WorldWideScience

Sample records for infrared nir reflectance

  1. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    International Nuclear Information System (INIS)

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphael; Rangon, Luc; Barthes, Bernard G.

    2009-01-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q 2 = 0.75, R 2 = 0.82 for the total set), especially for samples with chlordecone content -1 or when the sample set was rather homogeneous (Q 2 = 0.91, R 2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg -1 , nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  2. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2009-11-15

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  3. The application of Near Infrared Reflectance Spectroscopy (NIRS) for the quantitative analysis of hydrocortisone in primary materials

    OpenAIRE

    A. PITTAS; C. SERGIDES; K. NIKOLICH

    2001-01-01

    Near Infrared Reflectance Spectroscopy (NIRS), coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to deve...

  4. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  5. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    Science.gov (United States)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  6. Suitability of faecal near-infrared reflectance spectroscopy (NIRS) predictions for estimating gross calorific value

    Energy Technology Data Exchange (ETDEWEB)

    De la Roza-Delgado, B.; Modroño, S.; Vicente, F.; Martínez-Fernández, A.; Soldado, A.

    2015-07-01

    A total of 220 faecal pig and poultry samples, collected from different experimental trials were employed with the aim to demonstrate the suitability of Near Infrared Reflectance Spectroscopy (NIRS) technology for estimation of gross calorific value on faeces as output products in energy balances studies. NIR spectra from dried and grounded faeces samples were analyzed using a Foss NIRSystem 6500 instrument, scanning over the wavelength range 400-2500 nm. Validation studies for quantitative analytical models were carried out to estimate the relevance of method performance associated to reference values to obtain an appropriate, accuracy and precision. The results for prediction of gross calorific value (GCV) of NIRS calibrations obtained for individual species showed high correlation coefficients comparing chemical analysis and NIRS predictions, ranged from 0.92 to 0.97 for poultry and pig. For external validation, the ratio between the standard error of cross validation (SECV) and the standard error of prediction (SEP) varied between 0.73 and 0.86 for poultry and pig respectively, indicating a sufficiently precision of calibrations. In addition a global model to estimate GCV in both species was developed and externally validated. It showed correlation coefficients of 0.99 for calibration, 0.98 for cross-validation and 0.97 for external validation. Finally, relative uncertainty was calculated for NIRS developed prediction models with the final value when applying individual NIRS species model of 1.3% and 1.5% for NIRS global prediction. This study suggests that NIRS is a suitable and accurate method for the determination of GCV in faeces, decreasing cost, timeless and for convenient handling of unpleasant samples.. (Author)

  7. Predicting glycogen concentration in the foot muscle of abalone using near infrared reflectance spectroscopy (NIRS).

    Science.gov (United States)

    Fluckiger, Miriam; Brown, Malcolm R; Ward, Louise R; Moltschaniwskyj, Natalie A

    2011-06-15

    Near infrared reflectance spectroscopy (NIRS) was used to predict glycogen concentrations in the foot muscle of cultured abalone. NIR spectra of live, shucked and freeze-dried abalones were modelled against chemically measured glycogen data (range: 0.77-40.9% of dry weight (DW)) using partial least squares (PLS) regression. The calibration models were then used to predict glycogen concentrations of test abalone samples and model robustness was assessed from coefficient of determination of the validation (R2(val)) and standard error of prediction (SEP) values. The model for freeze-dried abalone gave the best prediction (R2(val) 0.97, SEP=1.71), making it suitable for quantifying glycogen. Models for live and shucked abalones had R2(val) of 0.86 and 0.90, and SEP of 3.46 and 3.07 respectively, making them suitable for producing estimations of glycogen concentration. As glycogen is a taste-active component associated with palatability in abalone, this study demonstrated the potential of NIRS as a rapid method to monitor the factors associated with abalone quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Development of paints with infrared radiation reflective properties

    Directory of Open Access Journals (Sweden)

    Eliane Coser

    2015-06-01

    Full Text Available AbstractLarge buildings situated in hot regions of the Globe need to be agreeable to their residents. Air conditioning is extensively used to make these buildings comfortable, with consequent energy consumption. Absorption of solar visible and infrared radiations are responsible for heating objects on the surface of the Earth, including houses and buildings. To avoid excessive energy consumption, it is possible to use coatings formulated with special pigments that are able to reflect the radiation in the near- infrared, NIR, spectrum. To evaluate this phenomenon an experimental study about the reflectivity of paints containing infrared-reflective pigments has been made. By irradiating with an IR source and by measuring the surface temperatures of the samples we evaluated: color according to ASTM D 2244-14, UV/VIS/NIR reflectance according to ASTM E 903-12 and thermal performance. Additionally, the spectral reflectance and the IR emittance were measured and the solar reflectance of the samples were calculated. The results showed that plates coated with paints containing IR-reflecting pigments displayed lower air temperature on the opposite side as compared to conventional coatings, indicating that they can be effective to reflect NIR and decrease the temperature of buildings when used in roofs and walls.

  9. Agricultural applications of NIR reflectance and transmittance

    DEFF Research Database (Denmark)

    Gislum, René

    2009-01-01

    There has been a considerable increase in the use of near infrared (NIR) reflectance and transmittance spectroscopy technologies for rapid determination of quality parameters in agriculture, including applications within crop product quality, feed and food quality, manure quality, soil analyses etc....... As a result it was decided to arrange a seminar within the Nordic Association of Agricultural Scientists. This is a report of the meeting....

  10. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  11. The application of Near Infrared Reflectance Spectroscopy (NIRS for the quantitative analysis of hydrocortisone in primary materials

    Directory of Open Access Journals (Sweden)

    A. PITTAS

    2001-03-01

    Full Text Available Near Infrared Reflectance Spectroscopy (NIRS, coupled with fiber optic probes, has been shown to be a quick and reliable analytical tool for quality assurance and quality control in the pharmaceutical industry, both for verifications of raw materials and quantification of the active ingredients in final products. In this paper, a typical pharmaceutical product, hydrocortisone sodium succinate, is used as an example for the application of NIR spectroscopy for quality control. In order to develop an NIRS method with higher precision and accuracy than the official UV/VIS spectroscopic method (BP '99, 19 samples, taken from one year’s production and several prepared in the laboratory, having a hydrocortisone sodium succinate concentration in the range from 89.05%to 95.83 %, were analysed by NIR and UV/VIS spectroscopy. Three frequency ranges: 5939.73–5627.32 cm-1; 4863.64 – 4574.36 cm-1; 4308.23–4200.24 cm-1, with the best positive correlation between the changes in the spectral and concentration data, were chosen. The validity of the developed NIRS chemometric method for the determination of the hydrocortisone sodium succinate concentration, constructed by the partial least squares (PLS regression technique, is discussed. A correlation coefficient of 0.9758 and a standard error of cross validation (RMSECVof 1.06%were found between the UV/VI Sand òhe NIR spectroscopic results of the hydrocortisone sodium succinate concentration in the samples.

  12. [Near infrared reflectance spectroscopy (NIRS): a novel approach to reconstructing historical changes of primary productivity in Antarctic lake].

    Science.gov (United States)

    Chen, Qian-Qian; Liu, Xiao-Dong; Liu, Wen-Qi; Jiang, Shan

    2011-10-01

    Compared with traditional chemical analysis methods, reflectance spectroscopy has the advantages of speed, minimal or no sample preparation, non-destruction, and low cost. In order to explore the potential application of spectroscopy technology in the paleolimnological study on Antarctic lakes, we took a lake sediment core in Mochou Lake at Zhongshan Station of Antarctic, and analyzed the near infrared reflectance spectroscopy (NIRS) data in the sedimentary samples. The results showed that the factor loadings of principal component analysis (PCA) displayed very similar depth-profile change pattern with the S2 index, a reliable proxy for the change in historical lake primary productivity. The correlation analysis showed that the values of PCA factor loading and S2 were correlated significantly, suggesting that it is feasible to infer paleoproductivity changes recorded in Antarctic lakes using NIRS technology. Compared to the traditional method of the trough area between 650 and 700 nm, the authors found that the PCA statistical approach was more accurate for reconstructing the change in historical lake primary productivity. The results reported here demonstrate that reflectance spectroscopy can provide a rapid method for the reconstruction of lake palaeoenviro nmental change in the remote Antarctic regions.

  13. A New Platform for Investigating In-Situ NIR Reflectance in Snow

    Science.gov (United States)

    Johnson, M.; Taubenheim, J. R. L.; Stevenson, R.; Eldred, D.

    2017-12-01

    In-situ near infrared (NIR) reflectance measurements of the snowpack have been shown to have correlations to valuable snowpack properties. To-date many studies take these measurements by digging a pit and setting up a NIR camera to take images of the wall. This setup is cumbersome, making it challenging to investigate things like spatial variability. Over the course of 3 winters, a new device has been developed capable of mitigating some of the downfalls of NIR open pit photography. This new instrument is a NIR profiler capable of taking NIR reflectance measurements without digging a pit, with most measurements taking less than 30 seconds to retrieve data. The latest prototype is built into a ski pole and automatically transfers data wirelessly to the users smartphone. During 2016-2017 winter, the device was used by 37 different users resulting in over 4000 measurements in the Western United States, demonstrating a dramatic reduction in time to data when compared to other methods. Presented here are some initial findings from a full winter of using the ski pole version of this device.

  14. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    African Journals Online (AJOL)

    resias

    Keywords: NIRS, ostrich TMR, chemical composition, nutritive value ... For adequate feeding of livestock, farmers need information about the nutritive value of available .... presented a SD/SECV ratio value of less than three, which is regarded as fair, .... The current and future role of near infrared reflectance spectroscopy in.

  15. Evaluation of PE Films Having NIR-Reflective Additives for Greenhouse Applications in Arid Regions

    Directory of Open Access Journals (Sweden)

    Syed K. H. Gulrez

    2013-01-01

    Full Text Available Linear-low-density-polyethylene- (LLDPE- based formulations with several near-infrared- (NIR- reflective pigments were prepared by melt blending technique and their subsequent films were prepared by blown film extrusion process. Thermal properties of these films were evaluated using differential scanning calorimetry (DSC. The results showed that the melting and crystallization temperatures (Tm and Tc, resp. of these formulations were almost similar to that of control resin. The melt viscosity was measured by stress-controlled rotational rheometer and melt flow index (MFI instruments. Rheological measurements indicated that the blend formulations with NIR-reflective additive have similar melt viscoelastic behavior (storage modulus and dynamic viscosity to the control resin. The mechanical test performed on NIR-reflective films showed similar values of tensile strength for blend samples as that of control resin. The spectral radiometric properties of the blend films were evaluated in the solar wavelength range of 200–1100 nm and found to be improved over the control sample without having NIR-reflective pigment.

  16. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    Science.gov (United States)

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  17. CPV system based on NIR reflecting lamellae integrated into a greenhouse: Optimizing of Optics

    NARCIS (Netherlands)

    Piet Sonneveld; Gert-Jan Swinkels

    2010-01-01

    In an previous research project a new type of greenhouse with an integrated concentrated photovoltaic system (CPV) was developed which has an integrated filter for reflecting the near infrared radiation (NIR) to the greenhouse and exploiting this radiation in a solar energy system. The performance

  18. Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Gislum, René

    2014-01-01

    A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay content...

  19. The Effect of Motion Artifacts on Near-Infrared Spectroscopy (NIRS Data and Proposal of a Video-NIRS System

    Directory of Open Access Journals (Sweden)

    Masayuki Satoh

    2017-11-01

    Full Text Available Aims: The aims of this study were (1 to investigate the influence of physical movement on near-infrared spectroscopy (NIRS data, (2 to establish a video-NIRS system which simultaneously records NIRS data and the subject’s movement, and (3 to measure the oxygenated hemoglobin (oxy-Hb concentration change (Δoxy-Hb during a word fluency (WF task. Experiment 1: In 5 healthy volunteers, we measured the oxy-Hb and deoxygenated hemoglobin (deoxy-Hb concentrations during 11 kinds of facial, head, and extremity movements. The probes were set in the bilateral frontal regions. The deoxy-Hb concentration was increased in 85% of the measurements. Experiment 2: Using a pillow on the backrest of the chair, we established the video-NIRS system with data acquisition and video capture software. One hundred and seventy-six elderly people performed the WF task. The deoxy-Hb concentration was decreased in 167 subjects (95%. Experiment 3: Using the video-NIRS system, we measured the Δoxy-Hb, and compared it with the results of the WF task. Δoxy-Hb was significantly correlated with the number of words. Conclusion: Like the blood oxygen level-dependent imaging effect in functional MRI, the deoxy-Hb concentration will decrease if the data correctly reflect the change in neural activity. The video-NIRS system might be useful to collect NIRS data by recording the waveforms and the subject’s appearance simultaneously.

  20. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection.

    Science.gov (United States)

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei

    2010-11-08

    We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (ppolarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.

  1. Moisture content determination in solid biofuels by dielectric and NIR reflection methods

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter Daugbjerg; Morsing, Merete [Department of Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe (TFZ), Schulgasse 18, D-94315 Straubing (Germany); Temmerman, Michael; Rabier, Fabienne [Departement Genie Rural, Chee de Namur 146, B-5030 Gembloux (Belgium)

    2006-11-15

    One near infrared (NIR) reflectance and five dielectric moisture meters were tested for their capability of measuring moisture content (MC) in solid biofuels. Ninety-eight samples were tested at up to eight moisture levels covering the MC range from fresh fuel to approximately 10% MC (w.b.). The fuel types ranged from typical solid biofuels such as coniferous and deciduous wood chips over short rotation coppice (SRC) to sunflower seed and olive stones. The most promising calibrations were obtained with the NIR reflection method and two dielectric devices where the sample is placed in a container integrated in the device. The calibration equations developed show that there is a profound influence from both laboratory and fuel type. It is suggested that individual calibrations that are based on the specific fuel types used at the individual heating plant could be applied. (author)

  2. The Development of Novel Near-Infrared (NIR Tetraarylazadipyrromethene Fluorescent Dyes

    Directory of Open Access Journals (Sweden)

    Young-Tae Chang

    2013-05-01

    Full Text Available Novel structures of an near-infrared (NIR tetraarylazadipyrromethene (aza-BODIPY series have been prepared. We designed the core structure containing two amido groups at the para-position of the aromatic rings. The amido group was incorporated to secure insensitivity to pH and to ensure a bathochromic shift to the NIR region. Forty members of aza-BODIPY compounds were synthesized by substitution of the acetyl group with commercial amines on the alpha bromide. The physicochemical properties and photostability were investigated and the fluorescence emission maxima (745~755 nm were found to be in the near infrared (NIR range of fluorescence.

  3. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... tomography (133Xe-SPECT) and the corrected BFI value. It was concluded, that it was not possible to obtain reliable BFI data with the ICG CW-NIRS method. NIRS measurements of low frequency oscillations (LFOs) may be a reliable method to investigate vascular alterations in neurovascular diseases......, but this requires an acceptable LFOs variation between hemispheres and over time in the healthy brain. The second study therefore investigated day-to-day and hemispheric variations in LFOs with NIRS. It was shown that NIRS might be useful in assessing LFOs between hemispheres, as well as interhemispheric phase...

  4. Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil.

    Science.gov (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Leung, Hei-Wun

    2008-02-13

    Honghua Oil (HHO), a traditional Chinese medicine (TCM) oil preparation, is a mixture of several plant essential oils. In this text, the extended ranges of Fourier transform mid-infrared (FT-MIR) and near infrared (FT-NIR) were recorded for 48 commercially available HHOs of different batches from nine manufacturers. The qualitative and quantitative analysis of three marker components, alpha-pinene, methyl salicylate and eugenol, in different HHO products were performed rapidly by the two vibrational spectroscopic methods, i.e. MIR with horizontal attenuated total reflection (HATR) accessory and NIR with direct sampling technique, followed by partial least squares (PLS) regression treatment of the set of spectra obtained. The results indicated that it was successful to identify alpha-pinene, methyl salicylate and eugenol in all of the samples by simple inspection of the MIR-HATR spectra. Both PLS models established with MIR-HATR and NIR spectral data using gas chromatography (GC) peak areas as calibration reference showed a good linear correlation for each of all three target substances in HHO samples. The above spectroscopic techniques may be the promising methods for the rapid quality assessment/quality control (QA/QC) of TCM oil preparations.

  5. Characterizing and Authenticating Montilla-Moriles PDO Vinegars Using Near Infrared Reflectance Spectroscopy (NIRS Technology

    Directory of Open Access Journals (Sweden)

    María-José De la Haba

    2014-02-01

    Full Text Available This study assessed the potential of near infrared (NIR spectroscopy as a non-destructive method for characterizing Protected Designation of Origin (PDO “Vinagres de Montilla-Moriles” wine vinegars and for classifying them as a function of the manufacturing process used. Three spectrophotometers were evaluated for this purpose: two monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; spectral range 400–2,500 nm in both cases and a diode-array instrument (Corona 45 VIS/NIR; spectral range 380–1,700 nm. A total of 70 samples were used to predict major chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color (tonality and intensity, and alcohol content, and to construct models for the classification of vinegars as a function of the manufacturing method used. The results obtained indicate that this non-invasive technology can be used successfully by the vinegar industry and by PDO regulators for the routine analysis of vinegars in order to authenticate them and to detect potential fraud. Slightly better results were achieved with the two monochromator instruments. The findings also highlight the potential of these NIR instruments for predicting the manufacturing process used, this being of particular value for the industrial authentication of traditional wine vinegars.

  6. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  7. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop

    NARCIS (Netherlands)

    Stanghellini, C.; Jianfeng, D.; Kempkes, F.L.K.

    2011-01-01

    The effect of Near Infrared (NIR)-reflective screen material on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop was investigated in an experiment whereby identical climate was ensured in greenhouse compartments installed with either NIR-reflective or

  8. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  9. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal.

    Science.gov (United States)

    Haughey, Simon A; Graham, Stewart F; Cancouët, Emmanuelle; Elliott, Christopher T

    2013-02-15

    Soya bean products are used widely in the animal feed industry as a protein based feed ingredient and have been found to be adulterated with melamine. This was highlighted in the Chinese scandal of 2008. Dehulled soya (GM and non-GM), soya hulls and toasted soya were contaminated with melamine and spectra were generated using Near Infrared Reflectance Spectroscopy (NIRS). By applying chemometrics to the spectral data, excellent calibration models and prediction statistics were obtained. The coefficients of determination (R(2)) were found to be 0.89-0.99 depending on the mathematical algorithm used, the data pre-processing applied and the sample type used. The corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.276% and 0.134-0.368%, respectively, again depending on the chemometric treatment applied to the data and sample type. In addition, adopting a qualitative approach with the spectral data and applying PCA, it was possible to discriminate between the four samples types and also, by generation of Cooman's plots, possible to distinguish between adulterated and non-adulterated samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Surface roughness and gloss study of prints: application of specular reflection at near infrared

    International Nuclear Information System (INIS)

    Silfsten, P; Dutta, R; Pääkkönen, P; Peiponen, K-E; Tåg, C-M; Gane, P A C

    2012-01-01

    Absolute reflectance data were measured with a spectrophotometer in the visible and near infrared (NIR) spectral range. The specular reflectance data in the NIR were used for the assessment of the surface roughness of magenta, yellow, cyan and black prints on paper. In addition, surface roughness data obtained from the prints with a mechanical diamond stylus, an optical profiling system and the spectrophotometer are compared with each other. The surface roughness obtained with the aid of the spectrophotometer data suggests a smoother surface than when measured with the diamond stylus and the optical profiling system. The gloss of the prints can be obtained from the absolute specular reflectance spectra in the spectral region of visible light. It is shown that specular reflection data at a fixed wavelength in the NIR are useful also in the interpretation of gloss in the visible spectral range, but using an unconventional grazing angle of incidence. (paper)

  11. Synthesis, characterization and optical properties of a high NIR reflecting yellow inorganic pigment: Mo6+ doped Y2Ce2O7 as a cool colorant

    International Nuclear Information System (INIS)

    Vishnu, V.S.; Reddy, M.L.P.

    2010-01-01

    Full text: Pigments possessing the ability to confer high solar reflectance have received considerable attention in recent years. The inorganic class of NIR reflective pigments are mainly metal oxides and are primarily employed in two applications: (i) visual camouflage and (ii) reducing heat build up. More than half of the solar radiation consists of near-infrared radiation (52%), the remaining being 43% visible light and 5% ultraviolet radiation. Over heating due to solar radiation negatively affects comfort in the built environment and contributes substantially to electrical consumption for air conditioning and release of green house gases. A pigment which has strong reflections in the NIR region (780-2500 nm) can be referred to as a 'cool' pigment. However, most of the NIR reflective inorganic pigments particularly yellow (eg. cadmium yellow, lead chromate, chrome titanate yellow etc.) contain toxic metals and hence their consumption is being limited. Replacing them with environmentally benign cool pigments that absorb less NIR radiation can yield coatings similar in color, but with higher NIR reflectance. A new class of yellow inorganic pigments possessing high near-infrared reflectance (above 90% at 1100 nm), having the general formula Y 2 Ce 2-x Mo x O 7+δ (x ranges from 0 to 0.5) were synthesized by traditional solid state route. The synthesized samples were characterized by powder X-ray diffraction, Scanning Electron Microscopy, UV-Vis-NIR Diffuse Reflectance Spectroscopy, CIE 1976Lab color scales and TG/DTA analysis. XRD analysis reveals the existence of a major cubic fluorite phase for the pigment samples. The diffuse reflectance analysis of the pigments shows a significant shift in the absorption edge towards higher wavelengths (from 410 nm to 506 nm) for the molybdenum doped samples in comparison with the parent compound. The band gap of the designed pigments changes from 3.01 to 2.44 eV and displays colors varying from ivory white to yellow. The

  12. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    Science.gov (United States)

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  13. Comparison of Attenuated Total Reflectance Mid-Infrared, Near Infrared, and 1H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee’s Geographical Origin

    Directory of Open Access Journals (Sweden)

    Jessica Medina

    2017-01-01

    Full Text Available The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR, near infrared (NIR, and mid-infrared (mIR have arisen as strong candidates for the task. Although a body of work exists that reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1H-NMR, Attenuated Total Reflectance mIR (ATR-mIR, and NIR applied to fraud detection in Colombian coffee. For each technique, we built classification models for discrimination by species (C. arabica versus C. canephora (or robusta and by origin (Colombia versus other C. arabica using a common set of coffee samples. All techniques successfully discriminated samples by species, as expected. Regarding origin determination, ATR-mIR and 1H-NMR showed comparable capacity to discriminate Colombian coffee samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1H-NMR and more discriminating compared to NIR.

  14. [Progress in application of near infrared reflectance spectroscopy to the study of ruminant nutrition].

    Science.gov (United States)

    Guo, Xu-Sheng; Shang, Zhan-Huan; Fang, Xiang-Wen; Long, Rui-Jun

    2009-03-01

    The near infrared reflectance spectroscopy (NIRS) technique has been widely used in the study of ruminant nutrition with many of its operational merits such as facility, shortcut and accuracy, etc. Study suggested that the standard error of cross-validation (SECV) ranges from 1.6% to 2.8% in predicting organic matter digestion of ruminant diet by using the NIRS technique; the chemical and biological compositions and the microbial protein proportion in the duodenal digesta can be predicted accurately using the NIRS. However, the kinetic parameters of degradation are not well predicted; The prediction of intake of stall feeding animals by using NIRS is similar to the determination of in vivo method, but the standard error of prediction is about 14% when using the NIRS to predict intake of grazing animals. All of the studies suggest that big progress has been made in using NIRS technique to predict feed digestion and evaluate the diet quality and intake of ruminant animals, which also suggest that the NIRS technique has a wide prospect in the study of ruminant nutrition.

  15. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    Science.gov (United States)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  16. Autofluorescence Imaging With Near-Infrared Excitation:Normalization by Reflectance to Reduce Signal From Choroidal Fluorophores

    Science.gov (United States)

    Cideciyan, Artur V.; Swider, Malgorzata; Jacobson, Samuel G.

    2015-01-01

    Purpose. We previously developed reduced-illuminance autofluorescence imaging (RAFI) methods involving near-infrared (NIR) excitation to image melanin-based fluorophores and short-wavelength (SW) excitation to image lipofuscin-based flurophores. Here, we propose to normalize NIR-RAFI in order to increase the relative contribution of retinal pigment epithelium (RPE) fluorophores. Methods. Retinal imaging was performed with a standard protocol holding system parameters invariant in healthy subjects and in patients. Normalized NIR-RAFI was derived by dividing NIR-RAFI signal by NIR reflectance point-by-point after image registration. Results. Regions of RPE atrophy in Stargardt disease, AMD, retinitis pigmentosa, choroideremia, and Leber congenital amaurosis as defined by low signal on SW-RAFI could correspond to a wide range of signal on NIR-RAFI depending on the contribution from the choroidal component. Retinal pigment epithelium atrophy tended to always correspond to high signal on NIR reflectance. Normalizing NIR-RAFI reduced the choroidal component of the signal in regions of atrophy. Quantitative evaluation of RPE atrophy area showed no significant differences between SW-RAFI and normalized NIR-RAFI. Conclusions. Imaging of RPE atrophy using lipofuscin-based AF imaging has become the gold standard. However, this technique involves bright SW lights that are uncomfortable and may accelerate the rate of disease progression in vulnerable retinas. The NIR-RAFI method developed here is a melanin-based alternative that is not absorbed by opsins and bisretinoid moieties, and is comfortable to view. Further development of this method may result in a nonmydriatic and comfortable imaging method to quantify RPE atrophy extent and its expansion rate. PMID:26024124

  17. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    Science.gov (United States)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  18. [Near-infrared reflectance spectroscopy predicts protein, moisture and ash in beans].

    Science.gov (United States)

    Gao, Huiyu; Wang, Guodong; Men, Jianhua; Wang, Zhu

    2017-05-01

    To explore the potential of near-infrared reflectance( NIR)spectroscopy to determine macronutrient contents in beans. NIR spectra and analytical measurements of protein, moisture and ash were collected from 70 kinds of beans. Reference methods were used to analyze all the ground beans samples. NIR spectra on intact and ground beans samples were registered. Partial least-squares( PLS)regression models were developed with principal components analysis( PCA) to assign 49 bean accessions to a calibration data set and 21 accessions to an external validation set. For intact beans, the relative predictive determinant( RPD) values for protein and ash( 3. 67 and 3. 97, respectively) were good for screening. RPD value for moisture was only 1. 39, which was not recommended. For ground beans, the RPD values for protein, moisture and ash( 6. 63, 5. 25 and 3. 57, respectively) were good enough for screening. The protein, moisture and ash levels for intact and ground beans were all significantly correlated( P beans with no or easy sample preparation.

  19. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  20. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  1. Interference Tolerant Functional Near Infrared Spectrometer (fNIRS) for Cognitive State Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — Measuring hemoglobin concentration changes in the brain with Functional Near Infrared Spectroscopy (fNIRS) is a promising technique for monitoring cognitive state...

  2. Analysis of ecstasy tablets: comparison of reflectance and transmittance near infrared spectroscopy.

    Science.gov (United States)

    Schneider, Ralph Carsten; Kovar, Karl-Artur

    2003-07-08

    Calibration models for the quantitation of commonly used ecstasy substances have been developed using near infrared spectroscopy (NIR) in diffuse reflectance and in transmission mode by applying seized ecstasy tablets for model building and validation. The samples contained amphetamine, N-methyl-3,4-methylenedioxy-amphetamine (MDMA) and N-ethyl-3,4-methylenedioxy-amphetamine (MDE) in different concentrations. All tablets were analyzed using high performance liquid chromatography (HPLC) with diode array detection as reference method. We evaluated the performance of each NIR measurement method with regard to its ability to predict the content of each tablet with a low root mean square error of prediction (RMSEP). Best calibration models could be generated by using NIR measurement in transmittance mode with wavelength selection and 1/x-transformation of the raw data. The models build in reflectance mode showed higher RMSEPs using as data pretreatment, wavelength selection, 1/x-transformation and a second order Savitzky-Golay derivative with five point smoothing was applied to obtain the best models. To estimate the influence of inhomogeneities in the illegal tablets, a calibration of the destroyed, i.e. triturated samples was build and compared to the corresponding data of the whole tablets. The calibrations using these homogenized tablets showed lower RMSEPs. We can conclude that NIR analysis of ecstasy tablets in transmission mode is more suitable than measurement in diffuse reflectance to obtain quantification models for their active ingredients with regard to low errors of prediction. Inhomogeneities in the samples are equalized when measuring the tablets as powdered samples.

  3. Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part I: Off-line NIR feasibility study for the characterization of potato composition

    NARCIS (Netherlands)

    Brunt, K.; Drost, W.C.

    2010-01-01

    An off-line near-infrared reflectance (NIR) feasibility study was conducted to explore the critical steps in the NIR determination of the major potato constituents (dry matter, starch, and protein) in relatively large (10 kg) potato samples. The results were important for the design of an automated

  4. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    Science.gov (United States)

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  5. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Jongguk Lim

    2017-09-01

    Full Text Available The purpose of this study is to use near-infrared reflectance (NIR spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method.

  6. Measurement of sugar content of watermelon using near-infrared reflectance spectroscopy in comparison with dielectric property

    Science.gov (United States)

    Tao, Xuemei; Bao, Yidan

    2006-09-01

    The sugar content of watermelon is important to its taste thus influences the market. It's difficult to know whether the melon is sweet or not for consumers. We tried to develop a convenient meter to determine the sugar of watermelon. The first objective of this paper was to demonstrate the feasibility of using a near-infrared reflectance spectrometer (NIRS) to investigate the relationship between sugar content of watermelon and absorption spectra. The NIRS reflectance of nondestructive watermelon was measured with a Visible/NIR spectrophotometer in 325-1075nm range. The sugar content of watermelon was obtained with a handhold sugar content meter. The second objective was to measure the watermelon's dielectric property, such as dielectric resistance, capacitance, quality factor and dielectric loss. A digital electric bridge instrument was used to get the dielectric property. The experimental results show that they were related to watermelon's sugar content. A comparison between the two methods was made in the paper. The model derived from NIRS reflection is useful for class identification of Zaochun Hongyu watermelon though it's not quite accurate in sweetness prediction (the max. deviation is 0.7). Electric property bears little relation to sugar content of watermelon at this experiment and it couldn't be used as non-destructive inspection method.

  7. Near-infrared spectroscopy (NIRS) in a piglet model

    DEFF Research Database (Denmark)

    Clausen, Nicola Groes; Spielmann, Nelly; Ringer, Simone K.

    2017-01-01

    Near-infrared spectroscopy (NIRS) in a piglet model: readings are influenced by the colour of the cover Clausen NG1,2, Spielmann N1,3, Weiss M1,3, Ringer SK4 1Children’s Research Center, University Children’s Hospital of Zurich, Switzerland; 2Department of Anaesthesiology and Intensive Care, Odense....... The rSO2 was measured by placing NIRS sensors in the supra glabellar region. In 12 animals sensors were covered with a uni-coloured pink (P) napkin and a turquoise (T) napkin in a random order (Setting A). In further 13 animals sensors were covered with blue-coloured surgical drape (SD) and a napkin...... with a reddish SantaClaus (SC) motive (Setting B). Uncovered (UC) baseline values were captured and measurements obtained for a period of three minutes. During measurements, the animals were kept in normoterm, normotensive, normoglycaemic and normoxic condition. Inspired oxygen fraction and ventilatory settings...

  8. Prediction of biogas yield and its kinetics in reed canary grass using near infrared reflectance spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Gislum, René; Jørgensen, Uffe

    2013-01-01

    A rapid method is needed to assess biogas and methane yield potential of various kinds of substrate prior to anaerobic digestion. This study reports near infrared reflectance spectroscopy (NIRS) as a rapid alternative method to the conventional batch methods for prediction of specific biogas yield...

  9. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: reflectance or transmittance?

    Science.gov (United States)

    Aernouts, B; Polshin, E; Lammertyn, J; Saeys, W

    2011-11-01

    The composition of produced milk has great value for the dairy farmer. It determines the economic value of the milk and provides valuable information about the metabolism of the corresponding cow. Therefore, online measurement of milk components during milking 2 or more times per day would provide knowledge about the current health and nutritional status of each cow individually. This information provides a solid basis for optimizing cow management. The potential of visible and near-infrared (Vis/NIR) spectroscopy for predicting the fat, crude protein, lactose, and urea content of raw milk online during milking was, therefore, investigated in this study. Two measurement modes (reflectance and transmittance) and different wavelength ranges for Vis/NIR spectroscopy were evaluated and their ability to measure the milk composition online was compared. The Vis/NIR reflectance measurements allowed for very accurate monitoring of the fat and crude protein content in raw milk (R(2)>0.95), but resulted in poor lactose predictions (R(2)milk samples gave accurate fat and crude protein predictions (R(2)>0.90) and useful lactose predictions (R(2)=0.88). Neither Vis/NIR reflectance nor transmittance spectroscopy lead to an acceptable prediction of the milk urea content. Transmittance spectroscopy can thus be used to predict the 3 major milk components, but with lower accuracy for fat and crude protein than the reflectance mode. Moreover, the small sample thickness (1mm) required for NIR transmittance measurement considerably complicates its online use. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    NARCIS (Netherlands)

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  11. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    Science.gov (United States)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  12. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    , brain and connective tissue, and more recently it has been used in the clinical setting to assess circulatory and metabolic abnormalities. Quantitative measures of blood flow are also possible using NIRS and a light-absorbing tracer, which can be applied to evaluate circulatory responses to exercise......Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood...... vessels (arterioles, capillaries and venules). Refinement of NIRS hardware and the algorithms used to deconvolute the light absorption signal have improved the resolution and validity of cytochrome oxidase measurements. NIRS has been applied to measure oxygenation in a variety of tissues including muscle...

  13. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    Science.gov (United States)

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  14. Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy

    Science.gov (United States)

    Whole oat has been described as an important healthy food for humans due to its beneficial nutritional components. Near infrared reflectance spectroscopy (NIRS) is a powerful, fast, accurate and non-destructive analytical tool that can be substituted for some traditional chemical analysis. A total o...

  15. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).

    Science.gov (United States)

    Genisheva, Z; Quintelas, C; Mesquita, D P; Ferreira, E C; Oliveira, J M; Amaral, A L

    2018-04-25

    This work aims to explore the potential of near infrared (NIR) spectroscopy to quantify volatile compounds in Vinho Verde wines, commonly determined by gas chromatography. For this purpose, 105 Vinho Verde wine samples were analyzed using Fourier transform near infrared (FT-NIR) transmission spectroscopy in the range of 5435 cm -1 to 6357 cm -1 . Boxplot and principal components analysis (PCA) were performed for clusters identification and outliers removal. A partial least square (PLS) regression was then applied to develop the calibration models, by a new iterative approach. The predictive ability of the models was confirmed by an external validation procedure with an independent sample set. The obtained results could be considered as quite good with coefficients of determination (R 2 ) varying from 0.94 to 0.97. The current methodology, using NIR spectroscopy and chemometrics, can be seen as a promising rapid tool to determine volatile compounds in Vinho Verde wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. NIRS in Space?

    Science.gov (United States)

    Peterson, David L.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Proponents of near infrared reflectance spectroscopy (NIRS) have been exceptionally successful in applying NIRS techniques to many instances of organic material analyses. While this research and development began in the 1950s, in recent years, stimulation of advancements in instrumentation is allowing NIRS to begin to find its way into the food processing systems, into food quality and safety, textiles and much more. And, imaging high spectral resolution spectrometers are now being evaluated for the rapid scanning of foodstuffs, such as the inspection of whole chicken carcasses for fecal contamination. The imaging methods are also finding their way into medical applications, such as the non-intrusive monitoring of blood oxygenation in newborns. Can these scientific insights also be taken into space and successfully used to measure the Earth's condition? Is there an analog between the organic analyses in the laboratory and clinical settings and the study of Earth's living biosphere? How are the methods comparable and how do they differ?

  17. Near-infrared (NIR) optogenetics using up-conversion system

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  18. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  19. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves

    Science.gov (United States)

    Haq, Quazi M. I.; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A.; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S. M.; Al-khanbashi, Fatema H. S.; Al-Fahdi, Amira A. M.; Al-Zaabi, Ahoud K. A.; Al-Shuraiqi, Fatma A. M.; Al-Bahaisi, Iman M.

    2018-06-01

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2 days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures.

  20. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy.

    Science.gov (United States)

    Mamani-Linares, L W; Gallo, C; Alomar, D

    2012-02-01

    Visible and near infrared reflectance spectroscopy (VIS-NIRS) was used to discriminate meat and meat juices from three livestock species. In a first trial, samples of Longissimus lumborum muscle, corresponding to beef (31) llamas (21) and horses (27), were homogenised and their spectra collected in reflectance (NIRSystems 6500 scanning monochromator, in the range of 400-2500 nm). In the second trial, samples of meat juice (same muscle) from the same species (20 beef, 19 llama and 19 horse) were scanned in folded transmission (transflectance). Discriminating models (PLS regression) were developed against "dummy" variables, testing different mathematical treatments of the spectra. Best models indentified the species of almost all samples by their meat (reflectance) or meat juice (transflectance) spectra. A few (three of beef and one of llama, for meat samples; one of beef and one of horse, for juice samples) were classified as uncertain. It is concluded that NIRS is an effective tool to recognise meat and meat juice from beef, llama and horses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  2. WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS

    Directory of Open Access Journals (Sweden)

    J. SAFAIE

    2013-07-01

    Full Text Available The wireless distributed acquisition system for near infrared spectroscopy (WDA-NIRS is a portable, ultra-compact, continuous wave (CW NIRS system. Its main advantage is that it allows continuous synchronized multi-site hemodynamic monitoring. The WDA-NIRS system calculates online changes in hemoglobin concentration based on modified Beer–Lambert law and the tissue oxygenation index based on the spatial-resolved spectroscopy method. It consists of up to seven signal acquisition units, sufficiently small to be easily attached to any part of the body. These units are remotely synchronized by a PC base station for independent acquisition of NIRS signals. Each acquisition module can be freely adapted to individual requirements such as local skin properties and the microcirculation of interest, e.g., different muscles, brain, skin, etc. For this purpose, the light emitted by each LED can be individually, interactively or automatically adjusted to local needs. Furthermore, the user can freely create an emitter time-multiplexing protocol and choose the detector sensitivity most suitable to a particular situation. The potential diagnostic value of this advanced device is demonstrated by three typical applications.

