specimen on lipid peroxidation with use of TBARS and FTIR-ATR methods. Linear correlation between these methods was shown. The proposed method was effective during the evaluation of changes in the extent of lipid peroxidation in plasma during a haemodialysis in sheep. A measurement using the FTIR-ATR showed an increase in plasma lipid peroxidation after 15 and 240 minutes of treatment, while the TBARS concentration was respectively lower.

  9. Comparison of on-line flow-cell and off-line solvent-elimination interfaces for size-exclusion chromatography and Fourier-transform infrared spectroscopy in polymer analysis

    NARCIS (Netherlands)

    Kok, S.J.; Wold, C.A.; Hankemeier, Th.; Schoenmakers, P.J.

    2003-01-01

    Two commercial liquid chromatography-Fourier-transform infrared spectroscopy interfaces (LC-FTIR), viz. a flow cell and a solvent-elimination interface have been assessed for use in size-exclusion chromatography (SEC) with respect to their chromatographic integrity (i.e. peak asymmetry,

  10. Comparison of infrared spectroscopy techniques: developing an efficient method for high resolution analysis of sediment properties from long records

    Science.gov (United States)

    Hahn, Annette; Rosén, Peter; Kliem, Pierre; Ohlendorf, Christian; Persson, Per; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The analysis of sediment samples in visible to mid-infrared spectra is ideal for high-resolution records. It requires only small amounts (0.01-0.1g dry weight) of sample material and facilitates rapid and cost efficient analysis of a wide variety of biogeochemical properties on minerogenic and organic substances (Kellner et al. 1998). One of these techniques, the Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFTS), has already been successfully applied to lake sediment from very different settings and has shown to be a promising technique for high resolution analyses of long sedimentary records on glacial-interglacial timescales (Rosén et al. 2009). However, the DRIFTS technique includes a time-consuming step where sediment samples are mixed with KBr. To assess if alternative and more rapid infrared (IR) techniques can be used, four different IR spectroscopy techniques are compared for core catcher sediment samples from Laguna Potrok Aike - an ICDP site located in southernmost South America. Partial least square (PLS) calibration models were developed using the DRIFTS technique. The correlation coefficients (R) for correlations between DRIFTS-inferred and conventionally measured biogeochemical properties show values of 0.80 for biogenic silica (BSi), 0.95 for total organic carbon (TOC), 0.91 for total nitrogen (TN), and 0.92 for total inorganic carbon (TIC). Good statistical performance was also obtained by using the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIRS technique which requires less sample preparation. Two devices were used, the full-sized Bruker Equinox 252 and the smaller and less expensive Bruker Alpha. R for ATR-FTIRS-inferred and conventionally measured biogeochemical properties were 0.87 (BSi), 0.93 (TOC), 0.90 (TN), and 0.91 (TIC) for the Alpha, and 0.78 (TOC), 0.85 (TN), 0.79 (TIC) for the Equinox 252 device. As the penetration depth of the IR beam is frequency dependent, a firm surface contact of

  11. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach.

    Science.gov (United States)

    Taylor, S E; Cheung, K T; Patel, I I; Trevisan, J; Stringfellow, H F; Ashton, K M; Wood, N J; Keating, P J; Martin-Hirsch, P L; Martin, F L

    2011-03-01

    Endometrial cancer is the most common gynaecological malignancy in the United Kingdom. Diagnosis currently involves subjective expert interpretation of highly processed tissue, primarily using microscopy. Previous work has shown that infrared (IR) spectroscopy can be used to distinguish between benign and malignant cells in a variety of tissue types. Tissue was obtained from 76 patients undergoing hysterectomy, 36 had endometrial cancer. Slivers of endometrial tissue (tumour and tumour-adjacent tissue if present) were dissected and placed in fixative solution. Before analysis, tissues were thinly sliced, washed, mounted on low-E slides and desiccated; 10 IR spectra were obtained per slice by attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. Derived data was subjected to principal component analysis followed by linear discriminant analysis. Post-spectroscopy analyses, tissue sections were haematoxylin and eosin-stained to provide histological verification. Using this approach, it is possible to distinguish benign from malignant endometrial tissue, and various subtypes of both. Cluster vector plots of benign (verified post-spectroscopy to be free of identifiable pathology) vs malignant tissue indicate the importance of the lipid and secondary protein structure (Amide I and Amide II) regions of the spectrum. These findings point towards the possibility of a simple objective test for endometrial cancer using ATR-FTIR spectroscopy. This would facilitate earlier diagnosis and so reduce the morbidity and mortality associated with this disease.

  12. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    Science.gov (United States)

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  14. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  15. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    Science.gov (United States)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  16. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  17. Applicability of FTIR-spectroscopy for characterizing waste organic matter

    International Nuclear Information System (INIS)

    Smidt, E.

    2001-12-01

    State and development of waste organic matter were characterized by means of FTIR-spectroscopy. Due to the interaction of infrared light with matter energy is absorbed by chemical functional groups. Chemical preparation steps are not necessary and therefore this method offers a more holistic information about the material. The first part of experiments was focussed on spectra of different waste materials representing various stages of decomposition. Due to characteristics in the fingerprint- region the identity of wastes is provable. Heights of significant bands in the spectrum were measured and relative absorbances were calculated. Changes of relative absorbances indicate the development of organic matter during decomposition. Organic matter of waste samples was compared to organic matter originating from natural analogous processes (peat, soil). The second part of experiments concentrated on a composting process for a period of 260 days. Spectral characteristics of the samples were compared to their chemical, physical and biological data. The change of relative absorbances was reflected by conventional parameters. According to the development of the entire sample humic acids underwent a change as well. For practical use the method offers several possibilities: monitoring of a process, comparison of different processes, quality control of products originating from waste materials and the proof of their identity. (author)

  18. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  19. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.

    Science.gov (United States)

    Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter

    2016-06-23

    Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.

  20. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  1. Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers.

    Science.gov (United States)

    Guiliano, Michel; Asia, Laurence; Onoratini, Gérard; Mille, Gilbert

    2007-08-01

    Diamond crystal ATR FTIR spectroscopy is a rapid technique with virtually no sample preparation which requires small sample amounts and showed potential in the study of ambers. FTIR spectra of ambers present discriminating patterns and can be used to distinguish amber from immature resins as copal, to determine local or Baltic origin of archaeological ambers and to detect most of the falsifications encountered in the amber commercialisation.

  2. Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-01-01

    The continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze a considerable amount of samples. Conventional flow injection analysis (FIA) is a time and cost consuming method for cyanide (CN) determination. Thus, a rapid and economic alternative needs to be developed to quantify the Fe-CN complexes. 52 soil samples were collected at a former Manufactured Gas Plant (MGP) site in order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS). Soil analysis revealed CN concentrations in a range from 8 to 14.809 mg kg −1 , where 97% was in the solid form (Fe 4 [Fe(CN) 6 ] 3 ), which is characterized by a single symmetrical CN band in the range 2092–2084 cm −1 . The partial least squares (PLS) calibration-validation model revealed IR response to CN tot which exceeds 2306 mg kg −1 (limit of detection, LOD). Leave-one-out cross-validation (LOO-CV) was performed on soil samples, which contained low CN tot (<900 mg kg −1 ). This improved the sensitivity of the model by reducing the LOD to 154 mg kg −1 . Finally, the LOO-CV conducted on the samples with CN tot  > 900 mg kg −1 resulted in LOD equal to 3751 mg kg −1 . It was found that FTIR spectroscopy provides the information concerning different CN species in the soil samples. Additionally, it is suitable for quantifying Fe-CN species in matrixes with CN tot  > 154 mg kg −1 . Thus, FTIR spectroscopy, in combination with the statistical approach applied here seems to be a feasible and quick method for screening of contaminated sites. - Highlights: • A protocol for a quick and cheap quantitative cyanide analysis in soil using FTIR is proposed. • Splitting of the data, resulting in low and high CN set, reduced the LOD and increased the sensitivity of the model. • Regression coefficients indicate positive response of IR frequencies to

  3. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks.

    Science.gov (United States)

    Khurana, Harpreet Kaur; Cho, Il Kyu; Shim, Jae Yong; Li, Qing X; Jun, Soojin

    2008-02-13

    Aspartame is a low-calorie sweetener commonly used in soft drinks; however, the maximum usage dose is limited by the U.S. Food and Drug Administration. Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance sampling accessory and partial least-squares regression (PLS) was used for rapid determination of aspartame in soft drinks. On the basis of spectral characterization, the highest R2 value, and lowest PRESS value, the spectral region between 1600 and 1900 cm(-1) was selected for quantitative estimation of aspartame. The potential of FTIR spectroscopy for aspartame quantification was examined and validated by the conventional HPLC method. Using the FTIR method, aspartame contents in four selected carbonated diet soft drinks were found to average from 0.43 to 0.50 mg/mL with prediction errors ranging from 2.4 to 5.7% when compared with HPLC measurements. The developed method also showed a high degree of accuracy because real samples were used for calibration, thus minimizing potential interference errors. The FTIR method developed can be suitably used for routine quality control analysis of aspartame in the beverage-manufacturing sector.

  4. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  5. Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins.

    Science.gov (United States)

    Ricci, Arianna; Parpinello, Giuseppina P; Olejar, Kenneth J; Kilmartin, Paul A; Versari, Andrea

    2015-11-01

    Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.

  6. Introduction to experimental infrared spectroscopy fundamentals and practical methods

    CERN Document Server

    Tasumi, Mitsuo; Ochiai, Shukichi

    2014-01-01

    Infrared spectroscopy is generally understood to mean the science of spectra relating to infrared radiation, namely electromagnetic waves, in the wavelength region occurring intermediately between visible light and microwaves. Measurements of infrared spectra have been providing useful information, for a variety of scientific research and industrial studies, for over half a century; this is set to continue in the foreseeable future. Introduction to Experimental Infrared Spectroscopy is intended to be a handy guide for those who have no, or limited, experience in infrared spectroscopi

  7. Evaluation of FTIR-based analytical methods for the analysis of simulated wastes

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Cash, R.J.; Dodd, D.A.; Lockrem, L.L.; Meacham, J.E.; Winkelman, W.D.

    1994-01-01

    Three FTIR-based analytical methods that have potential to characterize simulated waste tank materials have been evaluated. These include: (1) fiber optics, (2) modular transfer optic using light guides equipped with non-contact sampling peripherals, and (3) photoacoustic spectroscopy. Pertinent instrumentation and experimental procedures for each method are described. The results show that the near-infrared (NIR) region of the infrared spectrum is the region of choice for the measurement of moisture in waste simulants. Differentiation of the NIR spectrum, as a preprocessing steps, will improve the analytical result. Preliminary data indicate that prominent combination bands of water and the first overtone band of the ferrocyanide stretching vibration may be utilized to measure water and ferrocyanide species simultaneously. Both near-infrared and mid-infrared spectra must be collected, however, to measure ferrocyanide species unambiguously and accurately. For ease of sample handling and the potential for field or waste tank deployment, the FTIR-Fiber Optic method is preferred over the other two methods. Modular transfer optic using light guides and photoacoustic spectroscopy may be used as backup systems and for the validation of the fiber optic data

  8. Quality Control of Valerianae Radix by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Arth, Katharina; Klatte-Asselmeyer, Valerie; Bressler, Sabine; Saukel, Johannes; Reznicek, Gottfried; Dobeš, Christoph

    2018-04-01

    (Acetoxy-)valerenic acid and total essential oil content are important quality attributes of pharmacy grade valerian root (Valerianae radix). Traditional analysis of these quantities is time-consuming and necessitates (harmful) solvents. Here we investigated an application of attenuated total reflection Fourier transform infrared spectroscopy for extractionless analysis of these quality attributes on a representative sample comprising 260 wild-crafted individuals covering the Central European taxonomic diversity of the Valeriana officinalis L. s. l. species aggregate with its three major ploidy cytotypes (i.e., di-, tetra- and octoploid). Calibration models were built by orthogonal partial least squares regression for quantitative analysis of (acetoxy-)valerenic acid and total essential oil content. For the latter, we propose a simplistic protocol involving apolar extraction followed by gas chromatography as a reference method for multivariate calibration in order to handle the analysis of samples taken from individual plants. We found good predictive ability of chemometric models for quantification of valerenic acid, acetoxyvalerenic acid, total sesquiterpenoid acid, and essential oil content with a root mean squared error of cross-validation of 0.064, 0.043, and 0.09 and root mean squared error of prediction of 0.066, 0.057, and 0.09 (% content), respectively. Orthogonal partial least squares discriminant analysis revealed good discriminability between the most productive phenotype (i.e., the octoploid cytotype) in terms of sesquiterpenoid acids, and the less productive ones (i.e., di- and tetraploid). All in all, our results demonstrate the application of attenuated total reflection Fourier transform infrared spectroscopy for rapid, extractionless estimation of the most important quality attributes of valerian root and minimally invasive identification of the most productive phenotype in terms of sesquiterpenoid acids. Georg Thieme Verlag KG Stuttgart · New

  9. State of dissolved water in triglycerides as determined by Fourier transform infrared and near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. (Ajinomoto Co. Inc., Tokyo (Japan)); Takaoka, K.; Takasago, M.; Taru, Y.; Kobayashi, K. (Musashi Institute of Technology, Tokyo (Japan))

    1991-07-20

    The states of dissolved water in triglycerides (TG) such as tristearin, triolein, trilinolein and trilinolenin were analyzed by Fourier transform infrared (FT-IR) and near infrared (FT-NIR) spectroscopy, and compared with those of water itself. In the case of water, its states were considered to be mainly polymer clusters larger than dimer ones at 20{degree}C, and mostly monomer or dimer clusters at 120{degree}C. In TG, the states varied widely from monomer to polymer clusters at 20{degree}C. The distribution ratios of the water clusters observed in TG depended on the kinds of fatty acids of TG, and the water state was noted to change due to the interaction between unsaturated bonds and dissolved water. Although the states of dissolved water in trilinolein were similar to those of original water at 20{degree}C, the ratio of monomer water decreased and polymer clusters bigger than those in original water increased with an increase in number of unsaturated bonds of TG. 9 refs., 6 figs., 3 tabs.

  10. Structure of Co-Doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao

    2011-02-10

    The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.

  11. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    Science.gov (United States)

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  12. USING FOURIER TRANSFORM INFRARED (FTIR TO CHARACTERIZE TSUNAMI DEPOSITS IN NEAR-SHORE AND COASTAL WATERS OF THAILAND

    Directory of Open Access Journals (Sweden)

    S. Pongpiachan

    2013-01-01

    Full Text Available Understanding the tsunami cycle requires a simple method for identification of tsunami backwash deposits. This study investigates Fourier transform infrared (FTIR spectroscopy followed by careful analysis of variance (ANOVA, Gaussian distribution, hierarchical cluster analysis (HCA and principal component analysis (PCA for the discrimination of typical marine sediments and tsunami backwash deposits. In order to test the suitability of FTIR spectra as innovative methods for classifications of tsunami deposits, typical marine sediments and terrestrial soils were classified into three zones, namely zone-1 (i.e. typical marine sediments, zone-2 (i.e. including tsunami backwash deposits and zone-3 (i.e. coastal terrestrial soils. HCA was performed to group the spectra according to their spectral similarity in a dendrogram and successfully separate FTIR spectra of all three sampling zones into two main clusters with five sub-clusters. The simplicifolious (i.e. single-leafed type of dendrogram was observed with the strong dissimilarity of terrestrial components in subcluster- 5. Graphical displays of PC1 vs PC2 highlight the prominent features of zone-1, which is explicitly different from those of zone-2 and zone-3. The acceptable discrimination of typical marine sediments and tsunami backwash deposits, even six years after the tsunami on Boxing Day 2004, dramatically demonstrates the potential of the method for the identification of paleotsunami.

  13. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  14. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  15. Discrimination between Bacillus and Alicyclobacillus isolates in apple juice by Fourier transform infrared spectroscopy and multivariate analysis.

    Science.gov (United States)

    Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H

    2015-02-01

    Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®

  16. Antioxidant activity and FT-IR analysis of Datura innoxia and Datura ...

    African Journals Online (AJOL)

    Materials and Methods: Determination of total phenolic content and total flavonoid content and antioxidant activity in terms of total antioxidant assay, ABTS assay, DPPH assay and in-vitro lipid peroxidation inhibiting activity were determined along with the FT-IR (Fourier transform infrared spectroscopy) analysis of the ...

  17. Evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo N.; Santin, Stefany P.; Benetti, Carolina; Pereira, Thiago M.; Mattor, Monica B.; Politano, Rodolfo; Zezell, Denise M.

    2013-01-01

    In many medical practices the bone tissue exposure to ionizing radiation is necessary. However, this radiation can interact with bone tissue in a molecular level, causing chemical and mechanical changes related with the dose used. The aim of this study was verify the changes promoted by different doses of ionizing radiation in bone tissue using spectroscopy technique of Attenuate Total Reflectance - Fourier Transforms Infrared (ATR-FTIR) and dynamic mechanical analysis. Samples of bovine bone were irradiated using irradiator of Cobalt-60 with five different doses between 0.01 kGy, 0.1 kGy,1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on bone chemical structure the sub-bands of amide I and the crystallinity index were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify if the chemical changes and the bone mechanic characteristics were related, it was made one study about the correlation between the crystallinity index and the elastic modulus, between the sub-bands ratio and the damping value and between the sub-bands ratio and the elastic modulus. It was possible to evaluate the effects of different dose of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy analysis, it was possible observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the mechanical properties. A good correlation between the techniques was found, however, it was not possible to establish a linear or exponential dependence between dose and effect. (author)

  18. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  19. Rapid Quantitative Analysis of Forest Biomass Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Regression

    Directory of Open Access Journals (Sweden)

    Gifty E. Acquah

    2016-01-01

    Full Text Available Fourier transform infrared reflectance (FTIR spectroscopy has been used to predict properties of forest logging residue, a very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good correlations with the conventionally measured properties. For the chemical composition, constructed models generally did a better job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e., R2 > 0.80, RPD > 2.0. The effect of reducing the wavenumber range to the fingerprint region for PLS modeling and the relationship between the chemical composition and higher heating value of logging residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it provides a complete and systematic characterization of this heterogeneous raw material.

  20. Characterization of Paracoccidioides brasiliensis by FT-IR spectroscopy and nanotechnology

    Science.gov (United States)

    Ferreira, Isabelle; Ferreira-Strixino, Juliana; Castilho, Maiara L.; Campos, Claudia B. L.; Tellez, Claudio; Raniero, Leandro

    2016-01-01

    Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25 °C in vitro) and as yeast cells in the human host (or at 37 °C in vitro). Because mycological examination of lesions in patients frequently is unable to show the presence of the fungus and serological tests can misdiagnose the disease with other mycosis, the development of new approach's for molecular identification of P. brasiliensis spurges is needed. This study describes the use of a gold nanoprobe of a known gene sequence of P. brasiliensis as a molecular tool to identify P. brasiliensis by regular polymerase chain reaction (PCR) associated with a colorimetric methods. This approach is suitable for testing in remote areas because it does not require any further step than gene amplification, being safer and cheaper than electrophoresis methods. The proposed test showed a color change of the PCR reaction mixture from red to blue in negative samples, whereas the solution remains red in positive samples. We also performed a Fourier Transform Infrared (FT-IR) Spectroscopy analysis to characterize and compare the chemical composition between yeast and mycelia forms, which revealed biochemical differences between these two forms. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates. The most prominent difference between both forms was vibration modes related to 1,3-β-glucan usually found in mycelia and 1,3-α-glucan found in yeasts and also chitin forms. In this work, we introduce FT-IR as a new method suitable to reveal overall differences that biochemically distinguish each form of P. brasiliensis that could be additionally used to discriminate biochemical differences among a single form under distinct environmental conditions.

  1. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyu [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hay, J.N., E-mail: j.n.hay@bham.ac.uk [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Jenkins, M.J. [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-01-20

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: Black-Right-Pointing-Pointer Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. Black-Right-Pointing-Pointer The absorbance of cis/trans bands have been followed with temperature on heating and cooling. Black-Right-Pointing-Pointer Fractional crystallinity was determined directly without calibration. Black-Right-Pointing-Pointer The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  2. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Chen, Ziyu; Hay, J.N.; Jenkins, M.J.