  3. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Wijayasiri, Pramudi; Hartley, Douglas E H; Wiggins, Ian M

    2017-08-01

    The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique based on optical principles, is suitable for studying the brain activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing adults listened to sentences that were either clear or degraded (noise vocoded). These sentences were presented simultaneously with a non-speech distractor, and on each trial participants were instructed to attend either to the speech or to the distractor. The primary region of interest for the fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-order language processing. The fNIRS results confirmed findings previously reported in the functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated response to degraded versus clear speech, but only when attention was directed towards the speech. This attention-dependent increase in frontal brain activation may be a neural marker for effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting the engagement of working memory to help reconstruct the meaning of degraded sentences. The homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural signature of effortful listening. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  5. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves.

    Science.gov (United States)

    Haq, Quazi M I; Mabood, Fazal; Naureen, Zakira; Al-Harrasi, Ahmed; Gilani, Sayed A; Hussain, Javid; Jabeen, Farah; Khan, Ajmal; Al-Sabari, Ruqaya S M; Al-Khanbashi, Fatema H S; Al-Fahdi, Amira A M; Al-Zaabi, Ahoud K A; Al-Shuraiqi, Fatma A M; Al-Bahaisi, Iman M

    2018-06-05

    Nucleic acid & serology based methods have revolutionized plant disease detection, however, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic infection, in addition, they need at least 1-2days for sample harvesting, processing, and analysis. In this study, two reflectance spectroscopies i.e. Near Infrared reflectance spectroscopy (NIR) and Fourier-Transform-Infrared spectroscopy with Attenuated Total Reflection (FT-IR, ATR) coupled with multivariate exploratory methods like Principle Component Analysis (PCA) and Partial least square discriminant analysis (PLS-DA) have been deployed to detect begomovirus infection in papaya leaves. The application of those techniques demonstrates that they are very useful for robust in vivo detection of plant begomovirus infection. These methods are simple, sensitive, reproducible, precise, and do not require any lengthy samples preparation procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    OpenAIRE

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O?Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machin...

  7. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

    Science.gov (United States)

    Ferrari, Marco; Quaresima, Valentina

    2012-11-01

    This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    Science.gov (United States)

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. Greenhouse cooling by NIR-reflection

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2007-01-01

    Wageningen UR investigated the potential of several NIR-filtering methods to be applied in horticulture. In this paper the analysis of the optical properties of available NIR-filtering materials is given including a calculation method to quantify the energy reduction under these materials and to

  10. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  11. Prediction of purine derivatives, creatinine and total nitrogen concentrations in urine by FT-Near-lnfrared Reflectance spectroscopy (FT-NIR)

    International Nuclear Information System (INIS)

    Susmel, P.; Piani, B.; Toso, B.; Stefanon, B.

    2004-01-01

    The objective of this study was to provide an alternative method for the determination of purine derivatives (PD, which include allantoin, uric acid, hypoxanthine and xanthine), creatinine and total nitrogen (N) concentrations in urine. About 180 urine samples from cattle, buffaloes and rabbit were collected and analyzed for PD by HPLC, creatinine by spectrophotometry and N by Kjeldahl method. The urine samples were then analyzed by Fourier Transformed Near Infrared Reflectance Spectroscopy (FT-NIR) to find conformity between this technique and the HPLC and colorimetric methods. FT-NIR can predict allantoin, uric acid, hypoxanthine, xanthine, creatinine, total N and sum of N in both allantoin and uric acid with a satisfactory level of accuracy: the determination coefficient (r 2 ) of validation ranged from 0.888% for uric acid to 0.982% for total N. The coefficients of determination for allantoin, creatinine and sum of N in both allantoin and uric acid were 0.92, 0.894 and 0.90%, respectively. Hypoxanthine and xanthine in urine samples were not detectable by NIRS, probably because of their low concentrations, and therefore they were not considered for instrumental calibration. (author)

  12. Near-Infrared Scintillation of Liquid Argon: Recent Results Obtained with the NIR Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C. O. [Fermilab; Rubinov, P. [Fermilab; Tilly, E. [Sewanee U.

    2018-03-19

    After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,

  13. The synthesis, characterization and optical properties of Si4+ and Pr4+ doped Y6 MoO12 compounds: environmentally benign inorganic pigments with high NIR reflectance

    International Nuclear Information System (INIS)

    George, Giable; Reddy, M.L.P.

    2010-01-01

    Full text: Much interest has attended roofing materials with high solar reflectance and high thermal emittance, so that interiors stay cool, thereby reducing the demand for air conditioned buildings. The heat producing region of the infrared radiations ranges from 700-1100 nm. Replacing conventional pigments with 'cool pigments' that absorb less NIR radiation can provide coatings similar in color to that of conventional roofing materials, but with higher solar reflectance. NIR reflective pigments have been used in the military, construction, plastics and ink industries. Complex inorganic pigments based on mixed metal oxides (eg., chromium green, cobalt blue, cadmium stannate, lead chromate, cadmium yellow and chrome titanate yellow), which have been used in camouflage, absorb visible light but reflect the NIR portion of incident radiation. However, many of these pigments are toxic and there is a need to develop novel colored, NIR-reflecting inorganic pigments that are less hazardous to the environment. In this work, a series of NIR reflective colored pigments of formula Y 6-x M x MoO 12+δ (where M Si 4+ or Pr 4+ and x ranges from 0 to 1.0) were synthesized by traditional solid-state route and applied to asbestos cement roofing material so as to evaluate their use as 'cool pigments'. The phase purity of the calcined pigment samples were determined using powder X-ray diffraction. The diffuse reflectance of the powdered pigment samples were measured using a UV-Vis-NIR Spectrometer. The Lab color coordinates were evaluated by CIE 1976 color scale. Replacing Si 4+ for Y 3+ in Y 6 MoO 12 changed the color from light-yellow to dark-yellow and the band gap decreased from 2.60 to 2.45 eV due to O 2p -Mo 4d charge transfer transitions. In contrast, replacing Pr 4+ for Y 3+ changed the color from light yellow to dark brown and the band gap shifted from 2.60 to 1.90 eV. The coloring mechanism is based on the introduction of an additional 4f 1 electron energy level of Pr 4

  14. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  15. Prediction of pH and color in pork meat using VIS-NIR Near-infrared Spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Elton Jhones Granemann FURTADO

    2018-06-01

    Full Text Available Abstract The potential of near-infrared spectroscopy (NIRS to predict the physicochemical characteristics of the porcine longissimus dorsi (LD muscle was evaluated in comparison to the standard methods of pH and color for meat quality analysis compared to the pH results with Colorimeter and pH meter. Spectral information from each sample (n = 77 was obtained as the average of 32 successive scans acquired over a spectral range from 400 - 2498 nm with a 2 - nm gap for calibration and validation models. Partial least squares (PLS regression was used for each individual model. An R2 and a residual predictive deviation (RPD of 0.67/1.7, 0.86/2, and 0.76/1.9 were estimated for color parameters L*, a *, and b*, respectively. Final pH had an R2 of 0.67 and a RPD of 1.6. NIRS showed great potential to predict color parameter a * of porcine LD muscle. Further studies with larger samples should help improve model quality.

  16. 7 CFR 801.7 - Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Reference methods and tolerances for near-infrared spectroscopy (NIRS) analyzers. 801.7 Section 801.7 Agriculture Regulations of the Department of Agriculture...), DEPARTMENT OF AGRICULTURE OFFICIAL PERFORMANCE REQUIREMENTS FOR GRAIN INSPECTION EQUIPMENT § 801.7 Reference...

  17. Near infrared spectroscopic (NIRS) analysis of grapes and red-wines

    International Nuclear Information System (INIS)

    Guggenbichler, W.

    2003-04-01

    In this work vine varieties of the genus Vitis as well as grape-must and fully developed wines were examined by Near Infrared Spectroscopy (NIRS). The spectra were obtained by methods of transflection and transmission measurements. It was shown, that spectra of different varieties of grapes and red-wines can be combined in clusters by means of NIR spectroscopy and subsequent principle components analysis (PCA). In addition to this, it was possible to identify blends of two different varieties of wines as such and to determine the ratio of mixture. In several varieties of grape-must these NIR spectroscopic measurements further allowed a quantitative determination of important parameters concerning the quality of grapes, such as: sugar, total acidity, tartaric acid, malic acid, and pH-value. The content of polyphenols in grapes was also analyzed by this method. The total parameter for polyphenols in grapes is a helpful indicator for the optimal harvest time and the quality of grapes. All quantitative calculations were made by the method of partial least square regression (PLS). As these spectroscopic measurements require minimal sample preparations and due to the fact that measurements can be accomplished and results obtained within a few seconds, this method turned out to be a promising option in order to classify wines and to quantify relevant ingredients in grapes. (author)

  18. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    Science.gov (United States)

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  19. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    Science.gov (United States)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  20. Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats.

    Science.gov (United States)

    Núñez-Sánchez, N; Martínez-Marín, A L; Polvillo, O; Fernández-Cabanás, V M; Carrizosa, J; Urrutia, B; Serradilla, J M

    2016-01-01

    Milk fatty acid (FA) composition is important for the goat dairy industry because of its influence on cheese properties and human health. The aim of the present work was to evaluate the feasibility of NIRS reflectance (oven-dried milk using the DESIR method) and transflectance (liquid milk) analysis to predict milk FA profile and groups of fats in milk samples from individual goats. NIRS analysis of milk samples allowed to estimate FA contents and their ratios and indexes in fat with high precision and accuracy. In general, transflectance analysis gave better or similar results than reflectance mode. Interestingly, NIRS analysis allowed direct prediction of the Atherogenicity and Thrombogenicity indexes, which are useful for the interpretation of the nutritional value of goat milk. Therefore, the calibrations obtained in the present work confirm the viability of NIRS as a fast, reliable and effective analytical method to provide nutritional information of milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Corp, L.A.; Daughtry, C.S.T.

    1996-01-01

    The sensing of spectral attributes of corn (Zea mays L.) grain from site specific areas of the field during the harvest process may be useful in managing agronomic inputs and production practices on those areas of the field in subsequent growing seasons. Eight levels of nitrogen (N) fertilization were applied to field grown corn at Beltsville, Maryland. These N treatments produced a range of chlorophyll levels, biomass and physiological condition in the live plant canopies. After harvest, spectra were obtained in the laboratory on whole grain samples. Fluorescence emissions were acquired from 400 to 600 nm and percent reflectance were measured in the visible (VIS) near infrared (NIR) and mid-infrared (MIR) regions from 400 nm to 2400 nm. A ultraviolet (UV) excitation band centered at 385 nm was the most effective in producing fluorescence emission differences in the blue-green region of the fluorescence spectrum with maxima centered from 430-470nm in the blue and with an intense shoulder centered at around 530-560 nm in the green region. Reflectance showed the most spectral differences in the NIR and MIR (970-2330 nm) regions

  2. Evaluation of Pleasure-Displeasure Induced by Use of Lipsticks with Near-Infrared Spectroscopy (NIRS): Usefulness of 2-Channel NIRS in Neuromarketing.

    Science.gov (United States)

    Tanida, M; Okabe, M; Tagai, K; Sakatani, K

    2017-01-01

    In order to examine whether near-infrared spectroscopy (NIRS) would be a useful neuromarketing tool, we employed NIRS to evaluate the difference of pleasure-displeasure in women, induced by the use of different types of lipsticks. The subjects used lipsticks A and B; A is softer than B. Concentration changes of oxy-Hb were measured in the bilateral prefrontal cortex (PFC) during use of lipsticks A and B. We evaluated the right and left dominancy of PFC activity by calculating the Laterality Index (LI) (LI = leftΔoxy-Hb - rightΔoxy-Hb); positive LI indicates left-dominant activity while negative LI indicate right-dominant activity. We found a significant interaction between the use of lipsticks A and B, using a two-way factorial analysis of variance [F(1,13) = 9.63, p neuromarketing tool, since it allows objective assessment of pleasure-unpleasure.

  3. [A review on studies and applications of near infrared spectroscopy technique(NIRS) in detecting quality of hay].

    Science.gov (United States)

    Ding, Wu-Rong; Gan, You-Min; Guo, Xu-Sheng; Yang, Fu-Yu

    2009-02-01

    The quality of hay can directly affect the price of hay and also livestock productivity. Many kinds of methods have been developed for detecting the quality of hay and the method of near infrared spectroscopy (NIRS) has been widely used with consideration of its fast, effective and nondestructive characteristics during detecting process. In the present paper, the feasibility and effectiveness of application of NIRS to detecting hay quality were expounded. Meanwhile, the advance in the study of using NIRS to detect chemical compositions, extent of incursion by epiphyte, amount of toxicant excreted by endogenetic epiphyte and some minim components that can not be detected by using chemical methods were also introduced detailedly. Based on the review of the progresses in using NIRS to detect the quality of hay, it can be concluded that using NIRS to detect hay quality can avoid the disadvantages of time wasting, complication and high cost when using traditional chemical method. And for better utilization of NIRS in practice, some more studies still need to be implemented to further perfect and improve the utilization of NIRS for detecting forage quality, and more accurate modes and systematic analysis software need to be established in times to come.

  4. Principal component analysis for the forensic discrimination of black inkjet inks based on the Vis-NIR fibre optics reflection spectra.

    Science.gov (United States)

    Gál, Lukáš; Oravec, Michal; Gemeiner, Pavol; Čeppan, Michal

    2015-12-01

    Nineteen black inkjet inks of six different brands were examined by fibre optics reflection spectroscopy in Visible and Near Infrared Region (Vis-NIR FORS) directly on paper with a view to achieving good resolution between them. These different inks were tested on nineteen different inkjet printers from three brands. Samples were obtained from prints by reflection probe. Processed reflection spectra in the range 500-1000 nm were used as samples in principal component analysis. Variability between spectra of the same ink obtained from different prints, as well as between spectra of square areas and lines was examined. For both spectra obtained from square areas and lines reference, Principal Component Analysis (PCA) models were created. According to these models, the inkjet inks were divided into clusters. PCA method is able to separate inks containing carbon black as main colorant from the other inks using other colorants. Some spectra were recorded from another piece of printer and used as validation samples. Spectra of validation samples were projected onto reference PCA models. According to position of validation samples in score plots it can be concluded that PCA based on Vis-NIR FORS can reliably differentiate inkjet inks which are included in the reference database. The presented method appears to be a suitable tool for forensic examination of questioned documents containing inkjet inks. Inkjet inks spectra were obtained without extraction or cutting sample with possibility to measure out of the laboratory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    ZHANG Long

    2015-09-01

    Full Text Available Near infrared reflectance spectroscopy (NIRS, a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA to discriminate the transgenic (TCTP and mi166 and wild type (Zhonghua 11 rice. Furthermore, rice lines transformed with protein gene (OsTCTP and regulation gene (Osmi166 were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000–8 000 cm-1 and 4 000–10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000–10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000–10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.

  6. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language.

    Science.gov (United States)

    Soltanlou, Mojtaba; Sitnikova, Maria A; Nuerk, Hans-Christoph; Dresler, Thomas

    2018-01-01

    In this review, we aim to highlight the application of functional near-infrared spectroscopy (fNIRS) as a useful neuroimaging technique for the investigation of cognitive development. We focus on brain activation changes during the development of mathematics and language skills in schoolchildren. We discuss how technical limitations of common neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have resulted in our limited understanding of neural changes during development, while fNIRS would be a suitable and child-friendly method to examine cognitive development. Moreover, this technique enables us to go to schools to collect large samples of data from children in ecologically valid settings. Furthermore, we report findings of fNIRS studies in the fields of mathematics and language, followed by a discussion of the outlook of fNIRS in these fields. We suggest fNIRS as an additional technique to track brain activation changes in the field of educational neuroscience.

  7. Discovery of the Linear Region of Near Infrared Diffuse Reflectance Spectra Using the Kubelka-Munk Theory

    Directory of Open Access Journals (Sweden)

    Shengyun Dai

    2018-05-01

    Full Text Available Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS models of harpagoside. Data showed that the particle size distribution of 125–150 μm for Radix Scrophulariae exhibited the best prediction ability with Rpre2 = 0.9513, RMSEP = 0.1029 mg·g−1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90–180 μm exhibited the best prediction ability with Rpre2 = 0.8919, RMSEP = 0.1632 mg·g−1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent and scatter coefficient s (particle size-dependent. The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was >4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90–180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  8. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Triolo, Jin Mi; Boldrin, Alessio

    2017-01-01

    . The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting...... BMP. The coefficient of determination (R2) and root mean square error in prediction (RMSEP) of the UOW model were 0.88 and 44 mL CH4/g VS, while the combined model was 0.89 and 50 mL CH4/g VS. Improved model performance was obtained for the two individual models compared to the combined version...

  9. Automated Cart with VIS/NIR Hyperspectral Reflectance and Fluorescence Imaging Capabilities

    Directory of Open Access Journals (Sweden)

    Alan M. Lefcourt

    2016-12-01

    Full Text Available A system to take high-resolution Visible/Near Infra-Red (VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm, respectively, for illumination purposes was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified camera, a spectral adapter, a frequency-triple Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet laser, and optics to convert the Gaussian laser beam into a line-illumination source. The front wheels of the cart are independently powered by stepper motors that support stepping or continuous motion. When stepping, a spreadsheet is used to program parameters of image sets to be acquired at each step. For example, the spreadsheet can be used to set delays before the start of image acquisitions, acquisition times, and laser attenuation. One possible use of this functionality would be to establish acquisition parameters to facilitate the measurement of fluorescence decay-curve characteristics. The laser and camera are mounted on an aluminum plate that allows the optics to be calibrated in a laboratory setting and then moved to the cart. The system was validated by acquiring images of fluorescence responses of spinach leaves and dairy manure.

  10. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    Science.gov (United States)

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  11. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  12. Absolutely nondestructive discrimination of Huoshan Dendrobium nobile species with miniature near-infrared (NIR) spectrometer engine.

    Science.gov (United States)

    Hu, Tian; Yang, Hai-Long; Tang, Qing; Zhang, Hui; Nie, Lei; Li, Lian; Wang, Jin-Feng; Liu, Dong-Ming; Jiang, Wei; Wang, Fei; Zang, Heng-Chang

    2014-10-01

    As one very precious traditional Chinese medicine (TCM), Huoshan Dendrobium has not only high price, but also significant pharmaceutical efficacy. However, different species of Huoshan Dendrobium exhibit considerable difference in pharmaceutical efficacy, so rapid and absolutely non-destructive discrimination of Huoshan Dendrobium nobile according to different species is crucial to quality control and pharmaceutical effect. In this study, as one type of miniature near-infrared (NIR) spectrometer, MicroNIR 1700 was used for absolutely nondestructive determination of NIR spectra of 90 batches of Dendrobium from five species of differ- ent commodity grades. The samples were intact and not smashed. Soft independent modeling of class analogy (SIMCA) pattern recognition based on principal component analysis (PCA) was used to classify and recognize different species of Dendrobium samples. The results indicated that the SIMCA qualitative models established with pretreatment method of standard normal variate transformation (SNV) in the spectra range selected by Qs method had 100% recognition rates and 100% rejection rates. This study demonstrated that a rapid and absolutely non-destructive analytical technique based on MicroNIR 1700 spectrometer was developed for successful discrimination of five different species of Huoshan Dendrobium with acceptable accuracy.

  13. Visualization and prediction of porosity in roller compacted ribbonswith near infrared chemical imaging (NIR-CI)

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sonnergaard, Jørn

    2015-01-01

    The porosity of roller compacted ribbon is recognized as an important critical quality attribute which has a huge impact on the final product quality. The purpose of this study was to investigate the use of near-infrared chemical imaging (NIR-CI) for porosity estimation of ribbons produced...... and control of continuously operating roller compaction line....

  14. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  15. Relative performance evaluation of a custom-made near infrared reflectance instrument and two commercial instruments (Foss and ASD) in the nondestructive moisture content measurement of in-shell peanuts

    Science.gov (United States)

    A custom made Near Infrared Reflectance (NIR) spectroscope was used to determine the moisture content of in-shell peanuts of Virginia type peanuts. Peanuts were conditioned to different moisture levels between 6 and 26 % (wet basis) and samples from different moisture levels were separated into two...

  16. Determinação não destrutiva do nitrogênio total em plantas por espectroscopia de reflectância difusa no infravermelho próximo Non-destructive determination of total nitrogen in plants by diffuse reflectance near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Kássio M. G. Lima

    2008-01-01

    Full Text Available Diffuse reflectance near-infrared (DR-NIR spectroscopy associated with partial least squares (PLS multivariate calibration is proposed for a direct, non-destructive, determination of total nitrogen in wheat leaves. The procedure was developed for an Analytical Instrumental Analysis course, carried out at the Institute of Chemistry of the State University of Campinas. The DR-NIR results are in good agreement with those obtained by the Kjeldhal standard procedure, with a relative error of less than ± 3% and the method may be used for teaching purposes as well as for routine analysis.

  17. Near-infrared dental imaging using scanning fiber endoscope

    Science.gov (United States)

    Zhou, Yaxuan; Lee, Robert; Sadr, Alireza; Seibel, Eric J.

    2018-02-01

    Near-infrared (NIR) wavelength range of 1300-1500nm has the potential to outperform or augment other dental imaging modalities such as fluorescence imaging, owing to its lower scattering coefficient in enamel and trans- parency on stains and non-cariogenic plaque. However, cameras in this wavelength range are bulky and expensive, which lead to difficulties for in-vivo use and commercialization. Thus, we have proposed a new imaging device combining the scanning fiber endoscopy (SFE) and NIR imaging technology. The NIR SFE system has the advantage of miniature size (1.6 mm), flexible shaft, video frame rate (7Hz) and expandable wide field-of-view (60 degrees). Eleven extracted human teeth with or without occlusal caries were scanned by micro-computed X-ray tomography (micro-CT) to obtain 3D micro-CT images, which serve as the standard for comparison. NIR images in reflection mode were then taken on all the occlusal surfaces, using 1310nm super luminescent diode and 1460nm laser diode respectively. Qualitative comparison was performed between near-infrared im- ages and micro-CT images. Enamel demineralization in NIR appeared as areas of increased reflectivity, and distinguished from non-carious staining at the base of occlusal fissures or developmental defects on cusps. This preliminary work presented proof for practicability of combining NIR imaging technology with SFE for reliable and noninvasive dental imaging with miniaturization and low cost.

  18. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine.

    Science.gov (United States)

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G; Zou, Peng; Smith, Valton; von Gunten, Marc; O'Brien, Nada A

    2016-05-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. © The Author(s) 2016.

  19. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    Science.gov (United States)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  20. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    Science.gov (United States)

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  1. Adaptive infrared-reflecting systems inspired by cephalopods

    Science.gov (United States)

    Xu, Chengyi; Stiubianu, George T.; Gorodetsky, Alon A.

    2018-03-01

    Materials and systems that statically reflect radiation in the infrared region of the electromagnetic spectrum underpin the performance of many entrenched technologies, including building insulation, energy-conserving windows, spacecraft components, electronics shielding, container packaging, protective clothing, and camouflage platforms. The development of their adaptive variants, in which the infrared-reflecting properties dynamically change in response to external stimuli, has emerged as an important unmet scientific challenge. By drawing inspiration from cephalopod skin, we developed adaptive infrared-reflecting platforms that feature a simple actuation mechanism, low working temperature, tunable spectral range, weak angular dependence, fast response, stability to repeated cycling, amenability to patterning and multiplexing, autonomous operation, robust mechanical properties, and straightforward manufacturability. Our findings may open opportunities for infrared camouflage and other technologies that regulate infrared radiation.

  2. Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour.

    Science.gov (United States)

    Xie, L H; Tang, S Q; Chen, N; Luo, J; Jiao, G A; Shao, G N; Wei, X J; Hu, P S

    2014-01-01

    Near-infrared reflectance spectroscopy (NIRS) has been used to predict the cooking quality parameters of rice, such as the protein (PC) and amylose content (AC). Using brown and milled flours from 519 rice samples representing a wide range of grain qualities, this study was to compare the calibration models generated by different mathematical, preprocessing treatments, and combinations of different regression algorithm. A modified partial least squares model (MPLS) with the mathematic treatment "2, 8, 8, 2" (2nd order derivative computed based on 8 data points, and 8 and 2 data points in the 1st and 2nd smoothing, respectively) and inverse multiplicative scattering correction preprocessing treatment was identified as the best model for simultaneously measurement of PC and AC in brown flours. MPLS/"2, 8, 8, 2"/detrend preprocessing was identified as the best model for milled flours. The results indicated that NIRS could be useful in estimation of PC and AC of breeding lines in early generations of the breeding programs, and for the purposes of quality control in the food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration

    International Nuclear Information System (INIS)

    Xu Lu; Zhou Yanping; Tang Lijuan; Wu Hailong; Jiang Jianhui; Shen Guoli; Yu Ruqin

    2008-01-01

    Preprocessing of raw near-infrared (NIR) spectral data is indispensable in multivariate calibration when the measured spectra are subject to significant noises, baselines and other undesirable factors. However, due to the lack of sufficient prior information and an incomplete knowledge of the raw data, NIR spectra preprocessing in multivariate calibration is still trial and error. How to select a proper method depends largely on both the nature of the data and the expertise and experience of the practitioners. This might limit the applications of multivariate calibration in many fields, where researchers are not very familiar with the characteristics of many preprocessing methods unique in chemometrics and have difficulties to select the most suitable methods. Another problem is many preprocessing methods, when used alone, might degrade the data in certain aspects or lose some useful information while improving certain qualities of the data. In order to tackle these problems, this paper proposes a new concept of data preprocessing, ensemble preprocessing method, where partial least squares (PLSs) models built on differently preprocessed data are combined by Monte Carlo cross validation (MCCV) stacked regression. Little or no prior information of the data and expertise are required. Moreover, fusion of complementary information obtained by different preprocessing methods often leads to a more stable and accurate calibration model. The investigation of two real data sets has demonstrated the advantages of the proposed method

  4. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene

    2011-01-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...... to remove unimportant baseline signals. In order to model the NIR spectroscopy data the partial least squares regression (PLSR) approach was used on the full spectra. Variable selection based on PLSR by jack-knifing within a cross-model validation (CMV) framework was applied in order to remove non...... quantification of fructans by NIR spectroscopy is possible and that jack-knifing PLSR within a CMV framework is an effective way to eliminate the wavelengths of no interest. Jack-knifing PLSR did not improve the predictive ability because the root mean square error of prediction (RMSEP) increased (1.37) compared...

  5. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy

    DEFF Research Database (Denmark)

    Ohlsson, C; Houmøller, L P; Weisbjerg, Martin Riis

    2007-01-01

    The objective of the present study was to examine if near infrared reflectance spectroscopy (NIRS) could be used to predict degradation parameters and effective degradation from scans of original forage samples. Degradability of dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF......) of 61 samples of perennial ryegrass (Lolium perenne L.) and orchardgrass (Dactylis glomerata L.) was tested by using the in situ technique. The grass samples were harvested at three different stages, early vegetative growth, early reproductive growth and late reproductive growth. Degradability...

  6. Cow-specific diet digestibility predictions based on near-infrared reflectance spectroscopy scans of faecal samples.

    Science.gov (United States)

    Mehtiö, T; Rinne, M; Nyholm, L; Mäntysaari, P; Sairanen, A; Mäntysaari, E A; Pitkänen, T; Lidauer, M H

    2016-04-01

    This study was designed to obtain information on prediction of diet digestibility from near-infrared reflectance spectroscopy (NIRS) scans of faecal spot samples from dairy cows at different stages of lactation and to develop a faecal sampling protocol. NIRS was used to predict diet organic matter digestibility (OMD) and indigestible neutral detergent fibre content (iNDF) from faecal samples, and dry matter digestibility (DMD) using iNDF in feed and faecal samples as an internal marker. Acid-insoluble ash (AIA) as an internal digestibility marker was used as a reference method to evaluate the reliability of NIRS predictions. Feed and composite faecal samples were collected from 44 cows at approximately 50, 150 and 250 days in milk (DIM). The estimated standard deviation for cow-specific organic matter digestibility analysed by AIA was 12.3 g/kg, which is small considering that the average was 724 g/kg. The phenotypic correlation between direct faecal OMD prediction by NIRS and OMD by AIA over the lactation was 0.51. The low repeatability and small variability estimates for direct OMD predictions by NIRS were not accurate enough to quantify small differences in OMD between cows. In contrast to OMD, the repeatability estimates for DMD by iNDF and especially for direct faecal iNDF predictions were 0.32 and 0.46, respectively, indicating that developing of NIRS predictions for cow-specific digestibility is possible. A data subset of 20 cows with daily individual faecal samples was used to develop an on-farm sampling protocol. Based on the assessment of correlations between individual sample combinations and composite samples as well as repeatability estimates for individual sample combinations, we found that collecting up to three individual samples yields a representative composite sample. Collection of samples from all the cows of a herd every third month might be a good choice, because it would yield a better accuracy. © 2015 Blackwell Verlag GmbH.

  7. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults.

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-05-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have a time resolution of 1-10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution of about 1cm. The goal of this brief review is to report infants, children and adults fNIRS language studies. Since 1998, 60 studies have been published on cortical activation in the brain's classic language areas in children/adults as well as newborns using fNIRS instrumentations of different complexity. In addition, the basic principles of fNIRS including features, strengths, advantages, and limitations are summarized in terms that can be understood even by non specialists. Future prospects of fNIRS in the field of language processing imaging are highlighted. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Multivariate analysis of nystatin and metronidazole in a semi-solid matrix by means of diffuse reflectance NIR spectroscopy and PLS regression.

    Science.gov (United States)

    Baratieri, Sabrina C; Barbosa, Juliana M; Freitas, Matheus P; Martins, José A

    2006-01-23

    A multivariate method of analysis of nystatin and metronidazole in a semi-solid matrix, based on diffuse reflectance NIR measurements and partial least squares regression, is reported. The product, a vaginal cream used in the antifungal and antibacterial treatment, is usually, quantitatively analyzed through microbiological tests (nystatin) and HPLC technique (metronidazole), according to pharmacopeial procedures. However, near infrared spectroscopy has demonstrated to be a valuable tool for content determination, given the rapidity and scope of the method. In the present study, it was successfully applied in the prediction of nystatin (even in low concentrations, ca. 0.3-0.4%, w/w, which is around 100,000 IU/5g) and metronidazole contents, as demonstrated by some figures of merit, namely linearity, precision (mean and repeatability) and accuracy.

  9. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    Science.gov (United States)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  10. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  11. Origin of Infrared Light Modulation in Reflectance-Mode Photoplethysmography.

    Directory of Open Access Journals (Sweden)

    Igor S Sidorov

    Full Text Available We recently pointed out the important role of dermis deformation by pulsating arterial pressure in the formation of a photoplethysmographic signal at green light. The aim of this study was to explore the role of this novel finding in near-infrared (NIR light. A light-emitting diode (LED-based imaging photoplethysmography (IPPG system was used to detect spatial distribution of blood pulsations under frame-to-frame switching green and NIR illumination in the palms of 34 healthy individuals. We observed a significant increase of light-intensity modulation at the heartbeat frequency for both illuminating wavelengths after a palm was contacted with a glass plate. Strong positive correlation between data measured at green and NIR light was found, suggesting that the same signal was read independently from the depth of penetration. Analysis of the data shows that an essential part of remitted NIR light is modulated in time as a result of elastic deformations of dermis caused by variable blood pressure in the arteries. Our observations suggest that in contrast with the classical model, photoplethysmographic waveform originates from the modulation of the density of capillaries caused by the variable pressure applied to the skin from large blood vessels. Particularly, beat-to-beat transmural pressure in arteries compresses/decompresses the dermis and deforms its connective-tissue components, thus affecting the distance between the capillaries, which results in the modulation of absorption and scattering coefficients of both green and NIR light. These findings are important for the correct interpretation of this widely used medical technique, which may have novel applications in diagnosis and treatment monitoring of aging and skin diseases.

  12. Mapping human skeletal muscle perforator vessels using a quantum well infrared photodetector (QWIP) might explain the variability of NIRS and LDF measurements

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T; Delpy, D T; Fauci, M A; Ruefenacht, D

    2004-01-01

    Near-infrared spectroscopy (NIRS) and laser Doppler flowmetry (LDF) have become the techniques of choice allowing the non-invasive study of local human skeletal muscle metabolism and blood perfusion on a small tissue volume (a few cm 3 ). However, it has been shown that both NIRS and LDF measurements may show a large spatial variability depending on the position of the optodes over the investigated muscle. This variability may be due to local morphologic and/or metabolic characteristics of the muscle and makes the data interpretation and comparison difficult. In the present work, we use a third method to investigate this problem which permits fast, non-invasive mapping of the intramuscular vessel distribution in the human vastus lateralis muscle. This method uses an advanced, passive, infrared imaging sensor called a QWIP (quantum well infrared photodetector). We demonstrate, using a recovery-enhanced infrared imaging technique, that there is a significant presence of perforator vessels in the region of interest of ∼30 x 18 cm (the number of vessels being: 14, 9, 8, 33, 17 and 18 for each subject, respectively). The presence of these vessels makes the skeletal muscle highly inhomogeneous, and may explain the observed NIRS and LDF spatial variability. We conclude that accurate comparison of the metabolic activity of two different muscle regions is not possible without reliable maps of vascular 'singularities' such as the perforator vessels, and that the QWIP-based imaging system is one method to obtain this information. (note)

  13. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Science.gov (United States)

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  14. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging

    Science.gov (United States)

    Hemmer, Eva; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Hattori, Akito; Ebina, Yoshie; Kishimoto, Hidehiro; Soga, Kohei

    2013-11-01

    In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln3+), nanoscopic host materials doped with Ln3+, e.g. Y2O3:Er3+,Yb3+, are promising candidates for NIR-NIR bioimaging. Ln3+-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er3+,Yb3+, have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared

  15. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Directory of Open Access Journals (Sweden)

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  16. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    Science.gov (United States)

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  17. Rapid analysis of hay attributes using NIRS. Final report, Task II alfalfa supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    This final report provides technical information on the development of a near infrared reflectance spectroscopy (NIRS) system for the analysis of alfalfa hay. The purpose of the system is to provide consistent quality for processing alfalfa stems for fuel and alfalfa leaf meal products for livestock feed. Project tasks were to: (1) develop an NIRS driven analytical system for analysis of alfalfa hay and processed alfalfa products; (2) assist in hiring a qualified NIRS technician and recommend changes in testing equipment necessary to provide accurate analysis; (3) calibrate the NIRS instrument for accurate analyses; and (4) develop prototype equipment and sampling procedures as a first step towards development of a totally automated sampling system that would rapidly sample and record incoming feedstock and outbound product. An accurate hay testing program was developed, along with calibration equations for analyzing alfalfa hay and sun-cured alfalfa pellets. A preliminary leaf steam calibration protocol was also developed. 7 refs., 11 figs., 10 tabs.

  18. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  19. Near-infrared chemical imaging (NIR-CI) of 3D printed pharmaceuticals

    DEFF Research Database (Denmark)

    Khorasani, Milad; Edinger, Magnus; Raijada, Dharaben Kaushikkumar

    2016-01-01

    Hot-melt extrusion and 3D printing are enabling manufacturing approaches for patient-centred medicinal products. Hot-melt extrusion is a flexible and continuously operating technique which is a crucial part of a typical processing cycle of printed medicines. In this work we use hot-melt extrusion...... for manufacturing of medicinal films containing indomethacin (IND) and polycaprolactone (PCL), extruded strands with nitrofurantoin monohydrate (NFMH) and poly (ethylene oxide) (PEO), and feedstocks for 3D printed dosage forms with nitrofurantoin anhydrate (NFAH), hydroxyapatite (HA) and poly (lactic acid) (PLA......). These feedstocks were printed into a prototype solid dosage form using a desktop 3D printer. These model formulations were characterized using near-infrared chemical imaging (NIR-CI) and, more specifically, the image analytical data were analysed using multivariate curve resolution-alternating least squares (MCR...

  20. Development of a method for the determination of caffeine anhydrate in various designed intact tablets [correction of tables] by near-infrared spectroscopy: a comparison between reflectance and transmittance technique.

    Science.gov (United States)

    Ito, Masatomo; Suzuki, Tatsuya; Yada, Shuichi; Kusai, Akira; Nakagami, Hiroaki; Yonemochi, Etsuo; Terada, Katsuhide

    2008-08-05

    Using near-infrared (NIR) spectroscopy, an assay method which is not affected by such elements of tablet design as thickness, shape, embossing and scored line was developed. Tablets containing caffeine anhydrate were prepared by direct compression at various compression force levels using different shaped punches. NIR spectra were obtained from these intact tablets using the reflectance and transmittance techniques. A reference assay was performed by high-performance liquid chromatography (HPLC). Calibration models were generated by the partial least-squares (PLS) regression. Changes in the tablet thickness, shape, embossing and scored line caused NIR spectral changes in different ways, depending on the technique used. As a result, noticeable errors in drug content prediction occurred using calibration models generated according to the conventional method. On the other hand, when the various tablet design elements which caused the NIR spectral changes were included in the model, the prediction of the drug content in the tablets was scarcely affected by those elements when using either of the techniques. A comparison of these techniques resulted in higher predictability under the tablet design variations using the transmittance technique with preferable linearity and accuracy. This is probably attributed to the transmittance spectra which sensitively reflect the differences in tablet thickness or shape as a result of obtaining information inside the tablets.