    2013-01-01

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: ► Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. ► The absorbance of cis/trans bands have been followed with temperature on heating and cooling. ► Fractional crystallinity was determined directly without calibration. ► The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  3. Effects of gamma irradiation on microhardness and Fourier Transform Infrared Spectroscopy of bovine bone

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Derly Augusto; Pereira, Daisa L.; Gomes, Gabriela V.; Sugahara, Vanessa M.L.; Mathor, Monica B.; Zezell, Denise Maria, E-mail: zezell@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro para Lasers e Aplicacoes

    2017-07-01

    The skeletal systems with the structural arrangement of the bone are very important for load distribution, mechanical resistance and vital organs protection. The bone structure is multiphase and composed of organic, inorganic (mineral) compounds and water. Gamma radiation is an ionizing radiation that comes from gamma radiation sources or X-ray generator is commonly used in health establishments such as radio diagnostic exams, radiotherapy and sterilization of allograft. The characterization of the irradiated bone tissue can be is an important tool to study of the components that are affected and how much each dose of ionizing radiation can alter its mechanical properties. This information will be very important in in vitro and ex vivo studies where sterilization of the bone material is necessary and may still be useful in understanding the effects on the bone tissue of patients undergoing short-term radiotherapy. For this, 110 samples of bovine femur diaphysis were randomized into 11 groups: G1 untreated (control); G2 to G11 were submitted to gamma irradiation ({sup 60}Co Gammacel). Samples were polished before irradiation and submitted to a Knoop Microhardness Test to determine the hardness of bovine bone and Fourier transform Infrared spectroscopy (FTIR) to biochemical characterization. Spectra were collected in the mid-infrared range in Attenuated Total Reflectance (ATR) sampling mode associated whit PCA multivariate technique to evaluate the molecular changes in bone matrix. It was observed that hardness was not altered by gamma irradiation and FTIR spectroscopy associated with PCA is a good method to analyze the changes in bone tissue submitted to ionizing radiation. (author)

  4. Effects of gamma irradiation on microhardness and Fourier Transform Infrared Spectroscopy of bovine bone

    International Nuclear Information System (INIS)

    Dias, Derly Augusto; Pereira, Daisa L.; Gomes, Gabriela V.; Sugahara, Vanessa M.L.; Mathor, Monica B.; Zezell, Denise Maria

    2017-01-01

    The skeletal systems with the structural arrangement of the bone are very important for load distribution, mechanical resistance and vital organs protection. The bone structure is multiphase and composed of organic, inorganic (mineral) compounds and water. Gamma radiation is an ionizing radiation that comes from gamma radiation sources or X-ray generator is commonly used in health establishments such as radio diagnostic exams, radiotherapy and sterilization of allograft. The characterization of the irradiated bone tissue can be is an important tool to study of the components that are affected and how much each dose of ionizing radiation can alter its mechanical properties. This information will be very important in in vitro and ex vivo studies where sterilization of the bone material is necessary and may still be useful in understanding the effects on the bone tissue of patients undergoing short-term radiotherapy. For this, 110 samples of bovine femur diaphysis were randomized into 11 groups: G1 untreated (control); G2 to G11 were submitted to gamma irradiation ("6"0Co Gammacel). Samples were polished before irradiation and submitted to a Knoop Microhardness Test to determine the hardness of bovine bone and Fourier transform Infrared spectroscopy (FTIR) to biochemical characterization. Spectra were collected in the mid-infrared range in Attenuated Total Reflectance (ATR) sampling mode associated whit PCA multivariate technique to evaluate the molecular changes in bone matrix. It was observed that hardness was not altered by gamma irradiation and FTIR spectroscopy associated with PCA is a good method to analyze the changes in bone tissue submitted to ionizing radiation. (author)

  5. Application of attenuated total reflectance Fourier transform infrared spectroscopy for determination of cefixime in oral pharmaceutical formulations.

    Science.gov (United States)

    Kandhro, Aftab A; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S T H

    2013-11-01

    A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887cm(-1). Excellent coefficient of determination (R(2)) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  7. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  8. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Z., E-mail: remes@fzu.cz [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A. [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Girard, H.A.; Arnault, J.-C.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif-sur-Yvette (France)

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000–1500 cm{sup −1} spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  9. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Science.gov (United States)

    Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  10. Characterization of a ZnxCd1-xSe/Znx'Cdy'Mg1-x'-y'Se multiple quantum well structure for mid-infrared device applications by contactless electroreflectance and Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Wu, J D; Lin, J W; Huang, Y S; Charles, W O; Shen, A; Zhang, Q; Tamargo, M C

    2009-01-01

    Contactless electroreflectance (CER) and Fourier transform infrared (FTIR) spectroscopy were used to study the intersubband transitions of a Zn x Cd 1-x Se/Zn x' Cd y' Mg 1-x'-y' Se multiple quantum well (MQW) structure grown by molecular beam epitaxy for mid-infrared device applications. The CER spectrum revealed a wide range of possible optical transitions in the MQW structure. The ground state transition was assigned by comparison with the photoluminescence emission signal taken from the same structure. A comprehensive analysis of the CER spectrum led to the identification of various interband transitions. The intersubband transitions were estimated and confirmed by FTIR measurements. The results demonstrate the potential of using CER as a complementary technique for the contactless and nondestructive characterization of the wide band gap II-VI MQW structures for mid-IR intersubband device applications.

  11. Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chengfeng Zhou

    2015-01-01

    Full Text Available This research addressed a rapid method to monitor hardwood chemical composition by applying Fourier transform infrared (FT-IR spectroscopy, with particular interest in model performance for interpretation and prediction. Partial least squares (PLS and principal components regression (PCR were chosen as the primary models for comparison. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set to collect the original data. PLS was found to provide better predictive capability while PCR exhibited a more precise estimate of loading peaks and suggests that PCR is better for model interpretation of key underlying functional groups. Specifically, when PCR was utilized, an error in peak loading of ±15 cm−1 from the true mean was quantified. Application of the first derivative appeared to assist in improving both PCR and PLS loading precision. Research results identified the wavenumbers important in the prediction of extractives, lignin, cellulose, and hemicellulose and further demonstrated the utility in FT-IR for rapid monitoring of wood chemistry.

  12. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  13. The characterization of canvas painting by the Serbian artist Milo Milunović using X-ray fluorescence, micro-Raman and FTIR spectroscopy

    International Nuclear Information System (INIS)

    Damjanović, Lj.; Gajić-Kvaščev, M.; Đurđević, J.; Andrić, V.; Marić-Stojanović, M.; Lazić, T.; Nikolić, S.

    2015-01-01

    A canvas painting by Milo Milunović “The Inspiration of the poet” was studied by energy dispersive X-Ray fluorescence (EDXRF), micro-Raman and Fourier transform infrared (FTIR) spectroscopy in order to identify materials used by the artist and his painting technique. Study is perfomed combining in situ non-destructive method with the preparation and study of cross-section samples and raw fragments of the samples. Milo Milunović, an eminent painter from Balkan region, made a copy of the Nicolas Poussin's original painting in Louvre in 1926/27. Obtained results revealed following pigments on the investigated canvas painting: vermilion, minium, cobalt blue, ultramarine, lead white, zinc white, cadmium yellow, chrome-based green pigment and several earth pigments – red and yellow ocher, green earth and umber. Ground layer was made of lead white mixed with calcium carbonate. - Highlights: • In situ EDXRF, micro-Raman and FTIR spectroscopy were employed. • Pallete of painting “The Inspiration of the poet” by Milunović has been determined. • Obtained results allowed evaluation of the painter’s technique. • Milo Milunović worked on the clay ground imitating Nicoals Poussin’s technique

  14. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei; Zhao, Hui; Liu, Gao; Ross, Philip N.; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2014-01-01

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.

  15. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2014-07-10

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.

  16. Surface analysis by Fourier-transform infrared (FTIR) spectroscopy

    International Nuclear Information System (INIS)

    Powell, G.L.; Smyrl, N.R.; Fuller, E.L.

    1981-01-01

    A diffuse-reflectance capability for the Fourier transform infrared spectrometer at the Y-12 Plant Laboratory has been implemented. A sample cell with a 25 to 400 0 C temperature-controlled sample stage and an ultrahigh-vacuum-to-atmospheric pressure gas-handling capability has been developed. Absorbance of light from the spectrometer beam, resulting from the beam being scattered from a powder sample, can be measured. This capability of detecting molecular species on and in powders is to be used to study chemisorption on actinide and rare-earth metals, alloys, and compounds. Cell design is described along with experiments demonstrating its performance in detecting moisture absorption on uranium oxide, moisture and carbon dioxide absorption on the lithium hydride/hydroxide system, and carbon dioxide absorption on potassium borohydride. 13 figures

  17. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  18. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  19. Detection of cancerous kidney tissue areas by means of infrared spectroscopy of intercellular fluid

    Science.gov (United States)

    Urboniene, V.; Jankevicius, F.; Zelvys, A.; Steiner, G.; Sablinskas, V.

    2014-03-01

    In this work the infrared absorption spectra of intercellular fluid of normal and tumor kidney tissue were recorded and analyzed. The samples were prepared by stamping freshly resected tissue onto a CaF2 substrate. FT-IR spectra obtained from intracellular fluid of tumor tissue exhibit stronger absorption bands in the spectral region from 1000-1200 cm-1 and around 1750 cm-1 than those obtained from normal tissue. It is likely the spectra of extracellular matrix of kidney tumor tissue with large increases in the intensities of these bands represent a higher concentration of fatty acids and glycerol. Amide I and amide II bands are stronger in spectra of normal tissue indicating a higher level of proteins. The results demonstrate that FT-IR spectroscopy of intercellular fluids is a novel approach for a quick diagnosis during surgical resection, which can improve the therapy of kidney tumors.

  20. Differentiation of different mixed Listeria strains and also acid-injured, heat-injured, and repaired cells of Listeria monocytogenes using fourier transform infrared spectroscopy.

    Science.gov (United States)

    Nyarko, Esmond; Donnelly, Catherine

    2015-03-01

    Fourier transform infrared (FT-IR) spectroscopy was used to differentiate mixed strains of Listeria monocytogenes and mixed strains of L. monocytogenes and Listeria innocua. FT-IR spectroscopy was also applied to investigate the hypothesis that heat-injured and acid-injured cells would return to their original physiological integrity following repair. Thin smears of cells on infrared slides were prepared from cultures for mixed strains of L. monocytogenes, mixed strains of L. monocytogenes and L. innocua, and each individual strain. Heat-injured and acid-injured cells were prepared by exposing harvested cells of L. monocytogenes strain R2-764 to a temperature of 56 ± 0.2°C for 10 min or lactic acid at pH 3 for 60 min, respectively. Cellular repair involved incubating aliquots of acid-injured and heat-injured cells separately in Trypticase soy broth supplemented with 0.6% yeast extract for 22 to 24 h; bacterial thin smears on infrared slides were prepared for each treatment. Spectral collection was done using 250 scans at a resolution of 4 cm(-1) in the mid-infrared wavelength region. Application of multivariate discriminant analysis to the wavelength region from 1,800 to 900 cm(-1) separated the individual L. monocytogenes strains. Mixed strains of L. monocytogenes and L. monocytogenes cocultured with L. innocua were successfully differentiated from the individual strains when the discriminant analysis was applied. Different mixed strains of L. monocytogenes were also successfully separated when the discriminant analysis was applied. A data set for injury and repair analysis resulted in the separation of acid-injured, heat-injured, and intact cells; repaired cells clustered closer to intact cells when the discriminant analysis (1,800 to 600 cm(-1)) was applied. FT-IR spectroscopy can be used for the rapid source tracking of L. monocytogenes strains because it can differentiate between different mixed strains and individual strains of the pathogen.

  1. Application of micro-attenuated total reflectance Fourier transform infrared spectroscopy to ink examination in signatures written with ballpoint pen on questioned documents.

    Science.gov (United States)

    Nam, Yun Sik; Park, Jin Sook; Lee, Yeonhee; Lee, Kang-Bong

    2014-05-01

    Questioned documents examined in a forensic laboratory sometimes contain signatures written with ballpoint pen inks; these signatures were examined to assess the feasibility of micro-attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy as a forensic tool. Micro-ATR FTIR spectra for signatures written with 63 ballpoint pens available commercially in Korea were obtained and used to construct an FTIR spectral database. A library-searching program was utilized to identify the manufacturer, blend, and model of each black ballpoint pen ink based upon their FTIR peak intensities, positions, and patterns in the spectral database. This FTIR technique was also successfully used in determining the sequence of homogeneous line intersections from the crossing lines of two ballpoint pen signatures. We have demonstrated with a set of sample documents that micro-ATR FTIR is a viable nondestructive analytical method that can be used to identify the origin of the ballpoint pen ink used to mark signatures. © 2014 American Academy of Forensic Sciences.

  2. Integrated Fourier transform infrared spectroscopy and gas chromatography tandem mass spectrometry for forensic engine lubricating oil and biodiesel analysis

    International Nuclear Information System (INIS)

    Shang, D.

    2009-01-01

    Gas chromatography/mass spectrometry(GC/MS) is commonly used for oil fingerprinting and provides investigators with good forensic data. However, new challenges face oil spill forensic chemistry with the growing use of biodiesel as well as the recycling and reprocessing of used oil, particularly lubricating oils. This paper demonstrated that Fourier transform infrared (FTIR) spectroscopy may be a fast, cost effective and complementary method for forensic analysis of biodiesels (fatty acid methyl esters) and lubricating oils. Attenuated total reflectance (ATR)-FTIR spectroscopy was shown to be an interesting analytic method because of its use in monitoring and quantifying minor chemical compounds in sample matrices and its ability to identify a broad range or organic compounds. Unlike chromatography, FTIR spectroscopy with ATR can provide results without compound separation or lengthy sample preparation steps. This study described the combined use of GC and ATR-FTIR in environmental oil spill identification through the matching of source lube oil samples with artificially weathered samples. Samples recovered from a biodiesel spill incident were also investigated. ATR-FTIR provided detailed spectral information for rapid lube oil differentiation. This study was part of a continuing effort to develop a methodology to deal with chemical spills of unknown origin, which is an important aspect in environmental protection and emergency preparedness. This method was only successfully applied to the short term artificially weathered and fresh lube oil characterization, and to limited cases of biodiesel spills. It was concluded that further validation tests are needed to determine if this method can be applied to real-world weather lube oil samples. 10 refs., 11 figs.

  3. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  4. Effect of Water on HEMA Conversion by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    TS. Jafarzadeh Kashi

    2007-09-01

    Full Text Available Objective: The use of HEMA as a biocompatible material in dentin bonding systems and its potential for clinical applications has been well established. Excess water can affect conversion of bonding resins. The aim of this study was to survey the effect of water on the degree of conversion of HEMA by Fourier Transform Infra-red Spectroscopy (FT-IR.Materials and Methods: In this experimental study, distilled water was added in amounts of 0, 0.05, 0.1, 0.2, and 0.4 ml to 1 ml of curable HEMA solution. Six repetitions per wa-ter ratio were made and investigated. Each sample was polymerized for 60 seconds. De-gree of conversion was obtained from the absorbance IR-Spectrum of the materials before and after polymerization by FT-IR spectroscopy. One way ANOVA and Tukey-HSD were carried out to compare and detect any differences among groups.Results: Statistical analysis indicates highly significant difference between pairs of groups at level (P<0.001. The results showed a trend of decreasing in HEMA conversion with increasing water. Degree of conversion changes significantly within the 0.05 ml to 0.2 ml water range. However, degree of conversion did not change after reaching 0.02 ml and before 0.05.Conclusion: Degree of conversion of HEMA decreased by increasing water. The most dramatic effect of water on the polymerization process occurs within a range which exists under clinical conditions. The reason that the degree of conversion did not show signifi-cant result before 0.05 ml may be related to the hydrophilic nature of HEMA.

  5. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  6. Near Infrared Spectroscopy as a Hemodynamic Monitor in Critical Illness.

    Science.gov (United States)

    Ghanayem, Nancy S; Hoffman, George M

    2016-08-01

    The objectives of this review are to discuss the technology and clinical interpretation of near infrared spectroscopy oximetry and its clinical application in patients with congenital heart disease. MEDLINE and PubMed. Near infrared spectroscopy provides a continuous noninvasive assessment of tissue oxygenation. Over 20 years ago, near infrared spectroscopy was introduced into clinical practice for monitoring cerebral oxygenation during cardiopulmonary bypass in adults. Since that time, the utilization of near infrared spectroscopy has extended into the realm of pediatric cardiac surgery and is increasingly being used in the cardiac ICU to monitor tissue oxygenation perioperatively.

  7. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression

    Science.gov (United States)

    Oleszko, Adam; Hartwich, Jadwiga; Wójtowicz, Anna; Gąsior-Głogowska, Marlena; Huras, Hubert; Komorowska, Małgorzata

    2017-08-01

    Hypertriglyceridemia, related with triglyceride (TG) in plasma above 1.7 mmol/L is one of the cardiovascular risk factors. Very low density lipoproteins (VLDL) are the main TG carriers. Despite being time consuming, demanding well-qualified staff and expensive instrumentation, ultracentrifugation technique still remains the gold standard for the VLDL isolation. Therefore faster and simpler method of VLDL-TG determination is needed. Vibrational spectroscopy, including FT-IR and Raman, is widely used technique in lipid and protein research. The aim of this study was assessment of Raman and FT-IR spectroscopy in determination of VLDL-TG directly in serum with the isolation step omitted. TG concentration in serum and in ultracentrifugated VLDL fractions from 32 patients were measured with reference colorimetric method. FT-IR and Raman spectra of VLDL and serum samples were acquired. Partial least square (PLS) regression was used for calibration and leave-one-out cross validation. Our results confirmed possibility of reagent-free determination of VLDL-TG directly in serum with both Raman and FT-IR spectroscopy. Quantitative VLDL testing by FT-IR and/or Raman spectroscopy applied directly to maternal serum seems to be promising screening test to identify women with increased risk of adverse pregnancy outcomes and patient friendly method of choice based on ease of performance, accuracy and efficiency.

  8. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    Science.gov (United States)

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  9. In-situ spectroscopic investigation of transmissible spongiform encephalopathies: application of Fourier-transform infrared spectroscopy to a scrapie-hamster model

    Science.gov (United States)

    Kneipp, Janina; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2002-03-01

    Transmissible spongiform encephalopathies (TSE), such as BSE in cattle, scrapie in sheep and goats, and Creutzfeldt-Jakob disease in man are a group of fatal infectious diseases of the central nervous system that are far from being fully understood. Presuming the pathological changes to originate from small disease-specific compositional and structural modifications at the molecular level, Fourier-transform infrared (FTIR) spectroscopy can be used to achieve insight into biochemical parameters underlying pathogenesis. We have developed an FTIR microspectroscopy-based strategy which, as a combination of image reconstruction and multivariate pattern recognition methods, permitted the comparison of identical substructures in the cerebellum of healthy and TSE-infected Syrian hamsters in the terminal stage of the disease. Here we present FTIR data about the pathological changes of scrapie-infected and normal tissue of the gray matter structures stratum granulosum and stratum moleculare. IR spectroscopy was also applied to tissue pieces of the medulla oblongata of infected and control Syrian hamsters. Mapping data were analyzed with cluster analysis and imaging methods. We found variations in the spectra of the infected tissue, which are due to changes in carbohydrates, nucleic acids, phospholipids, and proteins.

  10. Monitorando a degradação da poliamida 11 (PA-11 via espectroscopia na região do infravermelho médio com transformada de fourier (FTIR Monitoring the degradation of polyamide 11 (PA-11 via fourier transform infrared spectroscopy (FTIR

    Directory of Open Access Journals (Sweden)

    Eloilson Domingos

    2012-01-01

    Full Text Available O potencial da técnica de espectroscopia de infravermelho com transformada de Fourier e acessório de reflexão total atenuada (FTIR-ATR foi avaliado para o monitoramento da degradação da poliamida 11 (PA-11 usada em dutos flexíveis. As amostras foram submetidas a envelhecimento em reatores com pressão controlada e atmosfera inerte. Os corpos de prova foram imersos em água deionizada (pH 7, nas temperaturas de 110, 120 e 140 ºC por um período de até 50 dias. A técnica recomendada para monitoramento da degradação da PA-11 é a viscosimetria, através de medidas da viscosidade inerente corrigida (VIC e a análise termogravimétrica (TGA. O comportamento observado para a VIC e TGA durante o envelhecimento possibilitou a construção de modelos que correlacionam com a técnica de FTIR-ATR. A partir dos resultados de FTIR-ATR, a variação na intensidade da banda atribuída à fase amorfa, 1161 cm-1, possibilitou o monitoramento do envelhecimento quando associamos a técnica a modelos quimiométricos como o de regressão dos mínimos quadrados parciais, PLS. Portanto, a técnica FTIR-ATR pode ser uma nova alternativa no monitoramento da degradação hidrolítica da PA-11, eliminando assim o uso de solventes orgânicos tóxicos e reduzindo, consequentemente, o tempo de análise.The potential of the infrared spectroscopy with the attenuated total reflection technique (FTIR-ATR was evaluated to monitor degradation of polyamide 11, PA-11, applied in flexible pipes. The samples were subjected to aging on reactors with controlled pressure and atmosphere. The samples were immersed in deionized water, pH 7, at temperatures of 110, 120 and 140 ºC over a period of up to 50 days. The typical technique recommended for monitoring PA-11 degradation is viscometry from inherent viscosity corrected (VIC and thermogravimetric (TGA measurements. TGA and VIC results allowed the use of chemometric models that can be related to FTIR-ATR spectra, with

  11. Monitorando a degradação da poliamida 11 (PA-11 via espectroscopia na região do infravermelho médio com transformada de fourier (FTIR Monitoring the degradation of polyamide 11 (PA-11 via fourier transform infrared spectroscopy (FTIR

    Directory of Open Access Journals (Sweden)

    Eloilson Domingos

    2013-01-01

    Full Text Available O potencial da técnica de espectroscopia de infravermelho com transformada de Fourier e acessório de reflexão total atenuada (FTIR-ATR foi avaliado para o monitoramento da degradação da poliamida 11 (PA-11 usada em dutos flexíveis. As amostras foram submetidas a envelhecimento em reatores com pressão controlada e atmosfera inerte. Os corpos de prova foram imersos em água deionizada (pH 7, nas temperaturas de 110, 120 e 140 ºC por um período de até 50 dias. A técnica recomendada para monitoramento da degradação da PA-11 é a viscosimetria, através de medidas da viscosidade inerente corrigida (VIC e a análise termogravimétrica (TGA. O comportamento observado para a VIC e TGA durante o envelhecimento possibilitou a construção de modelos que correlacionam com a técnica de FTIR-ATR. A partir dos resultados de FTIR-ATR, a variação na intensidade da banda atribuída à fase amorfa, 1161 cm-1, possibilitou o monitoramento do envelhecimento quando associamos a técnica a modelos quimiométricos como o de regressão dos mínimos quadrados parciais, PLS. Portanto, a técnica FTIR-ATR pode ser uma nova alternativa no monitoramento da degradação hidrolítica da PA-11, eliminando assim o uso de solventes orgânicos tóxicos e reduzindo, consequentemente, o tempo de análise.The potential of the infrared spectroscopy with the attenuated total reflection technique (FTIR-ATR was evaluated to monitor degradation of polyamide 11, PA-11, applied in flexible pipes. The samples were subjected to aging on reactors with controlled pressure and atmosphere. The samples were immersed in deionized water, pH 7, at temperatures of 110, 120 and 140 ºC over a period of up to 50 days. The typical technique recommended for monitoring PA-11 degradation is viscometry from inherent viscosity corrected (VIC and thermogravimetric (TGA measurements. TGA and VIC results allowed the use of chemometric models that can be related to FTIR-ATR spectra, with

  12. Coherent atomic and molecular spectroscopy in the far infrared

    International Nuclear Information System (INIS)

    Inguscio, M.