  1. Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette J; Huppert, Theodore J; Franceschini, Maria Angela; Boas, David A

    2017-12-01

    Functional Near-Infrared Spectroscopy (fNIRS) maps human brain function by measuring and imaging local changes in hemoglobin concentrations in the brain that arise from the modulation of cerebral blood flow and oxygen metabolism by neural activity. Since its advent over 20 years ago, researchers have exploited and continuously advanced the ability of near infrared light to penetrate through the scalp and skull in order to non-invasively monitor changes in cerebral hemoglobin concentrations that reflect brain activity. We review recent advances in signal processing and hardware that significantly improve the capabilities of fNIRS by reducing the impact of confounding signals to improve statistical robustness of the brain signals and by enhancing the density, spatial coverage, and wearability of measuring devices respectively. We then summarize the application areas that are experiencing rapid growth as fNIRS begins to enable routine functional brain imaging.

  2. NIR techniques create added values for the pellet and biofuel industry.

    Science.gov (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan

    2009-02-01

    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  3. Using Massive Multivariate NIRS Data in Ryegrass

    DEFF Research Database (Denmark)

    Edriss, Vahid; Greve-Pedersen, Morten; Jensen, Christian S

    2015-01-01

    Near infrared spectroscopy (NIRS) analytical techniques is a simple, fast and low cost method of high dimensional phenotyping compared to usual chemical techniques. To use this method there is no need for special sample preparation. The aim of this study is to use NIRS data to predict plant traits...... (e.g. dry matter, protein content, etc.) for the next generation. In total 1984 NIRS data from 995 ryegrass families (first cut) were used. The Absorption of radiation in the region of 960 – 1690 nm in every 2 nm distance produced 366 bins to represent the NIRS spectrum. The amount of genetic...

  4. CVD molybdenum films of high infrared reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Carver, G. E.

    1979-01-01

    Molybdenum thin films of high infrared reflectance have been deposited by pyrolytic decomposition of molybdenum carbonyl (Mo(CO)/sub 6/), and by hydrogen reduction of molybdenum pentachloride (MoCl/sub 5/). Reflectance values within 0.7% of the reflectance of supersmooth bulk molybdenum have been attained by annealing films of lower reflectance in both reducing and non-reducing atmospheres. All depositions and anneals proceed at atmospheric pressure, facilitating a continuous, flow-through fabrication. These reflectors combine the high temperature stability of molybdenum thin films with the infrared reflectance of a material such as aluminum. Deposition from Mo(CO)/sub 6/ under oxidizing conditions, and subsequent anneal in a reducing atmosphere, results in films that combine high solar absorptance with low thermal emittance. If anti-reflected, black molybdenum films can serve as highly selective single layer photothermal converters. Structural, compositional, and crystallographic properties have been measured after both deposition and anneal.

  5. Determination of the Mechanical Properties of Rubber by FT-NIR

    Directory of Open Access Journals (Sweden)

    Rattapol Pornprasit

    2016-01-01

    Full Text Available Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR, styrene butadiene rubber (SBR, nitrile butadiene rubber (NBR, and ethylene propylene diene monomer (EPDM, were evaluated using a near infrared (NIR spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-NIR spectrometer and fitted with an integration sphere working in a diffused reflectance mode. The spectra were correlated with hardness and tensile properties. Partial least square (PLS calibration models were built from the spectra datasets with preprocessing techniques, that is, smoothing and second derivative. This indicated that reasonably accurate models, that is, with a coefficient of determination [R2] of the validation greater than 0.9, could be achieved for the hardness and tensile properties of rubber materials. This study demonstrated that FT-NIR analysis can be applied to determine hardness and tensile values in rubbers and rubber blends effectively.

  6. In-line monitoring and interpretation of an indomethacin anti-solvent crystallization process by near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Lee, Hea-Eun; Lee, Min-Jeong; Kim, Woo-Sik; Jeong, Myung-Yung; Cho, Young-Sang; Choi, Guang Jin

    2011-11-28

    PAT (process analytical technology) has been emphasized as one of key elements for the full implementation of QbD (quality-by-design) in the pharmaceutical area. NIRS (near-infrared spectroscopy) has been studied intensively as an in-line/on-line monitoring tool in chemical and biomedical industries. A precise and reliable monitoring of the particle characteristics during crystallization along with a suitable control strategy should be highly encouraged for the conformance to new quality system of pharmaceutical products. In this study, the anti-solvent crystallization process of indomethacin (IMC) was monitored using an in-line NIRS. IMC powders were produced via anti-solvent crystallization using two schemes; 'S-to-A' (solvent-to-antisolvent) and 'A-to-S' (antisolvent-to-solvent). In-line NIR spectra were analyzed by a PCA (principal component analysis) method. Although pure α-form IMC powder was resulted under A-to-S scheme, a mixture of the α-form and γ-form was produced for S-to-A case. By integrating the PCA results with off-line characterization (SEM, XRD, DSC) data, the crystallization process under each scheme was elucidated by three distinct consecutive steps. It was demonstrated that in-line NIRS, combined with PCA, can be very useful to monitor in real time and interpret the anti-solvent crystallization process with respect to the polymorphism and particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis

    Directory of Open Access Journals (Sweden)

    Christian W. Huck

    2016-05-01

    Full Text Available A review with more than 100 references on the principles and recent developments in the solid-phase extraction (SPE prior and for in situ near and attenuated total reflection (ATR infrared spectroscopic analysis is presented. New materials, chromatographic modalities, experimental setups and configurations are described. Their advantages for fast sample preparation for distinct classes of compounds containing different functional groups in order to enhance selectivity and sensitivity are discussed and compared. This is the first review highlighting both the fundamentals of SPE, near and ATR spectroscopy with a view to real sample applicability and routine analysis. Most of real sample analyses examples are found in environmental research, followed by food- and bioanalysis. In this contribution a comprehensive overview of the most potent SPE-NIR and SPE-ATR approaches is summarized and provided.

  8. On-chip integrated functional near infra-red spectroscopy (fNIRS) photoreceiver for portable brain imaging

    Science.gov (United States)

    Kamrani, Ehsan

    Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant advantages of fNIRS systems, they still suffer from few drawbacks including low spatial-resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome the limitations of currently available non-portable fNIRS systems, we have introduced a new low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench- Reset circuitry implemented using standard CMOS technologies to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting applications. Several SiAPDs have been implemented in novel structures and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using different premature edge breakdown prevention techniques. The main characteristics of the SiAPDs are validated and the impact of each parameter and the device simulators (TCAD, COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around 12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark-count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product (GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept, logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power

  9. Use of FT-NIR Spectroscopy for Bovine Colostrum Analysis

    Directory of Open Access Journals (Sweden)

    P. Navrátilová

    2006-01-01

    Full Text Available Fourier transformation near infrared spectroscopy (FT-NIR in combination with partial least squares (PLS method were used to determine the content of total solids, fat, non-fatty solids, lactose and proteins in bovine colostrum. Spectra of 90 samples were measured in the reflectance mode with a transflectance cuvette in the 10000-4000 cm-1 spectral ranges with 100 scans. Calibration was performed and statistical values of correlation coefficients (R and standard error of calibration values (SEC were computed for total solids (0.986 and 0.919, respectively, fat (0.997 and 0.285, respectively, non-fatty solids (0.995 and 0.451, respectively, lactose (0.934 and 0.285, respectively and protein (0.999 and 0.149, respectively. The calibration models developed were verified by cross validation. It follows from the study that FT-NIR spectroscopy can be used to determine the components of bovine colostrum.

  10. Predicting rapeseed oil content with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  11. Spatially selective depleting tumor-associated negative regulatory T-(Treg) cells with near infrared photoimmunotherapy (NIR-PIT): A new cancer immunotherapy (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.

  12. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland.

    Science.gov (United States)

    Glasser, T; Landau, S; Ungar, E D; Perevolotsky, A; Dvash, L; Muklada, H; Kababya, D; Walker, J W

    2008-06-01

    An ecologically sound approach to the problem of brush encroachment onto Israeli rangeland might be their utilization by goats, but better knowledge of the feeding selectivity and ability of goats to thrive in encroached areas is required to devise viable production systems. Direct observation of bites could provide precise and accurate estimates of diet selection, but construction of a sufficiently large database would require too much time. The present study describes the first attempt to construct fecal near-infrared reflectance spectroscopy (NIRS) calibrations of the botanical and nutritional composition of the diet, and of the total intake of free-ranging goats, based on reference values determined with bite-count procedures. Calibration of fecal NIRS was based on 43 observations encompassing 3 goat breeds and 4 periods (spring, summer, and fall of 2004, and spring of 2005). Each observation comprised 242 min of continuous recording of the species and bite-type category selected by a single animal, on each of 2 consecutive days. The mass and chemical quality of each species and bite-type category-a total of more than 200,000 bites-were determined by using the simulated bite technique. Associated feces were scanned in the 1,100- to 2,500-nm range with a reflectance monochromator. Fecal NIRS calibrations had reasonable precision for dietary percentages of the 3 main botanical components: herbaceous vegetation (as one category; R(2) = 0.85), Phillyrea latifolia (R(2) = 0.89), and tannin-rich Pistacia lentiscus (R(2) = 0.77), with SE of cross-validation (SECV) of 7.8, 6.3, and 5.6% of DM, respectively. The R(2) values for dietary percentages of CP, NDF, IVDMD, and polyethylene glycol-binding tannins were 0.93, 0.88, 0.91, and 0.74, respectively, with SECV values of 0.9, 2.1, 4.3, and 0.9% of DM, respectively. The R(2) values for intakes of herbaceous vegetation, P. latifolia, and P. lentiscus were 0.80, 0.75, and 0.65, with SECV values of 71, 64, and 46 g of DM

  13. Determining the mineral composition in Cucurbita pepo fruit using near infrared reflectance spectroscopy.

    Science.gov (United States)

    Martínez-Valdivieso, Damián; Font, Rafael; Gómez, Pedro; Blanco-Díaz, Teresa; Del Río-Celestino, Mercedes

    2014-12-01

    Efforts through conventional breeding to improve the mineral content in horticultural crops have not always been successful mainly due to the fact that standard analytical methods are both costly and time-consuming. We investigated the feasibility of applying near infrared reflectance spectroscopy (NIRS) to the estimation of essential mineral composition in the skin and flesh of summer squash fruits (Cucurbita pepo subsp. pepo) using a 200-sample set from diverse morphotypes. The coefficients of determination in the external validation (R(2) VAL) obtained for the skin and flesh of the fruit were: total mineral content, 0.84 and 0.70; P, 0.74 and 0.62; K, 0.83 and 0.67; Ca, 0.57 and 0.60; Mg, 0.78 and 0.45; Fe, 0.78 and 0.65; Cu, 0.67 and 0.66; Mn, 0.67 and 0.64; Zn, 0.80 and 0.79 and Na, 0.33 and 0.33; respectively. NIRS combined with different spectral transformations by modified partial least-squares (MPLS) regression has shown to be useful in determining the mineral composition of summer squash fruit, being a fast and low-cost analytical technique. Components such as chlorophyll, starch and lipids were used by MPLS for modelling the predicting equations. The promotion of micronutrient-rich summer squash varieties could have a significant long-term beneficial impact on the health of mineral deficient human populations. © 2014 Society of Chemical Industry.

  14. Near-infrared imaging spectroscopy for counterfeit drug detection

    Science.gov (United States)

    Arnold, Thomas; De Biasio, Martin; Leitner, Raimund

    2011-06-01

    Pharmaceutical counterfeiting is a significant issue in the healthcare community as well as for the pharmaceutical industry worldwide. The use of counterfeit medicines can result in treatment failure or even death. A rapid screening technique such as near infrared (NIR) spectroscopy could aid in the search for and identification of counterfeit drugs. This work presents a comparison of two laboratory NIR imaging systems and the chemometric analysis of the acquired spectroscopic image data. The first imaging system utilizes a NIR liquid crystal tuneable filter and is designed for the investigation of stationary objects. The second imaging system utilizes a NIR imaging spectrograph and is designed for the fast analysis of moving objects on a conveyor belt. Several drugs in form of tablets and capsules were analyzed. Spectral unmixing techniques were applied to the mixed reflectance spectra to identify constituent parts of the investigated drugs. The results show that NIR spectroscopic imaging can be used for contact-less detection and identification of a variety of counterfeit drugs.

  15. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    Science.gov (United States)

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  16. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG)

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-01

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.

  17. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale

    International Nuclear Information System (INIS)

    Baghchesara, Mohammad Amin; Yousefi, Ramin; Cheraghizade, Mohsen; Jamali-Sheini, Farid; Saáedi, Abdolhossein; Mahmmoudian, M.R.

    2016-01-01

    Highlights: • PbTe nanowires were grown by tellurization of the Pb sheets for the first time. • It was observed a band gap value for the PbTe nanostructures in the NIR region. • NIR detector was fabricated in a large scale using a simple method. • Effect of Te concentration on morphology of PbTe nanostructures was investigated. - Abstract: A simple method was used to fabricate a near-infrared (NIR) detector using PbTe nanostructures. Samples were synthesized by tellurization of lead sheets in a tube furnace. PbTe nanostructures with wires and flakes shapes were grown on the lead sheets that were placed at 300 and 330 °C, respectively, while, PbTe nanoporous were grown at 360 and 390 °C. X-ray diffraction patterns and X-ray photoelectron spectra results indicated that, the PbTe phase was formed in all samples. UV–vis diffuse reflectance spectra measurements showed a band gap for the PbTe nanostructures in the near-infrared region of the electromagnetic spectrum. Actually, the results indicated that, the band gap values of the PbTe nanowires and nanoporous were 1.54 eV and 1.61 eV, respectively. Finally, the PbTe nanostructures were used as a simple photoresponse device under a red light source. The photoresponse results revealed, PbTe nanowires are promising for photoelectrical applications in the NIR region.

  18. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR and Quantification of Red-Edge Band BRDF Effects

    Directory of Open Access Journals (Sweden)

    David P. Roy

    2017-12-01

    Full Text Available Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF. The Sentinel-2 multi-spectral instrument (MSI acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 million (January 2016 and 10.7 million (April 2016 pairs of forward and back scatter reflectance observations extracted over approximately 20° × 10° of southern Africa. Non-negligible MSI red-edge BRDF effects up to 0.08 (reflectance units across the 290 km wide MSI swath are documented. A recently published MODIS BRDF parameter c-factor approach to adjust MSI visible, near-infrared, and short wave infrared reflectance to nadir BRDF-adjusted reflectance (NBAR is adapted for application to the MSI red-edge bands. The red-edge band BRDF parameters needed to implement the algorithm are provided. The parameters are derived by a linear wavelength interpolation of fixed global MODIS red and NIR BRDF model parameters. The efficacy of the interpolation is investigated using POLDER red, red-edge, and NIR BRDF model parameters, and is shown to be appropriate for the c-factor NBAR generation approach. After adjustment to NBAR, red-edge MSI BRDF effects were reduced for the January data (acquired close to the solar principal where BRDF effects are maximal and the April data (acquired close to the orthogonal plane for all the MSI red-edge bands.

  19. Decoding vigilance with NIRS.

    Science.gov (United States)

    Bogler, Carsten; Mehnert, Jan; Steinbrink, Jens; Haynes, John-Dylan

    2014-01-01

    Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS). NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  20. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    Science.gov (United States)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  1. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    Science.gov (United States)

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  2. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.

    Science.gov (United States)

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges

    2016-05-01

    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  3. Tree health monitoring: perspectives from the visible and near infrared remote sensing

    Directory of Open Access Journals (Sweden)

    Gonthier P

    2012-05-01

    Full Text Available Based on a comprehensive literature analysis, we present a critical review of those optical remote sensing techniques operating with the visible (VIS and near infrared (NIR bands for the assessment of health in forest trees. Physical, biological and physio-pathological issues of VIS-NIR reflectance of leaves are described pointing out that a decrease of NIR reflectance is highly influenced by stress conditions on tree caused by abiotic and biotic factors. In many cases the NIR spectral band is more sensitive than the VIS one, allowing to detect plant stress long before the appearance of visible symptoms. A description of the main remote sensing methods is provided, including radiometric measurements and multispectral imaging approaches. False colour infrared (FCIR images collection and their photointerpretation and processing are shown as they represent the most relevant means to acquire information of canopy from its reflectance properties. The amount and the quality of the obtainable data depend on: (i field conditions; (ii the type of the adopted instrument (camera, radiometer; (iii the recording system position (ground platforms, aircraft, satellite; (iv the format of the data (analogical, digitalised or digital; and (v the photointerpretation technique. Results from literature are discussed stressing the limits of remote sensing methods. Remote sensing in VIS and NIR spectral bands is generally a powerful classification tool to detect and score tree stress. Nevertheless, it is not a diagnostic tool in that it does not provide information on the cause of stress. Moreover, the method should be adequately tested at single tree level for many important pathogens, in particular root rot, butt rot and stem rot fungi. In perspective, new high spatial resolution satellite images and their GIS software elaboration might be suitable to improve remote sensing analysis.

  4. Decoding vigilance with NIRS.

    Directory of Open Access Journals (Sweden)

    Carsten Bogler

    Full Text Available Sustained, long-term cognitive workload is associated with variations and decrements in performance. Such fluctuations in vigilance can be a risk factor especially during dangerous attention demanding activities. Functional MRI studies have shown that attentional performance is correlated with BOLD-signals, especially in parietal and prefrontal cortical regions. An interesting question is whether these BOLD-signals could be measured in real-world scenarios, say to warn in a dangerous workplace whenever a subjects' vigilance is low. Because fMRI lacks the mobility needed for such applications, we tested whether the monitoring of vigilance might be possible using Near-Infrared Spectroscopy (NIRS. NIRS is a highly mobile technique that measures hemodynamics in the surface of the brain. We demonstrate that non-invasive NIRS signals correlate with vigilance. These signals carry enough information to decode subjects' reaction times at a single trial level.

  5. Near-infrared spectroscopy (NIRS neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD – a pilot study

    Directory of Open Access Journals (Sweden)

    Anna-Maria eMarx

    2015-01-01

    Full Text Available In this pilot study near-infrared spectroscopy (NIRS neurofeedback was investigated as a new method for the treatment of ADHD. Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus. The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS, to produce positive or negative shifts of SCP (EEG or to increase or decrease muscular activity (EMG. In each group nine children with ADHD, aged 7 to 10 years, took part. Changes in parents’ ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers’ ratings of ADHD symptoms, parents’ and teachers’ ratings of associated behavioral symptoms, childrens’ self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents’ ratings. In teachers’ ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessions of NIRS-, EEG- and EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG- and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, the results of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to

  6. Efficient NIR (near-infrared) luminescent ZnLn-grafted (Ln=Nd, Yb or Er) PNBE (Poly(norbornene))

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lin; Feng, Hei-Ni; Fu, Guo-Rui; Li, Bao-Ning [School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi’an 710069, Shaanxi (China); Lü, Xing-Qiang, E-mail: lvxq@nwu.edu.cn [School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi’an 710069, Shaanxi (China); Wong, Wai-Kwok [Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong (China); Jones, Richard A. [Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165 (United States)

    2017-06-15

    Through the ring-opening metathesis polymerization (ROMP) of norbornene (NBE) with each of allyl-containing complex monomers [Zn(L){sub 2}(µ{sub 1}-OAc)Ln(µ{sub 2}-OAc){sub 2}] (Ln=La, 1; Nd, 2; Yb, 3; Er, 4 or Gd, 5; HL=4-allyl-2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol), a series of ZnLn-grafted polymers Poly([Zn(L){sub 2}(µ{sub 1}-OAc)Ln(µ{sub 2}-OAc){sub 2}]-co-NBE) with desired physical properties were obtained, respectively. Within near-infrared (NIR) luminescent polymers, Poly(3-co-NBE) endows an attractive quantum yield of 1.47% in solid state, and exhibits an effective prevention of high-concentration self-quenching. - Graphical abstract: Through grafting of [Zn(L){sub 2}(µ{sub 1}-OAc)Ln(µ{sub 2}-OAc){sub 2}] (Ln=Nd, 2; Yb, 3 or Er, 4) into PNBE with desired physical properties including NIR luminescence, Poly(3-co-NBE) exhibits an attractive quantum yield of 1.47% and an effective emitters' clustering prevention.

  7. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Science.gov (United States)

    Sun, Pei-Pei; Tan, Fu-Lun; Zhang, Zong; Jiang, Yi-Han; Zhao, Yang; Zhu, Chao-Zhe

    2018-01-01

    The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS. PMID:29556185

  8. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Directory of Open Access Journals (Sweden)

    Pei-Pei Sun

    2018-03-01

    Full Text Available The mirror neuron system (MNS, mainly including the premotor cortex (PMC, inferior frontal gyrus (IFG, superior parietal lobule (SPL, and rostral inferior parietal lobule (IPL, has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.

  9. Conversion of NIR-radiation to Electric Power in a Solar Greenhouse

    Science.gov (United States)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; Bot, G. P. A.; Flamand, G.

    2007-02-01

    The scope of this investigation is the development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high outdoor temperatures. As a first measure, the spectral selective cover material, which prevents the entrance of NIR radiation, is investigated. The special spectral selective reflectivity of these materials has to block up to 50% of the solar energy outside the greenhouse, which will reduce the needed cooling capacity. The second measure is the integration of a solar energy system. When the NIR reflecting coating is designed as a parabolic or circular shaped reflector integrated in the greenhouse, the reflected solar energy of a PV cell in the focus point delivers electric energy. With a ray tracing computer program the geometry of the reflector was optimally designed with respect to the maximum power level. The PV or TPV cells mounted in the focal point require cooling due to the high heat load of the concentrated radiation (concentration factor of 40-80). The properties of different materials, Ge, GaSb, CIS and Si cells were investigated to find the optimal cell for this application. For the second option a tubular collector is placed in the focus of the reflector. The collector contains thermal oil, which is heated up to a temperature of 400°C. This hot oil can be used for heating a Stirling motor or an Organic Rankine Cycle (ORC). The typical efficiencies and economic achievement of these systems including the tube collector are compared with the efficiencies of the TPV cells.

  10. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    OpenAIRE

    L. Campo; A. B. Monteagudo; B. Salleres; P. Castro; J. Moreno-Gonzalez

    2013-01-01

    The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS) to predict non-structural carbohydrates (NSC), water soluble carbohydrates (WSC), in vitro organic dry matter digestibility (IVOMD), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. ...

  11. NIR detects, destroys insect pests

    International Nuclear Information System (INIS)

    McGraw, L.C.

    1998-01-01

    What’s good for Georgia peanuts may also be good for Kansas wheat. An electric eye that scans all food-grade peanuts for visual defects could one day do the same for wheat kernels. For peanuts, it’s a proven method for monitoring quality. In wheat, scanning with near-infrared (NIR) energy can reveal hidden insect infestations that lower wheat quality. ARS entomologists James E. Throne and James E. Baker and ARS agricultural engineer Floyd E. Dowell are the first to combine NIR with an automated grain-handling system to rapidly detect insects hidden in single wheat kernels

  12. Near-infrared reflectance analysis by Gauss-Jordan linear algebra

    International Nuclear Information System (INIS)

    Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

    1983-01-01

    Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored

  13. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    OpenAIRE

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protec...

  14. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  15. PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.

    Science.gov (United States)

    Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  17. Freshness assessment of thawed and chilled cod fillets packed in modified atmosphere using near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Jensen, K.N.; Andersen, Charlotte Møller

    2002-01-01

    Near-infrared reflectance (NIR) spectra was recorded of 105 samples of cod mince prepared from chill stored thawed cod fillets of varying quality in modified atmosphere packaging (MAP). Traditional chemical, physical, microbiological and sensory quality methods developed for assessing fresh fish...

  18. Near Infrared Spectral Linearisation in Quantifying Soluble Solids Content of Intact Carambola

    Directory of Open Access Journals (Sweden)

    Mohd Zubir MatJafri

    2013-04-01

    Full Text Available This study presents a novel application of near infrared (NIR spectral linearisation for measuring the soluble solids content (SSC of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2 = 0.724 and a root mean square error of prediction for (RMSEP = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.

  19. Near infrared spectral linearisation in quantifying soluble solids content of intact carambola.

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2013-04-12

    This study presents a novel application of near infrared (NIR) spectral linearisation for measuring the soluble solids content (SSC) of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2) = 0.724 and a root mean square error of prediction for (RMSEP) = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.

  20. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiling; Li, Yang, E-mail: msliyang@scut.edu.cn; Qin, Xixi; Chen, Ruchun; Wu, Dakun; Liu, Shijian; Qiu, Jianrong, E-mail: qjr@scut.edu.cn

    2015-11-15

    Recently, long persistent phosphors (LPPs) have been considered to be the most prominent candidates for biomedical applications. However, the LPPs suffer from a dramatic decrease in luminescence intensity after incorporation into the tissue. Therefore, it is very necessary to develop the more competitive LPPs and acquire the reproducible tissue imaging. Here, we propose and experimentally demonstrate an effective bifunctional La{sub 3}Ga{sub 5}GeO{sub 14}: Cr{sup 3+}, Nd{sup 3+} phosphor with the interesting characteristic of near-infrared long persistent phosphorescence and NIR-to-NIR Stokes luminescence. Cr{sup 3+} and Nd{sup 3+} ions are simultaneously selected as the emission centers in order to take advantage of the remarkable phosphorescence properties of Cr{sup 3+}, and the appropriate energy level characteristic of NIR-excitation band (808 nm) and NIR-emission (1064 nm), and the ability as the brilliant auxiliary to create more efficient defects of Nd{sup 3+}. The efficient dual-modal emission is, accordingly utilized to realize the convenient, high-resolution global detection and local imaging. - Highlights: • Dual mode phosphor with NIR long afterglow and NIR-to-NIR Stokes luminescence. • Increasing the persistent duration due to the codoping of Nd. • Avoiding the noteworthy overheating effect due to the strong absorption at 980 nm.

  1. Fast and Convenient NIR Spectroscopy Procedure for Determination of Metformin Hydrochloride in Tablets

    Science.gov (United States)

    Pyzowski, J.; Lenartowicz, M.; Sobańska, A. W.; Brzezińska, E.

    2017-09-01

    A rapid and convenient near-infrared (NIR) reflectance spectroscopic procedure for the determination of metformin hydrochloride in tablets is presented. Determination was based on calibration curves that were obtained using a range of standards containing different concentrations of metformin hydrochloride blended with polyvinylpyrrolidone. The raw spectra of the standards, neat PVP, metformin hydrochloride, and powdered tablets were processed using a Multiplicative Scatter Correction filter as well as by the derivative spectroscopy method to give a basis for the calibration curve construction. The results were validated by thin-layer chromatography followed by UV-densitometry.

  2. Adsorption of petroleum resins and asphaltenes onto reservoir rock sands studied by near infrared (NIR) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syunyaev, R.Z.; Balabin, R.M. [Russian State Univ. of Oil and Gas, Moscow (Russian Federation). Dept. of Physics; Akhatov, I.S. [North Dakota State Univ., Fargo, ND (United States). Dept. of Mechanical Engineering and Center for Nanoscale Science and Engineering

    2008-07-01

    The presence of asphaltene and resin in crude oil is known to cause well bore plugging and pipeline deposition; stabilization of water/oil emulsions; sedimentation and plugging during crude oil storage; adsorption on refining equipment and coke formation. Kinetic and thermodynamic parameters of adsorption are also known to influence wettability and the capillary number. In this study, adsorption parameters of petroleum resins and asphaltenes were evaluated by Near Infrared (NIR) spectroscopy. Fractioned quartz, dolomite, mica and kaolinite sands were used as adsorbent. The particle size distribution was evaluated using an optical microscope. Porosity and permeability of each fraction were designed and benzene was used as the solvent. Various approaches for calibrating NIR spectra-macromolecules concentration were discussed. In this study, the partial least squares (PLS) regression method was used and the Langmuir model was chosen for experimental data fitting. Kinetic and isothermic data was used to evaluate the maximal adsorbed mass density, the equilibrium constant of adsorption, and the rate constants of adsorption and desorption. The rate constants of resins adsorption and desorption depended on the concentration. A numerical algorithm was developed to estimate the diffusion coefficient and relaxation time from the experimental data.

  3. Evaluation of cerebral activity in the prefrontal cortex in mood [affective] disorders during animal-assisted therapy (AAT) by near-infrared spectroscopy (NIRS): a pilot study.

    Science.gov (United States)

    Aoki, Jun; Iwahashi, Kazuhiko; Ishigooka, Jun; Fukamauchi, Fumihiko; Numajiri, Maki; Ohtani, Nobuyo; Ohta, Mitsuaki

    2012-09-01

    Previous studies have shown the possibility that animal-assisted therapy (AAT) is useful for promoting the recovery of a patient's psychological, social, and physiological aspect. As a pilot study, we measured the effect that AAT had on cerebral activity using near-infrared spectroscopy (NIRS), and examined whether or not NIRS be used to evaluate the effect of AAT biologically and objectively. Two patients with mood [affective] disorders and a healthy subject participated in this study. We performed two AAT and the verbal fluency task (VFT). The NIRS signal during AAT showed great [oxy-Hb] increases in most of the prefrontal cortex (PFC) in the two patients. When the NIRS pattern during AAT was compared with that during VFT, greater or lesser differences were observed between them in all subjects. The present study suggested that AAT possibly causes biological and physiological changes in the PFC, and that AAT is useful for inducing the activity of the PFC in patients with depression who have generally been said to exhibit low cerebral activity in the PFC. In addition, the possibility was also suggested that the effect of AAT can be evaluated using NIRS physiologically and objectively.

  4. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Gislum, René; Hermansen, Cecilie

    2017-01-01

    Soil organic carbon (SOC) and particle size fractions have a practical value for agronomy and the environment. Thus, alternative techniques to replace the expensive conventional analyses of soil are needed. Visible near-infrared reflectance spectroscopy (viseNIRS) has already shown potential...

  5. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  6. NIR analysis of cellulose and lactose--application to ecstasy tablet analysis.

    Science.gov (United States)

    Baer, Ines; Gurny, Robert; Margot, Pierre

    2007-04-11

    Cellulose and lactose are the most frequently used excipients in illicit ecstasy production. The aim of this project was to use near infrared reflectance spectroscopy (NIRS) for the determination of the different chemical forms of these two substances, as well as for the differentiation of their origin (producer). It was possible to distinguish between the different chemical forms of both compounds, as well as between their origins (producers), although within limits. Furthermore, the possibilities to apply NIR for the analysis of substances such as found in illicit tablets were studied. First, a few cellulose and lactose samples were chosen to make mixtures with amphetamine at three degrees of purity (5, 10 and 15%), in order to study the resulting changes in the spectra as well as to simultaneously quantify amphetamine and identify the excipient. A PLS2 model could be build to predict concentrations and excipient. Secondarily, the technique was to be applied to real ecstasy tablets. About 40 ecstasy seizures were analysed with the aim to determine the excipient and to check them against each other. Identification of the excipients was not always obvious, especially when more than one excipient were present. However, a comparison between tablets appeared to give groups of similar samples. NIR analysis results in spectra representing the tablet blend as a whole taking into account all absorbing compounds. Although NIRS seems to be an appropriate method for ecstasy profiling, little is known about intra- and intervariability of compression batches.

  7. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  8. Time domain functional NIRS imaging for human brain mapping.

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram

    2014-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  10. Estimation of Anthocyanin Content of Berries by NIR Method

    International Nuclear Information System (INIS)

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-01

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  11. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    Science.gov (United States)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  12. Diffuse reflectance infrared Fourier-Transform spectra of selected organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, S.H.; Caton, J.E.

    1982-05-01

    Diffuse reflectance infrared spectra of a variety of different organic compounds have been determined. Profiles of the spectra along with the location and relative intensity of the principal bands have been included for each compound studied. In addition both diffuse reflectance and transmittance infrared spectra were obtained for the same samples, and the spectral results were compared. Although some minor variations are observed between a diffuse reflectance spectrum and the corresponding transmittance spectrum, the diffuse reflectance is quite useful and may be a superior technique for the study of many samples because it possesses an inherently higher signal-to-noise response, requires less sample preparation and allows a very wide range of samples (solids, liquids of low volatility, neat sample, or sample diluted in a reflecting medium) to be studied under very similar conditions.

  13. Differences between wavefront and subjective refraction for infrared light.

    Science.gov (United States)

    Teel, Danielle F W; Jacobs, Robert J; Copland, James; Neal, Daniel R; Thibos, Larry N

    2014-10-01

    To determine the accuracy of objective wavefront refractions for predicting subjective refractions for monochromatic infrared light. Objective refractions were obtained with a commercial wavefront aberrometer (COAS, Wavefront Sciences). Subjective refractions were obtained for 30 subjects with a speckle optometer validated against objective Zernike wavefront refractions on a physical model eye (Teel et al., Design and validation of an infrared Badal optometer for laser speckle, Optom Vis Sci 2008;85:834-42). Both instruments used near-infrared (NIR) radiation (835 nm for COAS, 820 nm for the speckle optometer) to avoid correction for ocular chromatic aberration. A 3-mm artificial pupil was used to reduce complications attributed to higher-order ocular aberrations. For comparison with paraxial (Seidel) and minimum root-mean-square (Zernike) wavefront refractions, objective refractions were also determined for a battery of 29 image quality metrics by computing the correcting lens that optimizes retinal image quality. Objective Zernike refractions were more myopic than subjective refractions for 29 of 30 subjects. The population mean discrepancy was -0.26 diopters (D) (SEM = 0.03 D). Paraxial (Seidel) objective refractions tended to be hyperopically biased (mean discrepancy = +0.20 D, SEM = 0.06 D). Refractions based on retinal image quality were myopically biased for 28 of 29 metrics. The mean bias across all 31 measures was -0.24 D (SEM = 0.03). Myopic bias of objective refractions was greater for eyes with brown irises compared with eyes with blue irises. Our experimental results are consistent with the hypothesis that reflected NIR light captured by the aberrometer originates from scattering sources located posterior to the entrance apertures of cone photoreceptors, near the retinal pigment epithelium. The larger myopic bias for brown eyes suggests that a greater fraction of NIR light is reflected from choroidal melanin in brown eyes compared with blue eyes.

  14. In situ NIR reflectance and LIBS measurements in lava tubes in preparation for future Mars missions

    Science.gov (United States)

    Leveille, R.; Sobron, P.

    2017-12-01

    The ATiLT (Astrobiology Training in Lava Tubes) program addresses Mars astrobiology exploration objectives by performing field work and instrumental analyses in lava tubes as high fidelity analog environments to putative lava tubes on Mars. The main field location for ATiLT is the Lava Beds National Monument (LABE) in Northern California. LABE is situated on the lower north flank of the Medicine Lake Volcano of the Cascade arc. This location features hundreds of caves, most of which are relatively shallow, typically well above the water table, reaching 20-45m below land surface at their maximum depth. Some LABE caves feature `cold sinks' where cold air sinks and becomes trapped in deeper cave passages, thus allowing perennial ice to accumulate despite above freezing surface temperatures. Several lava tube caves in LABE also contain seasonal or perennial ice accumulations, which makes them excellent analogs to Mars lava tubes where the presence of ice has been predicted. While lava tubes are very attractive systems to test hypotheses related to habitability and the possibility for life on Mars, at present there are no comprehensive in-situ instrument-driven characterizations of the mineralogy and geochemistry of lava tubes. ATiLT fills this gap by providing detailed, in-situ investigations with scientific instruments relevant to Mars exploration. Our aim is to help constrain future exploration targets on Mars and define future mission operations and requirements. For this purpose, in May 2017 we carried out a field campaign in several lava tubes at LABE. We deployed two miniature spectroscopic sensors suitable for dark, humid, cave conditions: NIR reflectance (1-5 μm) and LIBS (300-900 nm). The advantages of combining NIR reflectance and LIBS are evident: LIBS can reveal the relative concentration of major (and often trace) elements present in a bulk sample, whereas NIR reflectance yields information on the individual mineral species and their chemical and

  15. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    International Nuclear Information System (INIS)

    Pradhan, Jitendra K; Behera, Gangadhar; Anantha Ramakrishna, S; Agarwal, Amit K; Ghosh, Amitava

    2017-01-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR–LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated. (paper)

  16. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Frederick, Blaise deB; Nickerson, Lisa D; Tong, Yunjie

    2012-04-15

    Confounding noise in BOLD fMRI data arises primarily from fluctuations in blood flow and oxygenation due to cardiac and respiratory effects, spontaneous low frequency oscillations (LFO) in arterial pressure, and non-task related neural activity. Cardiac noise is particularly problematic, as the low sampling frequency of BOLD fMRI ensures that these effects are aliased in recorded data. Various methods have been proposed to estimate the noise signal through measurement and transformation of the cardiac and respiratory waveforms (e.g. RETROICOR and respiration volume per time (RVT)) and model-free estimation of noise variance through examination of spatial and temporal patterns. We have previously demonstrated that by applying a voxel-specific time delay to concurrently acquired near infrared spectroscopy (NIRS) data, we can generate regressors that reflect systemic blood flow and oxygenation fluctuations effects. Here, we apply this method to the task of removing physiological noise from BOLD data. We compare the efficacy of noise removal using various sets of noise regressors generated from NIRS data, and also compare the noise removal to RETROICOR+RVT. We compare the results of resting state analyses using the original and noise filtered data, and we evaluate the bias for the different noise filtration methods by computing null distributions from the resting data and comparing them with the expected theoretical distributions. Using the best set of processing choices, six NIRS-generated regressors with voxel-specific time delays explain a median of 10.5% of the variance throughout the brain, with the highest reductions being seen in gray matter. By comparison, the nine RETROICOR+RVT regressors together explain a median of 6.8% of the variance in the BOLD data. Detection of resting state networks was enhanced with NIRS denoising, and there were no appreciable differences in the bias of the different techniques. Physiological noise regressors generated using

  17. Infrared reflectance as a diagnostic adjunct for subclinical commotio retinae

    Directory of Open Access Journals (Sweden)

    Nicholas H Andrew

    2014-01-01

    Full Text Available Commotio retinae (CR is an outer retinal disorder following blunt trauma to the eye. Histologically it is characterized by disruption of the photoreceptor outer segments (OS, typically without injury to other retinal layers. Using spectral-domain optical coherence tomography (OCT the condition is visible as hyper-reflectivity of the OS. Most cases of CR are associated with transient grey-white discoloration of the retina and are easily diagnosed clinically, but there have been reports of OCT-confirmed CR without retinal discoloration. It is likely that this subclinical variant of CR is under-recognized as the OCT features of CR are subtle. Here, we report a case of OCT-confirmed subclinical CR that demonstrated prominent infrared hypo-reflectance, using the infrared protocol of the SPECTRALIS® OCT, Heidelberg Engineering. This case suggests that infrared reflectance may have a role in diagnosing cases of subclinical CR.