    1988-01-01

    Recent advances in far infrared spectroscopy of atoms (fine structure transitions) and molecules (rotational transitions) are reviewed. Results obtained by means of Laser Magnetic Resonance, using fixed frequency lasers, and Tunable Far Infrared spectrometers are illustrated. The importance of far infrared spectroscopy for several fields, including astrophysics, atmospheric physics, atomic structure and metology, is discussed. (orig.)

  13. Infrared Spectroscopy of Carbonaceous-chondrite Inclusions in the Kapoeta Meteorite: Discovery of Nanodiamonds with New Spectral Features and Astrophysical Implications

    Science.gov (United States)

    Abdu, Yassir A.; Hawthorne, Frank C.; Varela, Maria E.

    2018-03-01

    We report the finding of nanodiamonds, coexisting with amorphous carbon, in carbonaceous-chondrite (CC) material from the Kapoeta achondritic meteorite by Fourier-transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy. In the C–H stretching region (3100–2600 cm‑1), the FTIR spectrum of the Kapoeta CC material (KBr pellet) shows bands attributable to aliphatic CH2 and CH3 groups, and is very similar to IR spectra of organic matter in carbonaceous chondrites and the diffuse interstellar medium. Nanodiamonds, as evidenced by micro-Raman spectroscopy, were found in a dark region (∼400 μm in size) in the KBr pellet. Micro-FTIR spectra collected from this region are dramatically different from the KBr-pellet spectrum, and their C–H stretching region is dominated by a strong and broad absorption band centered at ∼2886 cm‑1 (3.47 μm), very similar to that observed in IR absorption spectra of hydrocarbon dust in dense interstellar clouds. Micro-FTIR spectroscopy also indicates the presence of an aldehyde and a nitrile, and both of the molecules are ubiquitous in dense interstellar clouds. In addition, IR peaks in the 1500–800 cm‑1 region are also observed, which may be attributed to different levels of nitrogen aggregation in diamonds. This is the first evidence for the presence of the 3.47 μm interstellar IR band in meteorites. Our results further support the assignment of this band to tertiary CH groups on the surfaces of nanodiamonds. The presence of the above interstellar bands and the absence of shock features in the Kapoeta nanodiamonds, as indicated by Raman spectroscopy, suggest formation by a nebular-condensation process similar to chemical-vapor deposition.

  14. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L.; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E.; García-García, Ramiro

    2013-01-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI) XRD index is related to the crystal structure of the samples and the (CI) FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI) XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI) FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI) XRD than with (CI) FTIR . • Regardless of the temperature, (CI) XRD and (CI) FTIR showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement

  15. Rapid Detection of Pesticide Residues in Chinese Herbal Medicines by Fourier Transform Infrared Spectroscopy Coupled with Partial Least Squares Regression

    Directory of Open Access Journals (Sweden)

    Tianming Yang

    2016-01-01

    Full Text Available This paper reports a simple, rapid, and effective method for simultaneous detection of cartap (Ca, thiocyclam (Th, and tebufenozide (Te in Chinese herbal medicines including Radix Angelicae Dahuricae and Liquorices using Fourier transform infrared spectroscopy (FT-IR coupled with partial least squares regression (PLSR. The proposed method can handle the intrinsic interferences of herbal samples; satisfactory average recoveries attained from near-infrared (NIR and mid-infrared (MIR PLSR models were 99.0±10.8 and 100.2±1.0% for Ca, 100.2±6.9 and 99.7±2.5% for Th, and 99.1±6.3 and 99.6±1.0% for Te, respectively. Furthermore, some statistical parameters and figures of merit are fully investigated to evaluate the performance of the two models. It was found that both models could give accurate results and only the performance of MIR-PLSR was slightly better than that of NIR-PLSR in the cases suffering from herbal matrix interferences. In conclusion, FT-IR spectroscopy in combination with PLSR has been demonstrated for its application in rapid screening and quantitative analysis of multipesticide residues in Chinese herbal medicines without physical or chemical separation pretreatment step and any spectral processing, which also implies other potential applications such as food and drug safety, herbal plants quality, and environmental evaluation, due to its advantages of nontoxic and nondestructive analysis.

  16. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis

    Science.gov (United States)

    Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong

    2018-06-01

    Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms.

  17. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation.

    Science.gov (United States)

    Rahmania, Halida; Sudjadi; Rohman, Abdul

    2015-02-01

    For Indonesian community, meatball is one of the favorite meat food products. In order to gain economical benefits, the substitution of beef meat with rat meat can happen due to the different prices between rat meat and beef. In this present research, the feasibility of FTIR spectroscopy in combination with multivariate calibration of partial least square (PLS) was used for the quantitative analysis of rat meat in the binary mixture of beef in meatball formulation. Meanwhile, the chemometrics of principal component analysis (PCA) was used for the classification between rat meat and beef meatballs. Some frequency regions in mid infrared region were optimized, and finally, the frequency region of 750-1000 cm(-1) was selected during PLS and PCA modeling.For quantitative analysis, the relationship between actual values (x-axis) and FTIR predicted values (y-axis) of rat meat is described by the equation of y= 0.9417x+ 2.8410 with coefficient of determination (R2) of 0.993, and root mean square error of calibration (RMSEC) of 1.79%. Furthermore, PCA was successfully used for the classification of rat meat meatball and beef meatball.

  18. FTIR Laboratory in Support of the PV Program

    International Nuclear Information System (INIS)

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report

  19. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  20. Prospective pilot study to detect dogs with non food-induced canine atopic dermatitis using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Bruet, Vincent; Dumon, Henri; Bourdeau, Patrick; Desfontis, Jean-Claude; Martin, Lucile

    2016-10-01

    The diagnosis of canine atopic dermatitis (CAD) remains challenging due to the lack of a simple biomarker or metabolic profile. In human medicine, Fourier transform infrared spectroscopy (FTIR) is an analytical technique used for several diseases. It requires a small amount of sample and allows the identification of structural moieties of biomolecules on the basis of their infrared absorption, with limited sample pretreatment. The aim of the study was to evaluate the diagnostic value of FTIR. Three groups were tested: 21 dogs with non food-induced CAD (NFICAD), 16 dogs with inflammatory conditions of various origins but without allergic dermatoses (OD) and 10 healthy dogs (H). Peripheral blood was collected and spectra were acquired with a FTIR spectrophotometer. A principal component analysis (PCA) was performed on the full wavenumber spectra (4000-600/cm), followed by a Fisher discriminant analysis (DA) to assess the differences between the three groups. The PCA followed by the DA of whole spectra showed significant differences between the three groups. These results suggest that by using the FTIR method, dogs with NFICAD can be differentiated from healthy dogs and dogs with nonallergic inflammation. There was no overlap between the spectral data of the three groups indicating that NFICAD dogs were correctly segregated from the H and OD groups. A study on a larger cohort including common pruritic skin diseases is necessary to confirm these initial results and the relevance of this diagnostic technique. © 2016 ESVD and ACVD.

  1. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach.

    Science.gov (United States)

    Invernizzi, Claudia; Daveri, Alessia; Vagnini, Manuela; Malagodi, Marco

    2017-05-01

    The analysis of historical musical instruments is becoming more relevant and the interest is increasingly moving toward the non-invasive reflection FTIR spectroscopy, especially for the analysis of varnishes. In this work, a specific infrared reflectance spectral library of organic compounds was created with the aim of identifying musical instrument materials in a totally non-invasive way. The analyses were carried out on pure organic compounds, as bulk samples and laboratory wooden models, to evaluate the diagnostic reflection mid-infrared (MIR) bands of proteins, polysaccharides, lipids, and resins by comparing reflection spectra before and after the KK correction. This methodological approach was applied to real case studies represented by four Stradivari violins and a Neapolitan mandolin.

  2. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Material characterization may be carried out by the attenuated total reflectance (ATR Fourier transform infrared (FTIR radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Thus ATR saves time and enables the study of materials in a pristine condition, that is, the comprehensive sample preparation by pressing thin KBr pellets in traditional FTIR transmittance spectroscopy is hence avoided. Materials and their ageing processes, both ageing by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect wood rot decay and mould fungi growth on various building material substrates. An experimental challenge and aim is to be able to detect the wood rot decay and mould fungi growth at early stages when it is barely visible to the naked eye. Another goal is to be able to distinguish between various species of fungi and wood rot.

  3. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    Science.gov (United States)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  4. Direct detection of saponins in crude extracts of soapnuts by FTIR.

    Science.gov (United States)

    Almutairi, Meshari Saad; Ali, Muhammad

    2015-01-01

    Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.

  5. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    Science.gov (United States)

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  6. [Application of FT-IR pattern recognition method for the quality control of pharmaceutical ingredients].

    Science.gov (United States)

    Horgos, József; Kóger, Péter; Zelkó, Romána

    2009-01-01

    Nowadays infrared spectroscopy and chemometrics have proven their effectiveness for both qualitative and quantitative analyses in different fields like agriculture, food, chemical and oil industry. Furier Transformation Infrared Spectroscopy (FT-IR) combined with Attenuated Total Reflectance (ATR) plate is a fast identification instrument. It is suitable for analysis of solid and liquid phase, too. Associated with chemometrics, it would be a powerful tool for the pharmaceutical wholesalers to detect the insufficient quality of pharmaceutical ingredients. In the present study beside the review of the infra red technology, pharmaceutical ingredients were examined with the help of our spectra library.

  7. Two-dimensional correlation infrared spectroscopy applied to analyzing and identifying the extracts of Baeckea frutescens medicinal materials.

    Science.gov (United States)

    Adib, Adiana Mohamed; Jamaludin, Fadzureena; Kiong, Ling Sui; Hashim, Nuziah; Abdullah, Zunoliza

    2014-08-05

    Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  9. Characterisation of InAs-based epilayers by FTIR spectroscopy

    CSIR Research Space (South Africa)

    Baisitse, TR

    2008-01-01

    Full Text Available In this paper, infrared reflectance spectroscopy was employed to extract information on the optical and electrical properties of metal organic vapour phase epitaxial (MOVPE) grown InAs and InAsSb epilayers. These epitaxial layers were grown on InAs...

  10. ATR and transmission analysis of pigments by means of far infrared spectroscopy.

    Science.gov (United States)

    Kendix, Elsebeth L; Prati, Silvia; Joseph, Edith; Sciutto, Giorgia; Mazzeo, Rocco

    2009-06-01

    In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study.

  11. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling

    International Nuclear Information System (INIS)

    Schmidt-Bleker, A; Winter, J; Iseni, S; Dünnbier, M; Reuter, S; Weltmann, K-D

    2014-01-01

    In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results. (paper)

  12. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy

    Science.gov (United States)

    Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei

    2018-06-01

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.

  13. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (Perosion.

  14. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar

    Science.gov (United States)

    Rohaeti, Eti; Rafi, Mohamad; Syafitri, Utami Dyah; Heryanto, Rudi

    2015-02-01

    Turmeric (Curcuma longa), java turmeric (Curcuma xanthorrhiza) and cassumunar ginger (Zingiber cassumunar) are widely used in traditional Indonesian medicines (jamu). They have similar color for their rhizome and possess some similar uses, so it is possible to substitute one for the other. The identification and discrimination of these closely-related plants is a crucial task to ensure the quality of the raw materials. Therefore, an analytical method which is rapid, simple and accurate for discriminating these species using Fourier transform infrared spectroscopy (FTIR) combined with some chemometrics methods was developed. FTIR spectra were acquired in the mid-IR region (4000-400 cm-1). Standard normal variate, first and second order derivative spectra were compared for the spectral data. Principal component analysis (PCA) and canonical variate analysis (CVA) were used for the classification of the three species. Samples could be discriminated by visual analysis of the FTIR spectra by using their marker bands. Discrimination of the three species was also possible through the combination of the pre-processed FTIR spectra with PCA and CVA, in which CVA gave clearer discrimination. Subsequently, the developed method could be used for the identification and discrimination of the three closely-related plant species.

  15. Fourier transform infrared spectroscopy for sepia melanin

    CSIR Research Space (South Africa)

    Mbonyiryivuze, A

    2015-08-01

    Full Text Available Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research,” Climate of the Past, vol. 7, p. 65- 74, 2011. [12] P. N. R. Sundar, Films minces à base de Si nanostructuré pour des cellules...

  16. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  17. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin [Department of Chemical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Seonghwan; Chae, Inseok; Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  18. In vitro antibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: II. Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Boschetto, Francesco; Toyama, Nami; Horiguchi, Satoshi; Bock, Ryan M; McEntire, Bryan J; Adachi, Tetsuya; Marin, Elia; Zhu, Wenliang; Mazda, Osam; Bal, B Sonny; Pezzotti, Giuseppe

    2018-04-30

    The metabolic response of Gram-positive Staphylococcus epidermidis (S. epidermidis) bacteria to bioceramic substrates was probed by means of Fourier transform infrared spectroscopy (FTIR). Oxide zirconia-toughened alumina (ZTA) and non-oxide silicon nitride (Si3N4) substrates were tested. Bacteria exposed to silica glass substrates were used as a control. S. epidermidis, a major cause of periprosthetic infections, was screened to obtain a precise time-lapse knowledge of its molecular composition and to mechanistically understand its interaction with different substrates. At the molecular level, the structure of proteins, lipids, nucleic acid, and aromatic amino acids evolved with time in response to different substrates. In combination with statistical validation and local pH measurements, a chemical lysis mechanism was spectroscopically observed in situ on the Si3N4 substrates. Utilization of FTIR in this study avoided fluorescence noise which occurred while probing the ZTA samples with Raman spectroscopy in a companion paper. The substrate-driven dynamics of polysaccharide and peptide variations in the bacterial cell wall, peculiar to Si3N4 bioceramics, are elucidated.

  19. Progress in far-infrared spectroscopy: Approximately 1890 to 1970

    Science.gov (United States)

    Mitsuishi, Akiyoshi

    2014-03-01

    The history of far-infrared spectroscopy from its beginning to around 1970 is reviewed. Before World War II, the size of the community investigating this topic was limited. During this period, in particular before 1925, about 90% of the papers were published by H. Rubens and his co-workers in Germany. One or two researchers from the US joined the Rubens group per year from 1890 to the beginning of 1910. During the next year or two, some researchers joined M. Czerny, who is seen as the successor of Rubens. After World War II, far-infrared techniques progressed further in the US, which did not suffer damage during the war. The advanced techniques of far-infrared grating spectroscopy were transferred from the US (R. A. Oetjen) to Japan (H. Yoshinaga). Yoshinaga and his co-workers expanded the techniques by themselves. This paper describes the historical development of far-infrared spectroscopy before Fourier transform spectroscopy became popular around 1970.

  20. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Martínez-Piñeiro, Esmeralda L., E-mail: esmemapi@gmail.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Rodríguez-Álvarez, Galois, E-mail: galoisborre@yahoo.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Tiznado-Orozco, Gaby E., E-mail: gab0409@yahoo.com.mx [Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); García-García, Ramiro, E-mail: ramiro@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); and others

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI){sub XRD} index is related to the crystal structure of the samples and the (CI){sub FTIR} index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI){sub XRD} value indicated that enamel is more crystalline than synthetic HAP, while (CI){sub FTIR} indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI){sub XRD} than with (CI){sub FTIR}. • Regardless of the temperature, (CI){sub XRD} and (CI){sub FTIR} showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement.

  1. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2013-06-15

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  2. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    International Nuclear Information System (INIS)

    Popescu, Maria-Cristina; Gómez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz; Simionescu, Bogdan C.

    2013-01-01

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010–2,710, 1,530–1,170, and 1,170–625 cm −1 regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 °C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si–O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH 3 and CH 3 –N + groups take place first. With increasing temperature, the intensity variation of the CH 2 , C–N, Si–C and C–C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  3. Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2014-10-01

    Full Text Available A Fourier transform infrared derivative spectroscopy (FTIR-DS method has been developed for determining furosemide (FUR in pharmaceutical solid dosage form. The method involves the extraction of FUR from tablets with N,N-dimethylformamide by sonication and direct measurement in liquid phase mode using a reduced path length cell. In general, the spectra were measured in transmission mode and the equipment was configured to collect a spectrum at 4 cm−1 resolution and a 13 s collection time (10 scans co-added. The spectra were collected between 1400 cm−1 and 450 cm−1. Derivative spectroscopy was used for data processing and quantitative measurement using the peak area of the second order spectrum of the major spectral band found at 1165 cm−1 (SO2 stretching of FUR with baseline correction. The method fulfilled most validation requirements in the 2 mg/mL and 20 mg/mL range, with a 0.9998 coefficient of determination obtained by simple calibration model, and a general coefficient of variation <2%. The mean recovery for the proposed assay method resulted within the (100±3% over the 80%–120% range of the target concentration. The results agree with a pharmacopoeial method and, therefore, could be considered interchangeable.

  4. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Zhang, Qing; Liu, Cheng; Sun, Zhijian; Hu, Xiaosong; Shen, Qun; Wu, Jihong

    2012-06-01

    The application of Fourier Transform Infrared (FTIR) Spectroscopy to authenticate edible vegetable oils (corn, peanut, rapeseed and soybean oil) adulterated with used frying oil was introduced in this paper. The FTIR spectrum of oil was divided into 22 regions which corresponded to the constituents and molecular structures of vegetable oils. Samples of calibration set were classified into four categories for corn and peanut oils and five categories for rapeseed and soybean oils by cluster analysis. Qualitative analysis of validation set was obtained by discriminant analysis. Area ratio between absorption band 19 and 20 and wavenumber shift of band 19 were treated by linear regression for quantitative analysis. For four adulteration types, LODs of area ratio were 6.6%, 7.2%, 5.5%, 3.6% and wavenumber shift were 8.1%, 9.0%, 6.9%, 5.6%, respectively. The proposed methodology is a useful tool to authenticate the edible vegetable oils adulterated with used frying oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  6. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.

    Science.gov (United States)

    Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P

    2015-03-28

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  7. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Simona-Liliana Iconaru

    2013-01-01

    Full Text Available Fourier transform infrared spectroscopy (FT-IR analysis was conducted on europium-doped hydroxyapatite, Ca10-xEux(PO46(OH2 nanocrystalline powders (Eu:HAp with 0≤xEu≤0.2. Antimicrobial studies were also performed for the first time on Eu:HAp. The antimicrobial properties of Eu:HAp nanoparticles with 0≤xEu≤0.2 on Gram-negative (E. coli ATCC 25922, Pseudomonas aeruginosa 1397 and Gram-positive (Staphylococcus aureus 0364, Enterococcus faecalis ATCC 29212 bacteria systems and a species of fungus (Candida albicans ATCC 10231 were reported. Our study demonstrates that the antimicrobial activity of Eu:HAp nanoparticles is dependent on the europium concentration.

  8. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

    DEFF Research Database (Denmark)

    Baum, Andreas; Dominiak, Malgorzata Maria; Vidal-Melgosa, Silvia

    2017-01-01

    and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal...... extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed......, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts....

  9. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  10. Differentiation of frog fats from vegetable and marine oils by Fourier Transform Infrared Spectroscopy and chemometric analysis

    Directory of Open Access Journals (Sweden)

    A. N. Nina Naquiah

    2015-01-01

    Full Text Available The agro-based production and consumption of frogs coupled with world-wide trading have been increased in the recent years giving rise to the risk of frog fat adulteration in expensive vegetable and marine oils. For the first time, we profiled here frog fats using Fourier Transform Infrared (FTIR Spectroscopy coupled with multivariate principal component analysis (PCA. The comparison of the FTIR spectral absorbance intensities demonstrated linkage of frog fats to other edible fats and oils. Three commercially available marine oils and three vegetables oils were studied with frog fats and clear pattern of clusters with distinctive identifiable features were obtained through PCA modeling. PCA analysis identified 2922.21 cm-1, 2852.88 cm-1, 1745.45 cm-1, 1158.29 cm-1 and 721.51 cm-1 FTIR-frequencies as the most discriminating variables influencing the group separation into different clusters. This fundamental study has clear implications in the identification of frog fat from its marine and vegetable counterparts for the potential detection of frog fat adulteration in various fat and oils.

  11. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  12. Colorectal Cancer and Colitis Diagnosis Using Fourier Transform Infrared Spectroscopy and an Improved K-Nearest-Neighbour Classifier.

    Science.gov (United States)

    Li, Qingbo; Hao, Can; Kang, Xue; Zhang, Jialin; Sun, Xuejun; Wang, Wenbo; Zeng, Haishan

    2017-11-27

    Combining Fourier transform infrared spectroscopy (FTIR) with endoscopy, it is expected that noninvasive, rapid detection of colorectal cancer can be performed in vivo in the future. In this study, Fourier transform infrared spectra were collected from 88 endoscopic biopsy colorectal tissue samples (41 colitis and 47 cancers). A new method, viz., entropy weight local-hyperplane k-nearest-neighbor (EWHK), which is an improved version of K-local hyperplane distance nearest-neighbor (HKNN), is proposed for tissue classification. In order to avoid limiting high dimensions and small values of the nearest neighbor, the new EWHK method calculates feature weights based on information entropy. The average results of the random classification showed that the EWHK classifier for differentiating cancer from colitis samples produced a sensitivity of 81.38% and a specificity of 92.69%.

  13. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  14. Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-08-01

    The continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze a considerable amount of samples. Conventional flow injection analysis (FIA) is a time and cost consuming method for cyanide (CN) determination. Thus, a rapid and economic alternative needs to be developed to quantify the Fe-CN complexes. 52 soil samples were collected at a former Manufactured Gas Plant (MGP) site in order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS). Soil analysis revealed CN concentrations in a range from 8 to 14.809 mg kg -1 , where 97% was in the solid form (Fe 4 [Fe(CN) 6 ] 3 ), which is characterized by a single symmetrical CN band in the range 2092-2084 cm -1 . The partial least squares (PLS) calibration-validation model revealed IR response to CN tot which exceeds 2306 mg kg -1 (limit of detection, LOD). Leave-one-out cross-validation (LOO-CV) was performed on soil samples, which contained low CN tot ( 900 mg kg -1 resulted in LOD equal to 3751 mg kg -1 . It was found that FTIR spectroscopy provides the information concerning different CN species in the soil samples. Additionally, it is suitable for quantifying Fe-CN species in matrixes with CN tot  > 154 mg kg -1 . Thus, FTIR spectroscopy, in combination with the statistical approach applied here seems to be a feasible and quick method for screening of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Science.gov (United States)

    Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott

    2018-03-01

    Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  16. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Nima Nader

    2018-03-01

    Full Text Available Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm–6.2 μm. Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  17. Stability studies and degradation analysis of plastic solar cell materials by FTIR spectroscopy

    NARCIS (Netherlands)

    Neugebauer, H.; Brabec, C.J.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Results of controlled degradation experiments performed with the individual components and with the actual mixture used in plastic solar cells are shown. A testing procedure for the stability and for degradation effects under illumination in controlled atmosphere using FTIR-ATR spectroscopy is

  18. Mechanisms of browning development in aggregates of marine organic matter formed under anoxic conditions: A study by mid-infrared and near-infrared spectroscopy

    Science.gov (United States)

    Mecozzi, Mauro; Acquistucci, Rita; Nisini, Laura; Conti, Marcelo Enrique

    2014-03-01

    In this paper we analyze some chemical aspects concerning the browning development associated to the aggregation of marine organic matter (MOM) occurring in anoxic conditions. Organic matter samples obtained by the degradation of different algal samples were daily taken to follow the evolution of the aggregation process and the associated browning process. These samples were examined by Fourier transform mid infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy and the colour changes occurring during the above mentioned aggregation process were measured by means of Colour Indices (CIs). Spectral Cross Correlation Analysis (SCCA) was applied to correlate changes in CI values to the structural changes of MOM observed by FTIR and FTNIR spectra which were also submitted to Two-Dimensional Hetero Correlation Analysis (2HDCORR). SCCA results showed that all biomolecules present in MOM aggregates such as carbohydrates, proteins and lipids are involved in the browning development. In particular, SCCA results of algal mixtures suggest that the observed yellow-brown colour can be linked to the development of non enzymatic (i.e. Maillard) browning reactions. SCCA results for MOM furthermore suggest that aggregates coming from brown algae also showed evidence of browning related to enzymatic reactions. In the end 2HDCORR results indicate that hydrogen bond interactions among different molecules of MOM can play a significant role in the browning development.

  19. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, duri...

  20. Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines.

    Science.gov (United States)

    Chau, Siu-Leung; Tang, Ho-Wai; Ng, Kwan-Ming

    2016-05-05

    With a coating of gold nanoparticles (AuNPs), over-the-counter (OTC) drugs and Chinese herbal medicine granules in KBr pellets could be analyzed by Fourier Transform Infra-red (FT-IR) spectroscopy and Surface-assisted Laser Desorption/Ionization mass spectrometry (SALDI-MS). FT-IR spectroscopy allows fast detection of major active ingredient (e.g., acetaminophen) in OTC drugs in KBr pellets. Upon coating a thin layer of AuNPs on the KBr pellet, minor active ingredients (e.g., noscapine and loratadine) in OTC drugs, which were not revealed by FT-IR, could be detected unambiguously using AuNPs-assisted LDI-MS. Moreover, phytochemical markers of Coptidis Rhizoma (i.e. berberine, palmatine and coptisine) could be quantified in the concentrated Chinese medicine (CCM) granules by the SALDI-MS using standard addition method. The quantitative results matched with those determined by high-performance liquid chromatography with ultraviolet detection. Being strongly absorbing in UV yet transparent to IR, AuNPs successfully bridged FT-IR and SALDI-MS for direct analysis of active ingredients in the same solid sample. FT-IR allowed the fast analysis of major active ingredient in drugs, while SALDI-MS allowed the detection of minor active ingredient in the presence of excipient, and also quantitation of phytochemicals in herbal granules. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  2. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    Science.gov (United States)

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  3. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Wu, Yican; Wang, Xin; Huang, Dake; Chen, Xianliang; Liu, Xingcun

    2013-12-01

    Since serum can reflect human beings' physiological and pathological conditions, FTIR spectroscopy was used to compare gastric cancer patients' serum with healthy persons' serum in this study. The H2959/H2931, H1646/H1550, H1314/H1243, H1453/H1400 and H1080/H1550 ratios were calculated, among these ratios, the H2959/H2931 ratio might be a standard for distinguishing gastric cancer patients from healthy persons. Then curve fitting was processed using Gaussian curves in the 1140-1000 cm-1 region, and the result showed that the RNA/DNA ratios of gastric cancer patients' serum were obviously lower than those of healthy persons' serum. The results suggest that FTIR spectroscopy may be a potentially useful tool for diagnosis of gastric cancer.

  4. [Relationship between PMI and ATR-FTIR Spectral Changes in Swine Costal Cartilages and Ribs].

    Science.gov (United States)

    Yao, Yao; Wang, Qi; Jing, Xiao-li; Li, Bing; Zhang, Yin-ming; Wang, Zhi-jun; Li, Cheng-zhi; Lin, Han-cheng; Zhang, Ji; Huang, Ping; Wang, Zhen-yuan

    2016-02-01

    To analyze postmortem chemical changes in Landrace costal cartilages and ribs using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and to provide a novel technique for estimation of postmortem interval (PMI). The swines were sacrificed by hemorrhage and their costal cartilages and ribs were kept in 20 degrees C. The chemical analysis of the costal cartilages and ribs were performed using ATR-FTIR every 72 h. The correlation between the certain spectral parameters and PMI was also analyzed. The time-dependent changes of costal cartilages were more significant than ribs. There were no obvious changes for the main absorbance bands position, and some absorbance band ratios showed time-dependent changes and significant correlations with the PMI. ATR-FTIR has the ability to analyze postmortem chemical changes of the swine costal cartilages and ribs, and it can be a new method to estimate PMI based on spectroscopy.

  5. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    Science.gov (United States)

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. © The Author(s) 2016.

  6. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  7. The infrared stage Linkam FTIR 600 for microthermometric studies in dark and opaque minerals associated to uranium mineralization

    International Nuclear Information System (INIS)

    Lima, Tatiana Aparecida Fernandes de; Rios, Francisco Javier; Fuzikawa, Kazuo; Oliveira, Lucilia A. Ramos de; Oliveira, Elizabeth Kerpe; Neves, Jose Marques Correia; Prates, Sonia Pinto

    2009-01-01

    Fluid composition studies, throughout fluid inclusions (FI), contribute to improve the understanding of mineral deposits. FI correspond to small portions of fluids trapped in minerals by many processes that preserve relevant information related to fluid composition which forms ore deposits. Microscopy and microthermometry techniques applied to fluid inclusions studies of opaque and/or dark minerals use infrared light (IR). A specific stage heating/cooling that allows working in the near infrared (NIR). Thus, the infrared stage model FTIR600 Linkam coupled the IR OLYMPUS BX51, with the automatic controllers LNP 94/2 and TMS 94, and software Linksys 32 - Linkam installed in computer was implemented and tested. An infrared QUICAM fast 1394 QIMAGING TM camera with the program QCAPTURE SUITE was acquisition for images capture and adapted the new system. This infrared stage Linkam FTIR600 reach temperatures between -196 deg C to +600 deg C, with the differential of working in the NIR; it is all automated, obtaining computerized data, graphics in real time of analysis and storage the data. It also controls the speed of the experiment (up to 130 deg C/min); it runs consecutively heating and cooling with a small N 2 (l) consuming; besides greater results repeatability, obtaining accurate and precise temperatures. Actually the Linkam stage FTIR600 is operating in the Metallogenesis and Fluid Inclusions Laboratory (LIFM) at CDTN/CNEN. Uranium ore and/or others mineralization studies which shows dark or opaque mineral have been developed. The uranium mineralization in the Lagoa Real Uraniferous Province, Bahia, Brazil, shows several rock-forming minerals together with the dark and opaque minerals (garnet, magnetite, pyroxene) emphasized in the present work. (author)

  8. Fourier Transform Infrared (FTIR Spectroscopy with Chemometric Techniques for the Classification of Ballpoint Pen Inks

    Directory of Open Access Journals (Sweden)

    Muhammad Naeim Mohamad Asri

    2015-12-01

    Full Text Available FTIR spectroscopic techniques have been shown to possess good abilities to analyse ballpoint pen inks. These in-situ techniques involve directing light onto ballpoint ink samples to generate an FTIR spectrum, providing “molecular fingerprints” of the ink samples thus allowing comparison by direct visual comparison. In this study, ink from blue (n=15 and red (n=15 ballpoint pens of five different brands: Kilometrico®, G-Soft®, Stabilo®, Pilot® and Faber Castell® was analysed using the FTIR technique with the objective of establishing a distinctive differentiation according to the brand. The resulting spectra were first compared and grouped manually. Due to the similarities in terms of colour and shade of the inks, distinctive differentiation could not be achieved by means of direct visual comparison. However, when the same spectral data was analysed by Principal Component Analysis (PCA software, distinctive grouping of the ballpoint pen inks was achieved. Our results demonstrate that PCA can be used objectively to investigate ballpoint pen inks of similar colour and more importantly of different brands.

  9. Synchrotron-Based X Ray and FTIR Micro-Spectroscopy for the Cultural Heritage Science at the ID21 Beamline, ESRF

    International Nuclear Information System (INIS)

    Cotte, M.; Radepont, M.; Pouyet, E.; Salome, M.; Susini, J.

    2016-01-01

    Synchrotron-based techniques are increasingly used for the study of Cultural Heritage (CH) materials. These analyses rely on light-matter interactions and can be carried out directly onto the artworks. They also benefit from the synchrotron assets and in particular from the gain in terms of lateral resolution when comparing with laboratory equipment. Thanks to the synchrotron beam high brightness and low divergence, X rays can be focused down to less than 1μm, making possible the selective analysis of various compounds in complex structures. The ID21 beamline, at the ESRF, is devoted to such high resolution microscopy, using both X ray and infrared beams. Almost all kinds of CH materials can be studied, from hard matter, such as metals, glasses, pigments, to soft matters such as varnishes, tissues, wood, paper, textile, wax… Usually, samples are prepared as transversal cross-sections in order to highlight the internal structure of the matter (corrosion patina on metals, multilayer structures in paintings…). 2D elemental mapping are generated by micro-X ray fluorescence, with low detection limit. Chemical information can be obtained both by X ray absorption spectroscopy (micro-XANES) and by infrared spectroscopy (micro-FTIR). Studies usually aim at understanding degradation mechanisms (corrosion, colour variation, formation of crust), or at identifying artistic processes (choice of pigments and binders for paintings, optical effects in glasses…). The X ray energy range at ID21 is 2-9keV, giving access to all the K-edges from P to Cu. It covers S and Cl, which are frequently implied in degradation processes, and the 3d transition metals, which enter in the composition of many artworks (being in pigments, inks, glasses or metal). The FTIR-microscope provides complementary molecular information, and is used more particularly for the analysis of organic and hybrid components. The two microscopes are independent and can be operated simultaneously. Various hardware

  10. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Science.gov (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  11. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis.

    Science.gov (United States)

    Gok, Seher; Severcan, Mete; Goormaghtigh, Erik; Kandemir, Irfan; Severcan, Feride

    2015-03-01

    Botanical origin of the nectar predominantly affects the chemical composition of honey. Analytical techniques used for reliable honey authentication are mostly time consuming and expensive. Additionally, they cannot provide 100% efficiency in accurate authentication. Therefore, alternatives for the determination of floral origin of honey need to be developed. This study aims to discriminate characteristic Anatolian honey samples from different botanical origins based on the differences in their molecular content, rather than giving numerical information about the constituents of samples. Another scope of the study is to differentiate inauthentic honey samples from the natural ones precisely. All samples were tested via unsupervised pattern recognition procedures like hierarchical clustering and Principal Component Analysis (PCA). Discrimination of sample groups was achieved successfully with hierarchical clustering over the spectral range of 1800-750 cm(-1) which suggests a good predictive capability of Fourier Transform Infrared (FTIR) spectroscopy and chemometry for the determination of honey floral source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar.

    Science.gov (United States)

    Rohaeti, Eti; Rafi, Mohamad; Syafitri, Utami Dyah; Heryanto, Rudi

    2015-02-25

    Turmeric (Curcuma longa), java turmeric (Curcuma xanthorrhiza) and cassumunar ginger (Zingiber cassumunar) are widely used in traditional Indonesian medicines (jamu). They have similar color for their rhizome and possess some similar uses, so it is possible to substitute one for the other. The identification and discrimination of these closely-related plants is a crucial task to ensure the quality of the raw materials. Therefore, an analytical method which is rapid, simple and accurate for discriminating these species using Fourier transform infrared spectroscopy (FTIR) combined with some chemometrics methods was developed. FTIR spectra were acquired in the mid-IR region (4000-400 cm(-1)). Standard normal variate, first and second order derivative spectra were compared for the spectral data. Principal component analysis (PCA) and canonical variate analysis (CVA) were used for the classification of the three species. Samples could be discriminated by visual analysis of the FTIR spectra by using their marker bands. Discrimination of the three species was also possible through the combination of the pre-processed FTIR spectra with PCA and CVA, in which CVA gave clearer discrimination. Subsequently, the developed method could be used for the identification and discrimination of the three closely-related plant species. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  14. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy

    International Nuclear Information System (INIS)

    Haberhauer, G.; Rafferty, B.; Strebl, F.; Gerzabek, M. H.

    1998-06-01

    Transmission Fourier transformed infrared spectroscopy was used to compare organic soil layers originating from three different sites in two climatic regions. A variety of bands characteristic of molecular structures and functional groups have been identified for these samples from a humic podsol, a dystric cambisol and a spodo dystric cambisol. Similar results were obtained for all three soils. From L to H soil horizons, an increase of the band at 1630 cm -1 and decrease of bands in the region from 1510 cm -1 to 1230 cm -1 were observed. The band at 1630 cm -1 can be assigned to carboxylic and aromatic groups. The decline of the peak intensity at 1510 cm -1 is significantly correlated to the total carbon content and C/N ratio. The mineral material of the Ah horizons leads to an increase of the band at 1050 cm -1 due to IR-absorbance of the Si-O bond and to an appearance of bands in the region from 900 to 400 cm -1 , which are characteristic for clay and quartz minerals. Analysis of the FTIR absorbance showed that intensities of distinct peaks (e.g., at 1510 cm -1 ) can be a measure of decomposition of forest litter. Therefore, the proposed simple FTIR method has potential for identification and differentiation of organic soil horizons originating from known tree litter. The similarity of the characteristics of the spectra of the three soil profiles investigated suggests a broad applicability of this method to distinguish organic forest soil horizons. On the basis of the data presented in this study, it may be concluded that FTIR spectroscopy offers a simple, powerful, non-destructive tool for the investigation of decomposition of L to H horizons in forest soils. (author)

  15. Infrared spectroscopy, nano-mechanical properties, and scratch resistance of esthetic orthodontic coated archwires.

    Science.gov (United States)

    da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira

    2015-09-01

    To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.

  16. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  17. Detection of Lard in Ink Extracted from Printed Food Packaging Using Fourier Transform Infrared Spectroscopy and Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Syazwani Ramli

    2015-01-01

    Full Text Available Fourier transform infrared (FTIR spectroscopy combined with chemometrics was utilised to discriminate the presence of lard in extracted ink of printed food packaging. Two spectral regions (full spectra, 3999–649 cm−1, and combination of two regions, 3110–2630 cm−1 and 1940–649 cm−1 of lard, commercial gravure ink, and the blends of both were selected and used to develop a Soft Independent Modelling of Class Analogy (SIMCA model. The score plots obtained from the Principal Component Analysis (PCA revealed that the maximum number of factors (7 factors was needed to explain 84% of the total variance. SIMCA was employed as the method to classify the samples into their specific groups. Si versus Hi plots showed that the calibration standards can be classified as lard-containing standards. Sample 2 was deduced to have the highest possibility of containing lard, while only samples 5 and 7 cannot be classified as lard-containing samples. These results demonstrated that FTIR spectroscopy, when combined with multivariate analysis, can provide a rapid method with no excessive sample preparation to detect the presence of lard in ink of foodstuff packaging.

  18. Structure of polypropylene/polyethylene blends assessed by polarised PA-FTIR spectroscopy, polarised FT Raman spectroscopy and confocal Raman microscopy

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Pavel; Dybal, Jiří; Ščudla, Jaroslav; Raab, Miroslav; Kratochvíl, Jaroslav; Eichhorn, K. J.; López-Quintana, S.

    2002-01-01

    Roč. 184, - (2002), s. 107-122 ISSN 1022-1360. [European Symposium on Polymer Spectroscopy /14./. Dresden, 02.09.2001-05.09.2001] R&D Projects: GA ČR GA106/97/1071; GA ČR GA203/97/0539; GA AV ČR KSK4050111; GA AV ČR IAA4050904 Institutional research plan: CEZ:AV0Z4050913 Keywords : polypropylene/polyethylene blends * polarized photoacoustic FTIR spectroscopy * confocal Raman microscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.758, year: 2002

  19. ATR-FTIR for rapid detection and quantification of counterfeit medicines

    OpenAIRE

    Ogwu, John; Lawson, Graham; Tanna, Sangeeta

    2015-01-01

    From therapeutic to lifestyle medicines, the counterfeiting of medicines has been on the rise in recent times [1]. Estimates indicate that about 10% of medicines worldwide are counterfeits with much higher figures in developing countries [2]. Currently, the rapid screening of medicines is a challenge leaving many patients at risk [1]. This study considered the potential use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) for rapid quantitative analysis of ta...

  20. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: A contribution to the optimization of gene and drug delivery

    Science.gov (United States)

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina

    2011-12-01

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.

  1. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    Science.gov (United States)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  2. The Designing of Magnetic-Driven Micromirror for Portable FTIRs

    Directory of Open Access Journals (Sweden)

    Shaoxi Wang

    2018-01-01

    Full Text Available Fourier transform infrared spectroscopy is a widely used instrument to analyze and test different materials including organic and inorganic. Most of current commercial Fourier transform infrared spectrometers are limited in miniaturization and scanning velocity by their macroscopic components. MEMS FTIR spectroscopy is one of the important applications of translational actuator-driven systems by using MEMS technology. The critical component in MEMS FTIRs is the large displacement translating micromirror and its actuator. The paper presents a large displacement and high-surface quality micromirror. The micromirror consists of a micromagnetic actuator and a micromirror plate. The mirror plate and the actuator are fabricated separately and bonded together afterwards, and its size is 3.6 × 3.6 mm2 high-surface quality square mirror plate and a 1cm2 moving part. The microactuator’s moving part is fabricated using MetalMUMPS, and its fixed part includes a ring permanent magnet and a solenoid to realize a large displacement. The mirror plate is fabricated using polished silicon coated with metal layer with high-surface prototypes that are fabricated and experimentally tested. A maximum stroke of 400 μm has been achieved in pull-in whereas only 140 μm stroke have been measured for a 4 to 5-volt DC-controlled displacement, and the resonance frequency is 10 Hz.

  3. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    Science.gov (United States)

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  4. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  5. Infrared and Raman Spectroscopy Principles and Spectral Interpretation

    CERN Document Server

    Larkin, Peter

    2011-01-01

    Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation

  6. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Tabish, Tanveer A; Lin, Liangxu; Ali, Muhammad; Jabeen, Farhat; Ali, Muhammad; Iqbal, Rehana; Horsell, David W; Winyard, Paul G; Zhang, Shaowei

    2018-06-06

    Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg -1 ) and high (15 mg kg -1 ) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

  7. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  8. Validation and application of FTIR spectroscopy in raw milk analysis

    Directory of Open Access Journals (Sweden)

    Kučević Denis S.