  18. A Framework for Quantifying the Impacts of Sub-Pixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bi-Spectral Method.

    Science.gov (United States)

    Zhang, Z; Werner, F.; Cho, H. -M.; Wind, Galina; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry

    2017-01-01

    The so-called bi-spectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the t and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.

  19. [Determination of wine original regions using information fusion of NIR and MIR spectroscopy].

    Science.gov (United States)

    Xiang, Ling-Li; Li, Meng-Hua; Li, Jing-Mingz; Li, Jun-Hui; Zhang, Lu-Da; Zhao, Long-Lian

    2014-10-01

    Geographical origins of wine grapes are significant factors affecting wine quality and wine prices. Tasters' evaluation is a good method but has some limitations. It is important to discriminate different wine original regions quickly and accurately. The present paper proposed a method to determine wine original regions based on Bayesian information fusion that fused near-infrared (NIR) transmission spectra information and mid-infrared (MIR) ATR spectra information of wines. This method improved the determination results by expanding the sources of analysis information. NIR spectra and MIR spectra of 153 wine samples from four different regions of grape growing were collected by near-infrared and mid-infrared Fourier transform spe trometer separately. These four different regions are Huailai, Yantai, Gansu and Changli, which areall typical geographical originals for Chinese wines. NIR and MIR discriminant models for wine regions were established using partial least squares discriminant analysis (PLS-DA) based on NIR spectra and MIR spectra separately. In PLS-DA, the regions of wine samples are presented in group of binary code. There are four wine regions in this paper, thereby using four nodes standing for categorical variables. The output nodes values for each sample in NIR and MIR models were normalized first. These values stand for the probabilities of each sample belonging to each category. They seemed as the input to the Bayesian discriminant formula as a priori probability value. The probabilities were substituteed into the Bayesian formula to get posterior probabilities, by which we can judge the new class characteristics of these samples. Considering the stability of PLS-DA models, all the wine samples were divided into calibration sets and validation sets randomly for ten times. The results of NIR and MIR discriminant models of four wine regions were as follows: the average accuracy rates of calibration sets were 78.21% (NIR) and 82.57% (MIR), and the

  20. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes

    Science.gov (United States)

    Funane, Tsukasa; Sato, Hiroki; Yahata, Noriaki; Takizawa, Ryu; Nishimura, Yukika; Kinoshita, Akihide; Katura, Takusige; Atsumori, Hirokazu; Fukuda, Masato; Kasai, Kiyoto; Koizumi, Hideaki; Kiguchi, Masashi

    2015-01-01

    Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been proposed, but their spatial separation performance has rarely been validated with simultaneous measurements of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminating between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent component analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect, multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance (signal depth×Hb kind×task) indicated that the main effect of fNIRS signal depth on the correlation is significant [F(1,1286)=5.34, pdeep and shallow signals, and the accuracy and reliability of the fNIRS signal will be improved with the method. PMID:26157983

  1. Two-dimensional correlation spectroscopy reveals the underlying compositions for FT-NIR identification of the medicinal bulbs of the genus Fritillaria

    Science.gov (United States)

    Chen, Jianbo; Wang, Yue; Liu, Aoxue; Rong, Lixin; Wang, Jingjuan

    2018-03-01

    Fritillariae Bulbus, the dried bulbs of several species of the genus Fritillaria, is often used in traditional Chinese medicine for the treatment of cough and pulmonary diseases. However, the similar appearances make it difficult to identify different kinds of Fritillariae Bulbus. In this research, Fourier transform near-infrared (FT-NIR) spectroscopy with a reflection fiber probe is employed for the direct testing and automatic identification of different kinds of Fritillariae Bulbus to ensure the authenticity, efficacy and safety. The bulbs can be measured directly without pulverizing. According to the two-dimensional (2D) correlation analysis and statistical analysis, the height ratio of the two peaks near 4860 cm-1 and 4750 cm-1 in the second derivative spectra is specific to the species of Fritillariae Bulbus. This indicates that the relative amount of protein and carbohydrate may be critical to identify Fritillariae Bulbus. With the help of the SIMCA model, the four kinds of Fritillariae Bulbus can be identified correctly by FT-NIR spectroscopy. The results show the potential of FT-NIR spectroscopy with a reflection fiber probe in the rapid testing and identification of Fritillariae Bulbus.

  2. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina

    2015-01-01

    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  3. Forensic applications of microscopical infrared internal reflection spectroscopy

    Science.gov (United States)

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  4. Parietal and temporal activity during a multimodal dance video game: an fNIRS study.

    Science.gov (United States)

    Tachibana, Atsumichi; Noah, J Adam; Bronner, Shaw; Ono, Yumie; Onozuka, Minoru

    2011-10-03

    Using functional near infrared spectroscopy (fNIRS) we studied how playing a dance video game employs coordinated activation of sensory-motor integration centers of the superior parietal lobe (SPL) and superior temporal gyrus (STG). Subjects played a dance video game, in a block design with 30s of activity alternating with 30s of rest, while changes in oxy-hemoglobin (oxy-Hb) levels were continuously measured. The game was modified to compare difficult (4-arrow), simple (2-arrow), and stepping conditions. Oxy-Hb levels were greatest with increased task difficulty. The quick-onset, trapezoidal time-course increase in SPL oxy-Hb levels reflected the on-off neuronal response of spatial orienting and rhythmic motor timing that were required during the activity. Slow-onset, bell-shaped increases in oxy-Hb levels observed in STG suggested the gradually increasing load of directing multisensory information to downstream processing centers associated with motor behavior and control. Differences in temporal relationships of SPL and STG oxy-Hb concentration levels may reflect the functional roles of these brain structures during the task period. NIRS permits insights into temporal relationships of cortical hemodynamics during real motor tasks. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra.

    Science.gov (United States)

    Hernández, Eduardo; Pawar, Pallavi; Rodriguez, Sandra; Lysenko, Sergiy; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-03-01

    This study describes changes observed in the near-infrared (NIR) diffuse reflectance (DR) spectra of pharmaceutical tablets after these tablets were subjected to different levels of strain (exposure to shear) during the mixing process. Powder shearing is important in the mixing of powders that are cohesive. Shear stress is created in a system by moving one surface over another causing displacements in the direction of the moving surface and is part of the mixing dynamics of particulates in many industries including the pharmaceutical industry. In continuous mixing, shear strain is developed within the process when powder particles are in constant movement and can affect the quality attributes of the final product such as dissolution. These changes in the NIR spectra could affect results obtained from NIR calibration models. The aim of the study was to understand changes in the NIR diffuse reflectance spectra that can be associated with different levels of strain developed during blend shearing of laboratory samples. Shear was applied using a Couette cell and tablets were produced using a tablet press emulator. Tablets with different shear levels were measured using NIR spectroscopy in the diffuse reflectance mode. The NIR spectra were baseline corrected to maintain the scattering effect associated with the physical properties of the tablet surface. Principal component analysis was used to establish the principal sources of variation within the samples. The angular dependence of elastic light scattering shows that the shear treatment reduces the size of particles and produces their uniform and highly isotropic distribution. Tablet compaction further reduces the diffuse component of scattering due to realignment of particles. © The Author(s) 2016.

  6. Rheo-optical two-dimensional (2D) near-infrared (NIR) correlation spectroscopy for probing strain-induced molecular chain deformation of annealed and quenched Nylon 6 films

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-04-01

    A rheo-optical characterization technique based on the combination of a near-infrared (NIR) spectrometer and a tensile testing machine is presented here. In the rheo-optical NIR spectroscopy, tensile deformations are applied to polymers to induce displacement of ordered or disordered molecular chains. The molecular-level variation of the sample occurring on short time scales is readily captured as a form of strain-dependent NIR spectra by taking an advantage of an acousto-optic tunable filter (AOTF) equipped with the NIR spectrometer. In addition, the utilization of NIR with much less intense absorption makes it possible to measure transmittance spectra of relatively thick samples which are often required for conventional tensile testing. An illustrative example of the rheo-optical technique is given with annealed and quenched Nylon 6 samples to show how this technique can be utilized to derive more penetrating insight even from the seemingly simple polymers. The analysis of the sets of strain-dependent NIR spectra suggests the presence of polymer structures undergoing different variations during the tensile elongation. For instance, the tensile deformation of the semi-crystalline Nylon 6 involves a separate step of elongation of the rubbery amorphous chains and subsequent disintegration of the rigid crystalline structure. Excess amount of crystalline phase in Nylon 6, however, results in the retardation of the elastic deformation mainly achieved by the amorphous structure, which eventually leads to the simultaneous orientation of both amorphous and crystalline structures.

  7. Saphenous vein graft near-infrared spectroscopy imaging insights from the lipid core plaque association with clinical events near-infrared spectroscopy (ORACLE-NIRS) registry.

    Science.gov (United States)

    Danek, Barbara A; Karatasakis, Aris; Alame, Aya J; Nguyen-Trong, Phuong-Khanh J; Karacsonyi, Judit; Rangan, Bavana; Roesle, Michele; Atwell, Amy; Resendes, Erica; Martinez-Parachini, Jose Roberto; Iwnetu, Rahel; Kalsaria, Pratik; Siddiqui, Furqan; Muller, James E; Banerjee, Subhash; Brilakis, Emmanouil

    2017-05-01

    We sought to examine near-infrared spectroscopy (NIRS) imaging findings of aortocoronary saphenous vein grafts (SVGs). SVGs are prone to develop atherosclerosis similar to native coronary arteries. They have received little study using NIRS. We examined the clinical characteristics and imaging findings from 43 patients who underwent NIRS imaging of 45 SVGs at our institution between 2009 and 2016. The mean patient age was 67 ± 7 years and 98% were men, with high prevalence of diabetes mellitus (56%), hypertension (95%), and dyslipidemia (95%). Mean SVG age was 7 ± 7 years, mean SVG lipid core burden index (LCBI) was 53 ± 60 and mean maxLCBI 4 mm was 194 ± 234. Twelve SVGs (27%) had lipid core plaques (2 yellow blocks on the block chemogram), with a higher prevalence in SVGs older than 5 years (46% vs. 5%, P = 0.002). Older SVG age was associated with higher LCBI (r = 0.480, P < 0.001) and higher maxLCBI 4 mm (r = 0.567, P < 0.001). On univariate analysis, greater annual total cholesterol exposure was associated with higher SVG LCBI (r = 0.30, P = 0.042) and annual LDL-cholesterol and triglyceride exposure were associated with higher SVG maxLCBI 4 mm (LDL-C: r = 0.41, P = 0.020; triglycerides: r = 0.36, P = 0.043). On multivariate analysis, the only independent predictor of SVG LCBI and maxLCBI 4mm was SVG age. SVG percutaneous coronary intervention was performed in 63% of the patients. An embolic protection device was used in 96% of SVG PCIs. Periprocedural myocardial infarction occurred in one patient. Older SVG age and greater lipid exposure are associated with higher SVG lipid burden. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    Science.gov (United States)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral

  9. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan

    2017-09-01

    The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.

  10. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS

    NARCIS (Netherlands)

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine

    2016-01-01

    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA).

  11. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    Science.gov (United States)

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.

  12. Application of partial least squares near-infrared spectral classification in diabetic identification

    Science.gov (United States)

    Yan, Wen-juan; Yang, Ming; He, Guo-quan; Qin, Lin; Li, Gang

    2014-11-01

    In order to identify the diabetic patients by using tongue near-infrared (NIR) spectrum - a spectral classification model of the NIR reflectivity of the tongue tip is proposed, based on the partial least square (PLS) method. 39sample data of tongue tip's NIR spectra are harvested from healthy people and diabetic patients , respectively. After pretreatment of the reflectivity, the spectral data are set as the independent variable matrix, and information of classification as the dependent variables matrix, Samples were divided into two groups - i.e. 53 samples as calibration set and 25 as prediction set - then the PLS is used to build the classification model The constructed modelfrom the 53 samples has the correlation of 0.9614 and the root mean square error of cross-validation (RMSECV) of 0.1387.The predictions for the 25 samples have the correlation of 0.9146 and the RMSECV of 0.2122.The experimental result shows that the PLS method can achieve good classification on features of healthy people and diabetic patients.

  13. Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: Lower body negative pressure

    NARCIS (Netherlands)

    S.A. Bartels (Sebastiaan); R. Bezemer (Rick); F.J.W. Wallis de Vries (Floris); D.M.J. Milstein (Dan); A.A.P. Lima (Alexandre ); T.G.V. Cherpanath (Thomas); A.H. van den Meiracker (Anton); J. van Bommel (Jasper); M. Heger (Michal); J.M. Karemaker (John); C. Ince (Can)

    2011-01-01

    textabstractPurpose: To test the hypothesis that the sensitivity of near-infrared spectroscopy (NIRS) in reflecting the degree of (compensated) hypovolemia would be affected by the application site and probing depth. We simultaneously applied multi-site (thenar and forearm) and multi-depth (15-2.5

  14. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  15. Novel self-assembled sandwich nanomedicine for NIR-responsive release of NO

    Science.gov (United States)

    Fan, Jing; He, Qianjun; Liu, Yi; Ma, Ying; Fu, Xiao; Liu, Yijing; Huang, Peng; He, Nongyue; Chen, Xiaoyuan

    2015-01-01

    A novel sandwich nanomedicine (GO-BNN6) for near-infrared (NIR) light responsive release of nitric oxide (NO) has been constructed by self-assembling of graphene oxide (GO) nanosheets and a NO donor BNN6 through the π-π stacking interaction. GO-BNN6 nanomedicine has an extraordinarily high drug loading capacity (1.2 mg BNN6 per mg GO), good thermal stability, and high NIR responsiveness. The NO release from GO-BNN6 can be easily triggered and effectively controlled by adjusting the switching, irradiation time and power density of NIR laser. The intracellular NIR-responsive release of NO from GO-BNN6 nanomedicine causes a remarkable anti-cancer effect. PMID:26568270

  16. Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors

    Science.gov (United States)

    Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.

    2018-04-01

    Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.

  17. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    Science.gov (United States)

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  18. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars "Cripps Pink" and "Braeburn".

    Science.gov (United States)

    Eisenstecken, Daniela; Panarese, Alessia; Robatscher, Peter; Huck, Christian W; Zanella, Angelo; Oberhuber, Michael

    2015-07-24

    The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000-2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples ("Braeburn" and "Cripps Pink") was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples.

  19. Towards NIRS-based hand movement recognition.

    Science.gov (United States)

    Paleari, Marco; Luciani, Riccardo; Ariano, Paolo

    2017-07-01

    This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.

  20. Epoch making NIRS studies seen through citation trends

    International Nuclear Information System (INIS)

    Dan, Ippeita

    2009-01-01

    Near-infrared spectroscopy (NIRS) studies through citation trends are investigated of literature concerning only the brain function measurement and its methodology together with NIRS principle, technological development, present state and future view. Investigation is conducted firstly for the survey of important author name of those concerned papers in Web of Science and Google Scholar with search words of NIRS, brain and optical topography as an option. Second, >100 papers of those authors citing any of them are picked up and their papers are ranked in accordance with Web of Science citation number, of which top-nineteen are presented here. Impact and epoch making papers are reviewed with explanations of: the establishment of measuring technology of cerebral blood flow change and subsequent brain function by NIRS; development with multi-channel detection; simultaneous measurement with other imaging modalities; examination of NIRS validity; spatial analysis of NIRS; and measurement of brain function. The highest times of citation are 1,238 of the paper by F. F. Jobsis in 'Science' (1977). It should be noted that 10 of top 19 papers are those by Japanese authors. However, review articles omitted in the present literature survey are mostly described by foreign authors: an effort to systemize the concerned fields might be required in this country. (K.T.)

  1. Designing and testing a wearable, wireless fNIRS patch.

    Science.gov (United States)

    Abtahi, Mohammadreza; Cay, Gozde; Saikia, Manob Jyoti; Mankodiya, Kunal

    2016-08-01

    Optical brain monitoring using near infrared (NIR) light has got a lot of attention in order to study the complexity of the brain due to several advantages as oppose to other methods such as EEG, fMRI and PET. There are a few commercially available functional NIR spectroscopy (fNIRS) brain monitoring systems, but they are still non-wearable and pose difficulties in scanning the brain while the participants are in motion. In this work, we present our endeavors to design and test a low-cost, wireless fNIRS patch using NIR light sources at wavelengths of 770 and 830nm, photodetectors and a microcontroller to trigger the light sources, read photodetector's output and transfer data wirelessly (via Bluetooth) to a smart-phone. The patch is essentially a 3-D printed wearable system, recording and displaying the brain hemodynamic responses on smartphone, also eliminates the need for complicated wiring of the electrodes. We have performed rigorous lab experiments on the presented system for its functionality. In a proof of concept experiment, the patch detected the NIR absorption on the arm. Another experiment revealed that the patch's battery could last up to several hours with continuous fNIRS recording with and without wireless data transfer.

  2. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis...... aluminium content in aluminium hydroxide suspension. (c) 2007 Elsevier Ltd. All rights reserved....

  3. New applications of near infrared spectroscopy in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Groenewald, C.A. (Peter Rassloff Instruments and Services, Norwood, South Africa)

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories.

  4. New applications of near infrared spectroscopy in the food industry

    International Nuclear Information System (INIS)

    Groenewald, C.A.

    1984-01-01

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories

  5. Reflectance measurements of leaves for detecting visible and non-visible ozon damage to crops

    International Nuclear Information System (INIS)

    Kraft, M.; Weigel, H.-J.; Mejer, G.-J.; Brandes, F.

    1996-01-01

    Spring wheat (Triticum aestivum cv. Turbo), white clover (Trifolium repens cv. Karina) and maize (Zea mays cv. Bonny) plants were exposed for 20–30 days in open top chambers to charcoal-filtered air (CF, control) and CF air supplied with O 3 for 8–12 h/per day in the concentration range of 180–240 μg O 3 /m 3 (8–12 h/day treatment mean). At the end of the O 3 treatment spectral reflectance measurements were made on single leaves of all 3 species and on canopies of wheat and clover using a CCD (Charged Coupled Device) camera and wavelength filters with 11 wavelength bands ranging from 450 nm to 950 nm. Different vegetation indices such as the normalized difference vegetation index (NDVI) and the ≪main inflection point≫ (MIP) were calculated. Based on these results it was shown that visible O 3 damages were correlated to the spectral reflectance changes: Both leaves and canopies showed an increased reflectance of visible light after ozone treatment. While clover and maize leaves as well as clover and wheat canopies showed a decreased near infrared (NIR) reflectance, the NIR reflectance of wheat leaves did not change, even if the leaves had visible symptoms. A decreased infrared reflectance was detectable for all clover leaves after O 3 treatment although for part of the leaves no visible foliar damage symptoms could be observed

  6. [Induction and analysis for NIR features of frequently-used mineral traditional Chinese medicines].

    Science.gov (United States)

    Chen, Long; Yuan, Ming-Yang; Chen, Ke-Li

    2016-10-01

    In order to provide theoretical basis for the rapid identification of mineral traditional Chinese medicines(TCM) with near infrared (NIR)diffuse reflectance spectroscopy, Characteristic NIR spectra of 51 kinds of mineral TCMs were generalized and compared on the basis of the previous research, and the characteristic spectral bands were determined and analyzed by referring to mineralogical and geological literatures. It turned out that the NIR features of mineral TCMs were mainly at 8 000-4 000 cm ⁻¹ wavebands, which can be assigned as the absorption of water, -OH and[CO3 ²⁻] and so on. Absorption peaks of water has regularity as follows, the structure water and -OH had a combined peak which was strong and keen-edged around 7 000 cm ⁻¹, the crystal water had two strong peak around 7 000 cm ⁻¹ and 5 100 cm ⁻¹, and water only has a broad peak around 5 100 cm ⁻¹. Due to the differences in the crystal form and the contents of water in mineral TCMs, NIR features of water in mineral TCMs which could be used for identification were different. Mineral TCMs containing sulfate are rich in crystal water, mineral TCMs containing silicate generally had structure water, and mineral TCMs containing carbonate merely had a little of water, so it was reasonable for the use of NIR spectroscopy to classify mineral TCMs with anionic type. In addition, because of the differences in cationic type, impurities, crystal form and crystallinity, mineral TCMs have exclusive NIR features at 4 600-4 000 cm ⁻¹, which can be assigned as Al-OH, Mg-OH, Fe-OH, Si-OH,[CO3 ²⁻] and so on. Calcined mineral TCMs are often associated with water and main composition changes, also changes of the NIR features, which could be used for the monitoring of the processing, and to provide references for the quality control of mineral TCMs. The adaptability and limitation of NIR analysis for mineral TCMs were also discussed:the majority of mineral TCMs had noteworthy NIR features which could be

  7. Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process.

    Science.gov (United States)

    Stockl, Andrea; Lichti, Fabian

    2018-01-01

    In this research project Near-infrared spectroscopy (NIRS) was applied to monitor the content of specific process parameters in anaerobic digestion. A laboratory scaled biogas digester was constantly fed every four hours with maize- and grass silage to keep a base load with an organic loading rate (OLR) of 2.5 kg oDM/m 3  ∗ d. Daily impact loads with shredded wheat up to an OLR of 8 kg oDM/m 3  ∗ d were added in order to generate peaks at the parameters tested. The developed calibration models are capable to show changes in process parameters like volatile fatty acids (VFA), propionic acid, total inorganic carbon (TIC) and the ratio of the volatile fatty acids to the carbonate buffer (VFA/TIC). Based on the calibration of the models for VFA and TIC, the values could be predicted with an R 2 of 0.94 and 0.97, respectively. Moreover, the residual prediction deviations were 4.0 and 6.0 for VFA and TIC, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    Science.gov (United States)

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  9. Pigments which reflect infrared radiation from fire

    Science.gov (United States)

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  10. Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging.

    Science.gov (United States)

    Moriguchi, Yoshiya; Noda, Takamasa; Nakayashiki, Kosei; Takata, Yohei; Setoyama, Shiori; Kawasaki, Shingo; Kunisato, Yoshihiko; Mishima, Kazuo; Nakagome, Kazuyuki; Hanakawa, Takashi

    2017-10-01

    Near-infrared spectroscopy (NIRS) is a convenient and safe brain-mapping tool. However, its inevitable confounding with hemodynamic responses outside the brain, especially in the frontotemporal head, has questioned its validity. Some researchers attempted to validate NIRS signals through concurrent measurements with functional magnetic resonance imaging (fMRI), but, counterintuitively, NIRS signals rarely correlate with local fMRI signals in NIRS channels, although both mapping techniques should measure the same hemoglobin concentration. Here, we tested a novel hypothesis that different voxels within the scalp and the brain tissues might have substantially different hemoglobin absorption rates of near-infrared light, which might differentially contribute to NIRS signals across channels. Therefore, we newly applied a multivariate approach, a partial least squares regression, to explain NIRS signals with multivoxel information from fMRI within the brain and soft tissues in the head. We concurrently obtained fMRI and NIRS signals in 9 healthy human subjects engaging in an n-back task. The multivariate fMRI model was quite successfully able to predict the NIRS signals by cross-validation (interclass correlation coefficient = ∼0.85). This result confirmed that fMRI and NIRS surely measure the same hemoglobin concentration. Additional application of Monte-Carlo permutation tests confirmed that the model surely reflects temporal and spatial hemodynamic information, not random noise. After this thorough validation, we calculated the ratios of the contributions of the brain and soft-tissue hemodynamics to the NIRS signals, and found that the contribution ratios were quite different across different NIRS channels in reality, presumably because of the structural complexity of the frontotemporal regions. Hum Brain Mapp 38:5274-5291, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Correction for reflected sky radiance in low-altitude coastal hyperspectral images.

    Science.gov (United States)

    Kim, Minsu; Park, Joong Yong; Kopilevich, Yuri; Tuell, Grady; Philpot, William

    2013-11-10

    Low-altitude coastal hyperspectral imagery is sensitive to reflections of sky radiance at the water surface. Even in the absence of sun glint, and for a calm water surface, the wide range of viewing angles may result in pronounced, low-frequency variations of the reflected sky radiance across the scan line depending on the solar position. The variation in reflected sky radiance can be obscured by strong high-spatial-frequency sun glint and at high altitude by path radiance. However, at low altitudes, the low-spatial-frequency sky radiance effect is frequently significant and is not removed effectively by the typical corrections for sun glint. The reflected sky radiance from the water surface observed by a low-altitude sensor can be modeled in the first approximation as the sum of multiple-scattered Rayleigh path radiance and the single-scattered direct-solar-beam radiance by the aerosol in the lower atmosphere. The path radiance from zenith to the half field of view (FOV) of a typical airborne spectroradiometer has relatively minimal variation and its reflected radiance to detector array results in a flat base. Therefore the along-track variation is mostly contributed by the forward single-scattered solar-beam radiance. The scattered solar-beam radiances arrive at the water surface with different incident angles. Thus the reflected radiance received at the detector array corresponds to a certain scattering angle, and its variation is most effectively parameterized using the downward scattering angle (DSA) of the solar beam. Computation of the DSA must account for the roll, pitch, and heading of the platform and the viewing geometry of the sensor along with the solar ephemeris. Once the DSA image is calculated, the near-infrared (NIR) radiance from selected water scan lines are compared, and a relationship between DSA and NIR radiance is derived. We then apply the relationship to the entire DSA image to create an NIR reference image. Using the NIR reference image

  12. Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry.

    Science.gov (United States)

    Castritius, Stefan; Kron, Alexander; Schäfer, Thomas; Rädle, Matthias; Harms, Diedrich

    2010-12-22

    A new approach of combination of near-infrared (NIR) spectroscopy and refractometry was developed in this work to determine the concentration of alcohol and real extract in various beer samples. A partial least-squares (PLS) regression, as multivariate calibration method, was used to evaluate the correlation between the data of spectroscopy/refractometry and alcohol/extract concentration. This multivariate combination of spectroscopy and refractometry enhanced the precision in the determination of alcohol, compared to single spectroscopy measurements, due to the effect of high extract concentration on the spectral data, especially of nonalcoholic beer samples. For NIR calibration, two mathematical pretreatments (first-order derivation and linear baseline correction) were applied to eliminate light scattering effects. A sample grouping of the refractometry data was also applied to increase the accuracy of the determined concentration. The root mean squared errors of validation (RMSEV) of the validation process concerning alcohol and extract concentration were 0.23 Mas% (method A), 0.12 Mas% (method B), and 0.19 Mas% (method C) and 0.11 Mas% (method A), 0.11 Mas% (method B), and 0.11 Mas% (method C), respectively.

  13. An automated field spectrometer system for studying VIS, NIR and SWIR anisotropy for semi-arid savanna

    DEFF Research Database (Denmark)

    Huber, Silvia; Tagesson, Håkan Torbern; Fensholt, Rasmus

    2014-01-01

    in shading (analyzed by measurements from forward and backward scatter direction) did not have a noticeable impact on the indices (0.2 % and 0.5 % difference for NDVI and SIWSI in the backward and forward scatter direction, respectively). The presented data show the large potential of continuous time series....... The instrumental setup allows studying surface anisotropy for different phenological phases. First data retrieved from the Dahra field spectrometer system show distinctive patterns of spectrally dependent anisotropic behavior: during the rainy season normalized reflectance was highest around solar noon for small...... off-nadir observation angles but for observations of large off-nadir angles highest values were found in the morning or evening hours (both forward and backward scatter direction). Anisotropy factors corresponding to MODIS, SPOT and SEVIRI red, near-infrared (NIR) and shortwave-infrared (SWIR) sensor...

  14. Characterizing process effects on pharmaceutical solid forms using near-infrared spectroscopy and infrared imaging.

    Science.gov (United States)

    Roggo, Y; Jent, N; Edmond, A; Chalus, P; Ulmschneider, M

    2005-09-01

    Near-infrared spectroscopy (NIRS) has become a widely used analytical technique in the pharmaceutical industry, serving for example to determine the active substance or water content of tablets. Its great advantage lies in the minimal sample preparation required and speed of measurement. In a study designed to detect the effects of process on tablet dissolution, we describe the application of NIRS to the detection and identification of changes in uncoated and coated tablets in response to pilot-scale changes in process parameters during melt granulation, compression, and coating. Beginning with a qualitative comparison between pharmaceutical batches, we show that NIRS and principal component analysis can separate batches produced with different melt granulation parameters and differentiate between cores compressed with different compaction forces. Complementary infrared imaging can also explain the difference in dissolution properties between samples produced with different melt granulation parameters. NIRS is sensitive to changes in coating formulation, the quality of a coating excipient (hydroxypropyl methylcellulose), and coating time. In a concluding quantitative analysis, we demonstrate the feasibility of NIRS in a manufacturing context for predicting coating time and detecting production cores failing to meet dissolution test specifications.

  15. Combined data mining/NIR spectroscopy for purity assessment of lime juice

    Science.gov (United States)

    Shafiee, Sahameh; Minaei, Saeid

    2018-06-01

    This paper reports the data mining study on the NIR spectrum of lime juice samples to determine their purity (natural or synthetic). NIR spectra for 72 pure and synthetic lime juice samples were recorded in reflectance mode. Sample outliers were removed using PCA analysis. Different data mining techniques for feature selection (Genetic Algorithm (GA)) and classification (including the radial basis function (RBF) network, Support Vector Machine (SVM), and Random Forest (RF) tree) were employed. Based on the results, SVM proved to be the most accurate classifier as it achieved the highest accuracy (97%) using the raw spectrum information. The classifier accuracy dropped to 93% when selected feature vector by GA search method was applied as classifier input. It can be concluded that some relevant features which produce good performance with the SVM classifier are removed by feature selection. Also, reduced spectra using PCA do not show acceptable performance (total accuracy of 66% by RBFNN), which indicates that dimensional reduction methods such as PCA do not always lead to more accurate results. These findings demonstrate the potential of data mining combination with near-infrared spectroscopy for monitoring lime juice quality in terms of natural or synthetic nature.

  16. Quantitative Determination of Germinability of Puccinia striiformis f. sp. tritici Urediospores Using Near Infrared Spectroscopy Technology

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhao

    2015-01-01

    Full Text Available Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst is an important disease on wheat. In this study, quantitative determination of germinability of Pst urediospores was investigated by using near infrared reflectance spectroscopy (NIRS combined with quantitative partial least squares (QPLS and support vector regression (SVR. The near infrared spectra of the urediospore samples were acquired using FT-NIR MPA spectrometer and the germination rate of each sample was measured using traditional spore germination method. The best QPLS model was obtained with vector correction as the preprocessing method of the original spectra and 4000–12000 cm−1 as the modeling spectral region while the modeling ratio of the training set to the testing set was 4 : 1. The best SVR model was built when vector normalization was used as the preprocessing method, the modeling ratio was 5 : 1 and the modeling spectral region was 8000–11000 cm−1. The results showed that the effect of the best model built using QPLS or SVR was satisfactory. This indicated that quantitative determination of germinability of Pst urediospores using near infrared spectroscopy technology is feasible. A new method based on NIRS was provided for rapid, automatic, and nondestructive determination of germinability of Pst urediospores.

  17. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    Science.gov (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  18. NIR monitoring of in-service wood structures

    Science.gov (United States)

    Michela Zanetti; Timothy G. Rials; Douglas Rammer

    2005-01-01

    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  19. Characterization of superconducting thin films by infrared reflection

    International Nuclear Information System (INIS)

    Gervais, F.

    1988-01-01

    Infrared reflectivity spectroscopy is shown to be a powerful tool to characterize the new high-Tc oxide superconductors since it gives information about the superconducting gap, phonons, plasmon and possibly low-energy electronic excitations such as excitons, information relevant to understand the mechanism of superconductivity [fr

  20. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  1. Novel mid-infrared imaging system based on single-mode quantum cascade laser illumination and upconversion

    DEFF Research Database (Denmark)

    Tomko, Jan; Junaid, Saher; Tidemand-Lichtenberg, Peter

    2017-01-01

    Compared to the visible or near-infrared (NIR) spectral regions, there is a lack of very high sensitivity detectors in the mid-infrared (MIR) that operate near room temperature. Upconversion of the MIR light to NIR light that is imaged using affordable, fast, and sensitive NIR detectors or camera...

  2. Measurement of neuronal activity in a macaque monkey in response to animate images using near-infrared spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Masumi Wakita

    2010-06-01

    Full Text Available Near-infrared spectroscopy (NIRS has been used extensively for functional neuroimaging over the past decade, in part because it is considered a powerful tool for investigating brain function in human infants and young children, for whom other neuroimaging techniques are not suitable. In particular, several studies have measured hemodynamic responses in the occipital region in infants upon exposure to visual stimuli. In the present study, we used a multi-channel NIRS to measure neuronal activity in a macaque monkey who was trained to watch videos showing various circus animals performing acrobatic activities without fixing the head position of the monkey. Cortical activity from the occipital region was measured first by placing a probe comprising a 3x5 array of emitters and detectors (2 x 4 cm on the area (area 17, and the robustness and stability of the results were confirmed across sessions. Cortical responses were then measured from the dorsofrontal region. The oxygenated hemoglobin signals increased in area 9 and decreased in area 8b in response to viewing the videos. The results suggest that these regions are involved in cognitive processing of visually presented stimuli. The monkey showed positive responsiveness to the stimuli from the affective standpoint, but its attentional response to them was an inhibitory one.

  3. Influence of earlobe thickness on near infrared spectroscopy

    Science.gov (United States)

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  4. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Spectrophotometric versus NIR-MIR assessments of cowpea pods for discriminating the impact of freezing.

    Science.gov (United States)

    Machado, Nelson; Domínguez-Perles, Raúl; Ramos, Ana; Rosa, Eduardo As; Barros, Ana Irna

    2017-10-01

    Freezing represents an important storage method for vegetal foodstuffs, such as cowpea pods, and thus the impact of this process on the chemical composition of these matrices arises as a prominent issue. In this sense, the phytochemical contents in frozen cowpea pods (i.e. at 6 and 9 months) have been compared with fresh cowpea pods material, with the samples being concomitantly assessed by Fourier-transform infrared spectroscopy (FTIR), both mid-infrared (MIR) and near infrared (NIR), aiming to evaluate the potential of these techniques as a rapid tool for the traceability of these matrices. A decrease in phytochemical contents during freezing was observed, allowing the classification of samples according to the freezing period based on such variations. Also, MIR and NIR allowed discrimination of samples: the use of the first derivative demonstrated a better performance for this purpose, whereas the use of the normalized spectra gave the best correlations between the spectra and specific contents. In both cases, NIR displayed the best performance. Freezing of cowpea pods leads to a decrease of phytochemical contents, which can be monitored by FTIR spectroscopy, both within the MIR and NIR ranges, whereas the use of this technique, in tandem with chemometrics, constitutes a suitable methodology for the traceability of these matrices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. On-line prediction of chemical composition of semi-frozen ground beef by non-invasive NIR spectroscopy.

    Science.gov (United States)

    Tøgersen, G; Arnesen, J F; Nilsen, B N; Hildrum, K I

    2003-04-01

    The chemical composition of industrial scale batches of frozen beef was measured on-line during grinding by near infrared (NIR) reflectance spectroscopy. The MM55E filter based non-contact NIR instrument was mounted at the outlet of a meat grinder, and the fat, moisture and protein contents determined from the average of each filter reading throughout the grinding of the batch. The filters were selected from full spectra measurements to be as insensitive to water crystallization as possible. For on-line calibration and prediction, 55 beef batches of 400-800 kg in the range of 7.66-22.91% fat, 59.36-71.48% moisture, and 17.04-20.76% protein, were ground through 4 or 13 mm hole plates. The regression results, presented as root mean square error of cross validation (RMSECV) were between 0.48 and 1.11% for fat, 0.43 and 0.97% for moisture and 0.41 and 0.47% for protein.

  7. Rapid determination of sugar level in snack products using infrared spectroscopy.

    Science.gov (United States)

    Wang, Ting; Rodriguez-Saona, Luis E

    2012-08-01

    Real-time spectroscopic methods can provide a valuable window into food manufacturing to permit optimization of production rate, quality and safety. There is a need for cutting edge sensor technology directed at improving efficiency, throughput and reliability of critical processes. The aim of the research was to evaluate the feasibility of infrared systems combined with chemometric analysis to develop rapid methods for determination of sugars in cereal products. Samples were ground and spectra were collected using a mid-infrared (MIR) spectrometer equipped with a triple-bounce ZnSe MIRacle attenuated total reflectance accessory or Fourier transform near infrared (NIR) system equipped with a diffuse reflection-integrating sphere. Sugar contents were determined using a reference HPLC method. Partial least squares regression (PLSR) was used to create cross-validated calibration models. The predictability of the models was evaluated on an independent set of samples and compared with reference techniques. MIR and NIR spectra showed characteristic absorption bands for sugars, and generated excellent PLSR models (sucrose: SEP 0.96). Multivariate models accurately and precisely predicted sugar level in snacks allowing for rapid analysis. This simple technique allows for reliable prediction of quality parameters, and automation enabling food manufacturers for early corrective actions that will ultimately save time and money while establishing a uniform quality. The U.S. snack food industry generates billions of dollars in revenue each year and vibrational spectroscopic methods combined with pattern recognition analysis could permit optimization of production rate, quality, and safety of many food products. This research showed that infrared spectroscopy is a powerful technique for near real-time (approximately 1 min) assessment of sugar content in various cereal products. © 2012 Institute of Food Technologists®

  8. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    Science.gov (United States)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  9. Design of a Solar Greenhouse with Energy Delivery by the Conversion of Near Infrared Radiation - Part 1 Optics and PV-cells

    NARCIS (Netherlands)

    Gert-Jan Swinkels; Piet Sonneveld; G.P.A. Bot

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  10. Design of a Solar Greenhouse with energy Delivery by the Conversion of Near Infrared Radiation. Part 1. Optics and PV-Cells

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Bot, G.P.A.

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  11. Exploring Planetary Analogs With an Ultracompact Near-Infrared Reflectance Instrument

    Science.gov (United States)

    Sobron, P.; Wang, A.

    2017-12-01

    Orbital reflectance spectrometers provide unique measurements of mineralogical features globally and repeatedly on planets and moons of our solar system. Mounted on landed spacecraft, reflectance sensors enable fine-scale investigations and can provide ground truth analyses to assess the validity of spectral remote sensing. We have developed a miniaturized, field-ready, active source NIR (1.14-4.76 μm) reflectance spectrometer (WIR) WIR enables in-situ, near real-time identification of water (structural or adsorbed), carbonates, sulfates, hydrated silicates, as well as C-H & N-H bonds in organic species. WIR is suited for lander/rover deployment in two modes: 1) In Traverse Survey Mode WIR is integrated into a rover wheel and performs nonstop synchronized data collection with every revolution of the wheel; large amounts of data points can be collected during a rover traverse that inform the spatial distribution of mineral phases; 2) In Point-Check Mode WIR is mounted on a robotic arm of a rover/lander and deployed on selected targets at planetary surfaces, or installed inside an analytical lab where samples from a drill/scoop are delivered for detailed analysis. Over the past 10 years we have deployed WIR in planetary analog settings, including hydrothermal springs in Svalbard (Norway) and High Andes (Chile); Arctic volcanoes in Svalbard; Arctic springs and permafrost in Axel Heiberg (Canada); Antarctic ice-covered lakes; saline playas in hyperarid deserts in the Tibetan Plateau (China) and the Atacama; high elevation ore deposits in the Andes and the Abitibi gold belt region (Canada); lava tubes in California; and acidic waters in Rio Tinto (Spain). We have recorded in-situ NIR reflectance spectra from these analogues and used improved spectral unmixing algorithms to determine the mineralogical composition at these sites. We have observed minerals consistent with sedimentary, mineralogical, morphological, and geochemical processes, some of which have been

  12. Gold nanoflowers with mesoporous silica as "nanocarriers" for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Science.gov (United States)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-04-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  13. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce; Song, Xin; Toppare, Levent; Baran, Derya; Gunbas, Gorkem

    2018-01-01

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm

  14. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  15. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    Science.gov (United States)

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  16. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  17. Quality evaluation of regional forage resources by means of near infrared reflectance spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruno Ronchi

    2010-01-01

    Full Text Available Quality parameters of grassland and pasture samples collected during a three-year period at two environmentally andgeographically different areas were analysed by Near Infrared Reflectance Spectroscopy (NIRS. Chemical analysis forcrude protein (CP, crude fibre (CF, neutral detergent fibre (NDF, acid detergent fibre (ADF, acid detergent lignin (ADLand crude ash (ASH carried out on two-thirds of the samples were used in calibration processes. The remaining onethirdof the data was used to validate the best calibrations obtained. Samples selection is discussed. Different math pretreatments(derivative, gap, primary smoothing and secondary smoothing, light scattering correction methods and calibrationalgorithms were tested to achieve the better predictive performances. We obtained the best results using differentregression algorithms to correlate spectral information to chemical data. For CP (R2 = 0.94, SEP=1.3, NDF (R2 =0.95, SEP = 2.14 and ADF (R2 = 0.92, SEP=2.06 Multiple Linear Regression (MLR models fit chemical data better thanMean Partial Least Square (MPLS regression. A molecular basis explanation of wavelengths selected was carried out.MPLS models worked well for CF (R2 = 0.93, SEP=1.57, and ASH (R2 = 0.95, SEP=1.17 while poor calibrations wereobtained for ADL using both algorithms. To confirm the reliability of the models developed, uncertainties of predictionswere compared with findings on nutritional variations and animal performances.

  18. Dynamic Filtering Improves Attentional State Prediction with fNIRS

    Science.gov (United States)

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.

    2016-01-01

    Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).

  19. Far infrared reflectivity study of ceramic superconductors

    International Nuclear Information System (INIS)

    Memon, A.; Khan, M.N.; Al-Dallal, S.; Tanner, D.B.; Porter, C.D.

    1992-01-01

    In this paper, the authors report on a study of the far-infrared reflectivity of mixed rare earths and lanthnides ceramic superconductors RBa 2 Cu 3 O 7 in the normal state. The authors' results show that the strength of the phonon modes is reduced when yttrium is partially replaced by gadolinium and europium. Also the critical temperature of these mixed materials is reduced as indicated by the four probe technique

  20. iHWG-μNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer.

    Science.gov (United States)

    Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B

    2014-07-21

    A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

  1. Possible Influences on the Interpretation of Functional Domain (FD) Near-Infrared Spectroscopy (NIRS): An Explorative Study.

    Science.gov (United States)

    Celie, Bert M; Boone, Jan; Dumortier, Jasmien; Derave, Wim; De Backer, Tine; Bourgois, Jan G

    2016-02-01

    The influence of subcutaneous adipose tissue (ATT) and oxygen (O2) delivery has been poorly defined in frequency domain (FD) near-infrared spectroscopy (NIRS). Therefore, the aim of this study was to investigate the possible influence of these variables on all FD NIRS responses using a reliable protocol. Moreover, these influences were also investigated when using relative oxy- and deoxyhemoglobin and -myoglobin (oxy[Hb + Mb] and deoxy[Hb + Mb]) values (in %). A regression analysis was carried out for ATT and maximal-minimum oxy[Hb + Mb], deoxy[Hb + Mb], oxygen saturation (SmO2), and total hemoglobin (totHb) amplitudes during an incremental cyclic contraction protocol (ICCP) in a group of 45 participants. Moreover, the same analysis was carried out between subcutaneous ATT and the relative oxy- and deoxy[Hb + Mb] values (in %). In the second part of this study, a regression analysis was performed for peak forearm blood flow (FBF) during ICCP and the absolute and relative NIRS values in a group of 37 participants. Significant exponential correlation coefficients were found between ATT and deoxy[Hb + Mb] (r = 0.53; P < 0.001), oxy[Hb + Mb] (r = 0.57; P < 0.001), and SmO2 amplitudes (r = 0.57; P < 0.001). No significant relations were found between ATT and relative oxy[Hb + Mb] (r = 0.37; P = 0.07) and deoxy[Hb + Mb] (r = 0.09; P = 0.82). Significant positive correlation coefficients were found between force at exhaustion and maximal FBF (r = 0.66; P < 0.001), maximal differences in deoxy[Hb + Mb] (r = 0.353; P = 0.032) and totHb (r = 0.512; P = 0.002) while no significant correlation coefficients were found between these maximal force values and maximal differences in oxy[Hb + Mb] (r = -0.267; P = 0.111) and SmO2 (r = -0.267; P = 0.111). Significant linear correlation coefficients were found between FBF and deoxy[Hb + Mb] (r = 0.51; P

  2. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    Science.gov (United States)

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS

    Directory of Open Access Journals (Sweden)

    Mohamad Issa

    2016-01-01

    Full Text Available Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex and non-ROI (adjacent nonauditory cortices during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS. Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  4. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    Science.gov (United States)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  5. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  6. The use of near infra-red reflectance spectroscopy for the ...

    African Journals Online (AJOL)

    In order to further evaluate the accuracy of the NIRS calibration a separate set of ryegrass samples were analysed for N content, by both the "wet" chemistry and NIRS methods, resulting in a correlation (r) of 0, 98 and standards error of prediction (SEP) of 0, 235. The applicability of the NIRS ryegrass calibration to other ...

  7. Analysis of ewe’s milk by FT Near Infrared spectroscopy: measurement of samples on Petri dishes in reflectance mode

    Directory of Open Access Journals (Sweden)

    Květoslava Šustová

    2006-01-01

    Full Text Available Our work deals with a possibility of determination of basic composition (dry matter, fat, protein, casein, lactose and urea nitrogen of ewe’s milk and colostrum by FT NIR spectroscopy. Samples of milk were warmed to 40 °C, agitated, cooled to 20 °C, transferred into Petri dishes and analysed by reference methods and by FT NIR in reflectance mode. The measured area was spaced by a metallic mirror. Statistically significant differences between the reference values and the calculated values of NIR were not found (p=0.05. Results of calibration for ewe’s milk determined the highest correlation coefficients: dry matter 0.983, fat 0.989, true protein 0.997, casein 0.977, lactose 0.980 and urea nitrogen 0.973. The study showed that NIRS method, when samples of milk are measured on Petri dishes, is a useful technique for the prediction of dry matter, fat, protein and casein in ewe’s milk.

  8. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  9. [Application of near-infrared spectroscopy in golf turfgrass management].

    Science.gov (United States)

    Li, Shu-Ying; Han, Jian-Guo

    2008-07-01

    The management of golf course is different from other turfs. Its particularity lies in its higher and more precise requirement during maintenance compare with other turfs. In case something happened to turf of golf course, more effective and higher speed detecting and resolution are required. Only the data about turf growth and environment were mastered precisely in time, the friendly environmental and scientific management goal could be completed effectively and economically. The near infrared spectroscopy is a new kind of effective, convenient and non-destructive analytical method in the turfgrass management of golf course in recent years. Many factors of turf-soil system in golf course could be determined by near infrared spectroscopy at the same time. In this paper, the existing literature that use of near infrared spectroscopy to study turfgrass and soil nutrient content, soil hygroscopic moisture, feasible fertilizer application time and rate, to fix the time and volume of irrigation, turfgrass visual quality evaluation, turfgrass disease prediction and prevention were reviewed. Most researchers considered the nutrition condition of turf impacted the visual and playing quality of golf course directly and then indirectly influenced most of assistant cultivation such as fertilization, mowing and irrigation and so on. The using of NIRS can detect the nutrient content of turfgrass effectively and estimate the nutrient is excessive or deficient quickly. And then the feasible time and rate of fertilizers can be decided. Comparing with the common judgment ways based on the season fertilization and visual estimation, the using of NIRS can reduce the application of fertilizers on the base of keeping the same turf quality simultaneously. NIRS can analysis many items of soil such as moisture, elements concentration, textures on the spot by the thousands. This method can get lots of cover-all data non-destructively. What's more, NIRS can analysis soil betimes quickly

  10. A Near Infrared Spectroscopy (NIRS and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars “Cripps Pink” and “Braeburn”

    Directory of Open Access Journals (Sweden)

    Daniela Eisenstecken

    2015-07-01

    Full Text Available The potential of near infrared spectroscopy (NIRS in the wavelength range of 1000–2500 nm for predicting quality parameters such as total soluble solids (TSS, acidity (TA, firmness, and individual sugars (glucose, fructose, sucrose, and xylose for two cultivars of apples (“Braeburn” and “Cripps Pink” was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples.

  11. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; Schirripa Spagnolo, G

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called 'questioned documents'. In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  12. Effective Identification of Low-Gliadin Wheat Lines by Near Infrared Spectroscopy (NIRS: Implications for the Development and Analysis of Foodstuffs Suitable for Celiac Patients.

    Directory of Open Access Journals (Sweden)

    María Dolores García-Molina

    Full Text Available The aim of this work was to assess the ability of Near Infrared Spectroscopy (NIRS to distinguish wheat lines with low gliadin content, obtained by RNA interference (RNAi, from non-transgenic wheat lines. The discriminant analysis was performed using both whole grain and flour. The transgenic sample set included 409 samples for whole grain sorting and 414 samples for flour experiments, while the non-transgenic set consisted of 126 and 156 samples for whole grain and flour, respectively.Samples were scanned using a Foss-NIR Systems 6500 System II instrument. Discrimination models were developed using the entire spectral range (400-2500 nm and ranges of 400-780 nm, 800-1098 nm and 1100-2500 nm, followed by analysis of means of partial least square (PLS. Two external validations were made, using samples from the years 2013 and 2014 and a minimum of 99% of the flour samples and 96% of the whole grain samples were classified correctly.The results demonstrate the ability of NIRS to successfully discriminate between wheat samples with low-gliadin content and wild types. These findings are important for the development and analysis of foodstuff for celiac disease (CD patients to achieve better dietary composition and a reduction in disease incidence.

  13. Design and Analysis of a Multicolor Quantum Well Infrared Photodetector

    National Research Council Canada - National Science Library

    Alves, Fabio D. P

    2005-01-01

    .... These characteristics have been found in quantum well infrared photodetectors (QWIP). Driven by these applications, a QWIP photodetector capable of detecting simultaneously infrared emissions within near infrared (NIR...

  14. Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)

    OpenAIRE

    Lestander, Torbjörn

    2003-01-01

    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potenti...

  15. Sensitivity of fNIRS to cognitive state and load

    Directory of Open Access Journals (Sweden)

    Frank Anthony Fishburn

    2014-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-minute resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC, bilateral ventrolateral PFC (vlPFC, frontopolar cortex (FP, and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.

  16. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  17. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  18. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  19. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease

    Science.gov (United States)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli

    2005-04-01

    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  20. A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model

    Science.gov (United States)

    Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)

    2002-01-01

    Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.

  1. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  2. Determination of drug, excipients and coating distribution in pharmaceutical tablets using NIR-CI

    Directory of Open Access Journals (Sweden)

    Anna Palou

    2012-04-01

    Full Text Available The growing interest of the pharmaceutical industry in Near Infrared-Chemical Imaging (NIR-CI is a result of its high usefulness for quality control analyses of drugs throughout their production process (particularly of its non-destructive nature and expeditious data acquisition. In this work, the concentration and distribution of the major and minor components of pharmaceutical tablets are determined and the spatial distribution from the internal and external sides has been obtained. In addition, the same NIR-CI allowed the coating thickness and its surface distribution to be quantified. Images were processed to extract the target data and calibration models constructed using the Partial Least Squares (PLS algorithms. The concentrations of Active Pharmaceutical Ingredient (API and excipients obtained for uncoated cores were essentially identical to the nominal values of the pharmaceutical formulation. But the predictive ability of the calibration models applied to the coated tablets decreased as the coating thickness increased. Keywords: Near infrared Chemical Imaging (NIR-CI, Hyperspectral imaging, Component distribution, Tablet coating distribution, Partial Least Squares (PLS regression

  3. [Real-time detection of quality of Chinese materia medica: strategy of NIR model evaluation].

    Science.gov (United States)

    Wu, Zhi-sheng; Shi, Xin-yuan; Xu, Bing; Dai, Xing-xing; Qiao, Yan-jiang

    2015-07-01

    The definition of critical quality attributes of Chinese materia medica ( CMM) was put forward based on the top-level design concept. Nowadays, coupled with the development of rapid analytical science, rapid assessment of critical quality attributes of CMM was firstly carried out, which was the secondary discipline branch of CMM. Taking near infrared (NIR) spectroscopy as an example, which is a rapid analytical technology in pharmaceutical process over the past decade, systematic review is the chemometric parameters in NIR model evaluation. According to the characteristics of complexity of CMM and trace components analysis, a multi-source information fusion strategy of NIR model was developed for assessment of critical quality attributes of CMM. The strategy has provided guideline for NIR reliable analysis in critical quality attributes of CMM.

  4. A Framework Based on 2-D Taylor Expansion for Quantifying the Impacts of Subpixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bispectral Method

    Science.gov (United States)

    Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, K.

    2016-01-01

    The bispectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In the literature, the retrievals of t and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on t is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the t and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our

  5. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    Science.gov (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Improving the performance of infrared reflective night curtains for warming field plots

    DEFF Research Database (Denmark)

    Bruhn, Dan; Larsen, Klaus S.; de Dato, Giovanbattista D.

    2013-01-01

    Infrared reflective (IR) curtains have been widely used to obtain passive nighttime warming in field ecosystem experiments in order to simulate and study climate warming effects on ecosystems. For any field installation with IR-reflective curtains in an ecosystem the achieved heating effect depen...

  7. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting

    DEFF Research Database (Denmark)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sun, Changquan Calvin

    2015-01-01

    In the present study the application of near-infrared chemical imaging (NIR-CI) supported by chemometric modeling as non-destructive tool for monitoring and assessing the roller compaction and tableting processes was investigated. Based on preliminary risk-assessment, discussion with experts...... compound for both roller compacted ribbons and corresponding tablets. In order to select the optimal process, setting the standard deviation of tablet tensile strength and tablet weight for each tablet batch was considered. Strong linear correlation between tablet tensile strength and amount of fines...... and granule size was established, respectively. These approaches are considered to have a potentially large impact on quality monitoring and control of continuously operating manufacturing lines, such as roller compaction and tableting processes....

  8. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  9. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*

    OpenAIRE

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-01-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  10. Bidirectional reflectance and VIS-NIR spectroscopy of cometary analogues under simulated space conditions

    Science.gov (United States)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Yoldi, Zuriñe; Fornasier, Sonia; Hasselmann, Pedro Henrique; Feller, Clément; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2017-10-01

    display higher coincidence with data of 67P than the phase curves of the samples having a more compact surface layer with smooth texture. The analysis of spectral absorption bands of water ice in the near-infrared (NIR) range, similar to those acquired by the VIRTIS instrument onboard Rosetta, allows to link compositional considerations with surface activity and texture.

  11. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    International Nuclear Information System (INIS)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-01-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO_2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO_2@mSiO_2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO_2 and AuNFs@SiO_2@mSiO_2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  12. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenzhi; Gong, Junxia [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Wang, Yuqian [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Yan [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Zhang, Hongmei [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Yin, Wanzhong, E-mail: yinwanzhong88@hotmail.com [First Clinical Hospital of Jilin University, Department of Otorhinolaryngology (China); Yang, Wensheng, E-mail: wsyang@mail.jlu.edu.cn [College of Chemistry, The Key Laboratory of Surface and Interface Chemistry of Jilin Province (China)

    2016-04-15

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO{sub 2}) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO{sub 2}@mSiO{sub 2}), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO{sub 2} and AuNFs@SiO{sub 2}@mSiO{sub 2} exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  13. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  14. Near Infrared Spectroscopy Calibration for Wood Chemistry: Which Chemometric Technique Is Best for Prediction and Interpretation?

    OpenAIRE

    Via, Brian K.; Zhou, Chengfeng; Acquah, Gifty; Jiang, Wei; Eckhardt, Lori

    2014-01-01

    This paper addresses the precision in factor loadings during partial least squares (PLS) and principal components regression (PCR) of wood chemistry content from near infrared reflectance (NIR) spectra. The precision of the loadings is considered important because these estimates are often utilized to interpret chemometric models or selection of meaningful wavenumbers. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set. PLS and PCR, before and af...

  15. Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor.

    Directory of Open Access Journals (Sweden)

    Gadi Cohen

    Full Text Available Novel strategies that target the epidermal growth factor receptor (EGFR have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.

  16. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR

    International Nuclear Information System (INIS)

    Muzzin, Adam; Marchesini, Danilo; Van Dokkum, Pieter G.; Labbe, Ivo; Kriek, Mariska; Franx, Marijn

    2009-01-01

    We present spectral energy distribution (SED) modeling of a sample of 34 K-selected galaxies at z∼ 2.3. These galaxies have near-infrared (NIR) spectroscopy that samples the rest-frame Balmer/4000 A break as well as deep photometry in 13 broadband filters. New to our analysis is Infrared Array Camera (IRAC) data that extend the SEDs into the rest-frame NIR. Comparing parameters determined from SED fits with and without the IRAC data we find that the IRAC photometry significantly improves the confidence intervals of τ, A v , M star , and SFR for individual galaxies, but does not systematically alter the mean parameters of the sample. We use the IRAC data to assess how well current stellar population synthesis codes describe the rest-frame NIR SEDs of young galaxies where discrepancies between treatments of the thermally pulsating asymptotic giant branch phase of stellar evolution are most pronounced. The models of Bruzual and Charlot, Maraston, and Charlot and Bruzual all successfully reproduce the SEDs of our galaxies with ≤5% differences in the quality of fit; however, the best-fit masses from each code differ systematically by as much as a factor of 1.5, and other parameters vary more, up to factors of 2-3. A comparison of best-fit stellar population parameters from different stellar population synthesis (SPS) codes, dust laws, and metallicities shows that the choice of SPS code is the largest systematic uncertainty in most parameters, and that systematic uncertainties are typically larger than the formal random uncertainties. The SED fitting confirms our previous result that galaxies with strongly suppressed SF account for ∼50% of the K-bright population at z∼ 2.3; however, the uncertainty in this fraction is large due to systematic differences in the specific star formation rates derived from the three SPS models.

  17. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo, E-mail: jxliuyd@163.com [School of Mechatronics Engineering, East China Jiaotong University, Changbei Open and Developing District, Nanchang, 330013 (China)

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62{sup 0}Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  19. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    International Nuclear Information System (INIS)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62 0 Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  20. Near infrared observations of the visual reflection nebulae NGC 7023, NGC 2023, and NGC 2068

    International Nuclear Information System (INIS)

    Sellgren, K.

    1984-01-01

    The emission of the nebulae NGC 7023, 2023, and 2068 at visual wavelengths is due to reflected starlight. Recently the infrared emission of these nebulae has been found to consist not of reflected light, but rather to be due to some other emission process. Spectra of the infrared emission at nebular positions in NGC 7023 and NGC 2023 are shown. The infrared emission consists of a smooth continuum which extends at least from 1.25 to 4.8 μm, and strong emission features at 3.3 and 3.4μm. (author)

  1. FT-NIR: A Tool for Process Monitoring and More.

    Science.gov (United States)

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban

    2018-03-30

    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  2. Discrimination methods of biological contamination on fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    Science.gov (United States)

    Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms on fresh-cut lettuce. The optimal wavebands that detect worm on fresh-cut lettuce for each type of HSI were investigated using the one-way...

  3. A near-infrared reflectance spectroscopic method for the direct analysis of several fodder-related chemical components in drumstick (Moringa oleifera Lam.) leaves.

    Science.gov (United States)

    Zhang, Junjie; Li, Shuqi; Lin, Mengfei; Yang, Endian; Chen, Xiaoyang

    2018-05-01

    The drumstick tree has traditionally been used as foodstuff and fodder in several countries. Due to its high nutritional value and good biomass production, interest in this plant has increased in recent years. It has therefore become important to rapidly and accurately evaluate drumstick quality. In this study, we addressed the optimization of Near-infrared spectroscopy (NIRS) to analyze crude protein, crude fat, crude fiber, iron (Fe), and potassium (K) in a variety of drumstick accessions (N = 111) representing different populations, cultivation programs, and climates. Partial least-squares regression with internal cross-validation was used to evaluate the models and identify possible spectral outliers. The calibration statistics for these fodder-related chemical components suggest that NIRS can predict these parameters in a wide range of drumstick types with high accuracy. The NIRS calibration models developed in this study will be useful in predicting drumstick forage quality for these five quality parameters.

  4. An Application for the Quantitative Analysis of Pharmaceutical Tablets Using a Rapid Switching System Between a Near-Infrared Spectrometer and a Portable Near-Infrared Imaging System Equipped with Fiber Optics.

    Science.gov (United States)

    Murayama, Kodai; Ishikawa, Daitaro; Genkawa, Takuma; Ozaki, Yukihiro

    2018-04-01

    We present a rapid switching system between a newly developed near-infrared (NIR) spectrometer and its imaging system to select the spot size of a diffuse reflectance (DR) probe. In a previous study, we developed a portable NIR imaging system, known as D-NIRs, which has significant advantages over other systems. Its high speed, high spectral resolution, and portability are particularly useful in the process of monitoring pharmaceutical tablets. However, the spectral accuracies relating to the changes in the formulation of the pharmaceutical tablets have not been fully discussed. Therefore, we improved the rapid optical switching system and present a new model of D-NIRs (ND-NIRs) here. This system can automatically switch the optical paths of the DR and NIR imaging probes, greatly contributing to the simultaneous measurement of both the imaging and spot. The NIR spectra of the model tablets, including 0-10% ascorbic acid, were measured and simultaneous NIR images of the tablets were obtained. The predicted results using spot sizes for the DR probe of 1 and 5 mm diameter, resulted in concentrations of R2 = 0.79 and 0.94, with root mean square errors (RMSE) of 1.78 and 0.89, respectively. For tablets with a high concentration of ascorbic acid, the NIR imaging results showed inhomogeneity in concentration. However, the predicted values for the low concentration samples appeared higher than the known concentration of the tablets, although the homogeneity of the concentration was confirmed. In addition, the optimal spot size using NIR imaging data was estimated to be 5-7 mm. The results obtained in this study show that the spot size of the fiber probe, attached to a spectrometer, is important in developing a highly reliable model to determine the component concentration of a tablet.

  5. Remote measurement of canopy reflectance shows the effects of elevated carbon dioxide and ozone on the structure and functioning of soybeans in a field setting.

    Science.gov (United States)

    Gray, S.; Dermody, O.; Delucia, E.

    2006-12-01

    By altering physiological processes and modifying canopy structure, elevated atmospheric CO2 and O3 directly and indirectly change the productivity of agroecosystems. Remote sensing of canopy reflectance can be used to monitor physiological and structural changes in an ecosystem over a growing season. To examine effects of changing tropospheric chemistry on water content, chlorophyll content, and changes in leaf area index (LAI), Free-Air Concentration Enrichment (FACE) technology was used to expose large plots of soybean (Glycine max) to elevated atmospheric CO2, elevated O3 (1.5 x ambient), and combined elevated CO2 and O3. The following indices were calculated from weekly measurements of reflectance: water index (WI), photochemical reflectance index (PRI), chlorophyll index, near-infrared/ red (NIR/red), and normalized difference vegetation index (NDVI). NIR/red and LAI were strongly correlated throughout the growth season; however NDVI and LAI were highly correlated only up to LAI of 3. Exposure to elevated CO2 accelerated early-season canopy development and delayed late-season senescence. Growth in elevated O3 had the opposite effect. Additionally, elevated CO2 compensated for negative effects of O3 when the canopy was exposed to both gases simultaneously. Reflectance indices revealed several physiological and structural responses of this agroecosystem to tropospheric change, and ultimately that elevated CO2 and O3 significantly affected this system's productivity and period for carbon gain.

  6. Rapidly Simultaneous Determination of Six Effective Components in Cistanche tubulosa by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xinhong Wang

    2017-05-01

    Full Text Available Quantitative determination of multiple effective components in a given plant usually requires a very large amount of authentic natural products. In this study, we proposed a rapid and non-destructive method for the simultaneous determination of echinacoside, verbascoside, mannitol, sucrose, glucose and fructose in Cistanche tubulosa by near infrared spectroscopy (NIRS. Near infrared diffuse reflectance spectroscopy (DRS and high performance liquid chromatography (HPLC were conducted on 116 batches of C. tubulosa samples. The DRS data were processed using standard normal variety (SNV and multiplicative scatter correction (MSC methods. Partial least squares regression (PLSR was utilized to build calibration models for components-of-interest in C. tubulosa. All models were then assessed by calculating the root mean square error of calibration (RMSEC, correlation coefficient of calibration (r. The r values of all six calibration models were determined to be greater than 0.94, suggesting each model is reliable. Therefore, the quantitative NIR models reported in this study can be qualified to accurately quantify the contents of six medicinal components in C. tubulosa.

  7. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N. [Pacific Northwest National Laboratory, Richland, WA, USA; Gallagher, Neal B. [Eigenvector Research, Inc., Manson, WA, USA; Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, WA, USA; Szecsody, James E. [Pacific Northwest National Laboratory, Richland, WA, USA; Tonkyn, Russell G. [Pacific Northwest National Laboratory, Richland, WA, USA; Su, Yin-Fong [Pacific Northwest National Laboratory, Richland, WA, USA; Sweet, Lucas E. [Pacific Northwest National Laboratory, Richland, WA, USA; Lewallen, Tricia A. [Pacific Northwest National Laboratory, Richland, WA, USA; Johnson, Timothy J. [Pacific Northwest National Laboratory, Richland, WA, USA

    2017-10-24

    The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species, including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the

  8. NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography

    NARCIS (Netherlands)

    Brugaletta, Salvatore; Garcia-Garcia, Hector M.; Serruys, Patrick W.; de Boer, Sanneke; Ligthart, Jurgen; Gomez-Lara, Josep; Witberg, Karen; Diletti, Roberto; Wykrzykowska, Joanna; van Geuns, Robert-Jan; Schultz, Carl; Regar, Evelyn; Duckers, Henricus J.; van Mieghem, Nicolas; de Jaegere, Peter; Madden, Sean P.; Muller, James E.; van der Steen, Antonius F. W.; van der Giessen, Wim J.; Boersma, Eric

    2011-01-01

    The aim of this study was to compare the findings of near-infrared spectroscopy (NIRS), intravascular ultrasound (IVUS) virtual histology (VH), and grayscale IVUS obtained in matched coronary vessel segments of patients undergoing coronary angiography. Intravascular ultrasound VH has been developed

  9. Practical guide to interpretive near-infrared spectroscopy

    CERN Document Server

    Workman, Jr, Jerry

    2007-01-01

    Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and polymers. They include visual spectral representation of all major compound functional groupings and NIR frequency ranges. Organized by functional group type and chemical structure, based on standard compound classification, the chapters are easy to

  10. Low-cost near-infrared imaging device for inspection of historical manuscripts

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2004-01-01

    Near-infrared (NIR) or sometimes called black light is a waveform beyond visible light and it is not detectable by human eyes. However electronic sensors such as the type used in digital cameras are able to detect signals in the infrared band. To avoid distortion in the pictures obtained near-infrared is blocked by optical filters inserted in digital cameras. By carrying out minor modification allowing near-infrared signal to be imaged while blocking the visible signal, the camera is turned into a low-cost NIR imaging instrument. NIR imaging can be a useful tool in historical manuscript study or restoration. A few applications have been successfully demonstrated in laboratory experiment using the instrument available in MINT. However, due to unavailability of historical items, easily available texts and paintings are used in the demonstrations. This paper reports achievements of early work on the application of digital camera in the detection of damaged prints or writings. (Author)

  11. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    Science.gov (United States)

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  12. Design and development of a blood vessel localization system using a Nir viewer; Diseno y desarrollo de un sistema de localizacion de vasos sanguineos mediante Visor NIR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N., E-mail: angelicahr@fisica.ugto.mx [Universidad de Guanajuato, 37150 Leon, Guanajuato (Mexico)

    2017-10-15

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  13. PENENTUAN BAHAN KERING BUAH SAWO SECARA TIDAK MERUSAK MENGGUNAKAN NIR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available This work was conducted to develop a new measuring system for nondestructive dry matter prediction in sawo fruit using short wavelength near infrared (SW-NIR spectroscopy. In this research, a number of 100 sawo fruits were used as samples. Spectra were acquired using a portable spectrometer (VIS-NIR USB4000, The Ocean Optics, USA with 100 ms integration time and 50 scans for number of scanning. Dry matter was measured using oven drying. The calibration and validation model was developed using the partial least squares (PLS regression method. The result showed that the best calibration model could be developed for original spectra in the wavelength range of  700-990 nm with F= 8, r = 0.92, SEC = 0.68 and  SEP = 0.86. Keywords:   Absorbance mode, dry matter, nondestructive method, sawo fruit, SW-NIR spectroscopy.

  14. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  15. Application of process analytical technology in tablet process development using NIR spectroscopy : Blend uniformity, content uniformity and coating thickness measurements

    NARCIS (Netherlands)

    Moes, Johannes J; Ruijken, Marco M; Gout, Erik; Frijlink, Henderik W; Ugwoke, Michael I

    2008-01-01

    Near-infrared (NIR)spectroscopy was employed as a process analytical technique in three steps of tabletting process: to monitor the blend homogeneity, evaluate the content uniformity of tablets and determine the tablets coating thickness. A diode-array spectrometer mounted on a lab blender (SP15 NIR

  16. Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.

    Science.gov (United States)

    Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K

    2018-04-01

    Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.

  17. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  18. Anterior temporal artery tap to identify systemic interference using short-separation NIRS measurements

    DEFF Research Database (Denmark)

    Sood, Mehak; Jindal, Utkarsh; Chowdhury, Shubhajit Roy

    2015-01-01

    that are also affected by tDCS. An approach may be to use short optode separations to measure systemic hemodynamic fluctuations occurring in the superficial layers which can then be used as regressors to remove the systemic contamination. Here, we demonstrate that temporal artery tap may be used to better...... of neural activity is possible with a measure of cerebral hemoglobin oxygenation using near-infrared spectroscopy (NIRS). In principal accordance, NIRS can capture the hemodynamic response to tDCS but the challenge remains in removing the systemic interference occurring in the superficial layers of the head...... identify systemic interference using this short-separation NIRS. Moreover, NIRS-EEG joint-imaging during anodal tDCS was used to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along with changes in the log-transformed mean-power of EEG within 0.5 Hz-11.25 Hz. We found that percent...

  19. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Ruiz, David; Reich, Maryse; Bureau, Sylvie; Renard, Catherine M G C; Audergon, Jean-Marc

    2008-07-09

    The importance of carotenoid content in apricot (Prunus armeniaca L.) is recognized not only because of the color that they impart but also because of their protective activity against human diseases. Current methods to assess carotenoid content are time-consuming, expensive, and destructive. In this work, the application of rapid and nondestructive methods such as colorimeter measurements and infrared spectroscopy has been evaluated for carotenoid determination in apricot. Forty apricot genotypes covering a wide range of peel and flesh colors have been analyzed. Color measurements on the skin and flesh ( L*, a*, b*, hue, chroma, and a*/ b* ratio) as well as Fourier transform near-infrared spectroscopy (FT-NIR) on intact fruits and Fourier transform mid-infrared spectroscopy (FT-MIR) on ground flesh were correlated with the carotenoid content measured by high-performance liquid chromatography. A high variability in color values and carotenoid content was observed. Partial least squares regression analyses between beta-carotene content and provitamin A activity and color measurements showed a high fit in peel, flesh, and edible apricot portion (R(2) ranged from 0.81 to 0.91) and low prediction error. Regression equations were developed for predicting carotenoid content by using color values, which appeared as a simple, rapid, reliable, and nondestructive method. However, FT-NIR and FT-MIR models showed very low R(2) values and very high prediction errors for carotenoid content.

  20. Characterization of herbal powder blends homogeneity using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenlong Li

    2014-11-01

    Full Text Available Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules. Near-infrared (NIR spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of pharmaceutical blend during the blending process instead of the traditional techniques, such as high performance liquid chromatograph (HPLC method. In this paper NIRS with a SabIR diffuse reflectance fiber-optic probe was used to monitor the blending process of coptis powder and lactose (excipient with different contents, and further qualitative methods, like similarity, moving block of standard deviation and mean square were used for calculation purposes with the collected spectra after the pretreatment of multiplicative signal correction (MSC and second derivative. Correlation spectrum was used for the wavelength selection. Four different coptis were blended with lactose separately to validate the proposed method, and the blending process of "liu wei di huang" pill was also simulated in bottles to verify this method on multiple herbal blends. The overall results suggest that NIRS is a simple, effective and noninvasive technique can be successfully applied to the determination of homogeneity in the herbal blend.

  1. Human cortical neural correlates of visual fatigue during binocular depth perception: An fNIRS study.

    Directory of Open Access Journals (Sweden)

    Tingting Cai

    Full Text Available Functional near-infrared spectroscopy (fNIRS was adopted to investigate the cortical neural correlates of visual fatigue during binocular depth perception for different disparities (from 0.1° to 1.5°. By using a slow event-related paradigm, the oxyhaemoglobin (HbO responses to fused binocular stimuli presented by the random-dot stereogram (RDS were recorded over the whole visual dorsal area. To extract from an HbO curve the characteristics that are correlated with subjective experiences of stereopsis and visual fatigue, we proposed a novel method to fit the time-course HbO curve with various response functions which could reflect various processes of binocular depth perception. Our results indicate that the parietal-occipital cortices are spatially correlated with binocular depth perception and that the process of depth perception includes two steps, associated with generating and sustaining stereovision. Visual fatigue is caused mainly by generating stereovision, while the amplitude of the haemodynamic response corresponding to sustaining stereovision is correlated with stereopsis. Combining statistical parameter analysis and the fitted time-course analysis, fNIRS could be a promising method to study visual fatigue and possibly other multi-process neural bases.

  2. On-line NIR analysis of fat, water and protein in industrial scale ground meat batches.

    Science.gov (United States)

    Tøgersen, G; Isaksson, T; Nilsen, B N; Bakker, E A; Hildrum, K I

    1999-01-01

    Fat, water and protein contents in industrial scale meat batches were determined on-line by near infrared (NIR) reflectance spectroscopy. The NIR instrument was mounted at the outlet of a large meat grinder, and the measurements were performed in an industrial environment. Beef and pork samples, with chemical compositions of 7-26% fat, 58-75% water and 15-21% protein, were processed with hole diameters of 13mm in the grinder plate. Calibrations were made both for a combined set of beef and pork samples, and for separate sets of beef and pork samples. Validations were either done by full cross validation of the calibration set, or by bias corrected prediction of a test set. Prediction errors for the two sample sets, expressed as root mean square errors of cross validation or standard error of prediction, were in the ranges 0.82-1.49% fat, 0.94-1.33% water and 0.35-0.70% protein, depending of sample set and species of animal. The presented application is an improvement to the existing manual meat standardisation procedure, and has been implemented for regular use in a Norwegian meat manufacturing plant.