    2017-01-01

    Full Text Available The aim of this study was to investigate whether FTIR spectroscopy is an accurate and valid technique for the assessment of quality parameters in raw cow's milk: fat, protein, lactose, and total solids. The assessment was based on calibration series and comparison with reference material. Furthermore, it takes into account the results obtained in the inter-laboratory comparisons (proficiency testing. The calibration samples were purchased from the accredited regional reference laboratories. The validation parameters included linearity, accuracy, repeatability, reproducibility, and robustness. The linearity ratio was 0.95%. The biases calculated for the fat, protein, lactose and dry matter were -0.33, 0.31, -0.25, and 0.06 respectively. The F value from the F-test was used to determine the significant differences between two independent sets of the results. The obtained results were as follows: 1.469 for fat, 1.634 for protein, 1.192 for lactose, and 0.528 for dry matter. The intra-laboratory reproducibility calculated as the Horwitz Ratios for all parameters were within the criterion limits (0.5 to 0.8. The data obtained for carry-over were 0.27% for fat, 0.52% for protein, 0.47% for lactose, and 0.47% for dry matter. Based on the obtained results it can be concluded that the FTIR spectroscopy is a reliable instrumental technique for the determination of fat, protein, lactose and total solids in raw cow's milk.

  9. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands.

    Science.gov (United States)

    Theophilou, Georgios; Morais, Camilo L M; Halliwell, Diane E; Lima, Kássio M G; Drury, Josephine; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Hapangama, Dharani K; Martin, Francis L

    2018-05-09

    The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-μm-thick parallel tissue sections and were floated onto BaF 2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards ν s PO 2 - in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.

  10. Advanced sampling techniques for hand-held FT-IR instrumentation

    Science.gov (United States)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  11. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  12. Development and validation of green method for estimation of clarithromycin in pharmaceutical formulation by transmission fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Mallah, M.A.; Sherazi, S.T.H.; Mahesar, S.A.; Rauf, A.

    2012-01-01

    A rapid, sensitive and environmental friendly analytical method for the direct determination of clarithromycin in tablet formulations through transmission Fourier Transform Infrared (FT-IR) spectroscopy has been successfully developed for routine quality control analysis. This method avoids any sample pretreatment except grinding or use of any solvent as extraction is no more required. Standards and samples were analysed in the form of KBr pellet for recording FT-IR spectra. In the final step, chemometric method was used to filter out unmatched spectral features and the converted and filtered spectra were used to build a calibration model based on partial least square (PLS) using the FT-IR carbonyl region (C=O) from 2965-1662 cm/sup -1/. The excellent correlation coefficient (R2) was achieved (0.9999). This also fulfills the ever increasing demand of pharmaceutical industries for developing sensitive, economical and less time consuming methods for the quantification of Active Pharmaceutical Ingredients (API) while monitoring quality of finished product with total analysis time of less than three minutes. (author)

  13. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  14. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    Science.gov (United States)

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  15. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  16. Characterization of ceramic matrix composite degradation using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Henry, Christine; Criner, Amanda Keck; Imel, Megan; King, Derek

    2018-04-01

    Data collected with a handheld Fourier Transform Infrared (FTIR) device is analyzed and considered as a useful method for detecting and quantifying oxidation on the surface of ceramic matrix composite (CMC) materials. Experiments examine silicon carbide (SiC) coupons, looking for changes in chemical composition before and after thermal exposure. Using mathematical, physical and statistical models for FTIR reflectance data, this research seeks to quantify any detected spectral changes as an indicator of surface oxidation on the CMC coupon.

  17. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    Science.gov (United States)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  18. Identification of structural markers for vitamin B12 and other corrinoid derivatives in solution using FTIR spectroscopy

    International Nuclear Information System (INIS)

    Taraszka, K.S.; Chen, Eefei; Metzger, T.; Chance, M.R.

    1991-01-01

    The identification of structural markers for B 12 /protein interactions is crucial to a complete understanding of vitamin B 12 transport and metabolic reaction mechanisms of B 12 coenzymes. Fourier transform infrared spectroscopy can provide direct measurements of changes in the side chains and corrin ring resulting from B 12 /protein interactions. Using FTIR spectroscopy in various solvent systems, the authors have identified structural markers for corrinoids in the physiological state. They assign the major band (denoted B), which occurs at ca. 1,630 cm -1 in D 2 O and ca. 1675 cm -1 in ethanol, to the amide I C double-bond stretching mode of the propionamide side chains of the corrin ring. The lower frequency of band B in D 2 O versus ethanol is due to the greater hydrogen-bonding properties of D 2 O that stabilize the charged amide resonance form. Since the propionamides are known to be important in protein binding, band B is a suitable marker for monitoring the interaction of these side chains with proteins. They assign bands at ca. 1,575 and 1,545 cm -1 (denoted C and D) as breathing modes of the corrin ring on the basis of the bands' solvent independence and their sensitivity to changes in axial ligation

  19. Classification of java tea ( Orthosiphon aristatus ) quality using FTIR spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Heryanto, R; Pradono, D I; Darusman, L K; Marlina, E

    2017-01-01

    Java tea ( Orthosiphon aristatus ) is a plant that widely used as a medicinal herb in Indonesia. Its quality is varying depends on various factors, such as cultivating area, climate and harvesting time. This study aimed to investigate the effectiveness of FTIR spectroscopy coupled with chemometrics for discriminating the quality of java tea from different cultivating area. FTIR spectra of ethanolic extracts were collected from five different regions of origin of java tea. Prior to chemometrics evaluation, spectra were pre-processed by using baselining, normalization and derivatization. Principal Components Analysis (PCA) was used to reduce the spectra to two PCs, which explained 73% of the total variance. Score plot of two PCs showed groupings of the samples according to their regions of origin. Furthermore, Partial Least Squares-Discriminant Analysis (PLSDA) was applied to the pre-processed data. The approach produced an external validation success rate of 100%. This study shows that FTIR analysis and chemometrics has discriminatory power to classify java tea based on its quality related to the region of origin. (paper)

  20. Applying Fourier Transform Mid Infrared Spectroscopy to Detect the Adulteration of Salmo salar with Oncorhynchus mykiss

    Science.gov (United States)

    Moreira, Maria João

    2018-01-01

    The aim of this study was to evaluate the potential of Fourier transform infrared (FTIR) spectroscopy coupled with chemometric methods to detect fish adulteration. Muscles of Atlantic salmon (Salmo salar) (SS) and Salmon trout (Onconrhynchus mykiss) (OM) muscles were mixed in different percentages and transformed into mini-burgers. These were stored at 3 °C, then examined at 0, 72, 160, and 240 h for deteriorative microorganisms. Mini-burgers was submitted to Soxhlet extraction, following which lipid extracts were analyzed by FTIR. The principal component analysis (PCA) described the studied adulteration using four principal components with an explained variance of 95.60%. PCA showed that the absorbance in the spectral region from 721, 1097, 1370, 1464, 1655, 2805, to 2935, 3009 cm−1 may be attributed to biochemical fingerprints related to differences between SS and OM. The partial least squares regression (PLS-R) predicted the presence/absence of adulteration in fish samples of an external set with high accuracy. The proposed methods have the advantage of allowing quick measurements, despite the storage time of the adulterated fish. FTIR combined with chemometrics showed that a methodology to identify the adulteration of SS with OM can be established, even when stored for different periods of time. PMID:29621135

  1. Far Infrared spectroscopy of proteinogenic and other less common amino acids

    Science.gov (United States)

    Iglesias-Groth, S.; Cataldo, F.

    2018-05-01

    Far infrared spectroscopy is a powerful tool complementing the potential of mid infrared spectroscopy for the search and identification of organic molecules in space. The far infrared spectra of a total of 29 amino acids are reported in this study. In addition to the spectra of 20 common proteinogenic amino acids, spectra of a selection of 9 non-proteinogenic amino acids are also reported, including the 2-aminoisobutyric acid or α-aminoisobutyric acid which, with glycine, it is one of the most abundant amino acids found in meteorites. The present database of 29 far infrared spectra may serve as reference in the search for amino acids in space environments, given the new apportunities that JWST offers for mid and far IR spectroscopy.

  2. FTIR spectroscopy of electron irradiated polymers

    International Nuclear Information System (INIS)

    Finch, D.S.

    1988-04-01

    The chemical changes in electron beam irradiated polymers, in particular PVC, are considered in order to relate the formation of conjugated structures to changes in the electrical properties. Infrared spectroscopy has been used to measure these changes. Fourier Transform techniques and computing facilities make better data processing possible. A method for base line interpretation is demonstrated whereby a shift parallel to the abscisal axis in a region of the polymer that is non absorbing is used to evaluate the baseline. This technique has proved to be highly reproducible providing that the polymer films to be examined are optically homogeneous. Evaluation of the rate of decay of the total area of the carbon chlorine region of the polymer has been compared with the chlorine decay curve analysed by the measurement of x-ray emission during irradiation of bulk samples. The significant reduction in the evolution of atomic chlorine through x-ray analysis has been attributed to the trapping of HCl within the polymer film and its subsequent slow diffusion out of the polymer. With PVC, one of the main products as a result of irradiation is the formation of conjugated sequences. These were studied by the use of uv-visible spectroscopy. (author)

  3. [Relation between PMI and FTIR spectral changes in asphyxiated rat's liver and spleen].

    Science.gov (United States)

    Li, Shi-ying; Shao, Yu; Li, Zheng-dong; Zou, Dong-hua; Qin, Zhi-qiang; Chen, Yi-jiu; Huang, Ping

    2012-10-01

    Fourier transform infrared (FTIR) spectroscopy was applied to observe the postmortem degradation process in mechanical asphyxiated rat's liver and spleen for providing a new method of estimating PMI. Rats were sacrificed by mechanical asphyxia and cadavers were kept at (20 +/- 2) degrees C in a control chamber. The liver and spleen were sub-sampled from the same rat at intervals of 0-15 days postmortem and the data were measured by FTIR spectrometer. The different absorbance (A) ratios of peaks were calculated and the curve estimation analysis between absorbance ratios (x) and PMI (y) were performed to establish mathematical models by the statistical software. The band absorbance ratios showed increase, decrease and stable with PMI. The cubic model functions showed the strongest correlation coefficient. Compared with the spleen, the liver showed a higher correlation coefficient. The A1541/A1396 of liver showed the highest correlation coefficient (r=0.966). After 6-7 days postmortem, band absorbance ratios showed a steady period. FTIR spectroscopy can be a new and efficient method to estimate PMI within 7 days.

  4. Detection of Gastric Cancer with Fourier Transform Infrared Spectroscopy and Support Vector Machine Classification

    Directory of Open Access Journals (Sweden)

    Qingbo Li

    2013-01-01

    Full Text Available Early diagnosis and early medical treatments are the keys to save the patients' lives and improve the living quality. Fourier transform infrared (FT-IR spectroscopy can distinguish malignant from normal tissues at the molecular level. In this paper, programs were made with pattern recognition method to classify unknown samples. Spectral data were pretreated by using smoothing and standard normal variate (SNV methods. Leave-one-out cross validation was used to evaluate the discrimination result of support vector machine (SVM method. A total of 54 gastric tissue samples were employed in this study, including 24 cases of normal tissue samples and 30 cases of cancerous tissue samples. The discrimination results of SVM method showed the sensitivity with 100%, specificity with 83.3%, and total discrimination accuracy with 92.2%.

  5. Mid-infrared spectroscopy in skin cancer cell type identification

    Science.gov (United States)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2017-07-01

    Mid infrared spectroscopy samples were developed for the analysis of skin tumor cell types and three dimensional tissue phantoms towards the application of midIR spectroscopy for fast and reliable skin cancer diagnostics.

  6. Fourier transform infrared spectroscopy for Kona coffee authentication.

    Science.gov (United States)

    Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X

    2009-06-01

    Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.

  7. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  8. Air Contamination Quantification by FTIR with Gas Cell

    Science.gov (United States)

    Freischlag, Jason

    2017-01-01

    Air quality is of utmost importance in environmental studies and has many industrial applications such as aviators grade breathing oxygen (ABO) for pilots and breathing air for fire fighters. Contamination is a major concern for these industries as identified in MIL-PRF-27210, CGA G-4.3, CGA G-7.1, and NFPA 1989. Fourier Transform Infrared Spectroscopy (FTIR) is a powerful tool that when combined with a gas cell has tremendous potential for gas contamination analysis. Current procedures focus mostly on GC-MS for contamination quantification. Introduction of this topic will be done through a comparison of the currently used deterministic methods for gas contamination with those of FTIR gas analysis. Certification of the mentioned standards through the ISOIEC 17065 certifying body A2LA will be addressed followed by an evaluation of quality information such as the determinations of linearity and the limits of detection and quantitation. Major interferences and issues arising from the use of the FTIR for accredited work with ABO and breathing air will be covered.

  9. Physico-chemical characterization of products from vacuum oil under delayed coking process by infrared spectroscopy and chemometrics methods

    International Nuclear Information System (INIS)

    Meléndez, L V; Cabanzo, R; Mejía-Ospino, E; Guzmán, A

    2016-01-01

    Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm -1 ), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance ( 1 H-NMR) and 13 C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR) (paper)

  10. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing.

    Science.gov (United States)

    Quintelas, Cristina; Ferreira, Eugénio C; Lopes, João A; Sousa, Clara

    2018-01-01

    The sustained emergence of new declared bacterial species makes typing a continuous challenge for microbiologists. Molecular biology techniques have a very significant role in the context of bacterial typing, but they are often very laborious, time consuming, and eventually fail when dealing with very closely related species. Spectroscopic-based techniques appear in some situations as a viable alternative to molecular methods with advantages in terms of analysis time and cost. Infrared and mass spectrometry are among the most exploited techniques in this context: particularly, infrared spectroscopy emerged as a very promising method with multiple reported successful applications. This article presents a systematic review on infrared spectroscopy applications for bacterial typing, highlighting fundamental aspects of infrared spectroscopy, a detailed literature review (covering different taxonomic levels and bacterial species), advantages, and limitations of the technique over molecular biology methods and a comparison with other competing spectroscopic techniques such as MALDI-TOF MS, Raman, and intrinsic fluorescence. Infrared spectroscopy possesses a high potential for bacterial typing at distinct taxonomic levels and worthy of further developments and systematization. The development of databases appears fundamental toward the establishment of infrared spectroscopy as a viable method for bacterial typing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amr Shebl Ahmed

    2017-04-01

    Full Text Available A lead zirconate titanate (PZT;Pb(Zr0.52Ti0.48O3 layer embedded infrared (IR detector decorated with wavelength-selective plasmonic crystals has been investigated for high-performance non-dispersive infrared (NDIR spectroscopy. A plasmonic IR detector with an enhanced IR absorption band has been designed based on numerical simulations, fabricated by conventional microfabrication techniques, and characterized with a broadly tunable quantum cascade laser. The enhanced responsivity of the plasmonic IR detector at specific wavelength band has improved the performance of NDIR spectroscopy and pushed the limit of detection (LOD by an order of magnitude. In this paper, a 13-fold enhancement in the LOD of a methane gas sensing using NDIR spectroscopy is demonstrated with the plasmonic IR detector.

  12. Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes.

    Science.gov (United States)

    Rosi, Francesca; Legan, Lea; Miliani, Costanza; Ropret, Polonca

    2017-05-01

    A new analytical approach, based on micro-transflection measurements from a diamond-coated metal sampling stick, is presented for the analysis of painting varnishes. Minimally invasive sampling is performed from the varnished surface using the stick, which is directly used as a transflection substrate for micro Fourier transform infrared (FTIR) measurements. With use of a series of varnished model paints, the micro-transflection method has been proved to be a valuable tool for the identification of surface components thanks to the selectivity of the sampling, the enhancement of the absorbance signal, and the easier spectral interpretation because the profiles are similar to transmission mode ones. Driven by these positive outcomes, the method was then tested as tool supporting noninvasive reflection FTIR spectroscopy during the assessment of varnish removal by solvent cleaning on paint models. Finally, the integrated analytical approach based on the two reflection methods was successfully applied for the monitoring of the cleaning of the sixteenth century painting Presentation in the Temple by Vittore Carpaccio. Graphical Abstract Micro-transflection FTIR on a metallic stick for the identification of varnishes during painting cleanings.

  13. The relationship between cross-sectional shapes and FTIR profiles in synthetic wig fibers and their discriminating abilities - An evidential value perspective.

    Science.gov (United States)

    Joslin Yogi, Theresa A; Penrod, Michael; Holt, Melinda; Buzzini, Patrick

    2018-02-01

    Wig fragments or fibers may occasionally be recognized as potential physical evidence during criminal investigations. While analytical methods traditionally adopted for the examination of textile fibers are utilized for the characterizations and comparisons of wig specimens, it is essential to understand in deeper detail the valuable contribution of features of these non-routine evidentiary materials as well as the relationship of the gathered analytical data. This study explores the dependence between the microscopic features of cross-sectional shapes and the polymer type gathered by Fourier transform infrared (FTIR) spectroscopy. The discriminating power of the two methods of cross-sectioning and FTIR spectroscopy was also investigated. Forty-one synthetic wigs varying in both quality and price were collected: twenty-three brown, twelve blondes and six black samples. The collected samples were observed using light microscopy methods (bright field illumination and polarized light), before obtaining cross-sections using the Joliff method and analyze them using FTIR spectroscopy. The forty-one samples were divided into ten groups based on one or more of the ten types of cross-sectional shapes that were observed. The majority of encountered cross-sectional shapes were defined as horseshoe, dog bone and lobular. Infrared spectroscopy confirmed modacrylic to be the most prevalent fiber type. Blends of modacrylic and polyvinyl chloride fibers were also observed as well as polypropylene wig samples. The Goodman and Kruskal lambda statistical test was used and showed that the cross-sectional shape and infrared profile were related. From an evidentiary value perspective, this finding has implications when addressing questions about a common source between questioned wig specimens and a wig reference sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  15. Structural characterization of ammonium uranate by infrared spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.

    1994-01-01

    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  16. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    Science.gov (United States)

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P Raman ν 1 PO 4 /Amide I: P Raman ν 1 PO 4 /Proline + Hydroxyproline: P Raman ν 1 PO 4 /Phenylalanine: P Raman ν 1 PO 4 /δ CH 2 : P Raman and IR mineral:matrix ratio values were strongly correlated ( P Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  17. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  18. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  19. Evaluation on the concentration change of paeoniflorin and glycyrrhizic acid in different formulations of Shaoyao-Gancao-Tang by the tri-level infrared macro-fingerprint spectroscopy and the whole analysis method

    Science.gov (United States)

    Liu, Aoxue; Wang, Jingjuan; Guo, Yizhen; Xiao, Yao; Wang, Yue; Sun, Suqin; Chen, Jianbo

    2018-03-01

    As a kind of common prescriptions, Shaoyao-Gancao-Tang (SGT) contains two Chinese herbs with four different proportions which have different clinical efficacy because of their various components. In order to investigate the herb-herb interaction mechanisms, we used the method of tri-level infrared macro-fingerprint spectroscopy to evaluate the concentration change of active components of four SGTs in this research. Fourier transform infrared spectroscopy (FT-IR) and Second derivative infrared spectroscopy (SD-IR) can recognize the multiple prescriptions directly and simultaneously. 2D-IR spectra enhance the spectral resolution and obtain much new information for discriminating the similar complicated samples of SGT. Furthermore, the whole analysis method from the analysis of the main components to the specific components and the relative content of the components may evaluate the quality of TCM better. Then we concluded that paeoniflorin and glycyrrhizic acid were the highest proportion in active ingredients in SGT-12:1 and the lowest one in SGT-12:12, which matched the HPLC-DAD results. It is demonstrated that the method composed by the tri-level infrared macro-fingerprint spectroscopy and the whole analysis can be applicable for effective, visual and accurate analysis and identification of very complicated and similar mixture systems of traditional Chinese medicine.

  20. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  1. Distinction of leukemia patients' and healthy persons' serum using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Liu, Xingcun; Li, Weizu; Wang, Yuchan; Chen, Xianliang; Wang, Xin

    2013-01-01

    In this paper, FTIR spectroscopy was applied to compare the serum from leukemia patients with the serum from healthy persons. IR spectra of leukemia patients' serum were similar with IR spectra of healthy persons' serum, and they were all made up of proteins, lipids and nucleic acids, etc. In order to identify leukemia patients' serum and healthy persons' serum, the H1075/H1542, H1045/H1467, H2959/H2931 ratios were measured. The H2959/H2931 ratio had the highest significant difference among these ratios and might be a useful factor for identifying leukemia patients' serum and healthy persons' serum. Furthermore, from curve fitting, the RNA/DNA (A1115/A1028) ratios were observed to be lower in leukemia patients' serum than those in healthy persons' serum. The results indicated FTIR spectroscopic study of serum might be a useful tool in the field of leukemia research and diagnosis.

  2. Interactions between magnetic nanoparticles and model lipid bilayers—Fourier transformed infrared spectroscopy (FTIR) studies of the molecular basis of nanotoxicity

    Science.gov (United States)

    Krecisz, M.; Rybka, J. D.; Strugała, A. J.; Skalski, B.; Figlerowicz, M.; Kozak, M.; Giersig, M.

    2016-09-01

    The toxicity of nanoparticles (nanotoxicity) is often associated with their interruption of biological membranes. The effect of polymer-coated magnetic nanoparticles (with different Fe3O4 core sizes and different polymeric coatings) on a model biological membrane system of vesicles formed by dimyristoylphosphatidylcholine (DMPC) was studied. Selected magnetic nanoparticles with core sizes ranging from 3 to 13 nm (in diameter) were characterised by transmission electron microscopy. Samples with 10% DMPC and different nanoparticle concentrations were studied by attenuated total reflectance—Fourier transform infrared spectroscopy to establish the influence of nanoparticles on the phase behaviour of model phospholipid systems.

  3. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) for Rapid Determination of Microbial Cell Lipid Content: Correlation with Gas Chromatography-Mass Spectrometry (GC-MS).