  3. The estimation of hemodynamic signals measured by fNIRS response to cold pressor test

    Science.gov (United States)

    Ansari, M. A.; Fazliazar, E.

    2018-04-01

    The estimation of cerebral hemodynamic signals has an important role for monitoring the stage of neurological diseases. Functional Near-Infrared Spectroscopy (fNIRS) can be used for monitoring of brain activities. fNIRS utilizes light in the near-infrared spectrum (650-1000 nm) to study the response of the brain vasculature to the changes in neural activities, called neurovascular coupling, within the cortex when cognitive activation occurs. The neurovascular coupling may be disrupted in the brain pathological condition. Therefore, we can also use fNIRS to diagnosis brain pathological conditions or to monitor the efficacy of related treatments. The Cold pressor test (CPT), followed by immersion of dominant hand or foot in the ice water, can induce cortical activities. The perception of pain induced by CPT can be related to cortical neurovascular coupling. Hence, the variation of cortical hemodynamic signals during CPT can be an indicator for studying neurovascular coupling. Here, we study the effect of pain induced by CPT on the temporal variation of concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] in the healthy brains. We use fNIRS data collected on forehead during a CPT from 11 healthy subjects, and the average data are compared with post-stimulus pain rating scores. The results show that the variation of [Hb] and [HbO2] are positively correlated with self-reported scores during the CPT. These results depict that fNIRS can be potentially applied to study the decoupling of neurovascular process in brain pathological conditions.

  4. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.

    Science.gov (United States)

    Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A

    2018-02-01

    Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.

  5. State-of-art application of near infrared spectroscopy for functional diagnostics in neonatology

    International Nuclear Information System (INIS)

    Wolf, M.; Paiziev, A.

    2013-01-01

    The present brief review is devoted to application of near infra-red spectroscopy (NIRS) for early diagnostics of human brain injury. The number of commercially accessible NIRS instruments, and accordingly their users, increases but the precision of measurements and their reproducibility from the clinical point of view essentially depend on used algorithms, a kind of the NIRS-instrument, sensors, which frequently leads to the different values of the measurable parameters of blood oxygen saturation (StO 2 ). We present some commercially accessible NIRS instruments for control of an oxygen saturation degree in human blood, first of all in neonatology, on the basis of absorption and scattering of near infra-red light at human tissue chromophores. The results of clinical investigations of different NIRS-spectrometers for measurements of in-vivo new-born child' blood saturation are presented as well. (authors)

  6. Fine tuning the emission wavelengths of the 7-hydroxy-1-indanone based nano-structure dyes: Near-infrared (NIR) dual emission generation with large stokes shifts

    Science.gov (United States)

    Roohi, Hossein; Alizadeh, Parvaneh

    2018-05-01

    Near-infrared (NIR) fluorescent dyes have recently gained special attention due to their applications to use as molecular probes for imaging of biological targets and sensitive determination. In this study, photophysical properties of the 7-hydroxy-1-indanone based fluorophors A1, A2, A3, B1, B2 and 3R-B2 (R = CF3, NH2, NO2 and OMe) in the gas and three solution phases were probed using TD-DFT method at PBE0/6-311++G(d,p) and M06-2X/6-311++G(d,p) levels of theory. In addition to structural and photophysical properties as well as ESIPT mechanism of all mentioned molecules, the FC and relaxed potential energy surfaces of B2 and 3R-B2 (R = CF3 and NH2) molecules were explored in gas phase and acetonitrile, cyclohexane and water solvents. It is predicted that the A1, A3 and 3R-B2 chromophores afford normal (615-670 nm) and NIR fluorescence emissions (770-940 nm; biological window) with the large Stokes shifts of >160 and >300 nm, respectively. A good aggrement was found between theoretical and experimental results. In sum, these new types of dyes may render the new approaches for the development of the most efficient NIR fluorescent probes for enhanced image contrast and optimal apparent brightness in biological applications.

  7. Estimation of Sensory Analysis Cupping Test Arabica Coffee Using NIR Spectroscopy

    Science.gov (United States)

    Safrizal; Sutrisno; Lilik, P. E. N.; Ahmad, U.; Samsudin

    2018-05-01

    Flavors have become the most important coffee quality parameters now day, many coffee consuming countries require certain taste scores for the coffee to be ordered, the currently used cupping method of appraisal is the method designed by The Specialty Coffee Association Of America (SCAA), from several previous studies was found that Near-Infrared Spectroscopy (NIRS) can be used to detect chemical composition of certain materials including those associated with flavor so it is possible also to be applied to coffee powder. The aim of this research is to get correlation between NIRS spectrum with cupping scoring by tester, then look at the possibility of testing coffee taste sensors using NIRS spectrum. The coffee samples were taken from various places, altitudes and postharvest handling methods, then the samples were prepared following the SCAA protocol, for sensory analysis was done in two ways, with the expert tester and with the NIRS test. The calibration between both found that Without pretreatment using PLS get RMSE cross validation 6.14, using Multiplicative Scatter Correction spectra obtained RMSE cross validation 5.43, the best RMSE cross-validation was 1.73 achieved by de-trending correction, NIRS can be used to predict the score of cupping.

  8. Determination of SFC, FFA, and equivalent reaction time for enzymatically interestified oils using NIRS

    DEFF Research Database (Denmark)

    Houmøller, Lars P.; Kristensen, Dorthe; Rosager, Helle

    2007-01-01

    The use of near infrared spectroscopy (NIRS) for rapid determination of the degree of interesterification of blends of palm stearin, coconut oil, and rapeseed oil obtained using an immobilized Thermomyces lanuginosa lipase at 70 ◦C was investigated. Interesterification was carried out by applying...... that NIRS could be used to replace the traditional methods for determining FFA and SFC in vegetable oils.It was possible to monitor the activity of the immobilized enzyme for interesterification of margarine oils by predicting the equivalent reaction time in a batch reactor from NIR spectra. Root mean...... square errors of prediction for two different oil blends interesterified for 300 and 170 min were 21 and 12 min, respectively....

  9. Near-infrared spectroscopy (NIRS evaluation and regional analysis of Chinese faba bean (Vicia faba L.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Wang

    2014-02-01

    Full Text Available To analyze the nutritional composition of faba bean (Vicia faba L. seed, estimation models were developed for protein, starch, oil, and total polyphenol using near infrared spectroscopy (NIRS. Two hundred and forty-four samples from twelve producing regions were measured in both milled powder and intact seed forms. Partial least squares (PLS regression was applied for model development. The model based on ground seed powder was generally superior to that based on the intact seed. The optimal seed powder-based models for protein, starch, and total polyphenol had coefficients of correlation (r2 of 0.97, 0.93 and 0.89, respectively. The relationship between nutrient contents and twelve producing areas was determined by two-step cluster analysis. Three distinct groupings were obtained with region-constituent features, i.e., Group 1 of high oil, Group 2 of high protein, and Group 3 of high starch as well as total polyphenol. The clustering accuracy was 79.5%. Moreover, the nutrition contents were affected by seeding date, longitude, latitude, and altitude of plant location. Cluster analysis revealed that the differences in the seed were strongly influenced by geographical factors.

  10. Fast on-line analysis of process alkane gas mixtures by NIR spectroscopy

    NARCIS (Netherlands)

    Boelens, H. F. M.; Kok, W. T.; de Noord, O. E.; Smilde, A. K.

    2000-01-01

    Proper operation of a molecular sieve process for the separation of iso- and cyclo-alkanes front normal alkanes requires the fast online detection of normal alkanes breaking through the column. The feasibility of using near-infrared (NIR) spectroscopy for this application was investigated. Alkane

  11. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    Science.gov (United States)

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  12. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies.

    Science.gov (United States)

    Roggo, Yves; Chalus, Pascal; Maurer, Lene; Lema-Martinez, Carmen; Edmond, Aurélie; Jent, Nadine

    2007-07-27

    Near-infrared spectroscopy (NIRS) is a fast and non-destructive analytical method. Associated with chemometrics, it becomes a powerful tool for the pharmaceutical industry. Indeed, NIRS is suitable for analysis of solid, liquid and biotechnological pharmaceutical forms. Moreover, NIRS can be implemented during pharmaceutical development, in production for process monitoring or in quality control laboratories. This review focuses on chemometric techniques and pharmaceutical NIRS applications. The following topics are covered: qualitative analyses, quantitative methods and on-line applications. Theoretical and practical aspects are described with pharmaceutical examples of NIRS applications.

  13. Assessment of pesticide coating on cereal seeds by near infrared hyperspectral imaging

    Directory of Open Access Journals (Sweden)

    Ph. Vermeulen

    2017-01-01

    Full Text Available Classical chromatographic methods, such as ultra performance liquid chromatography (UPLC, are used as reference methods to assess seed quality and homogeneous pesticide coating of seeds. These methods have some important drawbacks since they are time consuming, expensive, destructive and require a substantial amount of solvent, among others. Near infrared (NIR spectroscopy seems to be an interesting alternative technique for the determination of the quality of seed treatment and avoids most of these drawbacks. The objective of this study was to assess the quality of pesticide coating treatment by near infrared hyperspectral imaging (NIR-HSI by analysing, on a seed-by-seed basis, several seeds simultaneously in comparison to NIR spectroscopy and UPLC as the reference method. To achieve this goal, discrimination—partial least squares discriminant analysis (PLS-DA—models and regression—partial least squares (PLS—models were developed. The results obtained by NIR-HSI are compared to the results obtained with NIR spectroscopy and UPLC instruments. This study has shown the potential of NIR hyperspectral imaging to assess the quality/homogeneity of the pesticide coating on seeds.

  14. Prefrontal Cortex Hemodynamics and Age: A Pilot Study Using Functional Near Infrared Spectroscopy in Children

    Directory of Open Access Journals (Sweden)

    Afrouz A Anderson

    2014-12-01

    Full Text Available Cerebral hemodynamics reflect cognitive processes and underlying physiological processes, both of which are captured by functional near infrared spectroscopy (fNIRS. Here, we introduce a novel parameter of Oxygenation Variability directly obtained from fNIRS data —the OV Index—and we demonstrate its use in children. fNIRS data were collected from 17 children (ages 4-8 years, while they performed a standard Go/No-Go task. Data were analyzed using two frequency bands—the first attributed to cerebral autoregulation (CA (<0.1 Hz and the second to respiration (0.2-0.3 Hz. Results indicate differences in variability of oscillations of oxygen saturation (SO2 between the two different bands. These pilot data reveal a dynamic relationship between chronological age and OV index in CA associated frequency of <0.1 Hz. Specifically, OV index increased with age between 4 to 6 years. In addition, there was much higher variability in frequencies associated with CA than for respiration across subjects. These findings provide preliminary evidence for the utility of the OV index and are the first to describe the relationship between cerebral autoregulation and age in children using fNIRS methodology.

  15. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study

    Science.gov (United States)

    Szymborska-Małek, Katarzyna; Komorowska, Małgorzata; Gąsior-Głogowska, Marlena

    2018-01-01

    We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100 nm) for 5, 10, and 20 min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50 °C a considerable increase in the A form was only observed for 10 min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.

  16. Modelling and validation of diffuse reflectance of the adult human head for fNIRS: scalp sub-layers definition

    Science.gov (United States)

    Herrera-Vega, Javier; Montero-Hernández, Samuel; Tachtsidis, Ilias; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-11-01

    Accurate estimation of brain haemodynamics parameters such as cerebral blood flow and volume as well as oxygen consumption i.e. metabolic rate of oxygen, with funcional near infrared spectroscopy (fNIRS) requires precise characterization of light propagation through head tissues. An anatomically realistic forward model of the human adult head with unprecedented detailed specification of the 5 scalp sublayers to account for blood irrigation in the connective tissue layer is introduced. The full model consists of 9 layers, accounts for optical properties ranging from 750nm to 950nm and has a voxel size of 0.5mm. The whole model is validated comparing the predicted remitted spectra, using Monte Carlo simulations of radiation propagation with 108 photons, against continuous wave (CW) broadband fNIRS experimental data. As the true oxy- and deoxy-hemoglobin concentrations during acquisition are unknown, a genetic algorithm searched for the vector of parameters that generates a modelled spectrum that optimally fits the experimental spectrum. Differences between experimental and model predicted spectra was quantified using the Root mean square error (RMSE). RMSE was 0.071 +/- 0.004, 0.108 +/- 0.018 and 0.235+/-0.015 at 1, 2 and 3cm interoptode distance respectively. The parameter vector of absolute concentrations of haemoglobin species in scalp and cortex retrieved with the genetic algorithm was within histologically plausible ranges. The new model capability to estimate the contribution of the scalp blood flow shall permit incorporating this information to the regularization of the inverse problem for a cleaner reconstruction of brain hemodynamics.

  17. Manifestation of surface phonons in far infrared reflectivity of diamond-type semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F.L.; Perez-Rodriguez, F. [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570 (Mexico)

    2004-11-01

    The coupling of surface phonons with light at (001) surfaces of diamond-structure crystals and its manifestation in far-infrared anisotropy spectra are theoretically studied. We apply the adiabatic bond charge model to describe short-range mechanical interactions together with long-range Coulomb forces and radiation fields, and we solve the corresponding system of coupled equations for the electromagnetic field and the lattice vibrations. We calculate far-infrared normal reflectance spectra of (001) surfaces of semi-infinite diamond-type crystals. In particular, we analyse reflectance spectra for the Si(001) (2 x 1) surface, which exhibit a resonance structure associated with the excitation of surface phonon modes. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL-NIR PERIOD-WESENHEIT RELATIONS

    International Nuclear Information System (INIS)

    Inno, L.; Bono, G.; Buonanno, R.; Genovali, K.; Matsunaga, N.; Caputo, F.; Laney, C. D.; Marconi, M.; Piersimoni, A. M.; Primas, F.; Romaniello, M.

    2013-01-01

    We present the largest near-infrared (NIR) data sets, JHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2-3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VI photometry from OGLE-III. NIR and optical-NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0 FU ≤ 1.65) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45 ± 0.02(random) ± 0.10(systematic) mag (LMC) and 18.93 ± 0.02(random) ± 0.10(systematic) mag (SMC). These estimates are the weighted mean over 10 PW relations and the systematic errors account for uncertainties in the zero point and in the reddening law. We found similar distances using FO Cepheids (18.60 ± 0.03(random) ± 0.10(systematic) mag (LMC) and 19.12 ± 0.03(random) ± 0.10(systematic) mag (SMC)). These new MC distances lead to the relative distance, Δμ = 0.48 ± 0.03 mag (FU, log P = 1) and Δμ = 0.52 ± 0.03 mag (FO, log P = 0.5), which agrees quite well with previous estimates based on robust distance indicators.

  19. [X-ray diffraction (XRD) and near infrared spectrum (NIR) analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia Grassland].

    Science.gov (United States)

    Luo, Song-ying; Cao, Jian-jin; Wu, Zheng-quan

    2014-08-01

    The soil samples uniformly overlying the Bairendaba deposit of the Inner Mongolia grassland were collected, and ana- lyzed with X-ray diffraction (XRD) and near infrared spectrum (NIR), for exploring the origins of the soil from the, grassland mining area and the relationship with the underground rock. The results show that the samp]s consist of quartz, graphite, carbonate, hornblende, mica, chlorite, montmorillonite, illite, berlinite, diaspore, azurite, hen tite, etc. These indicate that the soil samples were not only from the weathering products of the surface rock, but also from the underground rock mass and the alteration of the wall rock. The azurite and the hematite contained in the soil, mainly coming from the oxidation zone of the orebodies, can be used as the prospecting marks. The alteration mineral assemblage is mainly chlorite-illite-montmorillonite and it experienced the alteration process of potassic alteration-->silicification-->carbonatization-->silk greisenization-->clayization. Also, the wall rock alteration and the physical weathering processes can be accurately restored by analyzing the combination of the alteration minerals, which can provide important reference information for the deep ore prospecting and the ore deposit genesis study, improving the rate of the prospecting. The XRD and NIR with the characteristics of the economy and quickness can be used for the identification of mineral composition of soil, and in the study of mineral and mineral deposits. Especially, NIR has its unique superiority, that is, its sample request is low, and it can analyze a batch of samples quickly. With the development of INR, it will be more and more widely applied in geological field, and can play an important role in the ore exploration.

  20. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    International Nuclear Information System (INIS)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C; Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M

    2009-01-01

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 μm wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B 4 C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B 4 C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  1. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M [CEA, DAM, CESTA, F-33114 Le Barp (France)

    2009-12-15

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 {mu}m wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B{sub 4}C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B{sub 4}C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  2. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay].

    Science.gov (United States)

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi

    2014-10-01

    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  3. The effects of water and lipids on NIR optical breast measurements

    Science.gov (United States)

    Cerussi, Albert E.; Bevilacqua, Frederic; Shah, Natasha; Jakubowski, Dorota B.; Berger, Andrew J.; Lanning, Ryan M.; Tromberg, Bruce J.

    2001-06-01

    Near infrared diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR spectroscopy yields quantitative functional information that cannot be obtained with other non-invasive radiological techniques. In this study we focused upon the origins of this contrast in healthy breast, especially from water and lipids.

  4. [Application of wavelet transform-radial basis function neural network in NIRS for determination of rifampicin and isoniazide tablets].

    Science.gov (United States)

    Lu, Jia-hui; Zhang, Yi-bo; Zhang, Zhuo-yong; Meng, Qing-fan; Guo, Wei-liang; Teng, Li-rong

    2008-06-01

    A calibration model (WT-RBFNN) combination of wavelet transform (WT) and radial basis function neural network (RBFNN) was proposed for synchronous and rapid determination of rifampicin and isoniazide in Rifampicin and Isoniazide tablets by near infrared reflectance spectroscopy (NIRS). The approximation coefficients were used for input data in RBFNN. The network parameters including the number of hidden layer neurons and spread constant (SC) were investigated. WT-RBFNN model which compressed the original spectra data, removed the noise and the interference of background, and reduced the randomness, the capabilities of prediction were well optimized. The root mean square errors of prediction (RMSEP) for the determination of rifampicin and isoniazide obtained from the optimum WT-RBFNN model are 0.00639 and 0.00587, and the root mean square errors of cross-calibration (RMSECV) for them are 0.00604 and 0.00457, respectively which are superior to those obtained by the optimum RBFNN and PLS models. Regression coefficient (R) between NIRS predicted values and RP-HPLC values for rifampicin and isoniazide are 0.99522 and 0.99392, respectively and the relative error is lower than 2.300%. It was verified that WT-RBFNN model is a suitable approach to dealing with NIRS. The proposed WT-RBFNN model is convenient, and rapid and with no pollution for the determination of rifampicin and isoniazide tablets.

  5. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    Pelletizing of biomass as biofuels increases energy density, improves storability and reduces transport costs. This process is a major key factor in the transition from fossil fuels to renewable biomass refined as solid biofuels. The fast growing pellet industry is today producing more than 1.2 Gg wood Pellets in Sweden - one of the leading nations to utilize bioenergy in its energy mix. The multitude of raw biomaterials available for fuel pellet production and their widely different characteristics stress the need for rapid characterization methods. A suitable technique for characterization of variation in biomaterials is near infrared (NIR) spectrometry. NIR radiation interacts with polar molecules and especially with structural groups O-H as in water, C-H as in biomass, but also with C-O bonds and C=C double bonds frequently found in biomass. Biomass contains mostly the atoms C, O and H. This means that transmittance or reflectance in the NIR wavelength region covers most of the covalent bonds in biomass, except for the C-C bonds in carbon chains. The NIR technique is also developed for on-line measurement in harsh industrial conditions. Thus, NIR techniques can be applied for on-line and real time characterization of raw biomass as well as in the refinement process of biomass into standardized solid biofuels. Spectral patterns in the NIR region contain chemical and physical information structure that together with reference parameters can be modeled by multivariate calibration methods to obtain predictions. These predictions can be presented to the operators in real time on screens as charts based on multivariate statistical process controls. This improves the possibilities to overview the raw biomass variation and to control the responses of the treatments the biomass undergo in the pelletizing process. The NIR-technique is exemplified by a 23-factorial experiment that was carried out in a pellet plant using sawdust as raw material to produce wood Pellets as

  6. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  7. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  8. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  9. A DAQ-Device-Based Continuous Wave Near-Infrared Spectroscopy System for Measuring Human Functional Brain Activity

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2014-01-01

    Full Text Available In the last two decades, functional near-infrared spectroscopy (fNIRS is getting more and more popular as a neuroimaging technique. The fNIRS instrument can be used to measure local hemodynamic response, which indirectly reflects the functional neural activities in human brain. In this study, an easily implemented way to establish DAQ-device-based fNIRS system was proposed. Basic instrumentation components (light sources driving, signal conditioning, sensors, and optical fiber of the fNIRS system were described. The digital in-phase and quadrature demodulation method was applied in LabVIEW software to distinguish light sources from different emitters. The effectiveness of the custom-made system was verified by simultaneous measurement with a commercial instrument ETG-4000 during Valsalva maneuver experiment. The light intensity data acquired from two systems were highly correlated for lower wavelength (Pearson’s correlation coefficient r = 0.92, P < 0.01 and higher wavelength (r = 0.84, P < 0.01. Further, another mental arithmetic experiment was implemented to detect neural activation in the prefrontal cortex. For 9 participants, significant cerebral activation was detected in 6 subjects (P < 0.05 for oxyhemoglobin and in 8 subjects (P < 0.01 for deoxyhemoglobin.

  10. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  11. Discriminating nicotine and non-nicotine containing e-liquids using infrared spectroscopy.

    Science.gov (United States)

    Deconinck, E; Bothy, J L; Barhdadi, S; Courselle, P

    2016-02-20

    In a few countries, including Belgium, nicotine-containing e-cigarettes and e-liquids are considered medicines, and therefore cannot freely be sold, but should be distributed in a pharmacy. The fact that in the neighbouring countries these products are freely available, poses a problem for custom personnel, the more the nicotine content of the products is not always labelled, especially when they are bought through internet. Therefore there is a need for easy-to-use equipment and methods to perform a first on site screening of intercepted samples, both for border control as to check label compliance of the sample. The use of attenuated total reflectance-infrared spectroscopy (ATR-IR) and near infrared spectroscopy (NIR), combined with chemometrics was evaluated for the discrimination between nicotine containing and non-nicotine containing samples. It could be concluded that both ATR-IR and NIR could be used for the discrimination when combined with the appropriate chemometric techniques. The presented techniques do not need sample preparation and result in models with a minimum of false negative samples. If a large enough training set can be established the interpretation can be fully automated, making the presented approach suitable for on-site screening of e-liquid samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation

    Science.gov (United States)

    Iwano, Takayuki; Umeyama, Shinji

    2015-12-01

    fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.

  13. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  14. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    Science.gov (United States)

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  15. Brain plasticity and rehabilitation by using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Balconi Michela

    2016-04-01

    Full Text Available The present review elucidated the use of optical imaging technique (Near-Infrared Spectroscopy, NIRS to better explain the brain plasticity for learning mechanisms, rehabilitation and post-traumatic brain recovery. Some recent applications were discussed, with specific focus on the usability of integrated measures (such as electroencephalography, EEG-NIRS; Transcranial Magnet Stimulation, TMS-NIRS to study plasticity and its dynamic effects. NIRS-Neurofeedback and NIRS-BCI (Brain Computer Interface were also explored as possible tools to produce a specific long-lasting learning in relationship with a specific cognitive domain. Finally a proficient domain where NIRS was found to be useful to test neuroplasticity is the interpersonal brain-to-brain coupling, termed “hyperscanning”, a new emerging paradigm in neuroscience which measures brain activity from two or more people simultaneously.

  16. NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat

    Science.gov (United States)

    Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...

  17. SEARCHING FOR WATER EARTHS IN THE NEAR-INFRARED

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2011-01-01

    Over 500 extrasolar planets (exoplanets) have now been discovered, but only a handful are small enough that they might be rocky terrestrial planets like Venus, Earth, and Mars. Recently, it has been proposed that observations of variability in scattered light (both polarized and total flux) from such terrestrial-sized exoplanets could be used to determine if they possess large surface oceans, an important indicator of potential habitability. Observing such oceans at visible wavelengths would be difficult, however, in part because of obscuration by atmospheric scattering. Here, we investigate whether observations performed in the near-infrared (NIR), where Rayleigh scattering is reduced, could improve the detectability of exoplanet oceans. We model two wavebands of the NIR which are 'window regions' for an Earth-like atmosphere: 1.55-1.75 μm and 2.1-2.3 μm. Our model confirms that obscuration in these bands from Rayleigh scattering is very low, but aerosols are generally the limiting factor throughout the wavelength range for Earth-like atmospheres. As a result, observations at NIR wavelengths are significantly better at detecting oceans than those at visible wavelengths only when aerosols are very thin by Earth standards. Clouds further dilute the ocean reflection signature. Hence, other techniques, e.g., time-resolved color photometry, may be more effective in the search for liquid water on exoplanet surfaces. Observing an exo-Earth at NIR wavelengths does open the possibility of detecting water vapor or other absorbers in the atmosphere, by comparing scattered light in window regions to that in absorption bands.

  18. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  19. Is there Place for Perfectionism in the NIR Spectral Data Reduction?

    Science.gov (United States)

    Chilingarian, Igor

    2017-09-01

    "Despite the crucial importance of the near-infrared spectral domain for understanding the star formation and galaxy evolution, NIR observations and data reduction represent a significant challenge. The known complexity of NIR detectors is aggravated by the airglow emission in the upper atmosphere and the water absorption in the troposphere so that up until now, the astronomical community is divided on the issue whether ground based NIR spectroscopy has a future or should it move completely to space (JWST, Euclid, WFIRST). I will share my experience of pipeline development for low- and intermediate-resolution spectrographs operated at Magellan and MMT. The MMIRS data reduction pipeline became the first example of the sky subtraction quality approaching the limit set by the Poisson photon noise and demonstrated the feasibility of low-resolution (R=1200-3000) NIR spectroscopy from the ground even for very faint (J=24.5) continuum sources. On the other hand, the FIRE Bright Source Pipeline developed specifically for high signal-to-noise intermediate resolution stellar spectra proves that systematics in the flux calibration and telluric absorption correction can be pushed down to the (sub-)percent level. My conclusion is that even though substantial effort and time investment is needed to design and develop NIR spectroscopic pipelines for ground based instruments, it will pay off, if done properly, and open new windows of opportunity in the ELT era."

  20. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  1. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  2. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation

    OpenAIRE

    Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J.; Tedford, Clark E.; Lo, Eng H.; Wang, Xiaoying

    2014-01-01

    Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neuro-degeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-...

  3. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  4. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  5. Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.

    Science.gov (United States)

    Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S

    2011-10-26

    Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.

  6. Design and development of a blood vessel localization system using a Nir viewer

    International Nuclear Information System (INIS)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N.

    2017-10-01

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  7. [Determination of acidity and vitamin C in apples using portable NIR analyzer].

    Science.gov (United States)

    Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong

    2011-09-01

    Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.

  8. Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica).

    Science.gov (United States)

    Sahamishirazi, Samira; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-10-01

    This study describes the development of near-infrared spectroscopy (NIRS) calibration to determine individual and total glucosinolates (GSLs) content of 12 new-bred open-pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica). Six individual GSLs were identified using high-performance-liquid chromatography (HPLC). The NIRS calibration was established based on modified partial least squares regression with reference values of HPLC. The calibration was analyzed using coefficient of determination in prediction (R 2 ) and ratio of preference of determination (RPD). Large variation occurred in the calibrations, R 2 and RPD due to the variability of the samples. Derived calibrations for total-GSLs, aliphatic-GSLs, glucoraphanin and 4-methoxyglucobrassicin were quantitative with a high accuracy (RPD=1.36, 1.65, 1.63, 1.11) while, for indole-GSLs, glucosinigrin, glucoiberin, glucobrassicin and 1-methoxyglucobrassicin were more qualitative (RPD=0.95, 0.62, 0.67, 0.81, 0.56). Overall, the results indicated NIRS has a good potential to determine different GSLs in a large sample pool of broccoli quantitatively and qualitatively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  11. Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery

    Science.gov (United States)

    Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.

    2013-01-01

    This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.

  12. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    OpenAIRE

    Wang, Pei; Yu, Zhiguo

    2015-01-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species...

  13. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.

    Science.gov (United States)

    Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata

    2014-02-15

    Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, pnoise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts

  14. Lipogels responsive to near-infrared light for the triggered release of therapeutic agents

    NARCIS (Netherlands)

    Martín-Saavedra, Francisco; Ruiz-Hernández, Eduardo; Escudero-Duch, Clara; Prieto, Martín; Arruebo, Manuel; Sadeghi, Negar; Deckers, Roel; Storm, Gert; Hennink, Wim E.; Santamaría, Jesús; Vilaboa, Nuria

    2017-01-01

    Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy

  15. Optical and morphological properties of infrared emitting functionalized silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Malvindi, M.A. [Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@Unile, Via Barsanti, Arnesano, I-73010 Lecce (Italy); Agnello, S., E-mail: simonpietro.agnello@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Buscarino, G.; Alessi, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Pompa, P.P. [Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@Unile, Via Barsanti, Arnesano, I-73010 Lecce (Italy); Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2013-11-01

    The loading process of functionalized silica nanoparticles was investigated in order to obtain nanoparticles having functional groups on their surface and Near-Infrared (NIR) emission properties. The NIR emission induced by O{sub 2} loading was studied in silica nanoparticles, produced by pyrogenic and microemulsion methods, with size ranging from 20 to 120 nm. Loading was carried out by thermal treatments in O{sub 2} atmosphere up to 400 °C and 90 bar. The effects of the thermal treatments on the NIR emission and on the structural properties were studied by luminescence and Raman techniques, whereas the morphological features were investigated by Transmission Electron Microscopy and Atomic Force Microscopy. Our data show that silica nanoparticles produced by pyrogenic technique can be loaded with O{sub 2} at lower temperature than the ones obtained by microemulsion and have a higher luminescence intensity due to the internal porosity of the latter. The treatments do not affect the nanosize of the microemulsion particles and provide NIR emitting probes of selected size. Post-processing surface functionalization of the pyrogenic nanoparticles does not affect their emission properties and provides high efficiency NIR emitters with functionalized surface. - Highlights: • Pyrogenic and microemulsion silica nanoparticles with near infrared emission. • Functionalization of nanoparticles does not change the NIR emission. • Porosity limits the emission properties of nanoparticles.

  16. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    Science.gov (United States)

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Predicting water-holding capacity of intact chicken broiler breast fillets with Vis/NIR spectroscopy

    Science.gov (United States)

    The ability of using visible and near-infrared (Vis/NIR) spectroscopy to predict water-holding capacity (WHC) of intact chicken broiler breast fillets (pectoralis major) was assessed in this study. Boneless and skinless chicken fillets (214 in total) were procured from a commercial processing plant ...

  18. Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Shao Yongni; He Yong; Mao Jingyuan

    2007-01-01

    Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) of 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique

  19. Near-infrared image formation and processing for the extraction of hand veins

    Science.gov (United States)

    Bouzida, Nabila; Hakim Bendada, Abdel; Maldague, Xavier P.

    2010-10-01

    The main objective of this work is to extract the hand vein network using a non-invasive technique in the near-infrared region (NIR). The visualization of the veins is based on a relevant feature of the blood in relation with certain wavelengths of the electromagnetic spectrum. In the present paper, we first introduce the image formation in the NIR spectral band. Then, the acquisition system will be presented as well as the method used for the image processing in order to extract the vein signature. Extractions of this pattern on the finger, on the wrist and on the dorsal hand are achieved after exposing the hand to an optical stimulation by reflection or transmission of light. We present meaningful results of the extracted vein pattern demonstrating the utility of the method for a clinical application like the diagnosis of vein disease, of primitive varicose vein and also for applications in vein biometrics.

  20. Near-infrared Spectroscopy in the Brewing Industry.

    Science.gov (United States)

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product.

  1. Hyperspectral imaging with near-infrared-enabled mobile phones for tissue oximetry

    Science.gov (United States)

    Lin, Jonathan L.; Ghassemi, Pejhman; Chen, Yu; Pfefer, Joshua

    2018-02-01

    Hyperspectral reflectance imaging (HRI) is an emerging clinical tool for characterizing spatial and temporal variations in blood perfusion and oxygenation for applications such as burn assessment, wound healing, retinal exams and intraoperative tissue viability assessment. Since clinical HRI-based oximeters often use near-infrared (NIR) light, NIR-enabled mobile phones may provide a useful platform for future point-of-care devices. Furthermore, quantitative NIR imaging on mobile phones may dramatically increase the availability and accessibility of medical diagnostics for low-resource settings. We have evaluated the potential for phone-based NIR oximetry imaging and elucidated factors affecting performance using devices from two different manufacturers, as well as a scientific CCD. A broadband light source and liquid crystal tunable filter were used for imaging at 10 nm bands from 650 to 1000 nm. Spectral sensitivity measurements indicated that mobile phones with standard NIR blocking filters had minimal response beyond 700 nm, whereas one modified phone showed sensitivity to 800 nm and another to 1000 nm. Red pixel channels showed the greatest sensitivity up to 800 nm, whereas all channels provided essentially equivalent sensitivity at longer wavelengths. Referencing of blood oxygenation levels was performed with a CO-oximeter. HRI measurements were performed using cuvettes filled with hemoglobin solutions of different oxygen saturation levels. Good agreement between absorbance spectra measured with mobile phone and a CCD cameras were seen for wavelengths below 900 nm. Saturation estimates showed root-mean-squared-errors of 5.2% and 4.5% for the CCD and phone, respectively. Overall, this work provides strong evidence of the potential for mobile phones to provide quantitative spectral imaging in the NIR for applications such as oximetry, and generates practical insights into factors that impact performance as well as test methods for performance assessment.

  2. Combining Near-Infrared Spectroscopy and Chemometrics for Rapid Recognition of an Hg-Contaminated Plant

    Directory of Open Access Journals (Sweden)

    Bang-Cheng Tang

    2016-01-01

    Full Text Available The feasibility of rapid recognition of an Hg-contaminated plant as a soil pollution indicator was investigated using near-infrared spectroscopy (NIRS and chemometrics. The stem and leave of a native plant, Miscanthus floridulus (Labill. Warb. (MFLW, were collected from Hg-contaminated areas (n1=125 as well as from regular areas (n2=116. The samples were dried and crushed and the powders were sieved through an 80-mesh sieve. Reference analysis of Hg levels was performed using inductively coupled plasma-atomic emission spectrometry (ICP-AES. The actual Hg contents of contaminated and normal samples were 16.2–30.5 and 0.0–0.1 mg/Kg, respectively. The NIRS measurements of impacted sample powders were collected in the mode of reflectance. The DUPLEX algorithm was utilized to split the NIRS data into representative training and test sets. Different spectral preprocessing methods were performed to remove the unwanted and noncomposition-correlated spectral variations. Classification models were developed using partial least squares discrimination analysis (PLSDA based on the raw, smoothed, second-order derivative (D2, and standard normal variate (SNV data, respectively. The prediction accuracy obtained by PLSDA with each data preprocessing option was 100%, indicating pattern recognition of Hg-contaminated MFLW samples using NIRS data was in perfect consistence with the ICP-AES results. NIRS combined with chemometrics will provide a tool to screen the Hg-contaminated MFLW, which can be potentially used as an indicator of soil pollution.

  3. Single-trial lie detection using a combined fNIRS-polygraph system

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  4. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  5. First Near-infrared Imaging Polarimetry of Young Stellar Objects in the Circinus Molecular Cloud

    Science.gov (United States)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Choi, Minho; Kandori, Ryo; Nagata, Tetsuya; Kang, Miju

    2018-02-01

    We present the results of near-infrared (NIR) linear imaging polarimetry in the J, H, and K s bands of the low-mass star cluster-forming region in the Circinus Molecular Cloud Complex. Using aperture polarimetry of point-like sources, positive detection of 314, 421, and 164 sources in the J, H, and K s bands, respectively, was determined from among 749 sources whose photometric magnitudes were measured. For the source classification of the 133 point-like sources whose polarization could be measured in all 3 bands, a color–color diagram was used. While most of the NIR polarizations of point-like sources are well-aligned and can be explained by dichroic polarization produced by aligned interstellar dust grains in the cloud, 123 highly polarized sources have also been identified with some criteria. The projected direction on the sky of the magnetic field in the Cir-MMS region is indicated by the mean polarization position angles (70°) of the point-like sources in the observed region, corresponding to approximately 1.6× 1.6 pc2. In addition, the magnetic field direction is compared with the outflow orientations associated with Infrared Astronomy Satellite sources, in which two sources were found to be aligned with each other and one source was not. We also show prominent polarization nebulosities over the Cir-MMS region for the first time. Our polarization data have revealed one clear infrared reflection nebula (IRN) and several candidate IRNe in the Cir-MMS field. In addition, the illuminating sources of the IRNe are identified with near- and mid-infrared sources.

  6. Near infrared spectroscopy in the development of solid dosage forms.

    Science.gov (United States)

    Räsänen, Eetu; Sandler, Niklas

    2007-02-01

    The use of near infrared (NIR) spectroscopy has rapidly grown partly due to demands of process analytical applications in the pharmaceutical industry. Furthermore, newest regulatory guidelines have advanced the increase of the use of NIR technologies. The non-destructive and non-invasive nature of measurements makes NIR a powerful tool in characterization of pharmaceutical solids. These benefits among others often make NIR advantageous over traditional analytical methods. However, in addition to NIR, a wide variety of other tools are naturally also available for analysis in pharmaceutical development and manufacturing, and those can often be more suitable for a given application. The versatility and rapidness of NIR will ensure its contribution to increased process understanding, better process control and improved quality of drug products. This review concentrates on the use of NIR spectroscopy from a process research perspective and highlights recent applications in the field.

  7. Final Technical Report - Polymeric Multilayer Infrared Reflecting Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John [3M Company, St. Paul, MN (United States)

    2016-09-16

    The goal of this project was to develop a clear, polymeric, multilayer film with an expanded infrared (IR) reflection band which would allow improved rejection of incident IR energy. The IR reflection band is covering the region from about 850 nm to 1830 nm. This film is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the IR energy over the portion of the spectra indicated above. This film has a nominal thickness of 3 mils, is polymeric in nature (contains no metals, metal oxides, or other material types) and is essentially clear in appearance This film can then be used as a component of other products such as a solar window film, an IR reflecting interlayer for laminated glass, a heat rejecting skylight film, a base film for daylight redirecting products, a greenhouse film, and many more applications. One of the main strengths of this product is that because it is a standalone IR rejecting film, it can be incorporated and retrofitted into many applications that desire or require the transmission of visible light, but want to block other portions of the solar spectra, especially the IR portion. Many of the applications exist in the window glazing product area where this film can provide for substantial energy improvements in applications where visible light is desired.

  8. Inline monitoring of adsorption of Butane Isomers with near infrared spectroscopy: Drift Correction in time based experiments

    NARCIS (Netherlands)

    Ferreira, A.; Boelens, H.F.M.; Westerhuis, J.A.

    2005-01-01

    Near-infrared (NIR) spectroscopy is used to monitor online a large variety of processes. Hydrocarbons with their strong NIR spectral signature are good candidate analytes. For this work, the sorption data are measured in a manometric setup coupled with online NIR spectroscopy, to monitor the bulk

  9. Abordagens semiquantitativa e quantitativa na avaliação da textura do solo por espectroscopia de reflectância bidirecional no VIS-NIR-SWIR

    Directory of Open Access Journals (Sweden)

    Marston Héracles Domingues Franceschini

    2013-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o potencial da espectroscopia de reflectância no VIS-NIR-SWIR, para a caracterização granulométrica de amostras de solos de diferentes classes texturais, e obter modelos de predição dos teores de argila, silte e areia no solo. Utilizou-se um conjunto de amostras representativas de Latossolos e Argissolo de cinco locais do Estado do Mato Grosso do Sul. Os espectros do visível e do infravermelho próximo ao infravermelho de ondas curtas (de 350 a 2.500 nm das amostras foram obtidos e analisados. Empregaram-se a análise de componentes principais (ACP, agrupamento por "fuzzy c-means", regressão logística multinomial (RLM e regressão por mínimos quadrados parciais. Espectros característicos para as diferentes classes texturais e a segregação de amostras de classes texturais e de locais de coleta com características distintas, por meio da ACP, "fuzzy c-means" e RLM, mostram o potencial semiquantitativo dos dados de reflectância no VIS-NIR-SWIR. Obteve-se quantificação satisfatória quanto à argila (R²=0,92, RPD=3,59, ao silte (R²=0,80, RPD=2,15 e à areia (R²=0,87, RPD=2,62. As técnicas de espectroscopia de reflectância podem auxiliar na determinação da textura e da variabilidade espacial do solo com metodologias semiquantitativas ou quantitativas.

  10. Chemical characteristics and mineral composition of quinoa by near-infrared spectroscopy.

    Science.gov (United States)

    González Martín, M Inmaculada; Wells Moncada, Guillermo; Fischer, Susana; Escuredo, Olga

    2014-03-30

    Quinoa (Chenopodium quinoa Willd.) has been traditionally used as a foodstuff in the Andes and it has gained increasing interest in recent years owing to its high nutritional value. The potential of near-infrared spectroscopy (NIRS) for estimating chemical compounds in quinoa was studied because of the possibility of conducting direct measurement without prior sample treatment. The use of NIRS technology with a remote reflectance fiber-optic probe for the analysis of major compounds and mineral composition of 48 quinoa samples was studied. The calibration of the NIRS instrument was conducted using modified partial least squares (MPLS) analysis. This allowed the determination of protein (16.0-20.2 g 100g⁻¹), crude fiber (1.8-3.1 g 100g⁻¹), fat (4.4-7.5 g 100g⁻¹), calcium (298.8-1164.5 mg kg⁻¹), iron (0-948.5 mg kg⁻¹) and phosphorus (2735.0-4543.3 mg kg⁻¹). The correlation coefficients (RSQ) were 0.83 for protein, 0.73 for crude fiber, 0.93 for fat; 0.60 for calcium; 0.76 for iron and 0.75 for phosphorus. The robustness of the equations obtained was verified by external validation on unknown quinoa samples. NIRS with fiber-optic probe provides an alternative for the determination of chemical compounds of quinoa, faster and at lower cost, with results comparable with chemical methods. © 2013 Society of Chemical Industry.

  11. Near Infrared Optical Visualization of Epidermal Growth Factor Receptors Levels in COLO205 Colorectal Cell Line, Orthotopic Tumor in Mice and Human Biopsies

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2013-07-01

    Full Text Available In this study, we present the applicability of imaging epidermal growth factor (EGF receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR. The near infrared (NIR bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6–9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.

  12. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Near-infrared reflectance bull’s eye maculopathy as an early indication of hydroxychloroquine toxicity

    Directory of Open Access Journals (Sweden)

    Wong KL

    2015-03-01

    Full Text Available Keye L Wong,1 Scott E Pautler,2 David J Browning31Retina Associates of Sarasota, Sarasota, FL, USA; 2Retina Vitreous Associates of Florida, Tampa, FL, USA; 3Charlotte Eye Ear Nose and Throat Associates, Charlotte, NC, USAImportance: In some patients, hydroxychloroquine ocular toxicity may progress even following cessation of therapy. Any leverage the clinician may use to allow earlier detection may avert significant vision loss.Observation: We report three cases suggesting that bull’s eye maculopathy seen on near-infrared reflectance with a confocal scanning laser ophthalmoscope could be an early, objective manifestation of hydroxychloroquine ocular toxicity, and with progression of the disease this near-infrared “bull’s eye” change may disappear.Conclusion and relevance: Alerting clinicians to this observation may allow a larger case series to corroborate the hypothesis that bull’s eye maculopathy detected by near-infrared reflectance may represent an early sign of hydroxychloroquine toxicity.Keywords: confocal, scanning laser ophthalmoscope, multifocal ERG

  14. Mid-infrared and near-infrared spectroscopy for rapid detection of Gardeniae Fructus by a liquid-liquid extraction process.

    Science.gov (United States)

    Tao, Lingyan; Lin, Zhonglin; Chen, Jiashan; Wu, Yongjiang; Liu, Xuesong

    2017-10-25

    Gardeniae Fructus is widely used in the pharmaceutical industry, and many studies have confirmed its medical and economic value. In this study, samples collected from different liquid-liquid extraction batches of Gardeniae Fructus were detected by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Seven analytes, neochlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid (3-CQA), geniposidic acid (GEA), deacetyl-asperulosidic acid methyl ester (DAAME), genipin-gentiobioside (GGB), and gardenoside (GA), were chosen as quality property indexes of Gardeniae Fructus. The two kinds of spectra were each used to build models by single partial least squares (PLS). Additionally, both spectral data were combined and modeled by multiblock PLS. For single spectroscopy modeling results, NIR had a better prediction for high-concentration analytes (3-CQA, DAAME, GGB, and GA) whereas MIR performed better for low-concentration analytes (5-CQA, 4-CQA, and GEA). The multiblock methodology was found to be better compared to single spectroscopy models for all seven analytes. Specifically, the coefficients of determination (R 2 ) of the NIR, MIR, and multiblock PLS calibration models of all seven components were higher than 0.95. Relative standard errors of prediction (RSEP) were all less than 7%, except for models of GGB, which were 10.36%, 13.24%, and 8.15% for the NIR-PLS, MIR-PLS, and multiblock models, respectively. These results indicate that MIR and NIR spectrographic techniques could provide a new choice for quality control in industrial production of Gardeniae Fructus. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis of nir-sensitive Au-Au{sub 2}S nanocolloids for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L.; Chow, G.M

    2003-01-15

    Near IR (NIR) sensitive Au-Au{sub 2}S nanocolloids were prepared by mixing HAuCl{sub 4} and Na{sub 2}S in aqueous solutions. An anti-tumor drug, cis-platin, was adsorbed onto Au-Au{sub 2}S nanoparticle surface via the 11-mercaptoundecanoic acid (MUA) layers. The results show that the degree of adsorption of cis-platin onto Au-Au{sub 2}S nanoparticles was controlled by the solution pH value, and the drug release was sensitive to near-infrared irradiation. The cis-platin-loaded Au-Au{sub 2}S nanocolloids can be potentially applied as NIR activated drug delivery carrier.

  16. Near-infrared light-responsive dynamic wrinkle patterns.

    Science.gov (United States)

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  17. Development of a near-infrared spectroscopy instrument for applications in urology.

    Science.gov (United States)

    Macnab, Andrew J; Stothers, Lynn

    2008-10-01

    Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.

  18. Less transpiration and good quality thanks to NIR-screen

    NARCIS (Netherlands)

    Stanghellini, C.; Kempkes, F.L.K.; Hemming, S.; Jianfeng, D.

    2009-01-01

    Materials or additives for greenhouse cover that reflect or absorb a part of the NIR radiation can decrease the cooling requirement for the greenhouse and increase water use efficiency of the crop. By reducing the ventilation requirement, it might even decrease emissions of carbon dioxide from

  19. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation.

    Science.gov (United States)

    Petzel, Emily A; Smart, Alexander J; St-Pierre, Benoit; Selman, Susan L; Bailey, Eric A; Beck, Erin E; Walker, Julie A; Wright, Cody L; Held, Jeffrey E; Brake, Derek W

    2018-05-04

    Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not

  20. Measurements on a solar greenhouse combining cooling and electrical energy production

    NARCIS (Netherlands)

    B. van Tuijl; Piet Sonneveld; H. Janssen; J. van Campen; G. Bot; Gert-Jan Swinkels

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  1. Performance results of a solar greenhouse combining electrical and thermal energy production

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Campen, J.B.; Tuijl, van B.A.J.; Janssen, H.J.J.; Bot, G.P.A.

    2010-01-01

    Performance results are given of a new type of greenhouse, which combines reflection of near infrared radiation (NIR) with electrical power generation using hybrid photovoltaic cell/thermal collector modules. Besides the generation of electrical and thermal energy, the reflection of the NIR will

  2. Development and Validation of a Near-Infrared Spectroscopy Method for the Prediction of Acrylamide Content in French-Fried Potato.

    Science.gov (United States)

    Adedipe, Oluwatosin E; Johanningsmeier, Suzanne D; Truong, Van-Den; Yencho, G Craig

    2016-03-02

    This study investigated the ability of near-infrared spectroscopy (NIRS) to predict acrylamide content in French-fried potato. Potato flour spiked with acrylamide (50-8000 μg/kg) was used to determine if acrylamide could be accurately predicted in a potato matrix. French fries produced with various pretreatments and cook times (n = 84) and obtained from quick-service restaurants (n = 64) were used for model development and validation. Acrylamide was quantified using gas chromatography-mass spectrometry, and reflectance spectra (400-2500 nm) of each freeze-dried sample were captured on a Foss XDS Rapid Content Analyzer-NIR spectrometer. Partial least-squares (PLS) discriminant analysis and PLS regression modeling demonstrated that NIRS could accurately detect acrylamide content as low as 50 μg/kg in the model potato matrix. Prediction errors of 135 μg/kg (R(2) = 0.98) and 255 μg/kg (R(2) = 0.93) were achieved with the best PLS models for acrylamide prediction in Russet Norkotah French-fried potato and multiple samples of unknown varieties, respectively. The findings indicate that NIRS can be used as a screening tool in potato breeding and potato processing research to reduce acrylamide in the food supply.

  3. Thermoluminescence, infrared reflectivity and electron paramagnetic resonance properties of hemimorphite

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, E.A. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo, SP (Brazil); Cano, N.F. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo, SP (Brazil)], E-mail: nilocano@dfn.if.usp.br; Watanabe, S.; Chubaci, J.F.D. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo, SP (Brazil)

    2009-01-15

    Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 deg. C and a weaker and narrower peak around 360 deg. C were found in a sample annealed at 600 deg. C for 1 h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 deg. C. The reflectivity measurements showed several bands in the NIR region due to H{sub 2}O, OH and Al-OH complexes. No band was observed in the visible region. The thermal treatments were carried out from {approx}110 to 940 deg. C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu{sup 2+} signals at g = 2.4 and g = 2.1 plus E{sub 1}' signal superposed to Fe{sup 3+} signal around g = 2.0.

  4. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  5. Application of visible and infrared spectroscopy for the evaluation of evolved glauconite

    Science.gov (United States)

    Chattoraj, Shovan L.; Banerjee, Santanu; van der Meer, Freek; Champati Ray, P. K.

    2018-02-01

    The Oligocene Maniyara Fort Formation in western India exhibits two distinct glauconite types with different maturation states, which are characterized by their spectral response in the visible to infrared spectrum of electromagnetic radiation. Spectral signatures of Maniyara Fort glauconites display absorption features at approximately 0.77, 1.08, 1.9, 2.3 μm in the visible-short-wave infrared (SWIR) and 2.8 and 10 μm in the mid-infrared (MIR) region which vary with K2O content of glauconite. The spectra of glauconite varies significantly as a function of its cationic contents and substitution in different sites. The maturity is found to increase in tandem with the metal-metal charge transfer (CT) and the Fe2+ dd absorption band respectively at 1.08 and 0.77 μm. H2O and OH- signatures at the NIR region reflect differences in the sensitivity of glauconites with different molecular H2O content. In the MIR region, a gradual shift of the Sisbnd O stretch at 10 μm towards lower wavelengths indicates the dominance of smectite layers in glauconites. This study demonstrates a strong correlation between the proportion of expandable layers in the glauconite structure with variations in characteristic band position, depth and symmetry in reflectance and emissivity.

  6. A PAT approach for the on-line monitoring of pharmaceutical co-crystals formation with near infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Santos, Adenilson O; Silva, Marta C D; Lopes, João A

    2014-08-25

    Cocrystals represent a class of crystalline solids consisting of two or more molecular species usually held together by non-covalent bonds. Pharmaceutical cocrystals can alter the physicochemical properties of the active pharmaceutical ingredient to improve solubility, dissolution rate, particle properties and stability. This work presents a process analytical technology (PAT) approach to monitor on-line the cocrystallization of furosemide and adenine by solvent evaporation using near infrared spectroscopy (NIRS). Furosemide and adenine were added to a small volume of methanol in a beaker and stirred on an orbital stirring table during 8h at room temperature. The on-line monitoring was performed with a FT-NIR spectrometer fitted with a reflectance fiber optic probe. Monitoring was performed with the probe tip placed 1cm above the cocrystallization medium to avoid interference with the cocrystallization process. Cocrystals were vacuum dried to remove residual solvent and characterized off-line by NIRS, MIRS, DSC and XRPD. Results demonstrate that it was possible to follow the main cocrystallization events on-line. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    Science.gov (United States)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  8. Near-infrared detection of ammonium minerals at Ivanhoe Hot Springs, Nevada

    Science.gov (United States)

    Krohn, M. D.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over the fossil hot spring deposit at Ivanhoe, Nevada in order to determine the surface distribution of NH4-bearing minerals. Laboratory studies show that NH4-bearing minerals have characteristic absorption features in the near-infrared (NIR). Ammonium-bearing feldspars and alunites were observed at the surface of Ivanhoe using a hand-held radiometer. However, first look analysis of the AIS images showed that the line was about 500 m east of its intended mark, and the vegetation cover was sufficiently dense to inhibit preliminary attempts at making relative reflectance images for detection of ammonium minerals.

  9. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    Science.gov (United States)

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  10. Hemodynamic response to Interictal Epileptiform Discharges addressed by personalized EEG-fNIRS recordings

    Directory of Open Access Journals (Sweden)

    Giovanni ePellegrino

    2016-03-01

    Full Text Available Objective: We aimed at studying the hemodynamic response (HR to Interictal Epileptic Discharges (IEDs using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG and functional Near InfraRed Spectroscopy (fNIRS recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (7 patients, followed by oxy-hemoglobin decreases (6 patients. HR was lateralized in 6 patients and lasted from 8.5 to 30s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result. The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30s. Conclusions: i EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; ii cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function iii the HR is often bilateral and lasts up to 30s.

  11. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2015-10-01

    Full Text Available Near infrared (NIR spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species authentication, Geographical origin discrimination, Quality control

  12. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost.

    Science.gov (United States)

    Maeda, Koki; Toyoda, Sakae; Philippot, Laurent; Hattori, Shohei; Nakajima, Keiichi; Ito, Yumi; Yoshida, Naohiro

    2017-12-19

    The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N 2 O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N 2 O were surveyed to isotopocule analysis, and its 15 N site preference (SP) and δ 18 O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N 2 O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N 2 O production. N 2 O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ 18 O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N 2 O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N 2 O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N 2 O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.

  13. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    Directory of Open Access Journals (Sweden)

    Dorte ePhillip

    2013-12-01

    Full Text Available Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD and stroke. Near infrared spectroscopy (NIRS is a non-invasive optical method to investigate regional changes in oxygenated (oxyHb and deoxygenated hemoglobin (deoxyHb in the outermost layers of the cerebral cortex. In the present study we examined oxyHb low frequency oscillations (LFOs, believed to reflect cortical cerebral autoregulation, in 16 patients with both symptomatic carotid occlusive disease and cerebral hypoperfusion in comparison to healthy controls. Each hemisphere was examined with 2 NIRS channels using a 3 cm source detector distance. Arterial blood pressure (ABP was measured via a finger plethysmograph. Using transfer function analysis ABP-oxyHb phase shift and gain as well as inter-hemispheric phase shift and amplitude ratio were assessed. We found that inter-hemispheric amplitude ratio was significantly altered in hypoperfusion patients compared to healthy controls (P= 0.010, because of relatively lower amplitude on the hypoperfusion side. The inter-hemispheric phase shift showed a trend (P = 0.061 towards increased phase shift in hypoperfusion patients compared to controls. We found no statistical difference between hemispheres in hypoperfusion patients for phase shift or gain values. There were no differences between the hypoperfusion side and controls for phase shift or gain values. These preliminary results suggest an impairment of autoregulation in hypoperfusion patients at the cortical level using NIRS.

  14. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  15. Non-invasive in vivo imaging of arthritis in a collagen-induced murine model with phosphatidylserine-binding near-infrared (NIR) dye.

    Science.gov (United States)

    Chan, Marion M; Gray, Brian D; Pak, Koon Y; Fong, Dunne

    2015-03-09

    Development of non-invasive molecular imaging techniques that are based on cellular changes in inflammation has been of active interest for arthritis diagnosis. This technology will allow real-time detection of tissue damage and facilitate earlier treatment of the disease, thus representing an improvement over X-rays, which detect bone damage at the advanced stage. Tracing apoptosis, an event occurring in inflammation, has been a strategy used. PSVue 794 is a low-molecular-weight, near-infrared (NIR)-emitting complex of bis(zinc2+-dipicolylamine) (Zn-DPA) that binds to phosphatidylserine (PS), a plasma membrane anionic phospholipid that becomes flipped externally upon cell death by apoptosis. In this study, we evaluated the capacity of PSVue 794 to act as an in vivo probe for non-invasive molecular imaging assessment of rheumatoid arthritis (RA) via metabolic function in murine collagen-induced arthritis, a widely adopted animal model for RA. Male DBA/1 strain mice were treated twice with chicken collagen type II in Freund's adjuvant. Their arthritis development was determined by measuring footpad thickness and confirmed with X-ray analysis and histology. In vivo imaging was performed with the NIR dye and the LI-COR Odyssey Image System. The level of emission was compared among mice with different disease severity, non-arthritic mice and arthritic mice injected with a control dye without the Zn-DPA targeting moiety. Fluorescent emission correlated reliably with the degree of footpad swelling and the manifestation of arthritis. Ex vivo examination showed emission was from the joint. Specificity of binding was confirmed by the lack of emission when arthritic mice were given the control dye. Furthermore, the PS-binding protein annexin V displaced the NIR dye from binding, and the difference in emission was numerically measurable on a scale. This report introduces an economical alternative method for assessing arthritis non-invasively in murine models. Inflammation in

  16. On temporal connectivity of PFC via Gauss-Markov modeling of fNIRS signals.

    Science.gov (United States)

    Aydöre, Sergül; Mihçak, M Kivanç; Ciftçi, Koray; Akin, Ata

    2010-03-01

    Functional near-infrared spectroscopy (fNIRS) is an optical imaging method, which monitors the brain activation by measuring the successive changes in the concentration of oxy- and deoxyhemoglobin in real time. In this study, we present a method to investigate the functional connectivity of prefrontal cortex (PFC) Sby applying a Gauss-Markov model to fNIRS signals. The hemodynamic changes on PFC during the performance of cognitive paradigm are measured by fNIRS for 17 healthy adults. The color-word matching Stroop task is performed to activate 16 different regions of PFC. There are three different types of stimuli in this task, which can be listed as incongruent stimulus (IS), congruent stimulus (CS), and neutral stimulus (NS), respectively. We introduce a new measure, called "information transfer metric" (ITM) for each time sample. The behavior of ITMs during IS are significantly different from the ITMs during CS and NS, which is consistent with the outcome of the previous research, which concentrated on fNIRS signal analysis via color-word matching Stroop task. Our analysis shows that the functional connectivity of PFC is highly relevant with the cognitive load, i.e., functional connectivity increases with the increasing cognitive load.

  17. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.

    Science.gov (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.

  18. Noninvasive detection of change in skeletal muscle oxygenation during incremental exercise with near-infrared spectroscopy

    Science.gov (United States)

    Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng

    2003-12-01

    Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.

  19. Determination of the Mechanical Properties of Rubber by FT-NIR

    OpenAIRE

    Pornprasit, Rattapol; Pornprasit, Philaiwan; Boonma, Pruet; Natwichai, Juggapong

    2016-01-01

    Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and ethylene propylene diene monomer (EPDM), were evaluated using a near infrared (NIR) spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-...

  20. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy

    DEFF Research Database (Denmark)

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-01-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination...... on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded...... less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles....

  1. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    Science.gov (United States)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    Science.gov (United States)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Infrared reflectance measurement for InN thin film characterization

    International Nuclear Information System (INIS)

    Fukui, K.; Kugumiya, Y.; Nakagawa, N.; Yamamoto, A.

    2006-01-01

    Infrared reflectance measurements of a series of InN thin films have been performed and attempt to derive carrier concentration and other physical constants for InN thin film characterization. Fitting calculations are performed by use of the dielectric function equation based on phonon-plasmon coupling model. Longitudinal and transverse optical phonon frequencies, plasma frequency and their damping parameters can be derived from fitting. From those results, electrical and phonon properties of InN and characterization of films are discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Musingarabwi, Davirai M; Nieuwoudt, Hélène H; Young, Philip R; Eyéghè-Bickong, Hans A; Vivier, Melané A

    2016-01-01

    Fourier transform (FT) near-infrared (NIR) and attenuated total reflection (ATR) FT mid-infrared (MIR) spectroscopy were used to qualitatively and quantitatively analyse Vitis vinifera L. cv Sauvignon blanc grape berries. FT-NIR and ATR FT-MIR spectroscopy, coupled with spectral preprocessing and multivariate data analysis (MVDA), provided reliable methods to qualitatively assess berry samples at five distinct developmental stages: green, pre-véraison, véraison, post-véraison and ripe (harvest), without any prior metabolite extraction. Compared to NIR spectra, MIR spectra provided more reliable discrimination between the berry samples from the different developmental stages. Interestingly, ATR FT-MIR spectra from fresh homogenized berry samples proved more discriminatory than spectra from frozen homogenized berry samples. Different developmental stages were discriminated by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In order to generate partial least squares (PLS) models from the MIR/NIR spectral datasets; the major sugars (glucose and fructose) and organic acids (malic acid, succinic acid and tartaric acid) were separated and quantified by high performance liquid chromatography (HPLC) and the data used as a reference dataset. PLS regression was used to develop calibration models to predict the concentration of the major sugars and organic acids in the berry samples from different developmental stages. Our data show that infrared (IR) spectroscopy could provide a rapid, reproducible and cost-effective alternative to the chromatographic analysis of the sugar and organic acid composition of grape berries at various developmental stages, using small sample volumes and requiring limited sample preparation. This provides scope and support for the possible development of hand-held devices to assess quality parameters in field-settings in real-time and non-destructively using IR technologies. Copyright

  5. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann

    2006-01-01

    Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopy have been applied to detect structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. The amide I region pointed to a beta-sheet to alpha-helix transition upon ligation in acetate...

  6. Measurement of internal quality of watermelon by Vis/NIR diffuse transmittance technique

    Science.gov (United States)

    Tian, Haiqing; Xu, Huirong; Ying, Yibin; Lu, Huishan; Yu, Haiyan

    2006-10-01

    Watermelon is a popular fruit in the world. Soluble solids content (SSC) is major characteristic used for assessing watermelon internal quality. This study was about a method for nondestructive internal quality detection of watermelons by means of visible/Near Infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer when the watermelon was in motion (1.4m/s) and in static state. Spectra data were analyzed by partial least squares (PLS) method. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models and the PLS method can provide good results. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon both in motion and in static state, and the predicted values were highly correlated with destructively measured values. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon internal quality in a nondestructive way.

  7. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P. [Université de Genève, GAP-Biophotonics, Chemin de Pinchat 22, 1211 Geneva 4 (Switzerland); Théberge, F.; Daigle, J.-F. [Defence R and D Canada Valcartier, 2459 de la Bravoure Blvd., Quebec (Qc) G3J 1X5 (Canada); Lassonde, P.; Kieffer, J.-C. [INRS-EMT, 1650 Lionel Boulet Blvd., Varennes, Quebec (Qc) J3X1S2 (Canada)

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25–300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 μs. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  8. Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy

    Science.gov (United States)

    Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang

    2006-10-01

    The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.

  9. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    International Nuclear Information System (INIS)

    Picou, Laura; McMann, Casey; Boldor, Dorin; Elzer, Philip H; Enright, Frederick M; Biris, Alexandru S

    2010-01-01

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  10. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  11. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  12. Potential of a newly developed high-speed near-infrared (NIR) camera (Compovision) in polymer industrial analyses: monitoring crystallinity and crystal evolution of polylactic acid (PLA) and concentration of PLA in PLA/Poly-(R)-3-hydroxybutyrate (PHB) blends.

    Science.gov (United States)

    Ishikawa, Daitaro; Nishii, Takashi; Mizuno, Fumiaki; Sato, Harumi; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-12-01

    This study was carried out to evaluate a new high-speed hyperspectral near-infrared (NIR) camera named Compovision. Quantitative analyses of the crystallinity and crystal evolution of biodegradable polymer, polylactic acid (PLA), and its concentration in PLA/poly-(R)-3-hydroxybutyrate (PHB) blends were investigated using near-infrared (NIR) imaging. This NIR camera can measure two-dimensional NIR spectral data in the 1000-2350 nm region obtaining images with wide field of view of 150 × 250 mm(2) (approximately 100  000 pixels) at high speeds (in less than 5 s). PLA with differing crystallinities between 0 and 50% blended samples with PHB in ratios of 80/20, 60/40, 40/60, 20/80, and pure films of 100% PLA and PHB were prepared. Compovision was used to collect respective NIR spectra in the 1000-2350 nm region and investigate the crystallinity of PLA and its concentration in the blends. The partial least squares (PLS) regression models for the crystallinity of PLA were developed using absorbance, second derivative, and standard normal variate (SNV) spectra from the most informative region of the spectra, between 1600 and 2000 nm. The predicted results of PLS models achieved using the absorbance and second derivative spectra were fairly good with a root mean square error (RMSE) of less than 6.1% and a determination of coefficient (R(2)) of more than 0.88 for PLS factor 1. The results obtained using the SNV spectra yielded the best prediction with the smallest RMSE of 2.93% and the highest R(2) of 0.976. Moreover, PLS models developed for estimating the concentration of PLA in the blend polymers using SNV spectra gave good predicted results where the RMSE was 4.94% and R(2) was 0.98. The SNV-based models provided the best-predicted results, since it can reduce the effects of the spectral changes induced by the inhomogeneity and the thickness of the samples. Wide area crystal evolution of PLA on a plate where a temperature slope of 70-105 °C had occurred was also

  13. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry.

    Science.gov (United States)

    Rozenstein, Offer; Puckrin, Eldon; Adamowski, Jan

    2017-10-01

    Waste sorting is key to the process of waste recycling. Exact identification of plastic resin and wood products using Near Infrared (NIR, 1-1.7µm) sensing is currently in use. Yet, dark targets characterized by low reflectance, such as black plastics, are hard to identify by this method. Following the recent success of Midwave Infrared (MWIR, 3-12µm) measurements to identify coloured plastic polymers, the aim of this study was to assess whether this technique is applicable to sorting black plastic polymers and wood products. We performed infrared reflectance contact measurements of 234 plastic samples and 29 samples of wood and paper products. Plastic samples included black, coloured and transparent Polyethylene Terephthalate (PET), Polyethylene (PE), Polyvinyl Chloride (PVC), Polypropylene (PP), Polylactic acid (PLA) and Polystyrene (PS). The spectral signatures of the black and coloured plastic samples were compared with clear plastic samples and signatures documented in the literature to identify the polymer spectral features in the presence of coloured material. This information was used to determine the spectral bands that best suit the sorting of black plastic polymers. The main NIR-MWIR absorption features of wood, cardboard and paper were identified as well according to the spectral measurements. Good agreement was found between our measurements and the absorption features documented in the literature. The new approach using MWIR spectral features appears to be useful for black plastics as it overcomes some of the limitations in the NIR region to identify them. The main limitation of this technique for industrial applications is the trade-off between the signal-to-noise ratio of the sensor operating in standoff mode and the speed at which waste is moved under the sensor. This limitation can be resolved by reducing the system's spectral resolution to 16cm -1 , which allows for faster spectra acquisition while maintaining a reasonable signal-to-noise ratio

  14. Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China

    Science.gov (United States)

    Yu, Quanzhou; Wang, Shaoqiang; Zhou, Lei

    2017-10-01

    A precise estimate of canopy leaf nitrogen concentration (CNC, based on dry mass) is important for researching the carbon assimilation capability of forest ecosystems. Hyperspectral remote sensing technology has been applied to estimate regional CNC, which can adjust forest photosynthetic capacity and carbon uptake. However, the relationship between forest CNC and canopy spectral reflectance as well as its mechanism is still poorly understood. Using measured CNC, canopy structure and species composition data, four vegetation indices (VIs), and near-infrared reflectance (NIR) derived from EO-1 Hyperion imagery, we investigated the role of canopy structure traits and plant functional types (PFTs) in modulating the correlation between CNC and canopy reflectance in a temperate forest in northeast China. A plot-scale forest structure indicator, named broad foliar dominance index (BFDI), was introduced to provide forest canopy structure and coniferous and broadleaf species composition. Then, we revealed the response of forest canopy reflectance spectrum to BFDI and CNC. Our results showed that leaf area index had no significant effect on NIR (P>0.05) but indicated that there was a significant correlation (R2=0.76, P0.05). On the contrary, removing the CNC effect, the partial correlation between BFDI and NIR was positively significant (R=0.69, Pforest types. Nevertheless, the relationship cannot be considered as a feasible approach of CNC estimation for a single PFT.

  15. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: a methodological approach.

    Science.gov (United States)

    Invernizzi, Claudia; Daveri, Alessia; Vagnini, Manuela; Malagodi, Marco

    2017-05-01

    The analysis of historical musical instruments is becoming more relevant and the interest is increasingly moving toward the non-invasive reflection FTIR spectroscopy, especially for the analysis of varnishes. In this work, a specific infrared reflectance spectral library of organic compounds was created with the aim of identifying musical instrument materials in a totally non-invasive way. The analyses were carried out on pure organic compounds, as bulk samples and laboratory wooden models, to evaluate the diagnostic reflection mid-infrared (MIR) bands of proteins, polysaccharides, lipids, and resins by comparing reflection spectra before and after the KK correction. This methodological approach was applied to real case studies represented by four Stradivari violins and a Neapolitan mandolin.

  16. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  17. Intact neurovascular coupling during executive function in migraine without aura: interictal near-infrared spectroscopy study

    DEFF Research Database (Denmark)

    Schytz, H W; Ciftçi, K; Akin, A

    2010-01-01

    An altered neurovascular coupling has been proposed in migraine. We aimed to investigate neurovascular coupling during a mental task interictally in patients with migraine without aura (MO) by near-infrared spectroscopy (NIRS). Twelve migraineurs and 12 healthy controls were included. Using NIRS,...

  18. Twenty years of functional near-infrared spectroscopy: introduction for the special issue.

    Science.gov (United States)

    Boas, David A; Elwell, Clare E; Ferrari, Marco; Taga, Gentaro

    2014-01-15

    Papers from four different groups were published in 1993 demonstrating the ability of functional near infrared spectroscopy (fNIRS) to non-invasively measure hemoglobin concentration responses to brain function in humans. This special issue commemorates the first 20years of fNIRS research. The 9 reviews and 49 contributed papers provide a comprehensive survey of the exciting advances driving the field forward and of the myriad of applications that will benefit from fNIRS. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  20. Mapping cerebrovascular reactivity using concurrent fMRI and near infrared spectroscopy

    Science.gov (United States)

    Tong, Yunjie; Bergethon, Peter R.; Frederick, Blaise d.

    2011-02-01

    Cerebrovascular reactivity (CVR) reflects the compensatory dilatory capacity of cerebral vasculature to a dilatory stimulus and is an important indicator of brain vascular reserve. fMRI has been proven to be an effective imaging technique to obtain the CVR map when the subjects perform CO2 inhalation or the breath holding task (BH). However, the traditional data analysis inaccurately models the BOLD using a boxcar function with fixed time delay. We propose a novel way to process the fMRI data obtained during a blocked BH by using the simultaneously collected near infrared spectroscopy (NIRS) data as regressor1. In this concurrent NIRS and fMRI study, 6 healthy subjects performed a blocked BH (5 breath holds with 20s durations intermitted by 40s of regular breathing). A NIRS probe of two sources and two detectors separated by 3 cm was placed on the right side of prefrontal area of the subjects. The time course of changes in oxy-hemoglobin (Δ[HbO]) was calculated from NIRS data and shifted in time by various amounts, and resampled to the fMRI acquisition rate. Each shifted time course was used as regressor in FEAT (the analysis tool in FSL). The resulting z-statistic maps were concatenated in time and the maximal value was taken along the time for all the voxels to generate a 3-D CVR map. The new method produces more accurate and thorough CVR maps; moreover, it enables us to produce a comparable baseline cerebral vascular map if applied to resting state (RS) data.

  1. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models.

    Science.gov (United States)

    König, Anke; Zöller, Nadja; Kippenberger, Stefan; Bernd, August; Kaufmann, Roland; Layer, Paul G; Heselich, Anja

    2018-01-01

    Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation. Copyright © 2017. Published by Elsevier B.V.

  2. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    DEFF Research Database (Denmark)

    Phillip, Dorte; Iversen, Helle K; Schytz, Henrik W

    2013-01-01

    Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease and stroke. Near infrared spectroscopy (NIRS...

  3. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    Science.gov (United States)

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.

  4. NIRS of body and tissues in growing rabbits fed diets with different fat sources and supplemented with Curcuma longa

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti

    2013-06-01

    Full Text Available A portable Near Infrared Reflectance Spectroscopy (NIRS instrument was applied to 40 growing rabbits to determine body and tissue differences induced by experimental factors. The rabbits were examined at 2 live sites, in 7 warm carcass tissues and in longissimus dorsi muscle samples prepared in ethanol. For this purpose, the method was applied in a bi-factorial experiment concerning the dietary oil source (O (maize vs. palm oil and Curcuma longa (C supplementation (0 and 3 g/kg, respectively. Significant chemical differences emerged for palmitic, oleic and linoleic acids in the longissimus dorsi muscle due to the O factor and for linolenic acid due to the C factor. The NIRS spectra and chemical analyses were elaborated by the Partial Least Squares (PLS method, and the rsquares in cross-validation (R2cv were retained as measure of the unoriented differentiation between the levels of the planned factor for each landmark and fatty acid (FA profile. Multivariate PLS analysis of the FA muscular fat showed that the O factor induced strong differentiation (R2cv: 0.96, while less influence (0.33 was observed for the C factor. The model based on the NIRS radiation of the landmarks clearly shows the O factor effects, not only in the perirenal (0.90 and scapular (0.85 fats, but also in the belly (0.76, liver (0.73 and hind legs (0.72. Whereas the C effects were only expressed in the live animals (ears: 0.66 and abdominal wall: 0.58 and in post-mortem (liver: 0.60. It was concluded that a preliminary NIRS scan of the carcass and of live rabbits can point out the presence of intrinsic experimental effects concerning the lipid metabolism of polyunsaturated FA of the n-6 series (O factor and n-3 series (C factor.

  5. Estimation of the deoxynivalenol and moisture contents of bulk wheat grain samples by FT-NIR spectroscopy

    Science.gov (United States)

    Deoxynivalenol (DON) levels in harvested grain samples are used to evaluate the Fusarium head blight (FHB) resistance of wheat cultivars and breeding lines. Fourier transform near-infrared (FT-NIR) calibrations were developed to estimate the DON and moisture content (MC) of bulk wheat grain samples ...

  6. Brain and muscle oxygenation monitoring using near-infrared spectroscopy (NIRS) during all-night sleep

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2013-03-01

    The hemodynamic changes during natural human sleep are still not well understood. NIRS is ideally suited for monitoring the hemodynamic changes during sleep due to the properties of local measurement, totally safe application and good tolerance to motion. Several studies have been conducted using NIRS in both normal subjects and patients with various sleep disorders during sleep to characterize the hemodynamic changing patterns during different sleep stages and during different symptoms such as obstructive apneas. Here we assessed brain and muscle oxygenation changes in 7 healthy adults during all-night sleep with combined polysomnography measurement to test the notion if hemodynamic changes in sleep are indeed brain specific. We found that muscle and brain showed similar hemodynamic changes during sleep initiation. A decrease in HbO2 and tissue oxygenation index (TOI) while an increase in HHb was observed immediately after sleep onset, and an opposite trend was found after transition with progression to deeper slow-wave sleep (SWS) stage. Spontaneous low frequency oscillations (LFO) and very low frequency oscillations (VLFO) were smaller (Levene's test, psleep (LS) and rapid-eye-movement (REM) sleep in both brain and muscle. Spectral analysis of the NIRS signals measured from brain and muscle also showed reductions in VLFO and LFO powers during SWS with respect to LS and REM sleep. These results indicate a systemic attenuation rather than local cerebral reduction of spontaneous hemodynamic activity in SWS. A systemic physiological mechanism may exist to regulate the hemodynamic changes in brain and muscle during sleep.