    Science.gov (United States)

    Millan-Oropeza, Aaron; Rebois, Rolando; David, Michelle; Moussa, Fathi; Dazzi, Alexandre; Bleton, Jean; Virolle, Marie-Joelle; Deniset-Besseau, Ariane

    2017-10-01

    There is a growing interest worldwide for the production of renewable oil without mobilizing agriculture lands; fast and reliable methods are needed to identify highly oleaginous microorganisms of potential industrial interest. The aim of this study was to demonstrate the relevance of attenuated total reflection (ATR) spectroscopy to achieve this goal. To do so, the total lipid content of lyophilized samples of five Streptomyces strains with varying lipid content was assessed with two classical quantitative but time-consuming methods, gas chromatography-mass spectrometry (GC-MS) and ATR Fourier transform infrared (ATR FT-IR) spectroscopy in transmission mode with KBr pellets and the fast ATR method, often questioned for its lack of reliability. A linear correlation between these three methods was demonstrated allowing the establishment of equations to convert ATR values expressed as CO/amide I ratio, into micrograms of lipid per milligram of biomass. The ATR method proved to be as reliable and quantitative as the classical GC-MS and FT-IR in transmission mode methods but faster and more reproducible than the latter since it involves far less manipulation for sample preparation than the two others. Attenuated total reflection could be regarded as an efficient fast screening method to identify natural or genetically modified oleaginous microorganisms by the scientific community working in the field of bio-lipids.

  4. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  5. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    Science.gov (United States)

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Automated acid and base number determination of mineral-based lubricants by fourier transform infrared spectroscopy: commercial laboratory evaluation.

    Science.gov (United States)

    Winterfield, Craig; van de Voort, F R

    2014-12-01

    The Fluid Life Corporation assessed and implemented Fourier transform infrared spectroscopy (FTIR)-based methods using American Society for Testing and Materials (ASTM)-like stoichiometric reactions for determination of acid and base number for in-service mineral-based oils. The basic protocols, quality control procedures, calibration, validation, and performance of these new quantitative methods are assessed. ASTM correspondence is attained using a mixed-mode calibration, using primary reference standards to anchor the calibration, supplemented by representative sample lubricants analyzed by ASTM procedures. A partial least squares calibration is devised by combining primary acid/base reference standards and representative samples, focusing on the main spectral stoichiometric response with chemometrics assisting in accounting for matrix variability. FTIR(AN/BN) methodology is precise, accurate, and free of most interference that affects ASTM D664 and D4739 results. Extensive side-by-side operational runs produced normally distributed differences with mean differences close to zero and standard deviations of 0.18 and 0.26 mg KOH/g, respectively. Statistically, the FTIR methods are a direct match to the ASTM methods, with superior performance in terms of analytical throughput, preparation time, and solvent use. FTIR(AN/BN) analysis is a viable, significant advance for in-service lubricant analysis, providing an economic means of trending samples instead of tedious and expensive conventional ASTM(AN/BN) procedures. © 2014 Society for Laboratory Automation and Screening.

  7. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    Science.gov (United States)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  8. Analysis of European honeybee (Apis mellifera) wings using ATR-FTIR and Raman spectroscopy: A pilot study

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Lapčák, L.; Havelcová, Martina; Borecká, Lenka; Novotná, M.; Novotná, M.; Javůrková, I.; Langrová, I.; Hájková, Š.; Brožová, A.; Titěra, D.

    2017-01-01

    Roč. 48, č. 1 (2017), s. 22-29 ISSN 1211-3174 Institutional support: RVO:67985891 Keywords : honeybee wings * ATR-FTIR * Raman spectroscopy * protein * lipid * chitin Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  9. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  10. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy

    Science.gov (United States)

    Lowenstern, Jacob B.; Pitcher, Bradley W.

    2013-01-01

    We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal

  11. [The analyses and identification of Flos rhododendri mollis and Flos chrysanthemi indici via infrared spectroscopy].

    Science.gov (United States)

    Jin, Zhe-Xiong; Wang, Yue; Zhou, Qun; Chen, Jian-Bo; Ma, Fang; Sun, Su-Qin

    2014-09-01

    In this study, major chemical components of Flos rhododendri mollis and Flos chrysanthemi indici were characterized using Fourier transform infrared spectroscopy (FTIR). For Flos rhododendri mollis, the bands at 1,648 and 1,543 cm(-1) were attributed to amide I and amide II , respectively, indicating that it contained proteins probably resulting in immunization. In case of Flos chrysanthemi indici, stretching vibration of C==O function group was responsible for the bands at 1,734 and 1,515 cm(-1), as a result of essential oils, lipids, etc. Since FTIR spectra of Flos rhododendri mollis and Flos chrysanthemi indici are almost identical and it is difficult to discriminate them, two-step identification was investigated via secondary derivative of the FTIR spectra. The bands at 1,656 and 1,515 cm(-1) corresponds to flavonoides in Flos rhododendri mollis and Flos chrysanthemi indici. In the secondary derivative of the FTIR spectrum of Flos chrysanthemi indici, characteristic bands of inulin were present at 1,163, 1,077, 1,026, 986 and 869 cm(-1), and therefore Flos chrysanthemi indici contained inulin as well. Tri-step identification was carried out for Flos rhododendri mollis and Flos chrysanthemi indici by means of comparing their 2D-IR correlation spectra in different wave number range. In the characteristic range of flavonoides (1,700-1,400 cm(-1)), Flos rhododendri mollis exhibited 3 obvious autopeaks, while 10 autopeaks were visualized in the 2D-IR correlation spectrum of Flos chrysanthemi indici Moreover, in the characteristic range of glucoside (1,250-900 cm(-1)), 10 and 9 autopeaks were present in the 2D-IR correlation spectra of Flos rhododendri mollis and Flos chrysanthemi indici, respectively. Therefore, the tri-step identification of FTIR is a time-saving; accurate, cost-saving and convenient method to effectively distinguish traditional Chinese medicines.

  12. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami; Alrefae, Majed; Farooq, Aamir

    2014-01-01

    intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas

  13. Biochemical changes in cutaneous squamous cell carcinoma submitted to PDT using ATR-FTIR spectroscopy

    Science.gov (United States)

    Lima, Cassio A.; Goulart, Viviane P.; de Castro, Pedro A. A.; Correa, Luciana; Benetti, Carolina; Zezell, Denise M.

    2015-06-01

    Nonmelanoma skin cancers are the most common form of malignancy in humans. Between the traditional treatment ways, the photodynamic therapy (PDT) is a promising alternative which is minimally invasive and do not requires surgical intervention or exposure to ionizing radiation. The understanding of the cascade of effects playing role in PDT is not fully understood, so that define and understand the biochemical events caused by photodynamic effect will hopefully result in designing better PDT protocols. In this study we investigated the potential of the FTIR spectroscopy to assess the biochemical changes caused by photodynamic therapy after 10 and 20 days of treatment using 5-aminolevulinic acid (ALA) as precursor of the photosensitizer photoporphyrin IX (PpIX). The amplitude values of second derivative from vibrational modes obtained with FTIR spectroscopy showed similar behavior with the morphological features observed in histopathological analysis, which showed active lesions even 20 days after PDT. Thus, the technique has the potential to be used to complement the investigation of the main biochemical changes that photodynamic therapy promotes in tissue.

  14. Characterization of silicon-oxide interfaces and organic monolayers by IR-UV ellipsometry and FTIR spectroscopy

    Science.gov (United States)

    Hess, P.; Patzner, P.; Osipov, A. V.; Hu, Z. G.; Lingenfelser, D.; Prunici, P.; Schmohl, A.

    2006-08-01

    VUV-laser-induced oxidation of Si(111)-(1×1):H, Si(100):H, and a-Si:H at 157 nm (F II laser) in pure O II and pure H IIO atmospheres was studied between 30°C and 250°C. The oxidation process was monitored in real time by spectroscopic ellipsometry (NIR-UV) and FTIR spectroscopy. The ellipsometric measurements could be simulated with a three-layer model, providing detailed information on the variation of the suboxide interface with the nature of the silicon substrate surface. Besides the silicon-dioxide and suboxide layer, a dense, disordered, roughly monolayer thick silicon layer was included, as found previously by molecular dynamics calculations. The deviations from the classical Deal-Grove mechanism and the self-limited growth of the ultrathin dioxide layers (TMS) groups and n-alkylthiol monolayers on gold-coated silicon. The C-H stretching vibrations of the methylene and methyl groups could be identified by FTIR spectroscopy and IR ellipsometry.

  15. FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†

    Science.gov (United States)

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki

    2012-01-01

    Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528

  16. Analysis of human gallstones by FTIR

    International Nuclear Information System (INIS)

    Channa, Naseem A.; Khand, Fateh D.

    2008-01-01

    The present study was aimed at determining the composition of gallstones removed from patients in Southern Sindh, Pakistan. 109 gallstone samples surgically removed from as many patients (98 females and 11 males; age range 20 to 80 years) admitted for treatment in Liaquat University hospital, Jamshsoro during 2000 to 2003, were analyzed for composition by Fourier Transform Infrared (FTIR) spectroscopy. 74 (67.9%) of the 109 gallstone samples were found to be pure cholesterol stones, 5 (4.6%) pure calcium carbonate stones, 13 (11.9%) cholesterol + calcium carbonate, 10 (9.2%) cholesterol + bilirubin and 07 (6.4%) calcium bilirubinate stones. In mixed composition gallstones cholesterol was concentrated more at periphery than in the center of stone. Cholesterol either singly (67.9%) or in combination with either calcium carbonate (11.9%) or bilirubin (9.2%) was the most predominant component of gallstones. Analysis of gallstones based on FTIR suggests that cholesterol either singly or in combination with either calcium carbonate or bilirubin is the most predominant component of gallstones from Southern Sindh, Pakistan. (author)

  17. Nano-FTIR Spectroscopy to Investigate the Silicate Mineralogy of Mercury Analogues: Supporting MERTIS Onboard BepiColombo Mission

    Science.gov (United States)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Ulrich, G.; Born, K.; Namur, O.; Kästner, B.; Hecht, L.; Charlier, B.; Hiesinger, H.

    2018-05-01

    Nano-FTIR Spectroscopy is used to investigate the silicate mineralogy of synthetic Mercury analogues produced under reduced conditions representing different Mercury terrains. The study will support MERTIS payload onboard BepiColombo mission.

  18. Spectral staining of tumor tissue by fiber optic FTIR spectroscopy

    Science.gov (United States)

    Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens

    2003-07-01

    Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.

  19. Infrared spectroscopy by use of synchrotron radiation

    International Nuclear Information System (INIS)

    Nanba, Takao

    1991-01-01

    During five years since the author wrote the paper on the utilization of synchrotron radiation in long wavelength region, it seems to be recognized that in synchrotron radiation, the light from infrared to milli wave can be utilized, and is considerably useful. Recently the research on coherent synchrotron radiation in this region using electron linac has been developed by Tohoku University group, and the high capability of synchrotron radiation as light source is verified. This paper is the report on the infrared spectroscopic research using incoherent synchrotron radiation obtained from the deflection electromagnet part of electron storage rings. Synchrotron radiation is high luminance white light source including from X-ray to micro wave. The example of research that the author carried out at UVSOR is reported, and the perspective in near future is mentioned. Synchrotron radiation as the light source for infrared spectroscopy, the intensity and dimensions of the light source, far infrared region and mid infrared region, far infrared high pressure spectroscopic experiment, and the heightening of luminance of synchrotron radiation as infrared light source are described. (K.I.)

  20. The FTIR study of uranium oxides by the method of light pipe reflection spectroscopy

    International Nuclear Information System (INIS)

    Bao Zhu Yu; Hansen, W.N.

    1988-01-01

    Light pipe infrared reflection spectra of UO 2 , UO 3 , U 3 O 8 have been studied by using an FTIR spectrometer. The uranium oxide powders were ground to ensure fine particle size and distributed on the inner surface of a straight glass pipe with gold coating. The infrared beam from the inter-ferometer was focused into one end of the pipe at 45 0 incidence and then the transmitted beam was refocused by a pair of Cassegrainian type mirrors. The resultant spectra show the infrared characteristics of the ...-U-O-U-O-..., uranyl ion UO 2 2+ bond vibration and the active lattice vibrations predicted by group theory calculations. In comparison to the transmission spectra measured by authors or reported in literature, this 45 0 incident light pipe method as well as the previous light pipe method offer advantages of sensitivity, ease of acquisition and interpretation, and require a very small sample. It confirms the power of the light pipe method for studying powders and its special utility for the infrared studies of hazardous materials. (Author)

  1. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    Science.gov (United States)

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  2. Application of FTIR Spectroscopy and Chemometrics for Halal Authentication of Beef Meatball Adulterated with Dog Meat

    Directory of Open Access Journals (Sweden)

    Wiranti Sri Rahayu

    2018-05-01

    Full Text Available Beef meatball is one of the favorite meat-based food products among Indonesian community. Currently, beef is very expensive in Indonesian market compared to other common meat types such as chicken and lamb. This situation has intrigued some unethical meatball producers to replace or adulterate beef with lower priced-meat like dog meat. The objective of this study was to evaluate the capability of FTIR spectroscopy combined with chemometrics for identification and quantification of dog meat (DM in beef meatball (BM. Meatball samples were prepared by adding DM into BM ingredients in the range of 0–100% wt/wt and were subjected to extraction using Folch method. Lipid extracts obtained from the samples were scanned using FTIR spectrophotometer at 4000–650 cm-1. Partial least square (PLS calibration was used to quantify DM in the meatball. The results showed that combined frequency regions of 1782–1623 cm-1 and 1485-659 cm-1 using detrending treatment gave optimum prediction of DM in BM. Coefficient of determination (R2 for correlation between the actual value of DM and FTIR predicted value was 0.993 in calibration model and 0.995 in validation model. The root mean square error of calibration (RMSEC and standard error of cross validation (SECV were 1.63% and 2.68%, respectively. FTIR spectroscopy combined with multivariate analysis can serve as an accurate and reliable method for analysis of DM in meatball.

  3. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning.

    Science.gov (United States)

    Ellis, David I; Broadhurst, David; Kell, Douglas B; Rowland, Jem J; Goodacre, Royston

    2002-06-01

    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable "fingerprints." Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria.g(-1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

  4. Characterization of process-induced damage in Cu/low-k interconnect structure by microscopic infrared spectroscopy with polarized infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Hirofumi, E-mail: Hirofumi-Seki@trc.toray.co.jp; Hashimoto, Hideki [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2016-09-07

    Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH{sub 3} bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

  5. Determination of on-stream destruction removal efficiency using Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Mao, Zhouxiong; MacIntosh, M.; Wentz, C.A.

    1991-01-01

    The requirements of the Clean Air Act Amendments of 1990 and public concern about the safety of air emissions from incineration necessitate the development of continuous emission monitors for on-line determination of both the destruction removal efficiency (DRE) of hazardous wastes and the emission products of incomplete combustion (PICs). This paper describes a Fourier transform infrared (FTIR) spectroscopic method that has been developed for this purpose. A laboratory-scale hazardous waste incinerator was coupled directly, via heated sampling lines, to a heated long-path cell (LPC) combined with an FTIR analyzer. The DRE and PIC emission levels were measured, on-line, for toluene incineration. Thus, this new LPC/FTIR system has been demonstrated as an effective continuous emissions monitor. Further experimental work with other hydrocarbons is now underway using the FTIR system. 8 figs., 4 tabs

  6. Determination of U{sub 3}O{sub 8} in UO{sub 2} by infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane Aparecida; Lameiras, Fernando Soares; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa; Barbosa, Joao Batista Santos, E-mail: lasfisica@gmail.com, E-mail: sl@cdtn.br, E-mail: amms@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: jbsb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), Belo Horizonte, MG (Brazil)

    2017-01-15

    The oxygen-uranium (O-U) system has various oxides, such as UO{sub 2}, U{sub 4}O{sub 9}, U{sub 3}O{sub 8}, and UO{sub 3}. Uranium dioxide is the most important one because it is used as nuclear fuel in nuclear power plants. UO{sub 2} can have a wide stoichiometric variation due to excess or deficiency of oxygen in its crystal lattice, which can cause significant modifications of its proprieties. O/U relation determination by gravimetry cannot differentiate a stoichiometric deviation from contents of other uranium oxides in UO{sub 2}. The presence of other oxides in the manufacturing of UO{sub 2} powder or sintered pellets is a critical factor. Fourier Transform Infrared Spectroscopy (FTIR) was used to identify U{sub 3}O{sub 8} in samples of UO{sub 2} powder. UO{sub 2} can be identified by bands at 340 cm{sup -1} and 470 cm{sup -1}, and U{sub 3}O{sub 8} and UO{sub 3} by bands at 735 cm{sup -1}, 910 cm{sup -1}, respectively. The methodology for sample preparation for FTIR spectra acquisition is presented, as well as the calibration for quantitative measurement of U{sub 3}O{sub 8} in UO{sub 2}. The content of U{sub 3}O{sub 8} in partially calcined samples of UO{sub 2} powder was measured by FTIR with good agreement with X-rays diffractometry (XRD). (author)

  7. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  8. A novel FT-IR spectroscopic method based on lipid characteristics for qualitative and quantitative analysis of animal-derived feedstuff adulterated with ruminant ingredients.

    Science.gov (United States)

    Gao, Fei; Zhou, Simiao; Han, Lujia; Yang, Zengling; Liu, Xian

    2017-12-15

    The objective of this study was to explore the ability of Fourier transform infrared (FT-IR) spectroscopy to authenticate adulterated animal-derived feedstuff. A total of 18 raw meat and bone meals (MBMs), including 9 non-ruminant MBMs and 9 ruminant MBMs, were mixed to obtain 81 binary mixtures with specific proportions (1-35%). Lipid spectral characteristics were analyzed by FT-IR spectroscopy combined with chemometrics. Changes in FT-IR spectra were observed as adulterant concentration was varied. The results illustrate ruminant adulteration can be successfully distinguished based on lipid characteristics. PLS model was established to quantify ruminant adulteration, which was shown to be valid (R 2 P >0.90). Furthermore, the ratios of CC/CO and CC/CH(CH 2 ), as well as the number of CH(CH 2 ) in the fatty acids of adulterated lipids, were calculated, which showed that differences in the trans fatty acid content and the degree of unsaturation were the main contributors to determination of adulteration based on FT-IR spectroscopy. Copyright © 2017. Published by Elsevier Ltd.

  9. Comparison of 13C Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy for estimating humification and aromatization of soil organic matter

    Science.gov (United States)

    Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.

    2017-12-01

    Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0

  10. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  11. The classification of lung cancers and their degree of malignancy by FTIR, PCA-LDA analysis, and a physics-based computational model.

    Science.gov (United States)

    Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J

    2018-08-15

    Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types.

    Science.gov (United States)

    Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida

    2010-06-01

    Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.

  13. Bird sexing by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  14. FTIR- Microspectroscopy as diagnostic method for cancer cells

    International Nuclear Information System (INIS)

    Vitaly Erukhimovitch, Vitaly; Mukmenev, Igor; Huleihel, Mahmoud

    2010-01-01

    In the present study we have compared the spectral behavior of malignant cells with normal un transformed cells using microscopic Fourier-Transform Infrared (FTIR-M) spectroscopy in order to evaluate the potential of this technique for early detection of cancer cells. Cells were transformed by infection with murine sarcoma virus (MuSV) and examined at various times post infection (p. i) by FTIR M. Our results showed significant and consistent differences between the normal cells and malignant cells. A considerable decrease in carbohydrates and phosphates levels was seen in malignant cells compared to the normal cells. In addition, the peak attributed to the PO2- symmetric stretching mode at 1082 cm-1 in normal cells was shifted significantly to 1087 cm-1 in malignant cells. These spectral changes in addition to others were seen already about 24 h p.i., while no morphological changes were observed at this time by optical microscope. These results in addition to further differences in the shapes of various bands may indicate for promising potential of FTIR microscopy technique for detection of malignant cells at early stages of malignant transformation.(Author)

  15. An Investigation of Consolidants Penetration in Wood. Part 2: FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Cristina TIMAR

    2011-03-01

    Full Text Available FTIR spectroscopy was used in this work for studying the penetration of some consolidants frequentlyused in old wood conservation into test pieces of sound spruce wood (Picea abies wood. Thin microsections(30-60 μm of control and treated wood were analysed in reflectance mode using an ATR system. Theconsolidation products investigated were Paraloid B72, bee wax, a mixture of bee wax / linseed oil and twotypes of paraffins. These products presented FTIR spectra with characteristic common and specific bands,allowing their identification in the treated wood with no impediments coming from their colour, transparencyor the percent of cell lumena filling. The treatment of wood with these products brought about alterations ofthe spectra aspect by the appearance or intensification of some characteristic bands and the modification ofthe ratio between the areas of some characteristic absorption bands so that a qualitative and semiquantitativeevaluation of the presence and penetration depth and distribution of these consolidationproducts in wood was possible, proving the adopted method as valuable and useful for further research inthis field.

  16. Qualitative Assessment of Soil Carbon in a Rehabilitated Forest Using Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Huck-Ywih Ch'ng

    2011-01-01

    Full Text Available Logging and poor shifting cultivation negatively affect initial soil carbon (C storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR spectroscopy. The relatively high E4/E6 values of humic acids (HAs in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH and phenolic (-OH of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0–20 to 40–60 cm were observed, suggesting C buildup from the lowest depths 20–40 and 40–60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages.

  17. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Science.gov (United States)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  18. Photoacoustic-based detector for infrared laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, L.; Palzer, S., E-mail: stefan.palzer@imtek.uni-freiburg.de [Department of Microsystems Engineering-IMTEK, Laboratory for Gas Sensors, University of Freiburg, Georges-Köhler-Allee 102, Freiburg 79110 (Germany)

    2016-07-25

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v{sub 3} band at 6046.95 cm{sup −1} using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  19. A FTIR study water in membrane of nitrocellulose prepared by phase inversion

    International Nuclear Information System (INIS)

    Benosmane, N.; Boutemeur, B.; Hamdi, M.

    2004-01-01

    Full text.Cellulose derivates were the first biopolymers used to produce synthesis membranes for technical applications, in this study the state of water in asymmetric membrane of nitrocellulose, prepared by the phase inversion process, was investigated using infrared spectroscopy (FTIR), after membrane preparation by the wet inversion process in acetone, the spectre FTIR of wet asymmetric membrane of nitrocellulose after immersion in water (after one week) is compared to the spectre of dried asymmetric membrane of nitrocellulose, the difference in spectre of dried and wet membrane indicate a weakly hydrogen-bonded to the polymer hydroxyl groups between water and hydroxyl groups in surface of membrane, the results demonstrate the amount of water species present in the surface of asymmetric membrane and heterogeneous of surface

  20. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol.

    Science.gov (United States)

    Wharfe, Emma S; Jarvis, Roger M; Winder, Catherine L; Whiteley, Andrew S; Goodacre, Royston

    2010-12-01

    The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  2. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    Science.gov (United States)

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  3. Nanoscale Infrared Spectroscopy of Biopolymeric Materials

    Science.gov (United States)

    Curtis Marcott; Michael Lo; Kevin Kjoller; Craig Prater; Roshan Shetty; Joseph Jakes; Isao Noda

    2012-01-01

    Atomic Force Microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument capable of producing 100 nm spatial resolution IR spectra and images. This new capability enables the spectroscopic characterization of biomaterial domains at levels not previously possible. A tunable IR laser source generating pulses on the order of 10 ns was used...

  4. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    OpenAIRE

    Davis, Caitlin M.; Dyer, R. Brian

    2014-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescen...

  5. Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picq, V.; Balanzat, E. E-mail: balanzat@ganil.fr

    1999-05-02

    The release of small gaseous molecules is a general phenomenon of irradiated polymers. Polyethylene (PE), polypropylene (PP) and polybutene (PB) were irradiated with ions of different electronic stopping power. We show that the gas emission can provide important information on the damage process if a reliable chemical identification of the molecules released and accurate yield values are obtained. The outgassing products were analysed by two techniques: (1) by a novel set-up using a Fourier Transform Infrared (FTIR) analysis of the gas mixture released from the polymer film and (2) by residual gas analysis (RGA) with a quadrupole mass spectrometer. Comparing the analytical potentialities of both methods we come to the conclusion that the FTIR method gives a more straightforward and accurate determination of the chemical nature and of the yield of most of the released molecules. However, RGA provides complementary information on the gas release kinetics and also on the release of heavy hydrocarbon molecules and symmetric molecules like molecular hydrogen.

  6. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    Science.gov (United States)

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic

  7. The structure of betaxolol studied by infrared spectroscopy and natural bond orbital theory.

    Science.gov (United States)

    Canotilho, João; Castro, Ricardo A E

    2010-08-01

    Betaxolol is a selective beta(1) receptor blocker used in the treatment of hypertension and glaucoma. A study of the betaxolol structure based on infrared spectroscopy and natural bond orbital (NBO) theory is the main aim of the present research. FTIR spectra of the solid betaxolol were recorded in the region from 4000 to 400cm(-1), in the temperature range between 25 and -170 degrees C. For spectral interpretation, spectrum of the deuterated betaxolol and the theoretical vibrational spectra of the conformer present in the solid obtained at the B3LYP/6-31G* level of theory, were used. Further insight into the structure was provided by natural bond orbital theory. NBO analysis of the conformer, before and after optimization, was carried out at the same level of theory referred above. Vibrational modes involved in hydrogen bond in the stretching and bending region were used in the estimation of the enthalpy using empirical correlations between enthalpy and the frequency shift that occurs as a result of the establishment of intermolecular hydrogen bonds. A detailed study of the structure of betaxolol and of its intermolecular interactions was obtained from the combination spectroscopy and NBO theory. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Step-scan Fourier transform infrared (FTIR) spectrometer for investigating chemical reactions of energy-related materials. Final report, April 1, 1995--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1997-11-04

    Two step-scan Fourier transform infrared (FTIR) spectrometers were purchased with URI-DOE funds by the University of Utah. These infrared spectrometers have been used to carry out the following investigations: the determination of strength of adsorption of organic molecules at the liquid-solid interface of coated attenuated total reflectance (ATR) elements, the kinetic study of the photoinitiated polymerization of a dental resin, the exploration of the kinetics of photochemical reactions of organic molecules in solution, and the development of a stopped-flow FTIR interface for measuring rates and mechanisms of reactions in solution that are not photoinitiated and do not have convenient ultraviolet-visible spectral features.

  9. Characterization of ionizing radiation effects on bone using Fourier Transform Infrared Spectroscopy and multivariate analysis of spectra

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Pedro Arthur Augusto de; Dias, Derly Augusto; Zezell, Denise Maria, E-mail: zezell@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Ionizing radiation has been used as an important treatment and diagnostic method for several diseases. Optical techniques provides an efficient clinical diagnostic to support an accurate evaluation of the interaction of radiation with molecules. Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) is a label-free and nondestructive optical technique that can recognize functional groups in biological samples. In this work, 30 fragments of bone were collected from bovine femur diaphysis. Samples were cut and polished until 1 cm x 1 cm x 1 mm, which were then stored properly in the refrigerated environment. Samples irradiation was performed with a Cobalt-60 Gammacell Irradiator source at doses of 0.1 kGy, 1 kGy, whereas the fragments exposed to dose of 15 kGy was irradiated in a multipurpose irradiator of Cobalt-60. Spectral data was submitted to principal component analysis followed by linear discriminant analysis. Multivariate analysis was performed with Principal component analysis(PCA) followed by Linear Discriminant Analysis(LDA) using MATLAB R2015a software (The Mathworks Inc., Natick, MA, USA). We demonstrated the feasibility of using ATR-FTIR spectroscopy associated with PCA-LDA multivariate technique to evaluate the molecular changes in bone matrix caused by different doses: 0.1 kGy, 1 kGy and 15 kGy. These alterations between the groups are mainly reported in phosphate region. Our results open up new possibilities for protein monitoring relating to dose responses. (author)

  10. Characterization of ionizing radiation effects on bone using Fourier Transform Infrared Spectroscopy and multivariate analysis of spectra

    International Nuclear Information System (INIS)

    Castro, Pedro Arthur Augusto de; Dias, Derly Augusto; Zezell, Denise Maria

    2017-01-01

    Ionizing radiation has been used as an important treatment and diagnostic method for several diseases. Optical techniques provides an efficient clinical diagnostic to support an accurate evaluation of the interaction of radiation with molecules. Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) is a label-free and nondestructive optical technique that can recognize functional groups in biological samples. In this work, 30 fragments of bone were collected from bovine femur diaphysis. Samples were cut and polished until 1 cm x 1 cm x 1 mm, which were then stored properly in the refrigerated environment. Samples irradiation was performed with a Cobalt-60 Gammacell Irradiator source at doses of 0.1 kGy, 1 kGy, whereas the fragments exposed to dose of 15 kGy was irradiated in a multipurpose irradiator of Cobalt-60. Spectral data was submitted to principal component analysis followed by linear discriminant analysis. Multivariate analysis was performed with Principal component analysis(PCA) followed by Linear Discriminant Analysis(LDA) using MATLAB R2015a software (The Mathworks Inc., Natick, MA, USA). We demonstrated the feasibility of using ATR-FTIR spectroscopy associated with PCA-LDA multivariate technique to evaluate the molecular changes in bone matrix caused by different doses: 0.1 kGy, 1 kGy and 15 kGy. These alterations between the groups are mainly reported in phosphate region. Our results open up new possibilities for protein monitoring relating to dose responses. (author)

  11. A new and fast in-situ spectroscopic infrared absorption measurement technique

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Klaver, A.; Sanden, van de M.C.M.

    2001-01-01

    Silicon oxide like films are deposited using an expanding thermal plasma (cascaded arc) in combination with HMDSO and oxygen as deposition precursors. These films are deposited at high rate (up to 200 nm/s). In general Fourier transform infrared (FTIR) reflection absorption spectroscopy is a useful

  12. Infrared spectroscopy of fluid lipid bilayers.

    Science.gov (United States)

    Hull, Marshall C; Cambrea, Lee R; Hovis, Jennifer S

    2005-09-15

    Infrared spectroscopy is a powerful technique for examining lipid bilayers; however, it says little about the fluidity of the bilayer-a key physical aspect. It is shown here that it is possible to both acquire spectroscopic data of supported lipid bilayer samples and make measurements of the membrane fluidity. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) is used to obtain the spectroscopic information and fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of the samples. In the infrared spectra of lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, the following major peaks were observed; nu(as)(CH3) 2954 cm(-1), nu(s)(CH3) 2870 cm(-1), nu(as)(CH2) 2924 cm(-1), nu(s)(CH2) 2852 cm(-1), nu(C=O) 1734 cm(-1), delta(CH2) 1463-1473 cm(-1), nu(as)(PO2-) 1226 cm(-1), nu(s)(PO2-) 1084 cm(-1), and nu(as)(N+(CH3)3) 973 cm(-1). The diffusion coefficient of the same lipid bilayer was measured to be 3.5 +/- 0.5 micom(2)/s with visual recovery also noted through use of epifluorescence microscopy. FRAP and visual data confirm the formation of a uniform, mobile supported lipid bilayer. The combination of ATR-FT-IR and FRAP provides complementary data giving a more complete picture of fully hydrated model membrane systems.

  13. Technology of the Gramophone Records of the Music Museum by Fourier Transform Infrared Spectrometry (FTIR Method

    Directory of Open Access Journals (Sweden)

    Seyedeh Zeinab Afzali

    2017-02-01

    Full Text Available Music is one of the branches of the art whose helpful role and usefulness in the human’s mind and soul is undeniable. It is the only art which in the philosophers’ divisions is directly linked with the human spirit and immediate overflows the ears of his soul. The sound, as a psychological phenomenon is associated with the emotion and excitement so that sometimes calms and sometimes confuses the human. This study aims to examine the technology of the gramophone records in the Music Museum by Fourier transform infrared spectrometry (FTIR. The method of this research is experimental and the data are collected by documentation, library, and using FTIR tests. Some records of the Music Museum were studied including four samples of 78 rpm platter (stone platter, one sample of 45 rpm, and one sample of 33 rpm (vinyl platter. The results of the FTIR test indicated that the materials of the records were vinyl and shellac and in their raw material, some of the softening additives (phthalates and fillers (silica and calcium carbonate compounds had been used.

  14. FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers

    Directory of Open Access Journals (Sweden)

    Trache D.

    2013-07-01

    Full Text Available Many cereal straws have been used as raw materials for the preparation of microcrystalline cellulose (MCC. These raw materials were gradually replaced with wood products; nevertheless about 10% of the world overall pulp production is obtained from non-wood raw material. The main interest in pulp made from straw is that it provides excellent fibres for different industries with special properties, and that it is the major available source of fibrous raw material in some geographical areas. The aim of the present work was to characterize microcrystalline cellulose prepared from alfa fibers using the hydrolysis process. The products obtained are characterized with FTIR spectroscopy and X-ray powder diffraction. As a result, FTIR spectroscopy is an appropriate technique for studying changes occurred by any chemical treatment. The spectrum of alfa grass stems shows the presence of lignin and hemicelluloses. However, the cellulose spectrum indicates that the extraction of lignin and hemicellulose was effective. The X-ray analysis indicates that the microcrystalline cellulose is more crystalline than the source material.

  15. FTIR

    International Nuclear Information System (INIS)

    Gierczak, C.A.; Andino, J.M.; Butler, J.W.; Heiser, G.A.; Jesion, G.; Korniski, T.J.

    1991-01-01

    FTIR spectroscopy has been shown to be a valuable tool in the analysis of complex gas phase mixtures, such as dilute vehicle exhaust. Regulated and non-regulated vehicle emissions have been routinely sampled and analyzed using prototype instrumentation developed in this laboratory, and in several other laboratories over the last decade. More recently, commercial versions of these FTIR analyzers have become available through several manufacturers. This paper reviews the data acquisition and processing techniques utilized by the FTIR analyzer developed in this laboratory. The statistical detection limits for 22 of the components analyzed by the system are presented. In addition, the linearity of the carbon monoxide (CO) analysis is demonstrated over several orders of magnitude. Experiments designed to study the effects of environmental parameters on the accuracy and the sensitivity of the system are also described

  16. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    Science.gov (United States)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  17. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    Science.gov (United States)

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Near Infrared Spectroscopy Systems for Tissue Oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl

    for other medical applications. The tissue oximeters are realised by incorporation of pn-diodes into the silicon in order to form arrays of infrared detectors. These arrays can then be used for spatially resolved spectroscopy measurements, with the targeted end user being prematurely born infant children...

  19. Two-dimensional spectroscopy at infrared and optical frequencies

    OpenAIRE

    Hochstrasser, Robin M.

    2007-01-01

    This Perspective on multidimensional spectroscopy in the optical and infrared spectral regions focuses on the principles and the scientific and technical challenges facing these new fields. The methods hold great promise for advances in the visualization of time-dependent structural changes in complex systems ranging from liquids to biological assemblies, new materials, and fundamental physical processes. The papers in this special feature on multidimensional spectroscopy in chemistry, physic...

  20. Measurement of tracer gas distributions using an open-path FTIR system coupled with computed tomography

    Science.gov (United States)

    Drescher, Anushka C.; Yost, Michael G.; Park, Doo Y.; Levine, Steven P.; Gadgil, Ashok J.; Fischer, Marc L.; Nazaroff, William W.

    1995-05-01

    Optical remote sensing and iterative computed tomography (CT) can be combined to measure the spatial distribution of gaseous pollutant concentrations in a plane. We have conducted chamber experiments to test this combination of techniques using an Open Path Fourier Transform Infrared Spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). ART was found to converge to solutions that showed excellent agreement with the ray integral concentrations measured by the FTIR but were inconsistent with simultaneously gathered point sample concentration measurements. A new CT method was developed based on (a) the superposition of bivariate Gaussians to model the concentration distribution and (b) a simulated annealing minimization routine to find the parameters of the Gaussians that resulted in the best fit to the ray integral concentration data. This new method, named smooth basis function minimization (SBFM) generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present one set of illustrative experimental data to compare the performance of ART and SBFM.

  1. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    Science.gov (United States)

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87albumin and total protein in human plasma. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Detection of emission sources using passive-remote Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Macha, S.M.; Darby, S.M.; Ditillo, J.

    1995-01-01

    The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and in some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level

  3. In-line Fourier-transform infrared spectroscopy as a versatile process analytical technology for preparative protein chromatography.

    Science.gov (United States)

    Großhans, Steffen; Rüdt, Matthias; Sanden, Adrian; Brestrich, Nina; Morgenstern, Josefine; Heissler, Stefan; Hubbuch, Jürgen

    2018-04-27

    Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing was investigated in three case studies addressing the limits of currently applied spectroscopic PAT methods. A first case study exploited the secondary structural differences of monoclonal antibodies (mAbs) and lysozyme to selectively quantify the two proteins with partial least squares regression (PLS) giving root mean square errors of cross validation (RMSECV) of 2.42 g/l and 1.67 g/l, respectively. The corresponding Q 2 values are 0.92 and, respectively, 0.99, indicating robust models in the calibration range. Second, a process separating lysozyme and PEGylated lysozyme species was monitored giving an estimate of the PEGylation degree of currently eluting species with RMSECV of 2.35 g/l for lysozyme and 1.24 g/l for PEG with Q 2 of 0.96 and 0.94, respectively. Finally, Triton X-100 was added to a feed of lysozyme as a typical process-related impurity. It was shown that the species could be selectively quantified from the FTIR 3D field without PLS calibration. In summary, the proposed PAT tool has the potential to be used as a versatile option for monitoring protein chromatography. It may help to achieve a more complete implementation of the PAT initiative by mitigating limitations of currently used techniques. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Detecting the quality of glycerol monolaurate: a method for using Fourier transform infrared spectroscopy with wavelet transform and modified uninformative variable elimination.

    Science.gov (United States)

    Chen, Xiaojing; Wu, Di; He, Yong; Liu, Shou

    2009-04-06

    Glycerol monolaurate (GML) products contain many impurities, such as lauric acid and glucerol. The GML content is an important quality indicator for GML production. A hybrid variable selection algorithm, which is a combination of wavelet transform (WT) technology and modified uninformative variable eliminate (MUVE) method, was proposed to extract useful information from Fourier transform infrared (FT-IR) transmission spectroscopy for the determination of GML content. FT-IR spectra data were compressed by WT first; the irrelevant variables in the compressed wavelet coefficients were eliminated by MUVE. In the MUVE process, simulated annealing (SA) algorithm was employed to search the optimal cutoff threshold. After the WT-MUVE process, variables for the calibration model were reduced from 7366 to 163. Finally, the retained variables were employed as inputs of partial least squares (PLS) model to build the calibration model. For the prediction set, the correlation coefficient (r) of 0.9910 and root mean square error of prediction (RMSEP) of 4.8617 were obtained. The prediction result was better than the PLS model with full-spectra data. It was indicated that proposed WT-MUVE method could not only make the prediction more accurate, but also make the calibration model more parsimonious. Furthermore, the reconstructed spectra represented the projection of the selected wavelet coefficients into the original domain, affording the chemical interpretation of the predicted results. It is concluded that the FT-IR transmission spectroscopy technique with the proposed method is promising for the fast detection of GML content.

  5. Surface enhanced infrared spectroscopy using interacting gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Neubrech, Frank; Weber, Daniel; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Shen, Hong [Universite Troyes, Troyes (France); Lamy de la Chapelle, Marc [Universite Paris 13, Bobigny (France)

    2009-07-01

    We performed surface enhanced infrared spectroscopy (SEIRS) of molecules adsorbed on gold nanowires using synchrotron light of the ANKA IR-beamline at the Forschungszentrum Karlsruhe (Germany). Arrays of gold nanowires with interparticle spacings down to 30nm were prepared by electron beam lithography. The interparticle distance was reduced further by wet-chemically increasing the size of the gold nanowires. The growth of the wires was proofed using IR spectroscopy as well as scanning electron microscopy. After this preparation step, appropriate arrays of nanowires with an interparticle distance down to a few nanometers were selected to demonstrate the surface enhanced infrared spectroscopy of one monolayer octadecanthiol (ODT). As know from SEIRS studies using single gold nanowires, the spectral position of the antenna-like resonance in relation to the absorption bands of ODT (2850cm-1 and 2919cm-1) is crucial for both, the lineshape of the molecular vibration and the signal enhancement. In contrast to single nanowires studies, a further increase of the enhanced signals is expected due to the interaction of the electromagnetic fields of the close-by nanowires.

  6. The characterization of natural gemstones using non-invasive FT-IR spectroscopy: New data on tourmalines.

    Science.gov (United States)

    Mercurio, Mariano; Rossi, Manuela; Izzo, Francesco; Cappelletti, Piergiulio; Germinario, Chiara; Grifa, Celestino; Petrelli, Maurizio; Vergara, Alessandro; Langella, Alessio

    2018-02-01

    Fourteen samples of tourmaline from the Real Museo Mineralogico of Federico II University (Naples) have been characterized through multi-methodological investigations (EMPA-WDS, SEM-EDS, LA-ICP-MS, and FT-IR spectroscopy). The samples show different size, morphology and color, and are often associated with other minerals. Data on major and minor elements allowed to identify and classify tourmalines as follows: elbaites, tsilaisite, schorl, dravites, uvites and rossmanite. Non-invasive, non-destructive FT-IR and in-situ analyses were carried out on the same samples to validate this chemically-based identification and classification. The results of this research show that a complete characterization of this mineral species, usually time-consuming and expensive, can be successfully achieved through non-destructive FT-IR technique, thus representing a reliable tool for a fast classification extremely useful to plan further analytical strategies, as well as to support gemological appraisals. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Gäb, Jürgen; Melzer, Marco; Kehe, Kai; Richardt, André; Blum, Marc-Michael

    2009-02-15

    The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris effectively catalyzes the hydrolysis of diisopropyl fluorophosphate (DFP) and a number of organophosphorus nerve agents, including sarin, soman, cyclosarin, and tabun. Up to now, the determination of kinetic data has been achieved by techniques such as pH-stat titration, ion-selective electrodes, and fluorogenic substrate analogs. We report a new assaying method using in situ Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR) for the real-time determination of reaction rates. The method employs changes in the P-O-R stretching vibration of DFP and nerve agent substrates when hydrolyzed to their corresponding phosphoric and phosphonic acids. It is shown that the Lambert-Beer law holds and that changes in absorbance can be directly related to changes in concentration. Compared with other methods, the use of in situ FTIR spectroscopy results in a substantially reduced reaction volume that adds extra work safety when handling highly toxic substrates. In addition, the new method allows the noninvasive measurement of buffered solutions with varying ionic strengths complementing existing methods. Because the assay is independent of the used enzyme, it should also be applicable to other phosphotriesterase enzymes such as organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA), and paraoxonase (PON).

  8. The infrared spectroscopy in the study of the bone crystallinity thermally affected; La espectroscopia infrarroja en el estudio de la cristalinidad del hueso afectado termicamente

    Energy Technology Data Exchange (ETDEWEB)

    Medina, C.; Tiesler, V. [Universidad Autonoma de Yucatan, Facultad de Ciencias Antropoloicas. 97000 Merida, Yucatan (Mexico); Azamar, J.A.; Alvarado G, J.J.; Quintana, P. [CINVESTAV-Unidad Merida, Depto. Fisica Aplicada, Km 6 Ant. Carr. a Progreso, 97310 Merida, Yucatan (Mexico)

    2006-07-01

    Bone is made up by both organic and inorganic components. Among the latter stands out hydroxyapatite (HAP), composed by hexagonal crystallites arranged in a laminar form. The size of the hydroxyapatite crystals may be altered by different conditions, among those figures thermal exhibition, since during burning the bone eliminates organic matrix and thus promotes the crystallization process of the material. An experimental series was designed to measure crystallinity, in which pig bone remains were burnt at different temperatures and analyzed by infrared spectroscopy (FTIR). By means of analogy a comparison was made between the infrared spectra in order to compare with the ones obtained from the archaeological samples, coming from the Classic period Maya sites of Calakmul and Becan, Campeche. (Author)

  9. Combination of FTIR and SEM for Identifying Freshwater-Cultured Pearls from Different Quality

    Science.gov (United States)

    Satitkune, Somruedee; Monarumit, Natthapong; Boonmee, Chakkrich; Phlayrahan, Aumaparn; Promdee, Kittiphop; Won-in, Krit

    2016-03-01

    The freshwater-cultured pearl ( Chamberlainia hainesiana species) is an organic gemstone mainly composed of calcium carbonate mineral including calcite, aragonite and vaterite phases. Generally, the quality of freshwater-cultured pearl is based on its luster. The high luster pearl is full of the aragonite phase without vaterite phase. On the other hand, the low luster pearl consists of aragonite and vaterite phases. These data could be proved by the Fourier Transform Infrared (FTIR) spectroscopy combined with the scanning electron microscopy (SEM). As the results, the high luster pearl similarly shows the FTIR spectrum of aragonite phase, and also, it shows the hexagonal shape of aragonite for the SEM image. On the other hand, the FTIR spectrum of low luster pearl has been pointed to the mixture component among aragonite and vaterite phases, and based on the SEM image; the irregular form is also interpreted to the mixture of aragonite and vaterite phases. This research concludes that the quality of freshwater-cultured pearls can be identified by the combination data of FTIR spectra and SEM images. These techniques are suitable for applied gemology.

  10. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  11. Analysis of the corrosion products on galvanized steels by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Kasperek, J.

    1998-01-01

    FTIR reflectance spectroscopy has been used for the characterization of products formed by an accelerated wet ageing test on industrial hot-dip galvanized steel. Several aluminium contents are selected. Various products have been detected in this study. The kind and amount vary with the substrate, the type of ageing test used, the relative humidity level and the temperature. The galvanized coatings studied show a mixed zinc-aluminium compound, Zn 6 Al 2 (OH) 16 CO 3 .4H 2O. This phase is observed from the first exposure time on all coatings regardless of the amount of aluminium. Contrary to zinc, no basic aluminium compound has been detected. (orig.)

  12. Phase behavior of polystyrene-block-poly(n-alkyl methacrylate) copolymers investigated by SANS, SAXS, and temperature-dependent FTIR spectroscopy

    International Nuclear Information System (INIS)

    Ryu, Du Yeol; Lee, Dong Hyun; Kim, Hye Jeong; Kim, Jin Kon; Jung, Y. M.; Kim, S. B.

    2005-01-01

    The phase behavior of polystyrene-block -poly(n-alkyl methacrylate) (PS-PnAMA) copolymer were investigated by Small-Angle Neutron Scattering (SANS), Small-Angle X-ray Scattering (SAXS), and temperature-dependent Fourier Transform Infrared (FTIR) spectroscopy. Also, the effect of hydrostatic pressure on the transition temperatures was studied by using SANS with pressure controller. Phase behavior was changed significantly with the change of alkyl number (n). For n = 2∼4, only Lower Disordered-to-Order Tansition (LDOT) was observed, whereas the Ordered-to-Disorder (ODT) was found for n =1 and n =6. Finally, a closed-loop phase behavior was found for n =5. Using incompressible random phase approximation, the segmental interactions (χ) between PS and PnAMA for all n values were obtained. The standard expression of χ = a + b/T (where T is the absolute temperature) was valid only for n =1 and n =6. But, this relationship was not valid any more for n = 2∼4. For n =5, a more complex behavior of χ upon temperature was observed. We investigated, by using temperature-dependent FTIR, the mechanism why as closed loop phase behavior was observed for n =5. Interestingly, the conformation of C-C-O stretching band of the PnPMA chain (n=5) (and thus the directional enthapic gain) was different in the two disordered states, and, therefore, the driving force to induce the disordered state at lower temperatures was different from that at higher temperatures

  13. [Near infrared spectroscopy study on water content in turbine oil].

    Science.gov (United States)

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  14. Monitoring breast cancer treatment using a Fourier transform infrared spectroscopy-based computational model.

    Science.gov (United States)

    Depciuch, J; Kaznowska, E; Golowski, S; Koziorowska, A; Zawlik, I; Cholewa, M; Szmuc, K; Cebulski, J

    2017-09-05

    Breast cancer affects one in four women, therefore, the search for new diagnostic technologies and therapeutic approaches is of critical importance. This involves the development of diagnostic tools to facilitate the detection of cancer cells, which is useful for assessing the efficacy of cancer therapies. One of the major challenges for chemotherapy is the lack of tools to monitor efficacy during the course of treatment. Vibrational spectroscopy appears to be a promising tool for such a purpose, as it yields Fourier transformation infrared (FTIR) spectra which can be used to provide information on the chemical composition of the tissue. Previous research by our group has demonstrated significant differences between the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Furthermore, the results obtained for three extreme patient cases revealed that the infrared spectra of post-chemotherapy breast tissue closely resembles that of healthy breast tissue when chemotherapy is effective (i.e., a good therapeutic response is achieved), or that of cancerous breast tissue when chemotherapy is ineffective. In the current study, we compared the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Characteristic parameters were designated for the obtained spectra, spreading the function of absorbance using the Kramers-Kronig transformation and the best fit procedure to obtain Lorentz functions, which represent components of the bands. The Lorentz function parameters were used to develop a physics-based computational model to verify the efficacy of a given chemotherapy protocol in a given case. The results obtained using this model reflected the actual patient data retrieved from medical records (health improvement or no improvement). Therefore, we propose this model as a useful tool for monitoring the efficacy of chemotherapy in patients with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sem-edx and ftir studies of chlorinated rubber coating

    International Nuclear Information System (INIS)

    Bano, H.; Khan, M.I.

    2013-01-01

    Summary: Anticorrosive performance of chlorinated rubber coating has been investigated by visual examination, Scanning electron microscopy (SEM)/Energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy. After surface preparation, commercially available coating system based on chlorinated rubber (primer)/chlorinated rubber (topcoat) formulation was applied on mild steel test panels (10cm x 15cm sizes). Prepared coated panels were exposed at marine, industrial and urban test sites located in Karachi, Pakistan according to ISO 8565 norm. Accelerated testing was performed by using a salt spray chamber (ASTM B117 norm). Accelerated weathering methods are the methods in which the factors responsible for the degradation of coatings are artificially intensified in order to achieve the rapid degradation of coatings. Visual examination of blistering and rusting as well as SEM micrographs indicated a more severe degradation of the coating surface characteristics at natural exposure testing sites (particularly at marine test site) than for accelerated (salt spray) testing. EDX determination of the Oxygen/Carbon (O/C) ratios also indicated increased degradation at natural test sites compared to the accelerated (salt spray) testing. Photooxidation of the binder results in the formation of carbonyl compounds as revealed by FTIR spectroscopy which also indicated dehydrochlorination. (author)

  16. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  17. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    Science.gov (United States)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  18. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-15

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-01

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  20. New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression

    Science.gov (United States)

    de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.

    2018-04-01

    A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.

  1. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  2. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  3. In situ FT-IR spectroelectrochemical study of electrooxidation of pyridoxol on a gold electrode

    International Nuclear Information System (INIS)

    Wang Meiling; Zhang Youyu; Xie Qingji; Yao Shouzhuo

    2005-01-01

    The electrochemical oxidation of pyridoxol (PN) on a polycrystalline gold electrode was investigated by cyclic voltammetry and in situ Fourier transform infrared spectroscopy (FTIRS). In 0.1 M aqueous NaOH solution, the gold electrode showed a high catalytic activity for the irreversible oxidation process of PN. The individual ionic species and the major tautomeric equilibria of PN molecules in aqueous solutions were evidenced well from the pH-dependent attenuated total reflectance (ATR) spectra, and the results were in good agreement with the voltammetric observations. In situ single potential alteration infrared reflectance spectroscopy (SPAIRS) demonstrated that a lactone form of PN, rather than pyridoxal aldehyde, was likely formed, which was subsequently diffused into the thin layer solution and underwent hydrolysis slowly to pyridoxic acid (PA) as the final product. In addition, the adsorption of PN at Au electrode was characterized by in situ subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS) method, which revealed that the adsorption of deprotonated PN, via nitrogen atom in vertical configuration on electrode surface, occurred from -0.5 V versus Ag vertical bar AgCl vertical bar KCl(sat), which was much lower than the potential of PN electrooxidation observed from ca. 0 V

  4. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    International Nuclear Information System (INIS)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares

    2017-01-01

    Beryl, Be_3Al_2(SiO_3)_6, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm"-"1 may be related to the position of Na"+ ion in the crystal lattice of beryl. (author)

  5. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Directory of Open Access Journals (Sweden)

    Danielle Gomides Alkmim

    Full Text Available Abstract Beryl, Be3Al2(SiO36, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm-1 may be related to the position of Na+ ion in the crystal lattice of beryl.

  6. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Aydin, Halil Murat; Hu, Bin; Suso, Josep Sulé; El Haj, Alicia; Yang, Ying

    2011-02-21

    The key criteria for assessing the success of bone tissue engineering are the quality and quantity of the produced minerals within the cultured constructs. The accumulation of calcium ions and inorganic phosphates in culture medium serves as nucleating agents for the formation of hydroxyapatite, which is the main inorganic component of bone. Bone nodule formation is one of the hallmarks of mineralization in such cell cultures. In this study, we developed a new two-step procedure to accelerate bone formation in which mouse bone cell aggregates were produced first on various chemically treated non-adhesive substrates. After this step, the bone cells' growth and mineralization were followed in conventional culture plates. The number and size of cell aggregates were studied with light microscopy. The minerals' formation in the form of nodules produced by the cell aggregates and the bone crystal quality were studied with Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra of the ash specimens (mineral phase only) from thermal gravimetric analysis (TGA) provided valuable information of the quality of the minerals. The υ(4) PO(4) region (550-650 cm(-1)), which reveals apatitic and non-apatitic HPO(4) or PO(4) environments, and phosphate region (910-1180 cm(-1)) were examined for the minerals produced in the form of nodules. The peak position and intensity of the spectra demonstrate that the quality of the bone produced by cell aggregates, especially from the bigger ones, which were formed on Plunoric treated substrates, exhibit a composition more similar to that of native bone. This work establishes a new protocol for high quality bone formation and characterization, with the potential to be applied to bone tissue engineering.

  7. [Infrared spectroscopic analysis of Guilin watermelon frost products].

    Science.gov (United States)

    Huang, Dong-lan; Chen, Xiao-kang; Xu, Yong-qun; Sun, Su-qin; Zhou, Qun; Lu, Wen-guan

    2012-08-01

    The objective of the present study is to analyze different products of Guilin watermelon frost by Fourier transform infrared spectroscopy (FTIR), second derivative infrared spectroscopy and two-dimensional correlation spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicates that samples from the same factory but of different brands had some dissimilarities in the IR spectra, and the type and content of accessories of them were different compared with conventional IR spectra of samples, peaks at 638 and 616 cm(-1) all arise from anhydrous sodium sulfate in watermelon frost spray and watermelon frost capsule; the characteristic absorption peaks of the sucrose, dextrin or other accessories can be seen clearly in the spectra of watermelon frost throat-clearing buccal tablets, watermelon frost throat tablets and watermelon frost lozenge. And the IR spectra of watermelon frost lozenge is very similar to the IR spectra of sucrose, so it can be easily proved that the content of sucrose in watermelon frost lozenge is high. In the 2D-IR correlation spectra, the samples presented the differences in the position, number and relative intensity of autopeaks and correlation peak clusters. Consequently, the macroscopical fingerprint characters of FTIR, second derivative infrared spectra and 2D-IR spectra can not only provide the information about main chemical constituents in medical materials, but also analyze and identify the type and content of accessories in Guilin watermelon frost. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  8. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  9. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    Science.gov (United States)

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.

  10. [Research on Rapid Discrimination of Edible Oil by ATR Infrared Spectroscopy].

    Science.gov (United States)

    Ma, Xiao; Yuan, Hong-fu; Song, Chun-feng; Hu, Ai-qin; Li, Xiao-yu; Zhao, Zhong; Li, Xiu-qin; Guo Zhen; Zhu, Zhi-qiang

    2015-07-01

    A rapid discrimination method of edible oils, KL-BP model, was proposed by attenuated total reflectance infrared spectroscopy. The model extracts the characteristic of classification from source data by KL and reduces data dimension at the same time. Then the neural network model is constructed by the new data which as the input of the model. 84 edible oil samples which include sesame oil, corn oil, canola oil, blend oil, sunflower oil, peanut oil, olive oil, soybean oil and tea seed oil, were collected and their infrared spectra determined using an ATR FT-IR spectrometer. In order to compare the method performance, principal component analysis (PCA) direct-classification model, KL direct-classification model, PLS-DA model, PCA-BP model and KL-BP model are constructed in this paper. The results show that the recognition rates of PCA, PCA-BP, KL, PLS-DA and KL-BP are 59.1%, 68.2%, 77.3%, 77.3% and 90.9% for discriminating the 9 kinds of edible oils, respectively. KL extracts the eigenvector which make the distance between different class and distance of every class ratio is the largest. So the method can get much more classify information than PCA. BP neural network can effectively enhance the classification ability and accuracy. Taking full of the advantages of KL in extracting more category information in dimension reducing and the features of BP neural network in self-learning, adaptive, nonlinear, the KL-BP method has the best classification ability and recognition accuracy and great importance for rapidly recognizing edible oil in practice.

  11. Interaction between vitamin D 2 and magnesium in liposomes: Differential scanning calorimetry and FTIR spectroscopy studies

    Science.gov (United States)

    Toyran, Neslihan; Severcan, Feride

    2007-08-01

    Magnesium (Mg 2+) ion is of great importance in physiology by its intervention in 300 enzymatic systems, its role in membrane structure, its function in neuromuscular excitability and vitamin D metabolism and/or action. In the present study, the interaction of Mg 2+, at low (1 mole %) and high (7 mole %) concentrations with dipalmitoyl phosphatidylcholine (DPPC) liposomes has been studied in the presence and absence of vitamin D 2 (1 mole %) by using two noninvasive techniques, namely differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. DSC studies reveal that the presence of vitamin D 2 in the pure or Mg 2+ (at both low and high concentrations) containing liposomes diminishes the pretransition. The calorimetric results also reveal that, inclusion of Mg 2+ (more significantly at high concentration) into pure or vitamin D 2 containing DPPC liposomes increases the main phase transition temperature. The investigation of the CH 2 symmetric, the CH 3 asymmetric, the C dbnd O stretching, and the PO2- antisymmetric double bond stretching bands in FTIR spectra with respect to changes occurring in the wavenumber and/or the bandwidth values as a function of temperature reveal that, inclusion of vitamin D 2 or Mg 2+ into pure DPPC liposomes orders and decreases the dynamics of the acyl chains in both gel and liquid-crystalline phases and does not induce hydrogen bond formation in the interfacial region. Furthermore, the dynamics of the head groups of the liposomes decreases in both phases. Our findings reveal that, simultaneous presence of vitamin D 2 and Mg 2+ alters the effect of each other, which is reflected as a decrease in the interactions between these two additives within the model membrane.

  12. Development of a method for determination of fatty acid using FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Dimas Augusto Morozin Zaia

    2011-05-01

    Full Text Available In the present paper a new methodology has been developed for determination of fatty acids in biological systems using FT-IR spectroscopy. For this method is not necessary chromophore reagent or pre sample preparation. Palmitic acid was chosen as standard, because it is found in several biological systems. The FT-IR spectrum of palmitic acid showed two absorption bands in the region of 2852 and 2920 cm-1 attributed to CH stretching. The results for these bands showed that the Beer-Lambert Law was followed in wide range of concentration of palmitic acid (14 to 257 mmol L-1. Potassium ferricyanide (K3[Fe(CN6] was used as internal standard. Several interferents were tested and only cholesterol, ferric chloride (higher concentration, mixture of amino acids for the band at 2919 cm-1 (higher concentration and triglyceride could be interferent if they appear in high concentration. Thus, this new methodology has advantage to be not expensive and simple.

  13. Preliminary study of corrosion mechanisms of actinides alloys: calibration of FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Magnien, Veronique; Cadignan, Marx; Faivret, Olivier; Rosa, Gaelle

    2008-01-01

    In situ analyzes of gaseous atmospheres could be performed by FT-IR spectroscopy in order to study the corrosion reactions of actinides. Nevertheless experimental conditions and the nature of studied species have a strong effect on IR absorption laws. Thus a prior calibration of our set-up is required to obtain an accurate estimation of gas concentration. For this purpose, the behavior of several air pure gases has been investigated according to their concentration from IR spectra. Reproducible results revealed subsequent increases of the most significant peak areas with gas pressure and small deviations from Beer Lambert's law. This preliminary work allowed to determine precise absorption laws for each studied pure gas in our in situ experimental conditions. Besides our FT-IR set-up was well suitable to quantitative analysis of gaseous atmosphere during corrosion reactions. Finally the effect of foreign gas will be investigated through more complex air mixtures to obtain a complete calibration network. (authors)

  14. Using Fourier transform infrared spectroscopy to evaluate biological effects induced by photodynamic therapy.

    Science.gov (United States)

    Lima, Cassio A; Goulart, Viviane P; Correa, Luciana; Zezell, Denise M

    2016-07-01

    Vibrational spectroscopic methods associated with multivariate statistical techniques have been succeeded in discriminating skin lesions from normal tissues. However, there is no study exploring the potential of these techniques to assess the alterations promoted by photodynamic effect in tissue. The present study aims to demonstrate the ability of Fourier Transform Infrared (FTIR) spectroscopy on Attenuated total reflection (ATR) sampling mode associated with principal component-linear discriminant analysis (PC-LDA) to evaluate the biochemical changes caused by photodynamic therapy (PDT) in skin neoplastic tissue. Cutaneous neoplastic lesions, precursors of squamous cell carcinoma (SCC), were chemically induced in Swiss mice and submitted to a single session of 5-aminolevulinic acid (ALA)-mediated PDT. Tissue sections with 5 μm thickness were obtained from formalin-fixed paraffin-embedded (FFPE) and processed prior to the histopathological analysis and spectroscopic measurements. Spectra were collected in mid-infrared region using a FTIR spectrometer on ATR sampling mode. Principal Component-Linear Discriminant Analysis (PC-LDA) was applied on preprocessed second derivatives spectra. Biochemical changes were assessed using PCA-loadings and accuracy of classification was obtained from PC-LDA . Sub-bands of Amide I (1,624 and 1,650 cm(-1) ) and Amide II (1,517 cm(-1) ) indicated a protein overexpression in non-treated and post-PDT neoplastic tissue compared with healthy skin, as well as a decrease in collagen fibers (1,204, 1,236, 1,282, and 1,338 cm(-1) ) and glycogen (1,028, 1,082, and 1,151 cm(-1) ) content. Photosensitized neoplastic tissue revealed shifted peak position and decreased β-sheet secondary structure of proteins (1,624 cm(-1) ) amount in comparison to non-treated neoplastic lesions. PC-LDA score plots discriminated non-treated neoplastic skin spectra from post-PDT cutaneous lesions with accuracy of 92.8%, whereas non-treated neoplastic

  15. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2016-05-01

    Full Text Available Turmeric powder (Curcuma longa L. is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman and Fourier Transform-Infra Red (FT-IR spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w. FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively.

  16. Matrix isolation FT-IR spectroscopy and molecular orbital study of sarcosine methyl ester

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2004-01-01

    N-methylglycine methyl ester (sarcosine-Me) has been studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d,p) and 6-31++G(d,p) basis set, respectively. Twelve different conformers were located in the potential energy surface of the studied compound, with the ASC conformer being the ground conformational state. This form is analogous to the dimethylglycine methyl ester most stable conformer and...

  17. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  18. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    Science.gov (United States)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  19. Infrared spectroscopy of mass-selected carbocations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Michael A. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  20. Rapid detection and quantification of haptophyte alkenones by Fourier transform infrared spectroscopy (FTIR)

    Czech Academy of Sciences Publication Activity Database

    Pelusi, A.; Hanawa, Y.; Araie, H.; Suzuki, I.; Giordano, Mario; Shiraiwa, I.

    2016-01-01

    Roč. 19, NOVEMBER 2016 (2016), s. 48-56 ISSN 2211-9264 Institutional support: RVO:61388971 Keywords : Rapid detection * haptophyte alkenones * Fourier spectroscopy Subject RIV: EE - Microbiology, Virology Impact factor: 3.994, year: 2016