  7. Far-infrared constraints on the contamination by dust-obscured galaxies of high-z dropout searches.

    OpenAIRE

    Boone, F.; Schaerer, D.; Pelló, R.; Lutz, D.; Weiss, A.; Egami, E.; Smail, I.; Rex, M.; Rawle, T.; Ivison, R.; Laporte, N.; Beelen, A.; Combes, F.; Blain, A.W.; Richard, J.

    2011-01-01

    The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize like...

  8. Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR

    Science.gov (United States)

    Taylor, Andrew S.; Batishchev, Oleg V.

    2017-11-01

    We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.

  9. Prediction of the Chemical Composition and Fermentation Parameters of Pasture Silage by Near Infrered Reflectance Spectroscopy (NIRS Predicción de la Composición Química y Parámetros Fermentativos de Ensilajes de Pradera Mediante Espectroscopía de Reflectancia en el Infrarrojo Cercano (NIRS

    Directory of Open Access Journals (Sweden)

    Lorena Ibáñez

    2008-12-01

    Full Text Available The capability of near infrared reflectance spectroscopy (NIRS was evaluated to predict the content of total ash (TA, crude protein (CP, crude fiber (CF, neutral detergent fiber (NDF, acid detergent fiber (ADF and metabolizable energy (ME; as well as pH and ammonia nitrogen content (N-NH3, in pasture silage, with and without additives. Nine hundred and twenty dried and ground samples of pasture silage, with known chemical composition, were scanned over the visible and NIR region (400 to 2500 nm at 2 nm intervals. Calibration equations were developed by modified partial least square regression models (MPLS with different mathematical treatments and light scatter correction as standard normal variation and Detrend (SNV & D of the spectra. For each parameter, the optimum calibration was evaluated on the basis of the cross validation determination coefficient (1-VR and standard error of cross validation (SECV. NIRS showed a high predictive ability, with 1-VR > 0.89 and SECV (% of 5.14, 6.69, 9.96, 16.01 and 9.15 for A, CP, CF, NDF and ADF, respectively. NIRS showed moderate accuracy for ME, with 1-VR > 0.87, SECV: 0.07 Mcal kg-1 and low accuracy, although with feasibility as a ranking method, for pH and N-NH3, with 1-VR > 0.72 and SECV of 0.14 and 1.49, respectively. It is concluded that the equations obtained can be used to predict the nutritional composition of pasture silages.Se evaluó la capacidad de la espectroscopía de reflectancia en el infrarrojo cercano (NIRS para predecir la composición química: cenizas totales (CT, proteína cruda (PC, fibra cruda (FC, fibra detergente neutro (FDN, fibra detergente ácido (FDA, energía metabolizable (EM y parámetros fermentativos: pH y nitrógeno amoniacal (N-NH3, en ensilajes de pradera con y sin aditivos. Se tomaron espectros (400 a 2500 nm, cada 2 nm de muestras secas y molidas (n = 920 de ensilajes de pradera con composición química conocida. Se desarrollaron calibraciones evaluando diferentes

  10. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Bleichner, Martin G; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  11. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    Directory of Open Access Journals (Sweden)

    Ling-Chia Chen

    2016-01-01

    Full Text Available Cochlear implant (CI users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users’ speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS. Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  12. Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor.

    Science.gov (United States)

    Naqvi, Rizwan Ali; Arsalan, Muhammad; Batchuluun, Ganbayar; Yoon, Hyo Sik; Park, Kang Ryoung

    2018-02-03

    A paradigm shift is required to prevent the increasing automobile accident deaths that are mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable information regarding a driver's point of attention. Accurate and inexpensive gaze classification systems in cars can improve safe driving. However, monitoring real-time driving behaviors and conditions presents some challenges: dizziness due to long drives, extreme lighting variations, glasses reflections, and occlusions. Past studies on gaze detection in cars have been chiefly based on head movements. The margin of error in gaze detection increases when drivers gaze at objects by moving their eyes without moving their heads. To solve this problem, a pupil center corneal reflection (PCCR)-based method has been considered. However, the error of accurately detecting the pupil center and corneal reflection center is increased in a car environment due to various environment light changes, reflections on glasses surface, and motion and optical blurring of captured eye image. In addition, existing PCCR-based methods require initial user calibration, which is difficult to perform in a car environment. To address this issue, we propose a deep learning-based gaze detection method using a near-infrared (NIR) camera sensor considering driver head and eye movement that does not require any initial user calibration. The proposed system is evaluated on our self-constructed database as well as on open Columbia gaze dataset (CAVE-DB). The proposed method demonstrated greater accuracy than the previous gaze classification methods.

  13. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  14. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    Science.gov (United States)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during

  15. Rapid Characterization of Fatty Acids in Oleaginous Microalgae by Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2015-03-01

    Full Text Available The key properties of microalgal biodiesel are largely determined by the composition of its fatty acid methyl esters (FAMEs. The gas chromatography (GC based techniques for fatty acid analysis involve energy-intensive and time-consuming procedures and thus are less suitable for high-throughput screening applications. In the present study, a novel quantification method for microalgal fatty acids was established based on the near-infrared spectroscopy (NIRS technique. The lyophilized cells of oleaginous Chlorella containing different contents of lipids were scanned by NIRS and their fatty acid profiles were determined by GC-MS. NIRS models were developed based on the chemometric correlation of the near-infrared spectra with fatty acid profiles in algal biomass. The optimized NIRS models showed excellent performances for predicting the contents of total fatty acids, C16:0, C18:0, C18:1 and C18:3, with the coefficient of determination (R2 being 0.998, 0.997, 0.989, 0.991 and 0.997, respectively. Taken together, the NIRS method established here bypasses the procedures of cell disruption, oil extraction and transesterification, is rapid, reliable, and of great potential for high-throughput applications, and will facilitate the screening of microalgal mutants and optimization of their growth conditions for biodiesel production.

  16. Near-infrared spectroscopy and microstructure of the scales of Sabethes ( Sabethes albiprivus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Betina Westphal-Ferreira

    Full Text Available ABSTRACT Near-infrared spectroscopy and microstructure of the scales of Sabethes (Sabethes albiprivus (Diptera: Culicidae. Sabethes (Sabethes albiprivus Theobald individuals vary considerably in size and color of the reflections of the scales on their thorax, abdomen, antepronotal lobes and occiput. The goal of this study was to investigate and to characterize the differences in the color of the scales among preserved specimens and to analyze the differences in the microstructures of the scales that cover their bodies using near-infrared spectroscopy, and to evaluate whether the latter is efficient in distinguishing the populations. A total of 201 adult females were analyzed for the characterization of color patterns. In addition, absorbance spectra and scanning electron microscope images were obtained from them. As a result of color analysis, two variations were identified, one represented by specimens with yellow or green scales and the other with blue or purple scales. The same two variations were corroborated using NIRS. Analysis of the microstructure of the scales lining the mesonotum, occiput and antepronotal lobes resulted in the same variations. The three methodologies, near-infrared spectroscopy, scanning electron microscopy and coloration of the reflections of the scales revealed two variations within Sa. albiprivus.

  17. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    Science.gov (United States)

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  18. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics.

    Science.gov (United States)

    Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L

    2016-07-01

    The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  20. Search for the NIR counterpart to GRB130807A/SWIFTJ1759.2-2736 in quiescence

    NARCIS (Netherlands)

    Greiss, S.; Steeghs, D.; Jonker, P.G.; Maccarone, T.; Torres, M.A.P.; Heinke, C.; Wijnands, R.

    2013-01-01

    In order to search for the counterpart of the transient source SWIFTJ1759.2-2736 (Atel #5268), we investigated near-infrared (NIR) data of the Galactic Bulge region obtained as part of the VVV survey (Minniti et al. 2010, New Astronomy, Volume 15, 433). The observations took place while the source

  1. Fabrication of thin-film thermoelectric generators with ball lenses for conversion of near-infrared solar light

    OpenAIRE

    Ito, Yoshitaka; Mizoshiri, Mizue; Mikami, Masashi; Kondo, Tasuku; Sakurai, Junpei; Hata, Seiichi

    2017-01-01

    We designed and fabricated thin-film thermoelectric generators (TEGs) with ball lenses, which separated visible light and near-infrared (NIR) solar light using a chromatic aberration. The transmitted visible light was used as daylight and the NIR light was used for thermoelectric generation. Solar light was estimated to be separated into the visible light and NIR light by a ray tracing method. 92.7% of the visible light was used as daylight and 9.9% of the NIR light was used for thermoelectri...

  2. The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America

    Science.gov (United States)

    Reeves, J. B.; Smith, D.B.

    2009-01-01

    In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n = 720) were collected from two transects (east-west across the USA, and north-south from Manitoba, Canada to El Paso, Texas (USA), n = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0-5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000-400 cm-1) and near-infrared (10,000-4000 cm-1) at 4 cm-1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional

  3. Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control

    Science.gov (United States)

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain–computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface. PMID:28261084

  4. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Filippo Molinari

    2010-01-01

    Full Text Available Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated (O2Hb and reduced (HHb hemoglobin in the brain cortex. O2Hb and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  5. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    Directory of Open Access Journals (Sweden)

    Liboni William

    2010-01-01

    Full Text Available Abstract Near-infrared spectroscopy (NIRS is a noninvasive system for the real-time monitoring of the concentration of oxygenated ( and reduced (HHb hemoglobin in the brain cortex. and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20–40 mHz and of the low frequencies (LF: 40–140 mHz. Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  6. NIR spectroscopy for the in-line monitoring of a multicomponent formulation during the entire freeze-drying process

    NARCIS (Netherlands)

    Rosas, Juan G; de Waard, Hans; De Beer, Thomas; Vervaet, Chris; Remon, Jean Paul; Hinrichs, Wouter L J; Frijlink, Henderik W; Blanco, Marcel

    2014-01-01

    Freeze drying is a complex, time consuming and thus expensive process, hence creating a need for understanding the material behaviour in the process environment and for process optimization. Near-infrared (NIR) spectroscopy offers the opportunity to monitor physicochemical changes of the formulation

  7. Quantifying seasonal variation of leaf area index using near-infrared digital camera in a rice paddy

    Science.gov (United States)

    Hwang, Y.; Ryu, Y.; Kim, J.

    2017-12-01

    Digital camera has been widely used to quantify leaf area index (LAI). Numerous simple and automatic methods have been proposed to improve the digital camera based LAI estimates. However, most studies in rice paddy relied on arbitrary thresholds or complex radiative transfer models to make binary images. Moreover, only a few study reported continuous, automatic observation of LAI over the season in rice paddy. The objective of this study is to quantify seasonal variations of LAI using raw near-infrared (NIR) images coupled with a histogram shape-based algorithm in a rice paddy. As vegetation highly reflects the NIR light, we installed NIR digital camera 1.8 m above the ground surface and acquired unsaturated raw format images at one-hour intervals between 15 to 80 º solar zenith angles over the entire growing season in 2016 (from May to September). We applied a sub-pixel classification combined with light scattering correction method. Finally, to confirm the accuracy of the quantified LAI, we also conducted direct (destructive sampling) and indirect (LAI-2200) manual observations of LAI once per ten days on average. Preliminary results show that NIR derived LAI agreed well with in-situ observations but divergence tended to appear once rice canopy is fully developed. The continuous monitoring of LAI in rice paddy will help to understand carbon and water fluxes better and evaluate satellite based LAI products.

  8. A Colloidal-Quantum-Dot-Based Self-Charging System via the Near-Infrared Band.

    Science.gov (United States)

    Baek, Se-Woong; Cho, Jungmin; Kim, Joo-Seong; Kim, Changjo; Na, Kwangmin; Lee, Sang-Hoon; Jun, Sunhong; Song, Jung Hoon; Jeong, Sohee; Choi, Jang Wook; Lee, Jung-Yong

    2018-05-11

    A novel self-charging platform is proposed using colloidal-quantum-dot (CQD) photovoltaics (PVs) via the near-infrared (NIR) band for low-power electronics. Low-bandgap CQDs can convert invisible NIR light sources to electrical energy more efficiently than wider spectra because of reduced thermalization loss. This energy-conversion strategy via NIR photons ensures an enhanced photostability of the CQD devices. Furthermore, the NIR wireless charging system can be concealed using various colored and NIR-transparent fabric or films, providing aesthetic freedom. Finally, an NIR-driven wireless charging system is demonstrated for a wearable healthcare bracelet by integrating a CQD PVs receiver with a flexible lithium-ion battery and entirely embedding them into a flexible strap, enabling permanent self-charging without detachment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    Directory of Open Access Journals (Sweden)

    L. Campo

    2013-05-01

    Full Text Available The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS to predict non-structural carbohydrates (NSC, water soluble carbohydrates (WSC, in vitro organic dry matter digestibility (IVOMD, organic matter (OM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. Four hundred and fifty samples of wide spectrum from different origin were selected out of 3000 scanned for the calibration set, whereas 87 independent random samples were used in the external validation. The goodness of the calibration models was evaluated using the following statistics: coefficient of determination (R2, standard error of cross-validation (SECV, standard error of prediction for external validation (SEP and the RPDCV and RPDP indexes [ratios of standard deviation (SD of reference analysis data to SECV and SEP, respectively]. The smaller the SECV and SEP and the greater the RPDCV and RPDP, the predictions are better. Trait measurement units were g/100g of dry matter (DM, except for IVOMD (g/100g OM. The SECV and RPDCV statistics of the calibration set were 1.34 and 3.2 for WSC, 2.57 and 3 for NSC and 2.3 and 2.2 for IVOMD, respectively. The SEP and RPDP statistics for external validation were 0.74 and 4.7 for WSC, 2.14 and 2.5 for NSC and 1.68 and 1.6 for IVOMD respectively. It can be concluded that the NIRS technique can be used to predict WSC and NSC with good accuracy, whereas prediction of IVOMD showed a lesser accuracy. NIRS predictions of OM, CP, NDF, ADF and starch also showed good accuracy.

  10. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  11. Cerebral time domain-NIRS: Reproducibility analysis, optical properties, hemoglobin species and tissue oxygen saturation in a cohort of adult subjects

    OpenAIRE

    Giacalone, Giacomo; Zanoletti, Marta; Contini, Davide; Rebecca, Re; Spinelli, Lorenzo; Roveri, Luisa; Torricelli, Alessandro

    2017-01-01

    The reproducibility of cerebral time-domain near-infrared spectroscopy (TD-NIRS) has not been investigated so far. Besides, reference intervals of cerebral optical properties, of absolute concentrations of deoxygenated-hemoglobin (HbR), oxygenated-hemoglobin (HbO), total hemoglobin (HbT) and tissue oxygen saturation (StO2) and their variability have not been reported. We have addressed these issues on a sample of 88 adult healthy subjects. TD-NIRS measurements at 690, 785, 830 nm were fitted ...

  12. Supplementing predictive mapping of acid sulfate soil occurrence with Vis-NIR spectroscopy

    DEFF Research Database (Denmark)

    Beucher, Amélie; Peng, Yi; Knadel, Maria

    , including geology, landscape type and terrain parameters. Visible-Near-Infrared (Vis-NIR) spectroscopy constitutes a rapid and cheap alternative to soil analysis, and was successfully utilized for the prediction of soil chemical, physical and biological properties. In particular, the Vis-NIR spectra contain......Releasing acidity and metals into watercourses, acid sulfate soils represent a critical environmental problem worldwide. Identifying the spatial distribution of these soils enables to target the strategic areas for risk management. In Denmark, the occurrence of acid sulfate soils was first studied...... during the 1980’s through conventional mapping (i.e. soil sampling and the subsequent determination of pH at the time of sampling and after incubation, the pyrite content and the acid-neutralizing capacity). Since acid sulfate soils mostly occur in wetlands, the survey specifically targeted these areas...

  13. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  14. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.

    2011-01-01

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm -1 ) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  15. Grazing incidence infrared reflectivity of La1.85Sr0.15CuO4 and NbN

    NARCIS (Netherlands)

    Somal, HS; Feenstra, BJ; Schutzmann, J; Kim, JH; Barber, ZH; Duijn, VHM; Hien, NT; Menovsky, AA; Palumbo, M; vanderMarel, D

    1996-01-01

    Infrared reflectivity measurements, using p-polarized light at a grazing angle of incidence, show an increased sensitivity to the optical conductivity of highly reflecting superconducting materials. We demonstrate that when this measurement technique is applied to the conventional s-wave

  16. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers.

    Science.gov (United States)

    Jones, Ben; Parry, Dave; Cooper, Chris E

    2018-01-01

    The development of an underwater near-infrared spectroscopy (uNIRS) device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i) to trial the use of uNIRS, in a real world training study, and (ii) to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis . uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming.

  17. Real-time Near-infrared Virtual Intraoperative Surgical Photoacoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Changho Lee

    2015-09-01

    Full Text Available We developed a near infrared (NIR virtual intraoperative surgical photoacoustic microscopy (NIR-VISPAM system that combines a conventional surgical microscope and an NIR light photoacoustic microscopy (PAM system. NIR-VISPAM can simultaneously visualize PA B-scan images at a maximum display rate of 45 Hz and display enlarged microscopic images on a surgeon's view plane through the ocular lenses of the surgical microscope as augmented reality. The use of the invisible NIR light eliminated the disturbance to the surgeon's vision caused by the visible PAM excitation laser in a previous report. Further, the maximum permissible laser pulse energy at this wavelength is approximately 5 times more than that at the visible spectral range. The use of a needle-type ultrasound transducer without any water bath for acoustic coupling can enhance convenience in an intraoperative environment. We successfully guided needle and injected carbon particles in biological tissues ex vivo and in melanoma-bearing mice in vivo.

  18. NIRS Study of the Effects of Computerized Brain Training Games for Cognitive Rehabilitation of Major Depressive Disorder Patients in Remission: A Pilot Study.

    Science.gov (United States)

    Payzieva, Shaira; Maxmudova, D

    2014-01-01

    We used functional Near-Infrared Spectroscopy (fNIRS) to estimate brain activity in Major Depressive Disorder (MDD) patients (in remission), while they played a computerized brain training games for cognitive rehabilitation. MDD is characterized by marked deterioration in affect as well as significant impairment in cognitive function. It was found, that depressed patients showed long-lasting impaired cognitive performance on cognitive demanding tasks despite significant improvement in the depression symptoms. Previous studies have shown that video games can improve cognitive functions. But assessment was made only with cognitive tests. The main objective of this research was to study the effects of brain training games on cognitive functions of MDD patients in remission with objective instrumental NIRS method. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) - Oxyprem (BORL, Zurich, Switzerland). Preliminary results are discussed.

  19. [The NIR spectra based variety discrimination for single soybean seed].

    Science.gov (United States)

    Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng

    2010-12-01

    With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.

  20. Application of the near-infrared spectroscopy in the pharmaceutical technology.

    Science.gov (United States)

    Jamrógiewicz, Marzena

    2012-07-01

    Near-infrared (NIR) spectroscopy is currently the fastest-growing and the most versatile analytical method not only in the pharmaceutical sciences but also in the industry. This review focuses on recent NIR applications in the pharmaceutical technology. This article covers monitoring, by NIR, of many manufacturing processes, such as granulation, mixing or drying, in order to determine the end-point of these processes. In this paper, apart from basic theoretical information concerning the NIR spectra, there are included determinations of the quality and quantity of pharmaceutical compounds. Some examples of measurements and control of physicochemical parameters of the final medicinal products, such as hardness, porosity, thickness size, compression strength, disintegration time and potential counterfeit are included. Biotechnology and plant drug analysis using NIR is also described. Moreover, some disadvantages of this method are stressed and future perspectives are anticipated. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Rapid determination of acetic acid, furfural and 5-hydroxymethylfurfural in biomass hydrolysate using near-infrared spectroscopy

    Science.gov (United States)

    Near infrared spectroscopy (NIR) is a rapid detection technique that has been used to characterize biomass. The objective of this study was to develop suitable NIR models to predict the acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) contents in biomass hydrolysates. Using a uniform distrib...

  2. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng; Chen, Yin; Ma, Chun; Buttner, Ulrich; Leo, Karl; Wu, Tao

    2016-01-01

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  3. High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor

    KAUST Repository

    Li, Feng

    2016-12-13

    A solution-processed near-infrared (NIR) organic phototransistor (OPT) based on n-type organic small molecular material BODIPY-BF2 has been successfully fabricated. Its unprecedented performance, as well as its easy fabrication and good stability, mark this BODIPY-BF2 based OPT device as a very promising candidate for optoelectronic applications in the NIR regime.

  4. Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation.

    Science.gov (United States)

    Hunter, Carol Lu; Oei, Ju Lee; Lui, Kei; Schindler, Timothy

    2017-07-01

    To assess correlation between cerebral oxygenation (rScO 2 ), as measured by near-infrared spectroscopy (NIRS), and arterial oxygenation (PaO 2 ), as measured by arterial blood gases, in preterm neonates. Preterm neonates interpretation of NIRS values in neonatal intensive care, and further evaluation is needed to determine the applicability of NIRS to management of preterm infants. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  6. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils.

    Science.gov (United States)

    Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J

    2008-07-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81fungi were not accurate enough to satisfactorily estimate these variables, only permitting approximate predictions (0.66reflect that NIR reflectance spectroscopy could be used as a rapid, inexpensive and non-destructive technique to predict some physical, chemical and biochemical soil properties for Mediterranean soils, including variables related to the composition of the soil microbial community composition.

  7. CO Adsorption and Oxidation at the Catalyst-Water Interface: An Investigation by Attenuated Total Reflection Infrared Spectroscopy.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2006-01-01

    Adsorption of carbon monoxide and oxidation of preadsorbed carbon monoxide from gas and aqueous phases were studied on a platinum catalyst deposited on a ZnSe internal reflection element (IRE) using attenuated total reflection infrared (ATR-IR) spectroscopy. The results of this study convincingly

  8. Synthesis, Characterization, and NIR Reflectance of Highly Dispersed NiTiO3 and NiTiO3/TiO2 Composite Pigments

    Directory of Open Access Journals (Sweden)

    Yuping Tong

    2016-01-01

    Full Text Available The highly dispersed nanostructured NiTiO3 pigments and NiTiO3/TiO2 composite pigments can be synthesized at relative low temperature. The activation energy of crystal growth of NiTiO3 during calcinations via salt-assistant combustion method is 9.35 kJ/mol. The UV-vis spectra results revealed that the absorbance decreased with the increasing of calcinations temperature due to small size effect of nanometer particles. The optical data of NiTiO3 nanocrystals were analyzed at the near-absorption edge. SEM showed that the obtained NiTiO3 nanocrystals and NiTiO3/TiO2 nanocomposite were composed of highly dispersed spherical-like and spherical particles with uniform size distribution, respectively. The chromatic properties and diffuse reflectance of samples were investigated. The obtained NiTiO3/TiO2 composite samples have higher NIR reflectance than NiTiO3 pigments.

  9. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite - A mid-infrared and near-infrared study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.F.; Yang, J.; Liu, Q.F.; Zhang, J.S.; Frost, R.L. [Queensland University of Technology, Brisbane, Qld. (Australia). Faculty of Science & Technology

    2010-11-15

    Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant minerals of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm{sup -1} between kaolinite and halloysite. It cannot obviously differentiate the kaolinite and halloysite, leaving alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, gives us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in all range of their spectra, and they also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.

  10. Carbon monoxide stunning of Atlantic salmon (Salmo salar L.) modifies rigor mortis and sensory traits as revealed by NIRS and other instruments.

    Science.gov (United States)

    Concollato, Anna; Parisi, Giuliana; Masoero, Giorgio; Romvàri, Robert; Olsen, Rolf-Erik; Dalle Zotte, Antonella

    2016-08-01

    Methods of stunning used in salmon slaughter are still the subject of research. Fish quality can be influenced by pre-, ante- and post-mortem conditions, including handling before slaughter, slaughter methods and storage conditions. Carbon monoxide (CO) is known to improve colour stability in red muscle and to reduce microbial growth and lipid oxidation in live fish exposed to CO. Quality differences in Atlantic salmon, Salmo salar L., stunned by CO or percussion, were evaluated and compared by different techniques [near infrared reflectance spectroscopy (NIRS), electronic nose (EN), electronic tongue (ET)] and sensory analysis. Thawed samples, freeze-dried preparates and NIRS devices proved to be the most efficient combinations for discriminating the treatments applied to salmon, i.e. first the stunning methods adopted, then the back-prediction of the maximum time to reach rigor mortis and finally to correlate some sensory attributes. A trained panel found significant differences between control and CO-stunned salmon: reduced tactile crumbliness, reduced odour and aroma intensities, and reduced tenderness of CO-treated fillets. CO stunning reduced radiation absorbance in spectra of thawed and freeze-dried fillets, but not fillet samples stored in ethanol, where it may have interacted with myoglobin and myosin. The good results in a rapid discrimination of thawed samples detected by NIRS suggest suitable applications in the fish industry. CO treatment could mitigate sensory perception, but consumer tests are needed to confirm our findings. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Deep and accurate near-infrared photometry of the Galactic globular cluster omega Cen .

    Science.gov (United States)

    Calamida, A.; Bono, G.; Corsi, C. E.; Stetson, P. B.; Prada Moroni, P. G.; Degl'Innocenti, S.; Marchetti, E.; Amico, P.; Ferraro, I.; Iannicola, G.; Monelli, M.; Buonanno, R.; Caputo, F.; Dall'Ora, M.; Freyhammer, L. M.; Koester, D.; Nonino, M.; Piersimoni, A. M.; Pulone, L.; Romaniello, M.

    We present deep and accurate Near-Infrared (NIR) photometry of the Galactic Globular Cluster omega Cen . Data were collected using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) mounted on the VLT (ESO). We combined the NIR photometry with optical space data collected with the Advanced Camera for Surveys (ACS) for the same region of the cluster. Our deep optical-NIR CMD indicates that the spread in age among the different stellar populations in omega Cen is at most of the order of 2 Gyr.

  12. Mix ratio measurements of pozzolanic blends by Fourier transform infrared-attenuated total reflectance method

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.

    1992-07-01

    The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends

  13. On children's dyslexia with NIRS

    Science.gov (United States)

    Gan, Zhuo; Li, Chengjun; Gong, Hui; Luo, Qingming; Yao, Bin; Song, Ranran; Wu, Hanrong

    2003-12-01

    Developmental dyslexia is a kind of prevalent psychologic disease. Some functional imaging technologies, such as FMRI and PET, have been used to study the brain activities of dyslexics. NIRS is a kind of novel technology which is more and more widely being used for study of the cognitive psychology. However, there aren"t reports about the dyslexic research using NIRS to be found until now. This paper introduces a NIRS system of four measuring channels. Brain activities of dyslexic subjects and normal subjects during reading task were studied with the NIRS system. Two groups of subjects, the group of dyslexia and the group of normal, were appointed to perform two reading tasks. At the same time, their cortical activities were measured with the NIRS system. This experimental result indicates that the brain activities of the dyslexic group were significantly higher than the control group in BA 48 and that NIRS can be used for the study of human brain activity.

  14. Multivariate curve resolution using a combination of mid-infrared and near-infrared spectra for the analysis of isothermal epoxy curing reaction

    Science.gov (United States)

    Yamasaki, Hideki; Morita, Shigeaki

    2018-05-01

    Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4‧-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the Nsbnd H and Osbnd H stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy.

  15. Infrared reflectance studies of hillock-like porous zinc oxide thin films

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ng, S.S.; Hassan, Z.; Abu Hassan, H.

    2013-01-01

    We investigated the infrared (IR) reflectance characteristics of hillock-like porous zinc oxide (ZnO) thin films on silicon substrates. The IR reflectance spectra of the porous samples exhibited an extra resonance hump in the reststrahlen region of ZnO compared with the as-grown sample. Oscillation fringes with different behaviors were also observed in the non-reststrahlen region of ZnO. Standard multilayer optic technique was used with the effective medium theory to analyze the observations. Results showed that the porous ZnO layer consisted of several sublayers with different porosities and thicknesses. These findings were confirmed by scanning electron microscopy measurements. - Highlights: • Multilayer porous assumption qualitatively increased the overall spectra fitting. • IR reflectance is a sensitive method to probe the multilayer porous structure. • Hillock-like porous ZnO thin films fabricated using electrochemical etching method. • The thickness and porosity of the samples were determined. • Formation of extra resonance hump was due to splitting of reststrahlen band

  16. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    Science.gov (United States)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  17. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Science.gov (United States)

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori

    2012-08-01

    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  18. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    Science.gov (United States)

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  19. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    OpenAIRE

    Runyu Yan; Min Chen; Han Zhou; Tian Liu; Xingwei Tang; Ke Zhang; Hanxing Zhu; Jinhua Ye; Di Zhang; Tongxiang Fan

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the fi...

  20. Acute effects of vascular modifying agents in solid tumors assessed by noninvasive laser Doppler flowmetry and near infrared spectroscopy

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Horsman, Michael R

    2002-01-01

    LDF, using a 41 degrees C heated custom-built LDF probe with four integrated laser/receiver units, and tumor blood volume was estimated by NIRS, using light guide coupled reflectance measurements at 800+/-10 nm. FAA, DMXAA, CA4DP, and HDZ significantly decreased tumor perfusion by 50%, 47%, 73......The potential of noninvasive laser Doppler flowmetry (LDF) and near infrared spectroscopy (NIRS) to detect acute effects of different vascular-modifying agents on perfusion and blood volume in tumors was evaluated. C3H mouse mammary carcinomas (approximately 200 mm(3)) in the rear foot of CDF1 mice......%, and 78%, respectively. In addition, FAA, DMXAA, and HDZ significantly reduced the blood volume within the tumor, indicating that these compounds to some degree shunted blood from the tumor to adjacent tissue, HDZ being most potent. CA4DP caused no change in the tumor blood volume, indicating...

  1. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    National Research Council Canada - National Science Library

    Yang, C.S; Brown, E; Hommerich, U; Trivedi, S. B; Snyder, A. P; Samuels, A. C

    2006-01-01

    .... The ultraviolet-visible-near infrared (UV-Vis- NIR) spectral region exploited in conventional LIBS largely elucidates the elemental composition of the laser target by profiling these atomic lines...

  2. Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy

    Science.gov (United States)

    Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao

    2006-10-01

    To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.

  3. NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification

    Directory of Open Access Journals (Sweden)

    Min Peng

    2016-10-01

    Full Text Available Near-infrared (NIR face recognition has attracted increasing attention because of its advantage of illumination invariance. However, traditional face recognition methods based on NIR are designed for and tested in cooperative-user applications. In this paper, we present a convolutional neural network (CNN for NIR face recognition (specifically face identification in non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has a more compact structure designed specifically for the Chinese Academy of Sciences Institute of Automation (CASIA NIR database and can achieve higher identification rates with less training time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall advantage compared to other methods in the NIR face recognition domain when image blur and noise are present. The performance suggests that the proposed NIRFaceNet method may be more suitable for non-cooperative-user applications.

  4. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers

    Directory of Open Access Journals (Sweden)

    Ben Jones

    2018-04-01

    Full Text Available The development of an underwater near-infrared spectroscopy (uNIRS device has enabled previously unattainable measurements of peripheral muscle hemodynamics and oxygenation to be taken within the natural aquatic environment. The purposes of this study were (i to trial the use of uNIRS, in a real world training study, and (ii to monitor the effects of a swim training program upon muscle oxygenation status in short distance swimming. A total of 14 junior club level swimmers completed a repeated swim sprint test before and after an eight week endurance training program. A waterproof, portable Near-Infrared Spectroscopy device was attached to the vastus lateralis. uNIRS successfully measured changes in muscle oxygenation and blood volume in all individuals; rapid sub-second time resolution of the device was able to demonstrate muscle oxygenation changes during the characteristic swim movements. Post training heart rate recovery and swim performance time were significantly improved. uNIRS data also showed significant changes. A larger rise in deoxyhemoglobin during individual sprints suggested training induced an increase in muscle oxygen extraction; a faster recovery time for muscle oxygenation suggested positive training induced changes and significant changes in muscle blood flow also occur. As a strong correlation was seen between an increased reoxygenation rate and an improved swim performance time, these findings support the use of uNIRS as a new performance analysis tool in swimming.

  5. The rapid measurement of soil carbon stock using near-infrared technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  6. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Truijen, J; Kim, Y S; Krediet, C T P

    2012-01-01

    posture, volume accumulation in small blood vessels contributes significantly to the total fluid volume accumulated in the legs. Considering that near-infrared spectroscopy (NIRS) tracks postural blood volume changes within the small blood vessels of the lower leg, we evaluated the NIRS-determined changes......-linear accumulation of blood volume in the small vessels of the leg, with an initial fast phase followed by a more gradual increase at least partly contributing to the relocation of fluid during orthostatic stress....

  7. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore

    Science.gov (United States)

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Bublikov, G. S.; Kuznetsova, I. M.; Verkhusha, V. V.; Turoverov, K. K.

    2017-07-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms.

  8. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  9. Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Ali Naqvi

    2018-02-01

    Full Text Available A paradigm shift is required to prevent the increasing automobile accident deaths that are mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable information regarding a driver’s point of attention. Accurate and inexpensive gaze classification systems in cars can improve safe driving. However, monitoring real-time driving behaviors and conditions presents some challenges: dizziness due to long drives, extreme lighting variations, glasses reflections, and occlusions. Past studies on gaze detection in cars have been chiefly based on head movements. The margin of error in gaze detection increases when drivers gaze at objects by moving their eyes without moving their heads. To solve this problem, a pupil center corneal reflection (PCCR-based method has been considered. However, the error of accurately detecting the pupil center and corneal reflection center is increased in a car environment due to various environment light changes, reflections on glasses surface, and motion and optical blurring of captured eye image. In addition, existing PCCR-based methods require initial user calibration, which is difficult to perform in a car environment. To address this issue, we propose a deep learning-based gaze detection method using a near-infrared (NIR camera sensor considering driver head and eye movement that does not require any initial user calibration. The proposed system is evaluated on our self-constructed database as well as on open Columbia gaze dataset (CAVE-DB. The proposed method demonstrated greater accuracy than the previous gaze classification methods.

  10. The effect of bi-directional reflectance distribution function on the estimation of vegetation indices and leaf area index (LAI): A case study of the vegetation in succession stages after forest fire in northwestern Canada

    International Nuclear Information System (INIS)

    Hasegawa, K.; Matsuyama, H.; Tsuzuki, H.; Sweda, T.

    2006-01-01

    The effect of the dependence of the satellite data on sun/sensor geometry must be considered in the case of monitoring vegetation from satellites. Vegetation structure causes uneven scattering of sunlight, which is expressed by bi-directional reflectance distribution function (BRDF). The purpose of this study is to estimate the effect of BRDF of monitoring vegetation using the reflectance of visible and near-infrared bands. We investigated the vegetation in succession stages after forest fire (main species: spruce) in the northwestern Canada. BRF (Bidirectional Reflectance Factor) was measured in the seven sites of some succession stages, along with the measurements of leaf area index (LAI) and biomass. The main results obtained in this study are summarized as follows. (1) In each site, the difference of Normalized Difference Vegetation Index (NDVI) value around 0.1-0.2 was caused by BRDF when the sensor angle was changed from -15deg to 15 deg, being equivalent to the standard image of IKONOS. Also, LAI estimated by NDVI varied from 22% to 65% of the average. (2) The robustness of other vegetation indices to BRDF was compared. The reflectance of the near-infrared band normalized by the sum of other bands (nNIR), and Global Environmental Monitoring Index (GEMI) were investigated along with NDVI. It is clarified that nNIR was most robust in the site where vegetation existed. GEMI was most robust in the sites of scarce vegetation, while NDVI was strongly affected by BRDF in such sites

  11. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    Science.gov (United States)

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  12. Combined optimal-pathlengths method for near-infrared spectroscopy analysis

    International Nuclear Information System (INIS)

    Liu Rong; Xu Kexin; Lu Yanhui; Sun Huili

    2004-01-01

    Near-infrared (NIR) spectroscopy is a rapid, reagent-less and nondestructive analytical technique, which is being increasingly employed for quantitative application in chemistry, pharmaceutics and food industry, and for the optical analysis of biological tissue. The performance of NIR technology greatly depends on the abilities to control and acquire data from the instrument and to calibrate and analyse data. Optical pathlength is a key parameter of the NIR instrument, which has been thoroughly discussed in univariate quantitative analysis in the presence of photometric errors. Although multiple wavelengths can provide more chemical information, it is difficult to determine a single pathlength that is suitable for each wavelength region. A theoretical investigation of a selection procedure for multiple pathlengths, called the combined optimal-pathlengths (COP) method, is identified in this paper and an extensive comparison with the single pathlength method is also performed on simulated and experimental NIR spectral data sets. The results obtained show that the COP method can greatly improve the prediction accuracy in NIR spectroscopy quantitative analysis

  13. Evaluation of factors in development of Vis/NIR spectroscopy models for discriminating PSE, DFD and normal broiler breast meat

    Science.gov (United States)

    1. To evaluate the performance of visible and near-infrared (Vis/NIR) spectroscopic models for discriminating true pale, soft and exudative (PSE), normal and dark, firm and dry (DFD) broiler breast meat in different conditions of preprocessing methods, spectral ranges, characteristic wavelength sele...

  14. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  15. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  16. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    Science.gov (United States)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  17. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebu